split dev_queue
[cor.git] / mm / vmalloc.c
blob4d3b3d60d8939b65f65bfcaad9c4d4c497f83a7a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
42 #include "internal.h"
44 struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50 static void __vunmap(const void *, int);
52 static void free_work(struct work_struct *w)
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
65 pte_t *pte;
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
76 pmd_t *pmd;
77 unsigned long next;
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
83 continue;
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
92 pud_t *pud;
93 unsigned long next;
95 pud = pud_offset(p4d, addr);
96 do {
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
99 continue;
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
108 p4d_t *p4d;
109 unsigned long next;
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
124 pgd_t *pgd;
125 unsigned long next;
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
140 pte_t *pte;
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
147 pte = pte_alloc_kernel(pmd, addr);
148 if (!pte)
149 return -ENOMEM;
150 do {
151 struct page *page = pages[*nr];
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 (*nr)++;
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
166 pmd_t *pmd;
167 unsigned long next;
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
183 pud_t *pud;
184 unsigned long next;
186 pud = pud_alloc(&init_mm, p4d, addr);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
200 p4d_t *p4d;
201 unsigned long next;
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
223 pgd_t *pgd;
224 unsigned long next;
225 unsigned long addr = start;
226 int err = 0;
227 int nr = 0;
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
231 do {
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 if (err)
235 return err;
236 } while (pgd++, addr = next, addr != end);
238 return nr;
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
244 int ret;
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
251 int is_vmalloc_or_module_addr(const void *x)
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262 #endif
263 return is_vmalloc_addr(x);
267 * Walk a vmap address to the struct page it maps.
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
302 return NULL;
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
306 return NULL;
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
313 return page;
315 EXPORT_SYMBOL(vmalloc_to_page);
318 * Map a vmalloc()-space virtual address to the physical page frame number.
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
324 EXPORT_SYMBOL(vmalloc_to_pfn);
327 /*** Global kva allocator ***/
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
333 static DEFINE_SPINLOCK(vmap_area_lock);
334 static DEFINE_SPINLOCK(free_vmap_area_lock);
335 /* Export for kexec only */
336 LIST_HEAD(vmap_area_list);
337 static LLIST_HEAD(vmap_purge_list);
338 static struct rb_root vmap_area_root = RB_ROOT;
339 static bool vmap_initialized __read_mostly;
342 * This kmem_cache is used for vmap_area objects. Instead of
343 * allocating from slab we reuse an object from this cache to
344 * make things faster. Especially in "no edge" splitting of
345 * free block.
347 static struct kmem_cache *vmap_area_cachep;
350 * This linked list is used in pair with free_vmap_area_root.
351 * It gives O(1) access to prev/next to perform fast coalescing.
353 static LIST_HEAD(free_vmap_area_list);
356 * This augment red-black tree represents the free vmap space.
357 * All vmap_area objects in this tree are sorted by va->va_start
358 * address. It is used for allocation and merging when a vmap
359 * object is released.
361 * Each vmap_area node contains a maximum available free block
362 * of its sub-tree, right or left. Therefore it is possible to
363 * find a lowest match of free area.
365 static struct rb_root free_vmap_area_root = RB_ROOT;
368 * Preload a CPU with one object for "no edge" split case. The
369 * aim is to get rid of allocations from the atomic context, thus
370 * to use more permissive allocation masks.
372 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374 static __always_inline unsigned long
375 va_size(struct vmap_area *va)
377 return (va->va_end - va->va_start);
380 static __always_inline unsigned long
381 get_subtree_max_size(struct rb_node *node)
383 struct vmap_area *va;
385 va = rb_entry_safe(node, struct vmap_area, rb_node);
386 return va ? va->subtree_max_size : 0;
390 * Gets called when remove the node and rotate.
392 static __always_inline unsigned long
393 compute_subtree_max_size(struct vmap_area *va)
395 return max3(va_size(va),
396 get_subtree_max_size(va->rb_node.rb_left),
397 get_subtree_max_size(va->rb_node.rb_right));
400 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
403 static void purge_vmap_area_lazy(void);
404 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405 static unsigned long lazy_max_pages(void);
407 static atomic_long_t nr_vmalloc_pages;
409 unsigned long vmalloc_nr_pages(void)
411 return atomic_long_read(&nr_vmalloc_pages);
414 static struct vmap_area *__find_vmap_area(unsigned long addr)
416 struct rb_node *n = vmap_area_root.rb_node;
418 while (n) {
419 struct vmap_area *va;
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
423 n = n->rb_left;
424 else if (addr >= va->va_end)
425 n = n->rb_right;
426 else
427 return va;
430 return NULL;
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
437 static __always_inline struct rb_node **
438 find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
445 if (root) {
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
448 *parent = NULL;
449 return link;
451 } else {
452 link = &from;
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
460 do {
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
466 * or full overlaps.
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
474 else
475 BUG();
476 } while (*link);
478 *parent = &tmp_va->rb_node;
479 return link;
482 static __always_inline struct list_head *
483 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
485 struct list_head *list;
487 if (unlikely(!parent))
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
494 return NULL;
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
500 static __always_inline void
501 link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
511 head = head->prev;
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
531 } else {
532 rb_insert_color(&va->rb_node, root);
535 /* Address-sort this list */
536 list_add(&va->list, head);
539 static __always_inline void
540 unlink_va(struct vmap_area *va, struct rb_root *root)
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 return;
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
548 else
549 rb_erase(&va->rb_node, root);
551 list_del(&va->list);
552 RB_CLEAR_NODE(&va->rb_node);
555 #if DEBUG_AUGMENT_PROPAGATE_CHECK
556 static void
557 augment_tree_propagate_check(struct rb_node *n)
559 struct vmap_area *va;
560 struct rb_node *node;
561 unsigned long size;
562 bool found = false;
564 if (n == NULL)
565 return;
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
569 node = n;
571 while (node) {
572 va = rb_entry(node, struct vmap_area, rb_node);
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
576 } else {
577 if (va_size(va) == size) {
578 found = true;
579 break;
582 node = node->rb_right;
586 if (!found) {
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
595 #endif
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
610 * to the root node.
612 * 4--8
613 * /\
614 * / \
615 * / \
616 * 2--2 8--8
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622 * node becomes 4--6.
624 static __always_inline void
625 augment_tree_propagate_from(struct vmap_area *va)
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
630 while (node) {
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
640 if (va->subtree_max_size == new_va_sub_max_size)
641 break;
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
647 #if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
649 #endif
652 static void
653 insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
656 struct rb_node **link;
657 struct rb_node *parent;
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
663 static void
664 insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
668 struct rb_node **link;
669 struct rb_node *parent;
671 if (from)
672 link = find_va_links(va, NULL, from, &parent);
673 else
674 link = find_va_links(va, root, NULL, &parent);
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
684 * freed.
686 static __always_inline struct vmap_area *
687 merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
694 bool merged = false;
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
700 link = find_va_links(va, root, NULL, &parent);
703 * Get next node of VA to check if merging can be done.
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
707 goto insert;
710 * start end
711 * | |
712 * |<------VA------>|<-----Next----->|
713 * | |
714 * start end
716 if (next != head) {
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
727 /* Point to the new merged area. */
728 va = sibling;
729 merged = true;
734 * start end
735 * | |
736 * |<-----Prev----->|<------VA------>|
737 * | |
738 * start end
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
748 if (merged)
749 unlink_va(va, root);
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
754 /* Point to the new merged area. */
755 va = sibling;
756 merged = true;
760 insert:
761 if (!merged) {
762 link_va(va, root, parent, link, head);
763 augment_tree_propagate_from(va);
766 return va;
769 static __always_inline bool
770 is_within_this_va(struct vmap_area *va, unsigned long size,
771 unsigned long align, unsigned long vstart)
773 unsigned long nva_start_addr;
775 if (va->va_start > vstart)
776 nva_start_addr = ALIGN(va->va_start, align);
777 else
778 nva_start_addr = ALIGN(vstart, align);
780 /* Can be overflowed due to big size or alignment. */
781 if (nva_start_addr + size < nva_start_addr ||
782 nva_start_addr < vstart)
783 return false;
785 return (nva_start_addr + size <= va->va_end);
789 * Find the first free block(lowest start address) in the tree,
790 * that will accomplish the request corresponding to passing
791 * parameters.
793 static __always_inline struct vmap_area *
794 find_vmap_lowest_match(unsigned long size,
795 unsigned long align, unsigned long vstart)
797 struct vmap_area *va;
798 struct rb_node *node;
799 unsigned long length;
801 /* Start from the root. */
802 node = free_vmap_area_root.rb_node;
804 /* Adjust the search size for alignment overhead. */
805 length = size + align - 1;
807 while (node) {
808 va = rb_entry(node, struct vmap_area, rb_node);
810 if (get_subtree_max_size(node->rb_left) >= length &&
811 vstart < va->va_start) {
812 node = node->rb_left;
813 } else {
814 if (is_within_this_va(va, size, align, vstart))
815 return va;
818 * Does not make sense to go deeper towards the right
819 * sub-tree if it does not have a free block that is
820 * equal or bigger to the requested search length.
822 if (get_subtree_max_size(node->rb_right) >= length) {
823 node = node->rb_right;
824 continue;
828 * OK. We roll back and find the first right sub-tree,
829 * that will satisfy the search criteria. It can happen
830 * only once due to "vstart" restriction.
832 while ((node = rb_parent(node))) {
833 va = rb_entry(node, struct vmap_area, rb_node);
834 if (is_within_this_va(va, size, align, vstart))
835 return va;
837 if (get_subtree_max_size(node->rb_right) >= length &&
838 vstart <= va->va_start) {
839 node = node->rb_right;
840 break;
846 return NULL;
849 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
850 #include <linux/random.h>
852 static struct vmap_area *
853 find_vmap_lowest_linear_match(unsigned long size,
854 unsigned long align, unsigned long vstart)
856 struct vmap_area *va;
858 list_for_each_entry(va, &free_vmap_area_list, list) {
859 if (!is_within_this_va(va, size, align, vstart))
860 continue;
862 return va;
865 return NULL;
868 static void
869 find_vmap_lowest_match_check(unsigned long size)
871 struct vmap_area *va_1, *va_2;
872 unsigned long vstart;
873 unsigned int rnd;
875 get_random_bytes(&rnd, sizeof(rnd));
876 vstart = VMALLOC_START + rnd;
878 va_1 = find_vmap_lowest_match(size, 1, vstart);
879 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
881 if (va_1 != va_2)
882 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
883 va_1, va_2, vstart);
885 #endif
887 enum fit_type {
888 NOTHING_FIT = 0,
889 FL_FIT_TYPE = 1, /* full fit */
890 LE_FIT_TYPE = 2, /* left edge fit */
891 RE_FIT_TYPE = 3, /* right edge fit */
892 NE_FIT_TYPE = 4 /* no edge fit */
895 static __always_inline enum fit_type
896 classify_va_fit_type(struct vmap_area *va,
897 unsigned long nva_start_addr, unsigned long size)
899 enum fit_type type;
901 /* Check if it is within VA. */
902 if (nva_start_addr < va->va_start ||
903 nva_start_addr + size > va->va_end)
904 return NOTHING_FIT;
906 /* Now classify. */
907 if (va->va_start == nva_start_addr) {
908 if (va->va_end == nva_start_addr + size)
909 type = FL_FIT_TYPE;
910 else
911 type = LE_FIT_TYPE;
912 } else if (va->va_end == nva_start_addr + size) {
913 type = RE_FIT_TYPE;
914 } else {
915 type = NE_FIT_TYPE;
918 return type;
921 static __always_inline int
922 adjust_va_to_fit_type(struct vmap_area *va,
923 unsigned long nva_start_addr, unsigned long size,
924 enum fit_type type)
926 struct vmap_area *lva = NULL;
928 if (type == FL_FIT_TYPE) {
930 * No need to split VA, it fully fits.
932 * | |
933 * V NVA V
934 * |---------------|
936 unlink_va(va, &free_vmap_area_root);
937 kmem_cache_free(vmap_area_cachep, va);
938 } else if (type == LE_FIT_TYPE) {
940 * Split left edge of fit VA.
942 * | |
943 * V NVA V R
944 * |-------|-------|
946 va->va_start += size;
947 } else if (type == RE_FIT_TYPE) {
949 * Split right edge of fit VA.
951 * | |
952 * L V NVA V
953 * |-------|-------|
955 va->va_end = nva_start_addr;
956 } else if (type == NE_FIT_TYPE) {
958 * Split no edge of fit VA.
960 * | |
961 * L V NVA V R
962 * |---|-------|---|
964 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
965 if (unlikely(!lva)) {
967 * For percpu allocator we do not do any pre-allocation
968 * and leave it as it is. The reason is it most likely
969 * never ends up with NE_FIT_TYPE splitting. In case of
970 * percpu allocations offsets and sizes are aligned to
971 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
972 * are its main fitting cases.
974 * There are a few exceptions though, as an example it is
975 * a first allocation (early boot up) when we have "one"
976 * big free space that has to be split.
978 * Also we can hit this path in case of regular "vmap"
979 * allocations, if "this" current CPU was not preloaded.
980 * See the comment in alloc_vmap_area() why. If so, then
981 * GFP_NOWAIT is used instead to get an extra object for
982 * split purpose. That is rare and most time does not
983 * occur.
985 * What happens if an allocation gets failed. Basically,
986 * an "overflow" path is triggered to purge lazily freed
987 * areas to free some memory, then, the "retry" path is
988 * triggered to repeat one more time. See more details
989 * in alloc_vmap_area() function.
991 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
992 if (!lva)
993 return -1;
997 * Build the remainder.
999 lva->va_start = va->va_start;
1000 lva->va_end = nva_start_addr;
1003 * Shrink this VA to remaining size.
1005 va->va_start = nva_start_addr + size;
1006 } else {
1007 return -1;
1010 if (type != FL_FIT_TYPE) {
1011 augment_tree_propagate_from(va);
1013 if (lva) /* type == NE_FIT_TYPE */
1014 insert_vmap_area_augment(lva, &va->rb_node,
1015 &free_vmap_area_root, &free_vmap_area_list);
1018 return 0;
1022 * Returns a start address of the newly allocated area, if success.
1023 * Otherwise a vend is returned that indicates failure.
1025 static __always_inline unsigned long
1026 __alloc_vmap_area(unsigned long size, unsigned long align,
1027 unsigned long vstart, unsigned long vend)
1029 unsigned long nva_start_addr;
1030 struct vmap_area *va;
1031 enum fit_type type;
1032 int ret;
1034 va = find_vmap_lowest_match(size, align, vstart);
1035 if (unlikely(!va))
1036 return vend;
1038 if (va->va_start > vstart)
1039 nva_start_addr = ALIGN(va->va_start, align);
1040 else
1041 nva_start_addr = ALIGN(vstart, align);
1043 /* Check the "vend" restriction. */
1044 if (nva_start_addr + size > vend)
1045 return vend;
1047 /* Classify what we have found. */
1048 type = classify_va_fit_type(va, nva_start_addr, size);
1049 if (WARN_ON_ONCE(type == NOTHING_FIT))
1050 return vend;
1052 /* Update the free vmap_area. */
1053 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1054 if (ret)
1055 return vend;
1057 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1058 find_vmap_lowest_match_check(size);
1059 #endif
1061 return nva_start_addr;
1065 * Allocate a region of KVA of the specified size and alignment, within the
1066 * vstart and vend.
1068 static struct vmap_area *alloc_vmap_area(unsigned long size,
1069 unsigned long align,
1070 unsigned long vstart, unsigned long vend,
1071 int node, gfp_t gfp_mask)
1073 struct vmap_area *va, *pva;
1074 unsigned long addr;
1075 int purged = 0;
1077 BUG_ON(!size);
1078 BUG_ON(offset_in_page(size));
1079 BUG_ON(!is_power_of_2(align));
1081 if (unlikely(!vmap_initialized))
1082 return ERR_PTR(-EBUSY);
1084 might_sleep();
1085 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1087 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1088 if (unlikely(!va))
1089 return ERR_PTR(-ENOMEM);
1092 * Only scan the relevant parts containing pointers to other objects
1093 * to avoid false negatives.
1095 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1097 retry:
1099 * Preload this CPU with one extra vmap_area object. It is used
1100 * when fit type of free area is NE_FIT_TYPE. Please note, it
1101 * does not guarantee that an allocation occurs on a CPU that
1102 * is preloaded, instead we minimize the case when it is not.
1103 * It can happen because of cpu migration, because there is a
1104 * race until the below spinlock is taken.
1106 * The preload is done in non-atomic context, thus it allows us
1107 * to use more permissive allocation masks to be more stable under
1108 * low memory condition and high memory pressure. In rare case,
1109 * if not preloaded, GFP_NOWAIT is used.
1111 * Set "pva" to NULL here, because of "retry" path.
1113 pva = NULL;
1115 if (!this_cpu_read(ne_fit_preload_node))
1117 * Even if it fails we do not really care about that.
1118 * Just proceed as it is. If needed "overflow" path
1119 * will refill the cache we allocate from.
1121 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1123 spin_lock(&free_vmap_area_lock);
1125 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1126 kmem_cache_free(vmap_area_cachep, pva);
1129 * If an allocation fails, the "vend" address is
1130 * returned. Therefore trigger the overflow path.
1132 addr = __alloc_vmap_area(size, align, vstart, vend);
1133 spin_unlock(&free_vmap_area_lock);
1135 if (unlikely(addr == vend))
1136 goto overflow;
1138 va->va_start = addr;
1139 va->va_end = addr + size;
1140 va->vm = NULL;
1142 spin_lock(&vmap_area_lock);
1143 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1144 spin_unlock(&vmap_area_lock);
1146 BUG_ON(!IS_ALIGNED(va->va_start, align));
1147 BUG_ON(va->va_start < vstart);
1148 BUG_ON(va->va_end > vend);
1150 return va;
1152 overflow:
1153 if (!purged) {
1154 purge_vmap_area_lazy();
1155 purged = 1;
1156 goto retry;
1159 if (gfpflags_allow_blocking(gfp_mask)) {
1160 unsigned long freed = 0;
1161 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1162 if (freed > 0) {
1163 purged = 0;
1164 goto retry;
1168 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1169 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1170 size);
1172 kmem_cache_free(vmap_area_cachep, va);
1173 return ERR_PTR(-EBUSY);
1176 int register_vmap_purge_notifier(struct notifier_block *nb)
1178 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1180 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1182 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1184 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1186 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1189 * Free a region of KVA allocated by alloc_vmap_area
1191 static void free_vmap_area(struct vmap_area *va)
1194 * Remove from the busy tree/list.
1196 spin_lock(&vmap_area_lock);
1197 unlink_va(va, &vmap_area_root);
1198 spin_unlock(&vmap_area_lock);
1201 * Insert/Merge it back to the free tree/list.
1203 spin_lock(&free_vmap_area_lock);
1204 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1205 spin_unlock(&free_vmap_area_lock);
1209 * Clear the pagetable entries of a given vmap_area
1211 static void unmap_vmap_area(struct vmap_area *va)
1213 vunmap_page_range(va->va_start, va->va_end);
1217 * lazy_max_pages is the maximum amount of virtual address space we gather up
1218 * before attempting to purge with a TLB flush.
1220 * There is a tradeoff here: a larger number will cover more kernel page tables
1221 * and take slightly longer to purge, but it will linearly reduce the number of
1222 * global TLB flushes that must be performed. It would seem natural to scale
1223 * this number up linearly with the number of CPUs (because vmapping activity
1224 * could also scale linearly with the number of CPUs), however it is likely
1225 * that in practice, workloads might be constrained in other ways that mean
1226 * vmap activity will not scale linearly with CPUs. Also, I want to be
1227 * conservative and not introduce a big latency on huge systems, so go with
1228 * a less aggressive log scale. It will still be an improvement over the old
1229 * code, and it will be simple to change the scale factor if we find that it
1230 * becomes a problem on bigger systems.
1232 static unsigned long lazy_max_pages(void)
1234 unsigned int log;
1236 log = fls(num_online_cpus());
1238 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1241 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1244 * Serialize vmap purging. There is no actual criticial section protected
1245 * by this look, but we want to avoid concurrent calls for performance
1246 * reasons and to make the pcpu_get_vm_areas more deterministic.
1248 static DEFINE_MUTEX(vmap_purge_lock);
1250 /* for per-CPU blocks */
1251 static void purge_fragmented_blocks_allcpus(void);
1254 * called before a call to iounmap() if the caller wants vm_area_struct's
1255 * immediately freed.
1257 void set_iounmap_nonlazy(void)
1259 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1263 * Purges all lazily-freed vmap areas.
1265 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1267 unsigned long resched_threshold;
1268 struct llist_node *valist;
1269 struct vmap_area *va;
1270 struct vmap_area *n_va;
1272 lockdep_assert_held(&vmap_purge_lock);
1274 valist = llist_del_all(&vmap_purge_list);
1275 if (unlikely(valist == NULL))
1276 return false;
1279 * First make sure the mappings are removed from all page-tables
1280 * before they are freed.
1282 vmalloc_sync_all();
1285 * TODO: to calculate a flush range without looping.
1286 * The list can be up to lazy_max_pages() elements.
1288 llist_for_each_entry(va, valist, purge_list) {
1289 if (va->va_start < start)
1290 start = va->va_start;
1291 if (va->va_end > end)
1292 end = va->va_end;
1295 flush_tlb_kernel_range(start, end);
1296 resched_threshold = lazy_max_pages() << 1;
1298 spin_lock(&free_vmap_area_lock);
1299 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1300 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1301 unsigned long orig_start = va->va_start;
1302 unsigned long orig_end = va->va_end;
1305 * Finally insert or merge lazily-freed area. It is
1306 * detached and there is no need to "unlink" it from
1307 * anything.
1309 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1310 &free_vmap_area_list);
1312 if (is_vmalloc_or_module_addr((void *)orig_start))
1313 kasan_release_vmalloc(orig_start, orig_end,
1314 va->va_start, va->va_end);
1316 atomic_long_sub(nr, &vmap_lazy_nr);
1318 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1319 cond_resched_lock(&free_vmap_area_lock);
1321 spin_unlock(&free_vmap_area_lock);
1322 return true;
1326 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1327 * is already purging.
1329 static void try_purge_vmap_area_lazy(void)
1331 if (mutex_trylock(&vmap_purge_lock)) {
1332 __purge_vmap_area_lazy(ULONG_MAX, 0);
1333 mutex_unlock(&vmap_purge_lock);
1338 * Kick off a purge of the outstanding lazy areas.
1340 static void purge_vmap_area_lazy(void)
1342 mutex_lock(&vmap_purge_lock);
1343 purge_fragmented_blocks_allcpus();
1344 __purge_vmap_area_lazy(ULONG_MAX, 0);
1345 mutex_unlock(&vmap_purge_lock);
1349 * Free a vmap area, caller ensuring that the area has been unmapped
1350 * and flush_cache_vunmap had been called for the correct range
1351 * previously.
1353 static void free_vmap_area_noflush(struct vmap_area *va)
1355 unsigned long nr_lazy;
1357 spin_lock(&vmap_area_lock);
1358 unlink_va(va, &vmap_area_root);
1359 spin_unlock(&vmap_area_lock);
1361 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1362 PAGE_SHIFT, &vmap_lazy_nr);
1364 /* After this point, we may free va at any time */
1365 llist_add(&va->purge_list, &vmap_purge_list);
1367 if (unlikely(nr_lazy > lazy_max_pages()))
1368 try_purge_vmap_area_lazy();
1372 * Free and unmap a vmap area
1374 static void free_unmap_vmap_area(struct vmap_area *va)
1376 flush_cache_vunmap(va->va_start, va->va_end);
1377 unmap_vmap_area(va);
1378 if (debug_pagealloc_enabled())
1379 flush_tlb_kernel_range(va->va_start, va->va_end);
1381 free_vmap_area_noflush(va);
1384 static struct vmap_area *find_vmap_area(unsigned long addr)
1386 struct vmap_area *va;
1388 spin_lock(&vmap_area_lock);
1389 va = __find_vmap_area(addr);
1390 spin_unlock(&vmap_area_lock);
1392 return va;
1395 /*** Per cpu kva allocator ***/
1398 * vmap space is limited especially on 32 bit architectures. Ensure there is
1399 * room for at least 16 percpu vmap blocks per CPU.
1402 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1403 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1404 * instead (we just need a rough idea)
1406 #if BITS_PER_LONG == 32
1407 #define VMALLOC_SPACE (128UL*1024*1024)
1408 #else
1409 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1410 #endif
1412 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1413 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1414 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1415 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1416 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1417 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1418 #define VMAP_BBMAP_BITS \
1419 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1420 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1421 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1423 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1425 struct vmap_block_queue {
1426 spinlock_t lock;
1427 struct list_head free;
1430 struct vmap_block {
1431 spinlock_t lock;
1432 struct vmap_area *va;
1433 unsigned long free, dirty;
1434 unsigned long dirty_min, dirty_max; /*< dirty range */
1435 struct list_head free_list;
1436 struct rcu_head rcu_head;
1437 struct list_head purge;
1440 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1441 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1444 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1445 * in the free path. Could get rid of this if we change the API to return a
1446 * "cookie" from alloc, to be passed to free. But no big deal yet.
1448 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1449 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1452 * We should probably have a fallback mechanism to allocate virtual memory
1453 * out of partially filled vmap blocks. However vmap block sizing should be
1454 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1455 * big problem.
1458 static unsigned long addr_to_vb_idx(unsigned long addr)
1460 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1461 addr /= VMAP_BLOCK_SIZE;
1462 return addr;
1465 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1467 unsigned long addr;
1469 addr = va_start + (pages_off << PAGE_SHIFT);
1470 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1471 return (void *)addr;
1475 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1476 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1477 * @order: how many 2^order pages should be occupied in newly allocated block
1478 * @gfp_mask: flags for the page level allocator
1480 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1482 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1484 struct vmap_block_queue *vbq;
1485 struct vmap_block *vb;
1486 struct vmap_area *va;
1487 unsigned long vb_idx;
1488 int node, err;
1489 void *vaddr;
1491 node = numa_node_id();
1493 vb = kmalloc_node(sizeof(struct vmap_block),
1494 gfp_mask & GFP_RECLAIM_MASK, node);
1495 if (unlikely(!vb))
1496 return ERR_PTR(-ENOMEM);
1498 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1499 VMALLOC_START, VMALLOC_END,
1500 node, gfp_mask);
1501 if (IS_ERR(va)) {
1502 kfree(vb);
1503 return ERR_CAST(va);
1506 err = radix_tree_preload(gfp_mask);
1507 if (unlikely(err)) {
1508 kfree(vb);
1509 free_vmap_area(va);
1510 return ERR_PTR(err);
1513 vaddr = vmap_block_vaddr(va->va_start, 0);
1514 spin_lock_init(&vb->lock);
1515 vb->va = va;
1516 /* At least something should be left free */
1517 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1518 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1519 vb->dirty = 0;
1520 vb->dirty_min = VMAP_BBMAP_BITS;
1521 vb->dirty_max = 0;
1522 INIT_LIST_HEAD(&vb->free_list);
1524 vb_idx = addr_to_vb_idx(va->va_start);
1525 spin_lock(&vmap_block_tree_lock);
1526 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1527 spin_unlock(&vmap_block_tree_lock);
1528 BUG_ON(err);
1529 radix_tree_preload_end();
1531 vbq = &get_cpu_var(vmap_block_queue);
1532 spin_lock(&vbq->lock);
1533 list_add_tail_rcu(&vb->free_list, &vbq->free);
1534 spin_unlock(&vbq->lock);
1535 put_cpu_var(vmap_block_queue);
1537 return vaddr;
1540 static void free_vmap_block(struct vmap_block *vb)
1542 struct vmap_block *tmp;
1543 unsigned long vb_idx;
1545 vb_idx = addr_to_vb_idx(vb->va->va_start);
1546 spin_lock(&vmap_block_tree_lock);
1547 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1548 spin_unlock(&vmap_block_tree_lock);
1549 BUG_ON(tmp != vb);
1551 free_vmap_area_noflush(vb->va);
1552 kfree_rcu(vb, rcu_head);
1555 static void purge_fragmented_blocks(int cpu)
1557 LIST_HEAD(purge);
1558 struct vmap_block *vb;
1559 struct vmap_block *n_vb;
1560 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1565 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1566 continue;
1568 spin_lock(&vb->lock);
1569 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1570 vb->free = 0; /* prevent further allocs after releasing lock */
1571 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1572 vb->dirty_min = 0;
1573 vb->dirty_max = VMAP_BBMAP_BITS;
1574 spin_lock(&vbq->lock);
1575 list_del_rcu(&vb->free_list);
1576 spin_unlock(&vbq->lock);
1577 spin_unlock(&vb->lock);
1578 list_add_tail(&vb->purge, &purge);
1579 } else
1580 spin_unlock(&vb->lock);
1582 rcu_read_unlock();
1584 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1585 list_del(&vb->purge);
1586 free_vmap_block(vb);
1590 static void purge_fragmented_blocks_allcpus(void)
1592 int cpu;
1594 for_each_possible_cpu(cpu)
1595 purge_fragmented_blocks(cpu);
1598 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1600 struct vmap_block_queue *vbq;
1601 struct vmap_block *vb;
1602 void *vaddr = NULL;
1603 unsigned int order;
1605 BUG_ON(offset_in_page(size));
1606 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1607 if (WARN_ON(size == 0)) {
1609 * Allocating 0 bytes isn't what caller wants since
1610 * get_order(0) returns funny result. Just warn and terminate
1611 * early.
1613 return NULL;
1615 order = get_order(size);
1617 rcu_read_lock();
1618 vbq = &get_cpu_var(vmap_block_queue);
1619 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1620 unsigned long pages_off;
1622 spin_lock(&vb->lock);
1623 if (vb->free < (1UL << order)) {
1624 spin_unlock(&vb->lock);
1625 continue;
1628 pages_off = VMAP_BBMAP_BITS - vb->free;
1629 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1630 vb->free -= 1UL << order;
1631 if (vb->free == 0) {
1632 spin_lock(&vbq->lock);
1633 list_del_rcu(&vb->free_list);
1634 spin_unlock(&vbq->lock);
1637 spin_unlock(&vb->lock);
1638 break;
1641 put_cpu_var(vmap_block_queue);
1642 rcu_read_unlock();
1644 /* Allocate new block if nothing was found */
1645 if (!vaddr)
1646 vaddr = new_vmap_block(order, gfp_mask);
1648 return vaddr;
1651 static void vb_free(const void *addr, unsigned long size)
1653 unsigned long offset;
1654 unsigned long vb_idx;
1655 unsigned int order;
1656 struct vmap_block *vb;
1658 BUG_ON(offset_in_page(size));
1659 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1661 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1663 order = get_order(size);
1665 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1666 offset >>= PAGE_SHIFT;
1668 vb_idx = addr_to_vb_idx((unsigned long)addr);
1669 rcu_read_lock();
1670 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1671 rcu_read_unlock();
1672 BUG_ON(!vb);
1674 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1676 if (debug_pagealloc_enabled())
1677 flush_tlb_kernel_range((unsigned long)addr,
1678 (unsigned long)addr + size);
1680 spin_lock(&vb->lock);
1682 /* Expand dirty range */
1683 vb->dirty_min = min(vb->dirty_min, offset);
1684 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1686 vb->dirty += 1UL << order;
1687 if (vb->dirty == VMAP_BBMAP_BITS) {
1688 BUG_ON(vb->free);
1689 spin_unlock(&vb->lock);
1690 free_vmap_block(vb);
1691 } else
1692 spin_unlock(&vb->lock);
1695 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1697 int cpu;
1699 if (unlikely(!vmap_initialized))
1700 return;
1702 might_sleep();
1704 for_each_possible_cpu(cpu) {
1705 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1706 struct vmap_block *vb;
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1710 spin_lock(&vb->lock);
1711 if (vb->dirty) {
1712 unsigned long va_start = vb->va->va_start;
1713 unsigned long s, e;
1715 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1716 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1718 start = min(s, start);
1719 end = max(e, end);
1721 flush = 1;
1723 spin_unlock(&vb->lock);
1725 rcu_read_unlock();
1728 mutex_lock(&vmap_purge_lock);
1729 purge_fragmented_blocks_allcpus();
1730 if (!__purge_vmap_area_lazy(start, end) && flush)
1731 flush_tlb_kernel_range(start, end);
1732 mutex_unlock(&vmap_purge_lock);
1736 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1738 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1739 * to amortize TLB flushing overheads. What this means is that any page you
1740 * have now, may, in a former life, have been mapped into kernel virtual
1741 * address by the vmap layer and so there might be some CPUs with TLB entries
1742 * still referencing that page (additional to the regular 1:1 kernel mapping).
1744 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1745 * be sure that none of the pages we have control over will have any aliases
1746 * from the vmap layer.
1748 void vm_unmap_aliases(void)
1750 unsigned long start = ULONG_MAX, end = 0;
1751 int flush = 0;
1753 _vm_unmap_aliases(start, end, flush);
1755 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1758 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1759 * @mem: the pointer returned by vm_map_ram
1760 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1762 void vm_unmap_ram(const void *mem, unsigned int count)
1764 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1765 unsigned long addr = (unsigned long)mem;
1766 struct vmap_area *va;
1768 might_sleep();
1769 BUG_ON(!addr);
1770 BUG_ON(addr < VMALLOC_START);
1771 BUG_ON(addr > VMALLOC_END);
1772 BUG_ON(!PAGE_ALIGNED(addr));
1774 if (likely(count <= VMAP_MAX_ALLOC)) {
1775 debug_check_no_locks_freed(mem, size);
1776 vb_free(mem, size);
1777 return;
1780 va = find_vmap_area(addr);
1781 BUG_ON(!va);
1782 debug_check_no_locks_freed((void *)va->va_start,
1783 (va->va_end - va->va_start));
1784 free_unmap_vmap_area(va);
1786 EXPORT_SYMBOL(vm_unmap_ram);
1789 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1790 * @pages: an array of pointers to the pages to be mapped
1791 * @count: number of pages
1792 * @node: prefer to allocate data structures on this node
1793 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1795 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1796 * faster than vmap so it's good. But if you mix long-life and short-life
1797 * objects with vm_map_ram(), it could consume lots of address space through
1798 * fragmentation (especially on a 32bit machine). You could see failures in
1799 * the end. Please use this function for short-lived objects.
1801 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1803 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1805 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1806 unsigned long addr;
1807 void *mem;
1809 if (likely(count <= VMAP_MAX_ALLOC)) {
1810 mem = vb_alloc(size, GFP_KERNEL);
1811 if (IS_ERR(mem))
1812 return NULL;
1813 addr = (unsigned long)mem;
1814 } else {
1815 struct vmap_area *va;
1816 va = alloc_vmap_area(size, PAGE_SIZE,
1817 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1818 if (IS_ERR(va))
1819 return NULL;
1821 addr = va->va_start;
1822 mem = (void *)addr;
1824 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1825 vm_unmap_ram(mem, count);
1826 return NULL;
1828 return mem;
1830 EXPORT_SYMBOL(vm_map_ram);
1832 static struct vm_struct *vmlist __initdata;
1835 * vm_area_add_early - add vmap area early during boot
1836 * @vm: vm_struct to add
1838 * This function is used to add fixed kernel vm area to vmlist before
1839 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1840 * should contain proper values and the other fields should be zero.
1842 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1844 void __init vm_area_add_early(struct vm_struct *vm)
1846 struct vm_struct *tmp, **p;
1848 BUG_ON(vmap_initialized);
1849 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1850 if (tmp->addr >= vm->addr) {
1851 BUG_ON(tmp->addr < vm->addr + vm->size);
1852 break;
1853 } else
1854 BUG_ON(tmp->addr + tmp->size > vm->addr);
1856 vm->next = *p;
1857 *p = vm;
1861 * vm_area_register_early - register vmap area early during boot
1862 * @vm: vm_struct to register
1863 * @align: requested alignment
1865 * This function is used to register kernel vm area before
1866 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1867 * proper values on entry and other fields should be zero. On return,
1868 * vm->addr contains the allocated address.
1870 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1872 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1874 static size_t vm_init_off __initdata;
1875 unsigned long addr;
1877 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1878 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1880 vm->addr = (void *)addr;
1882 vm_area_add_early(vm);
1885 static void vmap_init_free_space(void)
1887 unsigned long vmap_start = 1;
1888 const unsigned long vmap_end = ULONG_MAX;
1889 struct vmap_area *busy, *free;
1892 * B F B B B F
1893 * -|-----|.....|-----|-----|-----|.....|-
1894 * | The KVA space |
1895 * |<--------------------------------->|
1897 list_for_each_entry(busy, &vmap_area_list, list) {
1898 if (busy->va_start - vmap_start > 0) {
1899 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1900 if (!WARN_ON_ONCE(!free)) {
1901 free->va_start = vmap_start;
1902 free->va_end = busy->va_start;
1904 insert_vmap_area_augment(free, NULL,
1905 &free_vmap_area_root,
1906 &free_vmap_area_list);
1910 vmap_start = busy->va_end;
1913 if (vmap_end - vmap_start > 0) {
1914 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1915 if (!WARN_ON_ONCE(!free)) {
1916 free->va_start = vmap_start;
1917 free->va_end = vmap_end;
1919 insert_vmap_area_augment(free, NULL,
1920 &free_vmap_area_root,
1921 &free_vmap_area_list);
1926 void __init vmalloc_init(void)
1928 struct vmap_area *va;
1929 struct vm_struct *tmp;
1930 int i;
1933 * Create the cache for vmap_area objects.
1935 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1937 for_each_possible_cpu(i) {
1938 struct vmap_block_queue *vbq;
1939 struct vfree_deferred *p;
1941 vbq = &per_cpu(vmap_block_queue, i);
1942 spin_lock_init(&vbq->lock);
1943 INIT_LIST_HEAD(&vbq->free);
1944 p = &per_cpu(vfree_deferred, i);
1945 init_llist_head(&p->list);
1946 INIT_WORK(&p->wq, free_work);
1949 /* Import existing vmlist entries. */
1950 for (tmp = vmlist; tmp; tmp = tmp->next) {
1951 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1952 if (WARN_ON_ONCE(!va))
1953 continue;
1955 va->va_start = (unsigned long)tmp->addr;
1956 va->va_end = va->va_start + tmp->size;
1957 va->vm = tmp;
1958 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1962 * Now we can initialize a free vmap space.
1964 vmap_init_free_space();
1965 vmap_initialized = true;
1969 * map_kernel_range_noflush - map kernel VM area with the specified pages
1970 * @addr: start of the VM area to map
1971 * @size: size of the VM area to map
1972 * @prot: page protection flags to use
1973 * @pages: pages to map
1975 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1976 * specify should have been allocated using get_vm_area() and its
1977 * friends.
1979 * NOTE:
1980 * This function does NOT do any cache flushing. The caller is
1981 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1982 * before calling this function.
1984 * RETURNS:
1985 * The number of pages mapped on success, -errno on failure.
1987 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1988 pgprot_t prot, struct page **pages)
1990 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1994 * unmap_kernel_range_noflush - unmap kernel VM area
1995 * @addr: start of the VM area to unmap
1996 * @size: size of the VM area to unmap
1998 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1999 * specify should have been allocated using get_vm_area() and its
2000 * friends.
2002 * NOTE:
2003 * This function does NOT do any cache flushing. The caller is
2004 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2005 * before calling this function and flush_tlb_kernel_range() after.
2007 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2009 vunmap_page_range(addr, addr + size);
2011 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2014 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2015 * @addr: start of the VM area to unmap
2016 * @size: size of the VM area to unmap
2018 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2019 * the unmapping and tlb after.
2021 void unmap_kernel_range(unsigned long addr, unsigned long size)
2023 unsigned long end = addr + size;
2025 flush_cache_vunmap(addr, end);
2026 vunmap_page_range(addr, end);
2027 flush_tlb_kernel_range(addr, end);
2029 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2031 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2033 unsigned long addr = (unsigned long)area->addr;
2034 unsigned long end = addr + get_vm_area_size(area);
2035 int err;
2037 err = vmap_page_range(addr, end, prot, pages);
2039 return err > 0 ? 0 : err;
2041 EXPORT_SYMBOL_GPL(map_vm_area);
2043 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 struct vmap_area *va, unsigned long flags, const void *caller)
2046 vm->flags = flags;
2047 vm->addr = (void *)va->va_start;
2048 vm->size = va->va_end - va->va_start;
2049 vm->caller = caller;
2050 va->vm = vm;
2053 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 unsigned long flags, const void *caller)
2056 spin_lock(&vmap_area_lock);
2057 setup_vmalloc_vm_locked(vm, va, flags, caller);
2058 spin_unlock(&vmap_area_lock);
2061 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2064 * Before removing VM_UNINITIALIZED,
2065 * we should make sure that vm has proper values.
2066 * Pair with smp_rmb() in show_numa_info().
2068 smp_wmb();
2069 vm->flags &= ~VM_UNINITIALIZED;
2072 static struct vm_struct *__get_vm_area_node(unsigned long size,
2073 unsigned long align, unsigned long flags, unsigned long start,
2074 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2076 struct vmap_area *va;
2077 struct vm_struct *area;
2079 BUG_ON(in_interrupt());
2080 size = PAGE_ALIGN(size);
2081 if (unlikely(!size))
2082 return NULL;
2084 if (flags & VM_IOREMAP)
2085 align = 1ul << clamp_t(int, get_count_order_long(size),
2086 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2088 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2089 if (unlikely(!area))
2090 return NULL;
2092 if (!(flags & VM_NO_GUARD))
2093 size += PAGE_SIZE;
2095 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2096 if (IS_ERR(va)) {
2097 kfree(area);
2098 return NULL;
2101 setup_vmalloc_vm(area, va, flags, caller);
2104 * For KASAN, if we are in vmalloc space, we need to cover the shadow
2105 * area with real memory. If we come here through VM_ALLOC, this is
2106 * done by a higher level function that has access to the true size,
2107 * which might not be a full page.
2109 * We assume module space comes via VM_ALLOC path.
2111 if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
2112 if (kasan_populate_vmalloc(area->size, area)) {
2113 unmap_vmap_area(va);
2114 kfree(area);
2115 return NULL;
2119 return area;
2122 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2123 unsigned long start, unsigned long end)
2125 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2126 GFP_KERNEL, __builtin_return_address(0));
2128 EXPORT_SYMBOL_GPL(__get_vm_area);
2130 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end,
2132 const void *caller)
2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 GFP_KERNEL, caller);
2139 * get_vm_area - reserve a contiguous kernel virtual area
2140 * @size: size of the area
2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2143 * Search an area of @size in the kernel virtual mapping area,
2144 * and reserved it for out purposes. Returns the area descriptor
2145 * on success or %NULL on failure.
2147 * Return: the area descriptor on success or %NULL on failure.
2149 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2152 NUMA_NO_NODE, GFP_KERNEL,
2153 __builtin_return_address(0));
2156 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2157 const void *caller)
2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 NUMA_NO_NODE, GFP_KERNEL, caller);
2164 * find_vm_area - find a continuous kernel virtual area
2165 * @addr: base address
2167 * Search for the kernel VM area starting at @addr, and return it.
2168 * It is up to the caller to do all required locking to keep the returned
2169 * pointer valid.
2171 * Return: pointer to the found area or %NULL on faulure
2173 struct vm_struct *find_vm_area(const void *addr)
2175 struct vmap_area *va;
2177 va = find_vmap_area((unsigned long)addr);
2178 if (!va)
2179 return NULL;
2181 return va->vm;
2185 * remove_vm_area - find and remove a continuous kernel virtual area
2186 * @addr: base address
2188 * Search for the kernel VM area starting at @addr, and remove it.
2189 * This function returns the found VM area, but using it is NOT safe
2190 * on SMP machines, except for its size or flags.
2192 * Return: pointer to the found area or %NULL on faulure
2194 struct vm_struct *remove_vm_area(const void *addr)
2196 struct vmap_area *va;
2198 might_sleep();
2200 spin_lock(&vmap_area_lock);
2201 va = __find_vmap_area((unsigned long)addr);
2202 if (va && va->vm) {
2203 struct vm_struct *vm = va->vm;
2205 va->vm = NULL;
2206 spin_unlock(&vmap_area_lock);
2208 kasan_free_shadow(vm);
2209 free_unmap_vmap_area(va);
2211 return vm;
2214 spin_unlock(&vmap_area_lock);
2215 return NULL;
2218 static inline void set_area_direct_map(const struct vm_struct *area,
2219 int (*set_direct_map)(struct page *page))
2221 int i;
2223 for (i = 0; i < area->nr_pages; i++)
2224 if (page_address(area->pages[i]))
2225 set_direct_map(area->pages[i]);
2228 /* Handle removing and resetting vm mappings related to the vm_struct. */
2229 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2231 unsigned long start = ULONG_MAX, end = 0;
2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2233 int flush_dmap = 0;
2234 int i;
2236 remove_vm_area(area->addr);
2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2239 if (!flush_reset)
2240 return;
2243 * If not deallocating pages, just do the flush of the VM area and
2244 * return.
2246 if (!deallocate_pages) {
2247 vm_unmap_aliases();
2248 return;
2252 * If execution gets here, flush the vm mapping and reset the direct
2253 * map. Find the start and end range of the direct mappings to make sure
2254 * the vm_unmap_aliases() flush includes the direct map.
2256 for (i = 0; i < area->nr_pages; i++) {
2257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2258 if (addr) {
2259 start = min(addr, start);
2260 end = max(addr + PAGE_SIZE, end);
2261 flush_dmap = 1;
2266 * Set direct map to something invalid so that it won't be cached if
2267 * there are any accesses after the TLB flush, then flush the TLB and
2268 * reset the direct map permissions to the default.
2270 set_area_direct_map(area, set_direct_map_invalid_noflush);
2271 _vm_unmap_aliases(start, end, flush_dmap);
2272 set_area_direct_map(area, set_direct_map_default_noflush);
2275 static void __vunmap(const void *addr, int deallocate_pages)
2277 struct vm_struct *area;
2279 if (!addr)
2280 return;
2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2283 addr))
2284 return;
2286 area = find_vm_area(addr);
2287 if (unlikely(!area)) {
2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2289 addr);
2290 return;
2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2296 if (area->flags & VM_KASAN)
2297 kasan_poison_vmalloc(area->addr, area->size);
2299 vm_remove_mappings(area, deallocate_pages);
2301 if (deallocate_pages) {
2302 int i;
2304 for (i = 0; i < area->nr_pages; i++) {
2305 struct page *page = area->pages[i];
2307 BUG_ON(!page);
2308 __free_pages(page, 0);
2310 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2312 kvfree(area->pages);
2315 kfree(area);
2316 return;
2319 static inline void __vfree_deferred(const void *addr)
2322 * Use raw_cpu_ptr() because this can be called from preemptible
2323 * context. Preemption is absolutely fine here, because the llist_add()
2324 * implementation is lockless, so it works even if we are adding to
2325 * nother cpu's list. schedule_work() should be fine with this too.
2327 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2329 if (llist_add((struct llist_node *)addr, &p->list))
2330 schedule_work(&p->wq);
2334 * vfree_atomic - release memory allocated by vmalloc()
2335 * @addr: memory base address
2337 * This one is just like vfree() but can be called in any atomic context
2338 * except NMIs.
2340 void vfree_atomic(const void *addr)
2342 BUG_ON(in_nmi());
2344 kmemleak_free(addr);
2346 if (!addr)
2347 return;
2348 __vfree_deferred(addr);
2351 static void __vfree(const void *addr)
2353 if (unlikely(in_interrupt()))
2354 __vfree_deferred(addr);
2355 else
2356 __vunmap(addr, 1);
2360 * vfree - release memory allocated by vmalloc()
2361 * @addr: memory base address
2363 * Free the virtually continuous memory area starting at @addr, as
2364 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2365 * NULL, no operation is performed.
2367 * Must not be called in NMI context (strictly speaking, only if we don't
2368 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2369 * conventions for vfree() arch-depenedent would be a really bad idea)
2371 * May sleep if called *not* from interrupt context.
2373 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2375 void vfree(const void *addr)
2377 BUG_ON(in_nmi());
2379 kmemleak_free(addr);
2381 might_sleep_if(!in_interrupt());
2383 if (!addr)
2384 return;
2386 __vfree(addr);
2388 EXPORT_SYMBOL(vfree);
2391 * vunmap - release virtual mapping obtained by vmap()
2392 * @addr: memory base address
2394 * Free the virtually contiguous memory area starting at @addr,
2395 * which was created from the page array passed to vmap().
2397 * Must not be called in interrupt context.
2399 void vunmap(const void *addr)
2401 BUG_ON(in_interrupt());
2402 might_sleep();
2403 if (addr)
2404 __vunmap(addr, 0);
2406 EXPORT_SYMBOL(vunmap);
2409 * vmap - map an array of pages into virtually contiguous space
2410 * @pages: array of page pointers
2411 * @count: number of pages to map
2412 * @flags: vm_area->flags
2413 * @prot: page protection for the mapping
2415 * Maps @count pages from @pages into contiguous kernel virtual
2416 * space.
2418 * Return: the address of the area or %NULL on failure
2420 void *vmap(struct page **pages, unsigned int count,
2421 unsigned long flags, pgprot_t prot)
2423 struct vm_struct *area;
2424 unsigned long size; /* In bytes */
2426 might_sleep();
2428 if (count > totalram_pages())
2429 return NULL;
2431 size = (unsigned long)count << PAGE_SHIFT;
2432 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2433 if (!area)
2434 return NULL;
2436 if (map_vm_area(area, prot, pages)) {
2437 vunmap(area->addr);
2438 return NULL;
2441 return area->addr;
2443 EXPORT_SYMBOL(vmap);
2445 static void *__vmalloc_node(unsigned long size, unsigned long align,
2446 gfp_t gfp_mask, pgprot_t prot,
2447 int node, const void *caller);
2448 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2449 pgprot_t prot, int node)
2451 struct page **pages;
2452 unsigned int nr_pages, array_size, i;
2453 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2454 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2455 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2457 __GFP_HIGHMEM;
2459 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2460 array_size = (nr_pages * sizeof(struct page *));
2462 /* Please note that the recursion is strictly bounded. */
2463 if (array_size > PAGE_SIZE) {
2464 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2465 PAGE_KERNEL, node, area->caller);
2466 } else {
2467 pages = kmalloc_node(array_size, nested_gfp, node);
2470 if (!pages) {
2471 remove_vm_area(area->addr);
2472 kfree(area);
2473 return NULL;
2476 area->pages = pages;
2477 area->nr_pages = nr_pages;
2479 for (i = 0; i < area->nr_pages; i++) {
2480 struct page *page;
2482 if (node == NUMA_NO_NODE)
2483 page = alloc_page(alloc_mask|highmem_mask);
2484 else
2485 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2487 if (unlikely(!page)) {
2488 /* Successfully allocated i pages, free them in __vunmap() */
2489 area->nr_pages = i;
2490 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2491 goto fail;
2493 area->pages[i] = page;
2494 if (gfpflags_allow_blocking(gfp_mask))
2495 cond_resched();
2497 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2499 if (map_vm_area(area, prot, pages))
2500 goto fail;
2501 return area->addr;
2503 fail:
2504 warn_alloc(gfp_mask, NULL,
2505 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2506 (area->nr_pages*PAGE_SIZE), area->size);
2507 __vfree(area->addr);
2508 return NULL;
2512 * __vmalloc_node_range - allocate virtually contiguous memory
2513 * @size: allocation size
2514 * @align: desired alignment
2515 * @start: vm area range start
2516 * @end: vm area range end
2517 * @gfp_mask: flags for the page level allocator
2518 * @prot: protection mask for the allocated pages
2519 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2520 * @node: node to use for allocation or NUMA_NO_NODE
2521 * @caller: caller's return address
2523 * Allocate enough pages to cover @size from the page level
2524 * allocator with @gfp_mask flags. Map them into contiguous
2525 * kernel virtual space, using a pagetable protection of @prot.
2527 * Return: the address of the area or %NULL on failure
2529 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2530 unsigned long start, unsigned long end, gfp_t gfp_mask,
2531 pgprot_t prot, unsigned long vm_flags, int node,
2532 const void *caller)
2534 struct vm_struct *area;
2535 void *addr;
2536 unsigned long real_size = size;
2538 size = PAGE_ALIGN(size);
2539 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2540 goto fail;
2542 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2543 vm_flags, start, end, node, gfp_mask, caller);
2544 if (!area)
2545 goto fail;
2547 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2548 if (!addr)
2549 return NULL;
2551 if (is_vmalloc_or_module_addr(area->addr)) {
2552 if (kasan_populate_vmalloc(real_size, area))
2553 return NULL;
2557 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2558 * flag. It means that vm_struct is not fully initialized.
2559 * Now, it is fully initialized, so remove this flag here.
2561 clear_vm_uninitialized_flag(area);
2563 kmemleak_vmalloc(area, size, gfp_mask);
2565 return addr;
2567 fail:
2568 warn_alloc(gfp_mask, NULL,
2569 "vmalloc: allocation failure: %lu bytes", real_size);
2570 return NULL;
2574 * This is only for performance analysis of vmalloc and stress purpose.
2575 * It is required by vmalloc test module, therefore do not use it other
2576 * than that.
2578 #ifdef CONFIG_TEST_VMALLOC_MODULE
2579 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2580 #endif
2583 * __vmalloc_node - allocate virtually contiguous memory
2584 * @size: allocation size
2585 * @align: desired alignment
2586 * @gfp_mask: flags for the page level allocator
2587 * @prot: protection mask for the allocated pages
2588 * @node: node to use for allocation or NUMA_NO_NODE
2589 * @caller: caller's return address
2591 * Allocate enough pages to cover @size from the page level
2592 * allocator with @gfp_mask flags. Map them into contiguous
2593 * kernel virtual space, using a pagetable protection of @prot.
2595 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2596 * and __GFP_NOFAIL are not supported
2598 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2599 * with mm people.
2601 * Return: pointer to the allocated memory or %NULL on error
2603 static void *__vmalloc_node(unsigned long size, unsigned long align,
2604 gfp_t gfp_mask, pgprot_t prot,
2605 int node, const void *caller)
2607 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2608 gfp_mask, prot, 0, node, caller);
2611 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2613 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2614 __builtin_return_address(0));
2616 EXPORT_SYMBOL(__vmalloc);
2618 static inline void *__vmalloc_node_flags(unsigned long size,
2619 int node, gfp_t flags)
2621 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2622 node, __builtin_return_address(0));
2626 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2627 void *caller)
2629 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2633 * vmalloc - allocate virtually contiguous memory
2634 * @size: allocation size
2636 * Allocate enough pages to cover @size from the page level
2637 * allocator and map them into contiguous kernel virtual space.
2639 * For tight control over page level allocator and protection flags
2640 * use __vmalloc() instead.
2642 * Return: pointer to the allocated memory or %NULL on error
2644 void *vmalloc(unsigned long size)
2646 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2647 GFP_KERNEL);
2649 EXPORT_SYMBOL(vmalloc);
2652 * vzalloc - allocate virtually contiguous memory with zero fill
2653 * @size: allocation size
2655 * Allocate enough pages to cover @size from the page level
2656 * allocator and map them into contiguous kernel virtual space.
2657 * The memory allocated is set to zero.
2659 * For tight control over page level allocator and protection flags
2660 * use __vmalloc() instead.
2662 * Return: pointer to the allocated memory or %NULL on error
2664 void *vzalloc(unsigned long size)
2666 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2667 GFP_KERNEL | __GFP_ZERO);
2669 EXPORT_SYMBOL(vzalloc);
2672 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2673 * @size: allocation size
2675 * The resulting memory area is zeroed so it can be mapped to userspace
2676 * without leaking data.
2678 * Return: pointer to the allocated memory or %NULL on error
2680 void *vmalloc_user(unsigned long size)
2682 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2683 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2684 VM_USERMAP, NUMA_NO_NODE,
2685 __builtin_return_address(0));
2687 EXPORT_SYMBOL(vmalloc_user);
2690 * vmalloc_node - allocate memory on a specific node
2691 * @size: allocation size
2692 * @node: numa node
2694 * Allocate enough pages to cover @size from the page level
2695 * allocator and map them into contiguous kernel virtual space.
2697 * For tight control over page level allocator and protection flags
2698 * use __vmalloc() instead.
2700 * Return: pointer to the allocated memory or %NULL on error
2702 void *vmalloc_node(unsigned long size, int node)
2704 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2705 node, __builtin_return_address(0));
2707 EXPORT_SYMBOL(vmalloc_node);
2710 * vzalloc_node - allocate memory on a specific node with zero fill
2711 * @size: allocation size
2712 * @node: numa node
2714 * Allocate enough pages to cover @size from the page level
2715 * allocator and map them into contiguous kernel virtual space.
2716 * The memory allocated is set to zero.
2718 * For tight control over page level allocator and protection flags
2719 * use __vmalloc_node() instead.
2721 * Return: pointer to the allocated memory or %NULL on error
2723 void *vzalloc_node(unsigned long size, int node)
2725 return __vmalloc_node_flags(size, node,
2726 GFP_KERNEL | __GFP_ZERO);
2728 EXPORT_SYMBOL(vzalloc_node);
2731 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2732 * @size: allocation size
2733 * @node: numa node
2734 * @flags: flags for the page level allocator
2736 * The resulting memory area is zeroed so it can be mapped to userspace
2737 * without leaking data.
2739 * Return: pointer to the allocated memory or %NULL on error
2741 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2743 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2744 flags | __GFP_ZERO, PAGE_KERNEL,
2745 VM_USERMAP, node,
2746 __builtin_return_address(0));
2748 EXPORT_SYMBOL(vmalloc_user_node_flags);
2751 * vmalloc_exec - allocate virtually contiguous, executable memory
2752 * @size: allocation size
2754 * Kernel-internal function to allocate enough pages to cover @size
2755 * the page level allocator and map them into contiguous and
2756 * executable kernel virtual space.
2758 * For tight control over page level allocator and protection flags
2759 * use __vmalloc() instead.
2761 * Return: pointer to the allocated memory or %NULL on error
2763 void *vmalloc_exec(unsigned long size)
2765 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2766 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2767 NUMA_NO_NODE, __builtin_return_address(0));
2770 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2771 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2772 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2773 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2774 #else
2776 * 64b systems should always have either DMA or DMA32 zones. For others
2777 * GFP_DMA32 should do the right thing and use the normal zone.
2779 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2780 #endif
2783 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2784 * @size: allocation size
2786 * Allocate enough 32bit PA addressable pages to cover @size from the
2787 * page level allocator and map them into contiguous kernel virtual space.
2789 * Return: pointer to the allocated memory or %NULL on error
2791 void *vmalloc_32(unsigned long size)
2793 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2794 NUMA_NO_NODE, __builtin_return_address(0));
2796 EXPORT_SYMBOL(vmalloc_32);
2799 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2800 * @size: allocation size
2802 * The resulting memory area is 32bit addressable and zeroed so it can be
2803 * mapped to userspace without leaking data.
2805 * Return: pointer to the allocated memory or %NULL on error
2807 void *vmalloc_32_user(unsigned long size)
2809 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2810 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2811 VM_USERMAP, NUMA_NO_NODE,
2812 __builtin_return_address(0));
2814 EXPORT_SYMBOL(vmalloc_32_user);
2817 * small helper routine , copy contents to buf from addr.
2818 * If the page is not present, fill zero.
2821 static int aligned_vread(char *buf, char *addr, unsigned long count)
2823 struct page *p;
2824 int copied = 0;
2826 while (count) {
2827 unsigned long offset, length;
2829 offset = offset_in_page(addr);
2830 length = PAGE_SIZE - offset;
2831 if (length > count)
2832 length = count;
2833 p = vmalloc_to_page(addr);
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2841 if (p) {
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2846 void *map = kmap_atomic(p);
2847 memcpy(buf, map + offset, length);
2848 kunmap_atomic(map);
2849 } else
2850 memset(buf, 0, length);
2852 addr += length;
2853 buf += length;
2854 copied += length;
2855 count -= length;
2857 return copied;
2860 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2862 struct page *p;
2863 int copied = 0;
2865 while (count) {
2866 unsigned long offset, length;
2868 offset = offset_in_page(addr);
2869 length = PAGE_SIZE - offset;
2870 if (length > count)
2871 length = count;
2872 p = vmalloc_to_page(addr);
2874 * To do safe access to this _mapped_ area, we need
2875 * lock. But adding lock here means that we need to add
2876 * overhead of vmalloc()/vfree() calles for this _debug_
2877 * interface, rarely used. Instead of that, we'll use
2878 * kmap() and get small overhead in this access function.
2880 if (p) {
2882 * we can expect USER0 is not used (see vread/vwrite's
2883 * function description)
2885 void *map = kmap_atomic(p);
2886 memcpy(map + offset, buf, length);
2887 kunmap_atomic(map);
2889 addr += length;
2890 buf += length;
2891 copied += length;
2892 count -= length;
2894 return copied;
2898 * vread() - read vmalloc area in a safe way.
2899 * @buf: buffer for reading data
2900 * @addr: vm address.
2901 * @count: number of bytes to be read.
2903 * This function checks that addr is a valid vmalloc'ed area, and
2904 * copy data from that area to a given buffer. If the given memory range
2905 * of [addr...addr+count) includes some valid address, data is copied to
2906 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2907 * IOREMAP area is treated as memory hole and no copy is done.
2909 * If [addr...addr+count) doesn't includes any intersects with alive
2910 * vm_struct area, returns 0. @buf should be kernel's buffer.
2912 * Note: In usual ops, vread() is never necessary because the caller
2913 * should know vmalloc() area is valid and can use memcpy().
2914 * This is for routines which have to access vmalloc area without
2915 * any information, as /dev/kmem.
2917 * Return: number of bytes for which addr and buf should be increased
2918 * (same number as @count) or %0 if [addr...addr+count) doesn't
2919 * include any intersection with valid vmalloc area
2921 long vread(char *buf, char *addr, unsigned long count)
2923 struct vmap_area *va;
2924 struct vm_struct *vm;
2925 char *vaddr, *buf_start = buf;
2926 unsigned long buflen = count;
2927 unsigned long n;
2929 /* Don't allow overflow */
2930 if ((unsigned long) addr + count < count)
2931 count = -(unsigned long) addr;
2933 spin_lock(&vmap_area_lock);
2934 list_for_each_entry(va, &vmap_area_list, list) {
2935 if (!count)
2936 break;
2938 if (!va->vm)
2939 continue;
2941 vm = va->vm;
2942 vaddr = (char *) vm->addr;
2943 if (addr >= vaddr + get_vm_area_size(vm))
2944 continue;
2945 while (addr < vaddr) {
2946 if (count == 0)
2947 goto finished;
2948 *buf = '\0';
2949 buf++;
2950 addr++;
2951 count--;
2953 n = vaddr + get_vm_area_size(vm) - addr;
2954 if (n > count)
2955 n = count;
2956 if (!(vm->flags & VM_IOREMAP))
2957 aligned_vread(buf, addr, n);
2958 else /* IOREMAP area is treated as memory hole */
2959 memset(buf, 0, n);
2960 buf += n;
2961 addr += n;
2962 count -= n;
2964 finished:
2965 spin_unlock(&vmap_area_lock);
2967 if (buf == buf_start)
2968 return 0;
2969 /* zero-fill memory holes */
2970 if (buf != buf_start + buflen)
2971 memset(buf, 0, buflen - (buf - buf_start));
2973 return buflen;
2977 * vwrite() - write vmalloc area in a safe way.
2978 * @buf: buffer for source data
2979 * @addr: vm address.
2980 * @count: number of bytes to be read.
2982 * This function checks that addr is a valid vmalloc'ed area, and
2983 * copy data from a buffer to the given addr. If specified range of
2984 * [addr...addr+count) includes some valid address, data is copied from
2985 * proper area of @buf. If there are memory holes, no copy to hole.
2986 * IOREMAP area is treated as memory hole and no copy is done.
2988 * If [addr...addr+count) doesn't includes any intersects with alive
2989 * vm_struct area, returns 0. @buf should be kernel's buffer.
2991 * Note: In usual ops, vwrite() is never necessary because the caller
2992 * should know vmalloc() area is valid and can use memcpy().
2993 * This is for routines which have to access vmalloc area without
2994 * any information, as /dev/kmem.
2996 * Return: number of bytes for which addr and buf should be
2997 * increased (same number as @count) or %0 if [addr...addr+count)
2998 * doesn't include any intersection with valid vmalloc area
3000 long vwrite(char *buf, char *addr, unsigned long count)
3002 struct vmap_area *va;
3003 struct vm_struct *vm;
3004 char *vaddr;
3005 unsigned long n, buflen;
3006 int copied = 0;
3008 /* Don't allow overflow */
3009 if ((unsigned long) addr + count < count)
3010 count = -(unsigned long) addr;
3011 buflen = count;
3013 spin_lock(&vmap_area_lock);
3014 list_for_each_entry(va, &vmap_area_list, list) {
3015 if (!count)
3016 break;
3018 if (!va->vm)
3019 continue;
3021 vm = va->vm;
3022 vaddr = (char *) vm->addr;
3023 if (addr >= vaddr + get_vm_area_size(vm))
3024 continue;
3025 while (addr < vaddr) {
3026 if (count == 0)
3027 goto finished;
3028 buf++;
3029 addr++;
3030 count--;
3032 n = vaddr + get_vm_area_size(vm) - addr;
3033 if (n > count)
3034 n = count;
3035 if (!(vm->flags & VM_IOREMAP)) {
3036 aligned_vwrite(buf, addr, n);
3037 copied++;
3039 buf += n;
3040 addr += n;
3041 count -= n;
3043 finished:
3044 spin_unlock(&vmap_area_lock);
3045 if (!copied)
3046 return 0;
3047 return buflen;
3051 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3052 * @vma: vma to cover
3053 * @uaddr: target user address to start at
3054 * @kaddr: virtual address of vmalloc kernel memory
3055 * @size: size of map area
3057 * Returns: 0 for success, -Exxx on failure
3059 * This function checks that @kaddr is a valid vmalloc'ed area,
3060 * and that it is big enough to cover the range starting at
3061 * @uaddr in @vma. Will return failure if that criteria isn't
3062 * met.
3064 * Similar to remap_pfn_range() (see mm/memory.c)
3066 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3067 void *kaddr, unsigned long size)
3069 struct vm_struct *area;
3071 size = PAGE_ALIGN(size);
3073 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3074 return -EINVAL;
3076 area = find_vm_area(kaddr);
3077 if (!area)
3078 return -EINVAL;
3080 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3081 return -EINVAL;
3083 if (kaddr + size > area->addr + get_vm_area_size(area))
3084 return -EINVAL;
3086 do {
3087 struct page *page = vmalloc_to_page(kaddr);
3088 int ret;
3090 ret = vm_insert_page(vma, uaddr, page);
3091 if (ret)
3092 return ret;
3094 uaddr += PAGE_SIZE;
3095 kaddr += PAGE_SIZE;
3096 size -= PAGE_SIZE;
3097 } while (size > 0);
3099 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3101 return 0;
3103 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3106 * remap_vmalloc_range - map vmalloc pages to userspace
3107 * @vma: vma to cover (map full range of vma)
3108 * @addr: vmalloc memory
3109 * @pgoff: number of pages into addr before first page to map
3111 * Returns: 0 for success, -Exxx on failure
3113 * This function checks that addr is a valid vmalloc'ed area, and
3114 * that it is big enough to cover the vma. Will return failure if
3115 * that criteria isn't met.
3117 * Similar to remap_pfn_range() (see mm/memory.c)
3119 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3120 unsigned long pgoff)
3122 return remap_vmalloc_range_partial(vma, vma->vm_start,
3123 addr + (pgoff << PAGE_SHIFT),
3124 vma->vm_end - vma->vm_start);
3126 EXPORT_SYMBOL(remap_vmalloc_range);
3129 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3130 * have one.
3132 * The purpose of this function is to make sure the vmalloc area
3133 * mappings are identical in all page-tables in the system.
3135 void __weak vmalloc_sync_all(void)
3140 static int f(pte_t *pte, unsigned long addr, void *data)
3142 pte_t ***p = data;
3144 if (p) {
3145 *(*p) = pte;
3146 (*p)++;
3148 return 0;
3152 * alloc_vm_area - allocate a range of kernel address space
3153 * @size: size of the area
3154 * @ptes: returns the PTEs for the address space
3156 * Returns: NULL on failure, vm_struct on success
3158 * This function reserves a range of kernel address space, and
3159 * allocates pagetables to map that range. No actual mappings
3160 * are created.
3162 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3163 * allocated for the VM area are returned.
3165 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3167 struct vm_struct *area;
3169 area = get_vm_area_caller(size, VM_IOREMAP,
3170 __builtin_return_address(0));
3171 if (area == NULL)
3172 return NULL;
3175 * This ensures that page tables are constructed for this region
3176 * of kernel virtual address space and mapped into init_mm.
3178 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3179 size, f, ptes ? &ptes : NULL)) {
3180 free_vm_area(area);
3181 return NULL;
3184 return area;
3186 EXPORT_SYMBOL_GPL(alloc_vm_area);
3188 void free_vm_area(struct vm_struct *area)
3190 struct vm_struct *ret;
3191 ret = remove_vm_area(area->addr);
3192 BUG_ON(ret != area);
3193 kfree(area);
3195 EXPORT_SYMBOL_GPL(free_vm_area);
3197 #ifdef CONFIG_SMP
3198 static struct vmap_area *node_to_va(struct rb_node *n)
3200 return rb_entry_safe(n, struct vmap_area, rb_node);
3204 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3205 * @addr: target address
3207 * Returns: vmap_area if it is found. If there is no such area
3208 * the first highest(reverse order) vmap_area is returned
3209 * i.e. va->va_start < addr && va->va_end < addr or NULL
3210 * if there are no any areas before @addr.
3212 static struct vmap_area *
3213 pvm_find_va_enclose_addr(unsigned long addr)
3215 struct vmap_area *va, *tmp;
3216 struct rb_node *n;
3218 n = free_vmap_area_root.rb_node;
3219 va = NULL;
3221 while (n) {
3222 tmp = rb_entry(n, struct vmap_area, rb_node);
3223 if (tmp->va_start <= addr) {
3224 va = tmp;
3225 if (tmp->va_end >= addr)
3226 break;
3228 n = n->rb_right;
3229 } else {
3230 n = n->rb_left;
3234 return va;
3238 * pvm_determine_end_from_reverse - find the highest aligned address
3239 * of free block below VMALLOC_END
3240 * @va:
3241 * in - the VA we start the search(reverse order);
3242 * out - the VA with the highest aligned end address.
3244 * Returns: determined end address within vmap_area
3246 static unsigned long
3247 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3249 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3250 unsigned long addr;
3252 if (likely(*va)) {
3253 list_for_each_entry_from_reverse((*va),
3254 &free_vmap_area_list, list) {
3255 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3256 if ((*va)->va_start < addr)
3257 return addr;
3261 return 0;
3265 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3266 * @offsets: array containing offset of each area
3267 * @sizes: array containing size of each area
3268 * @nr_vms: the number of areas to allocate
3269 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3271 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3272 * vm_structs on success, %NULL on failure
3274 * Percpu allocator wants to use congruent vm areas so that it can
3275 * maintain the offsets among percpu areas. This function allocates
3276 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3277 * be scattered pretty far, distance between two areas easily going up
3278 * to gigabytes. To avoid interacting with regular vmallocs, these
3279 * areas are allocated from top.
3281 * Despite its complicated look, this allocator is rather simple. It
3282 * does everything top-down and scans free blocks from the end looking
3283 * for matching base. While scanning, if any of the areas do not fit the
3284 * base address is pulled down to fit the area. Scanning is repeated till
3285 * all the areas fit and then all necessary data structures are inserted
3286 * and the result is returned.
3288 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3289 const size_t *sizes, int nr_vms,
3290 size_t align)
3292 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3293 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3294 struct vmap_area **vas, *va;
3295 struct vm_struct **vms;
3296 int area, area2, last_area, term_area;
3297 unsigned long base, start, size, end, last_end;
3298 bool purged = false;
3299 enum fit_type type;
3301 /* verify parameters and allocate data structures */
3302 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3303 for (last_area = 0, area = 0; area < nr_vms; area++) {
3304 start = offsets[area];
3305 end = start + sizes[area];
3307 /* is everything aligned properly? */
3308 BUG_ON(!IS_ALIGNED(offsets[area], align));
3309 BUG_ON(!IS_ALIGNED(sizes[area], align));
3311 /* detect the area with the highest address */
3312 if (start > offsets[last_area])
3313 last_area = area;
3315 for (area2 = area + 1; area2 < nr_vms; area2++) {
3316 unsigned long start2 = offsets[area2];
3317 unsigned long end2 = start2 + sizes[area2];
3319 BUG_ON(start2 < end && start < end2);
3322 last_end = offsets[last_area] + sizes[last_area];
3324 if (vmalloc_end - vmalloc_start < last_end) {
3325 WARN_ON(true);
3326 return NULL;
3329 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3330 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3331 if (!vas || !vms)
3332 goto err_free2;
3334 for (area = 0; area < nr_vms; area++) {
3335 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3336 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3337 if (!vas[area] || !vms[area])
3338 goto err_free;
3340 retry:
3341 spin_lock(&free_vmap_area_lock);
3343 /* start scanning - we scan from the top, begin with the last area */
3344 area = term_area = last_area;
3345 start = offsets[area];
3346 end = start + sizes[area];
3348 va = pvm_find_va_enclose_addr(vmalloc_end);
3349 base = pvm_determine_end_from_reverse(&va, align) - end;
3351 while (true) {
3353 * base might have underflowed, add last_end before
3354 * comparing.
3356 if (base + last_end < vmalloc_start + last_end)
3357 goto overflow;
3360 * Fitting base has not been found.
3362 if (va == NULL)
3363 goto overflow;
3366 * If required width exeeds current VA block, move
3367 * base downwards and then recheck.
3369 if (base + end > va->va_end) {
3370 base = pvm_determine_end_from_reverse(&va, align) - end;
3371 term_area = area;
3372 continue;
3376 * If this VA does not fit, move base downwards and recheck.
3378 if (base + start < va->va_start) {
3379 va = node_to_va(rb_prev(&va->rb_node));
3380 base = pvm_determine_end_from_reverse(&va, align) - end;
3381 term_area = area;
3382 continue;
3386 * This area fits, move on to the previous one. If
3387 * the previous one is the terminal one, we're done.
3389 area = (area + nr_vms - 1) % nr_vms;
3390 if (area == term_area)
3391 break;
3393 start = offsets[area];
3394 end = start + sizes[area];
3395 va = pvm_find_va_enclose_addr(base + end);
3398 /* we've found a fitting base, insert all va's */
3399 for (area = 0; area < nr_vms; area++) {
3400 int ret;
3402 start = base + offsets[area];
3403 size = sizes[area];
3405 va = pvm_find_va_enclose_addr(start);
3406 if (WARN_ON_ONCE(va == NULL))
3407 /* It is a BUG(), but trigger recovery instead. */
3408 goto recovery;
3410 type = classify_va_fit_type(va, start, size);
3411 if (WARN_ON_ONCE(type == NOTHING_FIT))
3412 /* It is a BUG(), but trigger recovery instead. */
3413 goto recovery;
3415 ret = adjust_va_to_fit_type(va, start, size, type);
3416 if (unlikely(ret))
3417 goto recovery;
3419 /* Allocated area. */
3420 va = vas[area];
3421 va->va_start = start;
3422 va->va_end = start + size;
3425 spin_unlock(&free_vmap_area_lock);
3427 /* insert all vm's */
3428 spin_lock(&vmap_area_lock);
3429 for (area = 0; area < nr_vms; area++) {
3430 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3432 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3433 pcpu_get_vm_areas);
3435 spin_unlock(&vmap_area_lock);
3437 /* populate the shadow space outside of the lock */
3438 for (area = 0; area < nr_vms; area++) {
3439 /* assume success here */
3440 kasan_populate_vmalloc(sizes[area], vms[area]);
3443 kfree(vas);
3444 return vms;
3446 recovery:
3448 * Remove previously allocated areas. There is no
3449 * need in removing these areas from the busy tree,
3450 * because they are inserted only on the final step
3451 * and when pcpu_get_vm_areas() is success.
3453 while (area--) {
3454 merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3455 &free_vmap_area_list);
3456 vas[area] = NULL;
3459 overflow:
3460 spin_unlock(&free_vmap_area_lock);
3461 if (!purged) {
3462 purge_vmap_area_lazy();
3463 purged = true;
3465 /* Before "retry", check if we recover. */
3466 for (area = 0; area < nr_vms; area++) {
3467 if (vas[area])
3468 continue;
3470 vas[area] = kmem_cache_zalloc(
3471 vmap_area_cachep, GFP_KERNEL);
3472 if (!vas[area])
3473 goto err_free;
3476 goto retry;
3479 err_free:
3480 for (area = 0; area < nr_vms; area++) {
3481 if (vas[area])
3482 kmem_cache_free(vmap_area_cachep, vas[area]);
3484 kfree(vms[area]);
3486 err_free2:
3487 kfree(vas);
3488 kfree(vms);
3489 return NULL;
3493 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3494 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3495 * @nr_vms: the number of allocated areas
3497 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3499 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3501 int i;
3503 for (i = 0; i < nr_vms; i++)
3504 free_vm_area(vms[i]);
3505 kfree(vms);
3507 #endif /* CONFIG_SMP */
3509 #ifdef CONFIG_PROC_FS
3510 static void *s_start(struct seq_file *m, loff_t *pos)
3511 __acquires(&vmap_purge_lock)
3512 __acquires(&vmap_area_lock)
3514 mutex_lock(&vmap_purge_lock);
3515 spin_lock(&vmap_area_lock);
3517 return seq_list_start(&vmap_area_list, *pos);
3520 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3522 return seq_list_next(p, &vmap_area_list, pos);
3525 static void s_stop(struct seq_file *m, void *p)
3526 __releases(&vmap_purge_lock)
3527 __releases(&vmap_area_lock)
3529 mutex_unlock(&vmap_purge_lock);
3530 spin_unlock(&vmap_area_lock);
3533 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3535 if (IS_ENABLED(CONFIG_NUMA)) {
3536 unsigned int nr, *counters = m->private;
3538 if (!counters)
3539 return;
3541 if (v->flags & VM_UNINITIALIZED)
3542 return;
3543 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3544 smp_rmb();
3546 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3548 for (nr = 0; nr < v->nr_pages; nr++)
3549 counters[page_to_nid(v->pages[nr])]++;
3551 for_each_node_state(nr, N_HIGH_MEMORY)
3552 if (counters[nr])
3553 seq_printf(m, " N%u=%u", nr, counters[nr]);
3557 static void show_purge_info(struct seq_file *m)
3559 struct llist_node *head;
3560 struct vmap_area *va;
3562 head = READ_ONCE(vmap_purge_list.first);
3563 if (head == NULL)
3564 return;
3566 llist_for_each_entry(va, head, purge_list) {
3567 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3568 (void *)va->va_start, (void *)va->va_end,
3569 va->va_end - va->va_start);
3573 static int s_show(struct seq_file *m, void *p)
3575 struct vmap_area *va;
3576 struct vm_struct *v;
3578 va = list_entry(p, struct vmap_area, list);
3581 * s_show can encounter race with remove_vm_area, !vm on behalf
3582 * of vmap area is being tear down or vm_map_ram allocation.
3584 if (!va->vm) {
3585 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3586 (void *)va->va_start, (void *)va->va_end,
3587 va->va_end - va->va_start);
3589 return 0;
3592 v = va->vm;
3594 seq_printf(m, "0x%pK-0x%pK %7ld",
3595 v->addr, v->addr + v->size, v->size);
3597 if (v->caller)
3598 seq_printf(m, " %pS", v->caller);
3600 if (v->nr_pages)
3601 seq_printf(m, " pages=%d", v->nr_pages);
3603 if (v->phys_addr)
3604 seq_printf(m, " phys=%pa", &v->phys_addr);
3606 if (v->flags & VM_IOREMAP)
3607 seq_puts(m, " ioremap");
3609 if (v->flags & VM_ALLOC)
3610 seq_puts(m, " vmalloc");
3612 if (v->flags & VM_MAP)
3613 seq_puts(m, " vmap");
3615 if (v->flags & VM_USERMAP)
3616 seq_puts(m, " user");
3618 if (v->flags & VM_DMA_COHERENT)
3619 seq_puts(m, " dma-coherent");
3621 if (is_vmalloc_addr(v->pages))
3622 seq_puts(m, " vpages");
3624 show_numa_info(m, v);
3625 seq_putc(m, '\n');
3628 * As a final step, dump "unpurged" areas. Note,
3629 * that entire "/proc/vmallocinfo" output will not
3630 * be address sorted, because the purge list is not
3631 * sorted.
3633 if (list_is_last(&va->list, &vmap_area_list))
3634 show_purge_info(m);
3636 return 0;
3639 static const struct seq_operations vmalloc_op = {
3640 .start = s_start,
3641 .next = s_next,
3642 .stop = s_stop,
3643 .show = s_show,
3646 static int __init proc_vmalloc_init(void)
3648 if (IS_ENABLED(CONFIG_NUMA))
3649 proc_create_seq_private("vmallocinfo", 0400, NULL,
3650 &vmalloc_op,
3651 nr_node_ids * sizeof(unsigned int), NULL);
3652 else
3653 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3654 return 0;
3656 module_init(proc_vmalloc_init);
3658 #endif