kernel - Disallow remote growstack from procfs
[dragonfly.git] / sys / vm / vm_map.c
blobd6598d44f451c4f4b0690f8b2e4f18c20aacc156
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
66 * Virtual memory mapping module.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
96 #include <sys/random.h>
97 #include <sys/sysctl.h>
98 #include <sys/spinlock.h>
100 #include <sys/thread2.h>
101 #include <sys/spinlock2.h>
104 * Virtual memory maps provide for the mapping, protection, and sharing
105 * of virtual memory objects. In addition, this module provides for an
106 * efficient virtual copy of memory from one map to another.
108 * Synchronization is required prior to most operations.
110 * Maps consist of an ordered doubly-linked list of simple entries.
111 * A hint and a RB tree is used to speed-up lookups.
113 * Callers looking to modify maps specify start/end addresses which cause
114 * the related map entry to be clipped if necessary, and then later
115 * recombined if the pieces remained compatible.
117 * Virtual copy operations are performed by copying VM object references
118 * from one map to another, and then marking both regions as copy-on-write.
120 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
121 static void vmspace_dtor(void *obj, void *privdata);
122 static void vmspace_terminate(struct vmspace *vm, int final);
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125 static struct objcache *vmspace_cache;
128 * per-cpu page table cross mappings are initialized in early boot
129 * and might require a considerable number of vm_map_entry structures.
131 #define MAPENTRYBSP_CACHE (MAXCPU+1)
132 #define MAPENTRYAP_CACHE 8
134 static struct vm_zone mapentzone_store;
135 static vm_zone_t mapentzone;
136 static struct vm_object mapentobj;
138 static struct vm_map_entry map_entry_init[MAX_MAPENT];
139 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
140 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
142 static int randomize_mmap;
143 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
144 "Randomize mmap offsets");
145 static int vm_map_relock_enable = 1;
146 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
147 &vm_map_relock_enable, 0, "Randomize mmap offsets");
149 static void vmspace_drop_notoken(struct vmspace *vm);
150 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
151 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
152 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
153 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
154 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
155 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
156 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
157 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
158 vm_map_entry_t);
159 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
162 * Initialize the vm_map module. Must be called before any other vm_map
163 * routines.
165 * Map and entry structures are allocated from the general purpose
166 * memory pool with some exceptions:
168 * - The kernel map is allocated statically.
169 * - Initial kernel map entries are allocated out of a static pool.
170 * - We must set ZONE_SPECIAL here or the early boot code can get
171 * stuck if there are >63 cores.
173 * These restrictions are necessary since malloc() uses the
174 * maps and requires map entries.
176 * Called from the low level boot code only.
178 void
179 vm_map_startup(void)
181 mapentzone = &mapentzone_store;
182 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 map_entry_init, MAX_MAPENT);
184 mapentzone_store.zflags |= ZONE_SPECIAL;
188 * Called prior to any vmspace allocations.
190 * Called from the low level boot code only.
192 void
193 vm_init2(void)
195 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 sizeof(struct vmspace),
197 0, ncpus * 4,
198 vmspace_ctor, vmspace_dtor,
199 NULL);
200 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 ZONE_USE_RESERVE | ZONE_SPECIAL);
202 pmap_init2();
203 vm_object_init2();
207 * objcache support. We leave the pmap root cached as long as possible
208 * for performance reasons.
210 static
211 boolean_t
212 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 struct vmspace *vm = obj;
216 bzero(vm, sizeof(*vm));
217 vm->vm_refcnt = VM_REF_DELETED;
219 return 1;
222 static
223 void
224 vmspace_dtor(void *obj, void *privdata)
226 struct vmspace *vm = obj;
228 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
229 pmap_puninit(vmspace_pmap(vm));
233 * Red black tree functions
235 * The caller must hold the related map lock.
237 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
238 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240 /* a->start is address, and the only field has to be initialized */
241 static int
242 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 if (a->start < b->start)
245 return(-1);
246 else if (a->start > b->start)
247 return(1);
248 return(0);
252 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
253 * every refcnt.
255 void
256 vmspace_initrefs(struct vmspace *vm)
258 vm->vm_refcnt = 1;
259 vm->vm_holdcnt = 1;
263 * Allocate a vmspace structure, including a vm_map and pmap.
264 * Initialize numerous fields. While the initial allocation is zerod,
265 * subsequence reuse from the objcache leaves elements of the structure
266 * intact (particularly the pmap), so portions must be zerod.
268 * Returns a referenced vmspace.
270 * No requirements.
272 struct vmspace *
273 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 struct vmspace *vm;
277 vm = objcache_get(vmspace_cache, M_WAITOK);
279 bzero(&vm->vm_startcopy,
280 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
281 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
284 * NOTE: hold to acquires token for safety.
286 * On return vmspace is referenced (refs=1, hold=1). That is,
287 * each refcnt also has a holdcnt. There can be additional holds
288 * (holdcnt) above and beyond the refcnt. Finalization is handled in
289 * two stages, one on refs 1->0, and the the second on hold 1->0.
291 KKASSERT(vm->vm_holdcnt == 0);
292 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
293 vmspace_initrefs(vm);
294 vmspace_hold(vm);
295 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
296 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
297 vm->vm_shm = NULL;
298 vm->vm_flags = 0;
299 cpu_vmspace_alloc(vm);
300 vmspace_drop(vm);
302 return (vm);
306 * NOTE: Can return 0 if the vmspace is exiting.
309 vmspace_getrefs(struct vmspace *vm)
311 int32_t n;
313 n = vm->vm_refcnt;
314 cpu_ccfence();
315 if (n & VM_REF_DELETED)
316 n = -1;
317 return n;
320 void
321 vmspace_hold(struct vmspace *vm)
323 atomic_add_int(&vm->vm_holdcnt, 1);
324 lwkt_gettoken(&vm->vm_map.token);
328 * Drop with final termination interlock.
330 void
331 vmspace_drop(struct vmspace *vm)
333 lwkt_reltoken(&vm->vm_map.token);
334 vmspace_drop_notoken(vm);
337 static void
338 vmspace_drop_notoken(struct vmspace *vm)
340 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
341 if (vm->vm_refcnt & VM_REF_DELETED)
342 vmspace_terminate(vm, 1);
347 * A vmspace object must not be in a terminated state to be able to obtain
348 * additional refs on it.
350 * These are official references to the vmspace, the count is used to check
351 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'.
353 * XXX we need to combine hold & ref together into one 64-bit field to allow
354 * holds to prevent stage-1 termination.
356 void
357 vmspace_ref(struct vmspace *vm)
359 uint32_t n;
361 atomic_add_int(&vm->vm_holdcnt, 1);
362 n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
363 KKASSERT((n & VM_REF_DELETED) == 0);
367 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
368 * termination of the vmspace. Then, on the final drop of the hold we
369 * will do stage-2 final termination.
371 void
372 vmspace_rel(struct vmspace *vm)
374 uint32_t n;
377 * Drop refs. Each ref also has a hold which is also dropped.
379 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
380 * prevent finalization) to start termination processing.
381 * Finalization occurs when the last hold count drops to 0.
383 n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
384 while (n == 0) {
385 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
386 vmspace_terminate(vm, 0);
387 break;
389 n = vm->vm_refcnt;
390 cpu_ccfence();
392 vmspace_drop_notoken(vm);
396 * This is called during exit indicating that the vmspace is no
397 * longer in used by an exiting process, but the process has not yet
398 * been reaped.
400 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
401 * to prevent stage-2 until the process is reaped. Note hte order of
402 * operation, we must hold first.
404 * No requirements.
406 void
407 vmspace_relexit(struct vmspace *vm)
409 atomic_add_int(&vm->vm_holdcnt, 1);
410 vmspace_rel(vm);
414 * Called during reap to disconnect the remainder of the vmspace from
415 * the process. On the hold drop the vmspace termination is finalized.
417 * No requirements.
419 void
420 vmspace_exitfree(struct proc *p)
422 struct vmspace *vm;
424 vm = p->p_vmspace;
425 p->p_vmspace = NULL;
426 vmspace_drop_notoken(vm);
430 * Called in two cases:
432 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
433 * called with final == 0. refcnt will be (u_int)-1 at this point,
434 * and holdcnt will still be non-zero.
436 * (2) When holdcnt becomes 0, called with final == 1. There should no
437 * longer be anyone with access to the vmspace.
439 * VMSPACE_EXIT1 flags the primary deactivation
440 * VMSPACE_EXIT2 flags the last reap
442 static void
443 vmspace_terminate(struct vmspace *vm, int final)
445 int count;
447 lwkt_gettoken(&vm->vm_map.token);
448 if (final == 0) {
449 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
450 vm->vm_flags |= VMSPACE_EXIT1;
453 * Get rid of most of the resources. Leave the kernel pmap
454 * intact.
456 * If the pmap does not contain wired pages we can bulk-delete
457 * the pmap as a performance optimization before removing the
458 * related mappings.
460 * If the pmap contains wired pages we cannot do this
461 * pre-optimization because currently vm_fault_unwire()
462 * expects the pmap pages to exist and will not decrement
463 * p->wire_count if they do not.
465 shmexit(vm);
466 if (vmspace_pmap(vm)->pm_stats.wired_count) {
467 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
468 VM_MAX_USER_ADDRESS);
469 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
470 VM_MAX_USER_ADDRESS);
471 } else {
472 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
473 VM_MAX_USER_ADDRESS);
474 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
475 VM_MAX_USER_ADDRESS);
477 lwkt_reltoken(&vm->vm_map.token);
478 } else {
479 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
480 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
483 * Get rid of remaining basic resources.
485 vm->vm_flags |= VMSPACE_EXIT2;
486 shmexit(vm);
488 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
489 vm_map_lock(&vm->vm_map);
490 cpu_vmspace_free(vm);
493 * Lock the map, to wait out all other references to it.
494 * Delete all of the mappings and pages they hold, then call
495 * the pmap module to reclaim anything left.
497 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
498 vm->vm_map.max_offset, &count);
499 vm_map_unlock(&vm->vm_map);
500 vm_map_entry_release(count);
502 pmap_release(vmspace_pmap(vm));
503 lwkt_reltoken(&vm->vm_map.token);
504 objcache_put(vmspace_cache, vm);
509 * Swap useage is determined by taking the proportional swap used by
510 * VM objects backing the VM map. To make up for fractional losses,
511 * if the VM object has any swap use at all the associated map entries
512 * count for at least 1 swap page.
514 * No requirements.
516 vm_offset_t
517 vmspace_swap_count(struct vmspace *vm)
519 vm_map_t map = &vm->vm_map;
520 vm_map_entry_t cur;
521 vm_object_t object;
522 vm_offset_t count = 0;
523 vm_offset_t n;
525 vmspace_hold(vm);
526 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
527 switch(cur->maptype) {
528 case VM_MAPTYPE_NORMAL:
529 case VM_MAPTYPE_VPAGETABLE:
530 if ((object = cur->object.vm_object) == NULL)
531 break;
532 if (object->swblock_count) {
533 n = (cur->end - cur->start) / PAGE_SIZE;
534 count += object->swblock_count *
535 SWAP_META_PAGES * n / object->size + 1;
537 break;
538 default:
539 break;
542 vmspace_drop(vm);
544 return(count);
548 * Calculate the approximate number of anonymous pages in use by
549 * this vmspace. To make up for fractional losses, we count each
550 * VM object as having at least 1 anonymous page.
552 * No requirements.
554 vm_offset_t
555 vmspace_anonymous_count(struct vmspace *vm)
557 vm_map_t map = &vm->vm_map;
558 vm_map_entry_t cur;
559 vm_object_t object;
560 vm_offset_t count = 0;
562 vmspace_hold(vm);
563 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
564 switch(cur->maptype) {
565 case VM_MAPTYPE_NORMAL:
566 case VM_MAPTYPE_VPAGETABLE:
567 if ((object = cur->object.vm_object) == NULL)
568 break;
569 if (object->type != OBJT_DEFAULT &&
570 object->type != OBJT_SWAP) {
571 break;
573 count += object->resident_page_count;
574 break;
575 default:
576 break;
579 vmspace_drop(vm);
581 return(count);
585 * Initialize an existing vm_map structure such as that in the vmspace
586 * structure. The pmap is initialized elsewhere.
588 * No requirements.
590 void
591 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
593 map->header.next = map->header.prev = &map->header;
594 RB_INIT(&map->rb_root);
595 spin_init(&map->ilock_spin, "ilock");
596 map->ilock_base = NULL;
597 map->nentries = 0;
598 map->size = 0;
599 map->system_map = 0;
600 map->min_offset = min;
601 map->max_offset = max;
602 map->pmap = pmap;
603 map->first_free = &map->header;
604 map->hint = &map->header;
605 map->timestamp = 0;
606 map->flags = 0;
607 lwkt_token_init(&map->token, "vm_map");
608 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
612 * Shadow the vm_map_entry's object. This typically needs to be done when
613 * a write fault is taken on an entry which had previously been cloned by
614 * fork(). The shared object (which might be NULL) must become private so
615 * we add a shadow layer above it.
617 * Object allocation for anonymous mappings is defered as long as possible.
618 * When creating a shadow, however, the underlying object must be instantiated
619 * so it can be shared.
621 * If the map segment is governed by a virtual page table then it is
622 * possible to address offsets beyond the mapped area. Just allocate
623 * a maximally sized object for this case.
625 * If addref is non-zero an additional reference is added to the returned
626 * entry. This mechanic exists because the additional reference might have
627 * to be added atomically and not after return to prevent a premature
628 * collapse.
630 * The vm_map must be exclusively locked.
631 * No other requirements.
633 static
634 void
635 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
637 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
638 vm_object_shadow(&entry->object.vm_object, &entry->offset,
639 0x7FFFFFFF, addref); /* XXX */
640 } else {
641 vm_object_shadow(&entry->object.vm_object, &entry->offset,
642 atop(entry->end - entry->start), addref);
644 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
648 * Allocate an object for a vm_map_entry.
650 * Object allocation for anonymous mappings is defered as long as possible.
651 * This function is called when we can defer no longer, generally when a map
652 * entry might be split or forked or takes a page fault.
654 * If the map segment is governed by a virtual page table then it is
655 * possible to address offsets beyond the mapped area. Just allocate
656 * a maximally sized object for this case.
658 * The vm_map must be exclusively locked.
659 * No other requirements.
661 void
662 vm_map_entry_allocate_object(vm_map_entry_t entry)
664 vm_object_t obj;
666 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
667 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
668 } else {
669 obj = vm_object_allocate(OBJT_DEFAULT,
670 atop(entry->end - entry->start));
672 entry->object.vm_object = obj;
673 entry->offset = 0;
677 * Set an initial negative count so the first attempt to reserve
678 * space preloads a bunch of vm_map_entry's for this cpu. Also
679 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
680 * map a new page for vm_map_entry structures. SMP systems are
681 * particularly sensitive.
683 * This routine is called in early boot so we cannot just call
684 * vm_map_entry_reserve().
686 * Called from the low level boot code only (for each cpu)
688 * WARNING! Take care not to have too-big a static/BSS structure here
689 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
690 * can get blown out by the kernel plus the initrd image.
692 void
693 vm_map_entry_reserve_cpu_init(globaldata_t gd)
695 vm_map_entry_t entry;
696 int count;
697 int i;
699 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
700 if (gd->gd_cpuid == 0) {
701 entry = &cpu_map_entry_init_bsp[0];
702 count = MAPENTRYBSP_CACHE;
703 } else {
704 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
705 count = MAPENTRYAP_CACHE;
707 for (i = 0; i < count; ++i, ++entry) {
708 entry->next = gd->gd_vme_base;
709 gd->gd_vme_base = entry;
714 * Reserves vm_map_entry structures so code later on can manipulate
715 * map_entry structures within a locked map without blocking trying
716 * to allocate a new vm_map_entry.
718 * No requirements.
721 vm_map_entry_reserve(int count)
723 struct globaldata *gd = mycpu;
724 vm_map_entry_t entry;
727 * Make sure we have enough structures in gd_vme_base to handle
728 * the reservation request.
730 * The critical section protects access to the per-cpu gd.
732 crit_enter();
733 while (gd->gd_vme_avail < count) {
734 entry = zalloc(mapentzone);
735 entry->next = gd->gd_vme_base;
736 gd->gd_vme_base = entry;
737 ++gd->gd_vme_avail;
739 gd->gd_vme_avail -= count;
740 crit_exit();
742 return(count);
746 * Releases previously reserved vm_map_entry structures that were not
747 * used. If we have too much junk in our per-cpu cache clean some of
748 * it out.
750 * No requirements.
752 void
753 vm_map_entry_release(int count)
755 struct globaldata *gd = mycpu;
756 vm_map_entry_t entry;
758 crit_enter();
759 gd->gd_vme_avail += count;
760 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
761 entry = gd->gd_vme_base;
762 KKASSERT(entry != NULL);
763 gd->gd_vme_base = entry->next;
764 --gd->gd_vme_avail;
765 crit_exit();
766 zfree(mapentzone, entry);
767 crit_enter();
769 crit_exit();
773 * Reserve map entry structures for use in kernel_map itself. These
774 * entries have *ALREADY* been reserved on a per-cpu basis when the map
775 * was inited. This function is used by zalloc() to avoid a recursion
776 * when zalloc() itself needs to allocate additional kernel memory.
778 * This function works like the normal reserve but does not load the
779 * vm_map_entry cache (because that would result in an infinite
780 * recursion). Note that gd_vme_avail may go negative. This is expected.
782 * Any caller of this function must be sure to renormalize after
783 * potentially eating entries to ensure that the reserve supply
784 * remains intact.
786 * No requirements.
789 vm_map_entry_kreserve(int count)
791 struct globaldata *gd = mycpu;
793 crit_enter();
794 gd->gd_vme_avail -= count;
795 crit_exit();
796 KASSERT(gd->gd_vme_base != NULL,
797 ("no reserved entries left, gd_vme_avail = %d",
798 gd->gd_vme_avail));
799 return(count);
803 * Release previously reserved map entries for kernel_map. We do not
804 * attempt to clean up like the normal release function as this would
805 * cause an unnecessary (but probably not fatal) deep procedure call.
807 * No requirements.
809 void
810 vm_map_entry_krelease(int count)
812 struct globaldata *gd = mycpu;
814 crit_enter();
815 gd->gd_vme_avail += count;
816 crit_exit();
820 * Allocates a VM map entry for insertion. No entry fields are filled in.
822 * The entries should have previously been reserved. The reservation count
823 * is tracked in (*countp).
825 * No requirements.
827 static vm_map_entry_t
828 vm_map_entry_create(vm_map_t map, int *countp)
830 struct globaldata *gd = mycpu;
831 vm_map_entry_t entry;
833 KKASSERT(*countp > 0);
834 --*countp;
835 crit_enter();
836 entry = gd->gd_vme_base;
837 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
838 gd->gd_vme_base = entry->next;
839 crit_exit();
841 return(entry);
845 * Dispose of a vm_map_entry that is no longer being referenced.
847 * No requirements.
849 static void
850 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
852 struct globaldata *gd = mycpu;
854 KKASSERT(map->hint != entry);
855 KKASSERT(map->first_free != entry);
857 ++*countp;
858 crit_enter();
859 entry->next = gd->gd_vme_base;
860 gd->gd_vme_base = entry;
861 crit_exit();
866 * Insert/remove entries from maps.
868 * The related map must be exclusively locked.
869 * The caller must hold map->token
870 * No other requirements.
872 static __inline void
873 vm_map_entry_link(vm_map_t map,
874 vm_map_entry_t after_where,
875 vm_map_entry_t entry)
877 ASSERT_VM_MAP_LOCKED(map);
879 map->nentries++;
880 entry->prev = after_where;
881 entry->next = after_where->next;
882 entry->next->prev = entry;
883 after_where->next = entry;
884 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
885 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
888 static __inline void
889 vm_map_entry_unlink(vm_map_t map,
890 vm_map_entry_t entry)
892 vm_map_entry_t prev;
893 vm_map_entry_t next;
895 ASSERT_VM_MAP_LOCKED(map);
897 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
898 panic("vm_map_entry_unlink: attempt to mess with "
899 "locked entry! %p", entry);
901 prev = entry->prev;
902 next = entry->next;
903 next->prev = prev;
904 prev->next = next;
905 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
906 map->nentries--;
910 * Finds the map entry containing (or immediately preceding) the specified
911 * address in the given map. The entry is returned in (*entry).
913 * The boolean result indicates whether the address is actually contained
914 * in the map.
916 * The related map must be locked.
917 * No other requirements.
919 boolean_t
920 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
922 vm_map_entry_t tmp;
923 vm_map_entry_t last;
925 ASSERT_VM_MAP_LOCKED(map);
926 #if 0
928 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
929 * the hint code with the red-black lookup meets with system crashes
930 * and lockups. We do not yet know why.
932 * It is possible that the problem is related to the setting
933 * of the hint during map_entry deletion, in the code specified
934 * at the GGG comment later on in this file.
936 * YYY More likely it's because this function can be called with
937 * a shared lock on the map, resulting in map->hint updates possibly
938 * racing. Fixed now but untested.
941 * Quickly check the cached hint, there's a good chance of a match.
943 tmp = map->hint;
944 cpu_ccfence();
945 if (tmp != &map->header) {
946 if (address >= tmp->start && address < tmp->end) {
947 *entry = tmp;
948 return(TRUE);
951 #endif
954 * Locate the record from the top of the tree. 'last' tracks the
955 * closest prior record and is returned if no match is found, which
956 * in binary tree terms means tracking the most recent right-branch
957 * taken. If there is no prior record, &map->header is returned.
959 last = &map->header;
960 tmp = RB_ROOT(&map->rb_root);
962 while (tmp) {
963 if (address >= tmp->start) {
964 if (address < tmp->end) {
965 *entry = tmp;
966 map->hint = tmp;
967 return(TRUE);
969 last = tmp;
970 tmp = RB_RIGHT(tmp, rb_entry);
971 } else {
972 tmp = RB_LEFT(tmp, rb_entry);
975 *entry = last;
976 return (FALSE);
980 * Inserts the given whole VM object into the target map at the specified
981 * address range. The object's size should match that of the address range.
983 * The map must be exclusively locked.
984 * The object must be held.
985 * The caller must have reserved sufficient vm_map_entry structures.
987 * If object is non-NULL, ref count must be bumped by caller prior to
988 * making call to account for the new entry.
991 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
992 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
993 vm_maptype_t maptype, vm_subsys_t id,
994 vm_prot_t prot, vm_prot_t max, int cow)
996 vm_map_entry_t new_entry;
997 vm_map_entry_t prev_entry;
998 vm_map_entry_t temp_entry;
999 vm_eflags_t protoeflags;
1000 int must_drop = 0;
1001 vm_object_t object;
1003 if (maptype == VM_MAPTYPE_UKSMAP)
1004 object = NULL;
1005 else
1006 object = map_object;
1008 ASSERT_VM_MAP_LOCKED(map);
1009 if (object)
1010 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1013 * Check that the start and end points are not bogus.
1015 if ((start < map->min_offset) || (end > map->max_offset) ||
1016 (start >= end))
1017 return (KERN_INVALID_ADDRESS);
1020 * Find the entry prior to the proposed starting address; if it's part
1021 * of an existing entry, this range is bogus.
1023 if (vm_map_lookup_entry(map, start, &temp_entry))
1024 return (KERN_NO_SPACE);
1026 prev_entry = temp_entry;
1029 * Assert that the next entry doesn't overlap the end point.
1032 if ((prev_entry->next != &map->header) &&
1033 (prev_entry->next->start < end))
1034 return (KERN_NO_SPACE);
1036 protoeflags = 0;
1038 if (cow & MAP_COPY_ON_WRITE)
1039 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1041 if (cow & MAP_NOFAULT) {
1042 protoeflags |= MAP_ENTRY_NOFAULT;
1044 KASSERT(object == NULL,
1045 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1047 if (cow & MAP_DISABLE_SYNCER)
1048 protoeflags |= MAP_ENTRY_NOSYNC;
1049 if (cow & MAP_DISABLE_COREDUMP)
1050 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1051 if (cow & MAP_IS_STACK)
1052 protoeflags |= MAP_ENTRY_STACK;
1053 if (cow & MAP_IS_KSTACK)
1054 protoeflags |= MAP_ENTRY_KSTACK;
1056 lwkt_gettoken(&map->token);
1058 if (object) {
1060 * When object is non-NULL, it could be shared with another
1061 * process. We have to set or clear OBJ_ONEMAPPING
1062 * appropriately.
1064 * NOTE: This flag is only applicable to DEFAULT and SWAP
1065 * objects and will already be clear in other types
1066 * of objects, so a shared object lock is ok for
1067 * VNODE objects.
1069 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1070 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1073 else if ((prev_entry != &map->header) &&
1074 (prev_entry->eflags == protoeflags) &&
1075 (prev_entry->end == start) &&
1076 (prev_entry->wired_count == 0) &&
1077 (prev_entry->id == id) &&
1078 prev_entry->maptype == maptype &&
1079 maptype == VM_MAPTYPE_NORMAL &&
1080 ((prev_entry->object.vm_object == NULL) ||
1081 vm_object_coalesce(prev_entry->object.vm_object,
1082 OFF_TO_IDX(prev_entry->offset),
1083 (vm_size_t)(prev_entry->end - prev_entry->start),
1084 (vm_size_t)(end - prev_entry->end)))) {
1086 * We were able to extend the object. Determine if we
1087 * can extend the previous map entry to include the
1088 * new range as well.
1090 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1091 (prev_entry->protection == prot) &&
1092 (prev_entry->max_protection == max)) {
1093 map->size += (end - prev_entry->end);
1094 prev_entry->end = end;
1095 vm_map_simplify_entry(map, prev_entry, countp);
1096 lwkt_reltoken(&map->token);
1097 return (KERN_SUCCESS);
1101 * If we can extend the object but cannot extend the
1102 * map entry, we have to create a new map entry. We
1103 * must bump the ref count on the extended object to
1104 * account for it. object may be NULL.
1106 * XXX if object is NULL should we set offset to 0 here ?
1108 object = prev_entry->object.vm_object;
1109 offset = prev_entry->offset +
1110 (prev_entry->end - prev_entry->start);
1111 if (object) {
1112 vm_object_hold(object);
1113 vm_object_chain_wait(object, 0);
1114 vm_object_reference_locked(object);
1115 must_drop = 1;
1116 map_object = object;
1121 * NOTE: if conditionals fail, object can be NULL here. This occurs
1122 * in things like the buffer map where we manage kva but do not manage
1123 * backing objects.
1127 * Create a new entry
1130 new_entry = vm_map_entry_create(map, countp);
1131 new_entry->start = start;
1132 new_entry->end = end;
1133 new_entry->id = id;
1135 new_entry->maptype = maptype;
1136 new_entry->eflags = protoeflags;
1137 new_entry->object.map_object = map_object;
1138 new_entry->aux.master_pde = 0; /* in case size is different */
1139 new_entry->aux.map_aux = map_aux;
1140 new_entry->offset = offset;
1142 new_entry->inheritance = VM_INHERIT_DEFAULT;
1143 new_entry->protection = prot;
1144 new_entry->max_protection = max;
1145 new_entry->wired_count = 0;
1148 * Insert the new entry into the list
1151 vm_map_entry_link(map, prev_entry, new_entry);
1152 map->size += new_entry->end - new_entry->start;
1155 * Update the free space hint. Entries cannot overlap.
1156 * An exact comparison is needed to avoid matching
1157 * against the map->header.
1159 if ((map->first_free == prev_entry) &&
1160 (prev_entry->end == new_entry->start)) {
1161 map->first_free = new_entry;
1164 #if 0
1166 * Temporarily removed to avoid MAP_STACK panic, due to
1167 * MAP_STACK being a huge hack. Will be added back in
1168 * when MAP_STACK (and the user stack mapping) is fixed.
1171 * It may be possible to simplify the entry
1173 vm_map_simplify_entry(map, new_entry, countp);
1174 #endif
1177 * Try to pre-populate the page table. Mappings governed by virtual
1178 * page tables cannot be prepopulated without a lot of work, so
1179 * don't try.
1181 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1182 maptype != VM_MAPTYPE_VPAGETABLE &&
1183 maptype != VM_MAPTYPE_UKSMAP) {
1184 int dorelock = 0;
1185 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1186 dorelock = 1;
1187 vm_object_lock_swap();
1188 vm_object_drop(object);
1190 pmap_object_init_pt(map->pmap, start, prot,
1191 object, OFF_TO_IDX(offset), end - start,
1192 cow & MAP_PREFAULT_PARTIAL);
1193 if (dorelock) {
1194 vm_object_hold(object);
1195 vm_object_lock_swap();
1198 if (must_drop)
1199 vm_object_drop(object);
1201 lwkt_reltoken(&map->token);
1202 return (KERN_SUCCESS);
1206 * Find sufficient space for `length' bytes in the given map, starting at
1207 * `start'. Returns 0 on success, 1 on no space.
1209 * This function will returned an arbitrarily aligned pointer. If no
1210 * particular alignment is required you should pass align as 1. Note that
1211 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1212 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1213 * argument.
1215 * 'align' should be a power of 2 but is not required to be.
1217 * The map must be exclusively locked.
1218 * No other requirements.
1221 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1222 vm_size_t align, int flags, vm_offset_t *addr)
1224 vm_map_entry_t entry, next;
1225 vm_offset_t end;
1226 vm_offset_t align_mask;
1228 if (start < map->min_offset)
1229 start = map->min_offset;
1230 if (start > map->max_offset)
1231 return (1);
1234 * If the alignment is not a power of 2 we will have to use
1235 * a mod/division, set align_mask to a special value.
1237 if ((align | (align - 1)) + 1 != (align << 1))
1238 align_mask = (vm_offset_t)-1;
1239 else
1240 align_mask = align - 1;
1243 * Look for the first possible address; if there's already something
1244 * at this address, we have to start after it.
1246 if (start == map->min_offset) {
1247 if ((entry = map->first_free) != &map->header)
1248 start = entry->end;
1249 } else {
1250 vm_map_entry_t tmp;
1252 if (vm_map_lookup_entry(map, start, &tmp))
1253 start = tmp->end;
1254 entry = tmp;
1258 * Look through the rest of the map, trying to fit a new region in the
1259 * gap between existing regions, or after the very last region.
1261 for (;; start = (entry = next)->end) {
1263 * Adjust the proposed start by the requested alignment,
1264 * be sure that we didn't wrap the address.
1266 if (align_mask == (vm_offset_t)-1)
1267 end = roundup(start, align);
1268 else
1269 end = (start + align_mask) & ~align_mask;
1270 if (end < start)
1271 return (1);
1272 start = end;
1274 * Find the end of the proposed new region. Be sure we didn't
1275 * go beyond the end of the map, or wrap around the address.
1276 * Then check to see if this is the last entry or if the
1277 * proposed end fits in the gap between this and the next
1278 * entry.
1280 end = start + length;
1281 if (end > map->max_offset || end < start)
1282 return (1);
1283 next = entry->next;
1286 * If the next entry's start address is beyond the desired
1287 * end address we may have found a good entry.
1289 * If the next entry is a stack mapping we do not map into
1290 * the stack's reserved space.
1292 * XXX continue to allow mapping into the stack's reserved
1293 * space if doing a MAP_STACK mapping inside a MAP_STACK
1294 * mapping, for backwards compatibility. But the caller
1295 * really should use MAP_STACK | MAP_TRYFIXED if they
1296 * want to do that.
1298 if (next == &map->header)
1299 break;
1300 if (next->start >= end) {
1301 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1302 break;
1303 if (flags & MAP_STACK)
1304 break;
1305 if (next->start - next->aux.avail_ssize >= end)
1306 break;
1309 map->hint = entry;
1312 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1313 * if it fails. The kernel_map is locked and nothing can steal
1314 * our address space if pmap_growkernel() blocks.
1316 * NOTE: This may be unconditionally called for kldload areas on
1317 * x86_64 because these do not bump kernel_vm_end (which would
1318 * fill 128G worth of page tables!). Therefore we must not
1319 * retry.
1321 if (map == &kernel_map) {
1322 vm_offset_t kstop;
1324 kstop = round_page(start + length);
1325 if (kstop > kernel_vm_end)
1326 pmap_growkernel(start, kstop);
1328 *addr = start;
1329 return (0);
1333 * vm_map_find finds an unallocated region in the target address map with
1334 * the given length and allocates it. The search is defined to be first-fit
1335 * from the specified address; the region found is returned in the same
1336 * parameter.
1338 * If object is non-NULL, ref count must be bumped by caller
1339 * prior to making call to account for the new entry.
1341 * No requirements. This function will lock the map temporarily.
1344 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1345 vm_ooffset_t offset, vm_offset_t *addr,
1346 vm_size_t length, vm_size_t align, boolean_t fitit,
1347 vm_maptype_t maptype, vm_subsys_t id,
1348 vm_prot_t prot, vm_prot_t max, int cow)
1350 vm_offset_t start;
1351 vm_object_t object;
1352 int result;
1353 int count;
1355 if (maptype == VM_MAPTYPE_UKSMAP)
1356 object = NULL;
1357 else
1358 object = map_object;
1360 start = *addr;
1362 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1363 vm_map_lock(map);
1364 if (object)
1365 vm_object_hold_shared(object);
1366 if (fitit) {
1367 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1368 if (object)
1369 vm_object_drop(object);
1370 vm_map_unlock(map);
1371 vm_map_entry_release(count);
1372 return (KERN_NO_SPACE);
1374 start = *addr;
1376 result = vm_map_insert(map, &count, map_object, map_aux,
1377 offset, start, start + length,
1378 maptype, id, prot, max, cow);
1379 if (object)
1380 vm_object_drop(object);
1381 vm_map_unlock(map);
1382 vm_map_entry_release(count);
1384 return (result);
1388 * Simplify the given map entry by merging with either neighbor. This
1389 * routine also has the ability to merge with both neighbors.
1391 * This routine guarentees that the passed entry remains valid (though
1392 * possibly extended). When merging, this routine may delete one or
1393 * both neighbors. No action is taken on entries which have their
1394 * in-transition flag set.
1396 * The map must be exclusively locked.
1398 void
1399 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1401 vm_map_entry_t next, prev;
1402 vm_size_t prevsize, esize;
1404 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1405 ++mycpu->gd_cnt.v_intrans_coll;
1406 return;
1409 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1410 return;
1411 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1412 return;
1414 prev = entry->prev;
1415 if (prev != &map->header) {
1416 prevsize = prev->end - prev->start;
1417 if ( (prev->end == entry->start) &&
1418 (prev->maptype == entry->maptype) &&
1419 (prev->object.vm_object == entry->object.vm_object) &&
1420 (!prev->object.vm_object ||
1421 (prev->offset + prevsize == entry->offset)) &&
1422 (prev->eflags == entry->eflags) &&
1423 (prev->protection == entry->protection) &&
1424 (prev->max_protection == entry->max_protection) &&
1425 (prev->inheritance == entry->inheritance) &&
1426 (prev->id == entry->id) &&
1427 (prev->wired_count == entry->wired_count)) {
1428 if (map->first_free == prev)
1429 map->first_free = entry;
1430 if (map->hint == prev)
1431 map->hint = entry;
1432 vm_map_entry_unlink(map, prev);
1433 entry->start = prev->start;
1434 entry->offset = prev->offset;
1435 if (prev->object.vm_object)
1436 vm_object_deallocate(prev->object.vm_object);
1437 vm_map_entry_dispose(map, prev, countp);
1441 next = entry->next;
1442 if (next != &map->header) {
1443 esize = entry->end - entry->start;
1444 if ((entry->end == next->start) &&
1445 (next->maptype == entry->maptype) &&
1446 (next->object.vm_object == entry->object.vm_object) &&
1447 (!entry->object.vm_object ||
1448 (entry->offset + esize == next->offset)) &&
1449 (next->eflags == entry->eflags) &&
1450 (next->protection == entry->protection) &&
1451 (next->max_protection == entry->max_protection) &&
1452 (next->inheritance == entry->inheritance) &&
1453 (next->id == entry->id) &&
1454 (next->wired_count == entry->wired_count)) {
1455 if (map->first_free == next)
1456 map->first_free = entry;
1457 if (map->hint == next)
1458 map->hint = entry;
1459 vm_map_entry_unlink(map, next);
1460 entry->end = next->end;
1461 if (next->object.vm_object)
1462 vm_object_deallocate(next->object.vm_object);
1463 vm_map_entry_dispose(map, next, countp);
1469 * Asserts that the given entry begins at or after the specified address.
1470 * If necessary, it splits the entry into two.
1472 #define vm_map_clip_start(map, entry, startaddr, countp) \
1474 if (startaddr > entry->start) \
1475 _vm_map_clip_start(map, entry, startaddr, countp); \
1479 * This routine is called only when it is known that the entry must be split.
1481 * The map must be exclusively locked.
1483 static void
1484 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1485 int *countp)
1487 vm_map_entry_t new_entry;
1490 * Split off the front portion -- note that we must insert the new
1491 * entry BEFORE this one, so that this entry has the specified
1492 * starting address.
1495 vm_map_simplify_entry(map, entry, countp);
1498 * If there is no object backing this entry, we might as well create
1499 * one now. If we defer it, an object can get created after the map
1500 * is clipped, and individual objects will be created for the split-up
1501 * map. This is a bit of a hack, but is also about the best place to
1502 * put this improvement.
1504 if (entry->object.vm_object == NULL && !map->system_map) {
1505 vm_map_entry_allocate_object(entry);
1508 new_entry = vm_map_entry_create(map, countp);
1509 *new_entry = *entry;
1511 new_entry->end = start;
1512 entry->offset += (start - entry->start);
1513 entry->start = start;
1515 vm_map_entry_link(map, entry->prev, new_entry);
1517 switch(entry->maptype) {
1518 case VM_MAPTYPE_NORMAL:
1519 case VM_MAPTYPE_VPAGETABLE:
1520 if (new_entry->object.vm_object) {
1521 vm_object_hold(new_entry->object.vm_object);
1522 vm_object_chain_wait(new_entry->object.vm_object, 0);
1523 vm_object_reference_locked(new_entry->object.vm_object);
1524 vm_object_drop(new_entry->object.vm_object);
1526 break;
1527 default:
1528 break;
1533 * Asserts that the given entry ends at or before the specified address.
1534 * If necessary, it splits the entry into two.
1536 * The map must be exclusively locked.
1538 #define vm_map_clip_end(map, entry, endaddr, countp) \
1540 if (endaddr < entry->end) \
1541 _vm_map_clip_end(map, entry, endaddr, countp); \
1545 * This routine is called only when it is known that the entry must be split.
1547 * The map must be exclusively locked.
1549 static void
1550 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1551 int *countp)
1553 vm_map_entry_t new_entry;
1556 * If there is no object backing this entry, we might as well create
1557 * one now. If we defer it, an object can get created after the map
1558 * is clipped, and individual objects will be created for the split-up
1559 * map. This is a bit of a hack, but is also about the best place to
1560 * put this improvement.
1563 if (entry->object.vm_object == NULL && !map->system_map) {
1564 vm_map_entry_allocate_object(entry);
1568 * Create a new entry and insert it AFTER the specified entry
1571 new_entry = vm_map_entry_create(map, countp);
1572 *new_entry = *entry;
1574 new_entry->start = entry->end = end;
1575 new_entry->offset += (end - entry->start);
1577 vm_map_entry_link(map, entry, new_entry);
1579 switch(entry->maptype) {
1580 case VM_MAPTYPE_NORMAL:
1581 case VM_MAPTYPE_VPAGETABLE:
1582 if (new_entry->object.vm_object) {
1583 vm_object_hold(new_entry->object.vm_object);
1584 vm_object_chain_wait(new_entry->object.vm_object, 0);
1585 vm_object_reference_locked(new_entry->object.vm_object);
1586 vm_object_drop(new_entry->object.vm_object);
1588 break;
1589 default:
1590 break;
1595 * Asserts that the starting and ending region addresses fall within the
1596 * valid range for the map.
1598 #define VM_MAP_RANGE_CHECK(map, start, end) \
1600 if (start < vm_map_min(map)) \
1601 start = vm_map_min(map); \
1602 if (end > vm_map_max(map)) \
1603 end = vm_map_max(map); \
1604 if (start > end) \
1605 start = end; \
1609 * Used to block when an in-transition collison occurs. The map
1610 * is unlocked for the sleep and relocked before the return.
1612 void
1613 vm_map_transition_wait(vm_map_t map)
1615 tsleep_interlock(map, 0);
1616 vm_map_unlock(map);
1617 tsleep(map, PINTERLOCKED, "vment", 0);
1618 vm_map_lock(map);
1622 * When we do blocking operations with the map lock held it is
1623 * possible that a clip might have occured on our in-transit entry,
1624 * requiring an adjustment to the entry in our loop. These macros
1625 * help the pageable and clip_range code deal with the case. The
1626 * conditional costs virtually nothing if no clipping has occured.
1629 #define CLIP_CHECK_BACK(entry, save_start) \
1630 do { \
1631 while (entry->start != save_start) { \
1632 entry = entry->prev; \
1633 KASSERT(entry != &map->header, ("bad entry clip")); \
1635 } while(0)
1637 #define CLIP_CHECK_FWD(entry, save_end) \
1638 do { \
1639 while (entry->end != save_end) { \
1640 entry = entry->next; \
1641 KASSERT(entry != &map->header, ("bad entry clip")); \
1643 } while(0)
1647 * Clip the specified range and return the base entry. The
1648 * range may cover several entries starting at the returned base
1649 * and the first and last entry in the covering sequence will be
1650 * properly clipped to the requested start and end address.
1652 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1653 * flag.
1655 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1656 * covered by the requested range.
1658 * The map must be exclusively locked on entry and will remain locked
1659 * on return. If no range exists or the range contains holes and you
1660 * specified that no holes were allowed, NULL will be returned. This
1661 * routine may temporarily unlock the map in order avoid a deadlock when
1662 * sleeping.
1664 static
1665 vm_map_entry_t
1666 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1667 int *countp, int flags)
1669 vm_map_entry_t start_entry;
1670 vm_map_entry_t entry;
1673 * Locate the entry and effect initial clipping. The in-transition
1674 * case does not occur very often so do not try to optimize it.
1676 again:
1677 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1678 return (NULL);
1679 entry = start_entry;
1680 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1681 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1682 ++mycpu->gd_cnt.v_intrans_coll;
1683 ++mycpu->gd_cnt.v_intrans_wait;
1684 vm_map_transition_wait(map);
1686 * entry and/or start_entry may have been clipped while
1687 * we slept, or may have gone away entirely. We have
1688 * to restart from the lookup.
1690 goto again;
1694 * Since we hold an exclusive map lock we do not have to restart
1695 * after clipping, even though clipping may block in zalloc.
1697 vm_map_clip_start(map, entry, start, countp);
1698 vm_map_clip_end(map, entry, end, countp);
1699 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1702 * Scan entries covered by the range. When working on the next
1703 * entry a restart need only re-loop on the current entry which
1704 * we have already locked, since 'next' may have changed. Also,
1705 * even though entry is safe, it may have been clipped so we
1706 * have to iterate forwards through the clip after sleeping.
1708 while (entry->next != &map->header && entry->next->start < end) {
1709 vm_map_entry_t next = entry->next;
1711 if (flags & MAP_CLIP_NO_HOLES) {
1712 if (next->start > entry->end) {
1713 vm_map_unclip_range(map, start_entry,
1714 start, entry->end, countp, flags);
1715 return(NULL);
1719 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1720 vm_offset_t save_end = entry->end;
1721 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1722 ++mycpu->gd_cnt.v_intrans_coll;
1723 ++mycpu->gd_cnt.v_intrans_wait;
1724 vm_map_transition_wait(map);
1727 * clips might have occured while we blocked.
1729 CLIP_CHECK_FWD(entry, save_end);
1730 CLIP_CHECK_BACK(start_entry, start);
1731 continue;
1734 * No restart necessary even though clip_end may block, we
1735 * are holding the map lock.
1737 vm_map_clip_end(map, next, end, countp);
1738 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1739 entry = next;
1741 if (flags & MAP_CLIP_NO_HOLES) {
1742 if (entry->end != end) {
1743 vm_map_unclip_range(map, start_entry,
1744 start, entry->end, countp, flags);
1745 return(NULL);
1748 return(start_entry);
1752 * Undo the effect of vm_map_clip_range(). You should pass the same
1753 * flags and the same range that you passed to vm_map_clip_range().
1754 * This code will clear the in-transition flag on the entries and
1755 * wake up anyone waiting. This code will also simplify the sequence
1756 * and attempt to merge it with entries before and after the sequence.
1758 * The map must be locked on entry and will remain locked on return.
1760 * Note that you should also pass the start_entry returned by
1761 * vm_map_clip_range(). However, if you block between the two calls
1762 * with the map unlocked please be aware that the start_entry may
1763 * have been clipped and you may need to scan it backwards to find
1764 * the entry corresponding with the original start address. You are
1765 * responsible for this, vm_map_unclip_range() expects the correct
1766 * start_entry to be passed to it and will KASSERT otherwise.
1768 static
1769 void
1770 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1771 vm_offset_t start, vm_offset_t end,
1772 int *countp, int flags)
1774 vm_map_entry_t entry;
1776 entry = start_entry;
1778 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1779 while (entry != &map->header && entry->start < end) {
1780 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1781 ("in-transition flag not set during unclip on: %p",
1782 entry));
1783 KASSERT(entry->end <= end,
1784 ("unclip_range: tail wasn't clipped"));
1785 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1786 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1787 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1788 wakeup(map);
1790 entry = entry->next;
1794 * Simplification does not block so there is no restart case.
1796 entry = start_entry;
1797 while (entry != &map->header && entry->start < end) {
1798 vm_map_simplify_entry(map, entry, countp);
1799 entry = entry->next;
1804 * Mark the given range as handled by a subordinate map.
1806 * This range must have been created with vm_map_find(), and no other
1807 * operations may have been performed on this range prior to calling
1808 * vm_map_submap().
1810 * Submappings cannot be removed.
1812 * No requirements.
1815 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1817 vm_map_entry_t entry;
1818 int result = KERN_INVALID_ARGUMENT;
1819 int count;
1821 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1822 vm_map_lock(map);
1824 VM_MAP_RANGE_CHECK(map, start, end);
1826 if (vm_map_lookup_entry(map, start, &entry)) {
1827 vm_map_clip_start(map, entry, start, &count);
1828 } else {
1829 entry = entry->next;
1832 vm_map_clip_end(map, entry, end, &count);
1834 if ((entry->start == start) && (entry->end == end) &&
1835 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836 (entry->object.vm_object == NULL)) {
1837 entry->object.sub_map = submap;
1838 entry->maptype = VM_MAPTYPE_SUBMAP;
1839 result = KERN_SUCCESS;
1841 vm_map_unlock(map);
1842 vm_map_entry_release(count);
1844 return (result);
1848 * Sets the protection of the specified address region in the target map.
1849 * If "set_max" is specified, the maximum protection is to be set;
1850 * otherwise, only the current protection is affected.
1852 * The protection is not applicable to submaps, but is applicable to normal
1853 * maps and maps governed by virtual page tables. For example, when operating
1854 * on a virtual page table our protection basically controls how COW occurs
1855 * on the backing object, whereas the virtual page table abstraction itself
1856 * is an abstraction for userland.
1858 * No requirements.
1861 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1862 vm_prot_t new_prot, boolean_t set_max)
1864 vm_map_entry_t current;
1865 vm_map_entry_t entry;
1866 int count;
1868 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1869 vm_map_lock(map);
1871 VM_MAP_RANGE_CHECK(map, start, end);
1873 if (vm_map_lookup_entry(map, start, &entry)) {
1874 vm_map_clip_start(map, entry, start, &count);
1875 } else {
1876 entry = entry->next;
1880 * Make a first pass to check for protection violations.
1882 current = entry;
1883 while ((current != &map->header) && (current->start < end)) {
1884 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1885 vm_map_unlock(map);
1886 vm_map_entry_release(count);
1887 return (KERN_INVALID_ARGUMENT);
1889 if ((new_prot & current->max_protection) != new_prot) {
1890 vm_map_unlock(map);
1891 vm_map_entry_release(count);
1892 return (KERN_PROTECTION_FAILURE);
1894 current = current->next;
1898 * Go back and fix up protections. [Note that clipping is not
1899 * necessary the second time.]
1901 current = entry;
1903 while ((current != &map->header) && (current->start < end)) {
1904 vm_prot_t old_prot;
1906 vm_map_clip_end(map, current, end, &count);
1908 old_prot = current->protection;
1909 if (set_max) {
1910 current->max_protection = new_prot;
1911 current->protection = new_prot & old_prot;
1912 } else {
1913 current->protection = new_prot;
1917 * Update physical map if necessary. Worry about copy-on-write
1918 * here -- CHECK THIS XXX
1921 if (current->protection != old_prot) {
1922 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1923 VM_PROT_ALL)
1925 pmap_protect(map->pmap, current->start,
1926 current->end,
1927 current->protection & MASK(current));
1928 #undef MASK
1931 vm_map_simplify_entry(map, current, &count);
1933 current = current->next;
1936 vm_map_unlock(map);
1937 vm_map_entry_release(count);
1938 return (KERN_SUCCESS);
1942 * This routine traverses a processes map handling the madvise
1943 * system call. Advisories are classified as either those effecting
1944 * the vm_map_entry structure, or those effecting the underlying
1945 * objects.
1947 * The <value> argument is used for extended madvise calls.
1949 * No requirements.
1952 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1953 int behav, off_t value)
1955 vm_map_entry_t current, entry;
1956 int modify_map = 0;
1957 int error = 0;
1958 int count;
1961 * Some madvise calls directly modify the vm_map_entry, in which case
1962 * we need to use an exclusive lock on the map and we need to perform
1963 * various clipping operations. Otherwise we only need a read-lock
1964 * on the map.
1966 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1968 switch(behav) {
1969 case MADV_NORMAL:
1970 case MADV_SEQUENTIAL:
1971 case MADV_RANDOM:
1972 case MADV_NOSYNC:
1973 case MADV_AUTOSYNC:
1974 case MADV_NOCORE:
1975 case MADV_CORE:
1976 case MADV_SETMAP:
1977 modify_map = 1;
1978 vm_map_lock(map);
1979 break;
1980 case MADV_INVAL:
1981 case MADV_WILLNEED:
1982 case MADV_DONTNEED:
1983 case MADV_FREE:
1984 vm_map_lock_read(map);
1985 break;
1986 default:
1987 vm_map_entry_release(count);
1988 return (EINVAL);
1992 * Locate starting entry and clip if necessary.
1995 VM_MAP_RANGE_CHECK(map, start, end);
1997 if (vm_map_lookup_entry(map, start, &entry)) {
1998 if (modify_map)
1999 vm_map_clip_start(map, entry, start, &count);
2000 } else {
2001 entry = entry->next;
2004 if (modify_map) {
2006 * madvise behaviors that are implemented in the vm_map_entry.
2008 * We clip the vm_map_entry so that behavioral changes are
2009 * limited to the specified address range.
2011 for (current = entry;
2012 (current != &map->header) && (current->start < end);
2013 current = current->next
2015 if (current->maptype == VM_MAPTYPE_SUBMAP)
2016 continue;
2018 vm_map_clip_end(map, current, end, &count);
2020 switch (behav) {
2021 case MADV_NORMAL:
2022 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2023 break;
2024 case MADV_SEQUENTIAL:
2025 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2026 break;
2027 case MADV_RANDOM:
2028 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2029 break;
2030 case MADV_NOSYNC:
2031 current->eflags |= MAP_ENTRY_NOSYNC;
2032 break;
2033 case MADV_AUTOSYNC:
2034 current->eflags &= ~MAP_ENTRY_NOSYNC;
2035 break;
2036 case MADV_NOCORE:
2037 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2038 break;
2039 case MADV_CORE:
2040 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2041 break;
2042 case MADV_SETMAP:
2044 * Set the page directory page for a map
2045 * governed by a virtual page table. Mark
2046 * the entry as being governed by a virtual
2047 * page table if it is not.
2049 * XXX the page directory page is stored
2050 * in the avail_ssize field if the map_entry.
2052 * XXX the map simplification code does not
2053 * compare this field so weird things may
2054 * happen if you do not apply this function
2055 * to the entire mapping governed by the
2056 * virtual page table.
2058 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2059 error = EINVAL;
2060 break;
2062 current->aux.master_pde = value;
2063 pmap_remove(map->pmap,
2064 current->start, current->end);
2065 break;
2066 case MADV_INVAL:
2068 * Invalidate the related pmap entries, used
2069 * to flush portions of the real kernel's
2070 * pmap when the caller has removed or
2071 * modified existing mappings in a virtual
2072 * page table.
2074 * (exclusive locked map version does not
2075 * need the range interlock).
2077 pmap_remove(map->pmap,
2078 current->start, current->end);
2079 break;
2080 default:
2081 error = EINVAL;
2082 break;
2084 vm_map_simplify_entry(map, current, &count);
2086 vm_map_unlock(map);
2087 } else {
2088 vm_pindex_t pindex;
2089 vm_pindex_t delta;
2092 * madvise behaviors that are implemented in the underlying
2093 * vm_object.
2095 * Since we don't clip the vm_map_entry, we have to clip
2096 * the vm_object pindex and count.
2098 * NOTE! These functions are only supported on normal maps,
2099 * except MADV_INVAL which is also supported on
2100 * virtual page tables.
2102 for (current = entry;
2103 (current != &map->header) && (current->start < end);
2104 current = current->next
2106 vm_offset_t useStart;
2108 if (current->maptype != VM_MAPTYPE_NORMAL &&
2109 (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2110 behav != MADV_INVAL)) {
2111 continue;
2114 pindex = OFF_TO_IDX(current->offset);
2115 delta = atop(current->end - current->start);
2116 useStart = current->start;
2118 if (current->start < start) {
2119 pindex += atop(start - current->start);
2120 delta -= atop(start - current->start);
2121 useStart = start;
2123 if (current->end > end)
2124 delta -= atop(current->end - end);
2126 if ((vm_spindex_t)delta <= 0)
2127 continue;
2129 if (behav == MADV_INVAL) {
2131 * Invalidate the related pmap entries, used
2132 * to flush portions of the real kernel's
2133 * pmap when the caller has removed or
2134 * modified existing mappings in a virtual
2135 * page table.
2137 * (shared locked map version needs the
2138 * interlock, see vm_fault()).
2140 struct vm_map_ilock ilock;
2142 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2143 useStart + ptoa(delta) <=
2144 VM_MAX_USER_ADDRESS,
2145 ("Bad range %016jx-%016jx (%016jx)",
2146 useStart, useStart + ptoa(delta),
2147 delta));
2148 vm_map_interlock(map, &ilock,
2149 useStart,
2150 useStart + ptoa(delta));
2151 pmap_remove(map->pmap,
2152 useStart,
2153 useStart + ptoa(delta));
2154 vm_map_deinterlock(map, &ilock);
2155 } else {
2156 vm_object_madvise(current->object.vm_object,
2157 pindex, delta, behav);
2161 * Try to populate the page table. Mappings governed
2162 * by virtual page tables cannot be pre-populated
2163 * without a lot of work so don't try.
2165 if (behav == MADV_WILLNEED &&
2166 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2167 pmap_object_init_pt(
2168 map->pmap,
2169 useStart,
2170 current->protection,
2171 current->object.vm_object,
2172 pindex,
2173 (count << PAGE_SHIFT),
2174 MAP_PREFAULT_MADVISE
2178 vm_map_unlock_read(map);
2180 vm_map_entry_release(count);
2181 return(error);
2186 * Sets the inheritance of the specified address range in the target map.
2187 * Inheritance affects how the map will be shared with child maps at the
2188 * time of vm_map_fork.
2191 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2192 vm_inherit_t new_inheritance)
2194 vm_map_entry_t entry;
2195 vm_map_entry_t temp_entry;
2196 int count;
2198 switch (new_inheritance) {
2199 case VM_INHERIT_NONE:
2200 case VM_INHERIT_COPY:
2201 case VM_INHERIT_SHARE:
2202 break;
2203 default:
2204 return (KERN_INVALID_ARGUMENT);
2207 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2208 vm_map_lock(map);
2210 VM_MAP_RANGE_CHECK(map, start, end);
2212 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2213 entry = temp_entry;
2214 vm_map_clip_start(map, entry, start, &count);
2215 } else
2216 entry = temp_entry->next;
2218 while ((entry != &map->header) && (entry->start < end)) {
2219 vm_map_clip_end(map, entry, end, &count);
2221 entry->inheritance = new_inheritance;
2223 vm_map_simplify_entry(map, entry, &count);
2225 entry = entry->next;
2227 vm_map_unlock(map);
2228 vm_map_entry_release(count);
2229 return (KERN_SUCCESS);
2233 * Implement the semantics of mlock
2236 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2237 boolean_t new_pageable)
2239 vm_map_entry_t entry;
2240 vm_map_entry_t start_entry;
2241 vm_offset_t end;
2242 int rv = KERN_SUCCESS;
2243 int count;
2245 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2246 vm_map_lock(map);
2247 VM_MAP_RANGE_CHECK(map, start, real_end);
2248 end = real_end;
2250 start_entry = vm_map_clip_range(map, start, end, &count,
2251 MAP_CLIP_NO_HOLES);
2252 if (start_entry == NULL) {
2253 vm_map_unlock(map);
2254 vm_map_entry_release(count);
2255 return (KERN_INVALID_ADDRESS);
2258 if (new_pageable == 0) {
2259 entry = start_entry;
2260 while ((entry != &map->header) && (entry->start < end)) {
2261 vm_offset_t save_start;
2262 vm_offset_t save_end;
2265 * Already user wired or hard wired (trivial cases)
2267 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2268 entry = entry->next;
2269 continue;
2271 if (entry->wired_count != 0) {
2272 entry->wired_count++;
2273 entry->eflags |= MAP_ENTRY_USER_WIRED;
2274 entry = entry->next;
2275 continue;
2279 * A new wiring requires instantiation of appropriate
2280 * management structures and the faulting in of the
2281 * page.
2283 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2284 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2285 int copyflag = entry->eflags &
2286 MAP_ENTRY_NEEDS_COPY;
2287 if (copyflag && ((entry->protection &
2288 VM_PROT_WRITE) != 0)) {
2289 vm_map_entry_shadow(entry, 0);
2290 } else if (entry->object.vm_object == NULL &&
2291 !map->system_map) {
2292 vm_map_entry_allocate_object(entry);
2295 entry->wired_count++;
2296 entry->eflags |= MAP_ENTRY_USER_WIRED;
2299 * Now fault in the area. Note that vm_fault_wire()
2300 * may release the map lock temporarily, it will be
2301 * relocked on return. The in-transition
2302 * flag protects the entries.
2304 save_start = entry->start;
2305 save_end = entry->end;
2306 rv = vm_fault_wire(map, entry, TRUE, 0);
2307 if (rv) {
2308 CLIP_CHECK_BACK(entry, save_start);
2309 for (;;) {
2310 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2311 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2312 entry->wired_count = 0;
2313 if (entry->end == save_end)
2314 break;
2315 entry = entry->next;
2316 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2318 end = save_start; /* unwire the rest */
2319 break;
2322 * note that even though the entry might have been
2323 * clipped, the USER_WIRED flag we set prevents
2324 * duplication so we do not have to do a
2325 * clip check.
2327 entry = entry->next;
2331 * If we failed fall through to the unwiring section to
2332 * unwire what we had wired so far. 'end' has already
2333 * been adjusted.
2335 if (rv)
2336 new_pageable = 1;
2339 * start_entry might have been clipped if we unlocked the
2340 * map and blocked. No matter how clipped it has gotten
2341 * there should be a fragment that is on our start boundary.
2343 CLIP_CHECK_BACK(start_entry, start);
2347 * Deal with the unwiring case.
2349 if (new_pageable) {
2351 * This is the unwiring case. We must first ensure that the
2352 * range to be unwired is really wired down. We know there
2353 * are no holes.
2355 entry = start_entry;
2356 while ((entry != &map->header) && (entry->start < end)) {
2357 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2358 rv = KERN_INVALID_ARGUMENT;
2359 goto done;
2361 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2362 entry = entry->next;
2366 * Now decrement the wiring count for each region. If a region
2367 * becomes completely unwired, unwire its physical pages and
2368 * mappings.
2371 * The map entries are processed in a loop, checking to
2372 * make sure the entry is wired and asserting it has a wired
2373 * count. However, another loop was inserted more-or-less in
2374 * the middle of the unwiring path. This loop picks up the
2375 * "entry" loop variable from the first loop without first
2376 * setting it to start_entry. Naturally, the secound loop
2377 * is never entered and the pages backing the entries are
2378 * never unwired. This can lead to a leak of wired pages.
2380 entry = start_entry;
2381 while ((entry != &map->header) && (entry->start < end)) {
2382 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2383 ("expected USER_WIRED on entry %p", entry));
2384 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2385 entry->wired_count--;
2386 if (entry->wired_count == 0)
2387 vm_fault_unwire(map, entry);
2388 entry = entry->next;
2391 done:
2392 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2393 MAP_CLIP_NO_HOLES);
2394 map->timestamp++;
2395 vm_map_unlock(map);
2396 vm_map_entry_release(count);
2397 return (rv);
2401 * Sets the pageability of the specified address range in the target map.
2402 * Regions specified as not pageable require locked-down physical
2403 * memory and physical page maps.
2405 * The map must not be locked, but a reference must remain to the map
2406 * throughout the call.
2408 * This function may be called via the zalloc path and must properly
2409 * reserve map entries for kernel_map.
2411 * No requirements.
2414 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2416 vm_map_entry_t entry;
2417 vm_map_entry_t start_entry;
2418 vm_offset_t end;
2419 int rv = KERN_SUCCESS;
2420 int count;
2422 if (kmflags & KM_KRESERVE)
2423 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2424 else
2425 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2426 vm_map_lock(map);
2427 VM_MAP_RANGE_CHECK(map, start, real_end);
2428 end = real_end;
2430 start_entry = vm_map_clip_range(map, start, end, &count,
2431 MAP_CLIP_NO_HOLES);
2432 if (start_entry == NULL) {
2433 vm_map_unlock(map);
2434 rv = KERN_INVALID_ADDRESS;
2435 goto failure;
2437 if ((kmflags & KM_PAGEABLE) == 0) {
2439 * Wiring.
2441 * 1. Holding the write lock, we create any shadow or zero-fill
2442 * objects that need to be created. Then we clip each map
2443 * entry to the region to be wired and increment its wiring
2444 * count. We create objects before clipping the map entries
2445 * to avoid object proliferation.
2447 * 2. We downgrade to a read lock, and call vm_fault_wire to
2448 * fault in the pages for any newly wired area (wired_count is
2449 * 1).
2451 * Downgrading to a read lock for vm_fault_wire avoids a
2452 * possible deadlock with another process that may have faulted
2453 * on one of the pages to be wired (it would mark the page busy,
2454 * blocking us, then in turn block on the map lock that we
2455 * hold). Because of problems in the recursive lock package,
2456 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2457 * any actions that require the write lock must be done
2458 * beforehand. Because we keep the read lock on the map, the
2459 * copy-on-write status of the entries we modify here cannot
2460 * change.
2462 entry = start_entry;
2463 while ((entry != &map->header) && (entry->start < end)) {
2465 * Trivial case if the entry is already wired
2467 if (entry->wired_count) {
2468 entry->wired_count++;
2469 entry = entry->next;
2470 continue;
2474 * The entry is being newly wired, we have to setup
2475 * appropriate management structures. A shadow
2476 * object is required for a copy-on-write region,
2477 * or a normal object for a zero-fill region. We
2478 * do not have to do this for entries that point to sub
2479 * maps because we won't hold the lock on the sub map.
2481 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2482 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2483 int copyflag = entry->eflags &
2484 MAP_ENTRY_NEEDS_COPY;
2485 if (copyflag && ((entry->protection &
2486 VM_PROT_WRITE) != 0)) {
2487 vm_map_entry_shadow(entry, 0);
2488 } else if (entry->object.vm_object == NULL &&
2489 !map->system_map) {
2490 vm_map_entry_allocate_object(entry);
2494 entry->wired_count++;
2495 entry = entry->next;
2499 * Pass 2.
2503 * HACK HACK HACK HACK
2505 * vm_fault_wire() temporarily unlocks the map to avoid
2506 * deadlocks. The in-transition flag from vm_map_clip_range
2507 * call should protect us from changes while the map is
2508 * unlocked. T
2510 * NOTE: Previously this comment stated that clipping might
2511 * still occur while the entry is unlocked, but from
2512 * what I can tell it actually cannot.
2514 * It is unclear whether the CLIP_CHECK_*() calls
2515 * are still needed but we keep them in anyway.
2517 * HACK HACK HACK HACK
2520 entry = start_entry;
2521 while (entry != &map->header && entry->start < end) {
2523 * If vm_fault_wire fails for any page we need to undo
2524 * what has been done. We decrement the wiring count
2525 * for those pages which have not yet been wired (now)
2526 * and unwire those that have (later).
2528 vm_offset_t save_start = entry->start;
2529 vm_offset_t save_end = entry->end;
2531 if (entry->wired_count == 1)
2532 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2533 if (rv) {
2534 CLIP_CHECK_BACK(entry, save_start);
2535 for (;;) {
2536 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2537 entry->wired_count = 0;
2538 if (entry->end == save_end)
2539 break;
2540 entry = entry->next;
2541 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2543 end = save_start;
2544 break;
2546 CLIP_CHECK_FWD(entry, save_end);
2547 entry = entry->next;
2551 * If a failure occured undo everything by falling through
2552 * to the unwiring code. 'end' has already been adjusted
2553 * appropriately.
2555 if (rv)
2556 kmflags |= KM_PAGEABLE;
2559 * start_entry is still IN_TRANSITION but may have been
2560 * clipped since vm_fault_wire() unlocks and relocks the
2561 * map. No matter how clipped it has gotten there should
2562 * be a fragment that is on our start boundary.
2564 CLIP_CHECK_BACK(start_entry, start);
2567 if (kmflags & KM_PAGEABLE) {
2569 * This is the unwiring case. We must first ensure that the
2570 * range to be unwired is really wired down. We know there
2571 * are no holes.
2573 entry = start_entry;
2574 while ((entry != &map->header) && (entry->start < end)) {
2575 if (entry->wired_count == 0) {
2576 rv = KERN_INVALID_ARGUMENT;
2577 goto done;
2579 entry = entry->next;
2583 * Now decrement the wiring count for each region. If a region
2584 * becomes completely unwired, unwire its physical pages and
2585 * mappings.
2587 entry = start_entry;
2588 while ((entry != &map->header) && (entry->start < end)) {
2589 entry->wired_count--;
2590 if (entry->wired_count == 0)
2591 vm_fault_unwire(map, entry);
2592 entry = entry->next;
2595 done:
2596 vm_map_unclip_range(map, start_entry, start, real_end,
2597 &count, MAP_CLIP_NO_HOLES);
2598 map->timestamp++;
2599 vm_map_unlock(map);
2600 failure:
2601 if (kmflags & KM_KRESERVE)
2602 vm_map_entry_krelease(count);
2603 else
2604 vm_map_entry_release(count);
2605 return (rv);
2609 * Mark a newly allocated address range as wired but do not fault in
2610 * the pages. The caller is expected to load the pages into the object.
2612 * The map must be locked on entry and will remain locked on return.
2613 * No other requirements.
2615 void
2616 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2617 int *countp)
2619 vm_map_entry_t scan;
2620 vm_map_entry_t entry;
2622 entry = vm_map_clip_range(map, addr, addr + size,
2623 countp, MAP_CLIP_NO_HOLES);
2624 for (scan = entry;
2625 scan != &map->header && scan->start < addr + size;
2626 scan = scan->next) {
2627 KKASSERT(scan->wired_count == 0);
2628 scan->wired_count = 1;
2630 vm_map_unclip_range(map, entry, addr, addr + size,
2631 countp, MAP_CLIP_NO_HOLES);
2635 * Push any dirty cached pages in the address range to their pager.
2636 * If syncio is TRUE, dirty pages are written synchronously.
2637 * If invalidate is TRUE, any cached pages are freed as well.
2639 * This routine is called by sys_msync()
2641 * Returns an error if any part of the specified range is not mapped.
2643 * No requirements.
2646 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2647 boolean_t syncio, boolean_t invalidate)
2649 vm_map_entry_t current;
2650 vm_map_entry_t entry;
2651 vm_size_t size;
2652 vm_object_t object;
2653 vm_object_t tobj;
2654 vm_ooffset_t offset;
2656 vm_map_lock_read(map);
2657 VM_MAP_RANGE_CHECK(map, start, end);
2658 if (!vm_map_lookup_entry(map, start, &entry)) {
2659 vm_map_unlock_read(map);
2660 return (KERN_INVALID_ADDRESS);
2662 lwkt_gettoken(&map->token);
2665 * Make a first pass to check for holes.
2667 for (current = entry; current->start < end; current = current->next) {
2668 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2669 lwkt_reltoken(&map->token);
2670 vm_map_unlock_read(map);
2671 return (KERN_INVALID_ARGUMENT);
2673 if (end > current->end &&
2674 (current->next == &map->header ||
2675 current->end != current->next->start)) {
2676 lwkt_reltoken(&map->token);
2677 vm_map_unlock_read(map);
2678 return (KERN_INVALID_ADDRESS);
2682 if (invalidate)
2683 pmap_remove(vm_map_pmap(map), start, end);
2686 * Make a second pass, cleaning/uncaching pages from the indicated
2687 * objects as we go.
2689 for (current = entry; current->start < end; current = current->next) {
2690 offset = current->offset + (start - current->start);
2691 size = (end <= current->end ? end : current->end) - start;
2693 switch(current->maptype) {
2694 case VM_MAPTYPE_SUBMAP:
2696 vm_map_t smap;
2697 vm_map_entry_t tentry;
2698 vm_size_t tsize;
2700 smap = current->object.sub_map;
2701 vm_map_lock_read(smap);
2702 vm_map_lookup_entry(smap, offset, &tentry);
2703 tsize = tentry->end - offset;
2704 if (tsize < size)
2705 size = tsize;
2706 object = tentry->object.vm_object;
2707 offset = tentry->offset + (offset - tentry->start);
2708 vm_map_unlock_read(smap);
2709 break;
2711 case VM_MAPTYPE_NORMAL:
2712 case VM_MAPTYPE_VPAGETABLE:
2713 object = current->object.vm_object;
2714 break;
2715 default:
2716 object = NULL;
2717 break;
2720 if (object)
2721 vm_object_hold(object);
2724 * Note that there is absolutely no sense in writing out
2725 * anonymous objects, so we track down the vnode object
2726 * to write out.
2727 * We invalidate (remove) all pages from the address space
2728 * anyway, for semantic correctness.
2730 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2731 * may start out with a NULL object.
2733 while (object && (tobj = object->backing_object) != NULL) {
2734 vm_object_hold(tobj);
2735 if (tobj == object->backing_object) {
2736 vm_object_lock_swap();
2737 offset += object->backing_object_offset;
2738 vm_object_drop(object);
2739 object = tobj;
2740 if (object->size < OFF_TO_IDX(offset + size))
2741 size = IDX_TO_OFF(object->size) -
2742 offset;
2743 break;
2745 vm_object_drop(tobj);
2747 if (object && (object->type == OBJT_VNODE) &&
2748 (current->protection & VM_PROT_WRITE) &&
2749 (object->flags & OBJ_NOMSYNC) == 0) {
2751 * Flush pages if writing is allowed, invalidate them
2752 * if invalidation requested. Pages undergoing I/O
2753 * will be ignored by vm_object_page_remove().
2755 * We cannot lock the vnode and then wait for paging
2756 * to complete without deadlocking against vm_fault.
2757 * Instead we simply call vm_object_page_remove() and
2758 * allow it to block internally on a page-by-page
2759 * basis when it encounters pages undergoing async
2760 * I/O.
2762 int flags;
2764 /* no chain wait needed for vnode objects */
2765 vm_object_reference_locked(object);
2766 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2767 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2768 flags |= invalidate ? OBJPC_INVAL : 0;
2771 * When operating on a virtual page table just
2772 * flush the whole object. XXX we probably ought
2773 * to
2775 switch(current->maptype) {
2776 case VM_MAPTYPE_NORMAL:
2777 vm_object_page_clean(object,
2778 OFF_TO_IDX(offset),
2779 OFF_TO_IDX(offset + size + PAGE_MASK),
2780 flags);
2781 break;
2782 case VM_MAPTYPE_VPAGETABLE:
2783 vm_object_page_clean(object, 0, 0, flags);
2784 break;
2786 vn_unlock(((struct vnode *)object->handle));
2787 vm_object_deallocate_locked(object);
2789 if (object && invalidate &&
2790 ((object->type == OBJT_VNODE) ||
2791 (object->type == OBJT_DEVICE) ||
2792 (object->type == OBJT_MGTDEVICE))) {
2793 int clean_only =
2794 ((object->type == OBJT_DEVICE) ||
2795 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2796 /* no chain wait needed for vnode/device objects */
2797 vm_object_reference_locked(object);
2798 switch(current->maptype) {
2799 case VM_MAPTYPE_NORMAL:
2800 vm_object_page_remove(object,
2801 OFF_TO_IDX(offset),
2802 OFF_TO_IDX(offset + size + PAGE_MASK),
2803 clean_only);
2804 break;
2805 case VM_MAPTYPE_VPAGETABLE:
2806 vm_object_page_remove(object, 0, 0, clean_only);
2807 break;
2809 vm_object_deallocate_locked(object);
2811 start += size;
2812 if (object)
2813 vm_object_drop(object);
2816 lwkt_reltoken(&map->token);
2817 vm_map_unlock_read(map);
2819 return (KERN_SUCCESS);
2823 * Make the region specified by this entry pageable.
2825 * The vm_map must be exclusively locked.
2827 static void
2828 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2830 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2831 entry->wired_count = 0;
2832 vm_fault_unwire(map, entry);
2836 * Deallocate the given entry from the target map.
2838 * The vm_map must be exclusively locked.
2840 static void
2841 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2843 vm_map_entry_unlink(map, entry);
2844 map->size -= entry->end - entry->start;
2846 switch(entry->maptype) {
2847 case VM_MAPTYPE_NORMAL:
2848 case VM_MAPTYPE_VPAGETABLE:
2849 case VM_MAPTYPE_SUBMAP:
2850 vm_object_deallocate(entry->object.vm_object);
2851 break;
2852 case VM_MAPTYPE_UKSMAP:
2853 /* XXX TODO */
2854 break;
2855 default:
2856 break;
2859 vm_map_entry_dispose(map, entry, countp);
2863 * Deallocates the given address range from the target map.
2865 * The vm_map must be exclusively locked.
2868 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2870 vm_object_t object;
2871 vm_map_entry_t entry;
2872 vm_map_entry_t first_entry;
2874 ASSERT_VM_MAP_LOCKED(map);
2875 lwkt_gettoken(&map->token);
2876 again:
2878 * Find the start of the region, and clip it. Set entry to point
2879 * at the first record containing the requested address or, if no
2880 * such record exists, the next record with a greater address. The
2881 * loop will run from this point until a record beyond the termination
2882 * address is encountered.
2884 * map->hint must be adjusted to not point to anything we delete,
2885 * so set it to the entry prior to the one being deleted.
2887 * GGG see other GGG comment.
2889 if (vm_map_lookup_entry(map, start, &first_entry)) {
2890 entry = first_entry;
2891 vm_map_clip_start(map, entry, start, countp);
2892 map->hint = entry->prev; /* possible problem XXX */
2893 } else {
2894 map->hint = first_entry; /* possible problem XXX */
2895 entry = first_entry->next;
2899 * If a hole opens up prior to the current first_free then
2900 * adjust first_free. As with map->hint, map->first_free
2901 * cannot be left set to anything we might delete.
2903 if (entry == &map->header) {
2904 map->first_free = &map->header;
2905 } else if (map->first_free->start >= start) {
2906 map->first_free = entry->prev;
2910 * Step through all entries in this region
2912 while ((entry != &map->header) && (entry->start < end)) {
2913 vm_map_entry_t next;
2914 vm_offset_t s, e;
2915 vm_pindex_t offidxstart, offidxend, count;
2918 * If we hit an in-transition entry we have to sleep and
2919 * retry. It's easier (and not really slower) to just retry
2920 * since this case occurs so rarely and the hint is already
2921 * pointing at the right place. We have to reset the
2922 * start offset so as not to accidently delete an entry
2923 * another process just created in vacated space.
2925 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2926 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2927 start = entry->start;
2928 ++mycpu->gd_cnt.v_intrans_coll;
2929 ++mycpu->gd_cnt.v_intrans_wait;
2930 vm_map_transition_wait(map);
2931 goto again;
2933 vm_map_clip_end(map, entry, end, countp);
2935 s = entry->start;
2936 e = entry->end;
2937 next = entry->next;
2939 offidxstart = OFF_TO_IDX(entry->offset);
2940 count = OFF_TO_IDX(e - s);
2942 switch(entry->maptype) {
2943 case VM_MAPTYPE_NORMAL:
2944 case VM_MAPTYPE_VPAGETABLE:
2945 case VM_MAPTYPE_SUBMAP:
2946 object = entry->object.vm_object;
2947 break;
2948 default:
2949 object = NULL;
2950 break;
2954 * Unwire before removing addresses from the pmap; otherwise,
2955 * unwiring will put the entries back in the pmap.
2957 if (entry->wired_count != 0)
2958 vm_map_entry_unwire(map, entry);
2960 offidxend = offidxstart + count;
2962 if (object == &kernel_object) {
2963 vm_object_hold(object);
2964 vm_object_page_remove(object, offidxstart,
2965 offidxend, FALSE);
2966 vm_object_drop(object);
2967 } else if (object && object->type != OBJT_DEFAULT &&
2968 object->type != OBJT_SWAP) {
2970 * vnode object routines cannot be chain-locked,
2971 * but since we aren't removing pages from the
2972 * object here we can use a shared hold.
2974 vm_object_hold_shared(object);
2975 pmap_remove(map->pmap, s, e);
2976 vm_object_drop(object);
2977 } else if (object) {
2978 vm_object_hold(object);
2979 vm_object_chain_acquire(object, 0);
2980 pmap_remove(map->pmap, s, e);
2982 if (object != NULL &&
2983 object->ref_count != 1 &&
2984 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2985 OBJ_ONEMAPPING &&
2986 (object->type == OBJT_DEFAULT ||
2987 object->type == OBJT_SWAP)) {
2988 vm_object_collapse(object, NULL);
2989 vm_object_page_remove(object, offidxstart,
2990 offidxend, FALSE);
2991 if (object->type == OBJT_SWAP) {
2992 swap_pager_freespace(object,
2993 offidxstart,
2994 count);
2996 if (offidxend >= object->size &&
2997 offidxstart < object->size) {
2998 object->size = offidxstart;
3001 vm_object_chain_release(object);
3002 vm_object_drop(object);
3003 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3004 pmap_remove(map->pmap, s, e);
3008 * Delete the entry (which may delete the object) only after
3009 * removing all pmap entries pointing to its pages.
3010 * (Otherwise, its page frames may be reallocated, and any
3011 * modify bits will be set in the wrong object!)
3013 vm_map_entry_delete(map, entry, countp);
3014 entry = next;
3016 lwkt_reltoken(&map->token);
3017 return (KERN_SUCCESS);
3021 * Remove the given address range from the target map.
3022 * This is the exported form of vm_map_delete.
3024 * No requirements.
3027 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3029 int result;
3030 int count;
3032 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3033 vm_map_lock(map);
3034 VM_MAP_RANGE_CHECK(map, start, end);
3035 result = vm_map_delete(map, start, end, &count);
3036 vm_map_unlock(map);
3037 vm_map_entry_release(count);
3039 return (result);
3043 * Assert that the target map allows the specified privilege on the
3044 * entire address region given. The entire region must be allocated.
3046 * The caller must specify whether the vm_map is already locked or not.
3048 boolean_t
3049 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3050 vm_prot_t protection, boolean_t have_lock)
3052 vm_map_entry_t entry;
3053 vm_map_entry_t tmp_entry;
3054 boolean_t result;
3056 if (have_lock == FALSE)
3057 vm_map_lock_read(map);
3059 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3060 if (have_lock == FALSE)
3061 vm_map_unlock_read(map);
3062 return (FALSE);
3064 entry = tmp_entry;
3066 result = TRUE;
3067 while (start < end) {
3068 if (entry == &map->header) {
3069 result = FALSE;
3070 break;
3073 * No holes allowed!
3076 if (start < entry->start) {
3077 result = FALSE;
3078 break;
3081 * Check protection associated with entry.
3084 if ((entry->protection & protection) != protection) {
3085 result = FALSE;
3086 break;
3088 /* go to next entry */
3090 start = entry->end;
3091 entry = entry->next;
3093 if (have_lock == FALSE)
3094 vm_map_unlock_read(map);
3095 return (result);
3099 * If appropriate this function shadows the original object with a new object
3100 * and moves the VM pages from the original object to the new object.
3101 * The original object will also be collapsed, if possible.
3103 * We can only do this for normal memory objects with a single mapping, and
3104 * it only makes sense to do it if there are 2 or more refs on the original
3105 * object. i.e. typically a memory object that has been extended into
3106 * multiple vm_map_entry's with non-overlapping ranges.
3108 * This makes it easier to remove unused pages and keeps object inheritance
3109 * from being a negative impact on memory usage.
3111 * On return the (possibly new) entry->object.vm_object will have an
3112 * additional ref on it for the caller to dispose of (usually by cloning
3113 * the vm_map_entry). The additional ref had to be done in this routine
3114 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3115 * cleared.
3117 * The vm_map must be locked and its token held.
3119 static void
3120 vm_map_split(vm_map_entry_t entry)
3122 /* OPTIMIZED */
3123 vm_object_t oobject, nobject, bobject;
3124 vm_offset_t s, e;
3125 vm_page_t m;
3126 vm_pindex_t offidxstart, offidxend, idx;
3127 vm_size_t size;
3128 vm_ooffset_t offset;
3129 int useshadowlist;
3132 * Optimize away object locks for vnode objects. Important exit/exec
3133 * critical path.
3135 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3136 * anyway.
3138 oobject = entry->object.vm_object;
3139 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3140 vm_object_reference_quick(oobject);
3141 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3142 return;
3146 * Setup. Chain lock the original object throughout the entire
3147 * routine to prevent new page faults from occuring.
3149 * XXX can madvise WILLNEED interfere with us too?
3151 vm_object_hold(oobject);
3152 vm_object_chain_acquire(oobject, 0);
3155 * Original object cannot be split? Might have also changed state.
3157 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3158 oobject->type != OBJT_SWAP)) {
3159 vm_object_chain_release(oobject);
3160 vm_object_reference_locked(oobject);
3161 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3162 vm_object_drop(oobject);
3163 return;
3167 * Collapse original object with its backing store as an
3168 * optimization to reduce chain lengths when possible.
3170 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3171 * for oobject, so there's no point collapsing it.
3173 * Then re-check whether the object can be split.
3175 vm_object_collapse(oobject, NULL);
3177 if (oobject->ref_count <= 1 ||
3178 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3179 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3180 vm_object_chain_release(oobject);
3181 vm_object_reference_locked(oobject);
3182 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3183 vm_object_drop(oobject);
3184 return;
3188 * Acquire the chain lock on the backing object.
3190 * Give bobject an additional ref count for when it will be shadowed
3191 * by nobject.
3193 useshadowlist = 0;
3194 if ((bobject = oobject->backing_object) != NULL) {
3195 if (bobject->type != OBJT_VNODE) {
3196 useshadowlist = 1;
3197 vm_object_hold(bobject);
3198 vm_object_chain_wait(bobject, 0);
3199 /* ref for shadowing below */
3200 vm_object_reference_locked(bobject);
3201 vm_object_chain_acquire(bobject, 0);
3202 KKASSERT(bobject->backing_object == bobject);
3203 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3204 } else {
3206 * vnodes are not placed on the shadow list but
3207 * they still get another ref for the backing_object
3208 * reference.
3210 vm_object_reference_quick(bobject);
3215 * Calculate the object page range and allocate the new object.
3217 offset = entry->offset;
3218 s = entry->start;
3219 e = entry->end;
3221 offidxstart = OFF_TO_IDX(offset);
3222 offidxend = offidxstart + OFF_TO_IDX(e - s);
3223 size = offidxend - offidxstart;
3225 switch(oobject->type) {
3226 case OBJT_DEFAULT:
3227 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3228 VM_PROT_ALL, 0);
3229 break;
3230 case OBJT_SWAP:
3231 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3232 VM_PROT_ALL, 0);
3233 break;
3234 default:
3235 /* not reached */
3236 nobject = NULL;
3237 KKASSERT(0);
3240 if (nobject == NULL) {
3241 if (bobject) {
3242 if (useshadowlist) {
3243 vm_object_chain_release(bobject);
3244 vm_object_deallocate(bobject);
3245 vm_object_drop(bobject);
3246 } else {
3247 vm_object_deallocate(bobject);
3250 vm_object_chain_release(oobject);
3251 vm_object_reference_locked(oobject);
3252 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3253 vm_object_drop(oobject);
3254 return;
3258 * The new object will replace entry->object.vm_object so it needs
3259 * a second reference (the caller expects an additional ref).
3261 vm_object_hold(nobject);
3262 vm_object_reference_locked(nobject);
3263 vm_object_chain_acquire(nobject, 0);
3266 * nobject shadows bobject (oobject already shadows bobject).
3268 * Adding an object to bobject's shadow list requires refing bobject
3269 * which we did above in the useshadowlist case.
3271 if (bobject) {
3272 nobject->backing_object_offset =
3273 oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3274 nobject->backing_object = bobject;
3275 if (useshadowlist) {
3276 bobject->shadow_count++;
3277 atomic_add_int(&bobject->generation, 1);
3278 LIST_INSERT_HEAD(&bobject->shadow_head,
3279 nobject, shadow_list);
3280 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3281 vm_object_chain_release(bobject);
3282 vm_object_drop(bobject);
3283 vm_object_set_flag(nobject, OBJ_ONSHADOW);
3288 * Move the VM pages from oobject to nobject
3290 for (idx = 0; idx < size; idx++) {
3291 vm_page_t m;
3293 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3294 TRUE, "vmpg");
3295 if (m == NULL)
3296 continue;
3299 * We must wait for pending I/O to complete before we can
3300 * rename the page.
3302 * We do not have to VM_PROT_NONE the page as mappings should
3303 * not be changed by this operation.
3305 * NOTE: The act of renaming a page updates chaingen for both
3306 * objects.
3308 vm_page_rename(m, nobject, idx);
3309 /* page automatically made dirty by rename and cache handled */
3310 /* page remains busy */
3313 if (oobject->type == OBJT_SWAP) {
3314 vm_object_pip_add(oobject, 1);
3316 * copy oobject pages into nobject and destroy unneeded
3317 * pages in shadow object.
3319 swap_pager_copy(oobject, nobject, offidxstart, 0);
3320 vm_object_pip_wakeup(oobject);
3324 * Wakeup the pages we played with. No spl protection is needed
3325 * for a simple wakeup.
3327 for (idx = 0; idx < size; idx++) {
3328 m = vm_page_lookup(nobject, idx);
3329 if (m) {
3330 KKASSERT(m->flags & PG_BUSY);
3331 vm_page_wakeup(m);
3334 entry->object.vm_object = nobject;
3335 entry->offset = 0LL;
3338 * Cleanup
3340 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3341 * related pages were moved and are no longer applicable to the
3342 * original object.
3344 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3345 * replaced by nobject).
3347 vm_object_chain_release(nobject);
3348 vm_object_drop(nobject);
3349 if (bobject && useshadowlist) {
3350 vm_object_chain_release(bobject);
3351 vm_object_drop(bobject);
3353 vm_object_chain_release(oobject);
3354 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3355 vm_object_deallocate_locked(oobject);
3356 vm_object_drop(oobject);
3360 * Copies the contents of the source entry to the destination
3361 * entry. The entries *must* be aligned properly.
3363 * The vm_maps must be exclusively locked.
3364 * The vm_map's token must be held.
3366 * Because the maps are locked no faults can be in progress during the
3367 * operation.
3369 static void
3370 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3371 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3373 vm_object_t src_object;
3375 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3376 dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3377 return;
3378 if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3379 src_entry->maptype == VM_MAPTYPE_UKSMAP)
3380 return;
3382 if (src_entry->wired_count == 0) {
3384 * If the source entry is marked needs_copy, it is already
3385 * write-protected.
3387 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3388 pmap_protect(src_map->pmap,
3389 src_entry->start,
3390 src_entry->end,
3391 src_entry->protection & ~VM_PROT_WRITE);
3395 * Make a copy of the object.
3397 * The object must be locked prior to checking the object type
3398 * and for the call to vm_object_collapse() and vm_map_split().
3399 * We cannot use *_hold() here because the split code will
3400 * probably try to destroy the object. The lock is a pool
3401 * token and doesn't care.
3403 * We must bump src_map->timestamp when setting
3404 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3405 * to retry, otherwise the concurrent fault might improperly
3406 * install a RW pte when its supposed to be a RO(COW) pte.
3407 * This race can occur because a vnode-backed fault may have
3408 * to temporarily release the map lock.
3410 if (src_entry->object.vm_object != NULL) {
3411 vm_map_split(src_entry);
3412 src_object = src_entry->object.vm_object;
3413 dst_entry->object.vm_object = src_object;
3414 src_entry->eflags |= (MAP_ENTRY_COW |
3415 MAP_ENTRY_NEEDS_COPY);
3416 dst_entry->eflags |= (MAP_ENTRY_COW |
3417 MAP_ENTRY_NEEDS_COPY);
3418 dst_entry->offset = src_entry->offset;
3419 ++src_map->timestamp;
3420 } else {
3421 dst_entry->object.vm_object = NULL;
3422 dst_entry->offset = 0;
3425 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3426 dst_entry->end - dst_entry->start, src_entry->start);
3427 } else {
3429 * Of course, wired down pages can't be set copy-on-write.
3430 * Cause wired pages to be copied into the new map by
3431 * simulating faults (the new pages are pageable)
3433 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3438 * vmspace_fork:
3439 * Create a new process vmspace structure and vm_map
3440 * based on those of an existing process. The new map
3441 * is based on the old map, according to the inheritance
3442 * values on the regions in that map.
3444 * The source map must not be locked.
3445 * No requirements.
3447 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3448 vm_map_entry_t old_entry, int *countp);
3449 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3450 vm_map_entry_t old_entry, int *countp);
3452 struct vmspace *
3453 vmspace_fork(struct vmspace *vm1)
3455 struct vmspace *vm2;
3456 vm_map_t old_map = &vm1->vm_map;
3457 vm_map_t new_map;
3458 vm_map_entry_t old_entry;
3459 int count;
3461 lwkt_gettoken(&vm1->vm_map.token);
3462 vm_map_lock(old_map);
3464 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3465 lwkt_gettoken(&vm2->vm_map.token);
3466 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3467 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3468 new_map = &vm2->vm_map; /* XXX */
3469 new_map->timestamp = 1;
3471 vm_map_lock(new_map);
3473 count = 0;
3474 old_entry = old_map->header.next;
3475 while (old_entry != &old_map->header) {
3476 ++count;
3477 old_entry = old_entry->next;
3480 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3482 old_entry = old_map->header.next;
3483 while (old_entry != &old_map->header) {
3484 switch(old_entry->maptype) {
3485 case VM_MAPTYPE_SUBMAP:
3486 panic("vm_map_fork: encountered a submap");
3487 break;
3488 case VM_MAPTYPE_UKSMAP:
3489 vmspace_fork_uksmap_entry(old_map, new_map,
3490 old_entry, &count);
3491 break;
3492 case VM_MAPTYPE_NORMAL:
3493 case VM_MAPTYPE_VPAGETABLE:
3494 vmspace_fork_normal_entry(old_map, new_map,
3495 old_entry, &count);
3496 break;
3498 old_entry = old_entry->next;
3501 new_map->size = old_map->size;
3502 vm_map_unlock(old_map);
3503 vm_map_unlock(new_map);
3504 vm_map_entry_release(count);
3506 lwkt_reltoken(&vm2->vm_map.token);
3507 lwkt_reltoken(&vm1->vm_map.token);
3509 return (vm2);
3512 static
3513 void
3514 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3515 vm_map_entry_t old_entry, int *countp)
3517 vm_map_entry_t new_entry;
3518 vm_object_t object;
3520 switch (old_entry->inheritance) {
3521 case VM_INHERIT_NONE:
3522 break;
3523 case VM_INHERIT_SHARE:
3525 * Clone the entry, creating the shared object if
3526 * necessary.
3528 if (old_entry->object.vm_object == NULL)
3529 vm_map_entry_allocate_object(old_entry);
3531 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3533 * Shadow a map_entry which needs a copy,
3534 * replacing its object with a new object
3535 * that points to the old one. Ask the
3536 * shadow code to automatically add an
3537 * additional ref. We can't do it afterwords
3538 * because we might race a collapse. The call
3539 * to vm_map_entry_shadow() will also clear
3540 * OBJ_ONEMAPPING.
3542 vm_map_entry_shadow(old_entry, 1);
3543 } else if (old_entry->object.vm_object) {
3545 * We will make a shared copy of the object,
3546 * and must clear OBJ_ONEMAPPING.
3548 * Optimize vnode objects. OBJ_ONEMAPPING
3549 * is non-applicable but clear it anyway,
3550 * and its terminal so we don'th ave to deal
3551 * with chains. Reduces SMP conflicts.
3553 * XXX assert that object.vm_object != NULL
3554 * since we allocate it above.
3556 object = old_entry->object.vm_object;
3557 if (object->type == OBJT_VNODE) {
3558 vm_object_reference_quick(object);
3559 vm_object_clear_flag(object,
3560 OBJ_ONEMAPPING);
3561 } else {
3562 vm_object_hold(object);
3563 vm_object_chain_wait(object, 0);
3564 vm_object_reference_locked(object);
3565 vm_object_clear_flag(object,
3566 OBJ_ONEMAPPING);
3567 vm_object_drop(object);
3572 * Clone the entry. We've already bumped the ref on
3573 * any vm_object.
3575 new_entry = vm_map_entry_create(new_map, countp);
3576 *new_entry = *old_entry;
3577 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3578 new_entry->wired_count = 0;
3581 * Insert the entry into the new map -- we know we're
3582 * inserting at the end of the new map.
3585 vm_map_entry_link(new_map, new_map->header.prev,
3586 new_entry);
3589 * Update the physical map
3591 pmap_copy(new_map->pmap, old_map->pmap,
3592 new_entry->start,
3593 (old_entry->end - old_entry->start),
3594 old_entry->start);
3595 break;
3596 case VM_INHERIT_COPY:
3598 * Clone the entry and link into the map.
3600 new_entry = vm_map_entry_create(new_map, countp);
3601 *new_entry = *old_entry;
3602 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3603 new_entry->wired_count = 0;
3604 new_entry->object.vm_object = NULL;
3605 vm_map_entry_link(new_map, new_map->header.prev,
3606 new_entry);
3607 vm_map_copy_entry(old_map, new_map, old_entry,
3608 new_entry);
3609 break;
3614 * When forking user-kernel shared maps, the map might change in the
3615 * child so do not try to copy the underlying pmap entries.
3617 static
3618 void
3619 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3620 vm_map_entry_t old_entry, int *countp)
3622 vm_map_entry_t new_entry;
3624 new_entry = vm_map_entry_create(new_map, countp);
3625 *new_entry = *old_entry;
3626 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3627 new_entry->wired_count = 0;
3628 vm_map_entry_link(new_map, new_map->header.prev,
3629 new_entry);
3633 * Create an auto-grow stack entry
3635 * No requirements.
3638 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3639 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3641 vm_map_entry_t prev_entry;
3642 vm_map_entry_t new_stack_entry;
3643 vm_size_t init_ssize;
3644 int rv;
3645 int count;
3646 vm_offset_t tmpaddr;
3648 cow |= MAP_IS_STACK;
3650 if (max_ssize < sgrowsiz)
3651 init_ssize = max_ssize;
3652 else
3653 init_ssize = sgrowsiz;
3655 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3656 vm_map_lock(map);
3659 * Find space for the mapping
3661 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3662 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3663 flags, &tmpaddr)) {
3664 vm_map_unlock(map);
3665 vm_map_entry_release(count);
3666 return (KERN_NO_SPACE);
3668 addrbos = tmpaddr;
3671 /* If addr is already mapped, no go */
3672 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3673 vm_map_unlock(map);
3674 vm_map_entry_release(count);
3675 return (KERN_NO_SPACE);
3678 #if 0
3679 /* XXX already handled by kern_mmap() */
3680 /* If we would blow our VMEM resource limit, no go */
3681 if (map->size + init_ssize >
3682 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3683 vm_map_unlock(map);
3684 vm_map_entry_release(count);
3685 return (KERN_NO_SPACE);
3687 #endif
3690 * If we can't accomodate max_ssize in the current mapping,
3691 * no go. However, we need to be aware that subsequent user
3692 * mappings might map into the space we have reserved for
3693 * stack, and currently this space is not protected.
3695 * Hopefully we will at least detect this condition
3696 * when we try to grow the stack.
3698 if ((prev_entry->next != &map->header) &&
3699 (prev_entry->next->start < addrbos + max_ssize)) {
3700 vm_map_unlock(map);
3701 vm_map_entry_release(count);
3702 return (KERN_NO_SPACE);
3706 * We initially map a stack of only init_ssize. We will
3707 * grow as needed later. Since this is to be a grow
3708 * down stack, we map at the top of the range.
3710 * Note: we would normally expect prot and max to be
3711 * VM_PROT_ALL, and cow to be 0. Possibly we should
3712 * eliminate these as input parameters, and just
3713 * pass these values here in the insert call.
3715 rv = vm_map_insert(map, &count, NULL, NULL,
3716 0, addrbos + max_ssize - init_ssize,
3717 addrbos + max_ssize,
3718 VM_MAPTYPE_NORMAL,
3719 VM_SUBSYS_STACK, prot, max, cow);
3721 /* Now set the avail_ssize amount */
3722 if (rv == KERN_SUCCESS) {
3723 if (prev_entry != &map->header)
3724 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3725 new_stack_entry = prev_entry->next;
3726 if (new_stack_entry->end != addrbos + max_ssize ||
3727 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3728 panic ("Bad entry start/end for new stack entry");
3729 else
3730 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3733 vm_map_unlock(map);
3734 vm_map_entry_release(count);
3735 return (rv);
3739 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3740 * desired address is already mapped, or if we successfully grow
3741 * the stack. Also returns KERN_SUCCESS if addr is outside the
3742 * stack range (this is strange, but preserves compatibility with
3743 * the grow function in vm_machdep.c).
3745 * No requirements.
3748 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3750 vm_map_entry_t prev_entry;
3751 vm_map_entry_t stack_entry;
3752 vm_map_entry_t new_stack_entry;
3753 struct vmspace *vm;
3754 struct lwp *lp;
3755 struct proc *p;
3756 vm_offset_t end;
3757 int grow_amount;
3758 int rv = KERN_SUCCESS;
3759 int is_procstack;
3760 int use_read_lock = 1;
3761 int count;
3764 * Find the vm
3766 lp = curthread->td_lwp;
3767 p = curthread->td_proc;
3768 KKASSERT(lp != NULL);
3769 vm = lp->lwp_vmspace;
3772 * Growstack is only allowed on the current process. We disallow
3773 * other use cases, e.g. trying to access memory via procfs that
3774 * the stack hasn't grown into.
3776 if (map != &vm->vm_map) {
3777 return KERN_FAILURE;
3780 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3781 Retry:
3782 if (use_read_lock)
3783 vm_map_lock_read(map);
3784 else
3785 vm_map_lock(map);
3787 /* If addr is already in the entry range, no need to grow.*/
3788 if (vm_map_lookup_entry(map, addr, &prev_entry))
3789 goto done;
3791 if ((stack_entry = prev_entry->next) == &map->header)
3792 goto done;
3793 if (prev_entry == &map->header)
3794 end = stack_entry->start - stack_entry->aux.avail_ssize;
3795 else
3796 end = prev_entry->end;
3799 * This next test mimics the old grow function in vm_machdep.c.
3800 * It really doesn't quite make sense, but we do it anyway
3801 * for compatibility.
3803 * If not growable stack, return success. This signals the
3804 * caller to proceed as he would normally with normal vm.
3806 if (stack_entry->aux.avail_ssize < 1 ||
3807 addr >= stack_entry->start ||
3808 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3809 goto done;
3812 /* Find the minimum grow amount */
3813 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3814 if (grow_amount > stack_entry->aux.avail_ssize) {
3815 rv = KERN_NO_SPACE;
3816 goto done;
3820 * If there is no longer enough space between the entries
3821 * nogo, and adjust the available space. Note: this
3822 * should only happen if the user has mapped into the
3823 * stack area after the stack was created, and is
3824 * probably an error.
3826 * This also effectively destroys any guard page the user
3827 * might have intended by limiting the stack size.
3829 if (grow_amount > stack_entry->start - end) {
3830 if (use_read_lock && vm_map_lock_upgrade(map)) {
3831 /* lost lock */
3832 use_read_lock = 0;
3833 goto Retry;
3835 use_read_lock = 0;
3836 stack_entry->aux.avail_ssize = stack_entry->start - end;
3837 rv = KERN_NO_SPACE;
3838 goto done;
3841 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3843 /* If this is the main process stack, see if we're over the
3844 * stack limit.
3846 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3847 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3848 rv = KERN_NO_SPACE;
3849 goto done;
3852 /* Round up the grow amount modulo SGROWSIZ */
3853 grow_amount = roundup (grow_amount, sgrowsiz);
3854 if (grow_amount > stack_entry->aux.avail_ssize) {
3855 grow_amount = stack_entry->aux.avail_ssize;
3857 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3858 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3859 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3860 ctob(vm->vm_ssize);
3863 /* If we would blow our VMEM resource limit, no go */
3864 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3865 rv = KERN_NO_SPACE;
3866 goto done;
3869 if (use_read_lock && vm_map_lock_upgrade(map)) {
3870 /* lost lock */
3871 use_read_lock = 0;
3872 goto Retry;
3874 use_read_lock = 0;
3876 /* Get the preliminary new entry start value */
3877 addr = stack_entry->start - grow_amount;
3879 /* If this puts us into the previous entry, cut back our growth
3880 * to the available space. Also, see the note above.
3882 if (addr < end) {
3883 stack_entry->aux.avail_ssize = stack_entry->start - end;
3884 addr = end;
3887 rv = vm_map_insert(map, &count, NULL, NULL,
3888 0, addr, stack_entry->start,
3889 VM_MAPTYPE_NORMAL,
3890 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3892 /* Adjust the available stack space by the amount we grew. */
3893 if (rv == KERN_SUCCESS) {
3894 if (prev_entry != &map->header)
3895 vm_map_clip_end(map, prev_entry, addr, &count);
3896 new_stack_entry = prev_entry->next;
3897 if (new_stack_entry->end != stack_entry->start ||
3898 new_stack_entry->start != addr)
3899 panic ("Bad stack grow start/end in new stack entry");
3900 else {
3901 new_stack_entry->aux.avail_ssize =
3902 stack_entry->aux.avail_ssize -
3903 (new_stack_entry->end - new_stack_entry->start);
3904 if (is_procstack)
3905 vm->vm_ssize += btoc(new_stack_entry->end -
3906 new_stack_entry->start);
3909 if (map->flags & MAP_WIREFUTURE)
3910 vm_map_unwire(map, new_stack_entry->start,
3911 new_stack_entry->end, FALSE);
3914 done:
3915 if (use_read_lock)
3916 vm_map_unlock_read(map);
3917 else
3918 vm_map_unlock(map);
3919 vm_map_entry_release(count);
3920 return (rv);
3924 * Unshare the specified VM space for exec. If other processes are
3925 * mapped to it, then create a new one. The new vmspace is null.
3927 * No requirements.
3929 void
3930 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3932 struct vmspace *oldvmspace = p->p_vmspace;
3933 struct vmspace *newvmspace;
3934 vm_map_t map = &p->p_vmspace->vm_map;
3937 * If we are execing a resident vmspace we fork it, otherwise
3938 * we create a new vmspace. Note that exitingcnt is not
3939 * copied to the new vmspace.
3941 lwkt_gettoken(&oldvmspace->vm_map.token);
3942 if (vmcopy) {
3943 newvmspace = vmspace_fork(vmcopy);
3944 lwkt_gettoken(&newvmspace->vm_map.token);
3945 } else {
3946 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3947 lwkt_gettoken(&newvmspace->vm_map.token);
3948 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3949 (caddr_t)&oldvmspace->vm_endcopy -
3950 (caddr_t)&oldvmspace->vm_startcopy);
3954 * Finish initializing the vmspace before assigning it
3955 * to the process. The vmspace will become the current vmspace
3956 * if p == curproc.
3958 pmap_pinit2(vmspace_pmap(newvmspace));
3959 pmap_replacevm(p, newvmspace, 0);
3960 lwkt_reltoken(&newvmspace->vm_map.token);
3961 lwkt_reltoken(&oldvmspace->vm_map.token);
3962 vmspace_rel(oldvmspace);
3966 * Unshare the specified VM space for forcing COW. This
3967 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3969 void
3970 vmspace_unshare(struct proc *p)
3972 struct vmspace *oldvmspace = p->p_vmspace;
3973 struct vmspace *newvmspace;
3975 lwkt_gettoken(&oldvmspace->vm_map.token);
3976 if (vmspace_getrefs(oldvmspace) == 1) {
3977 lwkt_reltoken(&oldvmspace->vm_map.token);
3978 return;
3980 newvmspace = vmspace_fork(oldvmspace);
3981 lwkt_gettoken(&newvmspace->vm_map.token);
3982 pmap_pinit2(vmspace_pmap(newvmspace));
3983 pmap_replacevm(p, newvmspace, 0);
3984 lwkt_reltoken(&newvmspace->vm_map.token);
3985 lwkt_reltoken(&oldvmspace->vm_map.token);
3986 vmspace_rel(oldvmspace);
3990 * vm_map_hint: return the beginning of the best area suitable for
3991 * creating a new mapping with "prot" protection.
3993 * No requirements.
3995 vm_offset_t
3996 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3998 struct vmspace *vms = p->p_vmspace;
4000 if (!randomize_mmap || addr != 0) {
4002 * Set a reasonable start point for the hint if it was
4003 * not specified or if it falls within the heap space.
4004 * Hinted mmap()s do not allocate out of the heap space.
4006 if (addr == 0 ||
4007 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4008 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
4009 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
4012 return addr;
4014 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
4015 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
4017 return (round_page(addr));
4021 * Finds the VM object, offset, and protection for a given virtual address
4022 * in the specified map, assuming a page fault of the type specified.
4024 * Leaves the map in question locked for read; return values are guaranteed
4025 * until a vm_map_lookup_done call is performed. Note that the map argument
4026 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4028 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4029 * that fast.
4031 * If a lookup is requested with "write protection" specified, the map may
4032 * be changed to perform virtual copying operations, although the data
4033 * referenced will remain the same.
4035 * No requirements.
4038 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4039 vm_offset_t vaddr,
4040 vm_prot_t fault_typea,
4041 vm_map_entry_t *out_entry, /* OUT */
4042 vm_object_t *object, /* OUT */
4043 vm_pindex_t *pindex, /* OUT */
4044 vm_prot_t *out_prot, /* OUT */
4045 boolean_t *wired) /* OUT */
4047 vm_map_entry_t entry;
4048 vm_map_t map = *var_map;
4049 vm_prot_t prot;
4050 vm_prot_t fault_type = fault_typea;
4051 int use_read_lock = 1;
4052 int rv = KERN_SUCCESS;
4054 RetryLookup:
4055 if (use_read_lock)
4056 vm_map_lock_read(map);
4057 else
4058 vm_map_lock(map);
4061 * If the map has an interesting hint, try it before calling full
4062 * blown lookup routine.
4064 entry = map->hint;
4065 cpu_ccfence();
4066 *out_entry = entry;
4067 *object = NULL;
4069 if ((entry == &map->header) ||
4070 (vaddr < entry->start) || (vaddr >= entry->end)) {
4071 vm_map_entry_t tmp_entry;
4074 * Entry was either not a valid hint, or the vaddr was not
4075 * contained in the entry, so do a full lookup.
4077 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4078 rv = KERN_INVALID_ADDRESS;
4079 goto done;
4082 entry = tmp_entry;
4083 *out_entry = entry;
4087 * Handle submaps.
4089 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4090 vm_map_t old_map = map;
4092 *var_map = map = entry->object.sub_map;
4093 if (use_read_lock)
4094 vm_map_unlock_read(old_map);
4095 else
4096 vm_map_unlock(old_map);
4097 use_read_lock = 1;
4098 goto RetryLookup;
4102 * Check whether this task is allowed to have this page.
4103 * Note the special case for MAP_ENTRY_COW pages with an override.
4104 * This is to implement a forced COW for debuggers.
4106 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4107 prot = entry->max_protection;
4108 else
4109 prot = entry->protection;
4111 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4112 if ((fault_type & prot) != fault_type) {
4113 rv = KERN_PROTECTION_FAILURE;
4114 goto done;
4117 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4118 (entry->eflags & MAP_ENTRY_COW) &&
4119 (fault_type & VM_PROT_WRITE) &&
4120 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4121 rv = KERN_PROTECTION_FAILURE;
4122 goto done;
4126 * If this page is not pageable, we have to get it for all possible
4127 * accesses.
4129 *wired = (entry->wired_count != 0);
4130 if (*wired)
4131 prot = fault_type = entry->protection;
4134 * Virtual page tables may need to update the accessed (A) bit
4135 * in a page table entry. Upgrade the fault to a write fault for
4136 * that case if the map will support it. If the map does not support
4137 * it the page table entry simply will not be updated.
4139 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4140 if (prot & VM_PROT_WRITE)
4141 fault_type |= VM_PROT_WRITE;
4144 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4145 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4146 if ((prot & VM_PROT_WRITE) == 0)
4147 fault_type |= VM_PROT_WRITE;
4151 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4153 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4154 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4155 *object = NULL;
4156 goto skip;
4160 * If the entry was copy-on-write, we either ...
4162 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4164 * If we want to write the page, we may as well handle that
4165 * now since we've got the map locked.
4167 * If we don't need to write the page, we just demote the
4168 * permissions allowed.
4171 if (fault_type & VM_PROT_WRITE) {
4173 * Not allowed if TDF_NOFAULT is set as the shadowing
4174 * operation can deadlock against the faulting
4175 * function due to the copy-on-write.
4177 if (curthread->td_flags & TDF_NOFAULT) {
4178 rv = KERN_FAILURE_NOFAULT;
4179 goto done;
4183 * Make a new object, and place it in the object
4184 * chain. Note that no new references have appeared
4185 * -- one just moved from the map to the new
4186 * object.
4189 if (use_read_lock && vm_map_lock_upgrade(map)) {
4190 /* lost lock */
4191 use_read_lock = 0;
4192 goto RetryLookup;
4194 use_read_lock = 0;
4196 vm_map_entry_shadow(entry, 0);
4197 } else {
4199 * We're attempting to read a copy-on-write page --
4200 * don't allow writes.
4203 prot &= ~VM_PROT_WRITE;
4208 * Create an object if necessary.
4210 if (entry->object.vm_object == NULL && !map->system_map) {
4211 if (use_read_lock && vm_map_lock_upgrade(map)) {
4212 /* lost lock */
4213 use_read_lock = 0;
4214 goto RetryLookup;
4216 use_read_lock = 0;
4217 vm_map_entry_allocate_object(entry);
4221 * Return the object/offset from this entry. If the entry was
4222 * copy-on-write or empty, it has been fixed up.
4224 *object = entry->object.vm_object;
4226 skip:
4227 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4230 * Return whether this is the only map sharing this data. On
4231 * success we return with a read lock held on the map. On failure
4232 * we return with the map unlocked.
4234 *out_prot = prot;
4235 done:
4236 if (rv == KERN_SUCCESS) {
4237 if (use_read_lock == 0)
4238 vm_map_lock_downgrade(map);
4239 } else if (use_read_lock) {
4240 vm_map_unlock_read(map);
4241 } else {
4242 vm_map_unlock(map);
4244 return (rv);
4248 * Releases locks acquired by a vm_map_lookup()
4249 * (according to the handle returned by that lookup).
4251 * No other requirements.
4253 void
4254 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4257 * Unlock the main-level map
4259 vm_map_unlock_read(map);
4260 if (count)
4261 vm_map_entry_release(count);
4265 * Quick hack, needs some help to make it more SMP friendly.
4267 void
4268 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4269 vm_offset_t ran_beg, vm_offset_t ran_end)
4271 struct vm_map_ilock *scan;
4273 ilock->ran_beg = ran_beg;
4274 ilock->ran_end = ran_end;
4275 ilock->flags = 0;
4277 spin_lock(&map->ilock_spin);
4278 restart:
4279 for (scan = map->ilock_base; scan; scan = scan->next) {
4280 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4281 scan->flags |= ILOCK_WAITING;
4282 ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4283 goto restart;
4286 ilock->next = map->ilock_base;
4287 map->ilock_base = ilock;
4288 spin_unlock(&map->ilock_spin);
4291 void
4292 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock)
4294 struct vm_map_ilock *scan;
4295 struct vm_map_ilock **scanp;
4297 spin_lock(&map->ilock_spin);
4298 scanp = &map->ilock_base;
4299 while ((scan = *scanp) != NULL) {
4300 if (scan == ilock) {
4301 *scanp = ilock->next;
4302 spin_unlock(&map->ilock_spin);
4303 if (ilock->flags & ILOCK_WAITING)
4304 wakeup(ilock);
4305 return;
4307 scanp = &scan->next;
4309 spin_unlock(&map->ilock_spin);
4310 panic("vm_map_deinterlock: missing ilock!");
4313 #include "opt_ddb.h"
4314 #ifdef DDB
4315 #include <sys/kernel.h>
4317 #include <ddb/ddb.h>
4320 * Debugging only
4322 DB_SHOW_COMMAND(map, vm_map_print)
4324 static int nlines;
4325 /* XXX convert args. */
4326 vm_map_t map = (vm_map_t)addr;
4327 boolean_t full = have_addr;
4329 vm_map_entry_t entry;
4331 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4332 (void *)map,
4333 (void *)map->pmap, map->nentries, map->timestamp);
4334 nlines++;
4336 if (!full && db_indent)
4337 return;
4339 db_indent += 2;
4340 for (entry = map->header.next; entry != &map->header;
4341 entry = entry->next) {
4342 db_iprintf("map entry %p: start=%p, end=%p\n",
4343 (void *)entry, (void *)entry->start, (void *)entry->end);
4344 nlines++;
4346 static char *inheritance_name[4] =
4347 {"share", "copy", "none", "donate_copy"};
4349 db_iprintf(" prot=%x/%x/%s",
4350 entry->protection,
4351 entry->max_protection,
4352 inheritance_name[(int)(unsigned char)
4353 entry->inheritance]);
4354 if (entry->wired_count != 0)
4355 db_printf(", wired");
4357 switch(entry->maptype) {
4358 case VM_MAPTYPE_SUBMAP:
4359 /* XXX no %qd in kernel. Truncate entry->offset. */
4360 db_printf(", share=%p, offset=0x%lx\n",
4361 (void *)entry->object.sub_map,
4362 (long)entry->offset);
4363 nlines++;
4364 if ((entry->prev == &map->header) ||
4365 (entry->prev->object.sub_map !=
4366 entry->object.sub_map)) {
4367 db_indent += 2;
4368 vm_map_print((db_expr_t)(intptr_t)
4369 entry->object.sub_map,
4370 full, 0, NULL);
4371 db_indent -= 2;
4373 break;
4374 case VM_MAPTYPE_NORMAL:
4375 case VM_MAPTYPE_VPAGETABLE:
4376 /* XXX no %qd in kernel. Truncate entry->offset. */
4377 db_printf(", object=%p, offset=0x%lx",
4378 (void *)entry->object.vm_object,
4379 (long)entry->offset);
4380 if (entry->eflags & MAP_ENTRY_COW)
4381 db_printf(", copy (%s)",
4382 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4383 db_printf("\n");
4384 nlines++;
4386 if ((entry->prev == &map->header) ||
4387 (entry->prev->object.vm_object !=
4388 entry->object.vm_object)) {
4389 db_indent += 2;
4390 vm_object_print((db_expr_t)(intptr_t)
4391 entry->object.vm_object,
4392 full, 0, NULL);
4393 nlines += 4;
4394 db_indent -= 2;
4396 break;
4397 case VM_MAPTYPE_UKSMAP:
4398 db_printf(", uksmap=%p, offset=0x%lx",
4399 (void *)entry->object.uksmap,
4400 (long)entry->offset);
4401 if (entry->eflags & MAP_ENTRY_COW)
4402 db_printf(", copy (%s)",
4403 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4404 db_printf("\n");
4405 nlines++;
4406 break;
4407 default:
4408 break;
4411 db_indent -= 2;
4412 if (db_indent == 0)
4413 nlines = 0;
4417 * Debugging only
4419 DB_SHOW_COMMAND(procvm, procvm)
4421 struct proc *p;
4423 if (have_addr) {
4424 p = (struct proc *) addr;
4425 } else {
4426 p = curproc;
4429 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4430 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4431 (void *)vmspace_pmap(p->p_vmspace));
4433 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4436 #endif /* DDB */