kernel - pmap->pm_spin now uses a shared spinlock
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blob98cc6cbce7998279fa0393e555ed39719be3607e
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2017 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 #else
126 #define PMAP_DEBUG_DECL
127 #define PMAP_DEBUG_ARGS
128 #define PMAP_DEBUG_COPY
130 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
131 #define pv_lock(pv) _pv_lock(pv)
132 #define pv_hold_try(pv) _pv_hold_try(pv)
133 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
134 #define pv_free(pv, pvp) _pv_free(pv, pvp)
136 #endif
139 * Get PDEs and PTEs for user/kernel address space
141 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
144 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
145 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
146 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
147 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
150 * Given a map and a machine independent protection code,
151 * convert to a vax protection code.
153 #define pte_prot(m, p) \
154 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
155 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
157 struct pmap kernel_pmap;
159 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
161 vm_paddr_t avail_start; /* PA of first available physical page */
162 vm_paddr_t avail_end; /* PA of last available physical page */
163 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
164 vm_offset_t virtual2_end;
165 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
166 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
167 vm_offset_t KvaStart; /* VA start of KVA space */
168 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
169 vm_offset_t KvaSize; /* max size of kernel virtual address space */
170 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
171 //static int pgeflag; /* PG_G or-in */
172 //static int pseflag; /* PG_PS or-in */
173 uint64_t PatMsr;
175 static int ndmpdp;
176 static vm_paddr_t dmaplimit;
177 static int nkpt;
178 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
180 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
181 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
183 static uint64_t KPTbase;
184 static uint64_t KPTphys;
185 static uint64_t KPDphys; /* phys addr of kernel level 2 */
186 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
187 uint64_t KPDPphys; /* phys addr of kernel level 3 */
188 uint64_t KPML4phys; /* phys addr of kernel level 4 */
190 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
191 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
194 * Data for the pv entry allocation mechanism
196 static vm_zone_t pvzone;
197 static struct vm_zone pvzone_store;
198 static int pv_entry_max=0, pv_entry_high_water=0;
199 static int pmap_pagedaemon_waken = 0;
200 static struct pv_entry *pvinit;
203 * All those kernel PT submaps that BSD is so fond of
205 pt_entry_t *CMAP1 = NULL, *ptmmap;
206 caddr_t CADDR1 = NULL, ptvmmap = NULL;
207 static pt_entry_t *msgbufmap;
208 struct msgbuf *msgbufp=NULL;
211 * PMAP default PG_* bits. Needed to be able to add
212 * EPT/NPT pagetable pmap_bits for the VMM module
214 uint64_t pmap_bits_default[] = {
215 REGULAR_PMAP, /* TYPE_IDX 0 */
216 X86_PG_V, /* PG_V_IDX 1 */
217 X86_PG_RW, /* PG_RW_IDX 2 */
218 X86_PG_U, /* PG_U_IDX 3 */
219 X86_PG_A, /* PG_A_IDX 4 */
220 X86_PG_M, /* PG_M_IDX 5 */
221 X86_PG_PS, /* PG_PS_IDX3 6 */
222 X86_PG_G, /* PG_G_IDX 7 */
223 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
224 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
225 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
226 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
227 X86_PG_NX, /* PG_NX_IDX 12 */
230 * Crashdump maps.
232 static pt_entry_t *pt_crashdumpmap;
233 static caddr_t crashdumpmap;
235 static int pmap_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
237 &pmap_debug, 0, "Debug pmap's");
238 #ifdef PMAP_DEBUG2
239 static int pmap_enter_debug = 0;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
241 &pmap_enter_debug, 0, "Debug pmap_enter's");
242 #endif
243 static int pmap_yield_count = 64;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
245 &pmap_yield_count, 0, "Yield during init_pt/release");
246 static int pmap_mmu_optimize = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
248 &pmap_mmu_optimize, 0, "Share page table pages when possible");
249 int pmap_fast_kernel_cpusync = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
251 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
252 int pmap_dynamic_delete = 0;
253 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
254 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
256 static int pmap_nx_enable = 0;
257 /* needs manual TUNABLE in early probe, see below */
259 #define DISABLE_PSE
261 /* Standard user access funtions */
262 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
263 size_t *lencopied);
264 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
265 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
266 extern int std_fubyte (const uint8_t *base);
267 extern int std_subyte (uint8_t *base, uint8_t byte);
268 extern int32_t std_fuword32 (const uint32_t *base);
269 extern int64_t std_fuword64 (const uint64_t *base);
270 extern int std_suword64 (uint64_t *base, uint64_t word);
271 extern int std_suword32 (uint32_t *base, int word);
272 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
273 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
275 static void pv_hold(pv_entry_t pv);
276 static int _pv_hold_try(pv_entry_t pv
277 PMAP_DEBUG_DECL);
278 static void pv_drop(pv_entry_t pv);
279 static void _pv_lock(pv_entry_t pv
280 PMAP_DEBUG_DECL);
281 static void pv_unlock(pv_entry_t pv);
282 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
283 PMAP_DEBUG_DECL);
284 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
285 PMAP_DEBUG_DECL);
286 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
287 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
288 vm_pindex_t **pmarkp, int *errorp);
289 static void pv_put(pv_entry_t pv);
290 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
291 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
292 pv_entry_t *pvpp);
293 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
294 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
295 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
296 pmap_inval_bulk_t *bulk, int destroy);
297 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
298 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
299 pmap_inval_bulk_t *bulk);
301 struct pmap_scan_info;
302 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
303 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
304 pv_entry_t pt_pv, int sharept,
305 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
306 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
307 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
308 pv_entry_t pt_pv, int sharept,
309 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
311 static void i386_protection_init (void);
312 static void create_pagetables(vm_paddr_t *firstaddr);
313 static void pmap_remove_all (vm_page_t m);
314 static boolean_t pmap_testbit (vm_page_t m, int bit);
316 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
317 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
319 static void pmap_pinit_defaults(struct pmap *pmap);
320 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
321 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
323 static unsigned pdir4mb;
325 static int
326 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
328 if (pv1->pv_pindex < pv2->pv_pindex)
329 return(-1);
330 if (pv1->pv_pindex > pv2->pv_pindex)
331 return(1);
332 return(0);
335 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
336 pv_entry_compare, vm_pindex_t, pv_pindex);
338 static __inline
339 void
340 pmap_page_stats_adding(vm_page_t m)
342 globaldata_t gd = mycpu;
344 if (TAILQ_EMPTY(&m->md.pv_list)) {
345 ++gd->gd_vmtotal.t_arm;
346 } else if (TAILQ_FIRST(&m->md.pv_list) ==
347 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
348 ++gd->gd_vmtotal.t_armshr;
349 ++gd->gd_vmtotal.t_avmshr;
350 } else {
351 ++gd->gd_vmtotal.t_avmshr;
355 static __inline
356 void
357 pmap_page_stats_deleting(vm_page_t m)
359 globaldata_t gd = mycpu;
361 if (TAILQ_EMPTY(&m->md.pv_list)) {
362 --gd->gd_vmtotal.t_arm;
363 } else if (TAILQ_FIRST(&m->md.pv_list) ==
364 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
365 --gd->gd_vmtotal.t_armshr;
366 --gd->gd_vmtotal.t_avmshr;
367 } else {
368 --gd->gd_vmtotal.t_avmshr;
373 * Move the kernel virtual free pointer to the next
374 * 2MB. This is used to help improve performance
375 * by using a large (2MB) page for much of the kernel
376 * (.text, .data, .bss)
378 static
379 vm_offset_t
380 pmap_kmem_choose(vm_offset_t addr)
382 vm_offset_t newaddr = addr;
384 newaddr = roundup2(addr, NBPDR);
385 return newaddr;
389 * pmap_pte_quick:
391 * Super fast pmap_pte routine best used when scanning the pv lists.
392 * This eliminates many course-grained invltlb calls. Note that many of
393 * the pv list scans are across different pmaps and it is very wasteful
394 * to do an entire invltlb when checking a single mapping.
396 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
398 static
399 pt_entry_t *
400 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
402 return pmap_pte(pmap, va);
406 * Returns the pindex of a page table entry (representing a terminal page).
407 * There are NUPTE_TOTAL page table entries possible (a huge number)
409 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
410 * We want to properly translate negative KVAs.
412 static __inline
413 vm_pindex_t
414 pmap_pte_pindex(vm_offset_t va)
416 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
420 * Returns the pindex of a page table.
422 static __inline
423 vm_pindex_t
424 pmap_pt_pindex(vm_offset_t va)
426 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
430 * Returns the pindex of a page directory.
432 static __inline
433 vm_pindex_t
434 pmap_pd_pindex(vm_offset_t va)
436 return (NUPTE_TOTAL + NUPT_TOTAL +
437 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
440 static __inline
441 vm_pindex_t
442 pmap_pdp_pindex(vm_offset_t va)
444 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
445 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
448 static __inline
449 vm_pindex_t
450 pmap_pml4_pindex(void)
452 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
456 * Return various clipped indexes for a given VA
458 * Returns the index of a pt in a page directory, representing a page
459 * table.
461 static __inline
462 vm_pindex_t
463 pmap_pt_index(vm_offset_t va)
465 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
469 * Returns the index of a pd in a page directory page, representing a page
470 * directory.
472 static __inline
473 vm_pindex_t
474 pmap_pd_index(vm_offset_t va)
476 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
480 * Returns the index of a pdp in the pml4 table, representing a page
481 * directory page.
483 static __inline
484 vm_pindex_t
485 pmap_pdp_index(vm_offset_t va)
487 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
491 * The placemarker hash must be broken up into four zones so lock
492 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
494 * Placemarkers are used to 'lock' page table indices that do not have
495 * a pv_entry. This allows the pmap to support managed and unmanaged
496 * pages and shared page tables.
498 #define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
500 static __inline
501 vm_pindex_t *
502 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
504 int hi;
506 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
507 hi = 0;
508 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
509 hi = PM_PLACE_BASE;
510 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
511 hi = PM_PLACE_BASE << 1;
512 else /* zone 3 - PDP (and PML4E) */
513 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
514 hi += pindex & (PM_PLACE_BASE - 1);
516 return (&pmap->pm_placemarks[hi]);
521 * Generic procedure to index a pte from a pt, pd, or pdp.
523 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
524 * a page table page index but is instead of PV lookup index.
526 static
527 void *
528 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
530 pt_entry_t *pte;
532 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
533 return(&pte[pindex]);
537 * Return pointer to PDP slot in the PML4
539 static __inline
540 pml4_entry_t *
541 pmap_pdp(pmap_t pmap, vm_offset_t va)
543 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
547 * Return pointer to PD slot in the PDP given a pointer to the PDP
549 static __inline
550 pdp_entry_t *
551 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
553 pdp_entry_t *pd;
555 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
556 return (&pd[pmap_pd_index(va)]);
560 * Return pointer to PD slot in the PDP.
562 static __inline
563 pdp_entry_t *
564 pmap_pd(pmap_t pmap, vm_offset_t va)
566 pml4_entry_t *pdp;
568 pdp = pmap_pdp(pmap, va);
569 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
570 return NULL;
571 return (pmap_pdp_to_pd(*pdp, va));
575 * Return pointer to PT slot in the PD given a pointer to the PD
577 static __inline
578 pd_entry_t *
579 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
581 pd_entry_t *pt;
583 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
584 return (&pt[pmap_pt_index(va)]);
588 * Return pointer to PT slot in the PD
590 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
591 * so we cannot lookup the PD via the PDP. Instead we
592 * must look it up via the pmap.
594 static __inline
595 pd_entry_t *
596 pmap_pt(pmap_t pmap, vm_offset_t va)
598 pdp_entry_t *pd;
599 pv_entry_t pv;
600 vm_pindex_t pd_pindex;
601 vm_paddr_t phys;
603 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
604 pd_pindex = pmap_pd_pindex(va);
605 spin_lock_shared(&pmap->pm_spin);
606 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
607 if (pv == NULL || pv->pv_m == NULL) {
608 spin_unlock_shared(&pmap->pm_spin);
609 return NULL;
611 phys = VM_PAGE_TO_PHYS(pv->pv_m);
612 spin_unlock_shared(&pmap->pm_spin);
613 return (pmap_pd_to_pt(phys, va));
614 } else {
615 pd = pmap_pd(pmap, va);
616 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
617 return NULL;
618 return (pmap_pd_to_pt(*pd, va));
623 * Return pointer to PTE slot in the PT given a pointer to the PT
625 static __inline
626 pt_entry_t *
627 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
629 pt_entry_t *pte;
631 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
632 return (&pte[pmap_pte_index(va)]);
636 * Return pointer to PTE slot in the PT
638 static __inline
639 pt_entry_t *
640 pmap_pte(pmap_t pmap, vm_offset_t va)
642 pd_entry_t *pt;
644 pt = pmap_pt(pmap, va);
645 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
646 return NULL;
647 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
648 return ((pt_entry_t *)pt);
649 return (pmap_pt_to_pte(*pt, va));
653 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
654 * the PT layer. This will speed up core pmap operations considerably.
656 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
657 * must be in a known associated state (typically by being locked when
658 * the pmap spinlock isn't held). We allow the race for that case.
660 * NOTE: pm_pvhint is only accessed (read) with the spin-lock held, using
661 * cpu_ccfence() to prevent compiler optimizations from reloading the
662 * field.
664 static __inline
665 void
666 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
668 if (pindex >= pmap_pt_pindex(0) && pindex < pmap_pd_pindex(0)) {
669 if (pv->pv_pmap)
670 pv->pv_pmap->pm_pvhint = pv;
676 * Return address of PT slot in PD (KVM only)
678 * Cannot be used for user page tables because it might interfere with
679 * the shared page-table-page optimization (pmap_mmu_optimize).
681 static __inline
682 pd_entry_t *
683 vtopt(vm_offset_t va)
685 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
686 NPML4EPGSHIFT)) - 1);
688 return (PDmap + ((va >> PDRSHIFT) & mask));
692 * KVM - return address of PTE slot in PT
694 static __inline
695 pt_entry_t *
696 vtopte(vm_offset_t va)
698 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
699 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
701 return (PTmap + ((va >> PAGE_SHIFT) & mask));
704 static uint64_t
705 allocpages(vm_paddr_t *firstaddr, long n)
707 uint64_t ret;
709 ret = *firstaddr;
710 bzero((void *)ret, n * PAGE_SIZE);
711 *firstaddr += n * PAGE_SIZE;
712 return (ret);
715 static
716 void
717 create_pagetables(vm_paddr_t *firstaddr)
719 long i; /* must be 64 bits */
720 long nkpt_base;
721 long nkpt_phys;
722 int j;
725 * We are running (mostly) V=P at this point
727 * Calculate NKPT - number of kernel page tables. We have to
728 * accomodoate prealloction of the vm_page_array, dump bitmap,
729 * MSGBUF_SIZE, and other stuff. Be generous.
731 * Maxmem is in pages.
733 * ndmpdp is the number of 1GB pages we wish to map.
735 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
736 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
737 ndmpdp = 4;
738 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
741 * Starting at the beginning of kvm (not KERNBASE).
743 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
744 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
745 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
746 ndmpdp) + 511) / 512;
747 nkpt_phys += 128;
750 * Starting at KERNBASE - map 2G worth of page table pages.
751 * KERNBASE is offset -2G from the end of kvm.
753 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
756 * Allocate pages
758 KPTbase = allocpages(firstaddr, nkpt_base);
759 KPTphys = allocpages(firstaddr, nkpt_phys);
760 KPML4phys = allocpages(firstaddr, 1);
761 KPDPphys = allocpages(firstaddr, NKPML4E);
762 KPDphys = allocpages(firstaddr, NKPDPE);
765 * Calculate the page directory base for KERNBASE,
766 * that is where we start populating the page table pages.
767 * Basically this is the end - 2.
769 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
771 DMPDPphys = allocpages(firstaddr, NDMPML4E);
772 if ((amd_feature & AMDID_PAGE1GB) == 0)
773 DMPDphys = allocpages(firstaddr, ndmpdp);
774 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
777 * Fill in the underlying page table pages for the area around
778 * KERNBASE. This remaps low physical memory to KERNBASE.
780 * Read-only from zero to physfree
781 * XXX not fully used, underneath 2M pages
783 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
784 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
785 ((pt_entry_t *)KPTbase)[i] |=
786 pmap_bits_default[PG_RW_IDX] |
787 pmap_bits_default[PG_V_IDX] |
788 pmap_bits_default[PG_G_IDX];
792 * Now map the initial kernel page tables. One block of page
793 * tables is placed at the beginning of kernel virtual memory,
794 * and another block is placed at KERNBASE to map the kernel binary,
795 * data, bss, and initial pre-allocations.
797 for (i = 0; i < nkpt_base; i++) {
798 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
799 ((pd_entry_t *)KPDbase)[i] |=
800 pmap_bits_default[PG_RW_IDX] |
801 pmap_bits_default[PG_V_IDX];
803 for (i = 0; i < nkpt_phys; i++) {
804 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
805 ((pd_entry_t *)KPDphys)[i] |=
806 pmap_bits_default[PG_RW_IDX] |
807 pmap_bits_default[PG_V_IDX];
811 * Map from zero to end of allocations using 2M pages as an
812 * optimization. This will bypass some of the KPTBase pages
813 * above in the KERNBASE area.
815 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
816 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
817 ((pd_entry_t *)KPDbase)[i] |=
818 pmap_bits_default[PG_RW_IDX] |
819 pmap_bits_default[PG_V_IDX] |
820 pmap_bits_default[PG_PS_IDX] |
821 pmap_bits_default[PG_G_IDX];
825 * And connect up the PD to the PDP. The kernel pmap is expected
826 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
828 for (i = 0; i < NKPDPE; i++) {
829 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
830 KPDphys + (i << PAGE_SHIFT);
831 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
832 pmap_bits_default[PG_RW_IDX] |
833 pmap_bits_default[PG_V_IDX] |
834 pmap_bits_default[PG_U_IDX];
838 * Now set up the direct map space using either 2MB or 1GB pages
839 * Preset PG_M and PG_A because demotion expects it.
841 * When filling in entries in the PD pages make sure any excess
842 * entries are set to zero as we allocated enough PD pages
844 if ((amd_feature & AMDID_PAGE1GB) == 0) {
845 for (i = 0; i < NPDEPG * ndmpdp; i++) {
846 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
847 ((pd_entry_t *)DMPDphys)[i] |=
848 pmap_bits_default[PG_RW_IDX] |
849 pmap_bits_default[PG_V_IDX] |
850 pmap_bits_default[PG_PS_IDX] |
851 pmap_bits_default[PG_G_IDX] |
852 pmap_bits_default[PG_M_IDX] |
853 pmap_bits_default[PG_A_IDX];
857 * And the direct map space's PDP
859 for (i = 0; i < ndmpdp; i++) {
860 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
861 (i << PAGE_SHIFT);
862 ((pdp_entry_t *)DMPDPphys)[i] |=
863 pmap_bits_default[PG_RW_IDX] |
864 pmap_bits_default[PG_V_IDX] |
865 pmap_bits_default[PG_U_IDX];
867 } else {
868 for (i = 0; i < ndmpdp; i++) {
869 ((pdp_entry_t *)DMPDPphys)[i] =
870 (vm_paddr_t)i << PDPSHIFT;
871 ((pdp_entry_t *)DMPDPphys)[i] |=
872 pmap_bits_default[PG_RW_IDX] |
873 pmap_bits_default[PG_V_IDX] |
874 pmap_bits_default[PG_PS_IDX] |
875 pmap_bits_default[PG_G_IDX] |
876 pmap_bits_default[PG_M_IDX] |
877 pmap_bits_default[PG_A_IDX];
881 /* And recursively map PML4 to itself in order to get PTmap */
882 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
883 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
884 pmap_bits_default[PG_RW_IDX] |
885 pmap_bits_default[PG_V_IDX] |
886 pmap_bits_default[PG_U_IDX];
889 * Connect the Direct Map slots up to the PML4
891 for (j = 0; j < NDMPML4E; ++j) {
892 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
893 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
894 pmap_bits_default[PG_RW_IDX] |
895 pmap_bits_default[PG_V_IDX] |
896 pmap_bits_default[PG_U_IDX];
900 * Connect the KVA slot up to the PML4
902 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
903 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
904 pmap_bits_default[PG_RW_IDX] |
905 pmap_bits_default[PG_V_IDX] |
906 pmap_bits_default[PG_U_IDX];
910 * Bootstrap the system enough to run with virtual memory.
912 * On the i386 this is called after mapping has already been enabled
913 * and just syncs the pmap module with what has already been done.
914 * [We can't call it easily with mapping off since the kernel is not
915 * mapped with PA == VA, hence we would have to relocate every address
916 * from the linked base (virtual) address "KERNBASE" to the actual
917 * (physical) address starting relative to 0]
919 void
920 pmap_bootstrap(vm_paddr_t *firstaddr)
922 vm_offset_t va;
923 pt_entry_t *pte;
924 int i;
926 KvaStart = VM_MIN_KERNEL_ADDRESS;
927 KvaEnd = VM_MAX_KERNEL_ADDRESS;
928 KvaSize = KvaEnd - KvaStart;
930 avail_start = *firstaddr;
933 * Create an initial set of page tables to run the kernel in.
935 create_pagetables(firstaddr);
937 virtual2_start = KvaStart;
938 virtual2_end = PTOV_OFFSET;
940 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
941 virtual_start = pmap_kmem_choose(virtual_start);
943 virtual_end = VM_MAX_KERNEL_ADDRESS;
945 /* XXX do %cr0 as well */
946 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
947 load_cr3(KPML4phys);
950 * Initialize protection array.
952 i386_protection_init();
955 * The kernel's pmap is statically allocated so we don't have to use
956 * pmap_create, which is unlikely to work correctly at this part of
957 * the boot sequence (XXX and which no longer exists).
959 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
960 kernel_pmap.pm_count = 1;
961 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
962 RB_INIT(&kernel_pmap.pm_pvroot);
963 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
964 for (i = 0; i < PM_PLACEMARKS; ++i)
965 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
968 * Reserve some special page table entries/VA space for temporary
969 * mapping of pages.
971 #define SYSMAP(c, p, v, n) \
972 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
974 va = virtual_start;
975 pte = vtopte(va);
978 * CMAP1/CMAP2 are used for zeroing and copying pages.
980 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
983 * Crashdump maps.
985 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
988 * ptvmmap is used for reading arbitrary physical pages via
989 * /dev/mem.
991 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
994 * msgbufp is used to map the system message buffer.
995 * XXX msgbufmap is not used.
997 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
998 atop(round_page(MSGBUF_SIZE)))
1000 virtual_start = va;
1001 virtual_start = pmap_kmem_choose(virtual_start);
1003 *CMAP1 = 0;
1006 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1007 * cases rather then invl1pg. Actually, I don't even know why it
1008 * works under UP because self-referential page table mappings
1010 // pgeflag = 0;
1013 * Initialize the 4MB page size flag
1015 // pseflag = 0;
1017 * The 4MB page version of the initial
1018 * kernel page mapping.
1020 pdir4mb = 0;
1022 #if !defined(DISABLE_PSE)
1023 if (cpu_feature & CPUID_PSE) {
1024 pt_entry_t ptditmp;
1026 * Note that we have enabled PSE mode
1028 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1029 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1030 ptditmp &= ~(NBPDR - 1);
1031 ptditmp |= pmap_bits_default[PG_V_IDX] |
1032 pmap_bits_default[PG_RW_IDX] |
1033 pmap_bits_default[PG_PS_IDX] |
1034 pmap_bits_default[PG_U_IDX];
1035 // pgeflag;
1036 pdir4mb = ptditmp;
1038 #endif
1039 cpu_invltlb();
1041 /* Initialize the PAT MSR */
1042 pmap_init_pat();
1043 pmap_pinit_defaults(&kernel_pmap);
1045 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1046 &pmap_fast_kernel_cpusync);
1051 * Setup the PAT MSR.
1053 void
1054 pmap_init_pat(void)
1056 uint64_t pat_msr;
1057 u_long cr0, cr4;
1060 * Default values mapping PATi,PCD,PWT bits at system reset.
1061 * The default values effectively ignore the PATi bit by
1062 * repeating the encodings for 0-3 in 4-7, and map the PCD
1063 * and PWT bit combinations to the expected PAT types.
1065 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1066 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1067 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1068 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1069 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1070 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1071 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1072 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1073 pat_pte_index[PAT_WRITE_BACK] = 0;
1074 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1075 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1076 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1077 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1078 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1080 if (cpu_feature & CPUID_PAT) {
1082 * If we support the PAT then set-up entries for
1083 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1084 * 5 and 6.
1086 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1087 PAT_VALUE(5, PAT_WRITE_PROTECTED);
1088 pat_msr = (pat_msr & ~PAT_MASK(6)) |
1089 PAT_VALUE(6, PAT_WRITE_COMBINING);
1090 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1091 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1094 * Then enable the PAT
1097 /* Disable PGE. */
1098 cr4 = rcr4();
1099 load_cr4(cr4 & ~CR4_PGE);
1101 /* Disable caches (CD = 1, NW = 0). */
1102 cr0 = rcr0();
1103 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1105 /* Flushes caches and TLBs. */
1106 wbinvd();
1107 cpu_invltlb();
1109 /* Update PAT and index table. */
1110 wrmsr(MSR_PAT, pat_msr);
1112 /* Flush caches and TLBs again. */
1113 wbinvd();
1114 cpu_invltlb();
1116 /* Restore caches and PGE. */
1117 load_cr0(cr0);
1118 load_cr4(cr4);
1119 PatMsr = pat_msr;
1124 * Set 4mb pdir for mp startup
1126 void
1127 pmap_set_opt(void)
1129 if (cpu_feature & CPUID_PSE) {
1130 load_cr4(rcr4() | CR4_PSE);
1131 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1132 cpu_invltlb();
1138 * Initialize the pmap module.
1139 * Called by vm_init, to initialize any structures that the pmap
1140 * system needs to map virtual memory.
1141 * pmap_init has been enhanced to support in a fairly consistant
1142 * way, discontiguous physical memory.
1144 void
1145 pmap_init(void)
1147 int i;
1148 int initial_pvs;
1151 * Allocate memory for random pmap data structures. Includes the
1152 * pv_head_table.
1155 for (i = 0; i < vm_page_array_size; i++) {
1156 vm_page_t m;
1158 m = &vm_page_array[i];
1159 TAILQ_INIT(&m->md.pv_list);
1163 * init the pv free list
1165 initial_pvs = vm_page_array_size;
1166 if (initial_pvs < MINPV)
1167 initial_pvs = MINPV;
1168 pvzone = &pvzone_store;
1169 pvinit = (void *)kmem_alloc(&kernel_map,
1170 initial_pvs * sizeof (struct pv_entry),
1171 VM_SUBSYS_PVENTRY);
1172 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1173 pvinit, initial_pvs);
1176 * Now it is safe to enable pv_table recording.
1178 pmap_initialized = TRUE;
1182 * Initialize the address space (zone) for the pv_entries. Set a
1183 * high water mark so that the system can recover from excessive
1184 * numbers of pv entries.
1186 void
1187 pmap_init2(void)
1189 int shpgperproc = PMAP_SHPGPERPROC;
1190 int entry_max;
1192 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1193 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1194 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1195 pv_entry_high_water = 9 * (pv_entry_max / 10);
1198 * Subtract out pages already installed in the zone (hack)
1200 entry_max = pv_entry_max - vm_page_array_size;
1201 if (entry_max <= 0)
1202 entry_max = 1;
1204 zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1207 * Enable dynamic deletion of empty higher-level page table pages
1208 * by default only if system memory is < 8GB (use 7GB for slop).
1209 * This can save a little memory, but imposes significant
1210 * performance overhead for things like bulk builds, and for programs
1211 * which do a lot of memory mapping and memory unmapping.
1213 if (pmap_dynamic_delete < 0) {
1214 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1215 pmap_dynamic_delete = 1;
1216 else
1217 pmap_dynamic_delete = 0;
1222 * Typically used to initialize a fictitious page by vm/device_pager.c
1224 void
1225 pmap_page_init(struct vm_page *m)
1227 vm_page_init(m);
1228 TAILQ_INIT(&m->md.pv_list);
1231 /***************************************************
1232 * Low level helper routines.....
1233 ***************************************************/
1236 * this routine defines the region(s) of memory that should
1237 * not be tested for the modified bit.
1239 static __inline
1241 pmap_track_modified(vm_pindex_t pindex)
1243 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1244 if ((va < clean_sva) || (va >= clean_eva))
1245 return 1;
1246 else
1247 return 0;
1251 * Extract the physical page address associated with the map/VA pair.
1252 * The page must be wired for this to work reliably.
1254 vm_paddr_t
1255 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1257 vm_paddr_t rtval;
1258 pv_entry_t pt_pv;
1259 pt_entry_t *ptep;
1261 rtval = 0;
1262 if (va >= VM_MAX_USER_ADDRESS) {
1264 * Kernel page directories might be direct-mapped and
1265 * there is typically no PV tracking of pte's
1267 pd_entry_t *pt;
1269 pt = pmap_pt(pmap, va);
1270 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1271 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1272 rtval = *pt & PG_PS_FRAME;
1273 rtval |= va & PDRMASK;
1274 } else {
1275 ptep = pmap_pt_to_pte(*pt, va);
1276 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1277 rtval = *ptep & PG_FRAME;
1278 rtval |= va & PAGE_MASK;
1282 if (handlep)
1283 *handlep = NULL;
1284 } else {
1286 * User pages currently do not direct-map the page directory
1287 * and some pages might not used managed PVs. But all PT's
1288 * will have a PV.
1290 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1291 if (pt_pv) {
1292 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1293 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1294 rtval = *ptep & PG_FRAME;
1295 rtval |= va & PAGE_MASK;
1297 if (handlep)
1298 *handlep = pt_pv; /* locked until done */
1299 else
1300 pv_put (pt_pv);
1301 } else if (handlep) {
1302 *handlep = NULL;
1305 return rtval;
1308 void
1309 pmap_extract_done(void *handle)
1311 if (handle)
1312 pv_put((pv_entry_t)handle);
1316 * Similar to extract but checks protections, SMP-friendly short-cut for
1317 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1318 * fall-through to the real fault code. Does not work with HVM page
1319 * tables.
1321 * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1323 * If busyp is not NULL and this function sets *busyp non-zero, the returned
1324 * page is busied (and not held).
1326 * If busyp is not NULL and this function sets *busyp to zero, the returned
1327 * page is held (and not busied).
1329 * If VM_PROT_WRITE or VM_PROT_OVERRIDE_WRITE is set in prot, and the pte
1330 * is already writable, the returned page will be dirtied. If the pte
1331 * is not already writable NULL is returned. In otherwords, if either
1332 * bit is set and a vm_page_t is returned, any COW will already have happened
1333 * and that page can be written by the caller.
1335 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1336 * OR WRITING AS-IS.
1338 vm_page_t
1339 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1341 if (pmap &&
1342 va < VM_MAX_USER_ADDRESS &&
1343 (pmap->pm_flags & PMAP_HVM) == 0) {
1344 pv_entry_t pt_pv;
1345 pv_entry_t pte_pv;
1346 pt_entry_t *ptep;
1347 pt_entry_t req;
1348 vm_page_t m;
1349 int error;
1351 req = pmap->pmap_bits[PG_V_IDX] |
1352 pmap->pmap_bits[PG_U_IDX];
1353 if (prot & (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE))
1354 req |= pmap->pmap_bits[PG_RW_IDX];
1356 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1357 if (pt_pv == NULL)
1358 return (NULL);
1359 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1360 if ((*ptep & req) != req) {
1361 pv_put(pt_pv);
1362 return (NULL);
1364 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1365 if (pte_pv && error == 0) {
1366 m = pte_pv->pv_m;
1367 if (prot & (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE)) {
1368 /* interlocked by presence of pv_entry */
1369 vm_page_dirty(m);
1371 if (busyp) {
1372 if (prot & VM_PROT_WRITE) {
1373 if (vm_page_busy_try(m, TRUE))
1374 m = NULL;
1375 *busyp = 1;
1376 } else {
1377 vm_page_hold(m);
1378 *busyp = 0;
1380 } else {
1381 vm_page_hold(m);
1383 pv_put(pte_pv);
1384 } else if (pte_pv) {
1385 pv_drop(pte_pv);
1386 m = NULL;
1387 } else {
1388 /* error, since we didn't request a placemarker */
1389 m = NULL;
1391 pv_put(pt_pv);
1392 return(m);
1393 } else {
1394 return(NULL);
1399 * Extract the physical page address associated kernel virtual address.
1401 vm_paddr_t
1402 pmap_kextract(vm_offset_t va)
1404 pd_entry_t pt; /* pt entry in pd */
1405 vm_paddr_t pa;
1407 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1408 pa = DMAP_TO_PHYS(va);
1409 } else {
1410 pt = *vtopt(va);
1411 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1412 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1413 } else {
1415 * Beware of a concurrent promotion that changes the
1416 * PDE at this point! For example, vtopte() must not
1417 * be used to access the PTE because it would use the
1418 * new PDE. It is, however, safe to use the old PDE
1419 * because the page table page is preserved by the
1420 * promotion.
1422 pa = *pmap_pt_to_pte(pt, va);
1423 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1426 return pa;
1429 /***************************************************
1430 * Low level mapping routines.....
1431 ***************************************************/
1434 * Routine: pmap_kenter
1435 * Function:
1436 * Add a wired page to the KVA
1437 * NOTE! note that in order for the mapping to take effect -- you
1438 * should do an invltlb after doing the pmap_kenter().
1440 void
1441 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1443 pt_entry_t *ptep;
1444 pt_entry_t npte;
1446 npte = pa |
1447 kernel_pmap.pmap_bits[PG_RW_IDX] |
1448 kernel_pmap.pmap_bits[PG_V_IDX];
1449 // pgeflag;
1450 ptep = vtopte(va);
1451 #if 1
1452 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1453 #else
1454 /* FUTURE */
1455 if (*ptep)
1456 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1457 else
1458 *ptep = npte;
1459 #endif
1463 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1464 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1465 * (caller can conditionalize calling smp_invltlb()).
1468 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1470 pt_entry_t *ptep;
1471 pt_entry_t npte;
1472 int res;
1474 npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1475 kernel_pmap.pmap_bits[PG_V_IDX];
1476 // npte |= pgeflag;
1477 ptep = vtopte(va);
1478 #if 1
1479 res = 1;
1480 #else
1481 /* FUTURE */
1482 res = (*ptep != 0);
1483 #endif
1484 atomic_swap_long(ptep, npte);
1485 cpu_invlpg((void *)va);
1487 return res;
1491 * Enter addresses into the kernel pmap but don't bother
1492 * doing any tlb invalidations. Caller will do a rollup
1493 * invalidation via pmap_rollup_inval().
1496 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1498 pt_entry_t *ptep;
1499 pt_entry_t npte;
1500 int res;
1502 npte = pa |
1503 kernel_pmap.pmap_bits[PG_RW_IDX] |
1504 kernel_pmap.pmap_bits[PG_V_IDX];
1505 // pgeflag;
1506 ptep = vtopte(va);
1507 #if 1
1508 res = 1;
1509 #else
1510 /* FUTURE */
1511 res = (*ptep != 0);
1512 #endif
1513 atomic_swap_long(ptep, npte);
1514 cpu_invlpg((void *)va);
1516 return res;
1520 * remove a page from the kernel pagetables
1522 void
1523 pmap_kremove(vm_offset_t va)
1525 pt_entry_t *ptep;
1527 ptep = vtopte(va);
1528 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1531 void
1532 pmap_kremove_quick(vm_offset_t va)
1534 pt_entry_t *ptep;
1536 ptep = vtopte(va);
1537 (void)pte_load_clear(ptep);
1538 cpu_invlpg((void *)va);
1542 * Remove addresses from the kernel pmap but don't bother
1543 * doing any tlb invalidations. Caller will do a rollup
1544 * invalidation via pmap_rollup_inval().
1546 void
1547 pmap_kremove_noinval(vm_offset_t va)
1549 pt_entry_t *ptep;
1551 ptep = vtopte(va);
1552 (void)pte_load_clear(ptep);
1556 * XXX these need to be recoded. They are not used in any critical path.
1558 void
1559 pmap_kmodify_rw(vm_offset_t va)
1561 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1562 cpu_invlpg((void *)va);
1565 /* NOT USED
1566 void
1567 pmap_kmodify_nc(vm_offset_t va)
1569 atomic_set_long(vtopte(va), PG_N);
1570 cpu_invlpg((void *)va);
1575 * Used to map a range of physical addresses into kernel virtual
1576 * address space during the low level boot, typically to map the
1577 * dump bitmap, message buffer, and vm_page_array.
1579 * These mappings are typically made at some pointer after the end of the
1580 * kernel text+data.
1582 * We could return PHYS_TO_DMAP(start) here and not allocate any
1583 * via (*virtp), but then kmem from userland and kernel dumps won't
1584 * have access to the related pointers.
1586 vm_offset_t
1587 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1589 vm_offset_t va;
1590 vm_offset_t va_start;
1592 /*return PHYS_TO_DMAP(start);*/
1594 va_start = *virtp;
1595 va = va_start;
1597 while (start < end) {
1598 pmap_kenter_quick(va, start);
1599 va += PAGE_SIZE;
1600 start += PAGE_SIZE;
1602 *virtp = va;
1603 return va_start;
1606 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1609 * Remove the specified set of pages from the data and instruction caches.
1611 * In contrast to pmap_invalidate_cache_range(), this function does not
1612 * rely on the CPU's self-snoop feature, because it is intended for use
1613 * when moving pages into a different cache domain.
1615 void
1616 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1618 vm_offset_t daddr, eva;
1619 int i;
1621 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1622 (cpu_feature & CPUID_CLFSH) == 0)
1623 wbinvd();
1624 else {
1625 cpu_mfence();
1626 for (i = 0; i < count; i++) {
1627 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1628 eva = daddr + PAGE_SIZE;
1629 for (; daddr < eva; daddr += cpu_clflush_line_size)
1630 clflush(daddr);
1632 cpu_mfence();
1636 void
1637 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1639 KASSERT((sva & PAGE_MASK) == 0,
1640 ("pmap_invalidate_cache_range: sva not page-aligned"));
1641 KASSERT((eva & PAGE_MASK) == 0,
1642 ("pmap_invalidate_cache_range: eva not page-aligned"));
1644 if (cpu_feature & CPUID_SS) {
1645 ; /* If "Self Snoop" is supported, do nothing. */
1646 } else {
1647 /* Globally invalidate caches */
1648 cpu_wbinvd_on_all_cpus();
1653 * Invalidate the specified range of virtual memory on all cpus associated
1654 * with the pmap.
1656 void
1657 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1659 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1663 * Add a list of wired pages to the kva. This routine is used for temporary
1664 * kernel mappings such as those found in buffer cache buffer. Page
1665 * modifications and accesses are not tracked or recorded.
1667 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1668 * semantics as previous mappings may have been zerod without any
1669 * invalidation.
1671 * The page *must* be wired.
1673 static __inline void
1674 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
1676 vm_offset_t end_va;
1677 vm_offset_t va;
1679 end_va = beg_va + count * PAGE_SIZE;
1681 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1682 pt_entry_t pte;
1683 pt_entry_t *ptep;
1685 ptep = vtopte(va);
1686 pte = VM_PAGE_TO_PHYS(*m) |
1687 kernel_pmap.pmap_bits[PG_RW_IDX] |
1688 kernel_pmap.pmap_bits[PG_V_IDX] |
1689 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1690 // pgeflag;
1691 atomic_swap_long(ptep, pte);
1692 m++;
1694 if (doinval)
1695 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1698 void
1699 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1701 _pmap_qenter(beg_va, m, count, 1);
1704 void
1705 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1707 _pmap_qenter(beg_va, m, count, 0);
1711 * This routine jerks page mappings from the kernel -- it is meant only
1712 * for temporary mappings such as those found in buffer cache buffers.
1713 * No recording modified or access status occurs.
1715 * MPSAFE, INTERRUPT SAFE (cluster callback)
1717 void
1718 pmap_qremove(vm_offset_t beg_va, int count)
1720 vm_offset_t end_va;
1721 vm_offset_t va;
1723 end_va = beg_va + count * PAGE_SIZE;
1725 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1726 pt_entry_t *pte;
1728 pte = vtopte(va);
1729 (void)pte_load_clear(pte);
1730 cpu_invlpg((void *)va);
1732 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1736 * This routine removes temporary kernel mappings, only invalidating them
1737 * on the current cpu. It should only be used under carefully controlled
1738 * conditions.
1740 void
1741 pmap_qremove_quick(vm_offset_t beg_va, int count)
1743 vm_offset_t end_va;
1744 vm_offset_t va;
1746 end_va = beg_va + count * PAGE_SIZE;
1748 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1749 pt_entry_t *pte;
1751 pte = vtopte(va);
1752 (void)pte_load_clear(pte);
1753 cpu_invlpg((void *)va);
1758 * This routine removes temporary kernel mappings *without* invalidating
1759 * the TLB. It can only be used on permanent kva reservations such as those
1760 * found in buffer cache buffers, under carefully controlled circumstances.
1762 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1763 * (pmap_qenter() does unconditional invalidation).
1765 void
1766 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1768 vm_offset_t end_va;
1769 vm_offset_t va;
1771 end_va = beg_va + count * PAGE_SIZE;
1773 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1774 pt_entry_t *pte;
1776 pte = vtopte(va);
1777 (void)pte_load_clear(pte);
1782 * Create a new thread and optionally associate it with a (new) process.
1783 * NOTE! the new thread's cpu may not equal the current cpu.
1785 void
1786 pmap_init_thread(thread_t td)
1788 /* enforce pcb placement & alignment */
1789 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1790 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1791 td->td_savefpu = &td->td_pcb->pcb_save;
1792 td->td_sp = (char *)td->td_pcb; /* no -16 */
1796 * This routine directly affects the fork perf for a process.
1798 void
1799 pmap_init_proc(struct proc *p)
1803 static void
1804 pmap_pinit_defaults(struct pmap *pmap)
1806 bcopy(pmap_bits_default, pmap->pmap_bits,
1807 sizeof(pmap_bits_default));
1808 bcopy(protection_codes, pmap->protection_codes,
1809 sizeof(protection_codes));
1810 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1811 sizeof(pat_pte_index));
1812 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1813 pmap->copyinstr = std_copyinstr;
1814 pmap->copyin = std_copyin;
1815 pmap->copyout = std_copyout;
1816 pmap->fubyte = std_fubyte;
1817 pmap->subyte = std_subyte;
1818 pmap->fuword32 = std_fuword32;
1819 pmap->fuword64 = std_fuword64;
1820 pmap->suword32 = std_suword32;
1821 pmap->suword64 = std_suword64;
1822 pmap->swapu32 = std_swapu32;
1823 pmap->swapu64 = std_swapu64;
1826 * Initialize pmap0/vmspace0.
1828 * On architectures where the kernel pmap is not integrated into the user
1829 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1830 * kernel_pmap should be used to directly access the kernel_pmap.
1832 void
1833 pmap_pinit0(struct pmap *pmap)
1835 int i;
1837 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1838 pmap->pm_count = 1;
1839 CPUMASK_ASSZERO(pmap->pm_active);
1840 pmap->pm_pvhint = NULL;
1841 RB_INIT(&pmap->pm_pvroot);
1842 spin_init(&pmap->pm_spin, "pmapinit0");
1843 for (i = 0; i < PM_PLACEMARKS; ++i)
1844 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1845 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1846 pmap_pinit_defaults(pmap);
1850 * Initialize a preallocated and zeroed pmap structure,
1851 * such as one in a vmspace structure.
1853 static void
1854 pmap_pinit_simple(struct pmap *pmap)
1856 int i;
1859 * Misc initialization
1861 pmap->pm_count = 1;
1862 CPUMASK_ASSZERO(pmap->pm_active);
1863 pmap->pm_pvhint = NULL;
1864 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1866 pmap_pinit_defaults(pmap);
1869 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1870 * for this).
1872 if (pmap->pm_pmlpv == NULL) {
1873 RB_INIT(&pmap->pm_pvroot);
1874 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1875 spin_init(&pmap->pm_spin, "pmapinitsimple");
1876 for (i = 0; i < PM_PLACEMARKS; ++i)
1877 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1881 void
1882 pmap_pinit(struct pmap *pmap)
1884 pv_entry_t pv;
1885 int j;
1887 if (pmap->pm_pmlpv) {
1888 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1889 pmap_puninit(pmap);
1893 pmap_pinit_simple(pmap);
1894 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1897 * No need to allocate page table space yet but we do need a valid
1898 * page directory table.
1900 if (pmap->pm_pml4 == NULL) {
1901 pmap->pm_pml4 =
1902 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1903 PAGE_SIZE,
1904 VM_SUBSYS_PML4);
1908 * Allocate the page directory page, which wires it even though
1909 * it isn't being entered into some higher level page table (it
1910 * being the highest level). If one is already cached we don't
1911 * have to do anything.
1913 if ((pv = pmap->pm_pmlpv) == NULL) {
1914 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1915 pmap->pm_pmlpv = pv;
1916 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1917 VM_PAGE_TO_PHYS(pv->pv_m));
1918 pv_put(pv);
1921 * Install DMAP and KMAP.
1923 for (j = 0; j < NDMPML4E; ++j) {
1924 pmap->pm_pml4[DMPML4I + j] =
1925 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1926 pmap->pmap_bits[PG_RW_IDX] |
1927 pmap->pmap_bits[PG_V_IDX] |
1928 pmap->pmap_bits[PG_U_IDX];
1930 pmap->pm_pml4[KPML4I] = KPDPphys |
1931 pmap->pmap_bits[PG_RW_IDX] |
1932 pmap->pmap_bits[PG_V_IDX] |
1933 pmap->pmap_bits[PG_U_IDX];
1936 * install self-referential address mapping entry
1938 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1939 pmap->pmap_bits[PG_V_IDX] |
1940 pmap->pmap_bits[PG_RW_IDX] |
1941 pmap->pmap_bits[PG_A_IDX] |
1942 pmap->pmap_bits[PG_M_IDX];
1943 } else {
1944 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1945 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1947 KKASSERT(pmap->pm_pml4[255] == 0);
1948 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1949 KKASSERT(pv->pv_entry.rbe_left == NULL);
1950 KKASSERT(pv->pv_entry.rbe_right == NULL);
1954 * Clean up a pmap structure so it can be physically freed. This routine
1955 * is called by the vmspace dtor function. A great deal of pmap data is
1956 * left passively mapped to improve vmspace management so we have a bit
1957 * of cleanup work to do here.
1959 void
1960 pmap_puninit(pmap_t pmap)
1962 pv_entry_t pv;
1963 vm_page_t p;
1965 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1966 if ((pv = pmap->pm_pmlpv) != NULL) {
1967 if (pv_hold_try(pv) == 0)
1968 pv_lock(pv);
1969 KKASSERT(pv == pmap->pm_pmlpv);
1970 p = pmap_remove_pv_page(pv);
1971 pv_free(pv, NULL);
1972 pv = NULL; /* safety */
1973 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1974 vm_page_busy_wait(p, FALSE, "pgpun");
1975 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1976 vm_page_unwire(p, 0);
1977 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1980 * XXX eventually clean out PML4 static entries and
1981 * use vm_page_free_zero()
1983 vm_page_free(p);
1984 pmap->pm_pmlpv = NULL;
1986 if (pmap->pm_pml4) {
1987 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1988 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1989 pmap->pm_pml4 = NULL;
1991 KKASSERT(pmap->pm_stats.resident_count == 0);
1992 KKASSERT(pmap->pm_stats.wired_count == 0);
1996 * This function is now unused (used to add the pmap to the pmap_list)
1998 void
1999 pmap_pinit2(struct pmap *pmap)
2004 * This routine is called when various levels in the page table need to
2005 * be populated. This routine cannot fail.
2007 * This function returns two locked pv_entry's, one representing the
2008 * requested pv and one representing the requested pv's parent pv. If
2009 * an intermediate page table does not exist it will be created, mapped,
2010 * wired, and the parent page table will be given an additional hold
2011 * count representing the presence of the child pv_entry.
2013 static
2014 pv_entry_t
2015 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2017 pt_entry_t *ptep;
2018 pv_entry_t pv;
2019 pv_entry_t pvp;
2020 pt_entry_t v;
2021 vm_pindex_t pt_pindex;
2022 vm_page_t m;
2023 int isnew;
2024 int ispt;
2027 * If the pv already exists and we aren't being asked for the
2028 * parent page table page we can just return it. A locked+held pv
2029 * is returned. The pv will also have a second hold related to the
2030 * pmap association that we don't have to worry about.
2032 ispt = 0;
2033 pv = pv_alloc(pmap, ptepindex, &isnew);
2034 if (isnew == 0 && pvpp == NULL)
2035 return(pv);
2038 * Special case terminal PVs. These are not page table pages so
2039 * no vm_page is allocated (the caller supplied the vm_page). If
2040 * pvpp is non-NULL we are being asked to also removed the pt_pv
2041 * for this pv.
2043 * Note that pt_pv's are only returned for user VAs. We assert that
2044 * a pt_pv is not being requested for kernel VAs. The kernel
2045 * pre-wires all higher-level page tables so don't overload managed
2046 * higher-level page tables on top of it!
2048 if (ptepindex < pmap_pt_pindex(0)) {
2049 if (ptepindex >= NUPTE_USER) {
2050 /* kernel manages this manually for KVM */
2051 KKASSERT(pvpp == NULL);
2052 } else {
2053 KKASSERT(pvpp != NULL);
2054 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2055 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2056 if (isnew)
2057 vm_page_wire_quick(pvp->pv_m);
2058 *pvpp = pvp;
2060 return(pv);
2064 * The kernel never uses managed PT/PD/PDP pages.
2066 KKASSERT(pmap != &kernel_pmap);
2069 * Non-terminal PVs allocate a VM page to represent the page table,
2070 * so we have to resolve pvp and calculate ptepindex for the pvp
2071 * and then for the page table entry index in the pvp for
2072 * fall-through.
2074 if (ptepindex < pmap_pd_pindex(0)) {
2076 * pv is PT, pvp is PD
2078 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2079 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2080 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2083 * PT index in PD
2085 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2086 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2087 ispt = 1;
2088 } else if (ptepindex < pmap_pdp_pindex(0)) {
2090 * pv is PD, pvp is PDP
2092 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2093 * the PD.
2095 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2096 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2098 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2099 KKASSERT(pvpp == NULL);
2100 pvp = NULL;
2101 } else {
2102 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2106 * PD index in PDP
2108 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2109 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2110 } else if (ptepindex < pmap_pml4_pindex()) {
2112 * pv is PDP, pvp is the root pml4 table
2114 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2117 * PDP index in PML4
2119 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2120 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2121 } else {
2123 * pv represents the top-level PML4, there is no parent.
2125 pvp = NULL;
2128 if (isnew == 0)
2129 goto notnew;
2132 * (isnew) is TRUE, pv is not terminal.
2134 * (1) Add a wire count to the parent page table (pvp).
2135 * (2) Allocate a VM page for the page table.
2136 * (3) Enter the VM page into the parent page table.
2138 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2140 if (pvp)
2141 vm_page_wire_quick(pvp->pv_m);
2143 for (;;) {
2144 m = vm_page_alloc(NULL, pv->pv_pindex,
2145 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2146 VM_ALLOC_INTERRUPT);
2147 if (m)
2148 break;
2149 vm_wait(0);
2151 vm_page_wire(m); /* wire for mapping in parent */
2152 vm_page_unmanage(m); /* m must be spinunlocked */
2153 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2154 m->valid = VM_PAGE_BITS_ALL;
2156 vm_page_spin_lock(m);
2157 pmap_page_stats_adding(m);
2158 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2159 pv->pv_m = m;
2160 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2161 vm_page_spin_unlock(m);
2164 * (isnew) is TRUE, pv is not terminal.
2166 * Wire the page into pvp. Bump the resident_count for the pmap.
2167 * There is no pvp for the top level, address the pm_pml4[] array
2168 * directly.
2170 * If the caller wants the parent we return it, otherwise
2171 * we just put it away.
2173 * No interlock is needed for pte 0 -> non-zero.
2175 * In the situation where *ptep is valid we might have an unmanaged
2176 * page table page shared from another page table which we need to
2177 * unshare before installing our private page table page.
2179 if (pvp) {
2180 v = VM_PAGE_TO_PHYS(m) |
2181 (pmap->pmap_bits[PG_U_IDX] |
2182 pmap->pmap_bits[PG_RW_IDX] |
2183 pmap->pmap_bits[PG_V_IDX] |
2184 pmap->pmap_bits[PG_A_IDX] |
2185 pmap->pmap_bits[PG_M_IDX]);
2186 ptep = pv_pte_lookup(pvp, ptepindex);
2187 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2188 pt_entry_t pte;
2190 if (ispt == 0) {
2191 panic("pmap_allocpte: unexpected pte %p/%d",
2192 pvp, (int)ptepindex);
2194 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2195 if (vm_page_unwire_quick(
2196 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2197 panic("pmap_allocpte: shared pgtable "
2198 "pg bad wirecount");
2200 } else {
2201 pt_entry_t pte;
2203 pte = atomic_swap_long(ptep, v);
2204 if (pte != 0) {
2205 kprintf("install pgtbl mixup 0x%016jx "
2206 "old/new 0x%016jx/0x%016jx\n",
2207 (intmax_t)ptepindex, pte, v);
2211 vm_page_wakeup(m);
2214 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2216 notnew:
2217 if (pvp) {
2218 KKASSERT(pvp->pv_m != NULL);
2219 ptep = pv_pte_lookup(pvp, ptepindex);
2220 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2221 (pmap->pmap_bits[PG_U_IDX] |
2222 pmap->pmap_bits[PG_RW_IDX] |
2223 pmap->pmap_bits[PG_V_IDX] |
2224 pmap->pmap_bits[PG_A_IDX] |
2225 pmap->pmap_bits[PG_M_IDX]);
2226 if (*ptep != v) {
2227 kprintf("mismatched upper level pt %016jx/%016jx\n",
2228 *ptep, v);
2231 if (pvpp)
2232 *pvpp = pvp;
2233 else if (pvp)
2234 pv_put(pvp);
2235 return (pv);
2239 * This version of pmap_allocpte() checks for possible segment optimizations
2240 * that would allow page-table sharing. It can be called for terminal
2241 * page or page table page ptepindex's.
2243 * The function is called with page table page ptepindex's for fictitious
2244 * and unmanaged terminal pages. That is, we don't want to allocate a
2245 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2246 * for this case.
2248 * This function can return a pv and *pvpp associated with the passed in pmap
2249 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2250 * an unmanaged page table page will be entered into the pass in pmap.
2252 static
2253 pv_entry_t
2254 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2255 vm_map_entry_t entry, vm_offset_t va)
2257 vm_object_t object;
2258 pmap_t obpmap;
2259 pmap_t *obpmapp;
2260 vm_offset_t b;
2261 pv_entry_t pte_pv; /* in original or shared pmap */
2262 pv_entry_t pt_pv; /* in original or shared pmap */
2263 pv_entry_t proc_pd_pv; /* in original pmap */
2264 pv_entry_t proc_pt_pv; /* in original pmap */
2265 pv_entry_t xpv; /* PT in shared pmap */
2266 pd_entry_t *pt; /* PT entry in PD of original pmap */
2267 pd_entry_t opte; /* contents of *pt */
2268 pd_entry_t npte; /* contents of *pt */
2269 vm_page_t m;
2272 * Basic tests, require a non-NULL vm_map_entry, require proper
2273 * alignment and type for the vm_map_entry, require that the
2274 * underlying object already be allocated.
2276 * We allow almost any type of object to use this optimization.
2277 * The object itself does NOT have to be sized to a multiple of the
2278 * segment size, but the memory mapping does.
2280 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2281 * won't work as expected.
2283 if (entry == NULL ||
2284 pmap_mmu_optimize == 0 || /* not enabled */
2285 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2286 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2287 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2288 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2289 entry->object.vm_object == NULL || /* needs VM object */
2290 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2291 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2292 (entry->offset & SEG_MASK) || /* must be aligned */
2293 (entry->start & SEG_MASK)) {
2294 return(pmap_allocpte(pmap, ptepindex, pvpp));
2298 * Make sure the full segment can be represented.
2300 b = va & ~(vm_offset_t)SEG_MASK;
2301 if (b < entry->start || b + SEG_SIZE > entry->end)
2302 return(pmap_allocpte(pmap, ptepindex, pvpp));
2305 * If the full segment can be represented dive the VM object's
2306 * shared pmap, allocating as required.
2308 object = entry->object.vm_object;
2310 if (entry->protection & VM_PROT_WRITE)
2311 obpmapp = &object->md.pmap_rw;
2312 else
2313 obpmapp = &object->md.pmap_ro;
2315 #ifdef PMAP_DEBUG2
2316 if (pmap_enter_debug > 0) {
2317 --pmap_enter_debug;
2318 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2319 "obpmapp %p %p\n",
2320 va, entry->protection, object,
2321 obpmapp, *obpmapp);
2322 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2323 entry, entry->start, entry->end);
2325 #endif
2328 * We allocate what appears to be a normal pmap but because portions
2329 * of this pmap are shared with other unrelated pmaps we have to
2330 * set pm_active to point to all cpus.
2332 * XXX Currently using pmap_spin to interlock the update, can't use
2333 * vm_object_hold/drop because the token might already be held
2334 * shared OR exclusive and we don't know.
2336 while ((obpmap = *obpmapp) == NULL) {
2337 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2338 pmap_pinit_simple(obpmap);
2339 pmap_pinit2(obpmap);
2340 spin_lock(&pmap_spin);
2341 if (*obpmapp != NULL) {
2343 * Handle race
2345 spin_unlock(&pmap_spin);
2346 pmap_release(obpmap);
2347 pmap_puninit(obpmap);
2348 kfree(obpmap, M_OBJPMAP);
2349 obpmap = *obpmapp; /* safety */
2350 } else {
2351 obpmap->pm_active = smp_active_mask;
2352 obpmap->pm_flags |= PMAP_SEGSHARED;
2353 *obpmapp = obpmap;
2354 spin_unlock(&pmap_spin);
2359 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2360 * pte/pt using the shared pmap from the object but also adjust
2361 * the process pmap's page table page as a side effect.
2365 * Resolve the terminal PTE and PT in the shared pmap. This is what
2366 * we will return. This is true if ptepindex represents a terminal
2367 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2368 * the PD.
2370 pt_pv = NULL;
2371 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2372 retry:
2373 if (ptepindex >= pmap_pt_pindex(0))
2374 xpv = pte_pv;
2375 else
2376 xpv = pt_pv;
2379 * Resolve the PD in the process pmap so we can properly share the
2380 * page table page. Lock order is bottom-up (leaf first)!
2382 * NOTE: proc_pt_pv can be NULL.
2384 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), NULL);
2385 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2386 #ifdef PMAP_DEBUG2
2387 if (pmap_enter_debug > 0) {
2388 --pmap_enter_debug;
2389 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2390 proc_pt_pv,
2391 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2392 proc_pd_pv,
2393 va);
2395 #endif
2398 * xpv is the page table page pv from the shared object
2399 * (for convenience), from above.
2401 * Calculate the pte value for the PT to load into the process PD.
2402 * If we have to change it we must properly dispose of the previous
2403 * entry.
2405 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2406 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2407 (pmap->pmap_bits[PG_U_IDX] |
2408 pmap->pmap_bits[PG_RW_IDX] |
2409 pmap->pmap_bits[PG_V_IDX] |
2410 pmap->pmap_bits[PG_A_IDX] |
2411 pmap->pmap_bits[PG_M_IDX]);
2414 * Dispose of previous page table page if it was local to the
2415 * process pmap. If the old pt is not empty we cannot dispose of it
2416 * until we clean it out. This case should not arise very often so
2417 * it is not optimized.
2419 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2420 * for the retry.
2422 if (proc_pt_pv) {
2423 pmap_inval_bulk_t bulk;
2425 if (proc_pt_pv->pv_m->wire_count != 1) {
2426 pv_put(proc_pd_pv);
2427 pv_put(proc_pt_pv);
2428 pmap_remove(pmap,
2429 va & ~(vm_offset_t)SEG_MASK,
2430 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2431 goto retry;
2435 * The release call will indirectly clean out *pt
2437 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2438 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2439 pmap_inval_bulk_flush(&bulk);
2440 proc_pt_pv = NULL;
2441 /* relookup */
2442 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2446 * Handle remaining cases.
2448 if (*pt == 0) {
2449 atomic_swap_long(pt, npte);
2450 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2451 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2452 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2453 } else if (*pt != npte) {
2454 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2456 #if 0
2457 opte = pte_load_clear(pt);
2458 KKASSERT(opte && opte != npte);
2460 *pt = npte;
2461 #endif
2462 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2465 * Clean up opte, bump the wire_count for the process
2466 * PD page representing the new entry if it was
2467 * previously empty.
2469 * If the entry was not previously empty and we have
2470 * a PT in the proc pmap then opte must match that
2471 * pt. The proc pt must be retired (this is done
2472 * later on in this procedure).
2474 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2475 * stays the same.
2477 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2478 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2479 if (vm_page_unwire_quick(m)) {
2480 panic("pmap_allocpte_seg: "
2481 "bad wire count %p",
2487 * The existing process page table was replaced and must be destroyed
2488 * here.
2490 if (proc_pd_pv)
2491 pv_put(proc_pd_pv);
2492 if (pvpp)
2493 *pvpp = pt_pv;
2494 else
2495 pv_put(pt_pv);
2497 return (pte_pv);
2501 * Release any resources held by the given physical map.
2503 * Called when a pmap initialized by pmap_pinit is being released. Should
2504 * only be called if the map contains no valid mappings.
2506 struct pmap_release_info {
2507 pmap_t pmap;
2508 int retry;
2509 pv_entry_t pvp;
2512 static int pmap_release_callback(pv_entry_t pv, void *data);
2514 void
2515 pmap_release(struct pmap *pmap)
2517 struct pmap_release_info info;
2519 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2520 ("pmap still active! %016jx",
2521 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2524 * There is no longer a pmap_list, if there were we would remove the
2525 * pmap from it here.
2529 * Pull pv's off the RB tree in order from low to high and release
2530 * each page.
2532 info.pmap = pmap;
2533 do {
2534 info.retry = 0;
2535 info.pvp = NULL;
2537 spin_lock(&pmap->pm_spin);
2538 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2539 pmap_release_callback, &info);
2540 spin_unlock(&pmap->pm_spin);
2542 if (info.pvp)
2543 pv_put(info.pvp);
2544 } while (info.retry);
2548 * One resident page (the pml4 page) should remain.
2549 * No wired pages should remain.
2551 #if 1
2552 if (pmap->pm_stats.resident_count !=
2553 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2554 pmap->pm_stats.wired_count != 0) {
2555 kprintf("fatal pmap problem - pmap %p flags %08x "
2556 "rescnt=%jd wirecnt=%jd\n",
2557 pmap,
2558 pmap->pm_flags,
2559 pmap->pm_stats.resident_count,
2560 pmap->pm_stats.wired_count);
2561 tsleep(pmap, 0, "DEAD", 0);
2563 #else
2564 KKASSERT(pmap->pm_stats.resident_count ==
2565 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2566 KKASSERT(pmap->pm_stats.wired_count == 0);
2567 #endif
2571 * Called from low to high. We must cache the proper parent pv so we
2572 * can adjust its wired count.
2574 static int
2575 pmap_release_callback(pv_entry_t pv, void *data)
2577 struct pmap_release_info *info = data;
2578 pmap_t pmap = info->pmap;
2579 vm_pindex_t pindex;
2580 int r;
2583 * Acquire a held and locked pv, check for release race
2585 pindex = pv->pv_pindex;
2586 if (info->pvp == pv) {
2587 spin_unlock(&pmap->pm_spin);
2588 info->pvp = NULL;
2589 } else if (pv_hold_try(pv)) {
2590 spin_unlock(&pmap->pm_spin);
2591 } else {
2592 spin_unlock(&pmap->pm_spin);
2593 pv_lock(pv);
2594 pv_put(pv);
2595 info->retry = 1;
2596 spin_lock(&pmap->pm_spin);
2598 return -1;
2600 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2602 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2604 * I am PTE, parent is PT
2606 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2607 pindex += NUPTE_TOTAL;
2608 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2610 * I am PT, parent is PD
2612 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2613 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2614 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2616 * I am PD, parent is PDP
2618 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2619 NPDPEPGSHIFT;
2620 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2621 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2623 * I am PDP, parent is PML4 (there's only one)
2625 #if 0
2626 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2627 NUPD_TOTAL) >> NPML4EPGSHIFT;
2628 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2629 #endif
2630 pindex = pmap_pml4_pindex();
2631 } else {
2633 * parent is NULL
2635 if (info->pvp) {
2636 pv_put(info->pvp);
2637 info->pvp = NULL;
2639 pindex = 0;
2641 if (pindex) {
2642 if (info->pvp && info->pvp->pv_pindex != pindex) {
2643 pv_put(info->pvp);
2644 info->pvp = NULL;
2646 if (info->pvp == NULL)
2647 info->pvp = pv_get(pmap, pindex, NULL);
2648 } else {
2649 if (info->pvp) {
2650 pv_put(info->pvp);
2651 info->pvp = NULL;
2654 r = pmap_release_pv(pv, info->pvp, NULL);
2655 spin_lock(&pmap->pm_spin);
2657 return(r);
2661 * Called with held (i.e. also locked) pv. This function will dispose of
2662 * the lock along with the pv.
2664 * If the caller already holds the locked parent page table for pv it
2665 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2666 * pass NULL for pvp.
2668 static int
2669 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2671 vm_page_t p;
2674 * The pmap is currently not spinlocked, pv is held+locked.
2675 * Remove the pv's page from its parent's page table. The
2676 * parent's page table page's wire_count will be decremented.
2678 * This will clean out the pte at any level of the page table.
2679 * If smp != 0 all cpus are affected.
2681 * Do not tear-down recursively, its faster to just let the
2682 * release run its course.
2684 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2687 * Terminal pvs are unhooked from their vm_pages. Because
2688 * terminal pages aren't page table pages they aren't wired
2689 * by us, so we have to be sure not to unwire them either.
2691 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2692 pmap_remove_pv_page(pv);
2693 goto skip;
2697 * We leave the top-level page table page cached, wired, and
2698 * mapped in the pmap until the dtor function (pmap_puninit())
2699 * gets called.
2701 * Since we are leaving the top-level pv intact we need
2702 * to break out of what would otherwise be an infinite loop.
2704 if (pv->pv_pindex == pmap_pml4_pindex()) {
2705 pv_put(pv);
2706 return(-1);
2710 * For page table pages (other than the top-level page),
2711 * remove and free the vm_page. The representitive mapping
2712 * removed above by pmap_remove_pv_pte() did not undo the
2713 * last wire_count so we have to do that as well.
2715 p = pmap_remove_pv_page(pv);
2716 vm_page_busy_wait(p, FALSE, "pmaprl");
2717 if (p->wire_count != 1) {
2718 kprintf("p->wire_count was %016lx %d\n",
2719 pv->pv_pindex, p->wire_count);
2721 KKASSERT(p->wire_count == 1);
2722 KKASSERT(p->flags & PG_UNMANAGED);
2724 vm_page_unwire(p, 0);
2725 KKASSERT(p->wire_count == 0);
2727 vm_page_free(p);
2728 skip:
2729 pv_free(pv, pvp);
2731 return 0;
2735 * This function will remove the pte associated with a pv from its parent.
2736 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2737 * invalidated.
2739 * The wire count will be dropped on the parent page table. The wire
2740 * count on the page being removed (pv->pv_m) from the parent page table
2741 * is NOT touched. Note that terminal pages will not have any additional
2742 * wire counts while page table pages will have at least one representing
2743 * the mapping, plus others representing sub-mappings.
2745 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2746 * pages and user page table and terminal pages.
2748 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2749 * be freshly allocated and not imply that the pte is managed. In this
2750 * case pv->pv_m should be NULL.
2752 * The pv must be locked. The pvp, if supplied, must be locked. All
2753 * supplied pv's will remain locked on return.
2755 * XXX must lock parent pv's if they exist to remove pte XXX
2757 static
2758 void
2759 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2760 int destroy)
2762 vm_pindex_t ptepindex = pv->pv_pindex;
2763 pmap_t pmap = pv->pv_pmap;
2764 vm_page_t p;
2765 int gotpvp = 0;
2767 KKASSERT(pmap);
2769 if (ptepindex == pmap_pml4_pindex()) {
2771 * We are the top level PML4E table, there is no parent.
2773 p = pmap->pm_pmlpv->pv_m;
2774 KKASSERT(pv->pv_m == p); /* debugging */
2775 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2777 * Remove a PDP page from the PML4E. This can only occur
2778 * with user page tables. We do not have to lock the
2779 * pml4 PV so just ignore pvp.
2781 vm_pindex_t pml4_pindex;
2782 vm_pindex_t pdp_index;
2783 pml4_entry_t *pdp;
2785 pdp_index = ptepindex - pmap_pdp_pindex(0);
2786 if (pvp == NULL) {
2787 pml4_pindex = pmap_pml4_pindex();
2788 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2789 KKASSERT(pvp);
2790 gotpvp = 1;
2793 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2794 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2795 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2796 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2797 KKASSERT(pv->pv_m == p); /* debugging */
2798 } else if (ptepindex >= pmap_pd_pindex(0)) {
2800 * Remove a PD page from the PDP
2802 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2803 * of a simple pmap because it stops at
2804 * the PD page.
2806 vm_pindex_t pdp_pindex;
2807 vm_pindex_t pd_index;
2808 pdp_entry_t *pd;
2810 pd_index = ptepindex - pmap_pd_pindex(0);
2812 if (pvp == NULL) {
2813 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2814 (pd_index >> NPML4EPGSHIFT);
2815 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2816 gotpvp = 1;
2819 if (pvp) {
2820 pd = pv_pte_lookup(pvp, pd_index &
2821 ((1ul << NPDPEPGSHIFT) - 1));
2822 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2823 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2824 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2825 } else {
2826 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2827 p = pv->pv_m; /* degenerate test later */
2829 KKASSERT(pv->pv_m == p); /* debugging */
2830 } else if (ptepindex >= pmap_pt_pindex(0)) {
2832 * Remove a PT page from the PD
2834 vm_pindex_t pd_pindex;
2835 vm_pindex_t pt_index;
2836 pd_entry_t *pt;
2838 pt_index = ptepindex - pmap_pt_pindex(0);
2840 if (pvp == NULL) {
2841 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2842 (pt_index >> NPDPEPGSHIFT);
2843 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2844 KKASSERT(pvp);
2845 gotpvp = 1;
2848 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2849 #if 0
2850 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2851 ("*pt unexpectedly invalid %016jx "
2852 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2853 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
2854 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2855 #else
2856 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2857 kprintf("*pt unexpectedly invalid %016jx "
2858 "gotpvp=%d ptepindex=%ld ptindex=%ld "
2859 "pv=%p pvp=%p\n",
2860 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
2861 tsleep(pt, 0, "DEAD", 0);
2862 p = pv->pv_m;
2863 } else {
2864 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2866 #endif
2867 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2868 KKASSERT(pv->pv_m == p); /* debugging */
2869 } else {
2871 * Remove a PTE from the PT page. The PV might exist even if
2872 * the PTE is not managed, in whichcase pv->pv_m should be
2873 * NULL.
2875 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
2876 * table pages but the kernel_pmap does not.
2878 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2879 * pv is a pte_pv so we can safely lock pt_pv.
2881 * NOTE: FICTITIOUS pages may have multiple physical mappings
2882 * so PHYS_TO_VM_PAGE() will not necessarily work for
2883 * terminal ptes.
2885 vm_pindex_t pt_pindex;
2886 pt_entry_t *ptep;
2887 pt_entry_t pte;
2888 vm_offset_t va;
2890 pt_pindex = ptepindex >> NPTEPGSHIFT;
2891 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2893 if (ptepindex >= NUPTE_USER) {
2894 ptep = vtopte(ptepindex << PAGE_SHIFT);
2895 KKASSERT(pvp == NULL);
2896 /* pvp remains NULL */
2897 } else {
2898 if (pvp == NULL) {
2899 pt_pindex = NUPTE_TOTAL +
2900 (ptepindex >> NPDPEPGSHIFT);
2901 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
2902 KKASSERT(pvp);
2903 gotpvp = 1;
2905 ptep = pv_pte_lookup(pvp, ptepindex &
2906 ((1ul << NPDPEPGSHIFT) - 1));
2908 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2909 if (bulk == NULL) /* XXX */
2910 cpu_invlpg((void *)va); /* XXX */
2913 * Now update the vm_page_t
2915 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
2916 (pte & pmap->pmap_bits[PG_V_IDX])) {
2918 * Valid managed page, adjust (p).
2920 if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
2921 p = pv->pv_m;
2922 } else {
2923 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2924 KKASSERT(pv->pv_m == p);
2926 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2927 if (pmap_track_modified(ptepindex))
2928 vm_page_dirty(p);
2930 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2931 vm_page_flag_set(p, PG_REFERENCED);
2933 } else {
2935 * Unmanaged page, do not try to adjust the vm_page_t.
2936 * pv could be freshly allocated for a pmap_enter(),
2937 * replacing an unmanaged page with a managed one.
2939 * pv->pv_m might reflect the new page and not the
2940 * existing page.
2942 * We could extract p from the physical address and
2943 * adjust it but we explicitly do not for unmanaged
2944 * pages.
2946 p = NULL;
2948 if (pte & pmap->pmap_bits[PG_W_IDX])
2949 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2950 if (pte & pmap->pmap_bits[PG_G_IDX])
2951 cpu_invlpg((void *)va);
2955 * If requested, scrap the underlying pv->pv_m and the underlying
2956 * pv. If this is a page-table-page we must also free the page.
2958 * pvp must be returned locked.
2960 if (destroy == 1) {
2962 * page table page (PT, PD, PDP, PML4), caller was responsible
2963 * for testing wired_count.
2965 KKASSERT(pv->pv_m->wire_count == 1);
2966 p = pmap_remove_pv_page(pv);
2967 pv_free(pv, pvp);
2968 pv = NULL;
2970 vm_page_busy_wait(p, FALSE, "pgpun");
2971 vm_page_unwire(p, 0);
2972 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2973 vm_page_free(p);
2974 } else if (destroy == 2) {
2976 * Normal page, remove from pmap and leave the underlying
2977 * page untouched.
2979 pmap_remove_pv_page(pv);
2980 pv_free(pv, pvp);
2981 pv = NULL; /* safety */
2985 * If we acquired pvp ourselves then we are responsible for
2986 * recursively deleting it.
2988 if (pvp && gotpvp) {
2990 * Recursively destroy higher-level page tables.
2992 * This is optional. If we do not, they will still
2993 * be destroyed when the process exits.
2995 * NOTE: Do not destroy pv_entry's with extra hold refs,
2996 * a caller may have unlocked it and intends to
2997 * continue to use it.
2999 if (pmap_dynamic_delete &&
3000 pvp->pv_m &&
3001 pvp->pv_m->wire_count == 1 &&
3002 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3003 pvp->pv_pindex != pmap_pml4_pindex()) {
3004 if (pmap_dynamic_delete == 2)
3005 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
3006 if (pmap != &kernel_pmap) {
3007 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3008 pvp = NULL; /* safety */
3009 } else {
3010 kprintf("Attempt to remove kernel_pmap pindex "
3011 "%jd\n", pvp->pv_pindex);
3012 pv_put(pvp);
3014 } else {
3015 pv_put(pvp);
3021 * Remove the vm_page association to a pv. The pv must be locked.
3023 static
3024 vm_page_t
3025 pmap_remove_pv_page(pv_entry_t pv)
3027 vm_page_t m;
3029 m = pv->pv_m;
3030 vm_page_spin_lock(m);
3031 KKASSERT(m && m == pv->pv_m);
3032 pv->pv_m = NULL;
3033 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3034 pmap_page_stats_deleting(m);
3035 if (TAILQ_EMPTY(&m->md.pv_list))
3036 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3037 vm_page_spin_unlock(m);
3039 return(m);
3043 * Grow the number of kernel page table entries, if needed.
3045 * This routine is always called to validate any address space
3046 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3047 * space below KERNBASE.
3049 * kernel_map must be locked exclusively by the caller.
3051 void
3052 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3054 vm_paddr_t paddr;
3055 vm_offset_t ptppaddr;
3056 vm_page_t nkpg;
3057 pd_entry_t *pt, newpt;
3058 pdp_entry_t newpd;
3059 int update_kernel_vm_end;
3062 * bootstrap kernel_vm_end on first real VM use
3064 if (kernel_vm_end == 0) {
3065 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3066 nkpt = 0;
3067 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3068 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3069 ~(PAGE_SIZE * NPTEPG - 1);
3070 nkpt++;
3071 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3072 kernel_vm_end = kernel_map.max_offset;
3073 break;
3079 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3080 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3081 * do not want to force-fill 128G worth of page tables.
3083 if (kstart < KERNBASE) {
3084 if (kstart > kernel_vm_end)
3085 kstart = kernel_vm_end;
3086 KKASSERT(kend <= KERNBASE);
3087 update_kernel_vm_end = 1;
3088 } else {
3089 update_kernel_vm_end = 0;
3092 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3093 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3095 if (kend - 1 >= kernel_map.max_offset)
3096 kend = kernel_map.max_offset;
3098 while (kstart < kend) {
3099 pt = pmap_pt(&kernel_pmap, kstart);
3100 if (pt == NULL) {
3101 /* We need a new PD entry */
3102 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3103 VM_ALLOC_NORMAL |
3104 VM_ALLOC_SYSTEM |
3105 VM_ALLOC_INTERRUPT);
3106 if (nkpg == NULL) {
3107 panic("pmap_growkernel: no memory to grow "
3108 "kernel");
3110 paddr = VM_PAGE_TO_PHYS(nkpg);
3111 pmap_zero_page(paddr);
3112 newpd = (pdp_entry_t)
3113 (paddr |
3114 kernel_pmap.pmap_bits[PG_V_IDX] |
3115 kernel_pmap.pmap_bits[PG_RW_IDX] |
3116 kernel_pmap.pmap_bits[PG_A_IDX] |
3117 kernel_pmap.pmap_bits[PG_M_IDX]);
3118 *pmap_pd(&kernel_pmap, kstart) = newpd;
3119 continue; /* try again */
3121 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3122 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3123 ~(PAGE_SIZE * NPTEPG - 1);
3124 if (kstart - 1 >= kernel_map.max_offset) {
3125 kstart = kernel_map.max_offset;
3126 break;
3128 continue;
3132 * We need a new PT
3134 * This index is bogus, but out of the way
3136 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3137 VM_ALLOC_NORMAL |
3138 VM_ALLOC_SYSTEM |
3139 VM_ALLOC_INTERRUPT);
3140 if (nkpg == NULL)
3141 panic("pmap_growkernel: no memory to grow kernel");
3143 vm_page_wire(nkpg);
3144 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3145 pmap_zero_page(ptppaddr);
3146 newpt = (pd_entry_t)(ptppaddr |
3147 kernel_pmap.pmap_bits[PG_V_IDX] |
3148 kernel_pmap.pmap_bits[PG_RW_IDX] |
3149 kernel_pmap.pmap_bits[PG_A_IDX] |
3150 kernel_pmap.pmap_bits[PG_M_IDX]);
3151 atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3153 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3154 ~(PAGE_SIZE * NPTEPG - 1);
3156 if (kstart - 1 >= kernel_map.max_offset) {
3157 kstart = kernel_map.max_offset;
3158 break;
3163 * Only update kernel_vm_end for areas below KERNBASE.
3165 if (update_kernel_vm_end && kernel_vm_end < kstart)
3166 kernel_vm_end = kstart;
3170 * Add a reference to the specified pmap.
3172 void
3173 pmap_reference(pmap_t pmap)
3175 if (pmap != NULL)
3176 atomic_add_int(&pmap->pm_count, 1);
3179 /***************************************************
3180 * page management routines.
3181 ***************************************************/
3184 * Hold a pv without locking it
3186 static void
3187 pv_hold(pv_entry_t pv)
3189 atomic_add_int(&pv->pv_hold, 1);
3193 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3194 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3195 * the pv properly.
3197 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3198 * pv list via its page) must be held by the caller in order to stabilize
3199 * the pv.
3201 static int
3202 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3204 u_int count;
3207 * Critical path shortcut expects pv to already have one ref
3208 * (for the pv->pv_pmap).
3210 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3211 #ifdef PMAP_DEBUG
3212 pv->pv_func = func;
3213 pv->pv_line = lineno;
3214 #endif
3215 return TRUE;
3218 for (;;) {
3219 count = pv->pv_hold;
3220 cpu_ccfence();
3221 if ((count & PV_HOLD_LOCKED) == 0) {
3222 if (atomic_cmpset_int(&pv->pv_hold, count,
3223 (count + 1) | PV_HOLD_LOCKED)) {
3224 #ifdef PMAP_DEBUG
3225 pv->pv_func = func;
3226 pv->pv_line = lineno;
3227 #endif
3228 return TRUE;
3230 } else {
3231 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3232 return FALSE;
3234 /* retry */
3239 * Drop a previously held pv_entry which could not be locked, allowing its
3240 * destruction.
3242 * Must not be called with a spinlock held as we might zfree() the pv if it
3243 * is no longer associated with a pmap and this was the last hold count.
3245 static void
3246 pv_drop(pv_entry_t pv)
3248 u_int count;
3250 for (;;) {
3251 count = pv->pv_hold;
3252 cpu_ccfence();
3253 KKASSERT((count & PV_HOLD_MASK) > 0);
3254 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3255 (PV_HOLD_LOCKED | 1));
3256 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3257 if ((count & PV_HOLD_MASK) == 1) {
3258 #ifdef PMAP_DEBUG2
3259 if (pmap_enter_debug > 0) {
3260 --pmap_enter_debug;
3261 kprintf("pv_drop: free pv %p\n", pv);
3263 #endif
3264 KKASSERT(count == 1);
3265 KKASSERT(pv->pv_pmap == NULL);
3266 zfree(pvzone, pv);
3268 return;
3270 /* retry */
3275 * Find or allocate the requested PV entry, returning a locked, held pv.
3277 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3278 * for the caller and one representing the pmap and vm_page association.
3280 * If (*isnew) is zero, the returned pv will have only one hold count.
3282 * Since both associations can only be adjusted while the pv is locked,
3283 * together they represent just one additional hold.
3285 static
3286 pv_entry_t
3287 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3289 struct mdglobaldata *md = mdcpu;
3290 pv_entry_t pv;
3291 pv_entry_t pnew;
3292 int pmap_excl = 0;
3294 pnew = NULL;
3295 if (md->gd_newpv) {
3296 #if 0
3297 pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3298 #else
3299 crit_enter();
3300 pnew = md->gd_newpv; /* might race NULL */
3301 md->gd_newpv = NULL;
3302 crit_exit();
3303 #endif
3305 if (pnew == NULL)
3306 pnew = zalloc(pvzone);
3308 spin_lock_shared(&pmap->pm_spin);
3309 for (;;) {
3311 * Shortcut cache
3313 pv = pmap->pm_pvhint;
3314 cpu_ccfence();
3315 if (pv == NULL ||
3316 pv->pv_pmap != pmap ||
3317 pv->pv_pindex != pindex) {
3318 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3319 pindex);
3321 if (pv == NULL) {
3322 vm_pindex_t *pmark;
3325 * Requires exclusive pmap spinlock
3327 if (pmap_excl == 0) {
3328 pmap_excl = 1;
3329 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3330 spin_unlock_shared(&pmap->pm_spin);
3331 spin_lock(&pmap->pm_spin);
3332 continue;
3337 * We need to block if someone is holding our
3338 * placemarker. As long as we determine the
3339 * placemarker has not been aquired we do not
3340 * need to get it as acquision also requires
3341 * the pmap spin lock.
3343 * However, we can race the wakeup.
3345 pmark = pmap_placemarker_hash(pmap, pindex);
3347 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3348 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3349 tsleep_interlock(pmark, 0);
3350 if (((*pmark ^ pindex) &
3351 ~PM_PLACEMARK_WAKEUP) == 0) {
3352 spin_unlock(&pmap->pm_spin);
3353 tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3354 spin_lock(&pmap->pm_spin);
3356 continue;
3360 * Setup the new entry
3362 pnew->pv_pmap = pmap;
3363 pnew->pv_pindex = pindex;
3364 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3365 #ifdef PMAP_DEBUG
3366 pnew->pv_func = func;
3367 pnew->pv_line = lineno;
3368 if (pnew->pv_line_lastfree > 0) {
3369 pnew->pv_line_lastfree =
3370 -pnew->pv_line_lastfree;
3372 #endif
3373 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3374 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3375 spin_unlock(&pmap->pm_spin);
3376 *isnew = 1;
3378 KKASSERT(pv == NULL);
3379 return(pnew);
3383 * We already have an entry, cleanup the staged pnew if
3384 * we can get the lock, otherwise block and retry.
3386 if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3387 if (pmap_excl)
3388 spin_unlock(&pmap->pm_spin);
3389 else
3390 spin_unlock_shared(&pmap->pm_spin);
3391 #if 0
3392 pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3393 if (pnew)
3394 zfree(pvzone, pnew);
3395 #else
3396 crit_enter();
3397 if (md->gd_newpv == NULL)
3398 md->gd_newpv = pnew;
3399 else
3400 zfree(pvzone, pnew);
3401 crit_exit();
3402 #endif
3403 KKASSERT(pv->pv_pmap == pmap &&
3404 pv->pv_pindex == pindex);
3405 *isnew = 0;
3406 return(pv);
3408 if (pmap_excl) {
3409 spin_unlock(&pmap->pm_spin);
3410 _pv_lock(pv PMAP_DEBUG_COPY);
3411 pv_put(pv);
3412 spin_lock(&pmap->pm_spin);
3413 } else {
3414 spin_unlock_shared(&pmap->pm_spin);
3415 _pv_lock(pv PMAP_DEBUG_COPY);
3416 pv_put(pv);
3417 spin_lock_shared(&pmap->pm_spin);
3420 /* NOT REACHED */
3424 * Find the requested PV entry, returning a locked+held pv or NULL
3426 static
3427 pv_entry_t
3428 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3430 pv_entry_t pv;
3431 int pmap_excl = 0;
3433 spin_lock_shared(&pmap->pm_spin);
3434 for (;;) {
3436 * Shortcut cache
3438 pv = pmap->pm_pvhint;
3439 cpu_ccfence();
3440 if (pv == NULL ||
3441 pv->pv_pmap != pmap ||
3442 pv->pv_pindex != pindex) {
3443 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3444 pindex);
3446 if (pv == NULL) {
3448 * Block if there is ANY placemarker. If we are to
3449 * return it, we must also aquire the spot, so we
3450 * have to block even if the placemarker is held on
3451 * a different address.
3453 * OPTIMIZATION: If pmarkp is passed as NULL the
3454 * caller is just probing (or looking for a real
3455 * pv_entry), and in this case we only need to check
3456 * to see if the placemarker matches pindex.
3458 vm_pindex_t *pmark;
3461 * Requires exclusive pmap spinlock
3463 if (pmap_excl == 0) {
3464 pmap_excl = 1;
3465 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3466 spin_unlock_shared(&pmap->pm_spin);
3467 spin_lock(&pmap->pm_spin);
3468 continue;
3472 pmark = pmap_placemarker_hash(pmap, pindex);
3474 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3475 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3476 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3477 tsleep_interlock(pmark, 0);
3478 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3479 ((*pmark ^ pindex) &
3480 ~PM_PLACEMARK_WAKEUP) == 0) {
3481 spin_unlock(&pmap->pm_spin);
3482 tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3483 spin_lock(&pmap->pm_spin);
3485 continue;
3487 if (pmarkp) {
3488 if (atomic_swap_long(pmark, pindex) !=
3489 PM_NOPLACEMARK) {
3490 panic("_pv_get: pmark race");
3492 *pmarkp = pmark;
3494 spin_unlock(&pmap->pm_spin);
3495 return NULL;
3497 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3498 pv_cache(pv, pindex);
3499 if (pmap_excl)
3500 spin_unlock(&pmap->pm_spin);
3501 else
3502 spin_unlock_shared(&pmap->pm_spin);
3503 KKASSERT(pv->pv_pmap == pmap &&
3504 pv->pv_pindex == pindex);
3505 return(pv);
3507 if (pmap_excl) {
3508 spin_unlock(&pmap->pm_spin);
3509 _pv_lock(pv PMAP_DEBUG_COPY);
3510 pv_put(pv);
3511 spin_lock(&pmap->pm_spin);
3512 } else {
3513 spin_unlock_shared(&pmap->pm_spin);
3514 _pv_lock(pv PMAP_DEBUG_COPY);
3515 pv_put(pv);
3516 spin_lock_shared(&pmap->pm_spin);
3522 * Lookup, hold, and attempt to lock (pmap,pindex).
3524 * If the entry does not exist NULL is returned and *errorp is set to 0
3526 * If the entry exists and could be successfully locked it is returned and
3527 * errorp is set to 0.
3529 * If the entry exists but could NOT be successfully locked it is returned
3530 * held and *errorp is set to 1.
3532 * If the entry is placemarked by someone else NULL is returned and *errorp
3533 * is set to 1.
3535 static
3536 pv_entry_t
3537 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3539 pv_entry_t pv;
3541 spin_lock_shared(&pmap->pm_spin);
3543 pv = pmap->pm_pvhint;
3544 cpu_ccfence();
3545 if (pv == NULL ||
3546 pv->pv_pmap != pmap ||
3547 pv->pv_pindex != pindex) {
3548 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3551 if (pv == NULL) {
3552 vm_pindex_t *pmark;
3554 pmark = pmap_placemarker_hash(pmap, pindex);
3556 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3557 *errorp = 1;
3558 } else if (pmarkp &&
3559 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3560 *errorp = 0;
3561 } else {
3563 * Can't set a placemark with a NULL pmarkp, or if
3564 * pmarkp is non-NULL but we failed to set our
3565 * placemark.
3567 *errorp = 1;
3569 if (pmarkp)
3570 *pmarkp = pmark;
3571 spin_unlock_shared(&pmap->pm_spin);
3573 return NULL;
3577 * XXX This has problems if the lock is shared, why?
3579 if (pv_hold_try(pv)) {
3580 pv_cache(pv, pindex); /* overwrite ok (shared lock) */
3581 spin_unlock_shared(&pmap->pm_spin);
3582 *errorp = 0;
3583 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3584 return(pv); /* lock succeeded */
3586 spin_unlock_shared(&pmap->pm_spin);
3587 *errorp = 1;
3589 return (pv); /* lock failed */
3593 * Lock a held pv, keeping the hold count
3595 static
3596 void
3597 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3599 u_int count;
3601 for (;;) {
3602 count = pv->pv_hold;
3603 cpu_ccfence();
3604 if ((count & PV_HOLD_LOCKED) == 0) {
3605 if (atomic_cmpset_int(&pv->pv_hold, count,
3606 count | PV_HOLD_LOCKED)) {
3607 #ifdef PMAP_DEBUG
3608 pv->pv_func = func;
3609 pv->pv_line = lineno;
3610 #endif
3611 return;
3613 continue;
3615 tsleep_interlock(pv, 0);
3616 if (atomic_cmpset_int(&pv->pv_hold, count,
3617 count | PV_HOLD_WAITING)) {
3618 #ifdef PMAP_DEBUG2
3619 if (pmap_enter_debug > 0) {
3620 --pmap_enter_debug;
3621 kprintf("pv waiting on %s:%d\n",
3622 pv->pv_func, pv->pv_line);
3624 #endif
3625 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3627 /* retry */
3632 * Unlock a held and locked pv, keeping the hold count.
3634 static
3635 void
3636 pv_unlock(pv_entry_t pv)
3638 u_int count;
3640 for (;;) {
3641 count = pv->pv_hold;
3642 cpu_ccfence();
3643 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3644 (PV_HOLD_LOCKED | 1));
3645 if (atomic_cmpset_int(&pv->pv_hold, count,
3646 count &
3647 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3648 if (count & PV_HOLD_WAITING)
3649 wakeup(pv);
3650 break;
3656 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3657 * and the hold count drops to zero we will free it.
3659 * Caller should not hold any spin locks. We are protected from hold races
3660 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3661 * lock held. A pv cannot be located otherwise.
3663 static
3664 void
3665 pv_put(pv_entry_t pv)
3667 #ifdef PMAP_DEBUG2
3668 if (pmap_enter_debug > 0) {
3669 --pmap_enter_debug;
3670 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3672 #endif
3675 * Normal put-aways must have a pv_m associated with the pv,
3676 * but allow the case where the pv has been destructed due
3677 * to pmap_dynamic_delete.
3679 KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3682 * Fast - shortcut most common condition
3684 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3685 return;
3688 * Slow
3690 pv_unlock(pv);
3691 pv_drop(pv);
3695 * Remove the pmap association from a pv, require that pv_m already be removed,
3696 * then unlock and drop the pv. Any pte operations must have already been
3697 * completed. This call may result in a last-drop which will physically free
3698 * the pv.
3700 * Removing the pmap association entails an additional drop.
3702 * pv must be exclusively locked on call and will be disposed of on return.
3704 static
3705 void
3706 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3708 pmap_t pmap;
3710 #ifdef PMAP_DEBUG
3711 pv->pv_func_lastfree = func;
3712 pv->pv_line_lastfree = lineno;
3713 #endif
3714 KKASSERT(pv->pv_m == NULL);
3715 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3716 (PV_HOLD_LOCKED|1));
3717 if ((pmap = pv->pv_pmap) != NULL) {
3718 spin_lock(&pmap->pm_spin);
3719 KKASSERT(pv->pv_pmap == pmap);
3720 if (pmap->pm_pvhint == pv)
3721 pmap->pm_pvhint = NULL;
3722 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3723 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3724 pv->pv_pmap = NULL;
3725 pv->pv_pindex = 0;
3726 spin_unlock(&pmap->pm_spin);
3729 * Try to shortcut three atomic ops, otherwise fall through
3730 * and do it normally. Drop two refs and the lock all in
3731 * one go.
3733 if (pvp)
3734 vm_page_unwire_quick(pvp->pv_m);
3735 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3736 #ifdef PMAP_DEBUG2
3737 if (pmap_enter_debug > 0) {
3738 --pmap_enter_debug;
3739 kprintf("pv_free: free pv %p\n", pv);
3741 #endif
3742 zfree(pvzone, pv);
3743 return;
3745 pv_drop(pv); /* ref for pv_pmap */
3747 pv_unlock(pv);
3748 pv_drop(pv);
3752 * This routine is very drastic, but can save the system
3753 * in a pinch.
3755 void
3756 pmap_collect(void)
3758 int i;
3759 vm_page_t m;
3760 static int warningdone=0;
3762 if (pmap_pagedaemon_waken == 0)
3763 return;
3764 pmap_pagedaemon_waken = 0;
3765 if (warningdone < 5) {
3766 kprintf("pmap_collect: collecting pv entries -- "
3767 "suggest increasing PMAP_SHPGPERPROC\n");
3768 warningdone++;
3771 for (i = 0; i < vm_page_array_size; i++) {
3772 m = &vm_page_array[i];
3773 if (m->wire_count || m->hold_count)
3774 continue;
3775 if (vm_page_busy_try(m, TRUE) == 0) {
3776 if (m->wire_count == 0 && m->hold_count == 0) {
3777 pmap_remove_all(m);
3779 vm_page_wakeup(m);
3785 * Scan the pmap for active page table entries and issue a callback.
3786 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3787 * its parent page table.
3789 * pte_pv will be NULL if the page or page table is unmanaged.
3790 * pt_pv will point to the page table page containing the pte for the page.
3792 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3793 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3794 * process pmap's PD and page to the callback function. This can be
3795 * confusing because the pt_pv is really a pd_pv, and the target page
3796 * table page is simply aliased by the pmap and not owned by it.
3798 * It is assumed that the start and end are properly rounded to the page size.
3800 * It is assumed that PD pages and above are managed and thus in the RB tree,
3801 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3803 struct pmap_scan_info {
3804 struct pmap *pmap;
3805 vm_offset_t sva;
3806 vm_offset_t eva;
3807 vm_pindex_t sva_pd_pindex;
3808 vm_pindex_t eva_pd_pindex;
3809 void (*func)(pmap_t, struct pmap_scan_info *,
3810 pv_entry_t, vm_pindex_t *, pv_entry_t,
3811 int, vm_offset_t,
3812 pt_entry_t *, void *);
3813 void *arg;
3814 pmap_inval_bulk_t bulk_core;
3815 pmap_inval_bulk_t *bulk;
3816 int count;
3817 int stop;
3820 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3821 static int pmap_scan_callback(pv_entry_t pv, void *data);
3823 static void
3824 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3826 struct pmap *pmap = info->pmap;
3827 pv_entry_t pd_pv; /* A page directory PV */
3828 pv_entry_t pt_pv; /* A page table PV */
3829 pv_entry_t pte_pv; /* A page table entry PV */
3830 vm_pindex_t *pte_placemark;
3831 vm_pindex_t *pt_placemark;
3832 pt_entry_t *ptep;
3833 pt_entry_t oldpte;
3834 struct pv_entry dummy_pv;
3836 info->stop = 0;
3837 if (pmap == NULL)
3838 return;
3839 if (info->sva == info->eva)
3840 return;
3841 if (smp_inval) {
3842 info->bulk = &info->bulk_core;
3843 pmap_inval_bulk_init(&info->bulk_core, pmap);
3844 } else {
3845 info->bulk = NULL;
3849 * Hold the token for stability; if the pmap is empty we have nothing
3850 * to do.
3852 #if 0
3853 if (pmap->pm_stats.resident_count == 0) {
3854 return;
3856 #endif
3858 info->count = 0;
3861 * Special handling for scanning one page, which is a very common
3862 * operation (it is?).
3864 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3866 if (info->sva + PAGE_SIZE == info->eva) {
3867 if (info->sva >= VM_MAX_USER_ADDRESS) {
3869 * Kernel mappings do not track wire counts on
3870 * page table pages and only maintain pd_pv and
3871 * pte_pv levels so pmap_scan() works.
3873 pt_pv = NULL;
3874 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3875 &pte_placemark);
3876 ptep = vtopte(info->sva);
3877 } else {
3879 * User pages which are unmanaged will not have a
3880 * pte_pv. User page table pages which are unmanaged
3881 * (shared from elsewhere) will also not have a pt_pv.
3882 * The func() callback will pass both pte_pv and pt_pv
3883 * as NULL in that case.
3885 * We hold pte_placemark across the operation for
3886 * unmanaged pages.
3888 * WARNING! We must hold pt_placemark across the
3889 * *ptep test to prevent misintepreting
3890 * a non-zero *ptep as a shared page
3891 * table page. Hold it across the function
3892 * callback as well for SMP safety.
3894 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3895 &pte_placemark);
3896 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3897 &pt_placemark);
3898 if (pt_pv == NULL) {
3899 KKASSERT(pte_pv == NULL);
3900 pd_pv = pv_get(pmap,
3901 pmap_pd_pindex(info->sva),
3902 NULL);
3903 if (pd_pv) {
3904 ptep = pv_pte_lookup(pd_pv,
3905 pmap_pt_index(info->sva));
3906 if (*ptep) {
3907 info->func(pmap, info,
3908 NULL, pt_placemark,
3909 pd_pv, 1,
3910 info->sva, ptep,
3911 info->arg);
3912 } else {
3913 pv_placemarker_wakeup(pmap,
3914 pt_placemark);
3916 pv_put(pd_pv);
3917 } else {
3918 pv_placemarker_wakeup(pmap,
3919 pt_placemark);
3921 pv_placemarker_wakeup(pmap, pte_placemark);
3922 goto fast_skip;
3924 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3928 * NOTE: *ptep can't be ripped out from under us if we hold
3929 * pte_pv (or pte_placemark) locked, but bits can
3930 * change.
3932 oldpte = *ptep;
3933 cpu_ccfence();
3934 if (oldpte == 0) {
3935 KKASSERT(pte_pv == NULL);
3936 pv_placemarker_wakeup(pmap, pte_placemark);
3937 } else if (pte_pv) {
3938 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3939 pmap->pmap_bits[PG_V_IDX])) ==
3940 (pmap->pmap_bits[PG_MANAGED_IDX] |
3941 pmap->pmap_bits[PG_V_IDX]),
3942 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
3943 *ptep, oldpte, info->sva, pte_pv));
3944 info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
3945 info->sva, ptep, info->arg);
3946 } else {
3947 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3948 pmap->pmap_bits[PG_V_IDX])) ==
3949 pmap->pmap_bits[PG_V_IDX],
3950 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
3951 *ptep, oldpte, info->sva));
3952 info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
3953 info->sva, ptep, info->arg);
3955 if (pt_pv)
3956 pv_put(pt_pv);
3957 fast_skip:
3958 pmap_inval_bulk_flush(info->bulk);
3959 return;
3963 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3964 * there.
3966 * WARNING! eva can overflow our standard ((N + mask) >> bits)
3967 * bounds, resulting in a pd_pindex of 0. To solve the
3968 * problem we use an inclusive range.
3970 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3971 info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
3973 if (info->sva >= VM_MAX_USER_ADDRESS) {
3975 * The kernel does not currently maintain any pv_entry's for
3976 * higher-level page tables.
3978 bzero(&dummy_pv, sizeof(dummy_pv));
3979 dummy_pv.pv_pindex = info->sva_pd_pindex;
3980 spin_lock(&pmap->pm_spin);
3981 while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
3982 pmap_scan_callback(&dummy_pv, info);
3983 ++dummy_pv.pv_pindex;
3984 if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
3985 break;
3987 spin_unlock(&pmap->pm_spin);
3988 } else {
3990 * User page tables maintain local PML4, PDP, and PD
3991 * pv_entry's at the very least. PT pv's might be
3992 * unmanaged and thus not exist. PTE pv's might be
3993 * unmanaged and thus not exist.
3995 spin_lock(&pmap->pm_spin);
3996 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
3997 pmap_scan_callback, info);
3998 spin_unlock(&pmap->pm_spin);
4000 pmap_inval_bulk_flush(info->bulk);
4004 * WARNING! pmap->pm_spin held
4006 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4007 * bounds, resulting in a pd_pindex of 0. To solve the
4008 * problem we use an inclusive range.
4010 static int
4011 pmap_scan_cmp(pv_entry_t pv, void *data)
4013 struct pmap_scan_info *info = data;
4014 if (pv->pv_pindex < info->sva_pd_pindex)
4015 return(-1);
4016 if (pv->pv_pindex > info->eva_pd_pindex)
4017 return(1);
4018 return(0);
4022 * pmap_scan() by PDs
4024 * WARNING! pmap->pm_spin held
4026 static int
4027 pmap_scan_callback(pv_entry_t pv, void *data)
4029 struct pmap_scan_info *info = data;
4030 struct pmap *pmap = info->pmap;
4031 pv_entry_t pd_pv; /* A page directory PV */
4032 pv_entry_t pt_pv; /* A page table PV */
4033 vm_pindex_t *pt_placemark;
4034 pt_entry_t *ptep;
4035 pt_entry_t oldpte;
4036 vm_offset_t sva;
4037 vm_offset_t eva;
4038 vm_offset_t va_next;
4039 vm_pindex_t pd_pindex;
4040 int error;
4043 * Stop if requested
4045 if (info->stop)
4046 return -1;
4049 * Pull the PD pindex from the pv before releasing the spinlock.
4051 * WARNING: pv is faked for kernel pmap scans.
4053 pd_pindex = pv->pv_pindex;
4054 spin_unlock(&pmap->pm_spin);
4055 pv = NULL; /* invalid after spinlock unlocked */
4058 * Calculate the page range within the PD. SIMPLE pmaps are
4059 * direct-mapped for the entire 2^64 address space. Normal pmaps
4060 * reflect the user and kernel address space which requires
4061 * cannonicalization w/regards to converting pd_pindex's back
4062 * into addresses.
4064 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4065 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4066 (sva & PML4_SIGNMASK)) {
4067 sva |= PML4_SIGNMASK;
4069 eva = sva + NBPDP; /* can overflow */
4070 if (sva < info->sva)
4071 sva = info->sva;
4072 if (eva < info->sva || eva > info->eva)
4073 eva = info->eva;
4076 * NOTE: kernel mappings do not track page table pages, only
4077 * terminal pages.
4079 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4080 * However, for the scan to be efficient we try to
4081 * cache items top-down.
4083 pd_pv = NULL;
4084 pt_pv = NULL;
4086 for (; sva < eva; sva = va_next) {
4087 if (info->stop)
4088 break;
4089 if (sva >= VM_MAX_USER_ADDRESS) {
4090 if (pt_pv) {
4091 pv_put(pt_pv);
4092 pt_pv = NULL;
4094 goto kernel_skip;
4098 * PD cache, scan shortcut if it doesn't exist.
4100 if (pd_pv == NULL) {
4101 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4102 } else if (pd_pv->pv_pmap != pmap ||
4103 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4104 pv_put(pd_pv);
4105 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4107 if (pd_pv == NULL) {
4108 va_next = (sva + NBPDP) & ~PDPMASK;
4109 if (va_next < sva)
4110 va_next = eva;
4111 continue;
4115 * PT cache
4117 * NOTE: The cached pt_pv can be removed from the pmap when
4118 * pmap_dynamic_delete is enabled.
4120 if (pt_pv && (pt_pv->pv_pmap != pmap ||
4121 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4122 pv_put(pt_pv);
4123 pt_pv = NULL;
4125 if (pt_pv == NULL) {
4126 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4127 &pt_placemark, &error);
4128 if (error) {
4129 pv_put(pd_pv); /* lock order */
4130 pd_pv = NULL;
4131 if (pt_pv) {
4132 pv_lock(pt_pv);
4133 pv_put(pt_pv);
4134 pt_pv = NULL;
4135 } else {
4136 pv_placemarker_wait(pmap, pt_placemark);
4138 va_next = sva;
4139 continue;
4141 /* may have to re-check later if pt_pv is NULL here */
4145 * If pt_pv is NULL we either have an shared page table
4146 * page and must issue a callback specific to that case,
4147 * or there is no page table page.
4149 * Either way we can skip the page table page.
4151 * WARNING! pt_pv can also be NULL due to a pv creation
4152 * race where we find it to be NULL and then
4153 * later see a pte_pv. But its possible the pt_pv
4154 * got created inbetween the two operations, so
4155 * we must check.
4157 if (pt_pv == NULL) {
4159 * Possible unmanaged (shared from another pmap)
4160 * page table page.
4162 * WARNING! We must hold pt_placemark across the
4163 * *ptep test to prevent misintepreting
4164 * a non-zero *ptep as a shared page
4165 * table page. Hold it across the function
4166 * callback as well for SMP safety.
4168 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4169 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4170 info->func(pmap, info, NULL, pt_placemark,
4171 pd_pv, 1,
4172 sva, ptep, info->arg);
4173 } else {
4174 pv_placemarker_wakeup(pmap, pt_placemark);
4178 * Done, move to next page table page.
4180 va_next = (sva + NBPDR) & ~PDRMASK;
4181 if (va_next < sva)
4182 va_next = eva;
4183 continue;
4187 * From this point in the loop testing pt_pv for non-NULL
4188 * means we are in UVM, else if it is NULL we are in KVM.
4190 * Limit our scan to either the end of the va represented
4191 * by the current page table page, or to the end of the
4192 * range being removed.
4194 kernel_skip:
4195 va_next = (sva + NBPDR) & ~PDRMASK;
4196 if (va_next < sva)
4197 va_next = eva;
4198 if (va_next > eva)
4199 va_next = eva;
4202 * Scan the page table for pages. Some pages may not be
4203 * managed (might not have a pv_entry).
4205 * There is no page table management for kernel pages so
4206 * pt_pv will be NULL in that case, but otherwise pt_pv
4207 * is non-NULL, locked, and referenced.
4211 * At this point a non-NULL pt_pv means a UVA, and a NULL
4212 * pt_pv means a KVA.
4214 if (pt_pv)
4215 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4216 else
4217 ptep = vtopte(sva);
4219 while (sva < va_next) {
4220 pv_entry_t pte_pv;
4221 vm_pindex_t *pte_placemark;
4224 * Yield every 64 pages, stop if requested.
4226 if ((++info->count & 63) == 0)
4227 lwkt_user_yield();
4228 if (info->stop)
4229 break;
4232 * We can shortcut our scan if *ptep == 0. This is
4233 * an unlocked check.
4235 if (*ptep == 0) {
4236 sva += PAGE_SIZE;
4237 ++ptep;
4238 continue;
4240 cpu_ccfence();
4243 * Acquire the related pte_pv, if any. If *ptep == 0
4244 * the related pte_pv should not exist, but if *ptep
4245 * is not zero the pte_pv may or may not exist (e.g.
4246 * will not exist for an unmanaged page).
4248 * However a multitude of races are possible here
4249 * so if we cannot lock definite state we clean out
4250 * our cache and break the inner while() loop to
4251 * force a loop up to the top of the for().
4253 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4254 * validity instead of looping up?
4256 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4257 &pte_placemark, &error);
4258 if (error) {
4259 pv_put(pd_pv); /* lock order */
4260 pd_pv = NULL;
4261 if (pt_pv) {
4262 pv_put(pt_pv); /* lock order */
4263 pt_pv = NULL;
4265 if (pte_pv) { /* block */
4266 pv_lock(pte_pv);
4267 pv_put(pte_pv);
4268 pte_pv = NULL;
4269 } else {
4270 pv_placemarker_wait(pmap,
4271 pte_placemark);
4273 va_next = sva; /* retry */
4274 break;
4278 * Reload *ptep after successfully locking the
4279 * pindex. If *ptep == 0 we had better NOT have a
4280 * pte_pv.
4282 cpu_ccfence();
4283 oldpte = *ptep;
4284 if (oldpte == 0) {
4285 if (pte_pv) {
4286 kprintf("Unexpected non-NULL pte_pv "
4287 "%p pt_pv %p "
4288 "*ptep = %016lx/%016lx\n",
4289 pte_pv, pt_pv, *ptep, oldpte);
4290 panic("Unexpected non-NULL pte_pv");
4291 } else {
4292 pv_placemarker_wakeup(pmap, pte_placemark);
4294 sva += PAGE_SIZE;
4295 ++ptep;
4296 continue;
4300 * We can't hold pd_pv across the callback (because
4301 * we don't pass it to the callback and the callback
4302 * might deadlock)
4304 if (pd_pv) {
4305 vm_page_wire_quick(pd_pv->pv_m);
4306 pv_unlock(pd_pv);
4310 * Ready for the callback. The locked pte_pv (if any)
4311 * is consumed by the callback. pte_pv will exist if
4312 * the page is managed, and will not exist if it
4313 * isn't.
4315 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4317 * Managed pte
4319 KASSERT(pte_pv &&
4320 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4321 ("badC *ptep %016lx/%016lx sva %016lx "
4322 "pte_pv %p",
4323 *ptep, oldpte, sva, pte_pv));
4325 * We must unlock pd_pv across the callback
4326 * to avoid deadlocks on any recursive
4327 * disposal. Re-check that it still exists
4328 * after re-locking.
4330 * Call target disposes of pte_pv and may
4331 * destroy but will not dispose of pt_pv.
4333 info->func(pmap, info, pte_pv, NULL,
4334 pt_pv, 0,
4335 sva, ptep, info->arg);
4336 } else {
4338 * Unmanaged pte
4340 * We must unlock pd_pv across the callback
4341 * to avoid deadlocks on any recursive
4342 * disposal. Re-check that it still exists
4343 * after re-locking.
4345 * Call target disposes of pte_pv or
4346 * pte_placemark and may destroy but will
4347 * not dispose of pt_pv.
4349 KASSERT(pte_pv == NULL &&
4350 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4351 ("badD *ptep %016lx/%016lx sva %016lx "
4352 "pte_pv %p pte_pv->pv_m %p ",
4353 *ptep, oldpte, sva,
4354 pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4355 if (pte_pv)
4356 kprintf("RaceD\n");
4357 if (pte_pv) {
4358 info->func(pmap, info,
4359 pte_pv, NULL,
4360 pt_pv, 0,
4361 sva, ptep, info->arg);
4362 } else {
4363 info->func(pmap, info,
4364 NULL, pte_placemark,
4365 pt_pv, 0,
4366 sva, ptep, info->arg);
4369 if (pd_pv) {
4370 pv_lock(pd_pv);
4371 vm_page_unwire_quick(pd_pv->pv_m);
4372 if (pd_pv->pv_pmap == NULL) {
4373 va_next = sva; /* retry */
4374 break;
4379 * NOTE: The cached pt_pv can be removed from the
4380 * pmap when pmap_dynamic_delete is enabled,
4381 * which will cause ptep to become stale.
4383 * This also means that no pages remain under
4384 * the PT, so we can just break out of the inner
4385 * loop and let the outer loop clean everything
4386 * up.
4388 if (pt_pv && pt_pv->pv_pmap != pmap)
4389 break;
4390 pte_pv = NULL;
4391 sva += PAGE_SIZE;
4392 ++ptep;
4395 if (pd_pv) {
4396 pv_put(pd_pv);
4397 pd_pv = NULL;
4399 if (pt_pv) {
4400 pv_put(pt_pv);
4401 pt_pv = NULL;
4403 if ((++info->count & 7) == 0)
4404 lwkt_user_yield();
4407 * Relock before returning.
4409 spin_lock(&pmap->pm_spin);
4410 return (0);
4413 void
4414 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4416 struct pmap_scan_info info;
4418 info.pmap = pmap;
4419 info.sva = sva;
4420 info.eva = eva;
4421 info.func = pmap_remove_callback;
4422 info.arg = NULL;
4423 pmap_scan(&info, 1);
4424 #if 0
4425 cpu_invltlb();
4426 if (eva - sva < 1024*1024) {
4427 while (sva < eva) {
4428 cpu_invlpg((void *)sva);
4429 sva += PAGE_SIZE;
4432 #endif
4435 static void
4436 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4438 struct pmap_scan_info info;
4440 info.pmap = pmap;
4441 info.sva = sva;
4442 info.eva = eva;
4443 info.func = pmap_remove_callback;
4444 info.arg = NULL;
4445 pmap_scan(&info, 0);
4448 static void
4449 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4450 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4451 pv_entry_t pt_pv, int sharept,
4452 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4454 pt_entry_t pte;
4456 if (pte_pv) {
4458 * Managed entry
4460 * This will also drop pt_pv's wire_count. Note that
4461 * terminal pages are not wired based on mmu presence.
4463 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4465 KKASSERT(pte_pv->pv_m != NULL);
4466 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4467 pte_pv = NULL; /* safety */
4470 * Recursively destroy higher-level page tables.
4472 * This is optional. If we do not, they will still
4473 * be destroyed when the process exits.
4475 * NOTE: Do not destroy pv_entry's with extra hold refs,
4476 * a caller may have unlocked it and intends to
4477 * continue to use it.
4479 if (pmap_dynamic_delete &&
4480 pt_pv &&
4481 pt_pv->pv_m &&
4482 pt_pv->pv_m->wire_count == 1 &&
4483 (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4484 pt_pv->pv_pindex != pmap_pml4_pindex()) {
4485 if (pmap_dynamic_delete == 2)
4486 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4487 pv_hold(pt_pv); /* extra hold */
4488 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4489 pv_lock(pt_pv); /* prior extra hold + relock */
4491 } else if (sharept == 0) {
4493 * Unmanaged pte (pte_placemark is non-NULL)
4495 * pt_pv's wire_count is still bumped by unmanaged pages
4496 * so we must decrement it manually.
4498 * We have to unwire the target page table page.
4500 pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4501 if (pte & pmap->pmap_bits[PG_W_IDX])
4502 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4503 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4504 if (vm_page_unwire_quick(pt_pv->pv_m))
4505 panic("pmap_remove: insufficient wirecount");
4506 pv_placemarker_wakeup(pmap, pte_placemark);
4507 } else {
4509 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4510 * a shared page table.
4512 * pt_pv is actually the pd_pv for our pmap (not the shared
4513 * object pmap).
4515 * We have to unwire the target page table page and we
4516 * have to unwire our page directory page.
4518 * It is unclear how we can invalidate a segment so we
4519 * invalidate -1 which invlidates the tlb.
4521 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4522 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4523 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4524 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4525 panic("pmap_remove: shared pgtable1 bad wirecount");
4526 if (vm_page_unwire_quick(pt_pv->pv_m))
4527 panic("pmap_remove: shared pgtable2 bad wirecount");
4528 pv_placemarker_wakeup(pmap, pte_placemark);
4533 * Removes this physical page from all physical maps in which it resides.
4534 * Reflects back modify bits to the pager.
4536 * This routine may not be called from an interrupt.
4538 static
4539 void
4540 pmap_remove_all(vm_page_t m)
4542 pv_entry_t pv;
4543 pmap_inval_bulk_t bulk;
4545 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4546 return;
4548 vm_page_spin_lock(m);
4549 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4550 KKASSERT(pv->pv_m == m);
4551 if (pv_hold_try(pv)) {
4552 vm_page_spin_unlock(m);
4553 } else {
4554 vm_page_spin_unlock(m);
4555 pv_lock(pv);
4556 pv_put(pv);
4557 vm_page_spin_lock(m);
4558 continue;
4560 KKASSERT(pv->pv_pmap && pv->pv_m == m);
4563 * Holding no spinlocks, pv is locked. Once we scrap
4564 * pv we can no longer use it as a list iterator (but
4565 * we are doing a TAILQ_FIRST() so we are ok).
4567 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4568 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4569 pv = NULL; /* safety */
4570 pmap_inval_bulk_flush(&bulk);
4571 vm_page_spin_lock(m);
4573 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4574 vm_page_spin_unlock(m);
4578 * Removes the page from a particular pmap
4580 void
4581 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4583 pv_entry_t pv;
4584 pmap_inval_bulk_t bulk;
4586 if (!pmap_initialized)
4587 return;
4589 again:
4590 vm_page_spin_lock(m);
4591 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4592 if (pv->pv_pmap != pmap)
4593 continue;
4594 KKASSERT(pv->pv_m == m);
4595 if (pv_hold_try(pv)) {
4596 vm_page_spin_unlock(m);
4597 } else {
4598 vm_page_spin_unlock(m);
4599 pv_lock(pv);
4600 pv_put(pv);
4601 goto again;
4603 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4606 * Holding no spinlocks, pv is locked. Once gone it can't
4607 * be used as an iterator. In fact, because we couldn't
4608 * necessarily lock it atomically it may have moved within
4609 * the list and ALSO cannot be used as an iterator.
4611 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4612 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4613 pv = NULL; /* safety */
4614 pmap_inval_bulk_flush(&bulk);
4615 goto again;
4617 vm_page_spin_unlock(m);
4621 * Set the physical protection on the specified range of this map
4622 * as requested. This function is typically only used for debug watchpoints
4623 * and COW pages.
4625 * This function may not be called from an interrupt if the map is
4626 * not the kernel_pmap.
4628 * NOTE! For shared page table pages we just unmap the page.
4630 void
4631 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4633 struct pmap_scan_info info;
4634 /* JG review for NX */
4636 if (pmap == NULL)
4637 return;
4638 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4639 pmap_remove(pmap, sva, eva);
4640 return;
4642 if (prot & VM_PROT_WRITE)
4643 return;
4644 info.pmap = pmap;
4645 info.sva = sva;
4646 info.eva = eva;
4647 info.func = pmap_protect_callback;
4648 info.arg = &prot;
4649 pmap_scan(&info, 1);
4652 static
4653 void
4654 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4655 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4656 pv_entry_t pt_pv, int sharept,
4657 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4659 pt_entry_t pbits;
4660 pt_entry_t cbits;
4661 pt_entry_t pte;
4662 vm_page_t m;
4664 again:
4665 pbits = *ptep;
4666 cbits = pbits;
4667 if (pte_pv) {
4668 KKASSERT(pte_pv->pv_m != NULL);
4669 m = NULL;
4670 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4671 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4672 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4673 KKASSERT(m == pte_pv->pv_m);
4674 vm_page_flag_set(m, PG_REFERENCED);
4676 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4678 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4679 if (pmap_track_modified(pte_pv->pv_pindex)) {
4680 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4681 if (m == NULL) {
4682 m = PHYS_TO_VM_PAGE(pbits &
4683 PG_FRAME);
4685 vm_page_dirty(m);
4687 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4690 } else if (sharept) {
4692 * Unmanaged page table, pt_pv is actually the pd_pv
4693 * for our pmap (not the object's shared pmap).
4695 * When asked to protect something in a shared page table
4696 * page we just unmap the page table page. We have to
4697 * invalidate the tlb in this situation.
4699 * XXX Warning, shared page tables will not be used for
4700 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4701 * so PHYS_TO_VM_PAGE() should be safe here.
4703 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4704 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4705 panic("pmap_protect: pgtable1 pg bad wirecount");
4706 if (vm_page_unwire_quick(pt_pv->pv_m))
4707 panic("pmap_protect: pgtable2 pg bad wirecount");
4708 ptep = NULL;
4710 /* else unmanaged page, adjust bits, no wire changes */
4712 if (ptep) {
4713 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4714 #ifdef PMAP_DEBUG2
4715 if (pmap_enter_debug > 0) {
4716 --pmap_enter_debug;
4717 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4718 "pt_pv=%p cbits=%08lx\n",
4719 va, ptep, pte_pv,
4720 pt_pv, cbits
4723 #endif
4724 if (pbits != cbits) {
4725 vm_offset_t xva;
4727 xva = (sharept) ? (vm_offset_t)-1 : va;
4728 if (!pmap_inval_smp_cmpset(pmap, xva,
4729 ptep, pbits, cbits)) {
4730 goto again;
4734 if (pte_pv)
4735 pv_put(pte_pv);
4736 else
4737 pv_placemarker_wakeup(pmap, pte_placemark);
4741 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4742 * mapping at that address. Set protection and wiring as requested.
4744 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4745 * possible. If it is we enter the page into the appropriate shared pmap
4746 * hanging off the related VM object instead of the passed pmap, then we
4747 * share the page table page from the VM object's pmap into the current pmap.
4749 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4750 * lazy-evaluate.
4752 * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4753 * never record it.
4755 void
4756 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4757 boolean_t wired, vm_map_entry_t entry)
4759 pv_entry_t pt_pv; /* page table */
4760 pv_entry_t pte_pv; /* page table entry */
4761 vm_pindex_t *pte_placemark;
4762 pt_entry_t *ptep;
4763 vm_paddr_t opa;
4764 pt_entry_t origpte, newpte;
4765 vm_paddr_t pa;
4767 if (pmap == NULL)
4768 return;
4769 va = trunc_page(va);
4770 #ifdef PMAP_DIAGNOSTIC
4771 if (va >= KvaEnd)
4772 panic("pmap_enter: toobig");
4773 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4774 panic("pmap_enter: invalid to pmap_enter page table "
4775 "pages (va: 0x%lx)", va);
4776 #endif
4777 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4778 kprintf("Warning: pmap_enter called on UVA with "
4779 "kernel_pmap\n");
4780 #ifdef DDB
4781 db_print_backtrace();
4782 #endif
4784 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4785 kprintf("Warning: pmap_enter called on KVA without"
4786 "kernel_pmap\n");
4787 #ifdef DDB
4788 db_print_backtrace();
4789 #endif
4793 * Get locked PV entries for our new page table entry (pte_pv or
4794 * pte_placemark) and for its parent page table (pt_pv). We need
4795 * the parent so we can resolve the location of the ptep.
4797 * Only hardware MMU actions can modify the ptep out from
4798 * under us.
4800 * if (m) is fictitious or unmanaged we do not create a managing
4801 * pte_pv for it. Any pre-existing page's management state must
4802 * match (avoiding code complexity).
4804 * If the pmap is still being initialized we assume existing
4805 * page tables.
4807 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4809 * WARNING! If replacing a managed mapping with an unmanaged mapping
4810 * pte_pv will wind up being non-NULL and must be handled
4811 * below.
4813 if (pmap_initialized == FALSE) {
4814 pte_pv = NULL;
4815 pt_pv = NULL;
4816 pte_placemark = NULL;
4817 ptep = vtopte(va);
4818 origpte = *ptep;
4819 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4820 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4821 KKASSERT(pte_pv == NULL);
4822 if (va >= VM_MAX_USER_ADDRESS) {
4823 pt_pv = NULL;
4824 ptep = vtopte(va);
4825 } else {
4826 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4827 NULL, entry, va);
4828 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4830 origpte = *ptep;
4831 cpu_ccfence();
4832 KASSERT(origpte == 0 ||
4833 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4834 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4835 } else {
4836 if (va >= VM_MAX_USER_ADDRESS) {
4838 * Kernel map, pv_entry-tracked.
4840 pt_pv = NULL;
4841 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4842 ptep = vtopte(va);
4843 } else {
4845 * User map
4847 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4848 &pt_pv, entry, va);
4849 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4851 pte_placemark = NULL; /* safety */
4852 origpte = *ptep;
4853 cpu_ccfence();
4854 KASSERT(origpte == 0 ||
4855 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4856 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4859 pa = VM_PAGE_TO_PHYS(m);
4860 opa = origpte & PG_FRAME;
4863 * Calculate the new PTE. Note that pte_pv alone does not mean
4864 * the new pte_pv is managed, it could exist because the old pte
4865 * was managed even if the new one is not.
4867 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4868 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4869 if (wired)
4870 newpte |= pmap->pmap_bits[PG_W_IDX];
4871 if (va < VM_MAX_USER_ADDRESS)
4872 newpte |= pmap->pmap_bits[PG_U_IDX];
4873 if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
4874 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4875 // if (pmap == &kernel_pmap)
4876 // newpte |= pgeflag;
4877 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4878 if (m->flags & PG_FICTITIOUS)
4879 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4882 * It is possible for multiple faults to occur in threaded
4883 * environments, the existing pte might be correct.
4885 if (((origpte ^ newpte) &
4886 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4887 pmap->pmap_bits[PG_A_IDX])) == 0) {
4888 goto done;
4892 * Ok, either the address changed or the protection or wiring
4893 * changed.
4895 * Clear the current entry, interlocking the removal. For managed
4896 * pte's this will also flush the modified state to the vm_page.
4897 * Atomic ops are mandatory in order to ensure that PG_M events are
4898 * not lost during any transition.
4900 * WARNING: The caller has busied the new page but not the original
4901 * vm_page which we are trying to replace. Because we hold
4902 * the pte_pv lock, but have not busied the page, PG bits
4903 * can be cleared out from under us.
4905 if (opa) {
4906 if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4908 * Old page was managed. Expect pte_pv to exist.
4909 * (it might also exist if the old page was unmanaged).
4911 * NOTE: pt_pv won't exist for a kernel page
4912 * (managed or otherwise).
4914 * NOTE: We may be reusing the pte_pv so we do not
4915 * destroy it in pmap_remove_pv_pte().
4917 KKASSERT(pte_pv && pte_pv->pv_m);
4918 if (prot & VM_PROT_NOSYNC) {
4919 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4920 } else {
4921 pmap_inval_bulk_t bulk;
4923 pmap_inval_bulk_init(&bulk, pmap);
4924 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4925 pmap_inval_bulk_flush(&bulk);
4927 pmap_remove_pv_page(pte_pv);
4928 /* will either set pte_pv->pv_m or pv_free() later */
4929 } else {
4931 * Old page was not managed. If we have a pte_pv
4932 * it better not have a pv_m assigned to it. If the
4933 * new page is managed the pte_pv will be destroyed
4934 * near the end (we need its interlock).
4936 * NOTE: We leave the wire count on the PT page
4937 * intact for the followup enter, but adjust
4938 * the wired-pages count on the pmap.
4940 KKASSERT(pte_pv == NULL);
4941 if (prot & VM_PROT_NOSYNC) {
4943 * NOSYNC (no mmu sync) requested.
4945 (void)pte_load_clear(ptep);
4946 cpu_invlpg((void *)va);
4947 } else {
4949 * Nominal SYNC
4951 pmap_inval_smp(pmap, va, 1, ptep, 0);
4955 * We must adjust pm_stats manually for unmanaged
4956 * pages.
4958 if (pt_pv) {
4959 atomic_add_long(&pmap->pm_stats.
4960 resident_count, -1);
4962 if (origpte & pmap->pmap_bits[PG_W_IDX]) {
4963 atomic_add_long(&pmap->pm_stats.
4964 wired_count, -1);
4967 KKASSERT(*ptep == 0);
4970 #ifdef PMAP_DEBUG2
4971 if (pmap_enter_debug > 0) {
4972 --pmap_enter_debug;
4973 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4974 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4975 va, m,
4976 origpte, newpte, ptep,
4977 pte_pv, pt_pv, opa, prot);
4979 #endif
4981 if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4983 * Entering an unmanaged page. We must wire the pt_pv unless
4984 * we retained the wiring from an unmanaged page we had
4985 * removed (if we retained it via pte_pv that will go away
4986 * soon).
4988 if (pt_pv && (opa == 0 ||
4989 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
4990 vm_page_wire_quick(pt_pv->pv_m);
4992 if (wired)
4993 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4996 * Unmanaged pages need manual resident_count tracking.
4998 if (pt_pv) {
4999 atomic_add_long(&pt_pv->pv_pmap->pm_stats.
5000 resident_count, 1);
5002 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5003 vm_page_flag_set(m, PG_WRITEABLE);
5004 } else {
5006 * Entering a managed page. Our pte_pv takes care of the
5007 * PT wiring, so if we had removed an unmanaged page before
5008 * we must adjust.
5010 * We have to take care of the pmap wired count ourselves.
5012 * Enter on the PV list if part of our managed memory.
5014 KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
5015 vm_page_spin_lock(m);
5016 pte_pv->pv_m = m;
5017 pmap_page_stats_adding(m);
5018 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
5019 vm_page_flag_set(m, PG_MAPPED);
5020 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5021 vm_page_flag_set(m, PG_WRITEABLE);
5022 vm_page_spin_unlock(m);
5024 if (pt_pv && opa &&
5025 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5026 vm_page_unwire_quick(pt_pv->pv_m);
5030 * Adjust pmap wired pages count for new entry.
5032 if (wired) {
5033 atomic_add_long(&pte_pv->pv_pmap->pm_stats.
5034 wired_count, 1);
5039 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
5041 * User VMAs do not because those will be zero->non-zero, so no
5042 * stale entries to worry about at this point.
5044 * For KVM there appear to still be issues. Theoretically we
5045 * should be able to scrap the interlocks entirely but we
5046 * get crashes.
5048 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
5049 pmap_inval_smp(pmap, va, 1, ptep, newpte);
5050 } else {
5051 origpte = atomic_swap_long(ptep, newpte);
5052 if (origpte & pmap->pmap_bits[PG_M_IDX]) {
5053 kprintf("pmap [M] race @ %016jx\n", va);
5054 atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
5056 if (pt_pv == NULL)
5057 cpu_invlpg((void *)va);
5061 * Cleanup
5063 done:
5064 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5065 (m->flags & PG_MAPPED));
5068 * Cleanup the pv entry, allowing other accessors. If the new page
5069 * is not managed but we have a pte_pv (which was locking our
5070 * operation), we can free it now. pte_pv->pv_m should be NULL.
5072 if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5073 pv_free(pte_pv, pt_pv);
5074 } else if (pte_pv) {
5075 pv_put(pte_pv);
5076 } else if (pte_placemark) {
5077 pv_placemarker_wakeup(pmap, pte_placemark);
5079 if (pt_pv)
5080 pv_put(pt_pv);
5084 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5085 * This code also assumes that the pmap has no pre-existing entry for this
5086 * VA.
5088 * This code currently may only be used on user pmaps, not kernel_pmap.
5090 void
5091 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5093 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5097 * Make a temporary mapping for a physical address. This is only intended
5098 * to be used for panic dumps.
5100 * The caller is responsible for calling smp_invltlb().
5102 void *
5103 pmap_kenter_temporary(vm_paddr_t pa, long i)
5105 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5106 return ((void *)crashdumpmap);
5109 #define MAX_INIT_PT (96)
5112 * This routine preloads the ptes for a given object into the specified pmap.
5113 * This eliminates the blast of soft faults on process startup and
5114 * immediately after an mmap.
5116 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5118 void
5119 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5120 vm_object_t object, vm_pindex_t pindex,
5121 vm_size_t size, int limit)
5123 struct rb_vm_page_scan_info info;
5124 struct lwp *lp;
5125 vm_size_t psize;
5128 * We can't preinit if read access isn't set or there is no pmap
5129 * or object.
5131 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5132 return;
5135 * We can't preinit if the pmap is not the current pmap
5137 lp = curthread->td_lwp;
5138 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5139 return;
5142 * Misc additional checks
5144 psize = x86_64_btop(size);
5146 if ((object->type != OBJT_VNODE) ||
5147 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5148 (object->resident_page_count > MAX_INIT_PT))) {
5149 return;
5152 if (pindex + psize > object->size) {
5153 if (object->size < pindex)
5154 return;
5155 psize = object->size - pindex;
5158 if (psize == 0)
5159 return;
5162 * If everything is segment-aligned do not pre-init here. Instead
5163 * allow the normal vm_fault path to pass a segment hint to
5164 * pmap_enter() which will then use an object-referenced shared
5165 * page table page.
5167 if ((addr & SEG_MASK) == 0 &&
5168 (ctob(psize) & SEG_MASK) == 0 &&
5169 (ctob(pindex) & SEG_MASK) == 0) {
5170 return;
5174 * Use a red-black scan to traverse the requested range and load
5175 * any valid pages found into the pmap.
5177 * We cannot safely scan the object's memq without holding the
5178 * object token.
5180 info.start_pindex = pindex;
5181 info.end_pindex = pindex + psize - 1;
5182 info.limit = limit;
5183 info.mpte = NULL;
5184 info.addr = addr;
5185 info.pmap = pmap;
5187 vm_object_hold_shared(object);
5188 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
5189 pmap_object_init_pt_callback, &info);
5190 vm_object_drop(object);
5193 static
5195 pmap_object_init_pt_callback(vm_page_t p, void *data)
5197 struct rb_vm_page_scan_info *info = data;
5198 vm_pindex_t rel_index;
5201 * don't allow an madvise to blow away our really
5202 * free pages allocating pv entries.
5204 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5205 vmstats.v_free_count < vmstats.v_free_reserved) {
5206 return(-1);
5210 * Ignore list markers and ignore pages we cannot instantly
5211 * busy (while holding the object token).
5213 if (p->flags & PG_MARKER)
5214 return 0;
5215 if (vm_page_busy_try(p, TRUE))
5216 return 0;
5217 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5218 (p->flags & PG_FICTITIOUS) == 0) {
5219 if ((p->queue - p->pc) == PQ_CACHE)
5220 vm_page_deactivate(p);
5221 rel_index = p->pindex - info->start_pindex;
5222 pmap_enter_quick(info->pmap,
5223 info->addr + x86_64_ptob(rel_index), p);
5225 vm_page_wakeup(p);
5226 lwkt_yield();
5227 return(0);
5231 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5232 * address.
5234 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5235 * into the slot.
5237 * XXX This is safe only because page table pages are not freed.
5240 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5242 pt_entry_t *pte;
5244 /*spin_lock(&pmap->pm_spin);*/
5245 if ((pte = pmap_pte(pmap, addr)) != NULL) {
5246 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5247 /*spin_unlock(&pmap->pm_spin);*/
5248 return FALSE;
5251 /*spin_unlock(&pmap->pm_spin);*/
5252 return TRUE;
5256 * Change the wiring attribute for a pmap/va pair. The mapping must already
5257 * exist in the pmap. The mapping may or may not be managed. The wiring in
5258 * the page is not changed, the page is returned so the caller can adjust
5259 * its wiring (the page is not locked in any way).
5261 * Wiring is not a hardware characteristic so there is no need to invalidate
5262 * TLB. However, in an SMP environment we must use a locked bus cycle to
5263 * update the pte (if we are not using the pmap_inval_*() API that is)...
5264 * it's ok to do this for simple wiring changes.
5266 vm_page_t
5267 pmap_unwire(pmap_t pmap, vm_offset_t va)
5269 pt_entry_t *ptep;
5270 pv_entry_t pt_pv;
5271 vm_paddr_t pa;
5272 vm_page_t m;
5274 if (pmap == NULL)
5275 return NULL;
5278 * Assume elements in the kernel pmap are stable
5280 if (pmap == &kernel_pmap) {
5281 if (pmap_pt(pmap, va) == 0)
5282 return NULL;
5283 ptep = pmap_pte_quick(pmap, va);
5284 if (pmap_pte_v(pmap, ptep)) {
5285 if (pmap_pte_w(pmap, ptep))
5286 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5287 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5288 pa = *ptep & PG_FRAME;
5289 m = PHYS_TO_VM_PAGE(pa);
5290 } else {
5291 m = NULL;
5293 } else {
5295 * We can only [un]wire pmap-local pages (we cannot wire
5296 * shared pages)
5298 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5299 if (pt_pv == NULL)
5300 return NULL;
5302 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5303 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5304 pv_put(pt_pv);
5305 return NULL;
5308 if (pmap_pte_w(pmap, ptep)) {
5309 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5310 -1);
5312 /* XXX else return NULL so caller doesn't unwire m ? */
5314 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5316 pa = *ptep & PG_FRAME;
5317 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5318 pv_put(pt_pv);
5320 return m;
5324 * Copy the range specified by src_addr/len from the source map to
5325 * the range dst_addr/len in the destination map.
5327 * This routine is only advisory and need not do anything.
5329 void
5330 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5331 vm_size_t len, vm_offset_t src_addr)
5336 * pmap_zero_page:
5338 * Zero the specified physical page.
5340 * This function may be called from an interrupt and no locking is
5341 * required.
5343 void
5344 pmap_zero_page(vm_paddr_t phys)
5346 vm_offset_t va = PHYS_TO_DMAP(phys);
5348 pagezero((void *)va);
5352 * pmap_zero_page:
5354 * Zero part of a physical page by mapping it into memory and clearing
5355 * its contents with bzero.
5357 * off and size may not cover an area beyond a single hardware page.
5359 void
5360 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5362 vm_offset_t virt = PHYS_TO_DMAP(phys);
5364 bzero((char *)virt + off, size);
5368 * pmap_copy_page:
5370 * Copy the physical page from the source PA to the target PA.
5371 * This function may be called from an interrupt. No locking
5372 * is required.
5374 void
5375 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5377 vm_offset_t src_virt, dst_virt;
5379 src_virt = PHYS_TO_DMAP(src);
5380 dst_virt = PHYS_TO_DMAP(dst);
5381 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5385 * pmap_copy_page_frag:
5387 * Copy the physical page from the source PA to the target PA.
5388 * This function may be called from an interrupt. No locking
5389 * is required.
5391 void
5392 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5394 vm_offset_t src_virt, dst_virt;
5396 src_virt = PHYS_TO_DMAP(src);
5397 dst_virt = PHYS_TO_DMAP(dst);
5399 bcopy((char *)src_virt + (src & PAGE_MASK),
5400 (char *)dst_virt + (dst & PAGE_MASK),
5401 bytes);
5405 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5406 * this page. This count may be changed upwards or downwards in the future;
5407 * it is only necessary that true be returned for a small subset of pmaps
5408 * for proper page aging.
5410 boolean_t
5411 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5413 pv_entry_t pv;
5414 int loops = 0;
5416 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5417 return FALSE;
5419 vm_page_spin_lock(m);
5420 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5421 if (pv->pv_pmap == pmap) {
5422 vm_page_spin_unlock(m);
5423 return TRUE;
5425 loops++;
5426 if (loops >= 16)
5427 break;
5429 vm_page_spin_unlock(m);
5430 return (FALSE);
5434 * Remove all pages from specified address space this aids process exit
5435 * speeds. Also, this code may be special cased for the current process
5436 * only.
5438 void
5439 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5441 pmap_remove_noinval(pmap, sva, eva);
5442 cpu_invltlb();
5446 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5447 * routines are inline, and a lot of things compile-time evaluate.
5449 static
5450 boolean_t
5451 pmap_testbit(vm_page_t m, int bit)
5453 pv_entry_t pv;
5454 pt_entry_t *pte;
5455 pmap_t pmap;
5457 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5458 return FALSE;
5460 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5461 return FALSE;
5462 vm_page_spin_lock(m);
5463 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5464 vm_page_spin_unlock(m);
5465 return FALSE;
5468 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5470 #if defined(PMAP_DIAGNOSTIC)
5471 if (pv->pv_pmap == NULL) {
5472 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5473 pv->pv_pindex);
5474 continue;
5476 #endif
5477 pmap = pv->pv_pmap;
5480 * If the bit being tested is the modified bit, then
5481 * mark clean_map and ptes as never
5482 * modified.
5484 * WARNING! Because we do not lock the pv, *pte can be in a
5485 * state of flux. Despite this the value of *pte
5486 * will still be related to the vm_page in some way
5487 * because the pv cannot be destroyed as long as we
5488 * hold the vm_page spin lock.
5490 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5491 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5492 if (!pmap_track_modified(pv->pv_pindex))
5493 continue;
5496 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5497 if (*pte & pmap->pmap_bits[bit]) {
5498 vm_page_spin_unlock(m);
5499 return TRUE;
5502 vm_page_spin_unlock(m);
5503 return (FALSE);
5507 * This routine is used to modify bits in ptes. Only one bit should be
5508 * specified. PG_RW requires special handling.
5510 * Caller must NOT hold any spin locks
5512 static __inline
5513 void
5514 pmap_clearbit(vm_page_t m, int bit_index)
5516 pv_entry_t pv;
5517 pt_entry_t *pte;
5518 pt_entry_t pbits;
5519 pmap_t pmap;
5521 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5522 if (bit_index == PG_RW_IDX)
5523 vm_page_flag_clear(m, PG_WRITEABLE);
5524 return;
5528 * PG_M or PG_A case
5530 * Loop over all current mappings setting/clearing as appropos If
5531 * setting RO do we need to clear the VAC?
5533 * NOTE: When clearing PG_M we could also (not implemented) drop
5534 * through to the PG_RW code and clear PG_RW too, forcing
5535 * a fault on write to redetect PG_M for virtual kernels, but
5536 * it isn't necessary since virtual kernels invalidate the
5537 * pte when they clear the VPTE_M bit in their virtual page
5538 * tables.
5540 * NOTE: Does not re-dirty the page when clearing only PG_M.
5542 * NOTE: Because we do not lock the pv, *pte can be in a state of
5543 * flux. Despite this the value of *pte is still somewhat
5544 * related while we hold the vm_page spin lock.
5546 * *pte can be zero due to this race. Since we are clearing
5547 * bits we basically do no harm when this race occurs.
5549 if (bit_index != PG_RW_IDX) {
5550 vm_page_spin_lock(m);
5551 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5552 #if defined(PMAP_DIAGNOSTIC)
5553 if (pv->pv_pmap == NULL) {
5554 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5555 pv->pv_pindex);
5556 continue;
5558 #endif
5559 pmap = pv->pv_pmap;
5560 pte = pmap_pte_quick(pv->pv_pmap,
5561 pv->pv_pindex << PAGE_SHIFT);
5562 pbits = *pte;
5563 if (pbits & pmap->pmap_bits[bit_index])
5564 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5566 vm_page_spin_unlock(m);
5567 return;
5571 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5572 * was set.
5574 restart:
5575 vm_page_spin_lock(m);
5576 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5578 * don't write protect pager mappings
5580 if (!pmap_track_modified(pv->pv_pindex))
5581 continue;
5583 #if defined(PMAP_DIAGNOSTIC)
5584 if (pv->pv_pmap == NULL) {
5585 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5586 pv->pv_pindex);
5587 continue;
5589 #endif
5590 pmap = pv->pv_pmap;
5593 * Skip pages which do not have PG_RW set.
5595 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5596 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5597 continue;
5600 * We must lock the PV to be able to safely test the pte.
5602 if (pv_hold_try(pv)) {
5603 vm_page_spin_unlock(m);
5604 } else {
5605 vm_page_spin_unlock(m);
5606 pv_lock(pv); /* held, now do a blocking lock */
5607 pv_put(pv);
5608 goto restart;
5612 * Reload pte after acquiring pv.
5614 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5615 #if 0
5616 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5617 pv_put(pv);
5618 goto restart;
5620 #endif
5622 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5623 for (;;) {
5624 pt_entry_t nbits;
5626 pbits = *pte;
5627 cpu_ccfence();
5628 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5629 pmap->pmap_bits[PG_M_IDX]);
5630 if (pmap_inval_smp_cmpset(pmap,
5631 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5632 pte, pbits, nbits)) {
5633 break;
5635 cpu_pause();
5639 * If PG_M was found to be set while we were clearing PG_RW
5640 * we also clear PG_M (done above) and mark the page dirty.
5641 * Callers expect this behavior.
5643 * we lost pv so it cannot be used as an iterator. In fact,
5644 * because we couldn't necessarily lock it atomically it may
5645 * have moved within the list and ALSO cannot be used as an
5646 * iterator.
5648 vm_page_spin_lock(m);
5649 if (pbits & pmap->pmap_bits[PG_M_IDX])
5650 vm_page_dirty(m);
5651 vm_page_spin_unlock(m);
5652 pv_put(pv);
5653 goto restart;
5655 if (bit_index == PG_RW_IDX)
5656 vm_page_flag_clear(m, PG_WRITEABLE);
5657 vm_page_spin_unlock(m);
5661 * Lower the permission for all mappings to a given page.
5663 * Page must be busied by caller. Because page is busied by caller this
5664 * should not be able to race a pmap_enter().
5666 void
5667 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5669 /* JG NX support? */
5670 if ((prot & VM_PROT_WRITE) == 0) {
5671 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5673 * NOTE: pmap_clearbit(.. PG_RW) also clears
5674 * the PG_WRITEABLE flag in (m).
5676 pmap_clearbit(m, PG_RW_IDX);
5677 } else {
5678 pmap_remove_all(m);
5683 vm_paddr_t
5684 pmap_phys_address(vm_pindex_t ppn)
5686 return (x86_64_ptob(ppn));
5690 * Return a count of reference bits for a page, clearing those bits.
5691 * It is not necessary for every reference bit to be cleared, but it
5692 * is necessary that 0 only be returned when there are truly no
5693 * reference bits set.
5695 * XXX: The exact number of bits to check and clear is a matter that
5696 * should be tested and standardized at some point in the future for
5697 * optimal aging of shared pages.
5699 * This routine may not block.
5702 pmap_ts_referenced(vm_page_t m)
5704 pv_entry_t pv;
5705 pt_entry_t *pte;
5706 pmap_t pmap;
5707 int rtval = 0;
5709 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5710 return (rtval);
5712 vm_page_spin_lock(m);
5713 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5714 if (!pmap_track_modified(pv->pv_pindex))
5715 continue;
5716 pmap = pv->pv_pmap;
5717 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5718 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5719 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5720 rtval++;
5721 if (rtval > 4)
5722 break;
5725 vm_page_spin_unlock(m);
5726 return (rtval);
5730 * pmap_is_modified:
5732 * Return whether or not the specified physical page was modified
5733 * in any physical maps.
5735 boolean_t
5736 pmap_is_modified(vm_page_t m)
5738 boolean_t res;
5740 res = pmap_testbit(m, PG_M_IDX);
5741 return (res);
5745 * Clear the modify bits on the specified physical page.
5747 void
5748 pmap_clear_modify(vm_page_t m)
5750 pmap_clearbit(m, PG_M_IDX);
5754 * pmap_clear_reference:
5756 * Clear the reference bit on the specified physical page.
5758 void
5759 pmap_clear_reference(vm_page_t m)
5761 pmap_clearbit(m, PG_A_IDX);
5765 * Miscellaneous support routines follow
5768 static
5769 void
5770 i386_protection_init(void)
5772 uint64_t *kp;
5773 int prot;
5776 * NX supported? (boot time loader.conf override only)
5778 TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5779 if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
5780 pmap_bits_default[PG_NX_IDX] = 0;
5783 * 0 is basically read-only access, but also set the NX (no-execute)
5784 * bit when VM_PROT_EXECUTE is not specified.
5786 kp = protection_codes;
5787 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5788 switch (prot) {
5789 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5791 * This case handled elsewhere
5793 *kp++ = 0;
5794 break;
5795 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5797 * Read-only is 0|NX
5799 *kp++ = pmap_bits_default[PG_NX_IDX];
5800 break;
5801 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5802 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5804 * Execute requires read access
5806 *kp++ = 0;
5807 break;
5808 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5809 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5811 * Write without execute is RW|NX
5813 *kp++ = pmap_bits_default[PG_RW_IDX] |
5814 pmap_bits_default[PG_NX_IDX];
5815 break;
5816 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5817 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5819 * Write with execute is RW
5821 *kp++ = pmap_bits_default[PG_RW_IDX];
5822 break;
5828 * Map a set of physical memory pages into the kernel virtual
5829 * address space. Return a pointer to where it is mapped. This
5830 * routine is intended to be used for mapping device memory,
5831 * NOT real memory.
5833 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5834 * a time.
5836 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5837 * work whether the cpu supports PAT or not. The remaining PAT
5838 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5839 * supports PAT.
5841 void *
5842 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5844 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5847 void *
5848 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5850 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5853 void *
5854 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5856 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5860 * Map a set of physical memory pages into the kernel virtual
5861 * address space. Return a pointer to where it is mapped. This
5862 * routine is intended to be used for mapping device memory,
5863 * NOT real memory.
5865 void *
5866 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5868 vm_offset_t va, tmpva, offset;
5869 pt_entry_t *pte;
5870 vm_size_t tmpsize;
5872 offset = pa & PAGE_MASK;
5873 size = roundup(offset + size, PAGE_SIZE);
5875 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5876 if (va == 0)
5877 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5879 pa = pa & ~PAGE_MASK;
5880 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5881 pte = vtopte(tmpva);
5882 *pte = pa |
5883 kernel_pmap.pmap_bits[PG_RW_IDX] |
5884 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5885 kernel_pmap.pmap_cache_bits[mode];
5886 tmpsize -= PAGE_SIZE;
5887 tmpva += PAGE_SIZE;
5888 pa += PAGE_SIZE;
5890 pmap_invalidate_range(&kernel_pmap, va, va + size);
5891 pmap_invalidate_cache_range(va, va + size);
5893 return ((void *)(va + offset));
5896 void
5897 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5899 vm_offset_t base, offset;
5901 base = va & ~PAGE_MASK;
5902 offset = va & PAGE_MASK;
5903 size = roundup(offset + size, PAGE_SIZE);
5904 pmap_qremove(va, size >> PAGE_SHIFT);
5905 kmem_free(&kernel_map, base, size);
5909 * Sets the memory attribute for the specified page.
5911 void
5912 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5915 m->pat_mode = ma;
5918 * If "m" is a normal page, update its direct mapping. This update
5919 * can be relied upon to perform any cache operations that are
5920 * required for data coherence.
5922 if ((m->flags & PG_FICTITIOUS) == 0)
5923 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5927 * Change the PAT attribute on an existing kernel memory map. Caller
5928 * must ensure that the virtual memory in question is not accessed
5929 * during the adjustment.
5931 void
5932 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5934 pt_entry_t *pte;
5935 vm_offset_t base;
5936 int changed = 0;
5938 if (va == 0)
5939 panic("pmap_change_attr: va is NULL");
5940 base = trunc_page(va);
5942 while (count) {
5943 pte = vtopte(va);
5944 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5945 kernel_pmap.pmap_cache_bits[mode];
5946 --count;
5947 va += PAGE_SIZE;
5950 changed = 1; /* XXX: not optimal */
5953 * Flush CPU caches if required to make sure any data isn't cached that
5954 * shouldn't be, etc.
5956 if (changed) {
5957 pmap_invalidate_range(&kernel_pmap, base, va);
5958 pmap_invalidate_cache_range(base, va);
5963 * perform the pmap work for mincore
5966 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5968 pt_entry_t *ptep, pte;
5969 vm_page_t m;
5970 int val = 0;
5972 ptep = pmap_pte(pmap, addr);
5974 if (ptep && (pte = *ptep) != 0) {
5975 vm_offset_t pa;
5977 val = MINCORE_INCORE;
5978 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5979 goto done;
5981 pa = pte & PG_FRAME;
5983 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5984 m = NULL;
5985 else
5986 m = PHYS_TO_VM_PAGE(pa);
5989 * Modified by us
5991 if (pte & pmap->pmap_bits[PG_M_IDX])
5992 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5994 * Modified by someone
5996 else if (m && (m->dirty || pmap_is_modified(m)))
5997 val |= MINCORE_MODIFIED_OTHER;
5999 * Referenced by us
6001 if (pte & pmap->pmap_bits[PG_A_IDX])
6002 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6005 * Referenced by someone
6007 else if (m && ((m->flags & PG_REFERENCED) ||
6008 pmap_ts_referenced(m))) {
6009 val |= MINCORE_REFERENCED_OTHER;
6010 vm_page_flag_set(m, PG_REFERENCED);
6013 done:
6015 return val;
6019 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
6020 * vmspace will be ref'd and the old one will be deref'd.
6022 * The vmspace for all lwps associated with the process will be adjusted
6023 * and cr3 will be reloaded if any lwp is the current lwp.
6025 * The process must hold the vmspace->vm_map.token for oldvm and newvm
6027 void
6028 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6030 struct vmspace *oldvm;
6031 struct lwp *lp;
6033 oldvm = p->p_vmspace;
6034 if (oldvm != newvm) {
6035 if (adjrefs)
6036 vmspace_ref(newvm);
6037 p->p_vmspace = newvm;
6038 KKASSERT(p->p_nthreads == 1);
6039 lp = RB_ROOT(&p->p_lwp_tree);
6040 pmap_setlwpvm(lp, newvm);
6041 if (adjrefs)
6042 vmspace_rel(oldvm);
6047 * Set the vmspace for a LWP. The vmspace is almost universally set the
6048 * same as the process vmspace, but virtual kernels need to swap out contexts
6049 * on a per-lwp basis.
6051 * Caller does not necessarily hold any vmspace tokens. Caller must control
6052 * the lwp (typically be in the context of the lwp). We use a critical
6053 * section to protect against statclock and hardclock (statistics collection).
6055 void
6056 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6058 struct vmspace *oldvm;
6059 struct pmap *pmap;
6061 oldvm = lp->lwp_vmspace;
6063 if (oldvm != newvm) {
6064 crit_enter();
6065 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6066 lp->lwp_vmspace = newvm;
6067 if (curthread->td_lwp == lp) {
6068 pmap = vmspace_pmap(newvm);
6069 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6070 if (pmap->pm_active_lock & CPULOCK_EXCL)
6071 pmap_interlock_wait(newvm);
6072 #if defined(SWTCH_OPTIM_STATS)
6073 tlb_flush_count++;
6074 #endif
6075 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6076 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6077 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6078 curthread->td_pcb->pcb_cr3 = KPML4phys;
6079 } else {
6080 panic("pmap_setlwpvm: unknown pmap type\n");
6082 load_cr3(curthread->td_pcb->pcb_cr3);
6083 pmap = vmspace_pmap(oldvm);
6084 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6085 mycpu->gd_cpuid);
6087 crit_exit();
6092 * Called when switching to a locked pmap, used to interlock against pmaps
6093 * undergoing modifications to prevent us from activating the MMU for the
6094 * target pmap until all such modifications have completed. We have to do
6095 * this because the thread making the modifications has already set up its
6096 * SMP synchronization mask.
6098 * This function cannot sleep!
6100 * No requirements.
6102 void
6103 pmap_interlock_wait(struct vmspace *vm)
6105 struct pmap *pmap = &vm->vm_pmap;
6107 if (pmap->pm_active_lock & CPULOCK_EXCL) {
6108 crit_enter();
6109 KKASSERT(curthread->td_critcount >= 2);
6110 DEBUG_PUSH_INFO("pmap_interlock_wait");
6111 while (pmap->pm_active_lock & CPULOCK_EXCL) {
6112 cpu_ccfence();
6113 lwkt_process_ipiq();
6115 DEBUG_POP_INFO();
6116 crit_exit();
6120 vm_offset_t
6121 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6124 if ((obj == NULL) || (size < NBPDR) ||
6125 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6126 return addr;
6129 addr = roundup2(addr, NBPDR);
6130 return addr;
6134 * Used by kmalloc/kfree, page already exists at va
6136 vm_page_t
6137 pmap_kvtom(vm_offset_t va)
6139 pt_entry_t *ptep = vtopte(va);
6141 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6142 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6146 * Initialize machine-specific shared page directory support. This
6147 * is executed when a VM object is created.
6149 void
6150 pmap_object_init(vm_object_t object)
6152 object->md.pmap_rw = NULL;
6153 object->md.pmap_ro = NULL;
6157 * Clean up machine-specific shared page directory support. This
6158 * is executed when a VM object is destroyed.
6160 void
6161 pmap_object_free(vm_object_t object)
6163 pmap_t pmap;
6165 if ((pmap = object->md.pmap_rw) != NULL) {
6166 object->md.pmap_rw = NULL;
6167 pmap_remove_noinval(pmap,
6168 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6169 CPUMASK_ASSZERO(pmap->pm_active);
6170 pmap_release(pmap);
6171 pmap_puninit(pmap);
6172 kfree(pmap, M_OBJPMAP);
6174 if ((pmap = object->md.pmap_ro) != NULL) {
6175 object->md.pmap_ro = NULL;
6176 pmap_remove_noinval(pmap,
6177 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6178 CPUMASK_ASSZERO(pmap->pm_active);
6179 pmap_release(pmap);
6180 pmap_puninit(pmap);
6181 kfree(pmap, M_OBJPMAP);
6186 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6187 * VM page and issue a pginfo->callback.
6189 * We are expected to dispose of any non-NULL pte_pv.
6191 static
6192 void
6193 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6194 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6195 pv_entry_t pt_pv, int sharept,
6196 vm_offset_t va, pt_entry_t *ptep, void *arg)
6198 struct pmap_pgscan_info *pginfo = arg;
6199 vm_page_t m;
6201 if (pte_pv) {
6203 * Try to busy the page while we hold the pte_pv locked.
6205 KKASSERT(pte_pv->pv_m);
6206 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6207 if (vm_page_busy_try(m, TRUE) == 0) {
6208 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6210 * The callback is issued with the pte_pv
6211 * unlocked and put away, and the pt_pv
6212 * unlocked.
6214 pv_put(pte_pv);
6215 if (pt_pv) {
6216 vm_page_wire_quick(pt_pv->pv_m);
6217 pv_unlock(pt_pv);
6219 if (pginfo->callback(pginfo, va, m) < 0)
6220 info->stop = 1;
6221 if (pt_pv) {
6222 pv_lock(pt_pv);
6223 vm_page_unwire_quick(pt_pv->pv_m);
6225 } else {
6226 vm_page_wakeup(m);
6227 pv_put(pte_pv);
6229 } else {
6230 ++pginfo->busycount;
6231 pv_put(pte_pv);
6233 } else {
6235 * Shared page table or unmanaged page (sharept or !sharept)
6237 pv_placemarker_wakeup(pmap, pte_placemark);
6241 void
6242 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6244 struct pmap_scan_info info;
6246 pginfo->offset = pginfo->beg_addr;
6247 info.pmap = pginfo->pmap;
6248 info.sva = pginfo->beg_addr;
6249 info.eva = pginfo->end_addr;
6250 info.func = pmap_pgscan_callback;
6251 info.arg = pginfo;
6252 pmap_scan(&info, 0);
6253 if (info.stop == 0)
6254 pginfo->offset = pginfo->end_addr;
6258 * Wait for a placemarker that we do not own to clear. The placemarker
6259 * in question is not necessarily set to the pindex we want, we may have
6260 * to wait on the element because we want to reserve it ourselves.
6262 * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6263 * PM_NOPLACEMARK, so it does not interfere with placemarks
6264 * which have already been woken up.
6266 static
6267 void
6268 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6270 if (*pmark != PM_NOPLACEMARK) {
6271 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6272 tsleep_interlock(pmark, 0);
6273 if (*pmark != PM_NOPLACEMARK)
6274 tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6279 * Wakeup a placemarker that we own. Replace the entry with
6280 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6282 static
6283 void
6284 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6286 vm_pindex_t pindex;
6288 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6289 KKASSERT(pindex != PM_NOPLACEMARK);
6290 if (pindex & PM_PLACEMARK_WAKEUP)
6291 wakeup(pmark);