usched: Allow process to change self cpu affinity
[dragonfly.git] / sys / kern / lwkt_ipiq.c
blobb8274ef7b5eafb659c77a0703736fa597d8f9b50
1 /*
2 * Copyright (c) 2003-2016 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * This module implements IPI message queueing and the MI portion of IPI
37 * message processing.
40 #include "opt_ddb.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
70 #ifdef _KERNEL_VIRTUAL
71 #include <pthread.h>
72 #endif
74 struct ipiq_stats {
75 int64_t ipiq_count; /* total calls to lwkt_send_ipiq*() */
76 int64_t ipiq_fifofull; /* number of fifo full conditions detected */
77 int64_t ipiq_avoided; /* interlock with target avoids cpu ipi */
78 int64_t ipiq_passive; /* passive IPI messages */
79 int64_t ipiq_cscount; /* number of cpu synchronizations */
80 } __cachealign;
82 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
83 #define ipiq_stat(gd) ipiq_stats_percpu[(gd)->gd_cpuid]
85 static int ipiq_debug; /* set to 1 for debug */
86 #ifdef PANIC_DEBUG
87 static int panic_ipiq_cpu = -1;
88 static int panic_ipiq_count = 100;
89 #endif
91 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
92 "");
93 #ifdef PANIC_DEBUG
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
95 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
96 #endif
98 #define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
99 #define IPIQ_ARGS void *func, void *arg1, int arg2, int scpu, int dcpu
101 #if !defined(KTR_IPIQ)
102 #define KTR_IPIQ KTR_ALL
103 #endif
104 KTR_INFO_MASTER(ipiq);
105 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
106 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
109 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
110 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
111 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
112 KTR_INFO(KTR_IPIQ, ipiq, sync_quick, 9, "cpumask=%08lx", unsigned long mask);
114 #define logipiq(name, func, arg1, arg2, sgd, dgd) \
115 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg) \
117 KTR_LOG(ipiq_ ## name, arg)
119 static void lwkt_process_ipiq_nested(void);
120 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
121 struct intrframe *frame, int limit);
122 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
123 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
125 #define IPIQ_SYSCTL(name) \
126 static int \
127 sysctl_##name(SYSCTL_HANDLER_ARGS) \
129 int64_t val = 0; \
130 int cpu, error; \
132 for (cpu = 0; cpu < ncpus; ++cpu) \
133 val += ipiq_stats_percpu[cpu].name; \
135 error = sysctl_handle_quad(oidp, &val, 0, req); \
136 if (error || req->newptr == NULL) \
137 return error; \
139 for (cpu = 0; cpu < ncpus; ++cpu) \
140 ipiq_stats_percpu[cpu].name = val; \
142 return 0; \
145 IPIQ_SYSCTL(ipiq_count);
146 IPIQ_SYSCTL(ipiq_fifofull);
147 IPIQ_SYSCTL(ipiq_avoided);
148 IPIQ_SYSCTL(ipiq_passive);
149 IPIQ_SYSCTL(ipiq_cscount);
151 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
152 0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
153 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
154 0, 0, sysctl_ipiq_fifofull, "Q",
155 "Number of fifo full conditions detected");
156 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
157 0, 0, sysctl_ipiq_avoided, "Q",
158 "Number of IPI's avoided by interlock with target cpu");
159 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
160 0, 0, sysctl_ipiq_passive, "Q",
161 "Number of passive IPI messages sent");
162 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
163 0, 0, sysctl_ipiq_cscount, "Q",
164 "Number of cpu synchronizations");
167 * Send a function execution request to another cpu. The request is queued
168 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
169 * possible target cpu. The FIFO can be written.
171 * If the FIFO fills up we have to enable interrupts to avoid an APIC
172 * deadlock and process pending IPIQs while waiting for it to empty.
173 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
175 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
176 * end will take care of any pending interrupts.
178 * The actual hardware IPI is avoided if the target cpu is already processing
179 * the queue from a prior IPI. It is possible to pipeline IPI messages
180 * very quickly between cpus due to the FIFO hysteresis.
182 * Need not be called from a critical section.
185 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
187 lwkt_ipiq_t ip;
188 int windex;
189 int level1;
190 int level2;
191 long rflags;
192 struct globaldata *gd = mycpu;
194 logipiq(send_norm, func, arg1, arg2, gd, target);
196 if (target == gd) {
197 func(arg1, arg2, NULL);
198 logipiq(send_end, func, arg1, arg2, gd, target);
199 return(0);
201 crit_enter();
202 ++gd->gd_intr_nesting_level;
203 #ifdef INVARIANTS
204 if (gd->gd_intr_nesting_level > 20)
205 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
206 #endif
207 KKASSERT(curthread->td_critcount);
208 ++ipiq_stat(gd).ipiq_count;
209 ip = &gd->gd_ipiq[target->gd_cpuid];
212 * Do not allow the FIFO to become full. Interrupts must be physically
213 * enabled while we liveloop to avoid deadlocking the APIC.
215 * When we are not nested inside a processing loop we allow the FIFO
216 * to get 1/2 full. Once it exceeds 1/2 full we must wait for it to
217 * drain, executing any incoming IPIs while we wait.
219 * When we are nested we allow the FIFO to get almost completely full.
220 * This allows us to queue IPIs sent from IPI callbacks. The processing
221 * code will only process incoming FIFOs that are trying to drain while
222 * we wait, and only to the only-slightly-less-full point, to avoid a
223 * deadlock.
225 * We are guaranteed
228 if (gd->gd_processing_ipiq == 0) {
229 level1 = MAXCPUFIFO / 2;
230 level2 = MAXCPUFIFO / 4;
231 } else {
232 level1 = MAXCPUFIFO - 3;
233 level2 = MAXCPUFIFO - 5;
236 if (ip->ip_windex - ip->ip_rindex > level1) {
237 #ifndef _KERNEL_VIRTUAL
238 uint64_t tsc_base = rdtsc();
239 #endif
240 int repeating = 0;
241 int olimit;
243 rflags = read_rflags();
244 cpu_enable_intr();
245 ++ipiq_stat(gd).ipiq_fifofull;
246 DEBUG_PUSH_INFO("send_ipiq3");
247 olimit = atomic_swap_int(&ip->ip_drain, level2);
248 while (ip->ip_windex - ip->ip_rindex > level2) {
249 KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
250 lwkt_process_ipiq_nested();
251 cpu_pause();
254 * Check for target not draining issue. This should be fixed but
255 * leave the code in-place anyway as it can recover an otherwise
256 * dead system.
258 #ifdef _KERNEL_VIRTUAL
259 if (repeating++ > 10)
260 pthread_yield();
261 #else
262 if (rdtsc() - tsc_base > tsc_frequency) {
263 ++repeating;
264 if (repeating > 10) {
265 kprintf("send_ipiq %d->%d tgt not draining (%d) sniff=%p,%p\n",
266 gd->gd_cpuid, target->gd_cpuid, repeating,
267 target->gd_sample_pc, target->gd_sample_sp);
268 smp_sniff();
269 cpu_disable_intr();
270 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
271 cpu_send_ipiq(target->gd_cpuid);
272 cpu_enable_intr();
273 } else {
274 kprintf("send_ipiq %d->%d tgt not draining (%d)\n",
275 gd->gd_cpuid, target->gd_cpuid, repeating);
276 smp_sniff();
278 tsc_base = rdtsc();
280 #endif
282 atomic_swap_int(&ip->ip_drain, olimit);
283 DEBUG_POP_INFO();
284 #if defined(__x86_64__)
285 write_rflags(rflags);
286 #else
287 #error "no write_*flags"
288 #endif
292 * Queue the new message and signal the target cpu. For now we need to
293 * physically disable interrupts because the target will not get signalled
294 * by other cpus once we set target->gd_npoll and we don't want to get
295 * interrupted.
297 * XXX not sure why this is a problem, the critical section should prevent
298 * any stalls (incoming interrupts except Xinvltlb and Xsnoop will
299 * just be made pending).
301 rflags = read_rflags();
302 #ifndef _KERNEL_VIRTUAL
303 cpu_disable_intr();
304 #endif
306 windex = ip->ip_windex & MAXCPUFIFO_MASK;
307 ip->ip_info[windex].func = func;
308 ip->ip_info[windex].arg1 = arg1;
309 ip->ip_info[windex].arg2 = arg2;
310 cpu_sfence();
311 ++ip->ip_windex;
312 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
315 * signal the target cpu that there is work pending.
317 if (atomic_swap_int(&target->gd_npoll, 1) == 0) {
318 logipiq(cpu_send, func, arg1, arg2, gd, target);
319 cpu_send_ipiq(target->gd_cpuid);
320 } else {
321 ++ipiq_stat(gd).ipiq_avoided;
323 write_rflags(rflags);
325 --gd->gd_intr_nesting_level;
326 crit_exit();
327 logipiq(send_end, func, arg1, arg2, gd, target);
329 return(ip->ip_windex);
333 * Similar to lwkt_send_ipiq() but this function does not actually initiate
334 * the IPI to the target cpu unless the FIFO is greater than 1/4 full.
335 * This function is usually very fast.
337 * This function is used for non-critical IPI messages, such as memory
338 * deallocations. The queue will typically be flushed by the target cpu at
339 * the next clock interrupt.
341 * Need not be called from a critical section.
344 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
345 void *arg1, int arg2)
347 lwkt_ipiq_t ip;
348 int windex;
349 struct globaldata *gd = mycpu;
351 KKASSERT(target != gd);
352 crit_enter_gd(gd);
353 ++gd->gd_intr_nesting_level;
354 ip = &gd->gd_ipiq[target->gd_cpuid];
357 * If the FIFO is too full send the IPI actively.
359 * WARNING! This level must be low enough not to trigger a wait loop
360 * in the active sending code since we are not signalling the
361 * target cpu.
363 if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO / 4) {
364 --gd->gd_intr_nesting_level;
365 crit_exit_gd(gd);
366 return lwkt_send_ipiq3(target, func, arg1, arg2);
370 * Else we can do it passively.
372 logipiq(send_pasv, func, arg1, arg2, gd, target);
373 ++ipiq_stat(gd).ipiq_count;
374 ++ipiq_stat(gd).ipiq_passive;
377 * Queue the new message
379 windex = ip->ip_windex & MAXCPUFIFO_MASK;
380 ip->ip_info[windex].func = func;
381 ip->ip_info[windex].arg1 = arg1;
382 ip->ip_info[windex].arg2 = arg2;
383 cpu_sfence();
384 ++ip->ip_windex;
385 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
386 --gd->gd_intr_nesting_level;
389 * Do not signal the target cpu, it will pick up the IPI when it next
390 * polls (typically on the next tick).
392 crit_exit();
393 logipiq(send_end, func, arg1, arg2, gd, target);
395 return(ip->ip_windex);
399 * deprecated, used only by fast int forwarding.
402 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
404 return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
408 * Send a message to several target cpus. Typically used for scheduling.
409 * The message will not be sent to stopped cpus.
411 * To prevent treating low-numbered cpus as favored sons, the IPIs are
412 * issued in order starting at mycpu upward, then from 0 through mycpu.
413 * This is particularly important to prevent random scheduler pickups
414 * from favoring cpu 0.
417 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
419 int cpuid;
420 int count = 0;
421 cpumask_t amask;
423 CPUMASK_NANDMASK(mask, stopped_cpus);
426 * All cpus in mask which are >= mycpu
428 CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
429 CPUMASK_INVMASK(amask);
430 CPUMASK_ANDMASK(amask, mask);
431 while (CPUMASK_TESTNZERO(amask)) {
432 cpuid = BSFCPUMASK(amask);
433 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
434 CPUMASK_NANDBIT(amask, cpuid);
435 ++count;
439 * All cpus in mask which are < mycpu
441 CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
442 CPUMASK_ANDMASK(amask, mask);
443 while (CPUMASK_TESTNZERO(amask)) {
444 cpuid = BSFCPUMASK(amask);
445 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
446 CPUMASK_NANDBIT(amask, cpuid);
447 ++count;
449 return(count);
453 * Wait for the remote cpu to finish processing a function.
455 * YYY we have to enable interrupts and process the IPIQ while waiting
456 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
457 * function to do this! YYY we really should 'block' here.
459 * MUST be called from a critical section. This routine may be called
460 * from an interrupt (for example, if an interrupt wakes a foreign thread
461 * up).
463 void
464 lwkt_wait_ipiq(globaldata_t target, int seq)
466 lwkt_ipiq_t ip;
468 if (target != mycpu) {
469 ip = &mycpu->gd_ipiq[target->gd_cpuid];
470 if ((int)(ip->ip_xindex - seq) < 0) {
471 #if defined(__x86_64__)
472 unsigned long rflags = read_rflags();
473 #else
474 #error "no read_*flags"
475 #endif
476 int64_t time_tgt = tsc_get_target(1000000000LL);
477 int time_loops = 10;
478 int benice = 0;
479 #ifdef _KERNEL_VIRTUAL
480 int repeating = 0;
481 #endif
483 cpu_enable_intr();
484 DEBUG_PUSH_INFO("wait_ipiq");
485 while ((int)(ip->ip_xindex - seq) < 0) {
486 crit_enter();
487 lwkt_process_ipiq();
488 crit_exit();
489 #ifdef _KERNEL_VIRTUAL
490 if (repeating++ > 10)
491 pthread_yield();
492 #endif
495 * IPIQs must be handled within 10 seconds and this code
496 * will warn after one second.
498 if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
499 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
500 mycpu->gd_cpuid, target->gd_cpuid,
501 ip->ip_xindex - seq);
502 if (--time_loops == 0)
503 panic("LWKT_WAIT_IPIQ");
504 time_tgt = tsc_get_target(1000000000LL);
506 ++benice;
509 * xindex may be modified by another cpu, use a load fence
510 * to ensure that the loop does not use a speculative value
511 * (which may improve performance).
513 cpu_pause();
514 cpu_lfence();
516 DEBUG_POP_INFO();
517 #if defined(__x86_64__)
518 write_rflags(rflags);
519 #else
520 #error "no write_*flags"
521 #endif
527 * Called from IPI interrupt (like a fast interrupt), which has placed
528 * us in a critical section. The MP lock may or may not be held.
529 * May also be called from doreti or splz, or be reentrantly called
530 * indirectly through the ip_info[].func we run.
532 * There are two versions, one where no interrupt frame is available (when
533 * called from the send code and from splz, and one where an interrupt
534 * frame is available.
536 * When the current cpu is mastering a cpusync we do NOT internally loop
537 * on the cpusyncq poll. We also do not re-flag a pending ipi due to
538 * the cpusyncq poll because this can cause doreti/splz to loop internally.
539 * The cpusync master's own loop must be allowed to run to avoid a deadlock.
541 void
542 lwkt_process_ipiq(void)
544 globaldata_t gd = mycpu;
545 globaldata_t sgd;
546 lwkt_ipiq_t ip;
547 cpumask_t mask;
548 int n;
550 ++gd->gd_processing_ipiq;
551 again:
552 mask = gd->gd_ipimask;
553 cpu_ccfence();
554 while (CPUMASK_TESTNZERO(mask)) {
555 n = BSFCPUMASK(mask);
556 if (n != gd->gd_cpuid) {
557 sgd = globaldata_find(n);
558 ip = sgd->gd_ipiq;
559 if (ip != NULL) {
560 ip += gd->gd_cpuid;
561 while (lwkt_process_ipiq_core(sgd, ip, NULL, 0))
563 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
564 if (ip->ip_rindex != ip->ip_windex)
565 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
568 CPUMASK_NANDBIT(mask, n);
572 * Process pending cpusyncs. If the current thread has a cpusync
573 * active cpusync we only run the list once and do not re-flag
574 * as the thread itself is processing its interlock.
576 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
577 if (gd->gd_curthread->td_cscount == 0)
578 goto again;
579 /* need_ipiq(); do not reflag */
583 * Interlock to allow more IPI interrupts.
585 --gd->gd_processing_ipiq;
588 void
589 lwkt_process_ipiq_frame(struct intrframe *frame)
591 globaldata_t gd = mycpu;
592 globaldata_t sgd;
593 lwkt_ipiq_t ip;
594 cpumask_t mask;
595 int n;
597 ++gd->gd_processing_ipiq;
598 again:
599 mask = gd->gd_ipimask;
600 cpu_ccfence();
601 while (CPUMASK_TESTNZERO(mask)) {
602 n = BSFCPUMASK(mask);
603 if (n != gd->gd_cpuid) {
604 sgd = globaldata_find(n);
605 ip = sgd->gd_ipiq;
606 if (ip != NULL) {
607 ip += gd->gd_cpuid;
608 while (lwkt_process_ipiq_core(sgd, ip, frame, 0))
610 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
611 if (ip->ip_rindex != ip->ip_windex)
612 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
615 CPUMASK_NANDBIT(mask, n);
617 if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
618 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame, 0)) {
619 if (gd->gd_curthread->td_cscount == 0)
620 goto again;
621 /* need_ipiq(); do not reflag */
624 --gd->gd_processing_ipiq;
628 * Only process incoming IPIQs from draining senders and only process them
629 * to the point where the draining sender is able to continue. This is
630 * necessary to avoid deadlocking the IPI subsystem because we are acting on
631 * incoming messages and the callback may queue additional messages.
633 * We only want to have to act on senders that are blocked to limit the
634 * number of additional messages sent. At the same time, recipients are
635 * trying to drain our own queue. Theoretically this create a pipeline that
636 * cannot deadlock.
638 static void
639 lwkt_process_ipiq_nested(void)
641 globaldata_t gd = mycpu;
642 globaldata_t sgd;
643 lwkt_ipiq_t ip;
644 cpumask_t mask;
645 int n;
646 int limit;
648 ++gd->gd_processing_ipiq;
649 again:
650 mask = gd->gd_ipimask;
651 cpu_ccfence();
652 while (CPUMASK_TESTNZERO(mask)) {
653 n = BSFCPUMASK(mask);
654 if (n != gd->gd_cpuid) {
655 sgd = globaldata_find(n);
656 ip = sgd->gd_ipiq;
659 * NOTE: We do not mess with the cpumask at all, instead we allow
660 * the top-level ipiq processor deal with it.
662 if (ip != NULL) {
663 ip += gd->gd_cpuid;
664 if ((limit = ip->ip_drain) != 0) {
665 lwkt_process_ipiq_core(sgd, ip, NULL, limit);
666 /* no gd_ipimask when doing limited processing */
670 CPUMASK_NANDBIT(mask, n);
674 * Process pending cpusyncs. If the current thread has a cpusync
675 * active cpusync we only run the list once and do not re-flag
676 * as the thread itself is processing its interlock.
678 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
679 if (gd->gd_curthread->td_cscount == 0)
680 goto again;
681 /* need_ipiq(); do not reflag */
683 --gd->gd_processing_ipiq;
687 * Process incoming IPI requests until only <limit> are left (0 to exhaust
688 * all incoming IPI requests).
690 static int
691 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
692 struct intrframe *frame, int limit)
694 globaldata_t mygd = mycpu;
695 int ri;
696 int wi;
697 ipifunc3_t copy_func;
698 void *copy_arg1;
699 int copy_arg2;
702 * Clear the originating core from our ipimask, we will process all
703 * incoming messages.
705 * Obtain the current write index, which is modified by a remote cpu.
706 * Issue a load fence to prevent speculative reads of e.g. data written
707 * by the other cpu prior to it updating the index.
709 KKASSERT(curthread->td_critcount);
710 wi = ip->ip_windex;
711 cpu_lfence();
712 ++mygd->gd_intr_nesting_level;
715 * NOTE: xindex is only updated after we are sure the function has
716 * finished execution. Beware lwkt_process_ipiq() reentrancy!
717 * The function may send an IPI which may block/drain.
719 * NOTE: Due to additional IPI operations that the callback function
720 * may make, it is possible for both rindex and windex to advance and
721 * thus for rindex to advance passed our cached windex.
723 * NOTE: A load fence is required to prevent speculative loads prior
724 * to the loading of ip_rindex. Even though stores might be
725 * ordered, loads are probably not. A memory fence is required
726 * to prevent reordering of the loads after the ip_rindex update.
728 * NOTE: Single pass only. Returns non-zero if the queue is not empty
729 * on return.
731 while (wi - (ri = ip->ip_rindex) > limit) {
732 ri &= MAXCPUFIFO_MASK;
733 cpu_lfence();
734 copy_func = ip->ip_info[ri].func;
735 copy_arg1 = ip->ip_info[ri].arg1;
736 copy_arg2 = ip->ip_info[ri].arg2;
737 cpu_mfence();
738 ++ip->ip_rindex;
739 KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
740 ((ri + 1) & MAXCPUFIFO_MASK));
741 logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
742 #ifdef INVARIANTS
743 if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
744 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
745 mycpu->gd_cpuid,
746 copy_func, copy_arg1, copy_arg2,
747 #if defined(__x86_64__)
748 (frame ? (void *)frame->if_rip : NULL));
749 #else
750 NULL);
751 #endif
753 #endif
754 copy_func(copy_arg1, copy_arg2, frame);
755 cpu_sfence();
756 ip->ip_xindex = ip->ip_rindex;
758 #ifdef PANIC_DEBUG
760 * Simulate panics during the processing of an IPI
762 if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
763 if (--panic_ipiq_count == 0) {
764 #ifdef DDB
765 Debugger("PANIC_DEBUG");
766 #else
767 panic("PANIC_DEBUG");
768 #endif
771 #endif
773 --mygd->gd_intr_nesting_level;
776 * Return non-zero if there is still more in the queue. Don't worry
777 * about fencing, we will get another interrupt if necessary.
779 return (ip->ip_rindex != ip->ip_windex);
782 static void
783 lwkt_sync_ipiq(void *arg)
785 volatile cpumask_t *cpumask = arg;
787 ATOMIC_CPUMASK_NANDBIT(*cpumask, mycpu->gd_cpuid);
788 if (CPUMASK_TESTZERO(*cpumask))
789 wakeup(cpumask);
792 void
793 lwkt_synchronize_ipiqs(const char *wmesg)
795 volatile cpumask_t other_cpumask;
797 other_cpumask = smp_active_mask;
798 CPUMASK_ANDMASK(other_cpumask, mycpu->gd_other_cpus);
799 lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
800 __DEVOLATILE(void *, &other_cpumask));
802 while (CPUMASK_TESTNZERO(other_cpumask)) {
803 tsleep_interlock(&other_cpumask, 0);
804 if (CPUMASK_TESTNZERO(other_cpumask))
805 tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
810 * CPU Synchronization Support
812 * lwkt_cpusync_interlock() - Place specified cpus in a quiescent state.
813 * The current cpu is placed in a hard critical
814 * section.
816 * lwkt_cpusync_deinterlock() - Execute cs_func on specified cpus, including
817 * current cpu if specified, then return.
819 void
820 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
822 struct lwkt_cpusync cs;
824 lwkt_cpusync_init(&cs, mask, func, arg);
825 lwkt_cpusync_interlock(&cs);
826 lwkt_cpusync_deinterlock(&cs);
830 void
831 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
833 globaldata_t gd = mycpu;
834 cpumask_t mask;
837 * mask acknowledge (cs_mack): 0->mask for stage 1
839 * mack does not include the current cpu.
841 mask = cs->cs_mask;
842 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
843 CPUMASK_ANDMASK(mask, smp_active_mask);
844 CPUMASK_ASSZERO(cs->cs_mack);
846 crit_enter_id("cpusync");
847 if (CPUMASK_TESTNZERO(mask)) {
848 DEBUG_PUSH_INFO("cpusync_interlock");
849 ++ipiq_stat(gd).ipiq_cscount;
850 ++gd->gd_curthread->td_cscount;
851 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
852 logipiq2(sync_start, (long)CPUMASK_LOWMASK(mask));
853 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
854 lwkt_process_ipiq();
855 cpu_pause();
856 #ifdef _KERNEL_VIRTUAL
857 pthread_yield();
858 #endif
860 DEBUG_POP_INFO();
865 * Interlocked cpus have executed remote1 and are polling in remote2.
866 * To deinterlock we clear cs_mack and wait for the cpus to execute
867 * the func and set their bit in cs_mack again.
870 void
871 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
873 globaldata_t gd = mycpu;
874 cpumask_t mask;
877 * mask acknowledge (cs_mack): mack->0->mack for stage 2
879 * Clearing cpu bits for polling cpus in cs_mack will cause them to
880 * execute stage 2, which executes the cs_func(cs_data) and then sets
881 * their bit in cs_mack again.
883 * mack does not include the current cpu.
885 mask = cs->cs_mack;
886 cpu_ccfence();
887 CPUMASK_ASSZERO(cs->cs_mack);
888 cpu_ccfence();
889 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
890 cs->cs_func(cs->cs_data);
891 if (CPUMASK_TESTNZERO(mask)) {
892 DEBUG_PUSH_INFO("cpusync_deinterlock");
893 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
894 lwkt_process_ipiq();
895 cpu_pause();
896 #ifdef _KERNEL_VIRTUAL
897 pthread_yield();
898 #endif
900 DEBUG_POP_INFO();
902 * cpusyncq ipis may be left queued without the RQF flag set due to
903 * a non-zero td_cscount, so be sure to process any laggards after
904 * decrementing td_cscount.
906 --gd->gd_curthread->td_cscount;
907 lwkt_process_ipiq();
908 logipiq2(sync_end, (long)CPUMASK_LOWMASK(mask));
910 crit_exit_id("cpusync");
914 * The quick version does not quiesce the target cpu(s) but instead executes
915 * the function on the target cpu(s) and waits for all to acknowledge. This
916 * avoids spinning on the target cpus.
918 * This function is typically only used for kernel_pmap updates. User pmaps
919 * have to be quiesced.
921 void
922 lwkt_cpusync_quick(lwkt_cpusync_t cs)
924 globaldata_t gd = mycpu;
925 cpumask_t mask;
928 * stage-2 cs_mack only.
930 mask = cs->cs_mask;
931 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
932 CPUMASK_ANDMASK(mask, smp_active_mask);
933 CPUMASK_ASSZERO(cs->cs_mack);
935 crit_enter_id("cpusync");
936 if (CPUMASK_TESTNZERO(mask)) {
937 DEBUG_PUSH_INFO("cpusync_interlock");
938 ++ipiq_stat(gd).ipiq_cscount;
939 ++gd->gd_curthread->td_cscount;
940 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote2, cs);
941 logipiq2(sync_quick, (long)CPUMASK_LOWMASK(mask));
942 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
943 lwkt_process_ipiq();
944 cpu_pause();
945 #ifdef _KERNEL_VIRTUAL
946 pthread_yield();
947 #endif
951 * cpusyncq ipis may be left queued without the RQF flag set due to
952 * a non-zero td_cscount, so be sure to process any laggards after
953 * decrementing td_cscount.
955 DEBUG_POP_INFO();
956 --gd->gd_curthread->td_cscount;
957 lwkt_process_ipiq();
959 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
960 cs->cs_func(cs->cs_data);
961 crit_exit_id("cpusync");
965 * helper IPI remote messaging function.
967 * Called on remote cpu when a new cpu synchronization request has been
968 * sent to us. Execute the run function and adjust cs_count, then requeue
969 * the request so we spin on it.
971 static void
972 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
974 globaldata_t gd = mycpu;
976 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
977 lwkt_cpusync_remote2(cs);
981 * helper IPI remote messaging function.
983 * Poll for the originator telling us to finish. If it hasn't, requeue
984 * our request so we spin on it.
986 static void
987 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
989 globaldata_t gd = mycpu;
991 if (CPUMASK_TESTMASK(cs->cs_mack, gd->gd_cpumask) == 0) {
992 if (cs->cs_func)
993 cs->cs_func(cs->cs_data);
994 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
995 /* cs can be ripped out at this point */
996 } else {
997 lwkt_ipiq_t ip;
998 int wi;
1000 cpu_pause();
1001 #ifdef _KERNEL_VIRTUAL
1002 pthread_yield();
1003 #endif
1004 cpu_lfence();
1007 * Requeue our IPI to avoid a deep stack recursion. If no other
1008 * IPIs are pending we can just loop up, which should help VMs
1009 * better-detect spin loops.
1011 ip = &gd->gd_cpusyncq;
1013 wi = ip->ip_windex & MAXCPUFIFO_MASK;
1014 ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
1015 ip->ip_info[wi].arg1 = cs;
1016 ip->ip_info[wi].arg2 = 0;
1017 cpu_sfence();
1018 KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
1019 ++ip->ip_windex;
1020 if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
1021 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
1022 gd->gd_cpuid,
1023 (intmax_t)CPUMASK_LOWMASK(cs->cs_mask),
1024 (intmax_t)CPUMASK_LOWMASK(cs->cs_mack),
1025 cs->cs_func);
1030 #define LWKT_IPIQ_NLATENCY 8
1031 #define LWKT_IPIQ_NLATENCY_MASK (LWKT_IPIQ_NLATENCY - 1)
1033 struct lwkt_ipiq_latency_log {
1034 int idx; /* unmasked index */
1035 int pad;
1036 uint64_t latency[LWKT_IPIQ_NLATENCY];
1039 static struct lwkt_ipiq_latency_log lwkt_ipiq_latency_logs[MAXCPU];
1040 static uint64_t save_tsc;
1043 * IPI callback (already in a critical section)
1045 static void
1046 lwkt_ipiq_latency_testfunc(void *arg __unused)
1048 uint64_t delta_tsc;
1049 struct globaldata *gd;
1050 struct lwkt_ipiq_latency_log *lat;
1053 * Get delta TSC (assume TSCs are synchronized) as quickly as
1054 * possible and then convert to nanoseconds.
1056 delta_tsc = rdtsc_ordered() - save_tsc;
1057 delta_tsc = delta_tsc * 1000000000LU / tsc_frequency;
1060 * Record in our save array.
1062 gd = mycpu;
1063 lat = &lwkt_ipiq_latency_logs[gd->gd_cpuid];
1064 lat->latency[lat->idx & LWKT_IPIQ_NLATENCY_MASK] = delta_tsc;
1065 ++lat->idx;
1069 * Send IPI from cpu0 to other cpus
1071 * NOTE: Machine must be idle for test to run dependably, and also probably
1072 * a good idea not to be running powerd.
1074 * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1075 * See 'ipitest' script in /usr/src/test/sysperf/ipitest
1077 static int
1078 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS)
1080 struct globaldata *gd;
1081 int cpu = 0, orig_cpu, error;
1083 error = sysctl_handle_int(oidp, &cpu, arg2, req);
1084 if (error || req->newptr == NULL)
1085 return error;
1087 if (cpu == 0)
1088 return 0;
1089 else if (cpu >= ncpus || cpu < 0)
1090 return EINVAL;
1092 orig_cpu = mycpuid;
1093 lwkt_migratecpu(0);
1095 gd = globaldata_find(cpu);
1097 save_tsc = rdtsc_ordered();
1098 lwkt_send_ipiq(gd, lwkt_ipiq_latency_testfunc, NULL);
1100 lwkt_migratecpu(orig_cpu);
1101 return 0;
1104 SYSCTL_NODE(_debug, OID_AUTO, ipiq, CTLFLAG_RW, 0, "");
1105 SYSCTL_PROC(_debug_ipiq, OID_AUTO, latency_test, CTLTYPE_INT | CTLFLAG_RW,
1106 NULL, 0, lwkt_ipiq_latency_test, "I",
1107 "ipi latency test, arg: remote cpuid");
1109 static int
1110 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS)
1112 struct lwkt_ipiq_latency_log *latency = arg1;
1113 uint64_t lat[LWKT_IPIQ_NLATENCY];
1114 int i;
1116 for (i = 0; i < LWKT_IPIQ_NLATENCY; ++i)
1117 lat[i] = latency->latency[i];
1119 return sysctl_handle_opaque(oidp, lat, sizeof(lat), req);
1122 static void
1123 lwkt_ipiq_latency_init(void *dummy __unused)
1125 int cpu;
1127 for (cpu = 0; cpu < ncpus; ++cpu) {
1128 char name[32];
1130 ksnprintf(name, sizeof(name), "latency%d", cpu);
1131 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_debug_ipiq),
1132 OID_AUTO, name, CTLTYPE_OPAQUE | CTLFLAG_RD,
1133 &lwkt_ipiq_latency_logs[cpu], 0, lwkt_ipiq_latency,
1134 "LU", "7 latest ipi latency measurement results");
1137 SYSINIT(lwkt_ipiq_latency, SI_SUB_CONFIGURE, SI_ORDER_ANY,
1138 lwkt_ipiq_latency_init, NULL);