split dev_queue
[cor.git] / mm / slub.c
blobd11389710b12d6f35479aa5d029ac6b5b9205228
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
40 #include "internal.h"
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
48 * slab_mutex
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache *s)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
126 void *fixup_red_left(struct kmem_cache *s, void *p)
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
131 return p;
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138 #else
139 return false;
140 #endif
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 #define MIN_PARTIAL 5
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
168 #define MAX_PARTIAL 10
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 #define OO_SHIFT 16
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 #endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
263 #else
264 return ptr;
265 #endif
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 return freelist_dereference(s, object + s->offset);
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 prefetch(object + s->offset);
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 unsigned long freepointer_addr;
289 void *p;
291 if (!debug_pagealloc_enabled())
292 return get_freepointer(s, object);
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319 return (kasan_reset_tag(p) - addr) / s->size;
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
324 return ((unsigned int)PAGE_SIZE << order) / size;
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 unsigned int size)
330 struct kmem_cache_order_objects x = {
331 (order << OO_SHIFT) + order_objects(order, size)
334 return x;
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339 return x.x >> OO_SHIFT;
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344 return x.x & OO_MASK;
348 * Per slab locking using the pagelock
350 static __always_inline void slab_lock(struct page *page)
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 bit_spin_lock(PG_locked, &page->flags);
356 static __always_inline void slab_unlock(struct page *page)
358 VM_BUG_ON_PAGE(PageTail(page), page);
359 __bit_spin_unlock(PG_locked, &page->flags);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return true;
376 } else
377 #endif
379 slab_lock(page);
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
382 page->freelist = freelist_new;
383 page->counters = counters_new;
384 slab_unlock(page);
385 return true;
387 slab_unlock(page);
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
397 return false;
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s->flags & __CMPXCHG_DOUBLE) {
408 if (cmpxchg_double(&page->freelist, &page->counters,
409 freelist_old, counters_old,
410 freelist_new, counters_new))
411 return true;
412 } else
413 #endif
415 unsigned long flags;
417 local_irq_save(flags);
418 slab_lock(page);
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
421 page->freelist = freelist_new;
422 page->counters = counters_new;
423 slab_unlock(page);
424 local_irq_restore(flags);
425 return true;
427 slab_unlock(page);
428 local_irq_restore(flags);
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
438 return false;
441 #ifdef CONFIG_SLUB_DEBUG
443 * Determine a map of object in use on a page.
445 * Node listlock must be held to guarantee that the page does
446 * not vanish from under us.
448 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 void *p;
451 void *addr = page_address(page);
453 for (p = page->freelist; p; p = get_freepointer(s, p))
454 set_bit(slab_index(p, s, addr), map);
457 static inline unsigned int size_from_object(struct kmem_cache *s)
459 if (s->flags & SLAB_RED_ZONE)
460 return s->size - s->red_left_pad;
462 return s->size;
465 static inline void *restore_red_left(struct kmem_cache *s, void *p)
467 if (s->flags & SLAB_RED_ZONE)
468 p -= s->red_left_pad;
470 return p;
474 * Debug settings:
476 #if defined(CONFIG_SLUB_DEBUG_ON)
477 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
478 #else
479 static slab_flags_t slub_debug;
480 #endif
482 static char *slub_debug_slabs;
483 static int disable_higher_order_debug;
486 * slub is about to manipulate internal object metadata. This memory lies
487 * outside the range of the allocated object, so accessing it would normally
488 * be reported by kasan as a bounds error. metadata_access_enable() is used
489 * to tell kasan that these accesses are OK.
491 static inline void metadata_access_enable(void)
493 kasan_disable_current();
496 static inline void metadata_access_disable(void)
498 kasan_enable_current();
502 * Object debugging
505 /* Verify that a pointer has an address that is valid within a slab page */
506 static inline int check_valid_pointer(struct kmem_cache *s,
507 struct page *page, void *object)
509 void *base;
511 if (!object)
512 return 1;
514 base = page_address(page);
515 object = kasan_reset_tag(object);
516 object = restore_red_left(s, object);
517 if (object < base || object >= base + page->objects * s->size ||
518 (object - base) % s->size) {
519 return 0;
522 return 1;
525 static void print_section(char *level, char *text, u8 *addr,
526 unsigned int length)
528 metadata_access_enable();
529 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
530 length, 1);
531 metadata_access_disable();
534 static struct track *get_track(struct kmem_cache *s, void *object,
535 enum track_item alloc)
537 struct track *p;
539 if (s->offset)
540 p = object + s->offset + sizeof(void *);
541 else
542 p = object + s->inuse;
544 return p + alloc;
547 static void set_track(struct kmem_cache *s, void *object,
548 enum track_item alloc, unsigned long addr)
550 struct track *p = get_track(s, object, alloc);
552 if (addr) {
553 #ifdef CONFIG_STACKTRACE
554 unsigned int nr_entries;
556 metadata_access_enable();
557 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
558 metadata_access_disable();
560 if (nr_entries < TRACK_ADDRS_COUNT)
561 p->addrs[nr_entries] = 0;
562 #endif
563 p->addr = addr;
564 p->cpu = smp_processor_id();
565 p->pid = current->pid;
566 p->when = jiffies;
567 } else {
568 memset(p, 0, sizeof(struct track));
572 static void init_tracking(struct kmem_cache *s, void *object)
574 if (!(s->flags & SLAB_STORE_USER))
575 return;
577 set_track(s, object, TRACK_FREE, 0UL);
578 set_track(s, object, TRACK_ALLOC, 0UL);
581 static void print_track(const char *s, struct track *t, unsigned long pr_time)
583 if (!t->addr)
584 return;
586 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
587 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
588 #ifdef CONFIG_STACKTRACE
590 int i;
591 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
592 if (t->addrs[i])
593 pr_err("\t%pS\n", (void *)t->addrs[i]);
594 else
595 break;
597 #endif
600 static void print_tracking(struct kmem_cache *s, void *object)
602 unsigned long pr_time = jiffies;
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
606 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
607 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 static void print_page_info(struct page *page)
612 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
613 page, page->objects, page->inuse, page->freelist, page->flags);
617 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
619 struct va_format vaf;
620 va_list args;
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("=============================================================================\n");
626 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
627 pr_err("-----------------------------------------------------------------------------\n\n");
629 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
630 va_end(args);
633 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
635 struct va_format vaf;
636 va_list args;
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 pr_err("FIX %s: %pV\n", s->name, &vaf);
642 va_end(args);
645 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
647 unsigned int off; /* Offset of last byte */
648 u8 *addr = page_address(page);
650 print_tracking(s, p);
652 print_page_info(page);
654 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
655 p, p - addr, get_freepointer(s, p));
657 if (s->flags & SLAB_RED_ZONE)
658 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
659 s->red_left_pad);
660 else if (p > addr + 16)
661 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
663 print_section(KERN_ERR, "Object ", p,
664 min_t(unsigned int, s->object_size, PAGE_SIZE));
665 if (s->flags & SLAB_RED_ZONE)
666 print_section(KERN_ERR, "Redzone ", p + s->object_size,
667 s->inuse - s->object_size);
669 if (s->offset)
670 off = s->offset + sizeof(void *);
671 else
672 off = s->inuse;
674 if (s->flags & SLAB_STORE_USER)
675 off += 2 * sizeof(struct track);
677 off += kasan_metadata_size(s);
679 if (off != size_from_object(s))
680 /* Beginning of the filler is the free pointer */
681 print_section(KERN_ERR, "Padding ", p + off,
682 size_from_object(s) - off);
684 dump_stack();
687 void object_err(struct kmem_cache *s, struct page *page,
688 u8 *object, char *reason)
690 slab_bug(s, "%s", reason);
691 print_trailer(s, page, object);
694 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
695 const char *fmt, ...)
697 va_list args;
698 char buf[100];
700 va_start(args, fmt);
701 vsnprintf(buf, sizeof(buf), fmt, args);
702 va_end(args);
703 slab_bug(s, "%s", buf);
704 print_page_info(page);
705 dump_stack();
708 static void init_object(struct kmem_cache *s, void *object, u8 val)
710 u8 *p = object;
712 if (s->flags & SLAB_RED_ZONE)
713 memset(p - s->red_left_pad, val, s->red_left_pad);
715 if (s->flags & __OBJECT_POISON) {
716 memset(p, POISON_FREE, s->object_size - 1);
717 p[s->object_size - 1] = POISON_END;
720 if (s->flags & SLAB_RED_ZONE)
721 memset(p + s->object_size, val, s->inuse - s->object_size);
724 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
725 void *from, void *to)
727 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
728 memset(from, data, to - from);
731 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
732 u8 *object, char *what,
733 u8 *start, unsigned int value, unsigned int bytes)
735 u8 *fault;
736 u8 *end;
737 u8 *addr = page_address(page);
739 metadata_access_enable();
740 fault = memchr_inv(start, value, bytes);
741 metadata_access_disable();
742 if (!fault)
743 return 1;
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
749 slab_bug(s, "%s overwritten", what);
750 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault - addr,
752 fault[0], value);
753 print_trailer(s, page, object);
755 restore_bytes(s, what, value, fault, end);
756 return 0;
760 * Object layout:
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
770 * object + s->object_size
771 * Padding to reach word boundary. This is also used for Redzoning.
772 * Padding is extended by another word if Redzoning is enabled and
773 * object_size == inuse.
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
778 * object + s->inuse
779 * Meta data starts here.
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
783 * C. Padding to reach required alignment boundary or at mininum
784 * one word if debugging is on to be able to detect writes
785 * before the word boundary.
787 * Padding is done using 0x5a (POISON_INUSE)
789 * object + s->size
790 * Nothing is used beyond s->size.
792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
793 * ignored. And therefore no slab options that rely on these boundaries
794 * may be used with merged slabcaches.
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
799 unsigned long off = s->inuse; /* The end of info */
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
809 off += kasan_metadata_size(s);
811 if (size_from_object(s) == off)
812 return 1;
814 return check_bytes_and_report(s, page, p, "Object padding",
815 p + off, POISON_INUSE, size_from_object(s) - off);
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
821 u8 *start;
822 u8 *fault;
823 u8 *end;
824 u8 *pad;
825 int length;
826 int remainder;
828 if (!(s->flags & SLAB_POISON))
829 return 1;
831 start = page_address(page);
832 length = page_size(page);
833 end = start + length;
834 remainder = length % s->size;
835 if (!remainder)
836 return 1;
838 pad = end - remainder;
839 metadata_access_enable();
840 fault = memchr_inv(pad, POISON_INUSE, remainder);
841 metadata_access_disable();
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
848 fault, end - 1, fault - start);
849 print_section(KERN_ERR, "Padding ", pad, remainder);
851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 return 0;
855 static int check_object(struct kmem_cache *s, struct page *page,
856 void *object, u8 val)
858 u8 *p = object;
859 u8 *endobject = object + s->object_size;
861 if (s->flags & SLAB_RED_ZONE) {
862 if (!check_bytes_and_report(s, page, object, "Redzone",
863 object - s->red_left_pad, val, s->red_left_pad))
864 return 0;
866 if (!check_bytes_and_report(s, page, object, "Redzone",
867 endobject, val, s->inuse - s->object_size))
868 return 0;
869 } else {
870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 check_bytes_and_report(s, page, p, "Alignment padding",
872 endobject, POISON_INUSE,
873 s->inuse - s->object_size);
877 if (s->flags & SLAB_POISON) {
878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 (!check_bytes_and_report(s, page, p, "Poison", p,
880 POISON_FREE, s->object_size - 1) ||
881 !check_bytes_and_report(s, page, p, "Poison",
882 p + s->object_size - 1, POISON_END, 1)))
883 return 0;
885 * check_pad_bytes cleans up on its own.
887 check_pad_bytes(s, page, p);
890 if (!s->offset && val == SLUB_RED_ACTIVE)
892 * Object and freepointer overlap. Cannot check
893 * freepointer while object is allocated.
895 return 1;
897 /* Check free pointer validity */
898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 object_err(s, page, p, "Freepointer corrupt");
901 * No choice but to zap it and thus lose the remainder
902 * of the free objects in this slab. May cause
903 * another error because the object count is now wrong.
905 set_freepointer(s, p, NULL);
906 return 0;
908 return 1;
911 static int check_slab(struct kmem_cache *s, struct page *page)
913 int maxobj;
915 VM_BUG_ON(!irqs_disabled());
917 if (!PageSlab(page)) {
918 slab_err(s, page, "Not a valid slab page");
919 return 0;
922 maxobj = order_objects(compound_order(page), s->size);
923 if (page->objects > maxobj) {
924 slab_err(s, page, "objects %u > max %u",
925 page->objects, maxobj);
926 return 0;
928 if (page->inuse > page->objects) {
929 slab_err(s, page, "inuse %u > max %u",
930 page->inuse, page->objects);
931 return 0;
933 /* Slab_pad_check fixes things up after itself */
934 slab_pad_check(s, page);
935 return 1;
939 * Determine if a certain object on a page is on the freelist. Must hold the
940 * slab lock to guarantee that the chains are in a consistent state.
942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
944 int nr = 0;
945 void *fp;
946 void *object = NULL;
947 int max_objects;
949 fp = page->freelist;
950 while (fp && nr <= page->objects) {
951 if (fp == search)
952 return 1;
953 if (!check_valid_pointer(s, page, fp)) {
954 if (object) {
955 object_err(s, page, object,
956 "Freechain corrupt");
957 set_freepointer(s, object, NULL);
958 } else {
959 slab_err(s, page, "Freepointer corrupt");
960 page->freelist = NULL;
961 page->inuse = page->objects;
962 slab_fix(s, "Freelist cleared");
963 return 0;
965 break;
967 object = fp;
968 fp = get_freepointer(s, object);
969 nr++;
972 max_objects = order_objects(compound_order(page), s->size);
973 if (max_objects > MAX_OBJS_PER_PAGE)
974 max_objects = MAX_OBJS_PER_PAGE;
976 if (page->objects != max_objects) {
977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 page->objects, max_objects);
979 page->objects = max_objects;
980 slab_fix(s, "Number of objects adjusted.");
982 if (page->inuse != page->objects - nr) {
983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 page->inuse, page->objects - nr);
985 page->inuse = page->objects - nr;
986 slab_fix(s, "Object count adjusted.");
988 return search == NULL;
991 static void trace(struct kmem_cache *s, struct page *page, void *object,
992 int alloc)
994 if (s->flags & SLAB_TRACE) {
995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 s->name,
997 alloc ? "alloc" : "free",
998 object, page->inuse,
999 page->freelist);
1001 if (!alloc)
1002 print_section(KERN_INFO, "Object ", (void *)object,
1003 s->object_size);
1005 dump_stack();
1010 * Tracking of fully allocated slabs for debugging purposes.
1012 static void add_full(struct kmem_cache *s,
1013 struct kmem_cache_node *n, struct page *page)
1015 if (!(s->flags & SLAB_STORE_USER))
1016 return;
1018 lockdep_assert_held(&n->list_lock);
1019 list_add(&page->slab_list, &n->full);
1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1024 if (!(s->flags & SLAB_STORE_USER))
1025 return;
1027 lockdep_assert_held(&n->list_lock);
1028 list_del(&page->slab_list);
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1034 struct kmem_cache_node *n = get_node(s, node);
1036 return atomic_long_read(&n->nr_slabs);
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1041 return atomic_long_read(&n->nr_slabs);
1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1046 struct kmem_cache_node *n = get_node(s, node);
1049 * May be called early in order to allocate a slab for the
1050 * kmem_cache_node structure. Solve the chicken-egg
1051 * dilemma by deferring the increment of the count during
1052 * bootstrap (see early_kmem_cache_node_alloc).
1054 if (likely(n)) {
1055 atomic_long_inc(&n->nr_slabs);
1056 atomic_long_add(objects, &n->total_objects);
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1061 struct kmem_cache_node *n = get_node(s, node);
1063 atomic_long_dec(&n->nr_slabs);
1064 atomic_long_sub(objects, &n->total_objects);
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 void *object)
1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 return;
1074 init_object(s, object, SLUB_RED_INACTIVE);
1075 init_tracking(s, object);
1078 static
1079 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1081 if (!(s->flags & SLAB_POISON))
1082 return;
1084 metadata_access_enable();
1085 memset(addr, POISON_INUSE, page_size(page));
1086 metadata_access_disable();
1089 static inline int alloc_consistency_checks(struct kmem_cache *s,
1090 struct page *page, void *object)
1092 if (!check_slab(s, page))
1093 return 0;
1095 if (!check_valid_pointer(s, page, object)) {
1096 object_err(s, page, object, "Freelist Pointer check fails");
1097 return 0;
1100 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1101 return 0;
1103 return 1;
1106 static noinline int alloc_debug_processing(struct kmem_cache *s,
1107 struct page *page,
1108 void *object, unsigned long addr)
1110 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1111 if (!alloc_consistency_checks(s, page, object))
1112 goto bad;
1115 /* Success perform special debug activities for allocs */
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_ALLOC, addr);
1118 trace(s, page, object, 1);
1119 init_object(s, object, SLUB_RED_ACTIVE);
1120 return 1;
1122 bad:
1123 if (PageSlab(page)) {
1125 * If this is a slab page then lets do the best we can
1126 * to avoid issues in the future. Marking all objects
1127 * as used avoids touching the remaining objects.
1129 slab_fix(s, "Marking all objects used");
1130 page->inuse = page->objects;
1131 page->freelist = NULL;
1133 return 0;
1136 static inline int free_consistency_checks(struct kmem_cache *s,
1137 struct page *page, void *object, unsigned long addr)
1139 if (!check_valid_pointer(s, page, object)) {
1140 slab_err(s, page, "Invalid object pointer 0x%p", object);
1141 return 0;
1144 if (on_freelist(s, page, object)) {
1145 object_err(s, page, object, "Object already free");
1146 return 0;
1149 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1150 return 0;
1152 if (unlikely(s != page->slab_cache)) {
1153 if (!PageSlab(page)) {
1154 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1155 object);
1156 } else if (!page->slab_cache) {
1157 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1158 object);
1159 dump_stack();
1160 } else
1161 object_err(s, page, object,
1162 "page slab pointer corrupt.");
1163 return 0;
1165 return 1;
1168 /* Supports checking bulk free of a constructed freelist */
1169 static noinline int free_debug_processing(
1170 struct kmem_cache *s, struct page *page,
1171 void *head, void *tail, int bulk_cnt,
1172 unsigned long addr)
1174 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1175 void *object = head;
1176 int cnt = 0;
1177 unsigned long uninitialized_var(flags);
1178 int ret = 0;
1180 spin_lock_irqsave(&n->list_lock, flags);
1181 slab_lock(page);
1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 if (!check_slab(s, page))
1185 goto out;
1188 next_object:
1189 cnt++;
1191 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1192 if (!free_consistency_checks(s, page, object, addr))
1193 goto out;
1196 if (s->flags & SLAB_STORE_USER)
1197 set_track(s, object, TRACK_FREE, addr);
1198 trace(s, page, object, 0);
1199 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1200 init_object(s, object, SLUB_RED_INACTIVE);
1202 /* Reached end of constructed freelist yet? */
1203 if (object != tail) {
1204 object = get_freepointer(s, object);
1205 goto next_object;
1207 ret = 1;
1209 out:
1210 if (cnt != bulk_cnt)
1211 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1212 bulk_cnt, cnt);
1214 slab_unlock(page);
1215 spin_unlock_irqrestore(&n->list_lock, flags);
1216 if (!ret)
1217 slab_fix(s, "Object at 0x%p not freed", object);
1218 return ret;
1221 static int __init setup_slub_debug(char *str)
1223 slub_debug = DEBUG_DEFAULT_FLAGS;
1224 if (*str++ != '=' || !*str)
1226 * No options specified. Switch on full debugging.
1228 goto out;
1230 if (*str == ',')
1232 * No options but restriction on slabs. This means full
1233 * debugging for slabs matching a pattern.
1235 goto check_slabs;
1237 slub_debug = 0;
1238 if (*str == '-')
1240 * Switch off all debugging measures.
1242 goto out;
1245 * Determine which debug features should be switched on
1247 for (; *str && *str != ','; str++) {
1248 switch (tolower(*str)) {
1249 case 'f':
1250 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1251 break;
1252 case 'z':
1253 slub_debug |= SLAB_RED_ZONE;
1254 break;
1255 case 'p':
1256 slub_debug |= SLAB_POISON;
1257 break;
1258 case 'u':
1259 slub_debug |= SLAB_STORE_USER;
1260 break;
1261 case 't':
1262 slub_debug |= SLAB_TRACE;
1263 break;
1264 case 'a':
1265 slub_debug |= SLAB_FAILSLAB;
1266 break;
1267 case 'o':
1269 * Avoid enabling debugging on caches if its minimum
1270 * order would increase as a result.
1272 disable_higher_order_debug = 1;
1273 break;
1274 default:
1275 pr_err("slub_debug option '%c' unknown. skipped\n",
1276 *str);
1280 check_slabs:
1281 if (*str == ',')
1282 slub_debug_slabs = str + 1;
1283 out:
1284 if ((static_branch_unlikely(&init_on_alloc) ||
1285 static_branch_unlikely(&init_on_free)) &&
1286 (slub_debug & SLAB_POISON))
1287 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1288 return 1;
1291 __setup("slub_debug", setup_slub_debug);
1294 * kmem_cache_flags - apply debugging options to the cache
1295 * @object_size: the size of an object without meta data
1296 * @flags: flags to set
1297 * @name: name of the cache
1298 * @ctor: constructor function
1300 * Debug option(s) are applied to @flags. In addition to the debug
1301 * option(s), if a slab name (or multiple) is specified i.e.
1302 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1303 * then only the select slabs will receive the debug option(s).
1305 slab_flags_t kmem_cache_flags(unsigned int object_size,
1306 slab_flags_t flags, const char *name,
1307 void (*ctor)(void *))
1309 char *iter;
1310 size_t len;
1312 /* If slub_debug = 0, it folds into the if conditional. */
1313 if (!slub_debug_slabs)
1314 return flags | slub_debug;
1316 len = strlen(name);
1317 iter = slub_debug_slabs;
1318 while (*iter) {
1319 char *end, *glob;
1320 size_t cmplen;
1322 end = strchrnul(iter, ',');
1324 glob = strnchr(iter, end - iter, '*');
1325 if (glob)
1326 cmplen = glob - iter;
1327 else
1328 cmplen = max_t(size_t, len, (end - iter));
1330 if (!strncmp(name, iter, cmplen)) {
1331 flags |= slub_debug;
1332 break;
1335 if (!*end)
1336 break;
1337 iter = end + 1;
1340 return flags;
1342 #else /* !CONFIG_SLUB_DEBUG */
1343 static inline void setup_object_debug(struct kmem_cache *s,
1344 struct page *page, void *object) {}
1345 static inline
1346 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1348 static inline int alloc_debug_processing(struct kmem_cache *s,
1349 struct page *page, void *object, unsigned long addr) { return 0; }
1351 static inline int free_debug_processing(
1352 struct kmem_cache *s, struct page *page,
1353 void *head, void *tail, int bulk_cnt,
1354 unsigned long addr) { return 0; }
1356 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1357 { return 1; }
1358 static inline int check_object(struct kmem_cache *s, struct page *page,
1359 void *object, u8 val) { return 1; }
1360 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 struct page *page) {}
1362 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1363 struct page *page) {}
1364 slab_flags_t kmem_cache_flags(unsigned int object_size,
1365 slab_flags_t flags, const char *name,
1366 void (*ctor)(void *))
1368 return flags;
1370 #define slub_debug 0
1372 #define disable_higher_order_debug 0
1374 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1375 { return 0; }
1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 { return 0; }
1378 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1379 int objects) {}
1380 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1381 int objects) {}
1383 #endif /* CONFIG_SLUB_DEBUG */
1386 * Hooks for other subsystems that check memory allocations. In a typical
1387 * production configuration these hooks all should produce no code at all.
1389 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1391 ptr = kasan_kmalloc_large(ptr, size, flags);
1392 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1393 kmemleak_alloc(ptr, size, 1, flags);
1394 return ptr;
1397 static __always_inline void kfree_hook(void *x)
1399 kmemleak_free(x);
1400 kasan_kfree_large(x, _RET_IP_);
1403 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1405 kmemleak_free_recursive(x, s->flags);
1408 * Trouble is that we may no longer disable interrupts in the fast path
1409 * So in order to make the debug calls that expect irqs to be
1410 * disabled we need to disable interrupts temporarily.
1412 #ifdef CONFIG_LOCKDEP
1414 unsigned long flags;
1416 local_irq_save(flags);
1417 debug_check_no_locks_freed(x, s->object_size);
1418 local_irq_restore(flags);
1420 #endif
1421 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1422 debug_check_no_obj_freed(x, s->object_size);
1424 /* KASAN might put x into memory quarantine, delaying its reuse */
1425 return kasan_slab_free(s, x, _RET_IP_);
1428 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1429 void **head, void **tail)
1432 void *object;
1433 void *next = *head;
1434 void *old_tail = *tail ? *tail : *head;
1435 int rsize;
1437 /* Head and tail of the reconstructed freelist */
1438 *head = NULL;
1439 *tail = NULL;
1441 do {
1442 object = next;
1443 next = get_freepointer(s, object);
1445 if (slab_want_init_on_free(s)) {
1447 * Clear the object and the metadata, but don't touch
1448 * the redzone.
1450 memset(object, 0, s->object_size);
1451 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1452 : 0;
1453 memset((char *)object + s->inuse, 0,
1454 s->size - s->inuse - rsize);
1457 /* If object's reuse doesn't have to be delayed */
1458 if (!slab_free_hook(s, object)) {
1459 /* Move object to the new freelist */
1460 set_freepointer(s, object, *head);
1461 *head = object;
1462 if (!*tail)
1463 *tail = object;
1465 } while (object != old_tail);
1467 if (*head == *tail)
1468 *tail = NULL;
1470 return *head != NULL;
1473 static void *setup_object(struct kmem_cache *s, struct page *page,
1474 void *object)
1476 setup_object_debug(s, page, object);
1477 object = kasan_init_slab_obj(s, object);
1478 if (unlikely(s->ctor)) {
1479 kasan_unpoison_object_data(s, object);
1480 s->ctor(object);
1481 kasan_poison_object_data(s, object);
1483 return object;
1487 * Slab allocation and freeing
1489 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1490 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1492 struct page *page;
1493 unsigned int order = oo_order(oo);
1495 if (node == NUMA_NO_NODE)
1496 page = alloc_pages(flags, order);
1497 else
1498 page = __alloc_pages_node(node, flags, order);
1500 if (page && charge_slab_page(page, flags, order, s)) {
1501 __free_pages(page, order);
1502 page = NULL;
1505 return page;
1508 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1509 /* Pre-initialize the random sequence cache */
1510 static int init_cache_random_seq(struct kmem_cache *s)
1512 unsigned int count = oo_objects(s->oo);
1513 int err;
1515 /* Bailout if already initialised */
1516 if (s->random_seq)
1517 return 0;
1519 err = cache_random_seq_create(s, count, GFP_KERNEL);
1520 if (err) {
1521 pr_err("SLUB: Unable to initialize free list for %s\n",
1522 s->name);
1523 return err;
1526 /* Transform to an offset on the set of pages */
1527 if (s->random_seq) {
1528 unsigned int i;
1530 for (i = 0; i < count; i++)
1531 s->random_seq[i] *= s->size;
1533 return 0;
1536 /* Initialize each random sequence freelist per cache */
1537 static void __init init_freelist_randomization(void)
1539 struct kmem_cache *s;
1541 mutex_lock(&slab_mutex);
1543 list_for_each_entry(s, &slab_caches, list)
1544 init_cache_random_seq(s);
1546 mutex_unlock(&slab_mutex);
1549 /* Get the next entry on the pre-computed freelist randomized */
1550 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1551 unsigned long *pos, void *start,
1552 unsigned long page_limit,
1553 unsigned long freelist_count)
1555 unsigned int idx;
1558 * If the target page allocation failed, the number of objects on the
1559 * page might be smaller than the usual size defined by the cache.
1561 do {
1562 idx = s->random_seq[*pos];
1563 *pos += 1;
1564 if (*pos >= freelist_count)
1565 *pos = 0;
1566 } while (unlikely(idx >= page_limit));
1568 return (char *)start + idx;
1571 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1572 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1574 void *start;
1575 void *cur;
1576 void *next;
1577 unsigned long idx, pos, page_limit, freelist_count;
1579 if (page->objects < 2 || !s->random_seq)
1580 return false;
1582 freelist_count = oo_objects(s->oo);
1583 pos = get_random_int() % freelist_count;
1585 page_limit = page->objects * s->size;
1586 start = fixup_red_left(s, page_address(page));
1588 /* First entry is used as the base of the freelist */
1589 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1590 freelist_count);
1591 cur = setup_object(s, page, cur);
1592 page->freelist = cur;
1594 for (idx = 1; idx < page->objects; idx++) {
1595 next = next_freelist_entry(s, page, &pos, start, page_limit,
1596 freelist_count);
1597 next = setup_object(s, page, next);
1598 set_freepointer(s, cur, next);
1599 cur = next;
1601 set_freepointer(s, cur, NULL);
1603 return true;
1605 #else
1606 static inline int init_cache_random_seq(struct kmem_cache *s)
1608 return 0;
1610 static inline void init_freelist_randomization(void) { }
1611 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1613 return false;
1615 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1617 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1619 struct page *page;
1620 struct kmem_cache_order_objects oo = s->oo;
1621 gfp_t alloc_gfp;
1622 void *start, *p, *next;
1623 int idx;
1624 bool shuffle;
1626 flags &= gfp_allowed_mask;
1628 if (gfpflags_allow_blocking(flags))
1629 local_irq_enable();
1631 flags |= s->allocflags;
1634 * Let the initial higher-order allocation fail under memory pressure
1635 * so we fall-back to the minimum order allocation.
1637 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1638 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1639 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1641 page = alloc_slab_page(s, alloc_gfp, node, oo);
1642 if (unlikely(!page)) {
1643 oo = s->min;
1644 alloc_gfp = flags;
1646 * Allocation may have failed due to fragmentation.
1647 * Try a lower order alloc if possible
1649 page = alloc_slab_page(s, alloc_gfp, node, oo);
1650 if (unlikely(!page))
1651 goto out;
1652 stat(s, ORDER_FALLBACK);
1655 page->objects = oo_objects(oo);
1657 page->slab_cache = s;
1658 __SetPageSlab(page);
1659 if (page_is_pfmemalloc(page))
1660 SetPageSlabPfmemalloc(page);
1662 kasan_poison_slab(page);
1664 start = page_address(page);
1666 setup_page_debug(s, page, start);
1668 shuffle = shuffle_freelist(s, page);
1670 if (!shuffle) {
1671 start = fixup_red_left(s, start);
1672 start = setup_object(s, page, start);
1673 page->freelist = start;
1674 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1675 next = p + s->size;
1676 next = setup_object(s, page, next);
1677 set_freepointer(s, p, next);
1678 p = next;
1680 set_freepointer(s, p, NULL);
1683 page->inuse = page->objects;
1684 page->frozen = 1;
1686 out:
1687 if (gfpflags_allow_blocking(flags))
1688 local_irq_disable();
1689 if (!page)
1690 return NULL;
1692 inc_slabs_node(s, page_to_nid(page), page->objects);
1694 return page;
1697 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1699 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1700 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1701 flags &= ~GFP_SLAB_BUG_MASK;
1702 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1703 invalid_mask, &invalid_mask, flags, &flags);
1704 dump_stack();
1707 return allocate_slab(s,
1708 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1711 static void __free_slab(struct kmem_cache *s, struct page *page)
1713 int order = compound_order(page);
1714 int pages = 1 << order;
1716 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1717 void *p;
1719 slab_pad_check(s, page);
1720 for_each_object(p, s, page_address(page),
1721 page->objects)
1722 check_object(s, page, p, SLUB_RED_INACTIVE);
1725 __ClearPageSlabPfmemalloc(page);
1726 __ClearPageSlab(page);
1728 page->mapping = NULL;
1729 if (current->reclaim_state)
1730 current->reclaim_state->reclaimed_slab += pages;
1731 uncharge_slab_page(page, order, s);
1732 __free_pages(page, order);
1735 static void rcu_free_slab(struct rcu_head *h)
1737 struct page *page = container_of(h, struct page, rcu_head);
1739 __free_slab(page->slab_cache, page);
1742 static void free_slab(struct kmem_cache *s, struct page *page)
1744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1745 call_rcu(&page->rcu_head, rcu_free_slab);
1746 } else
1747 __free_slab(s, page);
1750 static void discard_slab(struct kmem_cache *s, struct page *page)
1752 dec_slabs_node(s, page_to_nid(page), page->objects);
1753 free_slab(s, page);
1757 * Management of partially allocated slabs.
1759 static inline void
1760 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1762 n->nr_partial++;
1763 if (tail == DEACTIVATE_TO_TAIL)
1764 list_add_tail(&page->slab_list, &n->partial);
1765 else
1766 list_add(&page->slab_list, &n->partial);
1769 static inline void add_partial(struct kmem_cache_node *n,
1770 struct page *page, int tail)
1772 lockdep_assert_held(&n->list_lock);
1773 __add_partial(n, page, tail);
1776 static inline void remove_partial(struct kmem_cache_node *n,
1777 struct page *page)
1779 lockdep_assert_held(&n->list_lock);
1780 list_del(&page->slab_list);
1781 n->nr_partial--;
1785 * Remove slab from the partial list, freeze it and
1786 * return the pointer to the freelist.
1788 * Returns a list of objects or NULL if it fails.
1790 static inline void *acquire_slab(struct kmem_cache *s,
1791 struct kmem_cache_node *n, struct page *page,
1792 int mode, int *objects)
1794 void *freelist;
1795 unsigned long counters;
1796 struct page new;
1798 lockdep_assert_held(&n->list_lock);
1801 * Zap the freelist and set the frozen bit.
1802 * The old freelist is the list of objects for the
1803 * per cpu allocation list.
1805 freelist = page->freelist;
1806 counters = page->counters;
1807 new.counters = counters;
1808 *objects = new.objects - new.inuse;
1809 if (mode) {
1810 new.inuse = page->objects;
1811 new.freelist = NULL;
1812 } else {
1813 new.freelist = freelist;
1816 VM_BUG_ON(new.frozen);
1817 new.frozen = 1;
1819 if (!__cmpxchg_double_slab(s, page,
1820 freelist, counters,
1821 new.freelist, new.counters,
1822 "acquire_slab"))
1823 return NULL;
1825 remove_partial(n, page);
1826 WARN_ON(!freelist);
1827 return freelist;
1830 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1831 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1834 * Try to allocate a partial slab from a specific node.
1836 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1837 struct kmem_cache_cpu *c, gfp_t flags)
1839 struct page *page, *page2;
1840 void *object = NULL;
1841 unsigned int available = 0;
1842 int objects;
1845 * Racy check. If we mistakenly see no partial slabs then we
1846 * just allocate an empty slab. If we mistakenly try to get a
1847 * partial slab and there is none available then get_partials()
1848 * will return NULL.
1850 if (!n || !n->nr_partial)
1851 return NULL;
1853 spin_lock(&n->list_lock);
1854 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1855 void *t;
1857 if (!pfmemalloc_match(page, flags))
1858 continue;
1860 t = acquire_slab(s, n, page, object == NULL, &objects);
1861 if (!t)
1862 break;
1864 available += objects;
1865 if (!object) {
1866 c->page = page;
1867 stat(s, ALLOC_FROM_PARTIAL);
1868 object = t;
1869 } else {
1870 put_cpu_partial(s, page, 0);
1871 stat(s, CPU_PARTIAL_NODE);
1873 if (!kmem_cache_has_cpu_partial(s)
1874 || available > slub_cpu_partial(s) / 2)
1875 break;
1878 spin_unlock(&n->list_lock);
1879 return object;
1883 * Get a page from somewhere. Search in increasing NUMA distances.
1885 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1886 struct kmem_cache_cpu *c)
1888 #ifdef CONFIG_NUMA
1889 struct zonelist *zonelist;
1890 struct zoneref *z;
1891 struct zone *zone;
1892 enum zone_type high_zoneidx = gfp_zone(flags);
1893 void *object;
1894 unsigned int cpuset_mems_cookie;
1897 * The defrag ratio allows a configuration of the tradeoffs between
1898 * inter node defragmentation and node local allocations. A lower
1899 * defrag_ratio increases the tendency to do local allocations
1900 * instead of attempting to obtain partial slabs from other nodes.
1902 * If the defrag_ratio is set to 0 then kmalloc() always
1903 * returns node local objects. If the ratio is higher then kmalloc()
1904 * may return off node objects because partial slabs are obtained
1905 * from other nodes and filled up.
1907 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1908 * (which makes defrag_ratio = 1000) then every (well almost)
1909 * allocation will first attempt to defrag slab caches on other nodes.
1910 * This means scanning over all nodes to look for partial slabs which
1911 * may be expensive if we do it every time we are trying to find a slab
1912 * with available objects.
1914 if (!s->remote_node_defrag_ratio ||
1915 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1916 return NULL;
1918 do {
1919 cpuset_mems_cookie = read_mems_allowed_begin();
1920 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1921 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1922 struct kmem_cache_node *n;
1924 n = get_node(s, zone_to_nid(zone));
1926 if (n && cpuset_zone_allowed(zone, flags) &&
1927 n->nr_partial > s->min_partial) {
1928 object = get_partial_node(s, n, c, flags);
1929 if (object) {
1931 * Don't check read_mems_allowed_retry()
1932 * here - if mems_allowed was updated in
1933 * parallel, that was a harmless race
1934 * between allocation and the cpuset
1935 * update
1937 return object;
1941 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1942 #endif /* CONFIG_NUMA */
1943 return NULL;
1947 * Get a partial page, lock it and return it.
1949 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1950 struct kmem_cache_cpu *c)
1952 void *object;
1953 int searchnode = node;
1955 if (node == NUMA_NO_NODE)
1956 searchnode = numa_mem_id();
1957 else if (!node_present_pages(node))
1958 searchnode = node_to_mem_node(node);
1960 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1961 if (object || node != NUMA_NO_NODE)
1962 return object;
1964 return get_any_partial(s, flags, c);
1967 #ifdef CONFIG_PREEMPT
1969 * Calculate the next globally unique transaction for disambiguiation
1970 * during cmpxchg. The transactions start with the cpu number and are then
1971 * incremented by CONFIG_NR_CPUS.
1973 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1974 #else
1976 * No preemption supported therefore also no need to check for
1977 * different cpus.
1979 #define TID_STEP 1
1980 #endif
1982 static inline unsigned long next_tid(unsigned long tid)
1984 return tid + TID_STEP;
1987 #ifdef SLUB_DEBUG_CMPXCHG
1988 static inline unsigned int tid_to_cpu(unsigned long tid)
1990 return tid % TID_STEP;
1993 static inline unsigned long tid_to_event(unsigned long tid)
1995 return tid / TID_STEP;
1997 #endif
1999 static inline unsigned int init_tid(int cpu)
2001 return cpu;
2004 static inline void note_cmpxchg_failure(const char *n,
2005 const struct kmem_cache *s, unsigned long tid)
2007 #ifdef SLUB_DEBUG_CMPXCHG
2008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2010 pr_info("%s %s: cmpxchg redo ", n, s->name);
2012 #ifdef CONFIG_PREEMPT
2013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2014 pr_warn("due to cpu change %d -> %d\n",
2015 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2016 else
2017 #endif
2018 if (tid_to_event(tid) != tid_to_event(actual_tid))
2019 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2020 tid_to_event(tid), tid_to_event(actual_tid));
2021 else
2022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2023 actual_tid, tid, next_tid(tid));
2024 #endif
2025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2028 static void init_kmem_cache_cpus(struct kmem_cache *s)
2030 int cpu;
2032 for_each_possible_cpu(cpu)
2033 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2037 * Remove the cpu slab
2039 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2040 void *freelist, struct kmem_cache_cpu *c)
2042 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2043 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2044 int lock = 0;
2045 enum slab_modes l = M_NONE, m = M_NONE;
2046 void *nextfree;
2047 int tail = DEACTIVATE_TO_HEAD;
2048 struct page new;
2049 struct page old;
2051 if (page->freelist) {
2052 stat(s, DEACTIVATE_REMOTE_FREES);
2053 tail = DEACTIVATE_TO_TAIL;
2057 * Stage one: Free all available per cpu objects back
2058 * to the page freelist while it is still frozen. Leave the
2059 * last one.
2061 * There is no need to take the list->lock because the page
2062 * is still frozen.
2064 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2065 void *prior;
2066 unsigned long counters;
2068 do {
2069 prior = page->freelist;
2070 counters = page->counters;
2071 set_freepointer(s, freelist, prior);
2072 new.counters = counters;
2073 new.inuse--;
2074 VM_BUG_ON(!new.frozen);
2076 } while (!__cmpxchg_double_slab(s, page,
2077 prior, counters,
2078 freelist, new.counters,
2079 "drain percpu freelist"));
2081 freelist = nextfree;
2085 * Stage two: Ensure that the page is unfrozen while the
2086 * list presence reflects the actual number of objects
2087 * during unfreeze.
2089 * We setup the list membership and then perform a cmpxchg
2090 * with the count. If there is a mismatch then the page
2091 * is not unfrozen but the page is on the wrong list.
2093 * Then we restart the process which may have to remove
2094 * the page from the list that we just put it on again
2095 * because the number of objects in the slab may have
2096 * changed.
2098 redo:
2100 old.freelist = page->freelist;
2101 old.counters = page->counters;
2102 VM_BUG_ON(!old.frozen);
2104 /* Determine target state of the slab */
2105 new.counters = old.counters;
2106 if (freelist) {
2107 new.inuse--;
2108 set_freepointer(s, freelist, old.freelist);
2109 new.freelist = freelist;
2110 } else
2111 new.freelist = old.freelist;
2113 new.frozen = 0;
2115 if (!new.inuse && n->nr_partial >= s->min_partial)
2116 m = M_FREE;
2117 else if (new.freelist) {
2118 m = M_PARTIAL;
2119 if (!lock) {
2120 lock = 1;
2122 * Taking the spinlock removes the possibility
2123 * that acquire_slab() will see a slab page that
2124 * is frozen
2126 spin_lock(&n->list_lock);
2128 } else {
2129 m = M_FULL;
2130 if (kmem_cache_debug(s) && !lock) {
2131 lock = 1;
2133 * This also ensures that the scanning of full
2134 * slabs from diagnostic functions will not see
2135 * any frozen slabs.
2137 spin_lock(&n->list_lock);
2141 if (l != m) {
2142 if (l == M_PARTIAL)
2143 remove_partial(n, page);
2144 else if (l == M_FULL)
2145 remove_full(s, n, page);
2147 if (m == M_PARTIAL)
2148 add_partial(n, page, tail);
2149 else if (m == M_FULL)
2150 add_full(s, n, page);
2153 l = m;
2154 if (!__cmpxchg_double_slab(s, page,
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2163 if (m == M_PARTIAL)
2164 stat(s, tail);
2165 else if (m == M_FULL)
2166 stat(s, DEACTIVATE_FULL);
2167 else if (m == M_FREE) {
2168 stat(s, DEACTIVATE_EMPTY);
2169 discard_slab(s, page);
2170 stat(s, FREE_SLAB);
2173 c->page = NULL;
2174 c->freelist = NULL;
2178 * Unfreeze all the cpu partial slabs.
2180 * This function must be called with interrupts disabled
2181 * for the cpu using c (or some other guarantee must be there
2182 * to guarantee no concurrent accesses).
2184 static void unfreeze_partials(struct kmem_cache *s,
2185 struct kmem_cache_cpu *c)
2187 #ifdef CONFIG_SLUB_CPU_PARTIAL
2188 struct kmem_cache_node *n = NULL, *n2 = NULL;
2189 struct page *page, *discard_page = NULL;
2191 while ((page = c->partial)) {
2192 struct page new;
2193 struct page old;
2195 c->partial = page->next;
2197 n2 = get_node(s, page_to_nid(page));
2198 if (n != n2) {
2199 if (n)
2200 spin_unlock(&n->list_lock);
2202 n = n2;
2203 spin_lock(&n->list_lock);
2206 do {
2208 old.freelist = page->freelist;
2209 old.counters = page->counters;
2210 VM_BUG_ON(!old.frozen);
2212 new.counters = old.counters;
2213 new.freelist = old.freelist;
2215 new.frozen = 0;
2217 } while (!__cmpxchg_double_slab(s, page,
2218 old.freelist, old.counters,
2219 new.freelist, new.counters,
2220 "unfreezing slab"));
2222 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2223 page->next = discard_page;
2224 discard_page = page;
2225 } else {
2226 add_partial(n, page, DEACTIVATE_TO_TAIL);
2227 stat(s, FREE_ADD_PARTIAL);
2231 if (n)
2232 spin_unlock(&n->list_lock);
2234 while (discard_page) {
2235 page = discard_page;
2236 discard_page = discard_page->next;
2238 stat(s, DEACTIVATE_EMPTY);
2239 discard_slab(s, page);
2240 stat(s, FREE_SLAB);
2242 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2246 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2247 * partial page slot if available.
2249 * If we did not find a slot then simply move all the partials to the
2250 * per node partial list.
2252 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2254 #ifdef CONFIG_SLUB_CPU_PARTIAL
2255 struct page *oldpage;
2256 int pages;
2257 int pobjects;
2259 preempt_disable();
2260 do {
2261 pages = 0;
2262 pobjects = 0;
2263 oldpage = this_cpu_read(s->cpu_slab->partial);
2265 if (oldpage) {
2266 pobjects = oldpage->pobjects;
2267 pages = oldpage->pages;
2268 if (drain && pobjects > s->cpu_partial) {
2269 unsigned long flags;
2271 * partial array is full. Move the existing
2272 * set to the per node partial list.
2274 local_irq_save(flags);
2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 local_irq_restore(flags);
2277 oldpage = NULL;
2278 pobjects = 0;
2279 pages = 0;
2280 stat(s, CPU_PARTIAL_DRAIN);
2284 pages++;
2285 pobjects += page->objects - page->inuse;
2287 page->pages = pages;
2288 page->pobjects = pobjects;
2289 page->next = oldpage;
2291 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2292 != oldpage);
2293 if (unlikely(!s->cpu_partial)) {
2294 unsigned long flags;
2296 local_irq_save(flags);
2297 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2298 local_irq_restore(flags);
2300 preempt_enable();
2301 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2304 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2306 stat(s, CPUSLAB_FLUSH);
2307 deactivate_slab(s, c->page, c->freelist, c);
2309 c->tid = next_tid(c->tid);
2313 * Flush cpu slab.
2315 * Called from IPI handler with interrupts disabled.
2317 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2321 if (c->page)
2322 flush_slab(s, c);
2324 unfreeze_partials(s, c);
2327 static void flush_cpu_slab(void *d)
2329 struct kmem_cache *s = d;
2331 __flush_cpu_slab(s, smp_processor_id());
2334 static bool has_cpu_slab(int cpu, void *info)
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339 return c->page || slub_percpu_partial(c);
2342 static void flush_all(struct kmem_cache *s)
2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2351 static int slub_cpu_dead(unsigned int cpu)
2353 struct kmem_cache *s;
2354 unsigned long flags;
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2370 static inline int node_match(struct page *page, int node)
2372 #ifdef CONFIG_NUMA
2373 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2374 return 0;
2375 #endif
2376 return 1;
2379 #ifdef CONFIG_SLUB_DEBUG
2380 static int count_free(struct page *page)
2382 return page->objects - page->inuse;
2385 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2387 return atomic_long_read(&n->total_objects);
2389 #endif /* CONFIG_SLUB_DEBUG */
2391 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2392 static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2399 spin_lock_irqsave(&n->list_lock, flags);
2400 list_for_each_entry(page, &n->partial, slab_list)
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2405 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2407 static noinline void
2408 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2410 #ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
2413 int node;
2414 struct kmem_cache_node *n;
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
2421 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
2425 if (oo_order(s->min) > get_order(s->object_size))
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
2429 for_each_kmem_cache_node(s, node, n) {
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2439 node, nr_slabs, nr_objs, nr_free);
2441 #endif
2444 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2447 void *freelist;
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
2451 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2453 freelist = get_partial(s, flags, node, c);
2455 if (freelist)
2456 return freelist;
2458 page = new_slab(s, flags, node);
2459 if (page) {
2460 c = raw_cpu_ptr(s->cpu_slab);
2461 if (c->page)
2462 flush_slab(s, c);
2465 * No other reference to the page yet so we can
2466 * muck around with it freely without cmpxchg
2468 freelist = page->freelist;
2469 page->freelist = NULL;
2471 stat(s, ALLOC_SLAB);
2472 c->page = page;
2473 *pc = c;
2476 return freelist;
2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2484 return true;
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
2491 * The page is still frozen if the return value is not NULL.
2493 * If this function returns NULL then the page has been unfrozen.
2495 * This function must be called with interrupt disabled.
2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
2507 new.counters = counters;
2508 VM_BUG_ON(!new.frozen);
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2513 } while (!__cmpxchg_double_slab(s, page,
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2518 return freelist;
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
2533 * And if we were unable to get a new slab from the partial slab lists then
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541 unsigned long addr, struct kmem_cache_cpu *c)
2543 void *freelist;
2544 struct page *page;
2546 page = c->page;
2547 if (!page)
2548 goto new_slab;
2549 redo:
2551 if (unlikely(!node_match(page, node))) {
2552 int searchnode = node;
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
2559 deactivate_slab(s, page, c->freelist, c);
2560 goto new_slab;
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570 deactivate_slab(s, page, c->freelist, c);
2571 goto new_slab;
2574 /* must check again c->freelist in case of cpu migration or IRQ */
2575 freelist = c->freelist;
2576 if (freelist)
2577 goto load_freelist;
2579 freelist = get_freelist(s, page);
2581 if (!freelist) {
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
2584 goto new_slab;
2587 stat(s, ALLOC_REFILL);
2589 load_freelist:
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2595 VM_BUG_ON(!c->page->frozen);
2596 c->freelist = get_freepointer(s, freelist);
2597 c->tid = next_tid(c->tid);
2598 return freelist;
2600 new_slab:
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
2605 stat(s, CPU_PARTIAL_ALLOC);
2606 goto redo;
2609 freelist = new_slab_objects(s, gfpflags, node, &c);
2611 if (unlikely(!freelist)) {
2612 slab_out_of_memory(s, gfpflags, node);
2613 return NULL;
2616 page = c->page;
2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618 goto load_freelist;
2620 /* Only entered in the debug case */
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
2623 goto new_slab; /* Slab failed checks. Next slab needed */
2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626 return freelist;
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2636 void *p;
2637 unsigned long flags;
2639 local_irq_save(flags);
2640 #ifdef CONFIG_PREEMPT
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2646 c = this_cpu_ptr(s->cpu_slab);
2647 #endif
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2655 * If the object has been wiped upon free, make sure it's fully initialized by
2656 * zeroing out freelist pointer.
2658 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2659 void *obj)
2661 if (unlikely(slab_want_init_on_free(s)) && obj)
2662 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2666 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2667 * have the fastpath folded into their functions. So no function call
2668 * overhead for requests that can be satisfied on the fastpath.
2670 * The fastpath works by first checking if the lockless freelist can be used.
2671 * If not then __slab_alloc is called for slow processing.
2673 * Otherwise we can simply pick the next object from the lockless free list.
2675 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2676 gfp_t gfpflags, int node, unsigned long addr)
2678 void *object;
2679 struct kmem_cache_cpu *c;
2680 struct page *page;
2681 unsigned long tid;
2683 s = slab_pre_alloc_hook(s, gfpflags);
2684 if (!s)
2685 return NULL;
2686 redo:
2688 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2689 * enabled. We may switch back and forth between cpus while
2690 * reading from one cpu area. That does not matter as long
2691 * as we end up on the original cpu again when doing the cmpxchg.
2693 * We should guarantee that tid and kmem_cache are retrieved on
2694 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2695 * to check if it is matched or not.
2697 do {
2698 tid = this_cpu_read(s->cpu_slab->tid);
2699 c = raw_cpu_ptr(s->cpu_slab);
2700 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2701 unlikely(tid != READ_ONCE(c->tid)));
2704 * Irqless object alloc/free algorithm used here depends on sequence
2705 * of fetching cpu_slab's data. tid should be fetched before anything
2706 * on c to guarantee that object and page associated with previous tid
2707 * won't be used with current tid. If we fetch tid first, object and
2708 * page could be one associated with next tid and our alloc/free
2709 * request will be failed. In this case, we will retry. So, no problem.
2711 barrier();
2714 * The transaction ids are globally unique per cpu and per operation on
2715 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2716 * occurs on the right processor and that there was no operation on the
2717 * linked list in between.
2720 object = c->freelist;
2721 page = c->page;
2722 if (unlikely(!object || !node_match(page, node))) {
2723 object = __slab_alloc(s, gfpflags, node, addr, c);
2724 stat(s, ALLOC_SLOWPATH);
2725 } else {
2726 void *next_object = get_freepointer_safe(s, object);
2729 * The cmpxchg will only match if there was no additional
2730 * operation and if we are on the right processor.
2732 * The cmpxchg does the following atomically (without lock
2733 * semantics!)
2734 * 1. Relocate first pointer to the current per cpu area.
2735 * 2. Verify that tid and freelist have not been changed
2736 * 3. If they were not changed replace tid and freelist
2738 * Since this is without lock semantics the protection is only
2739 * against code executing on this cpu *not* from access by
2740 * other cpus.
2742 if (unlikely(!this_cpu_cmpxchg_double(
2743 s->cpu_slab->freelist, s->cpu_slab->tid,
2744 object, tid,
2745 next_object, next_tid(tid)))) {
2747 note_cmpxchg_failure("slab_alloc", s, tid);
2748 goto redo;
2750 prefetch_freepointer(s, next_object);
2751 stat(s, ALLOC_FASTPATH);
2754 maybe_wipe_obj_freeptr(s, object);
2756 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2757 memset(object, 0, s->object_size);
2759 slab_post_alloc_hook(s, gfpflags, 1, &object);
2761 return object;
2764 static __always_inline void *slab_alloc(struct kmem_cache *s,
2765 gfp_t gfpflags, unsigned long addr)
2767 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2770 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2772 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2774 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2775 s->size, gfpflags);
2777 return ret;
2779 EXPORT_SYMBOL(kmem_cache_alloc);
2781 #ifdef CONFIG_TRACING
2782 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2784 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2785 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2786 ret = kasan_kmalloc(s, ret, size, gfpflags);
2787 return ret;
2789 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2790 #endif
2792 #ifdef CONFIG_NUMA
2793 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2797 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2798 s->object_size, s->size, gfpflags, node);
2800 return ret;
2802 EXPORT_SYMBOL(kmem_cache_alloc_node);
2804 #ifdef CONFIG_TRACING
2805 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2806 gfp_t gfpflags,
2807 int node, size_t size)
2809 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2811 trace_kmalloc_node(_RET_IP_, ret,
2812 size, s->size, gfpflags, node);
2814 ret = kasan_kmalloc(s, ret, size, gfpflags);
2815 return ret;
2817 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2818 #endif
2819 #endif /* CONFIG_NUMA */
2822 * Slow path handling. This may still be called frequently since objects
2823 * have a longer lifetime than the cpu slabs in most processing loads.
2825 * So we still attempt to reduce cache line usage. Just take the slab
2826 * lock and free the item. If there is no additional partial page
2827 * handling required then we can return immediately.
2829 static void __slab_free(struct kmem_cache *s, struct page *page,
2830 void *head, void *tail, int cnt,
2831 unsigned long addr)
2834 void *prior;
2835 int was_frozen;
2836 struct page new;
2837 unsigned long counters;
2838 struct kmem_cache_node *n = NULL;
2839 unsigned long uninitialized_var(flags);
2841 stat(s, FREE_SLOWPATH);
2843 if (kmem_cache_debug(s) &&
2844 !free_debug_processing(s, page, head, tail, cnt, addr))
2845 return;
2847 do {
2848 if (unlikely(n)) {
2849 spin_unlock_irqrestore(&n->list_lock, flags);
2850 n = NULL;
2852 prior = page->freelist;
2853 counters = page->counters;
2854 set_freepointer(s, tail, prior);
2855 new.counters = counters;
2856 was_frozen = new.frozen;
2857 new.inuse -= cnt;
2858 if ((!new.inuse || !prior) && !was_frozen) {
2860 if (kmem_cache_has_cpu_partial(s) && !prior) {
2863 * Slab was on no list before and will be
2864 * partially empty
2865 * We can defer the list move and instead
2866 * freeze it.
2868 new.frozen = 1;
2870 } else { /* Needs to be taken off a list */
2872 n = get_node(s, page_to_nid(page));
2874 * Speculatively acquire the list_lock.
2875 * If the cmpxchg does not succeed then we may
2876 * drop the list_lock without any processing.
2878 * Otherwise the list_lock will synchronize with
2879 * other processors updating the list of slabs.
2881 spin_lock_irqsave(&n->list_lock, flags);
2886 } while (!cmpxchg_double_slab(s, page,
2887 prior, counters,
2888 head, new.counters,
2889 "__slab_free"));
2891 if (likely(!n)) {
2894 * If we just froze the page then put it onto the
2895 * per cpu partial list.
2897 if (new.frozen && !was_frozen) {
2898 put_cpu_partial(s, page, 1);
2899 stat(s, CPU_PARTIAL_FREE);
2902 * The list lock was not taken therefore no list
2903 * activity can be necessary.
2905 if (was_frozen)
2906 stat(s, FREE_FROZEN);
2907 return;
2910 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2911 goto slab_empty;
2914 * Objects left in the slab. If it was not on the partial list before
2915 * then add it.
2917 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2918 remove_full(s, n, page);
2919 add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 stat(s, FREE_ADD_PARTIAL);
2922 spin_unlock_irqrestore(&n->list_lock, flags);
2923 return;
2925 slab_empty:
2926 if (prior) {
2928 * Slab on the partial list.
2930 remove_partial(n, page);
2931 stat(s, FREE_REMOVE_PARTIAL);
2932 } else {
2933 /* Slab must be on the full list */
2934 remove_full(s, n, page);
2937 spin_unlock_irqrestore(&n->list_lock, flags);
2938 stat(s, FREE_SLAB);
2939 discard_slab(s, page);
2943 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944 * can perform fastpath freeing without additional function calls.
2946 * The fastpath is only possible if we are freeing to the current cpu slab
2947 * of this processor. This typically the case if we have just allocated
2948 * the item before.
2950 * If fastpath is not possible then fall back to __slab_free where we deal
2951 * with all sorts of special processing.
2953 * Bulk free of a freelist with several objects (all pointing to the
2954 * same page) possible by specifying head and tail ptr, plus objects
2955 * count (cnt). Bulk free indicated by tail pointer being set.
2957 static __always_inline void do_slab_free(struct kmem_cache *s,
2958 struct page *page, void *head, void *tail,
2959 int cnt, unsigned long addr)
2961 void *tail_obj = tail ? : head;
2962 struct kmem_cache_cpu *c;
2963 unsigned long tid;
2964 redo:
2966 * Determine the currently cpus per cpu slab.
2967 * The cpu may change afterward. However that does not matter since
2968 * data is retrieved via this pointer. If we are on the same cpu
2969 * during the cmpxchg then the free will succeed.
2971 do {
2972 tid = this_cpu_read(s->cpu_slab->tid);
2973 c = raw_cpu_ptr(s->cpu_slab);
2974 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 unlikely(tid != READ_ONCE(c->tid)));
2977 /* Same with comment on barrier() in slab_alloc_node() */
2978 barrier();
2980 if (likely(page == c->page)) {
2981 set_freepointer(s, tail_obj, c->freelist);
2983 if (unlikely(!this_cpu_cmpxchg_double(
2984 s->cpu_slab->freelist, s->cpu_slab->tid,
2985 c->freelist, tid,
2986 head, next_tid(tid)))) {
2988 note_cmpxchg_failure("slab_free", s, tid);
2989 goto redo;
2991 stat(s, FREE_FASTPATH);
2992 } else
2993 __slab_free(s, page, head, tail_obj, cnt, addr);
2997 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 void *head, void *tail, int cnt,
2999 unsigned long addr)
3002 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 * to remove objects, whose reuse must be delayed.
3005 if (slab_free_freelist_hook(s, &head, &tail))
3006 do_slab_free(s, page, head, tail, cnt, addr);
3009 #ifdef CONFIG_KASAN_GENERIC
3010 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3012 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3014 #endif
3016 void kmem_cache_free(struct kmem_cache *s, void *x)
3018 s = cache_from_obj(s, x);
3019 if (!s)
3020 return;
3021 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022 trace_kmem_cache_free(_RET_IP_, x);
3024 EXPORT_SYMBOL(kmem_cache_free);
3026 struct detached_freelist {
3027 struct page *page;
3028 void *tail;
3029 void *freelist;
3030 int cnt;
3031 struct kmem_cache *s;
3035 * This function progressively scans the array with free objects (with
3036 * a limited look ahead) and extract objects belonging to the same
3037 * page. It builds a detached freelist directly within the given
3038 * page/objects. This can happen without any need for
3039 * synchronization, because the objects are owned by running process.
3040 * The freelist is build up as a single linked list in the objects.
3041 * The idea is, that this detached freelist can then be bulk
3042 * transferred to the real freelist(s), but only requiring a single
3043 * synchronization primitive. Look ahead in the array is limited due
3044 * to performance reasons.
3046 static inline
3047 int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 void **p, struct detached_freelist *df)
3050 size_t first_skipped_index = 0;
3051 int lookahead = 3;
3052 void *object;
3053 struct page *page;
3055 /* Always re-init detached_freelist */
3056 df->page = NULL;
3058 do {
3059 object = p[--size];
3060 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061 } while (!object && size);
3063 if (!object)
3064 return 0;
3066 page = virt_to_head_page(object);
3067 if (!s) {
3068 /* Handle kalloc'ed objects */
3069 if (unlikely(!PageSlab(page))) {
3070 BUG_ON(!PageCompound(page));
3071 kfree_hook(object);
3072 __free_pages(page, compound_order(page));
3073 p[size] = NULL; /* mark object processed */
3074 return size;
3076 /* Derive kmem_cache from object */
3077 df->s = page->slab_cache;
3078 } else {
3079 df->s = cache_from_obj(s, object); /* Support for memcg */
3082 /* Start new detached freelist */
3083 df->page = page;
3084 set_freepointer(df->s, object, NULL);
3085 df->tail = object;
3086 df->freelist = object;
3087 p[size] = NULL; /* mark object processed */
3088 df->cnt = 1;
3090 while (size) {
3091 object = p[--size];
3092 if (!object)
3093 continue; /* Skip processed objects */
3095 /* df->page is always set at this point */
3096 if (df->page == virt_to_head_page(object)) {
3097 /* Opportunity build freelist */
3098 set_freepointer(df->s, object, df->freelist);
3099 df->freelist = object;
3100 df->cnt++;
3101 p[size] = NULL; /* mark object processed */
3103 continue;
3106 /* Limit look ahead search */
3107 if (!--lookahead)
3108 break;
3110 if (!first_skipped_index)
3111 first_skipped_index = size + 1;
3114 return first_skipped_index;
3117 /* Note that interrupts must be enabled when calling this function. */
3118 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3120 if (WARN_ON(!size))
3121 return;
3123 do {
3124 struct detached_freelist df;
3126 size = build_detached_freelist(s, size, p, &df);
3127 if (!df.page)
3128 continue;
3130 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131 } while (likely(size));
3133 EXPORT_SYMBOL(kmem_cache_free_bulk);
3135 /* Note that interrupts must be enabled when calling this function. */
3136 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 void **p)
3139 struct kmem_cache_cpu *c;
3140 int i;
3142 /* memcg and kmem_cache debug support */
3143 s = slab_pre_alloc_hook(s, flags);
3144 if (unlikely(!s))
3145 return false;
3147 * Drain objects in the per cpu slab, while disabling local
3148 * IRQs, which protects against PREEMPT and interrupts
3149 * handlers invoking normal fastpath.
3151 local_irq_disable();
3152 c = this_cpu_ptr(s->cpu_slab);
3154 for (i = 0; i < size; i++) {
3155 void *object = c->freelist;
3157 if (unlikely(!object)) {
3159 * Invoking slow path likely have side-effect
3160 * of re-populating per CPU c->freelist
3162 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163 _RET_IP_, c);
3164 if (unlikely(!p[i]))
3165 goto error;
3167 c = this_cpu_ptr(s->cpu_slab);
3168 maybe_wipe_obj_freeptr(s, p[i]);
3170 continue; /* goto for-loop */
3172 c->freelist = get_freepointer(s, object);
3173 p[i] = object;
3174 maybe_wipe_obj_freeptr(s, p[i]);
3176 c->tid = next_tid(c->tid);
3177 local_irq_enable();
3179 /* Clear memory outside IRQ disabled fastpath loop */
3180 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3181 int j;
3183 for (j = 0; j < i; j++)
3184 memset(p[j], 0, s->object_size);
3187 /* memcg and kmem_cache debug support */
3188 slab_post_alloc_hook(s, flags, size, p);
3189 return i;
3190 error:
3191 local_irq_enable();
3192 slab_post_alloc_hook(s, flags, i, p);
3193 __kmem_cache_free_bulk(s, i, p);
3194 return 0;
3196 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3200 * Object placement in a slab is made very easy because we always start at
3201 * offset 0. If we tune the size of the object to the alignment then we can
3202 * get the required alignment by putting one properly sized object after
3203 * another.
3205 * Notice that the allocation order determines the sizes of the per cpu
3206 * caches. Each processor has always one slab available for allocations.
3207 * Increasing the allocation order reduces the number of times that slabs
3208 * must be moved on and off the partial lists and is therefore a factor in
3209 * locking overhead.
3213 * Mininum / Maximum order of slab pages. This influences locking overhead
3214 * and slab fragmentation. A higher order reduces the number of partial slabs
3215 * and increases the number of allocations possible without having to
3216 * take the list_lock.
3218 static unsigned int slub_min_order;
3219 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3220 static unsigned int slub_min_objects;
3223 * Calculate the order of allocation given an slab object size.
3225 * The order of allocation has significant impact on performance and other
3226 * system components. Generally order 0 allocations should be preferred since
3227 * order 0 does not cause fragmentation in the page allocator. Larger objects
3228 * be problematic to put into order 0 slabs because there may be too much
3229 * unused space left. We go to a higher order if more than 1/16th of the slab
3230 * would be wasted.
3232 * In order to reach satisfactory performance we must ensure that a minimum
3233 * number of objects is in one slab. Otherwise we may generate too much
3234 * activity on the partial lists which requires taking the list_lock. This is
3235 * less a concern for large slabs though which are rarely used.
3237 * slub_max_order specifies the order where we begin to stop considering the
3238 * number of objects in a slab as critical. If we reach slub_max_order then
3239 * we try to keep the page order as low as possible. So we accept more waste
3240 * of space in favor of a small page order.
3242 * Higher order allocations also allow the placement of more objects in a
3243 * slab and thereby reduce object handling overhead. If the user has
3244 * requested a higher mininum order then we start with that one instead of
3245 * the smallest order which will fit the object.
3247 static inline unsigned int slab_order(unsigned int size,
3248 unsigned int min_objects, unsigned int max_order,
3249 unsigned int fract_leftover)
3251 unsigned int min_order = slub_min_order;
3252 unsigned int order;
3254 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3255 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3257 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3258 order <= max_order; order++) {
3260 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3261 unsigned int rem;
3263 rem = slab_size % size;
3265 if (rem <= slab_size / fract_leftover)
3266 break;
3269 return order;
3272 static inline int calculate_order(unsigned int size)
3274 unsigned int order;
3275 unsigned int min_objects;
3276 unsigned int max_objects;
3279 * Attempt to find best configuration for a slab. This
3280 * works by first attempting to generate a layout with
3281 * the best configuration and backing off gradually.
3283 * First we increase the acceptable waste in a slab. Then
3284 * we reduce the minimum objects required in a slab.
3286 min_objects = slub_min_objects;
3287 if (!min_objects)
3288 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3289 max_objects = order_objects(slub_max_order, size);
3290 min_objects = min(min_objects, max_objects);
3292 while (min_objects > 1) {
3293 unsigned int fraction;
3295 fraction = 16;
3296 while (fraction >= 4) {
3297 order = slab_order(size, min_objects,
3298 slub_max_order, fraction);
3299 if (order <= slub_max_order)
3300 return order;
3301 fraction /= 2;
3303 min_objects--;
3307 * We were unable to place multiple objects in a slab. Now
3308 * lets see if we can place a single object there.
3310 order = slab_order(size, 1, slub_max_order, 1);
3311 if (order <= slub_max_order)
3312 return order;
3315 * Doh this slab cannot be placed using slub_max_order.
3317 order = slab_order(size, 1, MAX_ORDER, 1);
3318 if (order < MAX_ORDER)
3319 return order;
3320 return -ENOSYS;
3323 static void
3324 init_kmem_cache_node(struct kmem_cache_node *n)
3326 n->nr_partial = 0;
3327 spin_lock_init(&n->list_lock);
3328 INIT_LIST_HEAD(&n->partial);
3329 #ifdef CONFIG_SLUB_DEBUG
3330 atomic_long_set(&n->nr_slabs, 0);
3331 atomic_long_set(&n->total_objects, 0);
3332 INIT_LIST_HEAD(&n->full);
3333 #endif
3336 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3338 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3339 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3342 * Must align to double word boundary for the double cmpxchg
3343 * instructions to work; see __pcpu_double_call_return_bool().
3345 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3346 2 * sizeof(void *));
3348 if (!s->cpu_slab)
3349 return 0;
3351 init_kmem_cache_cpus(s);
3353 return 1;
3356 static struct kmem_cache *kmem_cache_node;
3359 * No kmalloc_node yet so do it by hand. We know that this is the first
3360 * slab on the node for this slabcache. There are no concurrent accesses
3361 * possible.
3363 * Note that this function only works on the kmem_cache_node
3364 * when allocating for the kmem_cache_node. This is used for bootstrapping
3365 * memory on a fresh node that has no slab structures yet.
3367 static void early_kmem_cache_node_alloc(int node)
3369 struct page *page;
3370 struct kmem_cache_node *n;
3372 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3374 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3376 BUG_ON(!page);
3377 if (page_to_nid(page) != node) {
3378 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3379 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3382 n = page->freelist;
3383 BUG_ON(!n);
3384 #ifdef CONFIG_SLUB_DEBUG
3385 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3386 init_tracking(kmem_cache_node, n);
3387 #endif
3388 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3389 GFP_KERNEL);
3390 page->freelist = get_freepointer(kmem_cache_node, n);
3391 page->inuse = 1;
3392 page->frozen = 0;
3393 kmem_cache_node->node[node] = n;
3394 init_kmem_cache_node(n);
3395 inc_slabs_node(kmem_cache_node, node, page->objects);
3398 * No locks need to be taken here as it has just been
3399 * initialized and there is no concurrent access.
3401 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3404 static void free_kmem_cache_nodes(struct kmem_cache *s)
3406 int node;
3407 struct kmem_cache_node *n;
3409 for_each_kmem_cache_node(s, node, n) {
3410 s->node[node] = NULL;
3411 kmem_cache_free(kmem_cache_node, n);
3415 void __kmem_cache_release(struct kmem_cache *s)
3417 cache_random_seq_destroy(s);
3418 free_percpu(s->cpu_slab);
3419 free_kmem_cache_nodes(s);
3422 static int init_kmem_cache_nodes(struct kmem_cache *s)
3424 int node;
3426 for_each_node_state(node, N_NORMAL_MEMORY) {
3427 struct kmem_cache_node *n;
3429 if (slab_state == DOWN) {
3430 early_kmem_cache_node_alloc(node);
3431 continue;
3433 n = kmem_cache_alloc_node(kmem_cache_node,
3434 GFP_KERNEL, node);
3436 if (!n) {
3437 free_kmem_cache_nodes(s);
3438 return 0;
3441 init_kmem_cache_node(n);
3442 s->node[node] = n;
3444 return 1;
3447 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3449 if (min < MIN_PARTIAL)
3450 min = MIN_PARTIAL;
3451 else if (min > MAX_PARTIAL)
3452 min = MAX_PARTIAL;
3453 s->min_partial = min;
3456 static void set_cpu_partial(struct kmem_cache *s)
3458 #ifdef CONFIG_SLUB_CPU_PARTIAL
3460 * cpu_partial determined the maximum number of objects kept in the
3461 * per cpu partial lists of a processor.
3463 * Per cpu partial lists mainly contain slabs that just have one
3464 * object freed. If they are used for allocation then they can be
3465 * filled up again with minimal effort. The slab will never hit the
3466 * per node partial lists and therefore no locking will be required.
3468 * This setting also determines
3470 * A) The number of objects from per cpu partial slabs dumped to the
3471 * per node list when we reach the limit.
3472 * B) The number of objects in cpu partial slabs to extract from the
3473 * per node list when we run out of per cpu objects. We only fetch
3474 * 50% to keep some capacity around for frees.
3476 if (!kmem_cache_has_cpu_partial(s))
3477 s->cpu_partial = 0;
3478 else if (s->size >= PAGE_SIZE)
3479 s->cpu_partial = 2;
3480 else if (s->size >= 1024)
3481 s->cpu_partial = 6;
3482 else if (s->size >= 256)
3483 s->cpu_partial = 13;
3484 else
3485 s->cpu_partial = 30;
3486 #endif
3490 * calculate_sizes() determines the order and the distribution of data within
3491 * a slab object.
3493 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3495 slab_flags_t flags = s->flags;
3496 unsigned int size = s->object_size;
3497 unsigned int order;
3500 * Round up object size to the next word boundary. We can only
3501 * place the free pointer at word boundaries and this determines
3502 * the possible location of the free pointer.
3504 size = ALIGN(size, sizeof(void *));
3506 #ifdef CONFIG_SLUB_DEBUG
3508 * Determine if we can poison the object itself. If the user of
3509 * the slab may touch the object after free or before allocation
3510 * then we should never poison the object itself.
3512 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3513 !s->ctor)
3514 s->flags |= __OBJECT_POISON;
3515 else
3516 s->flags &= ~__OBJECT_POISON;
3520 * If we are Redzoning then check if there is some space between the
3521 * end of the object and the free pointer. If not then add an
3522 * additional word to have some bytes to store Redzone information.
3524 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3525 size += sizeof(void *);
3526 #endif
3529 * With that we have determined the number of bytes in actual use
3530 * by the object. This is the potential offset to the free pointer.
3532 s->inuse = size;
3534 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3535 s->ctor)) {
3537 * Relocate free pointer after the object if it is not
3538 * permitted to overwrite the first word of the object on
3539 * kmem_cache_free.
3541 * This is the case if we do RCU, have a constructor or
3542 * destructor or are poisoning the objects.
3544 s->offset = size;
3545 size += sizeof(void *);
3548 #ifdef CONFIG_SLUB_DEBUG
3549 if (flags & SLAB_STORE_USER)
3551 * Need to store information about allocs and frees after
3552 * the object.
3554 size += 2 * sizeof(struct track);
3555 #endif
3557 kasan_cache_create(s, &size, &s->flags);
3558 #ifdef CONFIG_SLUB_DEBUG
3559 if (flags & SLAB_RED_ZONE) {
3561 * Add some empty padding so that we can catch
3562 * overwrites from earlier objects rather than let
3563 * tracking information or the free pointer be
3564 * corrupted if a user writes before the start
3565 * of the object.
3567 size += sizeof(void *);
3569 s->red_left_pad = sizeof(void *);
3570 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3571 size += s->red_left_pad;
3573 #endif
3576 * SLUB stores one object immediately after another beginning from
3577 * offset 0. In order to align the objects we have to simply size
3578 * each object to conform to the alignment.
3580 size = ALIGN(size, s->align);
3581 s->size = size;
3582 if (forced_order >= 0)
3583 order = forced_order;
3584 else
3585 order = calculate_order(size);
3587 if ((int)order < 0)
3588 return 0;
3590 s->allocflags = 0;
3591 if (order)
3592 s->allocflags |= __GFP_COMP;
3594 if (s->flags & SLAB_CACHE_DMA)
3595 s->allocflags |= GFP_DMA;
3597 if (s->flags & SLAB_CACHE_DMA32)
3598 s->allocflags |= GFP_DMA32;
3600 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3601 s->allocflags |= __GFP_RECLAIMABLE;
3604 * Determine the number of objects per slab
3606 s->oo = oo_make(order, size);
3607 s->min = oo_make(get_order(size), size);
3608 if (oo_objects(s->oo) > oo_objects(s->max))
3609 s->max = s->oo;
3611 return !!oo_objects(s->oo);
3614 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3616 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3617 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3618 s->random = get_random_long();
3619 #endif
3621 if (!calculate_sizes(s, -1))
3622 goto error;
3623 if (disable_higher_order_debug) {
3625 * Disable debugging flags that store metadata if the min slab
3626 * order increased.
3628 if (get_order(s->size) > get_order(s->object_size)) {
3629 s->flags &= ~DEBUG_METADATA_FLAGS;
3630 s->offset = 0;
3631 if (!calculate_sizes(s, -1))
3632 goto error;
3636 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3637 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3638 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3639 /* Enable fast mode */
3640 s->flags |= __CMPXCHG_DOUBLE;
3641 #endif
3644 * The larger the object size is, the more pages we want on the partial
3645 * list to avoid pounding the page allocator excessively.
3647 set_min_partial(s, ilog2(s->size) / 2);
3649 set_cpu_partial(s);
3651 #ifdef CONFIG_NUMA
3652 s->remote_node_defrag_ratio = 1000;
3653 #endif
3655 /* Initialize the pre-computed randomized freelist if slab is up */
3656 if (slab_state >= UP) {
3657 if (init_cache_random_seq(s))
3658 goto error;
3661 if (!init_kmem_cache_nodes(s))
3662 goto error;
3664 if (alloc_kmem_cache_cpus(s))
3665 return 0;
3667 free_kmem_cache_nodes(s);
3668 error:
3669 return -EINVAL;
3672 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3673 const char *text)
3675 #ifdef CONFIG_SLUB_DEBUG
3676 void *addr = page_address(page);
3677 void *p;
3678 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3679 if (!map)
3680 return;
3681 slab_err(s, page, text, s->name);
3682 slab_lock(page);
3684 get_map(s, page, map);
3685 for_each_object(p, s, addr, page->objects) {
3687 if (!test_bit(slab_index(p, s, addr), map)) {
3688 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3689 print_tracking(s, p);
3692 slab_unlock(page);
3693 bitmap_free(map);
3694 #endif
3698 * Attempt to free all partial slabs on a node.
3699 * This is called from __kmem_cache_shutdown(). We must take list_lock
3700 * because sysfs file might still access partial list after the shutdowning.
3702 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3704 LIST_HEAD(discard);
3705 struct page *page, *h;
3707 BUG_ON(irqs_disabled());
3708 spin_lock_irq(&n->list_lock);
3709 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3710 if (!page->inuse) {
3711 remove_partial(n, page);
3712 list_add(&page->slab_list, &discard);
3713 } else {
3714 list_slab_objects(s, page,
3715 "Objects remaining in %s on __kmem_cache_shutdown()");
3718 spin_unlock_irq(&n->list_lock);
3720 list_for_each_entry_safe(page, h, &discard, slab_list)
3721 discard_slab(s, page);
3724 bool __kmem_cache_empty(struct kmem_cache *s)
3726 int node;
3727 struct kmem_cache_node *n;
3729 for_each_kmem_cache_node(s, node, n)
3730 if (n->nr_partial || slabs_node(s, node))
3731 return false;
3732 return true;
3736 * Release all resources used by a slab cache.
3738 int __kmem_cache_shutdown(struct kmem_cache *s)
3740 int node;
3741 struct kmem_cache_node *n;
3743 flush_all(s);
3744 /* Attempt to free all objects */
3745 for_each_kmem_cache_node(s, node, n) {
3746 free_partial(s, n);
3747 if (n->nr_partial || slabs_node(s, node))
3748 return 1;
3750 sysfs_slab_remove(s);
3751 return 0;
3754 /********************************************************************
3755 * Kmalloc subsystem
3756 *******************************************************************/
3758 static int __init setup_slub_min_order(char *str)
3760 get_option(&str, (int *)&slub_min_order);
3762 return 1;
3765 __setup("slub_min_order=", setup_slub_min_order);
3767 static int __init setup_slub_max_order(char *str)
3769 get_option(&str, (int *)&slub_max_order);
3770 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3772 return 1;
3775 __setup("slub_max_order=", setup_slub_max_order);
3777 static int __init setup_slub_min_objects(char *str)
3779 get_option(&str, (int *)&slub_min_objects);
3781 return 1;
3784 __setup("slub_min_objects=", setup_slub_min_objects);
3786 void *__kmalloc(size_t size, gfp_t flags)
3788 struct kmem_cache *s;
3789 void *ret;
3791 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792 return kmalloc_large(size, flags);
3794 s = kmalloc_slab(size, flags);
3796 if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 return s;
3799 ret = slab_alloc(s, flags, _RET_IP_);
3801 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3803 ret = kasan_kmalloc(s, ret, size, flags);
3805 return ret;
3807 EXPORT_SYMBOL(__kmalloc);
3809 #ifdef CONFIG_NUMA
3810 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3812 struct page *page;
3813 void *ptr = NULL;
3814 unsigned int order = get_order(size);
3816 flags |= __GFP_COMP;
3817 page = alloc_pages_node(node, flags, order);
3818 if (page) {
3819 ptr = page_address(page);
3820 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3821 1 << order);
3824 return kmalloc_large_node_hook(ptr, size, flags);
3827 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3829 struct kmem_cache *s;
3830 void *ret;
3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3833 ret = kmalloc_large_node(size, flags, node);
3835 trace_kmalloc_node(_RET_IP_, ret,
3836 size, PAGE_SIZE << get_order(size),
3837 flags, node);
3839 return ret;
3842 s = kmalloc_slab(size, flags);
3844 if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 return s;
3847 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3851 ret = kasan_kmalloc(s, ret, size, flags);
3853 return ret;
3855 EXPORT_SYMBOL(__kmalloc_node);
3856 #endif /* CONFIG_NUMA */
3858 #ifdef CONFIG_HARDENED_USERCOPY
3860 * Rejects incorrectly sized objects and objects that are to be copied
3861 * to/from userspace but do not fall entirely within the containing slab
3862 * cache's usercopy region.
3864 * Returns NULL if check passes, otherwise const char * to name of cache
3865 * to indicate an error.
3867 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 bool to_user)
3870 struct kmem_cache *s;
3871 unsigned int offset;
3872 size_t object_size;
3874 ptr = kasan_reset_tag(ptr);
3876 /* Find object and usable object size. */
3877 s = page->slab_cache;
3879 /* Reject impossible pointers. */
3880 if (ptr < page_address(page))
3881 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 to_user, 0, n);
3884 /* Find offset within object. */
3885 offset = (ptr - page_address(page)) % s->size;
3887 /* Adjust for redzone and reject if within the redzone. */
3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 if (offset < s->red_left_pad)
3890 usercopy_abort("SLUB object in left red zone",
3891 s->name, to_user, offset, n);
3892 offset -= s->red_left_pad;
3895 /* Allow address range falling entirely within usercopy region. */
3896 if (offset >= s->useroffset &&
3897 offset - s->useroffset <= s->usersize &&
3898 n <= s->useroffset - offset + s->usersize)
3899 return;
3902 * If the copy is still within the allocated object, produce
3903 * a warning instead of rejecting the copy. This is intended
3904 * to be a temporary method to find any missing usercopy
3905 * whitelists.
3907 object_size = slab_ksize(s);
3908 if (usercopy_fallback &&
3909 offset <= object_size && n <= object_size - offset) {
3910 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 return;
3914 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3916 #endif /* CONFIG_HARDENED_USERCOPY */
3918 size_t __ksize(const void *object)
3920 struct page *page;
3922 if (unlikely(object == ZERO_SIZE_PTR))
3923 return 0;
3925 page = virt_to_head_page(object);
3927 if (unlikely(!PageSlab(page))) {
3928 WARN_ON(!PageCompound(page));
3929 return page_size(page);
3932 return slab_ksize(page->slab_cache);
3934 EXPORT_SYMBOL(__ksize);
3936 void kfree(const void *x)
3938 struct page *page;
3939 void *object = (void *)x;
3941 trace_kfree(_RET_IP_, x);
3943 if (unlikely(ZERO_OR_NULL_PTR(x)))
3944 return;
3946 page = virt_to_head_page(x);
3947 if (unlikely(!PageSlab(page))) {
3948 unsigned int order = compound_order(page);
3950 BUG_ON(!PageCompound(page));
3951 kfree_hook(object);
3952 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3953 -(1 << order));
3954 __free_pages(page, order);
3955 return;
3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3959 EXPORT_SYMBOL(kfree);
3961 #define SHRINK_PROMOTE_MAX 32
3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965 * up most to the head of the partial lists. New allocations will then
3966 * fill those up and thus they can be removed from the partial lists.
3968 * The slabs with the least items are placed last. This results in them
3969 * being allocated from last increasing the chance that the last objects
3970 * are freed in them.
3972 int __kmem_cache_shrink(struct kmem_cache *s)
3974 int node;
3975 int i;
3976 struct kmem_cache_node *n;
3977 struct page *page;
3978 struct page *t;
3979 struct list_head discard;
3980 struct list_head promote[SHRINK_PROMOTE_MAX];
3981 unsigned long flags;
3982 int ret = 0;
3984 flush_all(s);
3985 for_each_kmem_cache_node(s, node, n) {
3986 INIT_LIST_HEAD(&discard);
3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 INIT_LIST_HEAD(promote + i);
3990 spin_lock_irqsave(&n->list_lock, flags);
3993 * Build lists of slabs to discard or promote.
3995 * Note that concurrent frees may occur while we hold the
3996 * list_lock. page->inuse here is the upper limit.
3998 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3999 int free = page->objects - page->inuse;
4001 /* Do not reread page->inuse */
4002 barrier();
4004 /* We do not keep full slabs on the list */
4005 BUG_ON(free <= 0);
4007 if (free == page->objects) {
4008 list_move(&page->slab_list, &discard);
4009 n->nr_partial--;
4010 } else if (free <= SHRINK_PROMOTE_MAX)
4011 list_move(&page->slab_list, promote + free - 1);
4015 * Promote the slabs filled up most to the head of the
4016 * partial list.
4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 list_splice(promote + i, &n->partial);
4021 spin_unlock_irqrestore(&n->list_lock, flags);
4023 /* Release empty slabs */
4024 list_for_each_entry_safe(page, t, &discard, slab_list)
4025 discard_slab(s, page);
4027 if (slabs_node(s, node))
4028 ret = 1;
4031 return ret;
4034 #ifdef CONFIG_MEMCG
4035 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4038 * Called with all the locks held after a sched RCU grace period.
4039 * Even if @s becomes empty after shrinking, we can't know that @s
4040 * doesn't have allocations already in-flight and thus can't
4041 * destroy @s until the associated memcg is released.
4043 * However, let's remove the sysfs files for empty caches here.
4044 * Each cache has a lot of interface files which aren't
4045 * particularly useful for empty draining caches; otherwise, we can
4046 * easily end up with millions of unnecessary sysfs files on
4047 * systems which have a lot of memory and transient cgroups.
4049 if (!__kmem_cache_shrink(s))
4050 sysfs_slab_remove(s);
4053 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4056 * Disable empty slabs caching. Used to avoid pinning offline
4057 * memory cgroups by kmem pages that can be freed.
4059 slub_set_cpu_partial(s, 0);
4060 s->min_partial = 0;
4062 #endif /* CONFIG_MEMCG */
4064 static int slab_mem_going_offline_callback(void *arg)
4066 struct kmem_cache *s;
4068 mutex_lock(&slab_mutex);
4069 list_for_each_entry(s, &slab_caches, list)
4070 __kmem_cache_shrink(s);
4071 mutex_unlock(&slab_mutex);
4073 return 0;
4076 static void slab_mem_offline_callback(void *arg)
4078 struct kmem_cache_node *n;
4079 struct kmem_cache *s;
4080 struct memory_notify *marg = arg;
4081 int offline_node;
4083 offline_node = marg->status_change_nid_normal;
4086 * If the node still has available memory. we need kmem_cache_node
4087 * for it yet.
4089 if (offline_node < 0)
4090 return;
4092 mutex_lock(&slab_mutex);
4093 list_for_each_entry(s, &slab_caches, list) {
4094 n = get_node(s, offline_node);
4095 if (n) {
4097 * if n->nr_slabs > 0, slabs still exist on the node
4098 * that is going down. We were unable to free them,
4099 * and offline_pages() function shouldn't call this
4100 * callback. So, we must fail.
4102 BUG_ON(slabs_node(s, offline_node));
4104 s->node[offline_node] = NULL;
4105 kmem_cache_free(kmem_cache_node, n);
4108 mutex_unlock(&slab_mutex);
4111 static int slab_mem_going_online_callback(void *arg)
4113 struct kmem_cache_node *n;
4114 struct kmem_cache *s;
4115 struct memory_notify *marg = arg;
4116 int nid = marg->status_change_nid_normal;
4117 int ret = 0;
4120 * If the node's memory is already available, then kmem_cache_node is
4121 * already created. Nothing to do.
4123 if (nid < 0)
4124 return 0;
4127 * We are bringing a node online. No memory is available yet. We must
4128 * allocate a kmem_cache_node structure in order to bring the node
4129 * online.
4131 mutex_lock(&slab_mutex);
4132 list_for_each_entry(s, &slab_caches, list) {
4134 * XXX: kmem_cache_alloc_node will fallback to other nodes
4135 * since memory is not yet available from the node that
4136 * is brought up.
4138 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4139 if (!n) {
4140 ret = -ENOMEM;
4141 goto out;
4143 init_kmem_cache_node(n);
4144 s->node[nid] = n;
4146 out:
4147 mutex_unlock(&slab_mutex);
4148 return ret;
4151 static int slab_memory_callback(struct notifier_block *self,
4152 unsigned long action, void *arg)
4154 int ret = 0;
4156 switch (action) {
4157 case MEM_GOING_ONLINE:
4158 ret = slab_mem_going_online_callback(arg);
4159 break;
4160 case MEM_GOING_OFFLINE:
4161 ret = slab_mem_going_offline_callback(arg);
4162 break;
4163 case MEM_OFFLINE:
4164 case MEM_CANCEL_ONLINE:
4165 slab_mem_offline_callback(arg);
4166 break;
4167 case MEM_ONLINE:
4168 case MEM_CANCEL_OFFLINE:
4169 break;
4171 if (ret)
4172 ret = notifier_from_errno(ret);
4173 else
4174 ret = NOTIFY_OK;
4175 return ret;
4178 static struct notifier_block slab_memory_callback_nb = {
4179 .notifier_call = slab_memory_callback,
4180 .priority = SLAB_CALLBACK_PRI,
4183 /********************************************************************
4184 * Basic setup of slabs
4185 *******************************************************************/
4188 * Used for early kmem_cache structures that were allocated using
4189 * the page allocator. Allocate them properly then fix up the pointers
4190 * that may be pointing to the wrong kmem_cache structure.
4193 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4195 int node;
4196 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4197 struct kmem_cache_node *n;
4199 memcpy(s, static_cache, kmem_cache->object_size);
4202 * This runs very early, and only the boot processor is supposed to be
4203 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4204 * IPIs around.
4206 __flush_cpu_slab(s, smp_processor_id());
4207 for_each_kmem_cache_node(s, node, n) {
4208 struct page *p;
4210 list_for_each_entry(p, &n->partial, slab_list)
4211 p->slab_cache = s;
4213 #ifdef CONFIG_SLUB_DEBUG
4214 list_for_each_entry(p, &n->full, slab_list)
4215 p->slab_cache = s;
4216 #endif
4218 slab_init_memcg_params(s);
4219 list_add(&s->list, &slab_caches);
4220 memcg_link_cache(s, NULL);
4221 return s;
4224 void __init kmem_cache_init(void)
4226 static __initdata struct kmem_cache boot_kmem_cache,
4227 boot_kmem_cache_node;
4229 if (debug_guardpage_minorder())
4230 slub_max_order = 0;
4232 kmem_cache_node = &boot_kmem_cache_node;
4233 kmem_cache = &boot_kmem_cache;
4235 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4236 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4238 register_hotmemory_notifier(&slab_memory_callback_nb);
4240 /* Able to allocate the per node structures */
4241 slab_state = PARTIAL;
4243 create_boot_cache(kmem_cache, "kmem_cache",
4244 offsetof(struct kmem_cache, node) +
4245 nr_node_ids * sizeof(struct kmem_cache_node *),
4246 SLAB_HWCACHE_ALIGN, 0, 0);
4248 kmem_cache = bootstrap(&boot_kmem_cache);
4249 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4251 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4252 setup_kmalloc_cache_index_table();
4253 create_kmalloc_caches(0);
4255 /* Setup random freelists for each cache */
4256 init_freelist_randomization();
4258 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4259 slub_cpu_dead);
4261 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4262 cache_line_size(),
4263 slub_min_order, slub_max_order, slub_min_objects,
4264 nr_cpu_ids, nr_node_ids);
4267 void __init kmem_cache_init_late(void)
4271 struct kmem_cache *
4272 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4273 slab_flags_t flags, void (*ctor)(void *))
4275 struct kmem_cache *s, *c;
4277 s = find_mergeable(size, align, flags, name, ctor);
4278 if (s) {
4279 s->refcount++;
4282 * Adjust the object sizes so that we clear
4283 * the complete object on kzalloc.
4285 s->object_size = max(s->object_size, size);
4286 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4288 for_each_memcg_cache(c, s) {
4289 c->object_size = s->object_size;
4290 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4293 if (sysfs_slab_alias(s, name)) {
4294 s->refcount--;
4295 s = NULL;
4299 return s;
4302 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4304 int err;
4306 err = kmem_cache_open(s, flags);
4307 if (err)
4308 return err;
4310 /* Mutex is not taken during early boot */
4311 if (slab_state <= UP)
4312 return 0;
4314 memcg_propagate_slab_attrs(s);
4315 err = sysfs_slab_add(s);
4316 if (err)
4317 __kmem_cache_release(s);
4319 return err;
4322 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4324 struct kmem_cache *s;
4325 void *ret;
4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4328 return kmalloc_large(size, gfpflags);
4330 s = kmalloc_slab(size, gfpflags);
4332 if (unlikely(ZERO_OR_NULL_PTR(s)))
4333 return s;
4335 ret = slab_alloc(s, gfpflags, caller);
4337 /* Honor the call site pointer we received. */
4338 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4340 return ret;
4343 #ifdef CONFIG_NUMA
4344 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4345 int node, unsigned long caller)
4347 struct kmem_cache *s;
4348 void *ret;
4350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4351 ret = kmalloc_large_node(size, gfpflags, node);
4353 trace_kmalloc_node(caller, ret,
4354 size, PAGE_SIZE << get_order(size),
4355 gfpflags, node);
4357 return ret;
4360 s = kmalloc_slab(size, gfpflags);
4362 if (unlikely(ZERO_OR_NULL_PTR(s)))
4363 return s;
4365 ret = slab_alloc_node(s, gfpflags, node, caller);
4367 /* Honor the call site pointer we received. */
4368 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4370 return ret;
4372 #endif
4374 #ifdef CONFIG_SYSFS
4375 static int count_inuse(struct page *page)
4377 return page->inuse;
4380 static int count_total(struct page *page)
4382 return page->objects;
4384 #endif
4386 #ifdef CONFIG_SLUB_DEBUG
4387 static void validate_slab(struct kmem_cache *s, struct page *page,
4388 unsigned long *map)
4390 void *p;
4391 void *addr = page_address(page);
4393 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4394 return;
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map, page->objects);
4399 get_map(s, page, map);
4400 for_each_object(p, s, addr, page->objects) {
4401 u8 val = test_bit(slab_index(p, s, addr), map) ?
4402 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4404 if (!check_object(s, page, p, val))
4405 break;
4409 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4410 unsigned long *map)
4412 slab_lock(page);
4413 validate_slab(s, page, map);
4414 slab_unlock(page);
4417 static int validate_slab_node(struct kmem_cache *s,
4418 struct kmem_cache_node *n, unsigned long *map)
4420 unsigned long count = 0;
4421 struct page *page;
4422 unsigned long flags;
4424 spin_lock_irqsave(&n->list_lock, flags);
4426 list_for_each_entry(page, &n->partial, slab_list) {
4427 validate_slab_slab(s, page, map);
4428 count++;
4430 if (count != n->nr_partial)
4431 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4432 s->name, count, n->nr_partial);
4434 if (!(s->flags & SLAB_STORE_USER))
4435 goto out;
4437 list_for_each_entry(page, &n->full, slab_list) {
4438 validate_slab_slab(s, page, map);
4439 count++;
4441 if (count != atomic_long_read(&n->nr_slabs))
4442 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4443 s->name, count, atomic_long_read(&n->nr_slabs));
4445 out:
4446 spin_unlock_irqrestore(&n->list_lock, flags);
4447 return count;
4450 static long validate_slab_cache(struct kmem_cache *s)
4452 int node;
4453 unsigned long count = 0;
4454 struct kmem_cache_node *n;
4455 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4457 if (!map)
4458 return -ENOMEM;
4460 flush_all(s);
4461 for_each_kmem_cache_node(s, node, n)
4462 count += validate_slab_node(s, n, map);
4463 bitmap_free(map);
4464 return count;
4467 * Generate lists of code addresses where slabcache objects are allocated
4468 * and freed.
4471 struct location {
4472 unsigned long count;
4473 unsigned long addr;
4474 long long sum_time;
4475 long min_time;
4476 long max_time;
4477 long min_pid;
4478 long max_pid;
4479 DECLARE_BITMAP(cpus, NR_CPUS);
4480 nodemask_t nodes;
4483 struct loc_track {
4484 unsigned long max;
4485 unsigned long count;
4486 struct location *loc;
4489 static void free_loc_track(struct loc_track *t)
4491 if (t->max)
4492 free_pages((unsigned long)t->loc,
4493 get_order(sizeof(struct location) * t->max));
4496 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4498 struct location *l;
4499 int order;
4501 order = get_order(sizeof(struct location) * max);
4503 l = (void *)__get_free_pages(flags, order);
4504 if (!l)
4505 return 0;
4507 if (t->count) {
4508 memcpy(l, t->loc, sizeof(struct location) * t->count);
4509 free_loc_track(t);
4511 t->max = max;
4512 t->loc = l;
4513 return 1;
4516 static int add_location(struct loc_track *t, struct kmem_cache *s,
4517 const struct track *track)
4519 long start, end, pos;
4520 struct location *l;
4521 unsigned long caddr;
4522 unsigned long age = jiffies - track->when;
4524 start = -1;
4525 end = t->count;
4527 for ( ; ; ) {
4528 pos = start + (end - start + 1) / 2;
4531 * There is nothing at "end". If we end up there
4532 * we need to add something to before end.
4534 if (pos == end)
4535 break;
4537 caddr = t->loc[pos].addr;
4538 if (track->addr == caddr) {
4540 l = &t->loc[pos];
4541 l->count++;
4542 if (track->when) {
4543 l->sum_time += age;
4544 if (age < l->min_time)
4545 l->min_time = age;
4546 if (age > l->max_time)
4547 l->max_time = age;
4549 if (track->pid < l->min_pid)
4550 l->min_pid = track->pid;
4551 if (track->pid > l->max_pid)
4552 l->max_pid = track->pid;
4554 cpumask_set_cpu(track->cpu,
4555 to_cpumask(l->cpus));
4557 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4558 return 1;
4561 if (track->addr < caddr)
4562 end = pos;
4563 else
4564 start = pos;
4568 * Not found. Insert new tracking element.
4570 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4571 return 0;
4573 l = t->loc + pos;
4574 if (pos < t->count)
4575 memmove(l + 1, l,
4576 (t->count - pos) * sizeof(struct location));
4577 t->count++;
4578 l->count = 1;
4579 l->addr = track->addr;
4580 l->sum_time = age;
4581 l->min_time = age;
4582 l->max_time = age;
4583 l->min_pid = track->pid;
4584 l->max_pid = track->pid;
4585 cpumask_clear(to_cpumask(l->cpus));
4586 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4587 nodes_clear(l->nodes);
4588 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4589 return 1;
4592 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4593 struct page *page, enum track_item alloc,
4594 unsigned long *map)
4596 void *addr = page_address(page);
4597 void *p;
4599 bitmap_zero(map, page->objects);
4600 get_map(s, page, map);
4602 for_each_object(p, s, addr, page->objects)
4603 if (!test_bit(slab_index(p, s, addr), map))
4604 add_location(t, s, get_track(s, p, alloc));
4607 static int list_locations(struct kmem_cache *s, char *buf,
4608 enum track_item alloc)
4610 int len = 0;
4611 unsigned long i;
4612 struct loc_track t = { 0, 0, NULL };
4613 int node;
4614 struct kmem_cache_node *n;
4615 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4617 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4618 GFP_KERNEL)) {
4619 bitmap_free(map);
4620 return sprintf(buf, "Out of memory\n");
4622 /* Push back cpu slabs */
4623 flush_all(s);
4625 for_each_kmem_cache_node(s, node, n) {
4626 unsigned long flags;
4627 struct page *page;
4629 if (!atomic_long_read(&n->nr_slabs))
4630 continue;
4632 spin_lock_irqsave(&n->list_lock, flags);
4633 list_for_each_entry(page, &n->partial, slab_list)
4634 process_slab(&t, s, page, alloc, map);
4635 list_for_each_entry(page, &n->full, slab_list)
4636 process_slab(&t, s, page, alloc, map);
4637 spin_unlock_irqrestore(&n->list_lock, flags);
4640 for (i = 0; i < t.count; i++) {
4641 struct location *l = &t.loc[i];
4643 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4644 break;
4645 len += sprintf(buf + len, "%7ld ", l->count);
4647 if (l->addr)
4648 len += sprintf(buf + len, "%pS", (void *)l->addr);
4649 else
4650 len += sprintf(buf + len, "<not-available>");
4652 if (l->sum_time != l->min_time) {
4653 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4654 l->min_time,
4655 (long)div_u64(l->sum_time, l->count),
4656 l->max_time);
4657 } else
4658 len += sprintf(buf + len, " age=%ld",
4659 l->min_time);
4661 if (l->min_pid != l->max_pid)
4662 len += sprintf(buf + len, " pid=%ld-%ld",
4663 l->min_pid, l->max_pid);
4664 else
4665 len += sprintf(buf + len, " pid=%ld",
4666 l->min_pid);
4668 if (num_online_cpus() > 1 &&
4669 !cpumask_empty(to_cpumask(l->cpus)) &&
4670 len < PAGE_SIZE - 60)
4671 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4672 " cpus=%*pbl",
4673 cpumask_pr_args(to_cpumask(l->cpus)));
4675 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4676 len < PAGE_SIZE - 60)
4677 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678 " nodes=%*pbl",
4679 nodemask_pr_args(&l->nodes));
4681 len += sprintf(buf + len, "\n");
4684 free_loc_track(&t);
4685 bitmap_free(map);
4686 if (!t.count)
4687 len += sprintf(buf, "No data\n");
4688 return len;
4690 #endif /* CONFIG_SLUB_DEBUG */
4692 #ifdef SLUB_RESILIENCY_TEST
4693 static void __init resiliency_test(void)
4695 u8 *p;
4696 int type = KMALLOC_NORMAL;
4698 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4700 pr_err("SLUB resiliency testing\n");
4701 pr_err("-----------------------\n");
4702 pr_err("A. Corruption after allocation\n");
4704 p = kzalloc(16, GFP_KERNEL);
4705 p[16] = 0x12;
4706 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4707 p + 16);
4709 validate_slab_cache(kmalloc_caches[type][4]);
4711 /* Hmmm... The next two are dangerous */
4712 p = kzalloc(32, GFP_KERNEL);
4713 p[32 + sizeof(void *)] = 0x34;
4714 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4716 pr_err("If allocated object is overwritten then not detectable\n\n");
4718 validate_slab_cache(kmalloc_caches[type][5]);
4719 p = kzalloc(64, GFP_KERNEL);
4720 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4721 *p = 0x56;
4722 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4724 pr_err("If allocated object is overwritten then not detectable\n\n");
4725 validate_slab_cache(kmalloc_caches[type][6]);
4727 pr_err("\nB. Corruption after free\n");
4728 p = kzalloc(128, GFP_KERNEL);
4729 kfree(p);
4730 *p = 0x78;
4731 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4732 validate_slab_cache(kmalloc_caches[type][7]);
4734 p = kzalloc(256, GFP_KERNEL);
4735 kfree(p);
4736 p[50] = 0x9a;
4737 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4738 validate_slab_cache(kmalloc_caches[type][8]);
4740 p = kzalloc(512, GFP_KERNEL);
4741 kfree(p);
4742 p[512] = 0xab;
4743 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4744 validate_slab_cache(kmalloc_caches[type][9]);
4746 #else
4747 #ifdef CONFIG_SYSFS
4748 static void resiliency_test(void) {};
4749 #endif
4750 #endif /* SLUB_RESILIENCY_TEST */
4752 #ifdef CONFIG_SYSFS
4753 enum slab_stat_type {
4754 SL_ALL, /* All slabs */
4755 SL_PARTIAL, /* Only partially allocated slabs */
4756 SL_CPU, /* Only slabs used for cpu caches */
4757 SL_OBJECTS, /* Determine allocated objects not slabs */
4758 SL_TOTAL /* Determine object capacity not slabs */
4761 #define SO_ALL (1 << SL_ALL)
4762 #define SO_PARTIAL (1 << SL_PARTIAL)
4763 #define SO_CPU (1 << SL_CPU)
4764 #define SO_OBJECTS (1 << SL_OBJECTS)
4765 #define SO_TOTAL (1 << SL_TOTAL)
4767 #ifdef CONFIG_MEMCG
4768 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4770 static int __init setup_slub_memcg_sysfs(char *str)
4772 int v;
4774 if (get_option(&str, &v) > 0)
4775 memcg_sysfs_enabled = v;
4777 return 1;
4780 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4781 #endif
4783 static ssize_t show_slab_objects(struct kmem_cache *s,
4784 char *buf, unsigned long flags)
4786 unsigned long total = 0;
4787 int node;
4788 int x;
4789 unsigned long *nodes;
4791 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4792 if (!nodes)
4793 return -ENOMEM;
4795 if (flags & SO_CPU) {
4796 int cpu;
4798 for_each_possible_cpu(cpu) {
4799 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4800 cpu);
4801 int node;
4802 struct page *page;
4804 page = READ_ONCE(c->page);
4805 if (!page)
4806 continue;
4808 node = page_to_nid(page);
4809 if (flags & SO_TOTAL)
4810 x = page->objects;
4811 else if (flags & SO_OBJECTS)
4812 x = page->inuse;
4813 else
4814 x = 1;
4816 total += x;
4817 nodes[node] += x;
4819 page = slub_percpu_partial_read_once(c);
4820 if (page) {
4821 node = page_to_nid(page);
4822 if (flags & SO_TOTAL)
4823 WARN_ON_ONCE(1);
4824 else if (flags & SO_OBJECTS)
4825 WARN_ON_ONCE(1);
4826 else
4827 x = page->pages;
4828 total += x;
4829 nodes[node] += x;
4835 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4836 * already held which will conflict with an existing lock order:
4838 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4840 * We don't really need mem_hotplug_lock (to hold off
4841 * slab_mem_going_offline_callback) here because slab's memory hot
4842 * unplug code doesn't destroy the kmem_cache->node[] data.
4845 #ifdef CONFIG_SLUB_DEBUG
4846 if (flags & SO_ALL) {
4847 struct kmem_cache_node *n;
4849 for_each_kmem_cache_node(s, node, n) {
4851 if (flags & SO_TOTAL)
4852 x = atomic_long_read(&n->total_objects);
4853 else if (flags & SO_OBJECTS)
4854 x = atomic_long_read(&n->total_objects) -
4855 count_partial(n, count_free);
4856 else
4857 x = atomic_long_read(&n->nr_slabs);
4858 total += x;
4859 nodes[node] += x;
4862 } else
4863 #endif
4864 if (flags & SO_PARTIAL) {
4865 struct kmem_cache_node *n;
4867 for_each_kmem_cache_node(s, node, n) {
4868 if (flags & SO_TOTAL)
4869 x = count_partial(n, count_total);
4870 else if (flags & SO_OBJECTS)
4871 x = count_partial(n, count_inuse);
4872 else
4873 x = n->nr_partial;
4874 total += x;
4875 nodes[node] += x;
4878 x = sprintf(buf, "%lu", total);
4879 #ifdef CONFIG_NUMA
4880 for (node = 0; node < nr_node_ids; node++)
4881 if (nodes[node])
4882 x += sprintf(buf + x, " N%d=%lu",
4883 node, nodes[node]);
4884 #endif
4885 kfree(nodes);
4886 return x + sprintf(buf + x, "\n");
4889 #ifdef CONFIG_SLUB_DEBUG
4890 static int any_slab_objects(struct kmem_cache *s)
4892 int node;
4893 struct kmem_cache_node *n;
4895 for_each_kmem_cache_node(s, node, n)
4896 if (atomic_long_read(&n->total_objects))
4897 return 1;
4899 return 0;
4901 #endif
4903 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4904 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4906 struct slab_attribute {
4907 struct attribute attr;
4908 ssize_t (*show)(struct kmem_cache *s, char *buf);
4909 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4912 #define SLAB_ATTR_RO(_name) \
4913 static struct slab_attribute _name##_attr = \
4914 __ATTR(_name, 0400, _name##_show, NULL)
4916 #define SLAB_ATTR(_name) \
4917 static struct slab_attribute _name##_attr = \
4918 __ATTR(_name, 0600, _name##_show, _name##_store)
4920 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4922 return sprintf(buf, "%u\n", s->size);
4924 SLAB_ATTR_RO(slab_size);
4926 static ssize_t align_show(struct kmem_cache *s, char *buf)
4928 return sprintf(buf, "%u\n", s->align);
4930 SLAB_ATTR_RO(align);
4932 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4934 return sprintf(buf, "%u\n", s->object_size);
4936 SLAB_ATTR_RO(object_size);
4938 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4940 return sprintf(buf, "%u\n", oo_objects(s->oo));
4942 SLAB_ATTR_RO(objs_per_slab);
4944 static ssize_t order_store(struct kmem_cache *s,
4945 const char *buf, size_t length)
4947 unsigned int order;
4948 int err;
4950 err = kstrtouint(buf, 10, &order);
4951 if (err)
4952 return err;
4954 if (order > slub_max_order || order < slub_min_order)
4955 return -EINVAL;
4957 calculate_sizes(s, order);
4958 return length;
4961 static ssize_t order_show(struct kmem_cache *s, char *buf)
4963 return sprintf(buf, "%u\n", oo_order(s->oo));
4965 SLAB_ATTR(order);
4967 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4969 return sprintf(buf, "%lu\n", s->min_partial);
4972 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4973 size_t length)
4975 unsigned long min;
4976 int err;
4978 err = kstrtoul(buf, 10, &min);
4979 if (err)
4980 return err;
4982 set_min_partial(s, min);
4983 return length;
4985 SLAB_ATTR(min_partial);
4987 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4989 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4992 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4993 size_t length)
4995 unsigned int objects;
4996 int err;
4998 err = kstrtouint(buf, 10, &objects);
4999 if (err)
5000 return err;
5001 if (objects && !kmem_cache_has_cpu_partial(s))
5002 return -EINVAL;
5004 slub_set_cpu_partial(s, objects);
5005 flush_all(s);
5006 return length;
5008 SLAB_ATTR(cpu_partial);
5010 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5012 if (!s->ctor)
5013 return 0;
5014 return sprintf(buf, "%pS\n", s->ctor);
5016 SLAB_ATTR_RO(ctor);
5018 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5020 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5022 SLAB_ATTR_RO(aliases);
5024 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5026 return show_slab_objects(s, buf, SO_PARTIAL);
5028 SLAB_ATTR_RO(partial);
5030 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5032 return show_slab_objects(s, buf, SO_CPU);
5034 SLAB_ATTR_RO(cpu_slabs);
5036 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5038 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5040 SLAB_ATTR_RO(objects);
5042 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5044 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5046 SLAB_ATTR_RO(objects_partial);
5048 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5050 int objects = 0;
5051 int pages = 0;
5052 int cpu;
5053 int len;
5055 for_each_online_cpu(cpu) {
5056 struct page *page;
5058 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5060 if (page) {
5061 pages += page->pages;
5062 objects += page->pobjects;
5066 len = sprintf(buf, "%d(%d)", objects, pages);
5068 #ifdef CONFIG_SMP
5069 for_each_online_cpu(cpu) {
5070 struct page *page;
5072 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5074 if (page && len < PAGE_SIZE - 20)
5075 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5076 page->pobjects, page->pages);
5078 #endif
5079 return len + sprintf(buf + len, "\n");
5081 SLAB_ATTR_RO(slabs_cpu_partial);
5083 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5088 static ssize_t reclaim_account_store(struct kmem_cache *s,
5089 const char *buf, size_t length)
5091 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5092 if (buf[0] == '1')
5093 s->flags |= SLAB_RECLAIM_ACCOUNT;
5094 return length;
5096 SLAB_ATTR(reclaim_account);
5098 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5102 SLAB_ATTR_RO(hwcache_align);
5104 #ifdef CONFIG_ZONE_DMA
5105 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5109 SLAB_ATTR_RO(cache_dma);
5110 #endif
5112 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5114 return sprintf(buf, "%u\n", s->usersize);
5116 SLAB_ATTR_RO(usersize);
5118 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5122 SLAB_ATTR_RO(destroy_by_rcu);
5124 #ifdef CONFIG_SLUB_DEBUG
5125 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5127 return show_slab_objects(s, buf, SO_ALL);
5129 SLAB_ATTR_RO(slabs);
5131 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5133 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5135 SLAB_ATTR_RO(total_objects);
5137 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142 static ssize_t sanity_checks_store(struct kmem_cache *s,
5143 const char *buf, size_t length)
5145 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5146 if (buf[0] == '1') {
5147 s->flags &= ~__CMPXCHG_DOUBLE;
5148 s->flags |= SLAB_CONSISTENCY_CHECKS;
5150 return length;
5152 SLAB_ATTR(sanity_checks);
5154 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5160 size_t length)
5163 * Tracing a merged cache is going to give confusing results
5164 * as well as cause other issues like converting a mergeable
5165 * cache into an umergeable one.
5167 if (s->refcount > 1)
5168 return -EINVAL;
5170 s->flags &= ~SLAB_TRACE;
5171 if (buf[0] == '1') {
5172 s->flags &= ~__CMPXCHG_DOUBLE;
5173 s->flags |= SLAB_TRACE;
5175 return length;
5177 SLAB_ATTR(trace);
5179 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184 static ssize_t red_zone_store(struct kmem_cache *s,
5185 const char *buf, size_t length)
5187 if (any_slab_objects(s))
5188 return -EBUSY;
5190 s->flags &= ~SLAB_RED_ZONE;
5191 if (buf[0] == '1') {
5192 s->flags |= SLAB_RED_ZONE;
5194 calculate_sizes(s, -1);
5195 return length;
5197 SLAB_ATTR(red_zone);
5199 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5201 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204 static ssize_t poison_store(struct kmem_cache *s,
5205 const char *buf, size_t length)
5207 if (any_slab_objects(s))
5208 return -EBUSY;
5210 s->flags &= ~SLAB_POISON;
5211 if (buf[0] == '1') {
5212 s->flags |= SLAB_POISON;
5214 calculate_sizes(s, -1);
5215 return length;
5217 SLAB_ATTR(poison);
5219 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224 static ssize_t store_user_store(struct kmem_cache *s,
5225 const char *buf, size_t length)
5227 if (any_slab_objects(s))
5228 return -EBUSY;
5230 s->flags &= ~SLAB_STORE_USER;
5231 if (buf[0] == '1') {
5232 s->flags &= ~__CMPXCHG_DOUBLE;
5233 s->flags |= SLAB_STORE_USER;
5235 calculate_sizes(s, -1);
5236 return length;
5238 SLAB_ATTR(store_user);
5240 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5242 return 0;
5245 static ssize_t validate_store(struct kmem_cache *s,
5246 const char *buf, size_t length)
5248 int ret = -EINVAL;
5250 if (buf[0] == '1') {
5251 ret = validate_slab_cache(s);
5252 if (ret >= 0)
5253 ret = length;
5255 return ret;
5257 SLAB_ATTR(validate);
5259 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5261 if (!(s->flags & SLAB_STORE_USER))
5262 return -ENOSYS;
5263 return list_locations(s, buf, TRACK_ALLOC);
5265 SLAB_ATTR_RO(alloc_calls);
5267 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5269 if (!(s->flags & SLAB_STORE_USER))
5270 return -ENOSYS;
5271 return list_locations(s, buf, TRACK_FREE);
5273 SLAB_ATTR_RO(free_calls);
5274 #endif /* CONFIG_SLUB_DEBUG */
5276 #ifdef CONFIG_FAILSLAB
5277 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5279 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5283 size_t length)
5285 if (s->refcount > 1)
5286 return -EINVAL;
5288 s->flags &= ~SLAB_FAILSLAB;
5289 if (buf[0] == '1')
5290 s->flags |= SLAB_FAILSLAB;
5291 return length;
5293 SLAB_ATTR(failslab);
5294 #endif
5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5298 return 0;
5301 static ssize_t shrink_store(struct kmem_cache *s,
5302 const char *buf, size_t length)
5304 if (buf[0] == '1')
5305 kmem_cache_shrink_all(s);
5306 else
5307 return -EINVAL;
5308 return length;
5310 SLAB_ATTR(shrink);
5312 #ifdef CONFIG_NUMA
5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5315 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5319 const char *buf, size_t length)
5321 unsigned int ratio;
5322 int err;
5324 err = kstrtouint(buf, 10, &ratio);
5325 if (err)
5326 return err;
5327 if (ratio > 100)
5328 return -ERANGE;
5330 s->remote_node_defrag_ratio = ratio * 10;
5332 return length;
5334 SLAB_ATTR(remote_node_defrag_ratio);
5335 #endif
5337 #ifdef CONFIG_SLUB_STATS
5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5340 unsigned long sum = 0;
5341 int cpu;
5342 int len;
5343 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5345 if (!data)
5346 return -ENOMEM;
5348 for_each_online_cpu(cpu) {
5349 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5351 data[cpu] = x;
5352 sum += x;
5355 len = sprintf(buf, "%lu", sum);
5357 #ifdef CONFIG_SMP
5358 for_each_online_cpu(cpu) {
5359 if (data[cpu] && len < PAGE_SIZE - 20)
5360 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5362 #endif
5363 kfree(data);
5364 return len + sprintf(buf + len, "\n");
5367 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5369 int cpu;
5371 for_each_online_cpu(cpu)
5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375 #define STAT_ATTR(si, text) \
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5378 return show_stat(s, buf, si); \
5380 static ssize_t text##_store(struct kmem_cache *s, \
5381 const char *buf, size_t length) \
5383 if (buf[0] != '0') \
5384 return -EINVAL; \
5385 clear_stat(s, si); \
5386 return length; \
5388 SLAB_ATTR(text); \
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394 STAT_ATTR(FREE_FROZEN, free_frozen);
5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 STAT_ATTR(FREE_SLAB, free_slab);
5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416 #endif /* CONFIG_SLUB_STATS */
5418 static struct attribute *slab_attrs[] = {
5419 &slab_size_attr.attr,
5420 &object_size_attr.attr,
5421 &objs_per_slab_attr.attr,
5422 &order_attr.attr,
5423 &min_partial_attr.attr,
5424 &cpu_partial_attr.attr,
5425 &objects_attr.attr,
5426 &objects_partial_attr.attr,
5427 &partial_attr.attr,
5428 &cpu_slabs_attr.attr,
5429 &ctor_attr.attr,
5430 &aliases_attr.attr,
5431 &align_attr.attr,
5432 &hwcache_align_attr.attr,
5433 &reclaim_account_attr.attr,
5434 &destroy_by_rcu_attr.attr,
5435 &shrink_attr.attr,
5436 &slabs_cpu_partial_attr.attr,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 &total_objects_attr.attr,
5439 &slabs_attr.attr,
5440 &sanity_checks_attr.attr,
5441 &trace_attr.attr,
5442 &red_zone_attr.attr,
5443 &poison_attr.attr,
5444 &store_user_attr.attr,
5445 &validate_attr.attr,
5446 &alloc_calls_attr.attr,
5447 &free_calls_attr.attr,
5448 #endif
5449 #ifdef CONFIG_ZONE_DMA
5450 &cache_dma_attr.attr,
5451 #endif
5452 #ifdef CONFIG_NUMA
5453 &remote_node_defrag_ratio_attr.attr,
5454 #endif
5455 #ifdef CONFIG_SLUB_STATS
5456 &alloc_fastpath_attr.attr,
5457 &alloc_slowpath_attr.attr,
5458 &free_fastpath_attr.attr,
5459 &free_slowpath_attr.attr,
5460 &free_frozen_attr.attr,
5461 &free_add_partial_attr.attr,
5462 &free_remove_partial_attr.attr,
5463 &alloc_from_partial_attr.attr,
5464 &alloc_slab_attr.attr,
5465 &alloc_refill_attr.attr,
5466 &alloc_node_mismatch_attr.attr,
5467 &free_slab_attr.attr,
5468 &cpuslab_flush_attr.attr,
5469 &deactivate_full_attr.attr,
5470 &deactivate_empty_attr.attr,
5471 &deactivate_to_head_attr.attr,
5472 &deactivate_to_tail_attr.attr,
5473 &deactivate_remote_frees_attr.attr,
5474 &deactivate_bypass_attr.attr,
5475 &order_fallback_attr.attr,
5476 &cmpxchg_double_fail_attr.attr,
5477 &cmpxchg_double_cpu_fail_attr.attr,
5478 &cpu_partial_alloc_attr.attr,
5479 &cpu_partial_free_attr.attr,
5480 &cpu_partial_node_attr.attr,
5481 &cpu_partial_drain_attr.attr,
5482 #endif
5483 #ifdef CONFIG_FAILSLAB
5484 &failslab_attr.attr,
5485 #endif
5486 &usersize_attr.attr,
5488 NULL
5491 static const struct attribute_group slab_attr_group = {
5492 .attrs = slab_attrs,
5495 static ssize_t slab_attr_show(struct kobject *kobj,
5496 struct attribute *attr,
5497 char *buf)
5499 struct slab_attribute *attribute;
5500 struct kmem_cache *s;
5501 int err;
5503 attribute = to_slab_attr(attr);
5504 s = to_slab(kobj);
5506 if (!attribute->show)
5507 return -EIO;
5509 err = attribute->show(s, buf);
5511 return err;
5514 static ssize_t slab_attr_store(struct kobject *kobj,
5515 struct attribute *attr,
5516 const char *buf, size_t len)
5518 struct slab_attribute *attribute;
5519 struct kmem_cache *s;
5520 int err;
5522 attribute = to_slab_attr(attr);
5523 s = to_slab(kobj);
5525 if (!attribute->store)
5526 return -EIO;
5528 err = attribute->store(s, buf, len);
5529 #ifdef CONFIG_MEMCG
5530 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5531 struct kmem_cache *c;
5533 mutex_lock(&slab_mutex);
5534 if (s->max_attr_size < len)
5535 s->max_attr_size = len;
5538 * This is a best effort propagation, so this function's return
5539 * value will be determined by the parent cache only. This is
5540 * basically because not all attributes will have a well
5541 * defined semantics for rollbacks - most of the actions will
5542 * have permanent effects.
5544 * Returning the error value of any of the children that fail
5545 * is not 100 % defined, in the sense that users seeing the
5546 * error code won't be able to know anything about the state of
5547 * the cache.
5549 * Only returning the error code for the parent cache at least
5550 * has well defined semantics. The cache being written to
5551 * directly either failed or succeeded, in which case we loop
5552 * through the descendants with best-effort propagation.
5554 for_each_memcg_cache(c, s)
5555 attribute->store(c, buf, len);
5556 mutex_unlock(&slab_mutex);
5558 #endif
5559 return err;
5562 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5564 #ifdef CONFIG_MEMCG
5565 int i;
5566 char *buffer = NULL;
5567 struct kmem_cache *root_cache;
5569 if (is_root_cache(s))
5570 return;
5572 root_cache = s->memcg_params.root_cache;
5575 * This mean this cache had no attribute written. Therefore, no point
5576 * in copying default values around
5578 if (!root_cache->max_attr_size)
5579 return;
5581 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5582 char mbuf[64];
5583 char *buf;
5584 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5585 ssize_t len;
5587 if (!attr || !attr->store || !attr->show)
5588 continue;
5591 * It is really bad that we have to allocate here, so we will
5592 * do it only as a fallback. If we actually allocate, though,
5593 * we can just use the allocated buffer until the end.
5595 * Most of the slub attributes will tend to be very small in
5596 * size, but sysfs allows buffers up to a page, so they can
5597 * theoretically happen.
5599 if (buffer)
5600 buf = buffer;
5601 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5602 buf = mbuf;
5603 else {
5604 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5605 if (WARN_ON(!buffer))
5606 continue;
5607 buf = buffer;
5610 len = attr->show(root_cache, buf);
5611 if (len > 0)
5612 attr->store(s, buf, len);
5615 if (buffer)
5616 free_page((unsigned long)buffer);
5617 #endif /* CONFIG_MEMCG */
5620 static void kmem_cache_release(struct kobject *k)
5622 slab_kmem_cache_release(to_slab(k));
5625 static const struct sysfs_ops slab_sysfs_ops = {
5626 .show = slab_attr_show,
5627 .store = slab_attr_store,
5630 static struct kobj_type slab_ktype = {
5631 .sysfs_ops = &slab_sysfs_ops,
5632 .release = kmem_cache_release,
5635 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5637 struct kobj_type *ktype = get_ktype(kobj);
5639 if (ktype == &slab_ktype)
5640 return 1;
5641 return 0;
5644 static const struct kset_uevent_ops slab_uevent_ops = {
5645 .filter = uevent_filter,
5648 static struct kset *slab_kset;
5650 static inline struct kset *cache_kset(struct kmem_cache *s)
5652 #ifdef CONFIG_MEMCG
5653 if (!is_root_cache(s))
5654 return s->memcg_params.root_cache->memcg_kset;
5655 #endif
5656 return slab_kset;
5659 #define ID_STR_LENGTH 64
5661 /* Create a unique string id for a slab cache:
5663 * Format :[flags-]size
5665 static char *create_unique_id(struct kmem_cache *s)
5667 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5668 char *p = name;
5670 BUG_ON(!name);
5672 *p++ = ':';
5674 * First flags affecting slabcache operations. We will only
5675 * get here for aliasable slabs so we do not need to support
5676 * too many flags. The flags here must cover all flags that
5677 * are matched during merging to guarantee that the id is
5678 * unique.
5680 if (s->flags & SLAB_CACHE_DMA)
5681 *p++ = 'd';
5682 if (s->flags & SLAB_CACHE_DMA32)
5683 *p++ = 'D';
5684 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5685 *p++ = 'a';
5686 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5687 *p++ = 'F';
5688 if (s->flags & SLAB_ACCOUNT)
5689 *p++ = 'A';
5690 if (p != name + 1)
5691 *p++ = '-';
5692 p += sprintf(p, "%07u", s->size);
5694 BUG_ON(p > name + ID_STR_LENGTH - 1);
5695 return name;
5698 static void sysfs_slab_remove_workfn(struct work_struct *work)
5700 struct kmem_cache *s =
5701 container_of(work, struct kmem_cache, kobj_remove_work);
5703 if (!s->kobj.state_in_sysfs)
5705 * For a memcg cache, this may be called during
5706 * deactivation and again on shutdown. Remove only once.
5707 * A cache is never shut down before deactivation is
5708 * complete, so no need to worry about synchronization.
5710 goto out;
5712 #ifdef CONFIG_MEMCG
5713 kset_unregister(s->memcg_kset);
5714 #endif
5715 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5716 out:
5717 kobject_put(&s->kobj);
5720 static int sysfs_slab_add(struct kmem_cache *s)
5722 int err;
5723 const char *name;
5724 struct kset *kset = cache_kset(s);
5725 int unmergeable = slab_unmergeable(s);
5727 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5729 if (!kset) {
5730 kobject_init(&s->kobj, &slab_ktype);
5731 return 0;
5734 if (!unmergeable && disable_higher_order_debug &&
5735 (slub_debug & DEBUG_METADATA_FLAGS))
5736 unmergeable = 1;
5738 if (unmergeable) {
5740 * Slabcache can never be merged so we can use the name proper.
5741 * This is typically the case for debug situations. In that
5742 * case we can catch duplicate names easily.
5744 sysfs_remove_link(&slab_kset->kobj, s->name);
5745 name = s->name;
5746 } else {
5748 * Create a unique name for the slab as a target
5749 * for the symlinks.
5751 name = create_unique_id(s);
5754 s->kobj.kset = kset;
5755 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5756 if (err)
5757 goto out;
5759 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5760 if (err)
5761 goto out_del_kobj;
5763 #ifdef CONFIG_MEMCG
5764 if (is_root_cache(s) && memcg_sysfs_enabled) {
5765 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5766 if (!s->memcg_kset) {
5767 err = -ENOMEM;
5768 goto out_del_kobj;
5771 #endif
5773 kobject_uevent(&s->kobj, KOBJ_ADD);
5774 if (!unmergeable) {
5775 /* Setup first alias */
5776 sysfs_slab_alias(s, s->name);
5778 out:
5779 if (!unmergeable)
5780 kfree(name);
5781 return err;
5782 out_del_kobj:
5783 kobject_del(&s->kobj);
5784 goto out;
5787 static void sysfs_slab_remove(struct kmem_cache *s)
5789 if (slab_state < FULL)
5791 * Sysfs has not been setup yet so no need to remove the
5792 * cache from sysfs.
5794 return;
5796 kobject_get(&s->kobj);
5797 schedule_work(&s->kobj_remove_work);
5800 void sysfs_slab_unlink(struct kmem_cache *s)
5802 if (slab_state >= FULL)
5803 kobject_del(&s->kobj);
5806 void sysfs_slab_release(struct kmem_cache *s)
5808 if (slab_state >= FULL)
5809 kobject_put(&s->kobj);
5813 * Need to buffer aliases during bootup until sysfs becomes
5814 * available lest we lose that information.
5816 struct saved_alias {
5817 struct kmem_cache *s;
5818 const char *name;
5819 struct saved_alias *next;
5822 static struct saved_alias *alias_list;
5824 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5826 struct saved_alias *al;
5828 if (slab_state == FULL) {
5830 * If we have a leftover link then remove it.
5832 sysfs_remove_link(&slab_kset->kobj, name);
5833 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5836 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5837 if (!al)
5838 return -ENOMEM;
5840 al->s = s;
5841 al->name = name;
5842 al->next = alias_list;
5843 alias_list = al;
5844 return 0;
5847 static int __init slab_sysfs_init(void)
5849 struct kmem_cache *s;
5850 int err;
5852 mutex_lock(&slab_mutex);
5854 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5855 if (!slab_kset) {
5856 mutex_unlock(&slab_mutex);
5857 pr_err("Cannot register slab subsystem.\n");
5858 return -ENOSYS;
5861 slab_state = FULL;
5863 list_for_each_entry(s, &slab_caches, list) {
5864 err = sysfs_slab_add(s);
5865 if (err)
5866 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5867 s->name);
5870 while (alias_list) {
5871 struct saved_alias *al = alias_list;
5873 alias_list = alias_list->next;
5874 err = sysfs_slab_alias(al->s, al->name);
5875 if (err)
5876 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 al->name);
5878 kfree(al);
5881 mutex_unlock(&slab_mutex);
5882 resiliency_test();
5883 return 0;
5886 __initcall(slab_sysfs_init);
5887 #endif /* CONFIG_SYSFS */
5890 * The /proc/slabinfo ABI
5892 #ifdef CONFIG_SLUB_DEBUG
5893 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5895 unsigned long nr_slabs = 0;
5896 unsigned long nr_objs = 0;
5897 unsigned long nr_free = 0;
5898 int node;
5899 struct kmem_cache_node *n;
5901 for_each_kmem_cache_node(s, node, n) {
5902 nr_slabs += node_nr_slabs(n);
5903 nr_objs += node_nr_objs(n);
5904 nr_free += count_partial(n, count_free);
5907 sinfo->active_objs = nr_objs - nr_free;
5908 sinfo->num_objs = nr_objs;
5909 sinfo->active_slabs = nr_slabs;
5910 sinfo->num_slabs = nr_slabs;
5911 sinfo->objects_per_slab = oo_objects(s->oo);
5912 sinfo->cache_order = oo_order(s->oo);
5915 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5919 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5920 size_t count, loff_t *ppos)
5922 return -EIO;
5924 #endif /* CONFIG_SLUB_DEBUG */