split dev_queue
[cor.git] / mm / rmap.c
blobb3e3819198356b5095e8426d8c208dd668de9834
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/huge_mm.h>
65 #include <linux/backing-dev.h>
66 #include <linux/page_idle.h>
67 #include <linux/memremap.h>
68 #include <linux/userfaultfd_k.h>
70 #include <asm/tlbflush.h>
72 #include <trace/events/tlb.h>
74 #include "internal.h"
76 static struct kmem_cache *anon_vma_cachep;
77 static struct kmem_cache *anon_vma_chain_cachep;
79 static inline struct anon_vma *anon_vma_alloc(void)
81 struct anon_vma *anon_vma;
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
92 anon_vma->root = anon_vma;
95 return anon_vma;
98 static inline void anon_vma_free(struct anon_vma *anon_vma)
100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
103 * Synchronize against page_lock_anon_vma_read() such that
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
113 * LOCK MB
114 * atomic_read() rwsem_is_locked()
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
119 might_sleep();
120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
121 anon_vma_lock_write(anon_vma);
122 anon_vma_unlock_write(anon_vma);
125 kmem_cache_free(anon_vma_cachep, anon_vma);
128 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
133 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
138 static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
149 * __anon_vma_prepare - attach an anon_vma to a memory region
150 * @vma: the memory region in question
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
158 * not we either need to find an adjacent mapping that we
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
163 * Anon-vma allocations are very subtle, because we may have
164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
174 * This must be called with the mmap_sem held for reading.
176 int __anon_vma_prepare(struct vm_area_struct *vma)
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
180 struct anon_vma_chain *avc;
182 might_sleep();
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
205 allocated = NULL;
206 avc = NULL;
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
216 return 0;
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
232 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
237 up_write(&root->rwsem);
238 root = new_root;
239 down_write(&root->rwsem);
241 return root;
244 static inline void unlock_anon_vma_root(struct anon_vma *root)
246 if (root)
247 up_write(&root->rwsem);
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
254 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
255 * anon_vma_fork(). The first three want an exact copy of src, while the last
256 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
257 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
258 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
260 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
261 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
262 * This prevents degradation of anon_vma hierarchy to endless linear chain in
263 * case of constantly forking task. On the other hand, an anon_vma with more
264 * than one child isn't reused even if there was no alive vma, thus rmap
265 * walker has a good chance of avoiding scanning the whole hierarchy when it
266 * searches where page is mapped.
268 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
270 struct anon_vma_chain *avc, *pavc;
271 struct anon_vma *root = NULL;
272 struct vm_area_struct *prev = dst->vm_prev, *pprev = src->vm_prev;
275 * If parent share anon_vma with its vm_prev, keep this sharing in in
276 * child.
278 * 1. Parent has vm_prev, which implies we have vm_prev.
279 * 2. Parent and its vm_prev have the same anon_vma.
281 if (!dst->anon_vma && src->anon_vma &&
282 pprev && pprev->anon_vma == src->anon_vma)
283 dst->anon_vma = prev->anon_vma;
286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 struct anon_vma *anon_vma;
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
292 root = NULL;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto enomem_failure;
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(dst, avc, anon_vma);
302 * Reuse existing anon_vma if its degree lower than two,
303 * that means it has no vma and only one anon_vma child.
305 * Do not chose parent anon_vma, otherwise first child
306 * will always reuse it. Root anon_vma is never reused:
307 * it has self-parent reference and at least one child.
309 if (!dst->anon_vma && src->anon_vma &&
310 anon_vma != src->anon_vma && anon_vma->degree < 2)
311 dst->anon_vma = anon_vma;
313 if (dst->anon_vma)
314 dst->anon_vma->degree++;
315 unlock_anon_vma_root(root);
316 return 0;
318 enomem_failure:
320 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
321 * decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
325 dst->anon_vma = NULL;
326 unlink_anon_vmas(dst);
327 return -ENOMEM;
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
339 int error;
341 /* Don't bother if the parent process has no anon_vma here. */
342 if (!pvma->anon_vma)
343 return 0;
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
352 error = anon_vma_clone(vma, pvma);
353 if (error)
354 return error;
356 /* An existing anon_vma has been reused, all done then. */
357 if (vma->anon_vma)
358 return 0;
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
362 if (!anon_vma)
363 goto out_error;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
369 * The root anon_vma's spinlock is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->degree++;
385 anon_vma_unlock_write(anon_vma);
387 return 0;
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
396 void unlink_anon_vmas(struct vm_area_struct *vma)
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->degree--;
417 continue;
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
423 if (vma->anon_vma)
424 vma->anon_vma->degree--;
425 unlock_anon_vma_root(root);
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 * needing to write-acquire the anon_vma->root->rwsem.
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
435 VM_WARN_ON(anon_vma->degree);
436 put_anon_vma(anon_vma);
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
443 static void anon_vma_ctor(void *data)
445 struct anon_vma *anon_vma = data;
447 init_rwsem(&anon_vma->rwsem);
448 atomic_set(&anon_vma->refcount, 0);
449 anon_vma->rb_root = RB_ROOT_CACHED;
452 void __init anon_vma_init(void)
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 * Since there is no serialization what so ever against page_remove_rmap()
465 * the best this function can do is return a locked anon_vma that might
466 * have been relevant to this page.
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
485 struct anon_vma *page_get_anon_vma(struct page *page)
487 struct anon_vma *anon_vma = NULL;
488 unsigned long anon_mapping;
490 rcu_read_lock();
491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 goto out;
494 if (!page_mapped(page))
495 goto out;
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
504 * If this page is still mapped, then its anon_vma cannot have been
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 * above cannot corrupt).
510 if (!page_mapped(page)) {
511 rcu_read_unlock();
512 put_anon_vma(anon_vma);
513 return NULL;
515 out:
516 rcu_read_unlock();
518 return anon_vma;
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
530 struct anon_vma *anon_vma = NULL;
531 struct anon_vma *root_anon_vma;
532 unsigned long anon_mapping;
534 rcu_read_lock();
535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 root_anon_vma = READ_ONCE(anon_vma->root);
543 if (down_read_trylock(&root_anon_vma->rwsem)) {
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
547 * not go away, see anon_vma_free().
549 if (!page_mapped(page)) {
550 up_read(&root_anon_vma->rwsem);
551 anon_vma = NULL;
553 goto out;
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
562 if (!page_mapped(page)) {
563 rcu_read_unlock();
564 put_anon_vma(anon_vma);
565 return NULL;
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
570 anon_vma_lock_read(anon_vma);
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
576 * we'll deadlock on the anon_vma_lock_write() recursion.
578 anon_vma_unlock_read(anon_vma);
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
583 return anon_vma;
585 out:
586 rcu_read_unlock();
587 return anon_vma;
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
592 anon_vma_unlock_read(anon_vma);
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
602 void try_to_unmap_flush(void)
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606 if (!tlb_ubc->flush_required)
607 return;
609 arch_tlbbatch_flush(&tlb_ubc->arch);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 tlb_ubc->flush_required = true;
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
634 barrier();
635 mm->tlb_flush_batched = true;
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
642 if (writable)
643 tlb_ubc->writable = true;
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 bool should_defer = false;
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
662 return should_defer;
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
680 void flush_tlb_batched_pending(struct mm_struct *mm)
682 if (mm->tlb_flush_batched) {
683 flush_tlb_mm(mm);
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
689 barrier();
690 mm->tlb_flush_batched = false;
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
700 return false;
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
705 * At what user virtual address is page expected in vma?
706 * Caller should check the page is actually part of the vma.
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
710 unsigned long address;
711 if (PageAnon(page)) {
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
719 return -EFAULT;
720 } else if (page->mapping) {
721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
722 return -EFAULT;
723 } else
724 return -EFAULT;
725 address = __vma_address(page, vma);
726 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 return -EFAULT;
728 return address;
731 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
733 pgd_t *pgd;
734 p4d_t *p4d;
735 pud_t *pud;
736 pmd_t *pmd = NULL;
737 pmd_t pmde;
739 pgd = pgd_offset(mm, address);
740 if (!pgd_present(*pgd))
741 goto out;
743 p4d = p4d_offset(pgd, address);
744 if (!p4d_present(*p4d))
745 goto out;
747 pud = pud_offset(p4d, address);
748 if (!pud_present(*pud))
749 goto out;
751 pmd = pmd_offset(pud, address);
753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
754 * without holding anon_vma lock for write. So when looking for a
755 * genuine pmde (in which to find pte), test present and !THP together.
757 pmde = *pmd;
758 barrier();
759 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
760 pmd = NULL;
761 out:
762 return pmd;
765 struct page_referenced_arg {
766 int mapcount;
767 int referenced;
768 unsigned long vm_flags;
769 struct mem_cgroup *memcg;
772 * arg: page_referenced_arg will be passed
774 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
775 unsigned long address, void *arg)
777 struct page_referenced_arg *pra = arg;
778 struct page_vma_mapped_walk pvmw = {
779 .page = page,
780 .vma = vma,
781 .address = address,
783 int referenced = 0;
785 while (page_vma_mapped_walk(&pvmw)) {
786 address = pvmw.address;
788 if (vma->vm_flags & VM_LOCKED) {
789 page_vma_mapped_walk_done(&pvmw);
790 pra->vm_flags |= VM_LOCKED;
791 return false; /* To break the loop */
794 if (pvmw.pte) {
795 if (ptep_clear_flush_young_notify(vma, address,
796 pvmw.pte)) {
798 * Don't treat a reference through
799 * a sequentially read mapping as such.
800 * If the page has been used in another mapping,
801 * we will catch it; if this other mapping is
802 * already gone, the unmap path will have set
803 * PG_referenced or activated the page.
805 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 referenced++;
808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 if (pmdp_clear_flush_young_notify(vma, address,
810 pvmw.pmd))
811 referenced++;
812 } else {
813 /* unexpected pmd-mapped page? */
814 WARN_ON_ONCE(1);
817 pra->mapcount--;
820 if (referenced)
821 clear_page_idle(page);
822 if (test_and_clear_page_young(page))
823 referenced++;
825 if (referenced) {
826 pra->referenced++;
827 pra->vm_flags |= vma->vm_flags;
830 if (!pra->mapcount)
831 return false; /* To break the loop */
833 return true;
836 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
838 struct page_referenced_arg *pra = arg;
839 struct mem_cgroup *memcg = pra->memcg;
841 if (!mm_match_cgroup(vma->vm_mm, memcg))
842 return true;
844 return false;
848 * page_referenced - test if the page was referenced
849 * @page: the page to test
850 * @is_locked: caller holds lock on the page
851 * @memcg: target memory cgroup
852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
854 * Quick test_and_clear_referenced for all mappings to a page,
855 * returns the number of ptes which referenced the page.
857 int page_referenced(struct page *page,
858 int is_locked,
859 struct mem_cgroup *memcg,
860 unsigned long *vm_flags)
862 int we_locked = 0;
863 struct page_referenced_arg pra = {
864 .mapcount = total_mapcount(page),
865 .memcg = memcg,
867 struct rmap_walk_control rwc = {
868 .rmap_one = page_referenced_one,
869 .arg = (void *)&pra,
870 .anon_lock = page_lock_anon_vma_read,
873 *vm_flags = 0;
874 if (!pra.mapcount)
875 return 0;
877 if (!page_rmapping(page))
878 return 0;
880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 we_locked = trylock_page(page);
882 if (!we_locked)
883 return 1;
887 * If we are reclaiming on behalf of a cgroup, skip
888 * counting on behalf of references from different
889 * cgroups
891 if (memcg) {
892 rwc.invalid_vma = invalid_page_referenced_vma;
895 rmap_walk(page, &rwc);
896 *vm_flags = pra.vm_flags;
898 if (we_locked)
899 unlock_page(page);
901 return pra.referenced;
904 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
905 unsigned long address, void *arg)
907 struct page_vma_mapped_walk pvmw = {
908 .page = page,
909 .vma = vma,
910 .address = address,
911 .flags = PVMW_SYNC,
913 struct mmu_notifier_range range;
914 int *cleaned = arg;
917 * We have to assume the worse case ie pmd for invalidation. Note that
918 * the page can not be free from this function.
920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 0, vma, vma->vm_mm, address,
922 min(vma->vm_end, address + page_size(page)));
923 mmu_notifier_invalidate_range_start(&range);
925 while (page_vma_mapped_walk(&pvmw)) {
926 int ret = 0;
928 address = pvmw.address;
929 if (pvmw.pte) {
930 pte_t entry;
931 pte_t *pte = pvmw.pte;
933 if (!pte_dirty(*pte) && !pte_write(*pte))
934 continue;
936 flush_cache_page(vma, address, pte_pfn(*pte));
937 entry = ptep_clear_flush(vma, address, pte);
938 entry = pte_wrprotect(entry);
939 entry = pte_mkclean(entry);
940 set_pte_at(vma->vm_mm, address, pte, entry);
941 ret = 1;
942 } else {
943 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
944 pmd_t *pmd = pvmw.pmd;
945 pmd_t entry;
947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 continue;
950 flush_cache_page(vma, address, page_to_pfn(page));
951 entry = pmdp_invalidate(vma, address, pmd);
952 entry = pmd_wrprotect(entry);
953 entry = pmd_mkclean(entry);
954 set_pmd_at(vma->vm_mm, address, pmd, entry);
955 ret = 1;
956 #else
957 /* unexpected pmd-mapped page? */
958 WARN_ON_ONCE(1);
959 #endif
963 * No need to call mmu_notifier_invalidate_range() as we are
964 * downgrading page table protection not changing it to point
965 * to a new page.
967 * See Documentation/vm/mmu_notifier.rst
969 if (ret)
970 (*cleaned)++;
973 mmu_notifier_invalidate_range_end(&range);
975 return true;
978 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
980 if (vma->vm_flags & VM_SHARED)
981 return false;
983 return true;
986 int page_mkclean(struct page *page)
988 int cleaned = 0;
989 struct address_space *mapping;
990 struct rmap_walk_control rwc = {
991 .arg = (void *)&cleaned,
992 .rmap_one = page_mkclean_one,
993 .invalid_vma = invalid_mkclean_vma,
996 BUG_ON(!PageLocked(page));
998 if (!page_mapped(page))
999 return 0;
1001 mapping = page_mapping(page);
1002 if (!mapping)
1003 return 0;
1005 rmap_walk(page, &rwc);
1007 return cleaned;
1009 EXPORT_SYMBOL_GPL(page_mkclean);
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page: the page to move to our anon_vma
1014 * @vma: the vma the page belongs to
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1021 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1023 struct anon_vma *anon_vma = vma->anon_vma;
1025 page = compound_head(page);
1027 VM_BUG_ON_PAGE(!PageLocked(page), page);
1028 VM_BUG_ON_VMA(!anon_vma, vma);
1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 * PageAnon()) will not see one without the other.
1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1040 * __page_set_anon_rmap - set up new anonymous rmap
1041 * @page: Page or Hugepage to add to rmap
1042 * @vma: VM area to add page to.
1043 * @address: User virtual address of the mapping
1044 * @exclusive: the page is exclusively owned by the current process
1046 static void __page_set_anon_rmap(struct page *page,
1047 struct vm_area_struct *vma, unsigned long address, int exclusive)
1049 struct anon_vma *anon_vma = vma->anon_vma;
1051 BUG_ON(!anon_vma);
1053 if (PageAnon(page))
1054 return;
1057 * If the page isn't exclusively mapped into this vma,
1058 * we must use the _oldest_ possible anon_vma for the
1059 * page mapping!
1061 if (!exclusive)
1062 anon_vma = anon_vma->root;
1064 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1065 page->mapping = (struct address_space *) anon_vma;
1066 page->index = linear_page_index(vma, address);
1070 * __page_check_anon_rmap - sanity check anonymous rmap addition
1071 * @page: the page to add the mapping to
1072 * @vma: the vm area in which the mapping is added
1073 * @address: the user virtual address mapped
1075 static void __page_check_anon_rmap(struct page *page,
1076 struct vm_area_struct *vma, unsigned long address)
1079 * The page's anon-rmap details (mapping and index) are guaranteed to
1080 * be set up correctly at this point.
1082 * We have exclusion against page_add_anon_rmap because the caller
1083 * always holds the page locked, except if called from page_dup_rmap,
1084 * in which case the page is already known to be setup.
1086 * We have exclusion against page_add_new_anon_rmap because those pages
1087 * are initially only visible via the pagetables, and the pte is locked
1088 * over the call to page_add_new_anon_rmap.
1090 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1091 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1092 page);
1096 * page_add_anon_rmap - add pte mapping to an anonymous page
1097 * @page: the page to add the mapping to
1098 * @vma: the vm area in which the mapping is added
1099 * @address: the user virtual address mapped
1100 * @compound: charge the page as compound or small page
1102 * The caller needs to hold the pte lock, and the page must be locked in
1103 * the anon_vma case: to serialize mapping,index checking after setting,
1104 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1105 * (but PageKsm is never downgraded to PageAnon).
1107 void page_add_anon_rmap(struct page *page,
1108 struct vm_area_struct *vma, unsigned long address, bool compound)
1110 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1114 * Special version of the above for do_swap_page, which often runs
1115 * into pages that are exclusively owned by the current process.
1116 * Everybody else should continue to use page_add_anon_rmap above.
1118 void do_page_add_anon_rmap(struct page *page,
1119 struct vm_area_struct *vma, unsigned long address, int flags)
1121 bool compound = flags & RMAP_COMPOUND;
1122 bool first;
1124 if (compound) {
1125 atomic_t *mapcount;
1126 VM_BUG_ON_PAGE(!PageLocked(page), page);
1127 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1128 mapcount = compound_mapcount_ptr(page);
1129 first = atomic_inc_and_test(mapcount);
1130 } else {
1131 first = atomic_inc_and_test(&page->_mapcount);
1134 if (first) {
1135 int nr = compound ? hpage_nr_pages(page) : 1;
1137 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1138 * these counters are not modified in interrupt context, and
1139 * pte lock(a spinlock) is held, which implies preemption
1140 * disabled.
1142 if (compound)
1143 __inc_node_page_state(page, NR_ANON_THPS);
1144 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1146 if (unlikely(PageKsm(page)))
1147 return;
1149 VM_BUG_ON_PAGE(!PageLocked(page), page);
1151 /* address might be in next vma when migration races vma_adjust */
1152 if (first)
1153 __page_set_anon_rmap(page, vma, address,
1154 flags & RMAP_EXCLUSIVE);
1155 else
1156 __page_check_anon_rmap(page, vma, address);
1160 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1161 * @page: the page to add the mapping to
1162 * @vma: the vm area in which the mapping is added
1163 * @address: the user virtual address mapped
1164 * @compound: charge the page as compound or small page
1166 * Same as page_add_anon_rmap but must only be called on *new* pages.
1167 * This means the inc-and-test can be bypassed.
1168 * Page does not have to be locked.
1170 void page_add_new_anon_rmap(struct page *page,
1171 struct vm_area_struct *vma, unsigned long address, bool compound)
1173 int nr = compound ? hpage_nr_pages(page) : 1;
1175 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1176 __SetPageSwapBacked(page);
1177 if (compound) {
1178 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1179 /* increment count (starts at -1) */
1180 atomic_set(compound_mapcount_ptr(page), 0);
1181 __inc_node_page_state(page, NR_ANON_THPS);
1182 } else {
1183 /* Anon THP always mapped first with PMD */
1184 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1185 /* increment count (starts at -1) */
1186 atomic_set(&page->_mapcount, 0);
1188 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1189 __page_set_anon_rmap(page, vma, address, 1);
1193 * page_add_file_rmap - add pte mapping to a file page
1194 * @page: the page to add the mapping to
1195 * @compound: charge the page as compound or small page
1197 * The caller needs to hold the pte lock.
1199 void page_add_file_rmap(struct page *page, bool compound)
1201 int i, nr = 1;
1203 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1204 lock_page_memcg(page);
1205 if (compound && PageTransHuge(page)) {
1206 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1207 if (atomic_inc_and_test(&page[i]._mapcount))
1208 nr++;
1210 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1211 goto out;
1212 if (PageSwapBacked(page))
1213 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1214 else
1215 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1216 } else {
1217 if (PageTransCompound(page) && page_mapping(page)) {
1218 VM_WARN_ON_ONCE(!PageLocked(page));
1220 SetPageDoubleMap(compound_head(page));
1221 if (PageMlocked(page))
1222 clear_page_mlock(compound_head(page));
1224 if (!atomic_inc_and_test(&page->_mapcount))
1225 goto out;
1227 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1228 out:
1229 unlock_page_memcg(page);
1232 static void page_remove_file_rmap(struct page *page, bool compound)
1234 int i, nr = 1;
1236 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1237 lock_page_memcg(page);
1239 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1240 if (unlikely(PageHuge(page))) {
1241 /* hugetlb pages are always mapped with pmds */
1242 atomic_dec(compound_mapcount_ptr(page));
1243 goto out;
1246 /* page still mapped by someone else? */
1247 if (compound && PageTransHuge(page)) {
1248 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1249 if (atomic_add_negative(-1, &page[i]._mapcount))
1250 nr++;
1252 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1253 goto out;
1254 if (PageSwapBacked(page))
1255 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1256 else
1257 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1258 } else {
1259 if (!atomic_add_negative(-1, &page->_mapcount))
1260 goto out;
1264 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1265 * these counters are not modified in interrupt context, and
1266 * pte lock(a spinlock) is held, which implies preemption disabled.
1268 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1270 if (unlikely(PageMlocked(page)))
1271 clear_page_mlock(page);
1272 out:
1273 unlock_page_memcg(page);
1276 static void page_remove_anon_compound_rmap(struct page *page)
1278 int i, nr;
1280 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1281 return;
1283 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1284 if (unlikely(PageHuge(page)))
1285 return;
1287 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1288 return;
1290 __dec_node_page_state(page, NR_ANON_THPS);
1292 if (TestClearPageDoubleMap(page)) {
1294 * Subpages can be mapped with PTEs too. Check how many of
1295 * them are still mapped.
1297 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1298 if (atomic_add_negative(-1, &page[i]._mapcount))
1299 nr++;
1303 * Queue the page for deferred split if at least one small
1304 * page of the compound page is unmapped, but at least one
1305 * small page is still mapped.
1307 if (nr && nr < HPAGE_PMD_NR)
1308 deferred_split_huge_page(page);
1309 } else {
1310 nr = HPAGE_PMD_NR;
1313 if (unlikely(PageMlocked(page)))
1314 clear_page_mlock(page);
1316 if (nr)
1317 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1321 * page_remove_rmap - take down pte mapping from a page
1322 * @page: page to remove mapping from
1323 * @compound: uncharge the page as compound or small page
1325 * The caller needs to hold the pte lock.
1327 void page_remove_rmap(struct page *page, bool compound)
1329 if (!PageAnon(page))
1330 return page_remove_file_rmap(page, compound);
1332 if (compound)
1333 return page_remove_anon_compound_rmap(page);
1335 /* page still mapped by someone else? */
1336 if (!atomic_add_negative(-1, &page->_mapcount))
1337 return;
1340 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1341 * these counters are not modified in interrupt context, and
1342 * pte lock(a spinlock) is held, which implies preemption disabled.
1344 __dec_node_page_state(page, NR_ANON_MAPPED);
1346 if (unlikely(PageMlocked(page)))
1347 clear_page_mlock(page);
1349 if (PageTransCompound(page))
1350 deferred_split_huge_page(compound_head(page));
1353 * It would be tidy to reset the PageAnon mapping here,
1354 * but that might overwrite a racing page_add_anon_rmap
1355 * which increments mapcount after us but sets mapping
1356 * before us: so leave the reset to free_unref_page,
1357 * and remember that it's only reliable while mapped.
1358 * Leaving it set also helps swapoff to reinstate ptes
1359 * faster for those pages still in swapcache.
1364 * @arg: enum ttu_flags will be passed to this argument
1366 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1367 unsigned long address, void *arg)
1369 struct mm_struct *mm = vma->vm_mm;
1370 struct page_vma_mapped_walk pvmw = {
1371 .page = page,
1372 .vma = vma,
1373 .address = address,
1375 pte_t pteval;
1376 struct page *subpage;
1377 bool ret = true;
1378 struct mmu_notifier_range range;
1379 enum ttu_flags flags = (enum ttu_flags)arg;
1381 /* munlock has nothing to gain from examining un-locked vmas */
1382 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1383 return true;
1385 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1386 is_zone_device_page(page) && !is_device_private_page(page))
1387 return true;
1389 if (flags & TTU_SPLIT_HUGE_PMD) {
1390 split_huge_pmd_address(vma, address,
1391 flags & TTU_SPLIT_FREEZE, page);
1395 * For THP, we have to assume the worse case ie pmd for invalidation.
1396 * For hugetlb, it could be much worse if we need to do pud
1397 * invalidation in the case of pmd sharing.
1399 * Note that the page can not be free in this function as call of
1400 * try_to_unmap() must hold a reference on the page.
1402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1403 address,
1404 min(vma->vm_end, address + page_size(page)));
1405 if (PageHuge(page)) {
1407 * If sharing is possible, start and end will be adjusted
1408 * accordingly.
1410 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1411 &range.end);
1413 mmu_notifier_invalidate_range_start(&range);
1415 while (page_vma_mapped_walk(&pvmw)) {
1416 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1417 /* PMD-mapped THP migration entry */
1418 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1419 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1421 set_pmd_migration_entry(&pvmw, page);
1422 continue;
1424 #endif
1427 * If the page is mlock()d, we cannot swap it out.
1428 * If it's recently referenced (perhaps page_referenced
1429 * skipped over this mm) then we should reactivate it.
1431 if (!(flags & TTU_IGNORE_MLOCK)) {
1432 if (vma->vm_flags & VM_LOCKED) {
1433 /* PTE-mapped THP are never mlocked */
1434 if (!PageTransCompound(page)) {
1436 * Holding pte lock, we do *not* need
1437 * mmap_sem here
1439 mlock_vma_page(page);
1441 ret = false;
1442 page_vma_mapped_walk_done(&pvmw);
1443 break;
1445 if (flags & TTU_MUNLOCK)
1446 continue;
1449 /* Unexpected PMD-mapped THP? */
1450 VM_BUG_ON_PAGE(!pvmw.pte, page);
1452 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1453 address = pvmw.address;
1455 if (PageHuge(page)) {
1456 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1458 * huge_pmd_unshare unmapped an entire PMD
1459 * page. There is no way of knowing exactly
1460 * which PMDs may be cached for this mm, so
1461 * we must flush them all. start/end were
1462 * already adjusted above to cover this range.
1464 flush_cache_range(vma, range.start, range.end);
1465 flush_tlb_range(vma, range.start, range.end);
1466 mmu_notifier_invalidate_range(mm, range.start,
1467 range.end);
1470 * The ref count of the PMD page was dropped
1471 * which is part of the way map counting
1472 * is done for shared PMDs. Return 'true'
1473 * here. When there is no other sharing,
1474 * huge_pmd_unshare returns false and we will
1475 * unmap the actual page and drop map count
1476 * to zero.
1478 page_vma_mapped_walk_done(&pvmw);
1479 break;
1483 if (IS_ENABLED(CONFIG_MIGRATION) &&
1484 (flags & TTU_MIGRATION) &&
1485 is_zone_device_page(page)) {
1486 swp_entry_t entry;
1487 pte_t swp_pte;
1489 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1492 * Store the pfn of the page in a special migration
1493 * pte. do_swap_page() will wait until the migration
1494 * pte is removed and then restart fault handling.
1496 entry = make_migration_entry(page, 0);
1497 swp_pte = swp_entry_to_pte(entry);
1498 if (pte_soft_dirty(pteval))
1499 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1500 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1502 * No need to invalidate here it will synchronize on
1503 * against the special swap migration pte.
1505 * The assignment to subpage above was computed from a
1506 * swap PTE which results in an invalid pointer.
1507 * Since only PAGE_SIZE pages can currently be
1508 * migrated, just set it to page. This will need to be
1509 * changed when hugepage migrations to device private
1510 * memory are supported.
1512 subpage = page;
1513 goto discard;
1516 if (!(flags & TTU_IGNORE_ACCESS)) {
1517 if (ptep_clear_flush_young_notify(vma, address,
1518 pvmw.pte)) {
1519 ret = false;
1520 page_vma_mapped_walk_done(&pvmw);
1521 break;
1525 /* Nuke the page table entry. */
1526 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1527 if (should_defer_flush(mm, flags)) {
1529 * We clear the PTE but do not flush so potentially
1530 * a remote CPU could still be writing to the page.
1531 * If the entry was previously clean then the
1532 * architecture must guarantee that a clear->dirty
1533 * transition on a cached TLB entry is written through
1534 * and traps if the PTE is unmapped.
1536 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1538 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1539 } else {
1540 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1543 /* Move the dirty bit to the page. Now the pte is gone. */
1544 if (pte_dirty(pteval))
1545 set_page_dirty(page);
1547 /* Update high watermark before we lower rss */
1548 update_hiwater_rss(mm);
1550 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1551 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1552 if (PageHuge(page)) {
1553 hugetlb_count_sub(compound_nr(page), mm);
1554 set_huge_swap_pte_at(mm, address,
1555 pvmw.pte, pteval,
1556 vma_mmu_pagesize(vma));
1557 } else {
1558 dec_mm_counter(mm, mm_counter(page));
1559 set_pte_at(mm, address, pvmw.pte, pteval);
1562 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1564 * The guest indicated that the page content is of no
1565 * interest anymore. Simply discard the pte, vmscan
1566 * will take care of the rest.
1567 * A future reference will then fault in a new zero
1568 * page. When userfaultfd is active, we must not drop
1569 * this page though, as its main user (postcopy
1570 * migration) will not expect userfaults on already
1571 * copied pages.
1573 dec_mm_counter(mm, mm_counter(page));
1574 /* We have to invalidate as we cleared the pte */
1575 mmu_notifier_invalidate_range(mm, address,
1576 address + PAGE_SIZE);
1577 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1578 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1579 swp_entry_t entry;
1580 pte_t swp_pte;
1582 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1583 set_pte_at(mm, address, pvmw.pte, pteval);
1584 ret = false;
1585 page_vma_mapped_walk_done(&pvmw);
1586 break;
1590 * Store the pfn of the page in a special migration
1591 * pte. do_swap_page() will wait until the migration
1592 * pte is removed and then restart fault handling.
1594 entry = make_migration_entry(subpage,
1595 pte_write(pteval));
1596 swp_pte = swp_entry_to_pte(entry);
1597 if (pte_soft_dirty(pteval))
1598 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1599 set_pte_at(mm, address, pvmw.pte, swp_pte);
1601 * No need to invalidate here it will synchronize on
1602 * against the special swap migration pte.
1604 } else if (PageAnon(page)) {
1605 swp_entry_t entry = { .val = page_private(subpage) };
1606 pte_t swp_pte;
1608 * Store the swap location in the pte.
1609 * See handle_pte_fault() ...
1611 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1612 WARN_ON_ONCE(1);
1613 ret = false;
1614 /* We have to invalidate as we cleared the pte */
1615 mmu_notifier_invalidate_range(mm, address,
1616 address + PAGE_SIZE);
1617 page_vma_mapped_walk_done(&pvmw);
1618 break;
1621 /* MADV_FREE page check */
1622 if (!PageSwapBacked(page)) {
1623 if (!PageDirty(page)) {
1624 /* Invalidate as we cleared the pte */
1625 mmu_notifier_invalidate_range(mm,
1626 address, address + PAGE_SIZE);
1627 dec_mm_counter(mm, MM_ANONPAGES);
1628 goto discard;
1632 * If the page was redirtied, it cannot be
1633 * discarded. Remap the page to page table.
1635 set_pte_at(mm, address, pvmw.pte, pteval);
1636 SetPageSwapBacked(page);
1637 ret = false;
1638 page_vma_mapped_walk_done(&pvmw);
1639 break;
1642 if (swap_duplicate(entry) < 0) {
1643 set_pte_at(mm, address, pvmw.pte, pteval);
1644 ret = false;
1645 page_vma_mapped_walk_done(&pvmw);
1646 break;
1648 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1649 set_pte_at(mm, address, pvmw.pte, pteval);
1650 ret = false;
1651 page_vma_mapped_walk_done(&pvmw);
1652 break;
1654 if (list_empty(&mm->mmlist)) {
1655 spin_lock(&mmlist_lock);
1656 if (list_empty(&mm->mmlist))
1657 list_add(&mm->mmlist, &init_mm.mmlist);
1658 spin_unlock(&mmlist_lock);
1660 dec_mm_counter(mm, MM_ANONPAGES);
1661 inc_mm_counter(mm, MM_SWAPENTS);
1662 swp_pte = swp_entry_to_pte(entry);
1663 if (pte_soft_dirty(pteval))
1664 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1665 set_pte_at(mm, address, pvmw.pte, swp_pte);
1666 /* Invalidate as we cleared the pte */
1667 mmu_notifier_invalidate_range(mm, address,
1668 address + PAGE_SIZE);
1669 } else {
1671 * This is a locked file-backed page, thus it cannot
1672 * be removed from the page cache and replaced by a new
1673 * page before mmu_notifier_invalidate_range_end, so no
1674 * concurrent thread might update its page table to
1675 * point at new page while a device still is using this
1676 * page.
1678 * See Documentation/vm/mmu_notifier.rst
1680 dec_mm_counter(mm, mm_counter_file(page));
1682 discard:
1684 * No need to call mmu_notifier_invalidate_range() it has be
1685 * done above for all cases requiring it to happen under page
1686 * table lock before mmu_notifier_invalidate_range_end()
1688 * See Documentation/vm/mmu_notifier.rst
1690 page_remove_rmap(subpage, PageHuge(page));
1691 put_page(page);
1694 mmu_notifier_invalidate_range_end(&range);
1696 return ret;
1699 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1701 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1703 if (!maybe_stack)
1704 return false;
1706 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1707 VM_STACK_INCOMPLETE_SETUP)
1708 return true;
1710 return false;
1713 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1715 return is_vma_temporary_stack(vma);
1718 static int page_mapcount_is_zero(struct page *page)
1720 return !total_mapcount(page);
1724 * try_to_unmap - try to remove all page table mappings to a page
1725 * @page: the page to get unmapped
1726 * @flags: action and flags
1728 * Tries to remove all the page table entries which are mapping this
1729 * page, used in the pageout path. Caller must hold the page lock.
1731 * If unmap is successful, return true. Otherwise, false.
1733 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1735 struct rmap_walk_control rwc = {
1736 .rmap_one = try_to_unmap_one,
1737 .arg = (void *)flags,
1738 .done = page_mapcount_is_zero,
1739 .anon_lock = page_lock_anon_vma_read,
1743 * During exec, a temporary VMA is setup and later moved.
1744 * The VMA is moved under the anon_vma lock but not the
1745 * page tables leading to a race where migration cannot
1746 * find the migration ptes. Rather than increasing the
1747 * locking requirements of exec(), migration skips
1748 * temporary VMAs until after exec() completes.
1750 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1751 && !PageKsm(page) && PageAnon(page))
1752 rwc.invalid_vma = invalid_migration_vma;
1754 if (flags & TTU_RMAP_LOCKED)
1755 rmap_walk_locked(page, &rwc);
1756 else
1757 rmap_walk(page, &rwc);
1759 return !page_mapcount(page) ? true : false;
1762 static int page_not_mapped(struct page *page)
1764 return !page_mapped(page);
1768 * try_to_munlock - try to munlock a page
1769 * @page: the page to be munlocked
1771 * Called from munlock code. Checks all of the VMAs mapping the page
1772 * to make sure nobody else has this page mlocked. The page will be
1773 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1776 void try_to_munlock(struct page *page)
1778 struct rmap_walk_control rwc = {
1779 .rmap_one = try_to_unmap_one,
1780 .arg = (void *)TTU_MUNLOCK,
1781 .done = page_not_mapped,
1782 .anon_lock = page_lock_anon_vma_read,
1786 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1787 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1789 rmap_walk(page, &rwc);
1792 void __put_anon_vma(struct anon_vma *anon_vma)
1794 struct anon_vma *root = anon_vma->root;
1796 anon_vma_free(anon_vma);
1797 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1798 anon_vma_free(root);
1801 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1802 struct rmap_walk_control *rwc)
1804 struct anon_vma *anon_vma;
1806 if (rwc->anon_lock)
1807 return rwc->anon_lock(page);
1810 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1811 * because that depends on page_mapped(); but not all its usages
1812 * are holding mmap_sem. Users without mmap_sem are required to
1813 * take a reference count to prevent the anon_vma disappearing
1815 anon_vma = page_anon_vma(page);
1816 if (!anon_vma)
1817 return NULL;
1819 anon_vma_lock_read(anon_vma);
1820 return anon_vma;
1824 * rmap_walk_anon - do something to anonymous page using the object-based
1825 * rmap method
1826 * @page: the page to be handled
1827 * @rwc: control variable according to each walk type
1829 * Find all the mappings of a page using the mapping pointer and the vma chains
1830 * contained in the anon_vma struct it points to.
1832 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1833 * where the page was found will be held for write. So, we won't recheck
1834 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1835 * LOCKED.
1837 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1838 bool locked)
1840 struct anon_vma *anon_vma;
1841 pgoff_t pgoff_start, pgoff_end;
1842 struct anon_vma_chain *avc;
1844 if (locked) {
1845 anon_vma = page_anon_vma(page);
1846 /* anon_vma disappear under us? */
1847 VM_BUG_ON_PAGE(!anon_vma, page);
1848 } else {
1849 anon_vma = rmap_walk_anon_lock(page, rwc);
1851 if (!anon_vma)
1852 return;
1854 pgoff_start = page_to_pgoff(page);
1855 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1856 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1857 pgoff_start, pgoff_end) {
1858 struct vm_area_struct *vma = avc->vma;
1859 unsigned long address = vma_address(page, vma);
1861 cond_resched();
1863 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1864 continue;
1866 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1867 break;
1868 if (rwc->done && rwc->done(page))
1869 break;
1872 if (!locked)
1873 anon_vma_unlock_read(anon_vma);
1877 * rmap_walk_file - do something to file page using the object-based rmap method
1878 * @page: the page to be handled
1879 * @rwc: control variable according to each walk type
1881 * Find all the mappings of a page using the mapping pointer and the vma chains
1882 * contained in the address_space struct it points to.
1884 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1885 * where the page was found will be held for write. So, we won't recheck
1886 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1887 * LOCKED.
1889 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1890 bool locked)
1892 struct address_space *mapping = page_mapping(page);
1893 pgoff_t pgoff_start, pgoff_end;
1894 struct vm_area_struct *vma;
1897 * The page lock not only makes sure that page->mapping cannot
1898 * suddenly be NULLified by truncation, it makes sure that the
1899 * structure at mapping cannot be freed and reused yet,
1900 * so we can safely take mapping->i_mmap_rwsem.
1902 VM_BUG_ON_PAGE(!PageLocked(page), page);
1904 if (!mapping)
1905 return;
1907 pgoff_start = page_to_pgoff(page);
1908 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1909 if (!locked)
1910 i_mmap_lock_read(mapping);
1911 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1912 pgoff_start, pgoff_end) {
1913 unsigned long address = vma_address(page, vma);
1915 cond_resched();
1917 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1918 continue;
1920 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1921 goto done;
1922 if (rwc->done && rwc->done(page))
1923 goto done;
1926 done:
1927 if (!locked)
1928 i_mmap_unlock_read(mapping);
1931 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1933 if (unlikely(PageKsm(page)))
1934 rmap_walk_ksm(page, rwc);
1935 else if (PageAnon(page))
1936 rmap_walk_anon(page, rwc, false);
1937 else
1938 rmap_walk_file(page, rwc, false);
1941 /* Like rmap_walk, but caller holds relevant rmap lock */
1942 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1944 /* no ksm support for now */
1945 VM_BUG_ON_PAGE(PageKsm(page), page);
1946 if (PageAnon(page))
1947 rmap_walk_anon(page, rwc, true);
1948 else
1949 rmap_walk_file(page, rwc, true);
1952 #ifdef CONFIG_HUGETLB_PAGE
1954 * The following two functions are for anonymous (private mapped) hugepages.
1955 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1956 * and no lru code, because we handle hugepages differently from common pages.
1958 void hugepage_add_anon_rmap(struct page *page,
1959 struct vm_area_struct *vma, unsigned long address)
1961 struct anon_vma *anon_vma = vma->anon_vma;
1962 int first;
1964 BUG_ON(!PageLocked(page));
1965 BUG_ON(!anon_vma);
1966 /* address might be in next vma when migration races vma_adjust */
1967 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1968 if (first)
1969 __page_set_anon_rmap(page, vma, address, 0);
1972 void hugepage_add_new_anon_rmap(struct page *page,
1973 struct vm_area_struct *vma, unsigned long address)
1975 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1976 atomic_set(compound_mapcount_ptr(page), 0);
1977 __page_set_anon_rmap(page, vma, address, 1);
1979 #endif /* CONFIG_HUGETLB_PAGE */