usched: Allow process to change self cpu affinity
[dragonfly.git] / lib / libkvm / kvm_proc.c
blobd5d935a04ed2940b8e4fbc3000288583512e2f90
1 /*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
35 * @(#)kvm_proc.c 8.3 (Berkeley) 9/23/93
39 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
40 * users of this code, so we've factored it out into a separate module.
41 * Thus, we keep this grunge out of the other kvm applications (i.e.,
42 * most other applications are interested only in open/close/read/nlist).
45 #include <sys/user.h> /* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/exec.h>
50 #include <sys/stat.h>
51 #include <sys/globaldata.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/file.h>
55 #include <sys/jail.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <stddef.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 #include <kvm.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
67 #include <sys/sysctl.h>
69 #include <limits.h>
70 #include <memory.h>
71 #include <paths.h>
73 #include "kvm_private.h"
75 #if used
76 static char *
77 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
79 #if defined(__FreeBSD__) || defined(__DragonFly__)
80 /* XXX Stubbed out, our vm system is differnet */
81 _kvm_err(kd, kd->program, "kvm_readswap not implemented");
82 return(0);
83 #endif
85 #endif
87 #define KREAD(kd, addr, obj) \
88 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
89 #define KREADSTR(kd, addr) \
90 kvm_readstr(kd, (u_long)addr, NULL, NULL)
92 static struct kinfo_proc *
93 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
95 if (bp < kd->procend)
96 return bp;
98 size_t pos = bp - kd->procend;
99 size_t size = kd->procend - kd->procbase;
101 if (size == 0)
102 size = 8;
103 else
104 size *= 2;
105 kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
106 if (kd->procbase == NULL)
107 return NULL;
108 kd->procend = kd->procbase + size;
109 bp = kd->procbase + pos;
110 return bp;
114 * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
115 * compiled by userland.
117 dev_t
118 dev2udev(cdev_t dev)
120 if (dev == NULL)
121 return NOUDEV;
122 if ((dev->si_umajor & 0xffffff00) ||
123 (dev->si_uminor & 0x0000ff00)) {
124 return NOUDEV;
126 return((dev->si_umajor << 8) | dev->si_uminor);
130 * Helper routine which traverses the left hand side of a red-black sub-tree.
132 static uintptr_t
133 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
135 for (;;) {
136 if (KREAD(kd, lwppos, lwp)) {
137 _kvm_err(kd, kd->program, "can't read lwp at %p",
138 (void *)lwppos);
139 return ((uintptr_t)-1);
141 if (lwp->u.lwp_rbnode.rbe_left == NULL)
142 break;
143 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
145 return(lwppos);
149 * Iterate LWPs in a process.
151 * The first lwp in a red-black tree is a left-side traversal of the tree.
153 static uintptr_t
154 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
156 return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
160 * If the current element is the left side of the parent the next element
161 * will be a left side traversal of the parent's right side. If the parent
162 * has no right side the next element will be the parent.
164 * If the current element is the right side of the parent the next element
165 * is the parent.
167 * If the parent is NULL we are done.
169 static uintptr_t
170 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
172 uintptr_t nextpos;
174 nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
175 if (nextpos) {
176 if (KREAD(kd, nextpos, lwp)) {
177 _kvm_err(kd, kd->program, "can't read lwp at %p",
178 (void *)lwppos);
179 return ((uintptr_t)-1);
181 if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
183 * If we had gone down the left side the next element
184 * is a left hand traversal of the parent's right
185 * side, or the parent itself if there is no right
186 * side.
188 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
189 if (lwppos)
190 nextpos = kvm_lwptraverse(kd, lwp, lwppos);
191 } else {
193 * If we had gone down the right side the next
194 * element is the parent.
196 /* nextpos = nextpos */
199 return(nextpos);
203 * Read proc's from memory file into buffer bp, which has space to hold
204 * at most maxcnt procs.
206 static int
207 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
208 struct kinfo_proc *bp)
210 struct pgrp pgrp;
211 struct pgrp tpgrp;
212 struct globaldata gdata;
213 struct session sess;
214 struct session tsess;
215 struct tty tty;
216 struct proc proc;
217 struct ucred ucred;
218 struct thread thread;
219 struct proc pproc;
220 struct cdev cdev;
221 struct vmspace vmspace;
222 struct prison prison;
223 struct sigacts sigacts;
224 struct lwp lwp;
225 uintptr_t lwppos;
226 int count;
227 char *wmesg;
229 count = 0;
231 for (; p != NULL; p = proc.p_list.le_next) {
232 if (KREAD(kd, (u_long)p, &proc)) {
233 _kvm_err(kd, kd->program, "can't read proc at %p", p);
234 return (-1);
236 if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
237 _kvm_err(kd, kd->program, "can't read ucred at %p",
238 proc.p_ucred);
239 return (-1);
241 proc.p_ucred = &ucred;
243 switch(what & ~KERN_PROC_FLAGMASK) {
245 case KERN_PROC_PID:
246 if (proc.p_pid != (pid_t)arg)
247 continue;
248 break;
250 case KERN_PROC_UID:
251 if (ucred.cr_uid != (uid_t)arg)
252 continue;
253 break;
255 case KERN_PROC_RUID:
256 if (ucred.cr_ruid != (uid_t)arg)
257 continue;
258 break;
261 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
262 _kvm_err(kd, kd->program, "can't read pgrp at %p",
263 proc.p_pgrp);
264 return (-1);
266 proc.p_pgrp = &pgrp;
267 if (proc.p_pptr) {
268 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
269 _kvm_err(kd, kd->program, "can't read pproc at %p",
270 proc.p_pptr);
271 return (-1);
273 proc.p_pptr = &pproc;
276 if (proc.p_sigacts) {
277 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
278 _kvm_err(kd, kd->program,
279 "can't read sigacts at %p",
280 proc.p_sigacts);
281 return (-1);
283 proc.p_sigacts = &sigacts;
286 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
287 _kvm_err(kd, kd->program, "can't read session at %p",
288 pgrp.pg_session);
289 return (-1);
291 pgrp.pg_session = &sess;
293 if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
294 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
295 _kvm_err(kd, kd->program,
296 "can't read tty at %p", sess.s_ttyp);
297 return (-1);
299 sess.s_ttyp = &tty;
300 if (tty.t_dev != NULL) {
301 if (KREAD(kd, (u_long)tty.t_dev, &cdev))
302 tty.t_dev = NULL;
303 else
304 tty.t_dev = &cdev;
306 if (tty.t_pgrp != NULL) {
307 if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
308 _kvm_err(kd, kd->program,
309 "can't read tpgrp at %p",
310 tty.t_pgrp);
311 return (-1);
313 tty.t_pgrp = &tpgrp;
315 if (tty.t_session != NULL) {
316 if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
317 _kvm_err(kd, kd->program,
318 "can't read tsess at %p",
319 tty.t_session);
320 return (-1);
322 tty.t_session = &tsess;
326 if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
327 _kvm_err(kd, kd->program, "can't read vmspace at %p",
328 proc.p_vmspace);
329 return (-1);
331 proc.p_vmspace = &vmspace;
333 if (ucred.cr_prison != NULL) {
334 if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
335 _kvm_err(kd, kd->program, "can't read prison at %p",
336 ucred.cr_prison);
337 return (-1);
339 ucred.cr_prison = &prison;
342 switch (what & ~KERN_PROC_FLAGMASK) {
344 case KERN_PROC_PGRP:
345 if (proc.p_pgrp->pg_id != (pid_t)arg)
346 continue;
347 break;
349 case KERN_PROC_TTY:
350 if ((proc.p_flags & P_CONTROLT) == 0 ||
351 dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
352 != (dev_t)arg)
353 continue;
354 break;
357 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
358 return (-1);
359 fill_kinfo_proc(&proc, bp);
360 bp->kp_paddr = (uintptr_t)p;
362 lwppos = kvm_firstlwp(kd, &lwp, &proc);
363 if (lwppos == 0) {
364 bp++; /* Just export the proc then */
365 count++;
367 while (lwppos && lwppos != (uintptr_t)-1) {
368 if (p != lwp.lwp_proc) {
369 _kvm_err(kd, kd->program, "lwp has wrong parent");
370 return (-1);
372 lwp.lwp_proc = &proc;
373 if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
374 _kvm_err(kd, kd->program, "can't read thread at %p",
375 lwp.lwp_thread);
376 return (-1);
378 lwp.lwp_thread = &thread;
380 if (thread.td_gd) {
381 if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
382 _kvm_err(kd, kd->program, "can't read"
383 " gd at %p",
384 thread.td_gd);
385 return(-1);
387 thread.td_gd = &gdata;
389 if (thread.td_wmesg) {
390 wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
391 if (wmesg == NULL) {
392 _kvm_err(kd, kd->program, "can't read"
393 " wmesg %p",
394 thread.td_wmesg);
395 return(-1);
397 thread.td_wmesg = wmesg;
398 } else {
399 wmesg = NULL;
402 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
403 return (-1);
404 fill_kinfo_proc(&proc, bp);
405 fill_kinfo_lwp(&lwp, &bp->kp_lwp);
406 bp->kp_paddr = (uintptr_t)p;
407 bp++;
408 count++;
409 if (wmesg)
410 free(wmesg);
411 if ((what & KERN_PROC_FLAG_LWP) == 0)
412 break;
413 lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
415 if (lwppos == (uintptr_t)-1)
416 return(-1);
418 return (count);
422 * Build proc info array by reading in proc list from a crash dump.
423 * We reallocate kd->procbase as necessary.
425 static int
426 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_procglob,
427 int allproc_hsize)
429 struct kinfo_proc *bp;
430 struct proc *p;
431 struct proclist **pl;
432 int cnt, partcnt, n;
433 u_long nextoff;
434 u_long a_allproc;
436 cnt = partcnt = 0;
437 nextoff = 0;
440 * Dynamically allocate space for all the elements of the
441 * allprocs array and KREAD() them.
443 pl = _kvm_malloc(kd, allproc_hsize * sizeof(struct proclist *));
444 for (n = 0; n < allproc_hsize; n++) {
445 pl[n] = _kvm_malloc(kd, sizeof(struct proclist));
446 a_allproc = sizeof(struct procglob) * n +
447 offsetof(struct procglob, allproc);
448 nextoff = a_allproc;
449 if (KREAD(kd, (u_long)nextoff, pl[n])) {
450 _kvm_err(kd, kd->program, "can't read proclist at 0x%lx",
451 a_allproc);
452 return (-1);
455 /* Ignore empty proclists */
456 if (LIST_EMPTY(pl[n]))
457 continue;
459 bp = kd->procbase + cnt;
460 p = pl[n]->lh_first;
461 partcnt = kvm_proclist(kd, what, arg, p, bp);
462 if (partcnt < 0) {
463 free(pl[n]);
464 return (partcnt);
467 cnt += partcnt;
468 free(pl[n]);
471 return (cnt);
474 struct kinfo_proc *
475 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
477 int mib[4], st, nprocs, allproc_hsize;
478 int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
479 size_t size;
481 if (kd->procbase != 0) {
482 free((void *)kd->procbase);
484 * Clear this pointer in case this call fails. Otherwise,
485 * kvm_close() will free it again.
487 kd->procbase = 0;
489 if (kvm_ishost(kd)) {
490 size = 0;
491 mib[0] = CTL_KERN;
492 mib[1] = KERN_PROC;
493 mib[2] = op;
494 mib[3] = arg;
495 st = sysctl(mib, miblen, NULL, &size, NULL, 0);
496 if (st == -1) {
497 _kvm_syserr(kd, kd->program, "kvm_getprocs");
498 return (0);
500 do {
501 size += size / 10;
502 kd->procbase = (struct kinfo_proc *)
503 _kvm_realloc(kd, kd->procbase, size);
504 if (kd->procbase == 0)
505 return (0);
506 st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
507 } while (st == -1 && errno == ENOMEM);
508 if (st == -1) {
509 _kvm_syserr(kd, kd->program, "kvm_getprocs");
510 return (0);
512 if (size % sizeof(struct kinfo_proc) != 0) {
513 _kvm_err(kd, kd->program,
514 "proc size mismatch (%zd total, %zd chunks)",
515 size, sizeof(struct kinfo_proc));
516 return (0);
518 nprocs = size / sizeof(struct kinfo_proc);
519 } else {
520 struct nlist nl[4], *p;
522 nl[0].n_name = "_nprocs";
523 nl[1].n_name = "_procglob";
524 nl[2].n_name = "_allproc_hsize";
525 nl[3].n_name = 0;
527 if (kvm_nlist(kd, nl) != 0) {
528 for (p = nl; p->n_type != 0; ++p)
530 _kvm_err(kd, kd->program,
531 "%s: no such symbol", p->n_name);
532 return (0);
534 if (KREAD(kd, nl[0].n_value, &nprocs)) {
535 _kvm_err(kd, kd->program, "can't read nprocs");
536 return (0);
538 if (KREAD(kd, nl[2].n_value, &allproc_hsize)) {
539 _kvm_err(kd, kd->program, "can't read allproc_hsize");
540 return (0);
542 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
543 allproc_hsize);
544 #ifdef notdef
545 size = nprocs * sizeof(struct kinfo_proc);
546 (void)realloc(kd->procbase, size);
547 #endif
549 *cnt = nprocs;
550 return (kd->procbase);
553 void
554 _kvm_freeprocs(kvm_t *kd)
556 if (kd->procbase) {
557 free(kd->procbase);
558 kd->procbase = 0;
562 void *
563 _kvm_realloc(kvm_t *kd, void *p, size_t n)
565 void *np = (void *)realloc(p, n);
567 if (np == NULL) {
568 free(p);
569 _kvm_err(kd, kd->program, "out of memory");
571 return (np);
574 #ifndef MAX
575 #define MAX(a, b) ((a) > (b) ? (a) : (b))
576 #endif
579 * Read in an argument vector from the user address space of process pid.
580 * addr if the user-space base address of narg null-terminated contiguous
581 * strings. This is used to read in both the command arguments and
582 * environment strings. Read at most maxcnt characters of strings.
584 static char **
585 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
587 char *np, *cp, *ep, *ap;
588 u_long oaddr = -1;
589 int len, cc;
590 char **argv;
593 * Check that there aren't an unreasonable number of agruments,
594 * and that the address is in user space.
596 if (narg > 512 ||
597 addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
598 return (0);
602 * kd->argv : work space for fetching the strings from the target
603 * process's space, and is converted for returning to caller
605 if (kd->argv == 0) {
607 * Try to avoid reallocs.
609 kd->argc = MAX(narg + 1, 32);
610 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
611 sizeof(*kd->argv));
612 if (kd->argv == 0)
613 return (0);
614 } else if (narg + 1 > kd->argc) {
615 kd->argc = MAX(2 * kd->argc, narg + 1);
616 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
617 sizeof(*kd->argv));
618 if (kd->argv == 0)
619 return (0);
622 * kd->argspc : returned to user, this is where the kd->argv
623 * arrays are left pointing to the collected strings.
625 if (kd->argspc == 0) {
626 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
627 if (kd->argspc == 0)
628 return (0);
629 kd->arglen = PAGE_SIZE;
632 * kd->argbuf : used to pull in pages from the target process.
633 * the strings are copied out of here.
635 if (kd->argbuf == 0) {
636 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
637 if (kd->argbuf == 0)
638 return (0);
641 /* Pull in the target process'es argv vector */
642 cc = sizeof(char *) * narg;
643 if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
644 return (0);
646 * ap : saved start address of string we're working on in kd->argspc
647 * np : pointer to next place to write in kd->argspc
648 * len: length of data in kd->argspc
649 * argv: pointer to the argv vector that we are hunting around the
650 * target process space for, and converting to addresses in
651 * our address space (kd->argspc).
653 ap = np = kd->argspc;
654 argv = kd->argv;
655 len = 0;
657 * Loop over pages, filling in the argument vector.
658 * Note that the argv strings could be pointing *anywhere* in
659 * the user address space and are no longer contiguous.
660 * Note that *argv is modified when we are going to fetch a string
661 * that crosses a page boundary. We copy the next part of the string
662 * into to "np" and eventually convert the pointer.
664 while (argv < kd->argv + narg && *argv != NULL) {
666 /* get the address that the current argv string is on */
667 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
669 /* is it the same page as the last one? */
670 if (addr != oaddr) {
671 if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
672 PAGE_SIZE)
673 return (0);
674 oaddr = addr;
677 /* offset within the page... kd->argbuf */
678 addr = (u_long)*argv & (PAGE_SIZE - 1);
680 /* cp = start of string, cc = count of chars in this chunk */
681 cp = kd->argbuf + addr;
682 cc = PAGE_SIZE - addr;
684 /* dont get more than asked for by user process */
685 if (maxcnt > 0 && cc > maxcnt - len)
686 cc = maxcnt - len;
688 /* pointer to end of string if we found it in this page */
689 ep = memchr(cp, '\0', cc);
690 if (ep != NULL)
691 cc = ep - cp + 1;
693 * at this point, cc is the count of the chars that we are
694 * going to retrieve this time. we may or may not have found
695 * the end of it. (ep points to the null if the end is known)
698 /* will we exceed the malloc/realloced buffer? */
699 if (len + cc > kd->arglen) {
700 size_t off;
701 char **pp;
702 char *op = kd->argspc;
704 kd->arglen *= 2;
705 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
706 kd->arglen);
707 if (kd->argspc == 0)
708 return (0);
710 * Adjust argv pointers in case realloc moved
711 * the string space.
713 off = kd->argspc - op;
714 for (pp = kd->argv; pp < argv; pp++)
715 *pp += off;
716 ap += off;
717 np += off;
719 /* np = where to put the next part of the string in kd->argspc*/
720 /* np is kinda redundant.. could use "kd->argspc + len" */
721 memcpy(np, cp, cc);
722 np += cc; /* inc counters */
723 len += cc;
726 * if end of string found, set the *argv pointer to the
727 * saved beginning of string, and advance. argv points to
728 * somewhere in kd->argv.. This is initially relative
729 * to the target process, but when we close it off, we set
730 * it to point in our address space.
732 if (ep != NULL) {
733 *argv++ = ap;
734 ap = np;
735 } else {
736 /* update the address relative to the target process */
737 *argv += cc;
740 if (maxcnt > 0 && len >= maxcnt) {
742 * We're stopping prematurely. Terminate the
743 * current string.
745 if (ep == NULL) {
746 *np = '\0';
747 *argv++ = ap;
749 break;
752 /* Make sure argv is terminated. */
753 *argv = NULL;
754 return (kd->argv);
757 static void
758 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
760 *addr = (u_long)p->ps_argvstr;
761 *n = p->ps_nargvstr;
764 static void
765 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
767 *addr = (u_long)p->ps_envstr;
768 *n = p->ps_nenvstr;
772 * Determine if the proc indicated by p is still active.
773 * This test is not 100% foolproof in theory, but chances of
774 * being wrong are very low.
776 static int
777 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
779 struct kinfo_proc kp;
780 int mib[4];
781 size_t len;
782 int error;
784 mib[0] = CTL_KERN;
785 mib[1] = KERN_PROC;
786 mib[2] = KERN_PROC_PID;
787 mib[3] = p->kp_pid;
789 len = sizeof(kp);
790 error = sysctl(mib, 4, &kp, &len, NULL, 0);
791 if (error)
792 return (0);
794 error = (p->kp_pid == kp.kp_pid &&
795 (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
796 return (error);
799 static char **
800 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
801 void (*info)(struct ps_strings *, u_long *, int *))
803 char **ap;
804 u_long addr;
805 int cnt;
806 static struct ps_strings arginfo;
807 static u_long ps_strings;
808 size_t len;
810 if (ps_strings == 0) {
811 len = sizeof(ps_strings);
812 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
813 0) == -1)
814 ps_strings = PS_STRINGS;
818 * Pointers are stored at the top of the user stack.
820 if (kp->kp_stat == SZOMB ||
821 kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
822 sizeof(arginfo)) != sizeof(arginfo))
823 return (0);
825 (*info)(&arginfo, &addr, &cnt);
826 if (cnt == 0)
827 return (0);
828 ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
830 * For live kernels, make sure this process didn't go away.
832 if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
833 !proc_verify(kd, kp))
834 ap = NULL;
835 return (ap);
839 * Get the command args. This code is now machine independent.
841 char **
842 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
844 int oid[4];
845 int i;
846 size_t bufsz;
847 static unsigned long buflen;
848 static char *buf, *p;
849 static char **bufp;
850 static int argc;
852 if (!kvm_ishost(kd)) { /* XXX: vkernels */
853 _kvm_err(kd, kd->program,
854 "cannot read user space from dead kernel");
855 return (0);
858 if (!buflen) {
859 bufsz = sizeof(buflen);
860 i = sysctlbyname("kern.ps_arg_cache_limit",
861 &buflen, &bufsz, NULL, 0);
862 if (i == -1) {
863 buflen = 0;
864 } else {
865 buf = malloc(buflen);
866 if (buf == NULL)
867 buflen = 0;
868 argc = 32;
869 bufp = malloc(sizeof(char *) * argc);
872 if (buf != NULL) {
873 oid[0] = CTL_KERN;
874 oid[1] = KERN_PROC;
875 oid[2] = KERN_PROC_ARGS;
876 oid[3] = kp->kp_pid;
877 bufsz = buflen;
878 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
879 if (i == 0 && bufsz > 0) {
880 i = 0;
881 p = buf;
882 do {
883 bufp[i++] = p;
884 p += strlen(p) + 1;
885 if (i >= argc) {
886 argc += argc;
887 bufp = realloc(bufp,
888 sizeof(char *) * argc);
890 } while (p < buf + bufsz);
891 bufp[i++] = NULL;
892 return (bufp);
895 if (kp->kp_flags & P_SYSTEM)
896 return (NULL);
897 return (kvm_doargv(kd, kp, nchr, ps_str_a));
900 char **
901 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
903 return (kvm_doargv(kd, kp, nchr, ps_str_e));
907 * Read from user space. The user context is given by pid.
909 ssize_t
910 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
912 char *cp;
913 char procfile[MAXPATHLEN];
914 ssize_t amount;
915 int fd;
917 if (!kvm_ishost(kd)) { /* XXX: vkernels */
918 _kvm_err(kd, kd->program,
919 "cannot read user space from dead kernel");
920 return (0);
923 sprintf(procfile, "/proc/%d/mem", pid);
924 fd = open(procfile, O_RDONLY, 0);
925 if (fd < 0) {
926 _kvm_err(kd, kd->program, "cannot open %s", procfile);
927 close(fd);
928 return (0);
931 cp = buf;
932 while (len > 0) {
933 errno = 0;
934 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
935 _kvm_err(kd, kd->program, "invalid address (%lx) in %s",
936 uva, procfile);
937 break;
939 amount = read(fd, cp, len);
940 if (amount < 0) {
941 _kvm_syserr(kd, kd->program, "error reading %s",
942 procfile);
943 break;
945 if (amount == 0) {
946 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
947 break;
949 cp += amount;
950 uva += amount;
951 len -= amount;
954 close(fd);
955 return ((ssize_t)(cp - buf));