MFC r1.3 r1.13 r1.8 (HEAD):
[dragonfly.git] / sys / kern / usched_dummy.c
blob5db2f02eea69482bcc55de1015d7d3911845c9e2
1 /*
2 * Copyright (c) 2006 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/kern/usched_dummy.c,v 1.9 2008/04/21 15:24:46 dillon Exp $
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <machine/cpu.h>
49 #include <machine/smp.h>
51 #include <sys/thread2.h>
52 #include <sys/spinlock2.h>
54 #define MAXPRI 128
55 #define PRIBASE_REALTIME 0
56 #define PRIBASE_NORMAL MAXPRI
57 #define PRIBASE_IDLE (MAXPRI * 2)
58 #define PRIBASE_THREAD (MAXPRI * 3)
59 #define PRIBASE_NULL (MAXPRI * 4)
61 #define lwp_priority lwp_usdata.bsd4.priority
62 #define lwp_estcpu lwp_usdata.bsd4.estcpu
64 static void dummy_acquire_curproc(struct lwp *lp);
65 static void dummy_release_curproc(struct lwp *lp);
66 static void dummy_select_curproc(globaldata_t gd);
67 static void dummy_setrunqueue(struct lwp *lp);
68 static void dummy_schedulerclock(struct lwp *lp, sysclock_t period,
69 sysclock_t cpstamp);
70 static void dummy_recalculate_estcpu(struct lwp *lp);
71 static void dummy_resetpriority(struct lwp *lp);
72 static void dummy_forking(struct lwp *plp, struct lwp *lp);
73 static void dummy_exiting(struct lwp *plp, struct lwp *lp);
74 static void dummy_yield(struct lwp *lp);
76 struct usched usched_dummy = {
77 { NULL },
78 "dummy", "Dummy DragonFly Scheduler",
79 NULL, /* default registration */
80 NULL, /* default deregistration */
81 dummy_acquire_curproc,
82 dummy_release_curproc,
83 dummy_setrunqueue,
84 dummy_schedulerclock,
85 dummy_recalculate_estcpu,
86 dummy_resetpriority,
87 dummy_forking,
88 dummy_exiting,
89 NULL, /* setcpumask not supported */
90 dummy_yield
93 struct usched_dummy_pcpu {
94 int rrcount;
95 struct thread helper_thread;
96 struct lwp *uschedcp;
99 typedef struct usched_dummy_pcpu *dummy_pcpu_t;
101 static struct usched_dummy_pcpu dummy_pcpu[MAXCPU];
102 static cpumask_t dummy_curprocmask = -1;
103 static cpumask_t dummy_rdyprocmask;
104 static struct spinlock dummy_spin;
105 static TAILQ_HEAD(rq, lwp) dummy_runq;
106 static int dummy_runqcount;
108 static int usched_dummy_rrinterval = (ESTCPUFREQ + 9) / 10;
109 SYSCTL_INT(_kern, OID_AUTO, usched_dummy_rrinterval, CTLFLAG_RW,
110 &usched_dummy_rrinterval, 0, "");
113 * Initialize the run queues at boot time, clear cpu 0 in curprocmask
114 * to allow dummy scheduling on cpu 0.
116 static void
117 dummyinit(void *dummy)
119 TAILQ_INIT(&dummy_runq);
120 spin_init(&dummy_spin);
121 atomic_clear_int(&dummy_curprocmask, 1);
123 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, dummyinit, NULL)
126 * DUMMY_ACQUIRE_CURPROC
128 * This function is called when the kernel intends to return to userland.
129 * It is responsible for making the thread the current designated userland
130 * thread for this cpu, blocking if necessary.
132 * We are expected to handle userland reschedule requests here too.
134 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
135 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will
136 * occur, this function is called only under very controlled circumstances.
138 * MPSAFE
140 static void
141 dummy_acquire_curproc(struct lwp *lp)
143 globaldata_t gd = mycpu;
144 dummy_pcpu_t dd = &dummy_pcpu[gd->gd_cpuid];
145 thread_t td = lp->lwp_thread;
148 * Possibly select another thread
150 if (user_resched_wanted())
151 dummy_select_curproc(gd);
154 * If this cpu has no current thread, select ourself
156 if (dd->uschedcp == NULL && TAILQ_EMPTY(&dummy_runq)) {
157 atomic_set_int(&dummy_curprocmask, gd->gd_cpumask);
158 dd->uschedcp = lp;
159 return;
163 * If this cpu's current user process thread is not our thread,
164 * deschedule ourselves and place us on the run queue, then
165 * switch away.
167 * We loop until we become the current process. Its a good idea
168 * to run any passive release(s) before we mess with the scheduler
169 * so our thread is in the expected state.
171 KKASSERT(dd->uschedcp != lp);
172 if (td->td_release)
173 td->td_release(lp->lwp_thread);
174 do {
175 crit_enter();
176 lwkt_deschedule_self(td);
177 dummy_setrunqueue(lp);
178 if ((td->td_flags & TDF_RUNQ) == 0)
179 ++lp->lwp_ru.ru_nivcsw;
180 lwkt_switch(); /* WE MAY MIGRATE TO ANOTHER CPU */
181 crit_exit();
182 gd = mycpu;
183 dd = &dummy_pcpu[gd->gd_cpuid];
184 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
185 } while (dd->uschedcp != lp);
189 * DUMMY_RELEASE_CURPROC
191 * This routine detaches the current thread from the userland scheduler,
192 * usually because the thread needs to run in the kernel (at kernel priority)
193 * for a while.
195 * This routine is also responsible for selecting a new thread to
196 * make the current thread.
198 * WARNING! The MP lock may be in an unsynchronized state due to the
199 * way get_mplock() works and the fact that this function may be called
200 * from a passive release during a lwkt_switch(). try_mplock() will deal
201 * with this for us but you should be aware that td_mpcount may not be
202 * useable.
204 * MPSAFE
206 static void
207 dummy_release_curproc(struct lwp *lp)
209 globaldata_t gd = mycpu;
210 dummy_pcpu_t dd = &dummy_pcpu[gd->gd_cpuid];
212 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
213 if (dd->uschedcp == lp) {
214 dummy_select_curproc(gd);
219 * DUMMY_SELECT_CURPROC
221 * Select a new current process for this cpu. This satisfies a user
222 * scheduler reschedule request so clear that too.
224 * This routine is also responsible for equal-priority round-robining,
225 * typically triggered from dummy_schedulerclock(). In our dummy example
226 * all the 'user' threads are LWKT scheduled all at once and we just
227 * call lwkt_switch().
229 * MPSAFE
231 static
232 void
233 dummy_select_curproc(globaldata_t gd)
235 dummy_pcpu_t dd = &dummy_pcpu[gd->gd_cpuid];
236 struct lwp *lp;
238 clear_user_resched();
239 spin_lock_wr(&dummy_spin);
240 if ((lp = TAILQ_FIRST(&dummy_runq)) == NULL) {
241 dd->uschedcp = NULL;
242 atomic_clear_int(&dummy_curprocmask, gd->gd_cpumask);
243 spin_unlock_wr(&dummy_spin);
244 } else {
245 --dummy_runqcount;
246 TAILQ_REMOVE(&dummy_runq, lp, lwp_procq);
247 lp->lwp_flag &= ~LWP_ONRUNQ;
248 dd->uschedcp = lp;
249 atomic_set_int(&dummy_curprocmask, gd->gd_cpumask);
250 spin_unlock_wr(&dummy_spin);
251 #ifdef SMP
252 lwkt_acquire(lp->lwp_thread);
253 #endif
254 lwkt_schedule(lp->lwp_thread);
259 * DUMMY_SETRUNQUEUE
261 * This routine is called to schedule a new user process after a fork.
262 * The scheduler module itself might also call this routine to place
263 * the current process on the userland scheduler's run queue prior
264 * to calling dummy_select_curproc().
266 * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
267 * attempt to leave the thread on the current cpu.
269 * MPSAFE
271 static void
272 dummy_setrunqueue(struct lwp *lp)
274 globaldata_t gd = mycpu;
275 dummy_pcpu_t dd = &dummy_pcpu[gd->gd_cpuid];
276 cpumask_t mask;
277 int cpuid;
279 if (dd->uschedcp == NULL) {
280 dd->uschedcp = lp;
281 atomic_set_int(&dummy_curprocmask, gd->gd_cpumask);
282 lwkt_schedule(lp->lwp_thread);
283 } else {
285 * Add to our global runq
287 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
288 spin_lock_wr(&dummy_spin);
289 ++dummy_runqcount;
290 TAILQ_INSERT_TAIL(&dummy_runq, lp, lwp_procq);
291 lp->lwp_flag |= LWP_ONRUNQ;
292 #ifdef SMP
293 lwkt_giveaway(lp->lwp_thread);
294 #endif
296 /* lp = TAILQ_FIRST(&dummy_runq); */
299 * Notify the next available cpu. P.S. some
300 * cpu affinity could be done here.
302 * The rdyprocmask bit placeholds the knowledge that there
303 * is a process on the runq that needs service. If the
304 * helper thread cannot find a home for it it will forward
305 * the request to another available cpu.
307 mask = ~dummy_curprocmask & dummy_rdyprocmask &
308 gd->gd_other_cpus;
309 if (mask) {
310 cpuid = bsfl(mask);
311 atomic_clear_int(&dummy_rdyprocmask, 1 << cpuid);
312 spin_unlock_wr(&dummy_spin);
313 lwkt_schedule(&dummy_pcpu[cpuid].helper_thread);
314 } else {
315 spin_unlock_wr(&dummy_spin);
321 * This routine is called from a systimer IPI. Thus it is called with
322 * a critical section held. Any spinlocks we get here that are also
323 * obtained in other procedures must be proected by a critical section
324 * in those other procedures to avoid a deadlock.
326 * The MP lock may or may not be held on entry and cannot be obtained
327 * by this routine (because it is called from a systimer IPI). Additionally,
328 * because this is equivalent to a FAST interrupt, spinlocks cannot be used
329 * (or at least, you have to check that gd_spin* counts are 0 before you
330 * can).
332 * This routine is called at ESTCPUFREQ on each cpu independantly.
334 * This routine typically queues a reschedule request, which will cause
335 * the scheduler's BLAH_select_curproc() to be called as soon as possible.
337 * MPSAFE
339 static
340 void
341 dummy_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
343 globaldata_t gd = mycpu;
344 dummy_pcpu_t dd = &dummy_pcpu[gd->gd_cpuid];
346 if (++dd->rrcount >= usched_dummy_rrinterval) {
347 dd->rrcount = 0;
348 need_user_resched();
353 * DUMMY_RECALCULATE_ESTCPU
355 * Called once a second for any process that is running or has slept
356 * for less then 2 seconds.
358 * MPSAFE
360 static
361 void
362 dummy_recalculate_estcpu(struct lwp *lp)
366 static
367 void
368 dummy_yield(struct lwp *lp)
370 need_user_resched();
374 * DUMMY_RESETPRIORITY
376 * This routine is called after the kernel has potentially modified
377 * the lwp_rtprio structure. The target process may be running or sleeping
378 * or scheduled but not yet running or owned by another cpu. Basically,
379 * it can be in virtually any state.
381 * This routine is called by fork1() for initial setup with the process
382 * of the run queue, and also may be called normally with the process on or
383 * off the run queue.
385 * MPSAFE
387 static void
388 dummy_resetpriority(struct lwp *lp)
390 /* XXX spinlock usually needed */
392 * Set p_priority for general process comparisons
394 switch(lp->lwp_rtprio.type) {
395 case RTP_PRIO_REALTIME:
396 lp->lwp_priority = PRIBASE_REALTIME + lp->lwp_rtprio.prio;
397 return;
398 case RTP_PRIO_NORMAL:
399 lp->lwp_priority = PRIBASE_NORMAL + lp->lwp_rtprio.prio;
400 break;
401 case RTP_PRIO_IDLE:
402 lp->lwp_priority = PRIBASE_IDLE + lp->lwp_rtprio.prio;
403 return;
404 case RTP_PRIO_THREAD:
405 lp->lwp_priority = PRIBASE_THREAD + lp->lwp_rtprio.prio;
406 return;
408 /* XXX spinlock usually needed */
413 * DUMMY_FORKING
415 * Called from fork1() when a new child process is being created. Allows
416 * the scheduler to predispose the child process before it gets scheduled.
418 * MPSAFE
420 static void
421 dummy_forking(struct lwp *plp, struct lwp *lp)
423 lp->lwp_estcpu = plp->lwp_estcpu;
424 #if 0
425 ++plp->lwp_estcpu;
426 #endif
430 * DUMMY_EXITING
432 * Called when the parent reaps a child. Typically used to propogate cpu
433 * use by the child back to the parent as part of a batch detection
434 * heuristic.
436 * NOTE: cpu use is not normally back-propogated to PID 1.
438 * MPSAFE
440 static void
441 dummy_exiting(struct lwp *plp, struct lwp *lp)
446 * SMP systems may need a scheduler helper thread. This is how one can be
447 * setup.
449 * We use a neat LWKT scheduling trick to interlock the helper thread. It
450 * is possible to deschedule an LWKT thread and then do some work before
451 * switching away. The thread can be rescheduled at any time, even before
452 * we switch away.
454 #ifdef SMP
456 static void
457 dummy_sched_thread(void *dummy)
459 globaldata_t gd;
460 dummy_pcpu_t dd;
461 struct lwp *lp;
462 cpumask_t cpumask;
463 cpumask_t tmpmask;
464 int cpuid;
465 int tmpid;
467 gd = mycpu;
468 cpuid = gd->gd_cpuid;
469 dd = &dummy_pcpu[cpuid];
470 cpumask = 1 << cpuid;
473 * Our Scheduler helper thread does not need to hold the MP lock
475 rel_mplock();
477 for (;;) {
478 lwkt_deschedule_self(gd->gd_curthread); /* interlock */
479 atomic_set_int(&dummy_rdyprocmask, cpumask);
480 spin_lock_wr(&dummy_spin);
481 if (dd->uschedcp) {
483 * We raced another cpu trying to schedule a thread onto us.
484 * If the runq isn't empty hit another free cpu.
486 tmpmask = ~dummy_curprocmask & dummy_rdyprocmask &
487 gd->gd_other_cpus;
488 if (tmpmask && dummy_runqcount) {
489 tmpid = bsfl(tmpmask);
490 KKASSERT(tmpid != cpuid);
491 atomic_clear_int(&dummy_rdyprocmask, 1 << tmpid);
492 spin_unlock_wr(&dummy_spin);
493 lwkt_schedule(&dummy_pcpu[tmpid].helper_thread);
494 } else {
495 spin_unlock_wr(&dummy_spin);
497 } else if ((lp = TAILQ_FIRST(&dummy_runq)) != NULL) {
498 --dummy_runqcount;
499 TAILQ_REMOVE(&dummy_runq, lp, lwp_procq);
500 lp->lwp_flag &= ~LWP_ONRUNQ;
501 dd->uschedcp = lp;
502 atomic_set_int(&dummy_curprocmask, cpumask);
503 spin_unlock_wr(&dummy_spin);
504 #ifdef SMP
505 lwkt_acquire(lp->lwp_thread);
506 #endif
507 lwkt_schedule(lp->lwp_thread);
508 } else {
509 spin_unlock_wr(&dummy_spin);
511 lwkt_switch();
516 * Setup our scheduler helpers. Note that curprocmask bit 0 has already
517 * been cleared by rqinit() and we should not mess with it further.
519 static void
520 dummy_sched_thread_cpu_init(void)
522 int i;
524 if (bootverbose)
525 kprintf("start dummy scheduler helpers on cpus:");
527 for (i = 0; i < ncpus; ++i) {
528 dummy_pcpu_t dd = &dummy_pcpu[i];
529 cpumask_t mask = 1 << i;
531 if ((mask & smp_active_mask) == 0)
532 continue;
534 if (bootverbose)
535 kprintf(" %d", i);
537 lwkt_create(dummy_sched_thread, NULL, NULL, &dd->helper_thread,
538 TDF_STOPREQ, i, "dsched %d", i);
541 * Allow user scheduling on the target cpu. cpu #0 has already
542 * been enabled in rqinit().
544 if (i)
545 atomic_clear_int(&dummy_curprocmask, mask);
546 atomic_set_int(&dummy_rdyprocmask, mask);
548 if (bootverbose)
549 kprintf("\n");
551 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
552 dummy_sched_thread_cpu_init, NULL)
554 #endif