Initial import of truecrypt cracking project.
[delutions.git] / tc / crypto / Sha2.c
blob9ae8c1cac9f4a64c4946f594be859d2169410ec0
1 /*
2 ---------------------------------------------------------------------------
3 Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
5 LICENSE TERMS
7 The free distribution and use of this software is allowed (with or without
8 changes) provided that:
10 1. source code distributions include the above copyright notice, this
11 list of conditions and the following disclaimer;
13 2. binary distributions include the above copyright notice, this list
14 of conditions and the following disclaimer in their documentation;
16 3. the name of the copyright holder is not used to endorse products
17 built using this software without specific written permission.
19 DISCLAIMER
21 This software is provided 'as is' with no explicit or implied warranties
22 in respect of its properties, including, but not limited to, correctness
23 and/or fitness for purpose.
24 ---------------------------------------------------------------------------
25 Issue Date: 01/08/2005
27 This is a byte oriented version of SHA2 that operates on arrays of bytes
28 stored in memory. This code implements sha256, sha384 and sha512 but the
29 latter two functions rely on efficient 64-bit integer operations that
30 may not be very efficient on 32-bit machines
32 The sha256 functions use a type 'sha256_ctx' to hold details of the
33 current hash state and uses the following three calls:
35 void sha256_begin(sha256_ctx ctx[1])
36 void sha256_hash(const unsigned char data[],
37 unsigned long len, sha256_ctx ctx[1])
38 void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
40 The first subroutine initialises a hash computation by setting up the
41 context in the sha256_ctx context. The second subroutine hashes 8-bit
42 bytes from array data[] into the hash state withinh sha256_ctx context,
43 the number of bytes to be hashed being given by the the unsigned long
44 integer len. The third subroutine completes the hash calculation and
45 places the resulting digest value in the array of 8-bit bytes hval[].
47 The sha384 and sha512 functions are similar and use the interfaces:
49 void sha384_begin(sha384_ctx ctx[1]);
50 void sha384_hash(const unsigned char data[],
51 unsigned long len, sha384_ctx ctx[1]);
52 void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
54 void sha512_begin(sha512_ctx ctx[1]);
55 void sha512_hash(const unsigned char data[],
56 unsigned long len, sha512_ctx ctx[1]);
57 void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
59 In addition there is a function sha2 that can be used to call all these
60 functions using a call with a hash length parameter as follows:
62 int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
63 void sha2_hash(const unsigned char data[],
64 unsigned long len, sha2_ctx ctx[1]);
65 void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
67 My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
68 on big-endian systems and for his assistance with corrections
71 #include "Common/Endian.h"
72 #define PLATFORM_BYTE_ORDER BYTE_ORDER
73 #define IS_LITTLE_ENDIAN LITTLE_ENDIAN
75 #if 0
76 #define UNROLL_SHA2 /* for SHA2 loop unroll */
77 #endif
79 #include <string.h> /* for memcpy() etc. */
81 #include "Sha2.h"
83 #if defined(__cplusplus)
84 extern "C"
86 #endif
88 #if defined( _MSC_VER ) && ( _MSC_VER > 800 )
89 #pragma intrinsic(memcpy)
90 #endif
92 #if 0 && defined(_MSC_VER)
93 #define rotl32 _lrotl
94 #define rotr32 _lrotr
95 #else
96 #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
97 #define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
98 #endif
100 #if !defined(bswap_32)
101 #define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
102 #endif
104 #if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
105 #define SWAP_BYTES
106 #else
107 #undef SWAP_BYTES
108 #endif
110 #if 0
112 #define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
113 #define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
115 #else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
117 #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
118 #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
120 #endif
122 /* round transforms for SHA256 and SHA512 compression functions */
124 #define vf(n,i) v[(n - i) & 7]
126 #define hf(i) (p[i & 15] += \
127 g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
129 #define v_cycle(i,j) \
130 vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
131 + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
132 vf(3,i) += vf(7,i); \
133 vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
135 #if defined(SHA_224) || defined(SHA_256)
137 #define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
139 #if defined(SWAP_BYTES)
140 #define bsw_32(p,n) \
141 { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
142 #else
143 #define bsw_32(p,n)
144 #endif
146 #define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
147 #define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
148 #define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
149 #define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
150 #define k_0 k256
152 /* rotated SHA256 round definition. Rather than swapping variables as in */
153 /* FIPS-180, different variables are 'rotated' on each round, returning */
154 /* to their starting positions every eight rounds */
156 #define q(n) v##n
158 #define one_cycle(a,b,c,d,e,f,g,h,k,w) \
159 q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
160 q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
162 /* SHA256 mixing data */
164 const uint_32t k256[64] =
165 { 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
166 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
167 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
168 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
169 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
170 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
171 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
172 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
173 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
174 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
175 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
176 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
177 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
178 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
179 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
180 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
183 /* Compile 64 bytes of hash data into SHA256 digest value */
184 /* NOTE: this routine assumes that the byte order in the */
185 /* ctx->wbuf[] at this point is such that low address bytes */
186 /* in the ORIGINAL byte stream will go into the high end of */
187 /* words on BOTH big and little endian systems */
189 VOID_RETURN sha256_compile(sha256_ctx ctx[1])
191 #if !defined(UNROLL_SHA2)
193 uint_32t j, *p = ctx->wbuf, v[8];
195 memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
197 for(j = 0; j < 64; j += 16)
199 v_cycle( 0, j); v_cycle( 1, j);
200 v_cycle( 2, j); v_cycle( 3, j);
201 v_cycle( 4, j); v_cycle( 5, j);
202 v_cycle( 6, j); v_cycle( 7, j);
203 v_cycle( 8, j); v_cycle( 9, j);
204 v_cycle(10, j); v_cycle(11, j);
205 v_cycle(12, j); v_cycle(13, j);
206 v_cycle(14, j); v_cycle(15, j);
209 ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
210 ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
211 ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
212 ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
214 #else
216 uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
218 v0 = ctx->hash[0]; v1 = ctx->hash[1];
219 v2 = ctx->hash[2]; v3 = ctx->hash[3];
220 v4 = ctx->hash[4]; v5 = ctx->hash[5];
221 v6 = ctx->hash[6]; v7 = ctx->hash[7];
223 one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
224 one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
225 one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
226 one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
227 one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
228 one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
229 one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
230 one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
231 one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
232 one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
233 one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
234 one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
235 one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
236 one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
237 one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
238 one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
240 one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
241 one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
242 one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
243 one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
244 one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
245 one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
246 one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
247 one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
248 one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
249 one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
250 one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
251 one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
252 one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
253 one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
254 one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
255 one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
257 one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
258 one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
259 one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
260 one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
261 one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
262 one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
263 one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
264 one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
265 one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
266 one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
267 one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
268 one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
269 one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
270 one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
271 one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
272 one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
274 one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
275 one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
276 one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
277 one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
278 one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
279 one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
280 one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
281 one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
282 one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
283 one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
284 one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
285 one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
286 one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
287 one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
288 one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
289 one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
291 ctx->hash[0] += v0; ctx->hash[1] += v1;
292 ctx->hash[2] += v2; ctx->hash[3] += v3;
293 ctx->hash[4] += v4; ctx->hash[5] += v5;
294 ctx->hash[6] += v6; ctx->hash[7] += v7;
295 #endif
298 /* SHA256 hash data in an array of bytes into hash buffer */
299 /* and call the hash_compile function as required. */
301 VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
302 { uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
303 space = SHA256_BLOCK_SIZE - pos;
304 const unsigned char *sp = data;
306 if((ctx->count[0] += len) < len)
307 ++(ctx->count[1]);
309 while(len >= space) /* tranfer whole blocks while possible */
311 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
312 sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
313 bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
314 sha256_compile(ctx);
317 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
320 /* SHA256 Final padding and digest calculation */
322 static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
323 { uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
325 /* put bytes in the buffer in an order in which references to */
326 /* 32-bit words will put bytes with lower addresses into the */
327 /* top of 32 bit words on BOTH big and little endian machines */
328 bsw_32(ctx->wbuf, (i + 3) >> 2)
330 /* we now need to mask valid bytes and add the padding which is */
331 /* a single 1 bit and as many zero bits as necessary. Note that */
332 /* we can always add the first padding byte here because the */
333 /* buffer always has at least one empty slot */
334 ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
335 ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
337 /* we need 9 or more empty positions, one for the padding byte */
338 /* (above) and eight for the length count. If there is not */
339 /* enough space pad and empty the buffer */
340 if(i > SHA256_BLOCK_SIZE - 9)
342 if(i < 60) ctx->wbuf[15] = 0;
343 sha256_compile(ctx);
344 i = 0;
346 else /* compute a word index for the empty buffer positions */
347 i = (i >> 2) + 1;
349 while(i < 14) /* and zero pad all but last two positions */
350 ctx->wbuf[i++] = 0;
352 /* the following 32-bit length fields are assembled in the */
353 /* wrong byte order on little endian machines but this is */
354 /* corrected later since they are only ever used as 32-bit */
355 /* word values. */
356 ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
357 ctx->wbuf[15] = ctx->count[0] << 3;
358 sha256_compile(ctx);
360 /* extract the hash value as bytes in case the hash buffer is */
361 /* mislaigned for 32-bit words */
362 for(i = 0; i < hlen; ++i)
363 hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
366 #endif
368 #if defined(SHA_224)
370 const uint_32t i224[8] =
372 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
373 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
376 VOID_RETURN sha224_begin(sha224_ctx ctx[1])
378 ctx->count[0] = ctx->count[1] = 0;
379 memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
382 VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
384 sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
387 VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
388 { sha224_ctx cx[1];
390 sha224_begin(cx);
391 sha224_hash(data, len, cx);
392 sha_end1(hval, cx, SHA224_DIGEST_SIZE);
395 #endif
397 #if defined(SHA_256)
399 const uint_32t i256[8] =
401 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
402 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
405 VOID_RETURN sha256_begin(sha256_ctx ctx[1])
407 ctx->count[0] = ctx->count[1] = 0;
408 memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
411 VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
413 sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
416 VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
417 { sha256_ctx cx[1];
419 sha256_begin(cx);
420 sha256_hash(data, len, cx);
421 sha_end1(hval, cx, SHA256_DIGEST_SIZE);
424 #endif
426 #if defined(SHA_384) || defined(SHA_512)
428 #define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
430 #define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
432 #if !defined(bswap_64)
433 #define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
434 #endif
436 #if defined(SWAP_BYTES)
437 #define bsw_64(p,n) \
438 { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
439 #else
440 #define bsw_64(p,n)
441 #endif
443 /* SHA512 mixing function definitions */
445 #ifdef s_0
446 # undef s_0
447 # undef s_1
448 # undef g_0
449 # undef g_1
450 # undef k_0
451 #endif
453 #define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
454 #define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
455 #define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
456 #define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
457 #define k_0 k512
459 /* SHA384/SHA512 mixing data */
461 const uint_64t k512[80] =
463 li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
464 li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
465 li_64(3956c25bf348b538), li_64(59f111f1b605d019),
466 li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
467 li_64(d807aa98a3030242), li_64(12835b0145706fbe),
468 li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
469 li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
470 li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
471 li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
472 li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
473 li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
474 li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
475 li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
476 li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
477 li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
478 li_64(06ca6351e003826f), li_64(142929670a0e6e70),
479 li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
480 li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
481 li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
482 li_64(81c2c92e47edaee6), li_64(92722c851482353b),
483 li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
484 li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
485 li_64(d192e819d6ef5218), li_64(d69906245565a910),
486 li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
487 li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
488 li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
489 li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
490 li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
491 li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
492 li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
493 li_64(90befffa23631e28), li_64(a4506cebde82bde9),
494 li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
495 li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
496 li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
497 li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
498 li_64(113f9804bef90dae), li_64(1b710b35131c471b),
499 li_64(28db77f523047d84), li_64(32caab7b40c72493),
500 li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
501 li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
502 li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
505 /* Compile 128 bytes of hash data into SHA384/512 digest */
506 /* NOTE: this routine assumes that the byte order in the */
507 /* ctx->wbuf[] at this point is such that low address bytes */
508 /* in the ORIGINAL byte stream will go into the high end of */
509 /* words on BOTH big and little endian systems */
511 VOID_RETURN sha512_compile(sha512_ctx ctx[1])
512 { uint_64t v[8], *p = ctx->wbuf;
513 uint_32t j;
515 memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
517 for(j = 0; j < 80; j += 16)
519 v_cycle( 0, j); v_cycle( 1, j);
520 v_cycle( 2, j); v_cycle( 3, j);
521 v_cycle( 4, j); v_cycle( 5, j);
522 v_cycle( 6, j); v_cycle( 7, j);
523 v_cycle( 8, j); v_cycle( 9, j);
524 v_cycle(10, j); v_cycle(11, j);
525 v_cycle(12, j); v_cycle(13, j);
526 v_cycle(14, j); v_cycle(15, j);
529 ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
530 ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
531 ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
532 ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
535 /* Compile 128 bytes of hash data into SHA256 digest value */
536 /* NOTE: this routine assumes that the byte order in the */
537 /* ctx->wbuf[] at this point is in such an order that low */
538 /* address bytes in the ORIGINAL byte stream placed in this */
539 /* buffer will now go to the high end of words on BOTH big */
540 /* and little endian systems */
542 VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
543 { uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
544 space = SHA512_BLOCK_SIZE - pos;
545 const unsigned char *sp = data;
547 if((ctx->count[0] += len) < len)
548 ++(ctx->count[1]);
550 while(len >= space) /* tranfer whole blocks while possible */
552 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
553 sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
554 bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
555 sha512_compile(ctx);
558 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
561 /* SHA384/512 Final padding and digest calculation */
563 static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
564 { uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
566 /* put bytes in the buffer in an order in which references to */
567 /* 32-bit words will put bytes with lower addresses into the */
568 /* top of 32 bit words on BOTH big and little endian machines */
569 bsw_64(ctx->wbuf, (i + 7) >> 3);
571 /* we now need to mask valid bytes and add the padding which is */
572 /* a single 1 bit and as many zero bits as necessary. Note that */
573 /* we can always add the first padding byte here because the */
574 /* buffer always has at least one empty slot */
575 ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
576 ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
578 /* we need 17 or more empty byte positions, one for the padding */
579 /* byte (above) and sixteen for the length count. If there is */
580 /* not enough space pad and empty the buffer */
581 if(i > SHA512_BLOCK_SIZE - 17)
583 if(i < 120) ctx->wbuf[15] = 0;
584 sha512_compile(ctx);
585 i = 0;
587 else
588 i = (i >> 3) + 1;
590 while(i < 14)
591 ctx->wbuf[i++] = 0;
593 /* the following 64-bit length fields are assembled in the */
594 /* wrong byte order on little endian machines but this is */
595 /* corrected later since they are only ever used as 64-bit */
596 /* word values. */
597 ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
598 ctx->wbuf[15] = ctx->count[0] << 3;
599 sha512_compile(ctx);
601 /* extract the hash value as bytes in case the hash buffer is */
602 /* misaligned for 32-bit words */
603 for(i = 0; i < hlen; ++i)
604 hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
607 #endif
609 #if defined(SHA_384)
611 /* SHA384 initialisation data */
613 const uint_64t i384[80] =
615 li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
616 li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
617 li_64(67332667ffc00b31), li_64(8eb44a8768581511),
618 li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
621 VOID_RETURN sha384_begin(sha384_ctx ctx[1])
623 ctx->count[0] = ctx->count[1] = 0;
624 memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
627 VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
629 sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
632 VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
633 { sha384_ctx cx[1];
635 sha384_begin(cx);
636 sha384_hash(data, len, cx);
637 sha_end2(hval, cx, SHA384_DIGEST_SIZE);
640 #endif
642 #if defined(SHA_512)
644 /* SHA512 initialisation data */
646 const uint_64t i512[80] =
648 li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
649 li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
650 li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
651 li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
654 VOID_RETURN sha512_begin(sha512_ctx ctx[1])
656 ctx->count[0] = ctx->count[1] = 0;
657 memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
660 VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
662 sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
665 VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
666 { sha512_ctx cx[1];
668 sha512_begin(cx);
669 sha512_hash(data, len, cx);
670 sha_end2(hval, cx, SHA512_DIGEST_SIZE);
673 #endif
675 #if defined(SHA_2)
677 #define CTX_224(x) ((x)->uu->ctx256)
678 #define CTX_256(x) ((x)->uu->ctx256)
679 #define CTX_384(x) ((x)->uu->ctx512)
680 #define CTX_512(x) ((x)->uu->ctx512)
682 /* SHA2 initialisation */
684 INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
686 switch(len)
688 #if defined(SHA_224)
689 case 224:
690 case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
691 memcpy(CTX_256(ctx)->hash, i224, 32);
692 ctx->sha2_len = 28; return EXIT_SUCCESS;
693 #endif
694 #if defined(SHA_256)
695 case 256:
696 case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
697 memcpy(CTX_256(ctx)->hash, i256, 32);
698 ctx->sha2_len = 32; return EXIT_SUCCESS;
699 #endif
700 #if defined(SHA_384)
701 case 384:
702 case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
703 memcpy(CTX_384(ctx)->hash, i384, 64);
704 ctx->sha2_len = 48; return EXIT_SUCCESS;
705 #endif
706 #if defined(SHA_512)
707 case 512:
708 case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
709 memcpy(CTX_512(ctx)->hash, i512, 64);
710 ctx->sha2_len = 64; return EXIT_SUCCESS;
711 #endif
712 default: return EXIT_FAILURE;
716 VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
718 switch(ctx->sha2_len)
720 #if defined(SHA_224)
721 case 28: sha224_hash(data, len, CTX_224(ctx)); return;
722 #endif
723 #if defined(SHA_256)
724 case 32: sha256_hash(data, len, CTX_256(ctx)); return;
725 #endif
726 #if defined(SHA_384)
727 case 48: sha384_hash(data, len, CTX_384(ctx)); return;
728 #endif
729 #if defined(SHA_512)
730 case 64: sha512_hash(data, len, CTX_512(ctx)); return;
731 #endif
735 VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
737 switch(ctx->sha2_len)
739 #if defined(SHA_224)
740 case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
741 #endif
742 #if defined(SHA_256)
743 case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
744 #endif
745 #if defined(SHA_384)
746 case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
747 #endif
748 #if defined(SHA_512)
749 case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
750 #endif
754 INT_RETURN sha2(unsigned char hval[], unsigned long size,
755 const unsigned char data[], unsigned long len)
756 { sha2_ctx cx[1];
758 if(sha2_begin(size, cx) == EXIT_SUCCESS)
760 sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
762 else
763 return EXIT_FAILURE;
766 #endif
768 #if defined(__cplusplus)
770 #endif