Linux 2.2.0pre2 (December 31 1998)
[davej-history.git] / include / asm-i386 / pgtable.h
blob5ca57fc3dd74207592da815258c848929343f55f
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
4 #include <linux/config.h>
6 /*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
15 #ifndef __ASSEMBLY__
16 #include <asm/processor.h>
17 #include <asm/fixmap.h>
18 #include <linux/tasks.h>
20 /* Caches aren't brain-dead on the intel. */
21 #define flush_cache_all() do { } while (0)
22 #define flush_cache_mm(mm) do { } while (0)
23 #define flush_cache_range(mm, start, end) do { } while (0)
24 #define flush_cache_page(vma, vmaddr) do { } while (0)
25 #define flush_page_to_ram(page) do { } while (0)
26 #define flush_icache_range(start, end) do { } while (0)
29 * TLB flushing:
31 * - flush_tlb() flushes the current mm struct TLBs
32 * - flush_tlb_all() flushes all processes TLBs
33 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
34 * - flush_tlb_page(vma, vmaddr) flushes one page
35 * - flush_tlb_range(mm, start, end) flushes a range of pages
37 * ..but the i386 has somewhat limited tlb flushing capabilities,
38 * and page-granular flushes are available only on i486 and up.
41 #define __flush_tlb() \
42 do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
44 #ifndef CONFIG_INVLPG
45 #define __flush_tlb_one(addr) flush_tlb()
46 #else
47 #define __flush_tlb_one(addr) \
48 __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
49 #endif
51 #ifndef __SMP__
53 #define flush_tlb() __flush_tlb()
54 #define flush_tlb_all() __flush_tlb()
55 #define local_flush_tlb() __flush_tlb()
57 static inline void flush_tlb_mm(struct mm_struct *mm)
59 if (mm == current->mm)
60 __flush_tlb();
63 static inline void flush_tlb_page(struct vm_area_struct *vma,
64 unsigned long addr)
66 if (vma->vm_mm == current->mm)
67 __flush_tlb_one(addr);
70 static inline void flush_tlb_range(struct mm_struct *mm,
71 unsigned long start, unsigned long end)
73 if (mm == current->mm)
74 __flush_tlb();
77 #else
80 * We aren't very clever about this yet - SMP could certainly
81 * avoid some global flushes..
84 #include <asm/smp.h>
86 #define local_flush_tlb() \
87 __flush_tlb()
90 #define CLEVER_SMP_INVALIDATE
91 #ifdef CLEVER_SMP_INVALIDATE
94 * Smarter SMP flushing macros.
95 * c/o Linus Torvalds.
97 * These mean you can really definitely utterly forget about
98 * writing to user space from interrupts. (Its not allowed anyway).
101 static inline void flush_tlb_current_task(void)
103 /* just one copy of this mm? */
104 if (atomic_read(&current->mm->count) == 1)
105 local_flush_tlb(); /* and that's us, so.. */
106 else
107 smp_flush_tlb();
110 #define flush_tlb() flush_tlb_current_task()
112 #define flush_tlb_all() smp_flush_tlb()
114 static inline void flush_tlb_mm(struct mm_struct * mm)
116 if (mm == current->mm && atomic_read(&mm->count) == 1)
117 local_flush_tlb();
118 else
119 smp_flush_tlb();
122 static inline void flush_tlb_page(struct vm_area_struct * vma,
123 unsigned long va)
125 if (vma->vm_mm == current->mm && atomic_read(&current->mm->count) == 1)
126 __flush_tlb_one(va);
127 else
128 smp_flush_tlb();
131 static inline void flush_tlb_range(struct mm_struct * mm,
132 unsigned long start, unsigned long end)
134 flush_tlb_mm(mm);
138 #else
140 #define flush_tlb() \
141 smp_flush_tlb()
143 #define flush_tlb_all() flush_tlb()
145 static inline void flush_tlb_mm(struct mm_struct *mm)
147 flush_tlb();
150 static inline void flush_tlb_page(struct vm_area_struct *vma,
151 unsigned long addr)
153 flush_tlb();
156 static inline void flush_tlb_range(struct mm_struct *mm,
157 unsigned long start, unsigned long end)
159 flush_tlb();
161 #endif
162 #endif
163 #endif /* !__ASSEMBLY__ */
166 /* Certain architectures need to do special things when PTEs
167 * within a page table are directly modified. Thus, the following
168 * hook is made available.
170 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
172 /* PMD_SHIFT determines the size of the area a second-level page table can map */
173 #define PMD_SHIFT 22
174 #define PMD_SIZE (1UL << PMD_SHIFT)
175 #define PMD_MASK (~(PMD_SIZE-1))
177 /* PGDIR_SHIFT determines what a third-level page table entry can map */
178 #define PGDIR_SHIFT 22
179 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
180 #define PGDIR_MASK (~(PGDIR_SIZE-1))
183 * entries per page directory level: the i386 is two-level, so
184 * we don't really have any PMD directory physically.
186 #define PTRS_PER_PTE 1024
187 #define PTRS_PER_PMD 1
188 #define PTRS_PER_PGD 1024
189 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
192 * pgd entries used up by user/kernel:
195 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
196 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
197 #define __USER_PGD_PTRS ((__PAGE_OFFSET >> PGDIR_SHIFT) & 0x3ff)
198 #define __KERNEL_PGD_PTRS (PTRS_PER_PGD-__USER_PGD_PTRS)
200 #ifndef __ASSEMBLY__
201 /* Just any arbitrary offset to the start of the vmalloc VM area: the
202 * current 8MB value just means that there will be a 8MB "hole" after the
203 * physical memory until the kernel virtual memory starts. That means that
204 * any out-of-bounds memory accesses will hopefully be caught.
205 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
206 * area for the same reason. ;)
208 #define VMALLOC_OFFSET (8*1024*1024)
209 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
210 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
211 #define VMALLOC_END (FIXADDR_START)
214 * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
215 * of the Pentium details, but assuming intel did the straightforward
216 * thing, this bit set in the page directory entry just means that
217 * the page directory entry points directly to a 4MB-aligned block of
218 * memory.
220 #define _PAGE_PRESENT 0x001
221 #define _PAGE_RW 0x002
222 #define _PAGE_USER 0x004
223 #define _PAGE_WT 0x008
224 #define _PAGE_PCD 0x010
225 #define _PAGE_ACCESSED 0x020
226 #define _PAGE_DIRTY 0x040
227 #define _PAGE_4M 0x080 /* 4 MB page, Pentium+, if present.. */
228 #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
230 #define _PAGE_PROTNONE 0x080 /* If not present */
232 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
233 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
234 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
236 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
237 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
238 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
239 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
240 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
241 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
244 * The i386 can't do page protection for execute, and considers that the same are read.
245 * Also, write permissions imply read permissions. This is the closest we can get..
247 #define __P000 PAGE_NONE
248 #define __P001 PAGE_READONLY
249 #define __P010 PAGE_COPY
250 #define __P011 PAGE_COPY
251 #define __P100 PAGE_READONLY
252 #define __P101 PAGE_READONLY
253 #define __P110 PAGE_COPY
254 #define __P111 PAGE_COPY
256 #define __S000 PAGE_NONE
257 #define __S001 PAGE_READONLY
258 #define __S010 PAGE_SHARED
259 #define __S011 PAGE_SHARED
260 #define __S100 PAGE_READONLY
261 #define __S101 PAGE_READONLY
262 #define __S110 PAGE_SHARED
263 #define __S111 PAGE_SHARED
266 * Define this if things work differently on an i386 and an i486:
267 * it will (on an i486) warn about kernel memory accesses that are
268 * done without a 'verify_area(VERIFY_WRITE,..)'
270 #undef TEST_VERIFY_AREA
272 /* page table for 0-4MB for everybody */
273 extern unsigned long pg0[1024];
274 /* zero page used for uninitialized stuff */
275 extern unsigned long empty_zero_page[1024];
278 * BAD_PAGETABLE is used when we need a bogus page-table, while
279 * BAD_PAGE is used for a bogus page.
281 * ZERO_PAGE is a global shared page that is always zero: used
282 * for zero-mapped memory areas etc..
284 extern pte_t __bad_page(void);
285 extern pte_t * __bad_pagetable(void);
287 #define BAD_PAGETABLE __bad_pagetable()
288 #define BAD_PAGE __bad_page()
289 #define ZERO_PAGE ((unsigned long) empty_zero_page)
291 /* number of bits that fit into a memory pointer */
292 #define BITS_PER_PTR (8*sizeof(unsigned long))
294 /* to align the pointer to a pointer address */
295 #define PTR_MASK (~(sizeof(void*)-1))
297 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
298 /* 64-bit machines, beware! SRB. */
299 #define SIZEOF_PTR_LOG2 2
301 /* to find an entry in a page-table */
302 #define PAGE_PTR(address) \
303 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
305 /* to set the page-dir */
306 #define SET_PAGE_DIR(tsk,pgdir) \
307 do { \
308 unsigned long __pgdir = __pa(pgdir); \
309 (tsk)->tss.cr3 = __pgdir; \
310 if ((tsk) == current) \
311 __asm__ __volatile__("movl %0,%%cr3": :"r" (__pgdir)); \
312 } while (0)
314 #define pte_none(x) (!pte_val(x))
315 #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
316 #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
318 #define pmd_none(x) (!pmd_val(x))
319 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
320 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
321 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
324 * The "pgd_xxx()" functions here are trivial for a folded two-level
325 * setup: the pgd is never bad, and a pmd always exists (as it's folded
326 * into the pgd entry)
328 extern inline int pgd_none(pgd_t pgd) { return 0; }
329 extern inline int pgd_bad(pgd_t pgd) { return 0; }
330 extern inline int pgd_present(pgd_t pgd) { return 1; }
331 extern inline void pgd_clear(pgd_t * pgdp) { }
334 * The following only work if pte_present() is true.
335 * Undefined behaviour if not..
337 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
338 extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
339 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
340 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
341 extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
343 extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
344 extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
345 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
346 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
347 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
348 extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
349 extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
350 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
351 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
352 extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
355 * Conversion functions: convert a page and protection to a page entry,
356 * and a page entry and page directory to the page they refer to.
358 #define mk_pte(page, pgprot) \
359 ({ pte_t __pte; pte_val(__pte) = __pa(page) + pgprot_val(pgprot); __pte; })
361 /* This takes a physical page address that is used by the remapping functions */
362 #define mk_pte_phys(physpage, pgprot) \
363 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
365 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
366 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
368 #define pte_page(pte) \
369 ((unsigned long) __va(pte_val(pte) & PAGE_MASK))
371 #define pmd_page(pmd) \
372 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
374 /* to find an entry in a page-table-directory */
375 #define pgd_offset(mm, address) \
376 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
378 /* to find an entry in a kernel page-table-directory */
379 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
381 /* Find an entry in the second-level page table.. */
382 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
384 return (pmd_t *) dir;
387 /* Find an entry in the third-level page table.. */
388 #define pte_offset(pmd, address) \
389 ((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))
392 * Allocate and free page tables. The xxx_kernel() versions are
393 * used to allocate a kernel page table - this turns on ASN bits
394 * if any.
397 #define pgd_quicklist (current_cpu_data.pgd_quick)
398 #define pmd_quicklist ((unsigned long *)0)
399 #define pte_quicklist (current_cpu_data.pte_quick)
400 #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
402 extern __inline__ pgd_t *get_pgd_slow(void)
404 pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init;
406 if (ret) {
407 init = pgd_offset(&init_mm, 0);
408 memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
409 memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
410 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
412 return ret;
415 extern __inline__ pgd_t *get_pgd_fast(void)
417 unsigned long *ret;
419 if((ret = pgd_quicklist) != NULL) {
420 pgd_quicklist = (unsigned long *)(*ret);
421 ret[0] = ret[1];
422 pgtable_cache_size--;
423 } else
424 ret = (unsigned long *)get_pgd_slow();
425 return (pgd_t *)ret;
428 extern __inline__ void free_pgd_fast(pgd_t *pgd)
430 *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
431 pgd_quicklist = (unsigned long *) pgd;
432 pgtable_cache_size++;
435 extern __inline__ void free_pgd_slow(pgd_t *pgd)
437 free_page((unsigned long)pgd);
440 extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
441 extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
443 extern __inline__ pte_t *get_pte_fast(void)
445 unsigned long *ret;
447 if((ret = (unsigned long *)pte_quicklist) != NULL) {
448 pte_quicklist = (unsigned long *)(*ret);
449 ret[0] = ret[1];
450 pgtable_cache_size--;
452 return (pte_t *)ret;
455 extern __inline__ void free_pte_fast(pte_t *pte)
457 *(unsigned long *)pte = (unsigned long) pte_quicklist;
458 pte_quicklist = (unsigned long *) pte;
459 pgtable_cache_size++;
462 extern __inline__ void free_pte_slow(pte_t *pte)
464 free_page((unsigned long)pte);
467 /* We don't use pmd cache, so these are dummy routines */
468 extern __inline__ pmd_t *get_pmd_fast(void)
470 return (pmd_t *)0;
473 extern __inline__ void free_pmd_fast(pmd_t *pmd)
477 extern __inline__ void free_pmd_slow(pmd_t *pmd)
481 extern void __bad_pte(pmd_t *pmd);
482 extern void __bad_pte_kernel(pmd_t *pmd);
484 #define pte_free_kernel(pte) free_pte_fast(pte)
485 #define pte_free(pte) free_pte_fast(pte)
486 #define pgd_free(pgd) free_pgd_fast(pgd)
487 #define pgd_alloc() get_pgd_fast()
489 extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
491 address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
492 if (pmd_none(*pmd)) {
493 pte_t * page = (pte_t *) get_pte_fast();
495 if (!page)
496 return get_pte_kernel_slow(pmd, address);
497 pmd_val(*pmd) = _KERNPG_TABLE + __pa(page);
498 return page + address;
500 if (pmd_bad(*pmd)) {
501 __bad_pte_kernel(pmd);
502 return NULL;
504 return (pte_t *) pmd_page(*pmd) + address;
507 extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
509 address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
511 if (pmd_none(*pmd))
512 goto getnew;
513 if (pmd_bad(*pmd))
514 goto fix;
515 return (pte_t *) (pmd_page(*pmd) + address);
516 getnew:
518 unsigned long page = (unsigned long) get_pte_fast();
520 if (!page)
521 return get_pte_slow(pmd, address);
522 pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
523 return (pte_t *) (page + address);
525 fix:
526 __bad_pte(pmd);
527 return NULL;
531 * allocating and freeing a pmd is trivial: the 1-entry pmd is
532 * inside the pgd, so has no extra memory associated with it.
534 extern inline void pmd_free(pmd_t * pmd)
538 extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
540 return (pmd_t *) pgd;
543 #define pmd_free_kernel pmd_free
544 #define pmd_alloc_kernel pmd_alloc
546 extern int do_check_pgt_cache(int, int);
548 extern inline void set_pgdir(unsigned long address, pgd_t entry)
550 struct task_struct * p;
551 pgd_t *pgd;
552 #ifdef __SMP__
553 int i;
554 #endif
556 read_lock(&tasklist_lock);
557 for_each_task(p) {
558 if (!p->mm)
559 continue;
560 *pgd_offset(p->mm,address) = entry;
562 read_unlock(&tasklist_lock);
563 #ifndef __SMP__
564 for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
565 pgd[address >> PGDIR_SHIFT] = entry;
566 #else
567 /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
568 modify pgd caches of other CPUs as well. -jj */
569 for (i = 0; i < NR_CPUS; i++)
570 for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
571 pgd[address >> PGDIR_SHIFT] = entry;
572 #endif
575 extern pgd_t swapper_pg_dir[1024];
578 * The i386 doesn't have any external MMU info: the kernel page
579 * tables contain all the necessary information.
581 extern inline void update_mmu_cache(struct vm_area_struct * vma,
582 unsigned long address, pte_t pte)
586 #define SWP_TYPE(entry) (((entry) >> 1) & 0x3f)
587 #define SWP_OFFSET(entry) ((entry) >> 8)
588 #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
590 #define module_map vmalloc
591 #define module_unmap vfree
593 #endif /* !__ASSEMBLY__ */
595 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
596 #define PageSkip(page) (0)
598 #endif /* _I386_PAGE_H */