split dev_queue
[cor.git] / mm / z3fold.c
blob43754d8ebce8fc941cc809afbb89bace1c907657
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
8 * This implementation is based on zbud written by Seth Jennings.
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
21 * z3fold doesn't export any API and is meant to be used via zpool API.
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwlock.h>
45 #include <linux/zpool.h>
46 #include <linux/magic.h>
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
58 #define NCHUNKS_ORDER 6
60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
67 #define BUDDY_MASK (0x3)
68 #define BUDDY_SHIFT 2
69 #define SLOTS_ALIGN (0x40)
71 /*****************
72 * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
79 enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
87 struct z3fold_buddy_slots {
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link + flags */
94 rwlock_t lock;
96 #define HANDLE_FLAG_MASK (0x03)
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
115 struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
155 struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
174 * Internal z3fold page flags
176 enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
185 * handle flags, go under HANDLE_FLAG_MASK
187 enum z3fold_handle_flags {
188 HANDLES_ORPHANED = 0,
192 * Forward declarations
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
197 /*****************
198 * Helpers
199 *****************/
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
207 #define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
213 struct z3fold_buddy_slots *slots;
215 slots = kmem_cache_alloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
218 if (slots) {
219 memset(slots->slot, 0, sizeof(slots->slot));
220 slots->pool = (unsigned long)pool;
221 rwlock_init(&slots->lock);
224 return slots;
227 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
232 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
237 /* Lock a z3fold page */
238 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 spin_lock(&zhdr->page_lock);
243 /* Try to lock a z3fold page */
244 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 return spin_trylock(&zhdr->page_lock);
249 /* Unlock a z3fold page */
250 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 spin_unlock(&zhdr->page_lock);
256 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
257 bool lock)
259 struct z3fold_buddy_slots *slots;
260 struct z3fold_header *zhdr;
261 int locked = 0;
263 if (!(handle & (1 << PAGE_HEADLESS))) {
264 slots = handle_to_slots(handle);
265 do {
266 unsigned long addr;
268 read_lock(&slots->lock);
269 addr = *(unsigned long *)handle;
270 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
271 if (lock)
272 locked = z3fold_page_trylock(zhdr);
273 read_unlock(&slots->lock);
274 if (locked)
275 break;
276 cpu_relax();
277 } while (lock);
278 } else {
279 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
282 return zhdr;
285 /* Returns the z3fold page where a given handle is stored */
286 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 return __get_z3fold_header(h, false);
291 /* return locked z3fold page if it's not headless */
292 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 return __get_z3fold_header(h, true);
297 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 struct page *page = virt_to_page(zhdr);
301 if (!test_bit(PAGE_HEADLESS, &page->private))
302 z3fold_page_unlock(zhdr);
305 static inline void free_handle(unsigned long handle)
307 struct z3fold_buddy_slots *slots;
308 struct z3fold_header *zhdr;
309 int i;
310 bool is_free;
312 if (handle & (1 << PAGE_HEADLESS))
313 return;
315 if (WARN_ON(*(unsigned long *)handle == 0))
316 return;
318 zhdr = handle_to_z3fold_header(handle);
319 slots = handle_to_slots(handle);
320 write_lock(&slots->lock);
321 *(unsigned long *)handle = 0;
322 write_unlock(&slots->lock);
323 if (zhdr->slots == slots)
324 return; /* simple case, nothing else to do */
326 /* we are freeing a foreign handle if we are here */
327 zhdr->foreign_handles--;
328 is_free = true;
329 read_lock(&slots->lock);
330 if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
331 read_unlock(&slots->lock);
332 return;
334 for (i = 0; i <= BUDDY_MASK; i++) {
335 if (slots->slot[i]) {
336 is_free = false;
337 break;
340 read_unlock(&slots->lock);
342 if (is_free) {
343 struct z3fold_pool *pool = slots_to_pool(slots);
345 kmem_cache_free(pool->c_handle, slots);
349 static int z3fold_init_fs_context(struct fs_context *fc)
351 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
354 static struct file_system_type z3fold_fs = {
355 .name = "z3fold",
356 .init_fs_context = z3fold_init_fs_context,
357 .kill_sb = kill_anon_super,
360 static struct vfsmount *z3fold_mnt;
361 static int z3fold_mount(void)
363 int ret = 0;
365 z3fold_mnt = kern_mount(&z3fold_fs);
366 if (IS_ERR(z3fold_mnt))
367 ret = PTR_ERR(z3fold_mnt);
369 return ret;
372 static void z3fold_unmount(void)
374 kern_unmount(z3fold_mnt);
377 static const struct address_space_operations z3fold_aops;
378 static int z3fold_register_migration(struct z3fold_pool *pool)
380 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
381 if (IS_ERR(pool->inode)) {
382 pool->inode = NULL;
383 return 1;
386 pool->inode->i_mapping->private_data = pool;
387 pool->inode->i_mapping->a_ops = &z3fold_aops;
388 return 0;
391 static void z3fold_unregister_migration(struct z3fold_pool *pool)
393 if (pool->inode)
394 iput(pool->inode);
397 /* Initializes the z3fold header of a newly allocated z3fold page */
398 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
399 struct z3fold_pool *pool, gfp_t gfp)
401 struct z3fold_header *zhdr = page_address(page);
402 struct z3fold_buddy_slots *slots;
404 INIT_LIST_HEAD(&page->lru);
405 clear_bit(PAGE_HEADLESS, &page->private);
406 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
407 clear_bit(NEEDS_COMPACTING, &page->private);
408 clear_bit(PAGE_STALE, &page->private);
409 clear_bit(PAGE_CLAIMED, &page->private);
410 if (headless)
411 return zhdr;
413 slots = alloc_slots(pool, gfp);
414 if (!slots)
415 return NULL;
417 spin_lock_init(&zhdr->page_lock);
418 kref_init(&zhdr->refcount);
419 zhdr->first_chunks = 0;
420 zhdr->middle_chunks = 0;
421 zhdr->last_chunks = 0;
422 zhdr->first_num = 0;
423 zhdr->start_middle = 0;
424 zhdr->cpu = -1;
425 zhdr->foreign_handles = 0;
426 zhdr->slots = slots;
427 zhdr->pool = pool;
428 INIT_LIST_HEAD(&zhdr->buddy);
429 INIT_WORK(&zhdr->work, compact_page_work);
430 return zhdr;
433 /* Resets the struct page fields and frees the page */
434 static void free_z3fold_page(struct page *page, bool headless)
436 if (!headless) {
437 lock_page(page);
438 __ClearPageMovable(page);
439 unlock_page(page);
441 ClearPagePrivate(page);
442 __free_page(page);
445 /* Helper function to build the index */
446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
448 return (bud + zhdr->first_num) & BUDDY_MASK;
452 * Encodes the handle of a particular buddy within a z3fold page
453 * Pool lock should be held as this function accesses first_num
455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 struct z3fold_buddy_slots *slots,
457 enum buddy bud)
459 unsigned long h = (unsigned long)zhdr;
460 int idx = 0;
463 * For a headless page, its handle is its pointer with the extra
464 * PAGE_HEADLESS bit set
466 if (bud == HEADLESS)
467 return h | (1 << PAGE_HEADLESS);
469 /* otherwise, return pointer to encoded handle */
470 idx = __idx(zhdr, bud);
471 h += idx;
472 if (bud == LAST)
473 h |= (zhdr->last_chunks << BUDDY_SHIFT);
475 write_lock(&slots->lock);
476 slots->slot[idx] = h;
477 write_unlock(&slots->lock);
478 return (unsigned long)&slots->slot[idx];
481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
483 return __encode_handle(zhdr, zhdr->slots, bud);
486 /* only for LAST bud, returns zero otherwise */
487 static unsigned short handle_to_chunks(unsigned long handle)
489 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 unsigned long addr;
492 read_lock(&slots->lock);
493 addr = *(unsigned long *)handle;
494 read_unlock(&slots->lock);
495 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
499 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500 * but that doesn't matter. because the masking will result in the
501 * correct buddy number.
503 static enum buddy handle_to_buddy(unsigned long handle)
505 struct z3fold_header *zhdr;
506 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 unsigned long addr;
509 read_lock(&slots->lock);
510 WARN_ON(handle & (1 << PAGE_HEADLESS));
511 addr = *(unsigned long *)handle;
512 read_unlock(&slots->lock);
513 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 return (addr - zhdr->first_num) & BUDDY_MASK;
517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
519 return zhdr->pool;
522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
524 struct page *page = virt_to_page(zhdr);
525 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526 bool is_free = true;
527 int i;
529 WARN_ON(!list_empty(&zhdr->buddy));
530 set_bit(PAGE_STALE, &page->private);
531 clear_bit(NEEDS_COMPACTING, &page->private);
532 spin_lock(&pool->lock);
533 if (!list_empty(&page->lru))
534 list_del_init(&page->lru);
535 spin_unlock(&pool->lock);
537 /* If there are no foreign handles, free the handles array */
538 read_lock(&zhdr->slots->lock);
539 for (i = 0; i <= BUDDY_MASK; i++) {
540 if (zhdr->slots->slot[i]) {
541 is_free = false;
542 break;
545 if (!is_free)
546 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
547 read_unlock(&zhdr->slots->lock);
549 if (is_free)
550 kmem_cache_free(pool->c_handle, zhdr->slots);
552 if (locked)
553 z3fold_page_unlock(zhdr);
555 spin_lock(&pool->stale_lock);
556 list_add(&zhdr->buddy, &pool->stale);
557 queue_work(pool->release_wq, &pool->work);
558 spin_unlock(&pool->stale_lock);
561 static void __attribute__((__unused__))
562 release_z3fold_page(struct kref *ref)
564 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
565 refcount);
566 __release_z3fold_page(zhdr, false);
569 static void release_z3fold_page_locked(struct kref *ref)
571 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
572 refcount);
573 WARN_ON(z3fold_page_trylock(zhdr));
574 __release_z3fold_page(zhdr, true);
577 static void release_z3fold_page_locked_list(struct kref *ref)
579 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
580 refcount);
581 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
583 spin_lock(&pool->lock);
584 list_del_init(&zhdr->buddy);
585 spin_unlock(&pool->lock);
587 WARN_ON(z3fold_page_trylock(zhdr));
588 __release_z3fold_page(zhdr, true);
591 static void free_pages_work(struct work_struct *w)
593 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
595 spin_lock(&pool->stale_lock);
596 while (!list_empty(&pool->stale)) {
597 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
598 struct z3fold_header, buddy);
599 struct page *page = virt_to_page(zhdr);
601 list_del(&zhdr->buddy);
602 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
603 continue;
604 spin_unlock(&pool->stale_lock);
605 cancel_work_sync(&zhdr->work);
606 free_z3fold_page(page, false);
607 cond_resched();
608 spin_lock(&pool->stale_lock);
610 spin_unlock(&pool->stale_lock);
614 * Returns the number of free chunks in a z3fold page.
615 * NB: can't be used with HEADLESS pages.
617 static int num_free_chunks(struct z3fold_header *zhdr)
619 int nfree;
621 * If there is a middle object, pick up the bigger free space
622 * either before or after it. Otherwise just subtract the number
623 * of chunks occupied by the first and the last objects.
625 if (zhdr->middle_chunks != 0) {
626 int nfree_before = zhdr->first_chunks ?
627 0 : zhdr->start_middle - ZHDR_CHUNKS;
628 int nfree_after = zhdr->last_chunks ?
629 0 : TOTAL_CHUNKS -
630 (zhdr->start_middle + zhdr->middle_chunks);
631 nfree = max(nfree_before, nfree_after);
632 } else
633 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
634 return nfree;
637 /* Add to the appropriate unbuddied list */
638 static inline void add_to_unbuddied(struct z3fold_pool *pool,
639 struct z3fold_header *zhdr)
641 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
642 zhdr->middle_chunks == 0) {
643 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
645 int freechunks = num_free_chunks(zhdr);
646 spin_lock(&pool->lock);
647 list_add(&zhdr->buddy, &unbuddied[freechunks]);
648 spin_unlock(&pool->lock);
649 zhdr->cpu = smp_processor_id();
650 put_cpu_ptr(pool->unbuddied);
654 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
655 unsigned short dst_chunk)
657 void *beg = zhdr;
658 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
659 beg + (zhdr->start_middle << CHUNK_SHIFT),
660 zhdr->middle_chunks << CHUNK_SHIFT);
663 static inline bool buddy_single(struct z3fold_header *zhdr)
665 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
666 (zhdr->first_chunks && zhdr->last_chunks) ||
667 (zhdr->middle_chunks && zhdr->last_chunks));
670 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
672 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
673 void *p = zhdr;
674 unsigned long old_handle = 0;
675 size_t sz = 0;
676 struct z3fold_header *new_zhdr = NULL;
677 int first_idx = __idx(zhdr, FIRST);
678 int middle_idx = __idx(zhdr, MIDDLE);
679 int last_idx = __idx(zhdr, LAST);
680 unsigned short *moved_chunks = NULL;
683 * No need to protect slots here -- all the slots are "local" and
684 * the page lock is already taken
686 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
687 p += ZHDR_SIZE_ALIGNED;
688 sz = zhdr->first_chunks << CHUNK_SHIFT;
689 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
690 moved_chunks = &zhdr->first_chunks;
691 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
692 p += zhdr->start_middle << CHUNK_SHIFT;
693 sz = zhdr->middle_chunks << CHUNK_SHIFT;
694 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
695 moved_chunks = &zhdr->middle_chunks;
696 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
697 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
698 sz = zhdr->last_chunks << CHUNK_SHIFT;
699 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
700 moved_chunks = &zhdr->last_chunks;
703 if (sz > 0) {
704 enum buddy new_bud = HEADLESS;
705 short chunks = size_to_chunks(sz);
706 void *q;
708 new_zhdr = __z3fold_alloc(pool, sz, false);
709 if (!new_zhdr)
710 return NULL;
712 if (WARN_ON(new_zhdr == zhdr))
713 goto out_fail;
715 if (new_zhdr->first_chunks == 0) {
716 if (new_zhdr->middle_chunks != 0 &&
717 chunks >= new_zhdr->start_middle) {
718 new_bud = LAST;
719 } else {
720 new_bud = FIRST;
722 } else if (new_zhdr->last_chunks == 0) {
723 new_bud = LAST;
724 } else if (new_zhdr->middle_chunks == 0) {
725 new_bud = MIDDLE;
727 q = new_zhdr;
728 switch (new_bud) {
729 case FIRST:
730 new_zhdr->first_chunks = chunks;
731 q += ZHDR_SIZE_ALIGNED;
732 break;
733 case MIDDLE:
734 new_zhdr->middle_chunks = chunks;
735 new_zhdr->start_middle =
736 new_zhdr->first_chunks + ZHDR_CHUNKS;
737 q += new_zhdr->start_middle << CHUNK_SHIFT;
738 break;
739 case LAST:
740 new_zhdr->last_chunks = chunks;
741 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
742 break;
743 default:
744 goto out_fail;
746 new_zhdr->foreign_handles++;
747 memcpy(q, p, sz);
748 write_lock(&zhdr->slots->lock);
749 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
750 __idx(new_zhdr, new_bud);
751 if (new_bud == LAST)
752 *(unsigned long *)old_handle |=
753 (new_zhdr->last_chunks << BUDDY_SHIFT);
754 write_unlock(&zhdr->slots->lock);
755 add_to_unbuddied(pool, new_zhdr);
756 z3fold_page_unlock(new_zhdr);
758 *moved_chunks = 0;
761 return new_zhdr;
763 out_fail:
764 if (new_zhdr) {
765 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
766 atomic64_dec(&pool->pages_nr);
767 else {
768 add_to_unbuddied(pool, new_zhdr);
769 z3fold_page_unlock(new_zhdr);
772 return NULL;
776 #define BIG_CHUNK_GAP 3
777 /* Has to be called with lock held */
778 static int z3fold_compact_page(struct z3fold_header *zhdr)
780 struct page *page = virt_to_page(zhdr);
782 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
783 return 0; /* can't move middle chunk, it's used */
785 if (unlikely(PageIsolated(page)))
786 return 0;
788 if (zhdr->middle_chunks == 0)
789 return 0; /* nothing to compact */
791 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
792 /* move to the beginning */
793 mchunk_memmove(zhdr, ZHDR_CHUNKS);
794 zhdr->first_chunks = zhdr->middle_chunks;
795 zhdr->middle_chunks = 0;
796 zhdr->start_middle = 0;
797 zhdr->first_num++;
798 return 1;
802 * moving data is expensive, so let's only do that if
803 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
805 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
806 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
807 BIG_CHUNK_GAP) {
808 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
809 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
810 return 1;
811 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
812 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
813 + zhdr->middle_chunks) >=
814 BIG_CHUNK_GAP) {
815 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
816 zhdr->middle_chunks;
817 mchunk_memmove(zhdr, new_start);
818 zhdr->start_middle = new_start;
819 return 1;
822 return 0;
825 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
827 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
828 struct page *page;
830 page = virt_to_page(zhdr);
831 if (locked)
832 WARN_ON(z3fold_page_trylock(zhdr));
833 else
834 z3fold_page_lock(zhdr);
835 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
836 z3fold_page_unlock(zhdr);
837 return;
839 spin_lock(&pool->lock);
840 list_del_init(&zhdr->buddy);
841 spin_unlock(&pool->lock);
843 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
844 atomic64_dec(&pool->pages_nr);
845 return;
848 if (unlikely(PageIsolated(page) ||
849 test_bit(PAGE_CLAIMED, &page->private) ||
850 test_bit(PAGE_STALE, &page->private))) {
851 z3fold_page_unlock(zhdr);
852 return;
855 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
856 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
857 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
858 atomic64_dec(&pool->pages_nr);
859 else
860 z3fold_page_unlock(zhdr);
861 return;
864 z3fold_compact_page(zhdr);
865 add_to_unbuddied(pool, zhdr);
866 z3fold_page_unlock(zhdr);
869 static void compact_page_work(struct work_struct *w)
871 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
872 work);
874 do_compact_page(zhdr, false);
877 /* returns _locked_ z3fold page header or NULL */
878 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
879 size_t size, bool can_sleep)
881 struct z3fold_header *zhdr = NULL;
882 struct page *page;
883 struct list_head *unbuddied;
884 int chunks = size_to_chunks(size), i;
886 lookup:
887 /* First, try to find an unbuddied z3fold page. */
888 unbuddied = get_cpu_ptr(pool->unbuddied);
889 for_each_unbuddied_list(i, chunks) {
890 struct list_head *l = &unbuddied[i];
892 zhdr = list_first_entry_or_null(READ_ONCE(l),
893 struct z3fold_header, buddy);
895 if (!zhdr)
896 continue;
898 /* Re-check under lock. */
899 spin_lock(&pool->lock);
900 l = &unbuddied[i];
901 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
902 struct z3fold_header, buddy)) ||
903 !z3fold_page_trylock(zhdr)) {
904 spin_unlock(&pool->lock);
905 zhdr = NULL;
906 put_cpu_ptr(pool->unbuddied);
907 if (can_sleep)
908 cond_resched();
909 goto lookup;
911 list_del_init(&zhdr->buddy);
912 zhdr->cpu = -1;
913 spin_unlock(&pool->lock);
915 page = virt_to_page(zhdr);
916 if (test_bit(NEEDS_COMPACTING, &page->private) ||
917 test_bit(PAGE_CLAIMED, &page->private)) {
918 z3fold_page_unlock(zhdr);
919 zhdr = NULL;
920 put_cpu_ptr(pool->unbuddied);
921 if (can_sleep)
922 cond_resched();
923 goto lookup;
927 * this page could not be removed from its unbuddied
928 * list while pool lock was held, and then we've taken
929 * page lock so kref_put could not be called before
930 * we got here, so it's safe to just call kref_get()
932 kref_get(&zhdr->refcount);
933 break;
935 put_cpu_ptr(pool->unbuddied);
937 if (!zhdr) {
938 int cpu;
940 /* look for _exact_ match on other cpus' lists */
941 for_each_online_cpu(cpu) {
942 struct list_head *l;
944 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
945 spin_lock(&pool->lock);
946 l = &unbuddied[chunks];
948 zhdr = list_first_entry_or_null(READ_ONCE(l),
949 struct z3fold_header, buddy);
951 if (!zhdr || !z3fold_page_trylock(zhdr)) {
952 spin_unlock(&pool->lock);
953 zhdr = NULL;
954 continue;
956 list_del_init(&zhdr->buddy);
957 zhdr->cpu = -1;
958 spin_unlock(&pool->lock);
960 page = virt_to_page(zhdr);
961 if (test_bit(NEEDS_COMPACTING, &page->private) ||
962 test_bit(PAGE_CLAIMED, &page->private)) {
963 z3fold_page_unlock(zhdr);
964 zhdr = NULL;
965 if (can_sleep)
966 cond_resched();
967 continue;
969 kref_get(&zhdr->refcount);
970 break;
974 return zhdr;
978 * API Functions
982 * z3fold_create_pool() - create a new z3fold pool
983 * @name: pool name
984 * @gfp: gfp flags when allocating the z3fold pool structure
985 * @ops: user-defined operations for the z3fold pool
987 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
988 * failed.
990 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
991 const struct z3fold_ops *ops)
993 struct z3fold_pool *pool = NULL;
994 int i, cpu;
996 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
997 if (!pool)
998 goto out;
999 pool->c_handle = kmem_cache_create("z3fold_handle",
1000 sizeof(struct z3fold_buddy_slots),
1001 SLOTS_ALIGN, 0, NULL);
1002 if (!pool->c_handle)
1003 goto out_c;
1004 spin_lock_init(&pool->lock);
1005 spin_lock_init(&pool->stale_lock);
1006 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1007 if (!pool->unbuddied)
1008 goto out_pool;
1009 for_each_possible_cpu(cpu) {
1010 struct list_head *unbuddied =
1011 per_cpu_ptr(pool->unbuddied, cpu);
1012 for_each_unbuddied_list(i, 0)
1013 INIT_LIST_HEAD(&unbuddied[i]);
1015 INIT_LIST_HEAD(&pool->lru);
1016 INIT_LIST_HEAD(&pool->stale);
1017 atomic64_set(&pool->pages_nr, 0);
1018 pool->name = name;
1019 pool->compact_wq = create_singlethread_workqueue(pool->name);
1020 if (!pool->compact_wq)
1021 goto out_unbuddied;
1022 pool->release_wq = create_singlethread_workqueue(pool->name);
1023 if (!pool->release_wq)
1024 goto out_wq;
1025 if (z3fold_register_migration(pool))
1026 goto out_rwq;
1027 INIT_WORK(&pool->work, free_pages_work);
1028 pool->ops = ops;
1029 return pool;
1031 out_rwq:
1032 destroy_workqueue(pool->release_wq);
1033 out_wq:
1034 destroy_workqueue(pool->compact_wq);
1035 out_unbuddied:
1036 free_percpu(pool->unbuddied);
1037 out_pool:
1038 kmem_cache_destroy(pool->c_handle);
1039 out_c:
1040 kfree(pool);
1041 out:
1042 return NULL;
1046 * z3fold_destroy_pool() - destroys an existing z3fold pool
1047 * @pool: the z3fold pool to be destroyed
1049 * The pool should be emptied before this function is called.
1051 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1053 kmem_cache_destroy(pool->c_handle);
1056 * We need to destroy pool->compact_wq before pool->release_wq,
1057 * as any pending work on pool->compact_wq will call
1058 * queue_work(pool->release_wq, &pool->work).
1060 * There are still outstanding pages until both workqueues are drained,
1061 * so we cannot unregister migration until then.
1064 destroy_workqueue(pool->compact_wq);
1065 destroy_workqueue(pool->release_wq);
1066 z3fold_unregister_migration(pool);
1067 kfree(pool);
1071 * z3fold_alloc() - allocates a region of a given size
1072 * @pool: z3fold pool from which to allocate
1073 * @size: size in bytes of the desired allocation
1074 * @gfp: gfp flags used if the pool needs to grow
1075 * @handle: handle of the new allocation
1077 * This function will attempt to find a free region in the pool large enough to
1078 * satisfy the allocation request. A search of the unbuddied lists is
1079 * performed first. If no suitable free region is found, then a new page is
1080 * allocated and added to the pool to satisfy the request.
1082 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1083 * as z3fold pool pages.
1085 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1086 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1087 * a new page.
1089 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1090 unsigned long *handle)
1092 int chunks = size_to_chunks(size);
1093 struct z3fold_header *zhdr = NULL;
1094 struct page *page = NULL;
1095 enum buddy bud;
1096 bool can_sleep = gfpflags_allow_blocking(gfp);
1098 if (!size)
1099 return -EINVAL;
1101 if (size > PAGE_SIZE)
1102 return -ENOSPC;
1104 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1105 bud = HEADLESS;
1106 else {
1107 retry:
1108 zhdr = __z3fold_alloc(pool, size, can_sleep);
1109 if (zhdr) {
1110 if (zhdr->first_chunks == 0) {
1111 if (zhdr->middle_chunks != 0 &&
1112 chunks >= zhdr->start_middle)
1113 bud = LAST;
1114 else
1115 bud = FIRST;
1116 } else if (zhdr->last_chunks == 0)
1117 bud = LAST;
1118 else if (zhdr->middle_chunks == 0)
1119 bud = MIDDLE;
1120 else {
1121 if (kref_put(&zhdr->refcount,
1122 release_z3fold_page_locked))
1123 atomic64_dec(&pool->pages_nr);
1124 else
1125 z3fold_page_unlock(zhdr);
1126 pr_err("No free chunks in unbuddied\n");
1127 WARN_ON(1);
1128 goto retry;
1130 page = virt_to_page(zhdr);
1131 goto found;
1133 bud = FIRST;
1136 page = NULL;
1137 if (can_sleep) {
1138 spin_lock(&pool->stale_lock);
1139 zhdr = list_first_entry_or_null(&pool->stale,
1140 struct z3fold_header, buddy);
1142 * Before allocating a page, let's see if we can take one from
1143 * the stale pages list. cancel_work_sync() can sleep so we
1144 * limit this case to the contexts where we can sleep
1146 if (zhdr) {
1147 list_del(&zhdr->buddy);
1148 spin_unlock(&pool->stale_lock);
1149 cancel_work_sync(&zhdr->work);
1150 page = virt_to_page(zhdr);
1151 } else {
1152 spin_unlock(&pool->stale_lock);
1155 if (!page)
1156 page = alloc_page(gfp);
1158 if (!page)
1159 return -ENOMEM;
1161 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1162 if (!zhdr) {
1163 __free_page(page);
1164 return -ENOMEM;
1166 atomic64_inc(&pool->pages_nr);
1168 if (bud == HEADLESS) {
1169 set_bit(PAGE_HEADLESS, &page->private);
1170 goto headless;
1172 if (can_sleep) {
1173 lock_page(page);
1174 __SetPageMovable(page, pool->inode->i_mapping);
1175 unlock_page(page);
1176 } else {
1177 if (trylock_page(page)) {
1178 __SetPageMovable(page, pool->inode->i_mapping);
1179 unlock_page(page);
1182 z3fold_page_lock(zhdr);
1184 found:
1185 if (bud == FIRST)
1186 zhdr->first_chunks = chunks;
1187 else if (bud == LAST)
1188 zhdr->last_chunks = chunks;
1189 else {
1190 zhdr->middle_chunks = chunks;
1191 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1193 add_to_unbuddied(pool, zhdr);
1195 headless:
1196 spin_lock(&pool->lock);
1197 /* Add/move z3fold page to beginning of LRU */
1198 if (!list_empty(&page->lru))
1199 list_del(&page->lru);
1201 list_add(&page->lru, &pool->lru);
1203 *handle = encode_handle(zhdr, bud);
1204 spin_unlock(&pool->lock);
1205 if (bud != HEADLESS)
1206 z3fold_page_unlock(zhdr);
1208 return 0;
1212 * z3fold_free() - frees the allocation associated with the given handle
1213 * @pool: pool in which the allocation resided
1214 * @handle: handle associated with the allocation returned by z3fold_alloc()
1216 * In the case that the z3fold page in which the allocation resides is under
1217 * reclaim, as indicated by the PG_reclaim flag being set, this function
1218 * only sets the first|last_chunks to 0. The page is actually freed
1219 * once both buddies are evicted (see z3fold_reclaim_page() below).
1221 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1223 struct z3fold_header *zhdr;
1224 struct page *page;
1225 enum buddy bud;
1226 bool page_claimed;
1228 zhdr = get_z3fold_header(handle);
1229 page = virt_to_page(zhdr);
1230 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1232 if (test_bit(PAGE_HEADLESS, &page->private)) {
1233 /* if a headless page is under reclaim, just leave.
1234 * NB: we use test_and_set_bit for a reason: if the bit
1235 * has not been set before, we release this page
1236 * immediately so we don't care about its value any more.
1238 if (!page_claimed) {
1239 spin_lock(&pool->lock);
1240 list_del(&page->lru);
1241 spin_unlock(&pool->lock);
1242 put_z3fold_header(zhdr);
1243 free_z3fold_page(page, true);
1244 atomic64_dec(&pool->pages_nr);
1246 return;
1249 /* Non-headless case */
1250 bud = handle_to_buddy(handle);
1252 switch (bud) {
1253 case FIRST:
1254 zhdr->first_chunks = 0;
1255 break;
1256 case MIDDLE:
1257 zhdr->middle_chunks = 0;
1258 break;
1259 case LAST:
1260 zhdr->last_chunks = 0;
1261 break;
1262 default:
1263 pr_err("%s: unknown bud %d\n", __func__, bud);
1264 WARN_ON(1);
1265 put_z3fold_header(zhdr);
1266 clear_bit(PAGE_CLAIMED, &page->private);
1267 return;
1270 if (!page_claimed)
1271 free_handle(handle);
1272 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1273 atomic64_dec(&pool->pages_nr);
1274 return;
1276 if (page_claimed) {
1277 /* the page has not been claimed by us */
1278 z3fold_page_unlock(zhdr);
1279 return;
1281 if (unlikely(PageIsolated(page)) ||
1282 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1283 put_z3fold_header(zhdr);
1284 clear_bit(PAGE_CLAIMED, &page->private);
1285 return;
1287 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1288 spin_lock(&pool->lock);
1289 list_del_init(&zhdr->buddy);
1290 spin_unlock(&pool->lock);
1291 zhdr->cpu = -1;
1292 kref_get(&zhdr->refcount);
1293 clear_bit(PAGE_CLAIMED, &page->private);
1294 do_compact_page(zhdr, true);
1295 return;
1297 kref_get(&zhdr->refcount);
1298 clear_bit(PAGE_CLAIMED, &page->private);
1299 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1300 put_z3fold_header(zhdr);
1304 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1305 * @pool: pool from which a page will attempt to be evicted
1306 * @retries: number of pages on the LRU list for which eviction will
1307 * be attempted before failing
1309 * z3fold reclaim is different from normal system reclaim in that it is done
1310 * from the bottom, up. This is because only the bottom layer, z3fold, has
1311 * information on how the allocations are organized within each z3fold page.
1312 * This has the potential to create interesting locking situations between
1313 * z3fold and the user, however.
1315 * To avoid these, this is how z3fold_reclaim_page() should be called:
1317 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1318 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1319 * call the user-defined eviction handler with the pool and handle as
1320 * arguments.
1322 * If the handle can not be evicted, the eviction handler should return
1323 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1324 * appropriate list and try the next z3fold page on the LRU up to
1325 * a user defined number of retries.
1327 * If the handle is successfully evicted, the eviction handler should
1328 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1329 * contains logic to delay freeing the page if the page is under reclaim,
1330 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1332 * If all buddies in the z3fold page are successfully evicted, then the
1333 * z3fold page can be freed.
1335 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1336 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1337 * the retry limit was hit.
1339 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1341 int i, ret = -1;
1342 struct z3fold_header *zhdr = NULL;
1343 struct page *page = NULL;
1344 struct list_head *pos;
1345 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1347 spin_lock(&pool->lock);
1348 if (!pool->ops || !pool->ops->evict || retries == 0) {
1349 spin_unlock(&pool->lock);
1350 return -EINVAL;
1352 for (i = 0; i < retries; i++) {
1353 if (list_empty(&pool->lru)) {
1354 spin_unlock(&pool->lock);
1355 return -EINVAL;
1357 list_for_each_prev(pos, &pool->lru) {
1358 page = list_entry(pos, struct page, lru);
1360 /* this bit could have been set by free, in which case
1361 * we pass over to the next page in the pool.
1363 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1364 page = NULL;
1365 continue;
1368 if (unlikely(PageIsolated(page))) {
1369 clear_bit(PAGE_CLAIMED, &page->private);
1370 page = NULL;
1371 continue;
1373 zhdr = page_address(page);
1374 if (test_bit(PAGE_HEADLESS, &page->private))
1375 break;
1377 if (!z3fold_page_trylock(zhdr)) {
1378 clear_bit(PAGE_CLAIMED, &page->private);
1379 zhdr = NULL;
1380 continue; /* can't evict at this point */
1382 if (zhdr->foreign_handles) {
1383 clear_bit(PAGE_CLAIMED, &page->private);
1384 z3fold_page_unlock(zhdr);
1385 zhdr = NULL;
1386 continue; /* can't evict such page */
1388 kref_get(&zhdr->refcount);
1389 list_del_init(&zhdr->buddy);
1390 zhdr->cpu = -1;
1391 break;
1394 if (!zhdr)
1395 break;
1397 list_del_init(&page->lru);
1398 spin_unlock(&pool->lock);
1400 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1402 * We need encode the handles before unlocking, and
1403 * use our local slots structure because z3fold_free
1404 * can zero out zhdr->slots and we can't do much
1405 * about that
1407 first_handle = 0;
1408 last_handle = 0;
1409 middle_handle = 0;
1410 if (zhdr->first_chunks)
1411 first_handle = encode_handle(zhdr, FIRST);
1412 if (zhdr->middle_chunks)
1413 middle_handle = encode_handle(zhdr, MIDDLE);
1414 if (zhdr->last_chunks)
1415 last_handle = encode_handle(zhdr, LAST);
1417 * it's safe to unlock here because we hold a
1418 * reference to this page
1420 z3fold_page_unlock(zhdr);
1421 } else {
1422 first_handle = encode_handle(zhdr, HEADLESS);
1423 last_handle = middle_handle = 0;
1425 /* Issue the eviction callback(s) */
1426 if (middle_handle) {
1427 ret = pool->ops->evict(pool, middle_handle);
1428 if (ret)
1429 goto next;
1430 free_handle(middle_handle);
1432 if (first_handle) {
1433 ret = pool->ops->evict(pool, first_handle);
1434 if (ret)
1435 goto next;
1436 free_handle(first_handle);
1438 if (last_handle) {
1439 ret = pool->ops->evict(pool, last_handle);
1440 if (ret)
1441 goto next;
1442 free_handle(last_handle);
1444 next:
1445 if (test_bit(PAGE_HEADLESS, &page->private)) {
1446 if (ret == 0) {
1447 free_z3fold_page(page, true);
1448 atomic64_dec(&pool->pages_nr);
1449 return 0;
1451 spin_lock(&pool->lock);
1452 list_add(&page->lru, &pool->lru);
1453 spin_unlock(&pool->lock);
1454 clear_bit(PAGE_CLAIMED, &page->private);
1455 } else {
1456 z3fold_page_lock(zhdr);
1457 if (kref_put(&zhdr->refcount,
1458 release_z3fold_page_locked)) {
1459 atomic64_dec(&pool->pages_nr);
1460 return 0;
1463 * if we are here, the page is still not completely
1464 * free. Take the global pool lock then to be able
1465 * to add it back to the lru list
1467 spin_lock(&pool->lock);
1468 list_add(&page->lru, &pool->lru);
1469 spin_unlock(&pool->lock);
1470 z3fold_page_unlock(zhdr);
1471 clear_bit(PAGE_CLAIMED, &page->private);
1474 /* We started off locked to we need to lock the pool back */
1475 spin_lock(&pool->lock);
1477 spin_unlock(&pool->lock);
1478 return -EAGAIN;
1482 * z3fold_map() - maps the allocation associated with the given handle
1483 * @pool: pool in which the allocation resides
1484 * @handle: handle associated with the allocation to be mapped
1486 * Extracts the buddy number from handle and constructs the pointer to the
1487 * correct starting chunk within the page.
1489 * Returns: a pointer to the mapped allocation
1491 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1493 struct z3fold_header *zhdr;
1494 struct page *page;
1495 void *addr;
1496 enum buddy buddy;
1498 zhdr = get_z3fold_header(handle);
1499 addr = zhdr;
1500 page = virt_to_page(zhdr);
1502 if (test_bit(PAGE_HEADLESS, &page->private))
1503 goto out;
1505 buddy = handle_to_buddy(handle);
1506 switch (buddy) {
1507 case FIRST:
1508 addr += ZHDR_SIZE_ALIGNED;
1509 break;
1510 case MIDDLE:
1511 addr += zhdr->start_middle << CHUNK_SHIFT;
1512 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1513 break;
1514 case LAST:
1515 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1516 break;
1517 default:
1518 pr_err("unknown buddy id %d\n", buddy);
1519 WARN_ON(1);
1520 addr = NULL;
1521 break;
1524 if (addr)
1525 zhdr->mapped_count++;
1526 out:
1527 put_z3fold_header(zhdr);
1528 return addr;
1532 * z3fold_unmap() - unmaps the allocation associated with the given handle
1533 * @pool: pool in which the allocation resides
1534 * @handle: handle associated with the allocation to be unmapped
1536 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1538 struct z3fold_header *zhdr;
1539 struct page *page;
1540 enum buddy buddy;
1542 zhdr = get_z3fold_header(handle);
1543 page = virt_to_page(zhdr);
1545 if (test_bit(PAGE_HEADLESS, &page->private))
1546 return;
1548 buddy = handle_to_buddy(handle);
1549 if (buddy == MIDDLE)
1550 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1551 zhdr->mapped_count--;
1552 put_z3fold_header(zhdr);
1556 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1557 * @pool: pool whose size is being queried
1559 * Returns: size in pages of the given pool.
1561 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1563 return atomic64_read(&pool->pages_nr);
1566 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1568 struct z3fold_header *zhdr;
1569 struct z3fold_pool *pool;
1571 VM_BUG_ON_PAGE(!PageMovable(page), page);
1572 VM_BUG_ON_PAGE(PageIsolated(page), page);
1574 if (test_bit(PAGE_HEADLESS, &page->private) ||
1575 test_bit(PAGE_CLAIMED, &page->private))
1576 return false;
1578 zhdr = page_address(page);
1579 z3fold_page_lock(zhdr);
1580 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1581 test_bit(PAGE_STALE, &page->private))
1582 goto out;
1584 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1585 goto out;
1587 pool = zhdr_to_pool(zhdr);
1588 spin_lock(&pool->lock);
1589 if (!list_empty(&zhdr->buddy))
1590 list_del_init(&zhdr->buddy);
1591 if (!list_empty(&page->lru))
1592 list_del_init(&page->lru);
1593 spin_unlock(&pool->lock);
1595 kref_get(&zhdr->refcount);
1596 z3fold_page_unlock(zhdr);
1597 return true;
1599 out:
1600 z3fold_page_unlock(zhdr);
1601 return false;
1604 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1605 struct page *page, enum migrate_mode mode)
1607 struct z3fold_header *zhdr, *new_zhdr;
1608 struct z3fold_pool *pool;
1609 struct address_space *new_mapping;
1611 VM_BUG_ON_PAGE(!PageMovable(page), page);
1612 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1613 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1615 zhdr = page_address(page);
1616 pool = zhdr_to_pool(zhdr);
1618 if (!z3fold_page_trylock(zhdr)) {
1619 return -EAGAIN;
1621 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1622 z3fold_page_unlock(zhdr);
1623 return -EBUSY;
1625 if (work_pending(&zhdr->work)) {
1626 z3fold_page_unlock(zhdr);
1627 return -EAGAIN;
1629 new_zhdr = page_address(newpage);
1630 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1631 newpage->private = page->private;
1632 page->private = 0;
1633 z3fold_page_unlock(zhdr);
1634 spin_lock_init(&new_zhdr->page_lock);
1635 INIT_WORK(&new_zhdr->work, compact_page_work);
1637 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1638 * so we only have to reinitialize it.
1640 INIT_LIST_HEAD(&new_zhdr->buddy);
1641 new_mapping = page_mapping(page);
1642 __ClearPageMovable(page);
1643 ClearPagePrivate(page);
1645 get_page(newpage);
1646 z3fold_page_lock(new_zhdr);
1647 if (new_zhdr->first_chunks)
1648 encode_handle(new_zhdr, FIRST);
1649 if (new_zhdr->last_chunks)
1650 encode_handle(new_zhdr, LAST);
1651 if (new_zhdr->middle_chunks)
1652 encode_handle(new_zhdr, MIDDLE);
1653 set_bit(NEEDS_COMPACTING, &newpage->private);
1654 new_zhdr->cpu = smp_processor_id();
1655 spin_lock(&pool->lock);
1656 list_add(&newpage->lru, &pool->lru);
1657 spin_unlock(&pool->lock);
1658 __SetPageMovable(newpage, new_mapping);
1659 z3fold_page_unlock(new_zhdr);
1661 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1663 page_mapcount_reset(page);
1664 put_page(page);
1665 return 0;
1668 static void z3fold_page_putback(struct page *page)
1670 struct z3fold_header *zhdr;
1671 struct z3fold_pool *pool;
1673 zhdr = page_address(page);
1674 pool = zhdr_to_pool(zhdr);
1676 z3fold_page_lock(zhdr);
1677 if (!list_empty(&zhdr->buddy))
1678 list_del_init(&zhdr->buddy);
1679 INIT_LIST_HEAD(&page->lru);
1680 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1681 atomic64_dec(&pool->pages_nr);
1682 return;
1684 spin_lock(&pool->lock);
1685 list_add(&page->lru, &pool->lru);
1686 spin_unlock(&pool->lock);
1687 z3fold_page_unlock(zhdr);
1690 static const struct address_space_operations z3fold_aops = {
1691 .isolate_page = z3fold_page_isolate,
1692 .migratepage = z3fold_page_migrate,
1693 .putback_page = z3fold_page_putback,
1696 /*****************
1697 * zpool
1698 ****************/
1700 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1702 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1703 return pool->zpool_ops->evict(pool->zpool, handle);
1704 else
1705 return -ENOENT;
1708 static const struct z3fold_ops z3fold_zpool_ops = {
1709 .evict = z3fold_zpool_evict
1712 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1713 const struct zpool_ops *zpool_ops,
1714 struct zpool *zpool)
1716 struct z3fold_pool *pool;
1718 pool = z3fold_create_pool(name, gfp,
1719 zpool_ops ? &z3fold_zpool_ops : NULL);
1720 if (pool) {
1721 pool->zpool = zpool;
1722 pool->zpool_ops = zpool_ops;
1724 return pool;
1727 static void z3fold_zpool_destroy(void *pool)
1729 z3fold_destroy_pool(pool);
1732 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1733 unsigned long *handle)
1735 return z3fold_alloc(pool, size, gfp, handle);
1737 static void z3fold_zpool_free(void *pool, unsigned long handle)
1739 z3fold_free(pool, handle);
1742 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1743 unsigned int *reclaimed)
1745 unsigned int total = 0;
1746 int ret = -EINVAL;
1748 while (total < pages) {
1749 ret = z3fold_reclaim_page(pool, 8);
1750 if (ret < 0)
1751 break;
1752 total++;
1755 if (reclaimed)
1756 *reclaimed = total;
1758 return ret;
1761 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1762 enum zpool_mapmode mm)
1764 return z3fold_map(pool, handle);
1766 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1768 z3fold_unmap(pool, handle);
1771 static u64 z3fold_zpool_total_size(void *pool)
1773 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1776 static struct zpool_driver z3fold_zpool_driver = {
1777 .type = "z3fold",
1778 .owner = THIS_MODULE,
1779 .create = z3fold_zpool_create,
1780 .destroy = z3fold_zpool_destroy,
1781 .malloc = z3fold_zpool_malloc,
1782 .free = z3fold_zpool_free,
1783 .shrink = z3fold_zpool_shrink,
1784 .map = z3fold_zpool_map,
1785 .unmap = z3fold_zpool_unmap,
1786 .total_size = z3fold_zpool_total_size,
1789 MODULE_ALIAS("zpool-z3fold");
1791 static int __init init_z3fold(void)
1793 int ret;
1795 /* Make sure the z3fold header is not larger than the page size */
1796 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1797 ret = z3fold_mount();
1798 if (ret)
1799 return ret;
1801 zpool_register_driver(&z3fold_zpool_driver);
1803 return 0;
1806 static void __exit exit_z3fold(void)
1808 z3fold_unmount();
1809 zpool_unregister_driver(&z3fold_zpool_driver);
1812 module_init(init_z3fold);
1813 module_exit(exit_z3fold);
1815 MODULE_LICENSE("GPL");
1816 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1817 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");