More Makefile cleanups, otherwise mainly noticeable are the netfilter fix
[davej-history.git] / kernel / sched.c
blob1299c8365cb3454243df1fbc25f6de076641c34f
1 /*
2 * linux/kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
16 * 'sched.c' is the main kernel file. It contains scheduling primitives
17 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
18 * call functions (type getpid()), which just extract a field from
19 * current-task
22 #include <linux/config.h>
23 #include <linux/mm.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel_stat.h>
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
32 extern void timer_bh(void);
33 extern void tqueue_bh(void);
34 extern void immediate_bh(void);
37 * scheduler variables
40 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
42 extern void mem_use(void);
45 * Scheduling quanta.
47 * NOTE! The unix "nice" value influences how long a process
48 * gets. The nice value ranges from -20 to +19, where a -20
49 * is a "high-priority" task, and a "+10" is a low-priority
50 * task.
52 * We want the time-slice to be around 50ms or so, so this
53 * calculation depends on the value of HZ.
55 #if HZ < 200
56 #define TICK_SCALE(x) ((x) >> 2)
57 #elif HZ < 400
58 #define TICK_SCALE(x) ((x) >> 1)
59 #elif HZ < 800
60 #define TICK_SCALE(x) (x)
61 #elif HZ < 1600
62 #define TICK_SCALE(x) ((x) << 1)
63 #else
64 #define TICK_SCALE(x) ((x) << 2)
65 #endif
67 #define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)
71 * Init task must be ok at boot for the ix86 as we will check its signals
72 * via the SMP irq return path.
75 struct task_struct * init_tasks[NR_CPUS] = {&init_task, };
78 * The tasklist_lock protects the linked list of processes.
80 * The runqueue_lock locks the parts that actually access
81 * and change the run-queues, and have to be interrupt-safe.
83 * If both locks are to be concurrently held, the runqueue_lock
84 * nests inside the tasklist_lock.
86 spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; /* inner */
87 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */
89 static LIST_HEAD(runqueue_head);
92 * We align per-CPU scheduling data on cacheline boundaries,
93 * to prevent cacheline ping-pong.
95 static union {
96 struct schedule_data {
97 struct task_struct * curr;
98 cycles_t last_schedule;
99 } schedule_data;
100 char __pad [SMP_CACHE_BYTES];
101 } aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
103 #define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr
104 #define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule
106 struct kernel_stat kstat;
108 #ifdef CONFIG_SMP
110 #define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
111 #define can_schedule(p,cpu) ((!(p)->has_cpu) && \
112 ((p)->cpus_allowed & (1 << cpu)))
114 #else
116 #define idle_task(cpu) (&init_task)
117 #define can_schedule(p,cpu) (1)
119 #endif
121 void scheduling_functions_start_here(void) { }
124 * This is the function that decides how desirable a process is..
125 * You can weigh different processes against each other depending
126 * on what CPU they've run on lately etc to try to handle cache
127 * and TLB miss penalties.
129 * Return values:
130 * -1000: never select this
131 * 0: out of time, recalculate counters (but it might still be
132 * selected)
133 * +ve: "goodness" value (the larger, the better)
134 * +1000: realtime process, select this.
137 static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
139 int weight;
142 * select the current process after every other
143 * runnable process, but before the idle thread.
144 * Also, dont trigger a counter recalculation.
146 weight = -1;
147 if (p->policy & SCHED_YIELD)
148 goto out;
151 * Non-RT process - normal case first.
153 if (p->policy == SCHED_OTHER) {
155 * Give the process a first-approximation goodness value
156 * according to the number of clock-ticks it has left.
158 * Don't do any other calculations if the time slice is
159 * over..
161 weight = p->counter;
162 if (!weight)
163 goto out;
165 #ifdef CONFIG_SMP
166 /* Give a largish advantage to the same processor... */
167 /* (this is equivalent to penalizing other processors) */
168 if (p->processor == this_cpu)
169 weight += PROC_CHANGE_PENALTY;
170 #endif
172 /* .. and a slight advantage to the current MM */
173 if (p->mm == this_mm || !p->mm)
174 weight += 1;
175 weight += 20 - p->nice;
176 goto out;
180 * Realtime process, select the first one on the
181 * runqueue (taking priorities within processes
182 * into account).
184 weight = 1000 + p->rt_priority;
185 out:
186 return weight;
190 * the 'goodness value' of replacing a process on a given CPU.
191 * positive value means 'replace', zero or negative means 'dont'.
193 static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
195 return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
199 * This is ugly, but reschedule_idle() is very timing-critical.
200 * We are called with the runqueue spinlock held and we must
201 * not claim the tasklist_lock.
203 static FASTCALL(void reschedule_idle(struct task_struct * p));
205 static void reschedule_idle(struct task_struct * p)
207 #ifdef CONFIG_SMP
208 int this_cpu = smp_processor_id();
209 struct task_struct *tsk, *target_tsk;
210 int cpu, best_cpu, i, max_prio;
211 cycles_t oldest_idle;
214 * shortcut if the woken up task's last CPU is
215 * idle now.
217 best_cpu = p->processor;
218 if (can_schedule(p, best_cpu)) {
219 tsk = idle_task(best_cpu);
220 if (cpu_curr(best_cpu) == tsk) {
221 int need_resched;
222 send_now_idle:
224 * If need_resched == -1 then we can skip sending
225 * the IPI altogether, tsk->need_resched is
226 * actively watched by the idle thread.
228 need_resched = tsk->need_resched;
229 tsk->need_resched = 1;
230 if ((best_cpu != this_cpu) && !need_resched)
231 smp_send_reschedule(best_cpu);
232 return;
237 * We know that the preferred CPU has a cache-affine current
238 * process, lets try to find a new idle CPU for the woken-up
239 * process. Select the least recently active idle CPU. (that
240 * one will have the least active cache context.) Also find
241 * the executing process which has the least priority.
243 oldest_idle = (cycles_t) -1;
244 target_tsk = NULL;
245 max_prio = 1;
247 for (i = 0; i < smp_num_cpus; i++) {
248 cpu = cpu_logical_map(i);
249 if (!can_schedule(p, cpu))
250 continue;
251 tsk = cpu_curr(cpu);
253 * We use the first available idle CPU. This creates
254 * a priority list between idle CPUs, but this is not
255 * a problem.
257 if (tsk == idle_task(cpu)) {
258 if (last_schedule(cpu) < oldest_idle) {
259 oldest_idle = last_schedule(cpu);
260 target_tsk = tsk;
262 } else {
263 if (oldest_idle == -1ULL) {
264 int prio = preemption_goodness(tsk, p, cpu);
266 if (prio > max_prio) {
267 max_prio = prio;
268 target_tsk = tsk;
273 tsk = target_tsk;
274 if (tsk) {
275 if (oldest_idle != -1ULL) {
276 best_cpu = tsk->processor;
277 goto send_now_idle;
279 tsk->need_resched = 1;
280 if (tsk->processor != this_cpu)
281 smp_send_reschedule(tsk->processor);
283 return;
286 #else /* UP */
287 int this_cpu = smp_processor_id();
288 struct task_struct *tsk;
290 tsk = cpu_curr(this_cpu);
291 if (preemption_goodness(tsk, p, this_cpu) > 1)
292 tsk->need_resched = 1;
293 #endif
297 * Careful!
299 * This has to add the process to the _beginning_ of the
300 * run-queue, not the end. See the comment about "This is
301 * subtle" in the scheduler proper..
303 static inline void add_to_runqueue(struct task_struct * p)
305 list_add(&p->run_list, &runqueue_head);
306 nr_running++;
309 static inline void move_last_runqueue(struct task_struct * p)
311 list_del(&p->run_list);
312 list_add_tail(&p->run_list, &runqueue_head);
315 static inline void move_first_runqueue(struct task_struct * p)
317 list_del(&p->run_list);
318 list_add(&p->run_list, &runqueue_head);
322 * Wake up a process. Put it on the run-queue if it's not
323 * already there. The "current" process is always on the
324 * run-queue (except when the actual re-schedule is in
325 * progress), and as such you're allowed to do the simpler
326 * "current->state = TASK_RUNNING" to mark yourself runnable
327 * without the overhead of this.
329 inline void wake_up_process(struct task_struct * p)
331 unsigned long flags;
334 * We want the common case fall through straight, thus the goto.
336 spin_lock_irqsave(&runqueue_lock, flags);
337 p->state = TASK_RUNNING;
338 if (task_on_runqueue(p))
339 goto out;
340 add_to_runqueue(p);
341 reschedule_idle(p);
342 out:
343 spin_unlock_irqrestore(&runqueue_lock, flags);
346 static inline void wake_up_process_synchronous(struct task_struct * p)
348 unsigned long flags;
351 * We want the common case fall through straight, thus the goto.
353 spin_lock_irqsave(&runqueue_lock, flags);
354 p->state = TASK_RUNNING;
355 if (task_on_runqueue(p))
356 goto out;
357 add_to_runqueue(p);
358 out:
359 spin_unlock_irqrestore(&runqueue_lock, flags);
362 static void process_timeout(unsigned long __data)
364 struct task_struct * p = (struct task_struct *) __data;
366 wake_up_process(p);
369 signed long schedule_timeout(signed long timeout)
371 struct timer_list timer;
372 unsigned long expire;
374 switch (timeout)
376 case MAX_SCHEDULE_TIMEOUT:
378 * These two special cases are useful to be comfortable
379 * in the caller. Nothing more. We could take
380 * MAX_SCHEDULE_TIMEOUT from one of the negative value
381 * but I' d like to return a valid offset (>=0) to allow
382 * the caller to do everything it want with the retval.
384 schedule();
385 goto out;
386 default:
388 * Another bit of PARANOID. Note that the retval will be
389 * 0 since no piece of kernel is supposed to do a check
390 * for a negative retval of schedule_timeout() (since it
391 * should never happens anyway). You just have the printk()
392 * that will tell you if something is gone wrong and where.
394 if (timeout < 0)
396 printk(KERN_ERR "schedule_timeout: wrong timeout "
397 "value %lx from %p\n", timeout,
398 __builtin_return_address(0));
399 current->state = TASK_RUNNING;
400 goto out;
404 expire = timeout + jiffies;
406 init_timer(&timer);
407 timer.expires = expire;
408 timer.data = (unsigned long) current;
409 timer.function = process_timeout;
411 add_timer(&timer);
412 schedule();
413 del_timer_sync(&timer);
415 timeout = expire - jiffies;
417 out:
418 return timeout < 0 ? 0 : timeout;
422 * schedule_tail() is getting called from the fork return path. This
423 * cleans up all remaining scheduler things, without impacting the
424 * common case.
426 static inline void __schedule_tail(struct task_struct *prev)
428 #ifdef CONFIG_SMP
429 int policy;
432 * prev->policy can be written from here only before `prev'
433 * can be scheduled (before setting prev->has_cpu to zero).
434 * Of course it must also be read before allowing prev
435 * to be rescheduled, but since the write depends on the read
436 * to complete, wmb() is enough. (the spin_lock() acquired
437 * before setting has_cpu is not enough because the spin_lock()
438 * common code semantics allows code outside the critical section
439 * to enter inside the critical section)
441 policy = prev->policy;
442 prev->policy = policy & ~SCHED_YIELD;
443 wmb();
446 * fast path falls through. We have to clear has_cpu before
447 * checking prev->state to avoid a wakeup race - thus we
448 * also have to protect against the task exiting early.
450 task_lock(prev);
451 prev->has_cpu = 0;
452 mb();
453 if (prev->state == TASK_RUNNING)
454 goto needs_resched;
456 out_unlock:
457 task_unlock(prev); /* Synchronise here with release_task() if prev is TASK_ZOMBIE */
458 return;
461 * Slow path - we 'push' the previous process and
462 * reschedule_idle() will attempt to find a new
463 * processor for it. (but it might preempt the
464 * current process as well.) We must take the runqueue
465 * lock and re-check prev->state to be correct. It might
466 * still happen that this process has a preemption
467 * 'in progress' already - but this is not a problem and
468 * might happen in other circumstances as well.
470 needs_resched:
472 unsigned long flags;
475 * Avoid taking the runqueue lock in cases where
476 * no preemption-check is necessery:
478 if ((prev == idle_task(smp_processor_id())) ||
479 (policy & SCHED_YIELD))
480 goto out_unlock;
482 spin_lock_irqsave(&runqueue_lock, flags);
483 if (prev->state == TASK_RUNNING)
484 reschedule_idle(prev);
485 spin_unlock_irqrestore(&runqueue_lock, flags);
486 goto out_unlock;
488 #else
489 prev->policy &= ~SCHED_YIELD;
490 #endif /* CONFIG_SMP */
493 void schedule_tail(struct task_struct *prev)
495 __schedule_tail(prev);
499 * 'schedule()' is the scheduler function. It's a very simple and nice
500 * scheduler: it's not perfect, but certainly works for most things.
502 * The goto is "interesting".
504 * NOTE!! Task 0 is the 'idle' task, which gets called when no other
505 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
506 * information in task[0] is never used.
508 asmlinkage void schedule(void)
510 struct schedule_data * sched_data;
511 struct task_struct *prev, *next, *p;
512 struct list_head *tmp;
513 int this_cpu, c;
515 if (!current->active_mm) BUG();
516 need_resched_back:
517 prev = current;
518 this_cpu = prev->processor;
520 if (in_interrupt())
521 goto scheduling_in_interrupt;
523 release_kernel_lock(prev, this_cpu);
525 /* Do "administrative" work here while we don't hold any locks */
526 if (softirq_active(this_cpu) & softirq_mask(this_cpu))
527 goto handle_softirq;
528 handle_softirq_back:
531 * 'sched_data' is protected by the fact that we can run
532 * only one process per CPU.
534 sched_data = & aligned_data[this_cpu].schedule_data;
536 spin_lock_irq(&runqueue_lock);
538 /* move an exhausted RR process to be last.. */
539 if (prev->policy == SCHED_RR)
540 goto move_rr_last;
541 move_rr_back:
543 switch (prev->state) {
544 case TASK_INTERRUPTIBLE:
545 if (signal_pending(prev)) {
546 prev->state = TASK_RUNNING;
547 break;
549 default:
550 del_from_runqueue(prev);
551 case TASK_RUNNING:
553 prev->need_resched = 0;
556 * this is the scheduler proper:
559 repeat_schedule:
561 * Default process to select..
563 next = idle_task(this_cpu);
564 c = -1000;
565 if (prev->state == TASK_RUNNING)
566 goto still_running;
568 still_running_back:
569 list_for_each(tmp, &runqueue_head) {
570 p = list_entry(tmp, struct task_struct, run_list);
571 if (can_schedule(p, this_cpu)) {
572 int weight = goodness(p, this_cpu, prev->active_mm);
573 if (weight > c)
574 c = weight, next = p;
578 /* Do we need to re-calculate counters? */
579 if (!c)
580 goto recalculate;
582 * from this point on nothing can prevent us from
583 * switching to the next task, save this fact in
584 * sched_data.
586 sched_data->curr = next;
587 #ifdef CONFIG_SMP
588 next->has_cpu = 1;
589 next->processor = this_cpu;
590 #endif
591 spin_unlock_irq(&runqueue_lock);
593 if (prev == next)
594 goto same_process;
596 #ifdef CONFIG_SMP
598 * maintain the per-process 'last schedule' value.
599 * (this has to be recalculated even if we reschedule to
600 * the same process) Currently this is only used on SMP,
601 * and it's approximate, so we do not have to maintain
602 * it while holding the runqueue spinlock.
604 sched_data->last_schedule = get_cycles();
607 * We drop the scheduler lock early (it's a global spinlock),
608 * thus we have to lock the previous process from getting
609 * rescheduled during switch_to().
612 #endif /* CONFIG_SMP */
614 kstat.context_swtch++;
616 * there are 3 processes which are affected by a context switch:
618 * prev == .... ==> (last => next)
620 * It's the 'much more previous' 'prev' that is on next's stack,
621 * but prev is set to (the just run) 'last' process by switch_to().
622 * This might sound slightly confusing but makes tons of sense.
624 prepare_to_switch();
626 struct mm_struct *mm = next->mm;
627 struct mm_struct *oldmm = prev->active_mm;
628 if (!mm) {
629 if (next->active_mm) BUG();
630 next->active_mm = oldmm;
631 atomic_inc(&oldmm->mm_count);
632 enter_lazy_tlb(oldmm, next, this_cpu);
633 } else {
634 if (next->active_mm != mm) BUG();
635 switch_mm(oldmm, mm, next, this_cpu);
638 if (!prev->mm) {
639 prev->active_mm = NULL;
640 mmdrop(oldmm);
645 * This just switches the register state and the
646 * stack.
648 switch_to(prev, next, prev);
649 __schedule_tail(prev);
651 same_process:
652 reacquire_kernel_lock(current);
653 if (current->need_resched)
654 goto need_resched_back;
656 return;
658 recalculate:
660 struct task_struct *p;
661 spin_unlock_irq(&runqueue_lock);
662 read_lock(&tasklist_lock);
663 for_each_task(p)
664 p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
665 read_unlock(&tasklist_lock);
666 spin_lock_irq(&runqueue_lock);
668 goto repeat_schedule;
670 still_running:
671 c = goodness(prev, this_cpu, prev->active_mm);
672 next = prev;
673 goto still_running_back;
675 handle_softirq:
676 do_softirq();
677 goto handle_softirq_back;
679 move_rr_last:
680 if (!prev->counter) {
681 prev->counter = NICE_TO_TICKS(prev->nice);
682 move_last_runqueue(prev);
684 goto move_rr_back;
686 scheduling_in_interrupt:
687 printk("Scheduling in interrupt\n");
688 BUG();
689 return;
692 static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,
693 unsigned int wq_mode, const int sync)
695 struct list_head *tmp, *head;
696 struct task_struct *p, *best_exclusive;
697 unsigned long flags;
698 int best_cpu, irq;
700 if (!q)
701 goto out;
703 best_cpu = smp_processor_id();
704 irq = in_interrupt();
705 best_exclusive = NULL;
706 wq_write_lock_irqsave(&q->lock, flags);
708 #if WAITQUEUE_DEBUG
709 CHECK_MAGIC_WQHEAD(q);
710 #endif
712 head = &q->task_list;
713 #if WAITQUEUE_DEBUG
714 if (!head->next || !head->prev)
715 WQ_BUG();
716 #endif
717 tmp = head->next;
718 while (tmp != head) {
719 unsigned int state;
720 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
722 tmp = tmp->next;
724 #if WAITQUEUE_DEBUG
725 CHECK_MAGIC(curr->__magic);
726 #endif
727 p = curr->task;
728 state = p->state;
729 if (state & mode) {
730 #if WAITQUEUE_DEBUG
731 curr->__waker = (long)__builtin_return_address(0);
732 #endif
734 * If waking up from an interrupt context then
735 * prefer processes which are affine to this
736 * CPU.
738 if (irq && (curr->flags & wq_mode & WQ_FLAG_EXCLUSIVE)) {
739 if (!best_exclusive)
740 best_exclusive = p;
741 if (p->processor == best_cpu) {
742 best_exclusive = p;
743 break;
745 } else {
746 if (sync)
747 wake_up_process_synchronous(p);
748 else
749 wake_up_process(p);
750 if (curr->flags & wq_mode & WQ_FLAG_EXCLUSIVE)
751 break;
755 if (best_exclusive) {
756 if (sync)
757 wake_up_process_synchronous(best_exclusive);
758 else
759 wake_up_process(best_exclusive);
761 wq_write_unlock_irqrestore(&q->lock, flags);
762 out:
763 return;
766 void __wake_up(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)
768 __wake_up_common(q, mode, wq_mode, 0);
771 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)
773 __wake_up_common(q, mode, wq_mode, 1);
776 #define SLEEP_ON_VAR \
777 unsigned long flags; \
778 wait_queue_t wait; \
779 init_waitqueue_entry(&wait, current);
781 #define SLEEP_ON_HEAD \
782 wq_write_lock_irqsave(&q->lock,flags); \
783 __add_wait_queue(q, &wait); \
784 wq_write_unlock(&q->lock);
786 #define SLEEP_ON_TAIL \
787 wq_write_lock_irq(&q->lock); \
788 __remove_wait_queue(q, &wait); \
789 wq_write_unlock_irqrestore(&q->lock,flags);
791 void interruptible_sleep_on(wait_queue_head_t *q)
793 SLEEP_ON_VAR
795 current->state = TASK_INTERRUPTIBLE;
797 SLEEP_ON_HEAD
798 schedule();
799 SLEEP_ON_TAIL
802 long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
804 SLEEP_ON_VAR
806 current->state = TASK_INTERRUPTIBLE;
808 SLEEP_ON_HEAD
809 timeout = schedule_timeout(timeout);
810 SLEEP_ON_TAIL
812 return timeout;
815 void sleep_on(wait_queue_head_t *q)
817 SLEEP_ON_VAR
819 current->state = TASK_UNINTERRUPTIBLE;
821 SLEEP_ON_HEAD
822 schedule();
823 SLEEP_ON_TAIL
826 long sleep_on_timeout(wait_queue_head_t *q, long timeout)
828 SLEEP_ON_VAR
830 current->state = TASK_UNINTERRUPTIBLE;
832 SLEEP_ON_HEAD
833 timeout = schedule_timeout(timeout);
834 SLEEP_ON_TAIL
836 return timeout;
839 void scheduling_functions_end_here(void) { }
841 #ifndef __alpha__
844 * This has been replaced by sys_setpriority. Maybe it should be
845 * moved into the arch dependent tree for those ports that require
846 * it for backward compatibility?
849 asmlinkage long sys_nice(int increment)
851 long newprio;
854 * Setpriority might change our priority at the same moment.
855 * We don't have to worry. Conceptually one call occurs first
856 * and we have a single winner.
858 if (increment < 0) {
859 if (!capable(CAP_SYS_NICE))
860 return -EPERM;
861 if (increment < -40)
862 increment = -40;
864 if (increment > 40)
865 increment = 40;
867 newprio = current->nice + increment;
868 if (newprio < -20)
869 newprio = -20;
870 if (newprio > 19)
871 newprio = 19;
872 current->nice = newprio;
873 return 0;
876 #endif
878 static inline struct task_struct *find_process_by_pid(pid_t pid)
880 struct task_struct *tsk = current;
882 if (pid)
883 tsk = find_task_by_pid(pid);
884 return tsk;
887 static int setscheduler(pid_t pid, int policy,
888 struct sched_param *param)
890 struct sched_param lp;
891 struct task_struct *p;
892 int retval;
894 retval = -EINVAL;
895 if (!param || pid < 0)
896 goto out_nounlock;
898 retval = -EFAULT;
899 if (copy_from_user(&lp, param, sizeof(struct sched_param)))
900 goto out_nounlock;
903 * We play safe to avoid deadlocks.
905 read_lock_irq(&tasklist_lock);
906 spin_lock(&runqueue_lock);
908 p = find_process_by_pid(pid);
910 retval = -ESRCH;
911 if (!p)
912 goto out_unlock;
914 if (policy < 0)
915 policy = p->policy;
916 else {
917 retval = -EINVAL;
918 if (policy != SCHED_FIFO && policy != SCHED_RR &&
919 policy != SCHED_OTHER)
920 goto out_unlock;
924 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
925 * priority for SCHED_OTHER is 0.
927 retval = -EINVAL;
928 if (lp.sched_priority < 0 || lp.sched_priority > 99)
929 goto out_unlock;
930 if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
931 goto out_unlock;
933 retval = -EPERM;
934 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
935 !capable(CAP_SYS_NICE))
936 goto out_unlock;
937 if ((current->euid != p->euid) && (current->euid != p->uid) &&
938 !capable(CAP_SYS_NICE))
939 goto out_unlock;
941 retval = 0;
942 p->policy = policy;
943 p->rt_priority = lp.sched_priority;
944 if (task_on_runqueue(p))
945 move_first_runqueue(p);
947 current->need_resched = 1;
949 out_unlock:
950 spin_unlock(&runqueue_lock);
951 read_unlock_irq(&tasklist_lock);
953 out_nounlock:
954 return retval;
957 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
958 struct sched_param *param)
960 return setscheduler(pid, policy, param);
963 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
965 return setscheduler(pid, -1, param);
968 asmlinkage long sys_sched_getscheduler(pid_t pid)
970 struct task_struct *p;
971 int retval;
973 retval = -EINVAL;
974 if (pid < 0)
975 goto out_nounlock;
977 retval = -ESRCH;
978 read_lock(&tasklist_lock);
979 p = find_process_by_pid(pid);
980 if (p)
981 retval = p->policy & ~SCHED_YIELD;
982 read_unlock(&tasklist_lock);
984 out_nounlock:
985 return retval;
988 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
990 struct task_struct *p;
991 struct sched_param lp;
992 int retval;
994 retval = -EINVAL;
995 if (!param || pid < 0)
996 goto out_nounlock;
998 read_lock(&tasklist_lock);
999 p = find_process_by_pid(pid);
1000 retval = -ESRCH;
1001 if (!p)
1002 goto out_unlock;
1003 lp.sched_priority = p->rt_priority;
1004 read_unlock(&tasklist_lock);
1007 * This one might sleep, we cannot do it with a spinlock held ...
1009 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1011 out_nounlock:
1012 return retval;
1014 out_unlock:
1015 read_unlock(&tasklist_lock);
1016 return retval;
1019 asmlinkage long sys_sched_yield(void)
1022 * Trick. sched_yield() first counts the number of truly
1023 * 'pending' runnable processes, then returns if it's
1024 * only the current processes. (This test does not have
1025 * to be atomic.) In threaded applications this optimization
1026 * gets triggered quite often.
1029 int nr_pending = nr_running;
1031 #if CONFIG_SMP
1032 int i;
1034 // Substract non-idle processes running on other CPUs.
1035 for (i = 0; i < smp_num_cpus; i++)
1036 if (aligned_data[i].schedule_data.curr != idle_task(i))
1037 nr_pending--;
1038 #else
1039 // on UP this process is on the runqueue as well
1040 nr_pending--;
1041 #endif
1042 if (nr_pending) {
1044 * This process can only be rescheduled by us,
1045 * so this is safe without any locking.
1047 if (current->policy == SCHED_OTHER)
1048 current->policy |= SCHED_YIELD;
1049 current->need_resched = 1;
1051 return 0;
1054 asmlinkage long sys_sched_get_priority_max(int policy)
1056 int ret = -EINVAL;
1058 switch (policy) {
1059 case SCHED_FIFO:
1060 case SCHED_RR:
1061 ret = 99;
1062 break;
1063 case SCHED_OTHER:
1064 ret = 0;
1065 break;
1067 return ret;
1070 asmlinkage long sys_sched_get_priority_min(int policy)
1072 int ret = -EINVAL;
1074 switch (policy) {
1075 case SCHED_FIFO:
1076 case SCHED_RR:
1077 ret = 1;
1078 break;
1079 case SCHED_OTHER:
1080 ret = 0;
1082 return ret;
1085 asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
1087 struct timespec t;
1088 struct task_struct *p;
1089 int retval = -EINVAL;
1091 if (pid < 0)
1092 goto out_nounlock;
1094 retval = -ESRCH;
1095 read_lock(&tasklist_lock);
1096 p = find_process_by_pid(pid);
1097 if (p)
1098 jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice),
1099 &t);
1100 read_unlock(&tasklist_lock);
1101 if (p)
1102 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1103 out_nounlock:
1104 return retval;
1107 static void show_task(struct task_struct * p)
1109 unsigned long free = 0;
1110 int state;
1111 static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
1113 printk("%-8s ", p->comm);
1114 state = p->state ? ffz(~p->state) + 1 : 0;
1115 if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
1116 printk(stat_nam[state]);
1117 else
1118 printk(" ");
1119 #if (BITS_PER_LONG == 32)
1120 if (p == current)
1121 printk(" current ");
1122 else
1123 printk(" %08lX ", thread_saved_pc(&p->thread));
1124 #else
1125 if (p == current)
1126 printk(" current task ");
1127 else
1128 printk(" %016lx ", thread_saved_pc(&p->thread));
1129 #endif
1131 unsigned long * n = (unsigned long *) (p+1);
1132 while (!*n)
1133 n++;
1134 free = (unsigned long) n - (unsigned long)(p+1);
1136 printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
1137 if (p->p_cptr)
1138 printk("%5d ", p->p_cptr->pid);
1139 else
1140 printk(" ");
1141 if (!p->mm)
1142 printk(" (L-TLB) ");
1143 else
1144 printk(" (NOTLB) ");
1145 if (p->p_ysptr)
1146 printk("%7d", p->p_ysptr->pid);
1147 else
1148 printk(" ");
1149 if (p->p_osptr)
1150 printk(" %5d\n", p->p_osptr->pid);
1151 else
1152 printk("\n");
1155 struct sigqueue *q;
1156 char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
1158 render_sigset_t(&p->pending.signal, s);
1159 render_sigset_t(&p->blocked, b);
1160 printk(" sig: %d %s %s :", signal_pending(p), s, b);
1161 for (q = p->pending.head; q ; q = q->next)
1162 printk(" %d", q->info.si_signo);
1163 printk(" X\n");
1167 char * render_sigset_t(sigset_t *set, char *buffer)
1169 int i = _NSIG, x;
1170 do {
1171 i -= 4, x = 0;
1172 if (sigismember(set, i+1)) x |= 1;
1173 if (sigismember(set, i+2)) x |= 2;
1174 if (sigismember(set, i+3)) x |= 4;
1175 if (sigismember(set, i+4)) x |= 8;
1176 *buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
1177 } while (i >= 4);
1178 *buffer = 0;
1179 return buffer;
1182 void show_state(void)
1184 struct task_struct *p;
1186 #if (BITS_PER_LONG == 32)
1187 printk("\n"
1188 " free sibling\n");
1189 printk(" task PC stack pid father child younger older\n");
1190 #else
1191 printk("\n"
1192 " free sibling\n");
1193 printk(" task PC stack pid father child younger older\n");
1194 #endif
1195 read_lock(&tasklist_lock);
1196 for_each_task(p)
1197 show_task(p);
1198 read_unlock(&tasklist_lock);
1202 * Put all the gunge required to become a kernel thread without
1203 * attached user resources in one place where it belongs.
1206 void daemonize(void)
1208 struct fs_struct *fs;
1212 * If we were started as result of loading a module, close all of the
1213 * user space pages. We don't need them, and if we didn't close them
1214 * they would be locked into memory.
1216 exit_mm(current);
1218 current->session = 1;
1219 current->pgrp = 1;
1221 /* Become as one with the init task */
1223 exit_fs(current); /* current->fs->count--; */
1224 fs = init_task.fs;
1225 current->fs = fs;
1226 atomic_inc(&fs->count);
1227 exit_files(current);
1228 current->files = init_task.files;
1229 atomic_inc(&current->files->count);
1232 void __init init_idle(void)
1234 struct schedule_data * sched_data;
1235 sched_data = &aligned_data[smp_processor_id()].schedule_data;
1237 if (current != &init_task && task_on_runqueue(current)) {
1238 printk("UGH! (%d:%d) was on the runqueue, removing.\n",
1239 smp_processor_id(), current->pid);
1240 del_from_runqueue(current);
1242 sched_data->curr = current;
1243 sched_data->last_schedule = get_cycles();
1246 extern void init_timervecs (void);
1248 void __init sched_init(void)
1251 * We have to do a little magic to get the first
1252 * process right in SMP mode.
1254 int cpu = smp_processor_id();
1255 int nr;
1257 init_task.processor = cpu;
1259 for(nr = 0; nr < PIDHASH_SZ; nr++)
1260 pidhash[nr] = NULL;
1262 init_timervecs();
1264 init_bh(TIMER_BH, timer_bh);
1265 init_bh(TQUEUE_BH, tqueue_bh);
1266 init_bh(IMMEDIATE_BH, immediate_bh);
1269 * The boot idle thread does lazy MMU switching as well:
1271 atomic_inc(&init_mm.mm_count);
1272 enter_lazy_tlb(&init_mm, current, cpu);