split dev_queue
[cor.git] / mm / page_alloc.c
blob4785a8a2040eeccaa996e93597b30ddf4626e838
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
115 * Array of node states.
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
129 EXPORT_SYMBOL(node_states);
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
152 static int __init early_init_on_alloc(char *buf)
154 int ret;
155 bool bool_result;
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
168 early_param("init_on_alloc", early_init_on_alloc);
170 static int __init early_init_on_free(char *buf)
172 int ret;
173 bool bool_result;
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
186 early_param("init_on_free", early_init_on_free);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page *page)
198 return page->index;
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 page->index = migratetype;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
248 static void __free_pages_ok(struct page *page, unsigned int order);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
360 int page_group_by_mobility_disabled __read_mostly;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
392 int nid = early_pfn_to_nid(pfn);
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
397 return false;
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
407 static unsigned long prev_end_pfn, nr_initialised;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
432 return false;
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn)
439 return false;
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
444 return false;
446 #endif
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
550 void set_pageblock_migratetype(struct page *page, int migratetype)
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
581 return ret;
584 static int page_is_consistent(struct zone *zone, struct page *page)
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
591 return 1;
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
603 return 0;
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
608 return 0;
610 #endif
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
634 nr_shown = 0;
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page *page)
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
677 void prep_compound_page(struct page *page, unsigned int order)
679 int i;
680 int nr_pages = 1 << order;
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
691 atomic_set(compound_mapcount_ptr(page), -1);
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 #else
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 #endif
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706 static int __init early_debug_pagealloc(char *buf)
708 bool enable = false;
710 if (kstrtobool(buf, &enable))
711 return -EINVAL;
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
716 return 0;
718 early_param("debug_pagealloc", early_debug_pagealloc);
720 static void init_debug_guardpage(void)
722 if (!debug_pagealloc_enabled())
723 return;
725 if (!debug_guardpage_minorder())
726 return;
728 static_branch_enable(&_debug_guardpage_enabled);
731 static int __init debug_guardpage_minorder_setup(char *buf)
733 unsigned long res;
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
736 pr_err("Bad debug_guardpage_minorder value\n");
737 return 0;
739 _debug_guardpage_minorder = res;
740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 return 0;
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
748 if (!debug_guardpage_enabled())
749 return false;
751 if (order >= debug_guardpage_minorder())
752 return false;
754 __SetPageGuard(page);
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
760 return true;
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
766 if (!debug_guardpage_enabled())
767 return;
769 __ClearPageGuard(page);
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
780 #endif
782 static inline void set_page_order(struct page *page, unsigned int order)
784 set_page_private(page, order);
785 __SetPageBuddy(page);
789 * This function checks whether a page is free && is the buddy
790 * we can coalesce a page and its buddy if
791 * (a) the buddy is not in a hole (check before calling!) &&
792 * (b) the buddy is in the buddy system &&
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
799 * For recording page's order, we use page_private(page).
801 static inline int page_is_buddy(struct page *page, struct page *buddy,
802 unsigned int order)
804 if (page_is_guard(buddy) && page_order(buddy) == order) {
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
810 return 1;
813 if (PageBuddy(buddy) && page_order(buddy) == order) {
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
824 return 1;
826 return 0;
829 #ifdef CONFIG_COMPACTION
830 static inline struct capture_control *task_capc(struct zone *zone)
832 struct capture_control *capc = current->capture_control;
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
841 static inline bool
842 compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
845 if (!capc || order != capc->cc->order)
846 return false;
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
862 capc->page = page;
863 return true;
866 #else
867 static inline struct capture_control *task_capc(struct zone *zone)
869 return NULL;
872 static inline bool
873 compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
876 return false;
878 #endif /* CONFIG_COMPACTION */
881 * Freeing function for a buddy system allocator.
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
895 * So when we are allocating or freeing one, we can derive the state of the
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
898 * If a block is freed, and its buddy is also free, then this
899 * triggers coalescing into a block of larger size.
901 * -- nyc
904 static inline void __free_one_page(struct page *page,
905 unsigned long pfn,
906 struct zone *zone, unsigned int order,
907 int migratetype)
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
911 struct page *buddy;
912 unsigned int max_order;
913 struct capture_control *capc = task_capc(zone);
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
917 VM_BUG_ON(!zone_is_initialized(zone));
918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
920 VM_BUG_ON(migratetype == -1);
921 if (likely(!is_migrate_isolate(migratetype)))
922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
927 continue_merging:
928 while (order < max_order - 1) {
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
939 if (!page_is_buddy(page, buddy, order))
940 goto done_merging;
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
945 if (page_is_guard(buddy))
946 clear_page_guard(zone, buddy, order, migratetype);
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
952 order++;
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
968 buddy_mt = get_pageblock_migratetype(buddy);
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
975 max_order++;
976 goto continue_merging;
979 done_merging:
980 set_page_order(page, order);
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
992 struct page *higher_page, *higher_buddy;
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1018 static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026 #ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028 #endif
1029 (page->flags & check_flags)))
1030 return false;
1032 return true;
1035 static void free_pages_check_bad(struct page *page)
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1040 bad_reason = NULL;
1041 bad_flags = 0;
1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
1047 if (unlikely(page_ref_count(page) != 0))
1048 bad_reason = "nonzero _refcount";
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1053 #ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056 #endif
1057 bad_page(page, bad_reason, bad_flags);
1060 static inline int free_pages_check(struct page *page)
1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 return 0;
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
1067 return 1;
1070 static int free_tail_pages_check(struct page *head_page, struct page *page)
1072 int ret = 1;
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1084 switch (page - head_page) {
1085 case 1:
1086 /* the first tail page: ->mapping may be compound_mapcount() */
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1091 break;
1092 case 2:
1094 * the second tail page: ->mapping is
1095 * deferred_list.next -- ignore value.
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1103 break;
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1113 ret = 0;
1114 out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1120 static void kernel_init_free_pages(struct page *page, int numpages)
1122 int i;
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1128 static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
1131 int bad = 0;
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1135 trace_mm_page_free(page, order);
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1147 if (compound)
1148 ClearPageDoubleMap(page);
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1159 if (PageMappingFlags(page))
1160 page->mapping = NULL;
1161 if (memcg_kmem_enabled() && PageKmemcg(page))
1162 __memcg_kmem_uncharge(page, order);
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
1174 PAGE_SIZE << order);
1175 debug_check_no_obj_freed(page_address(page),
1176 PAGE_SIZE << order);
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1181 kernel_poison_pages(page, 1 << order, 0);
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1187 arch_free_page(page, order);
1189 if (debug_pagealloc_enabled())
1190 kernel_map_pages(page, 1 << order, 0);
1192 kasan_free_nondeferred_pages(page, order);
1194 return true;
1197 #ifdef CONFIG_DEBUG_VM
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1203 static bool free_pcp_prepare(struct page *page)
1205 return free_pages_prepare(page, 0, true);
1208 static bool bulkfree_pcp_prepare(struct page *page)
1210 if (debug_pagealloc_enabled())
1211 return free_pages_check(page);
1212 else
1213 return false;
1215 #else
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1222 static bool free_pcp_prepare(struct page *page)
1224 if (debug_pagealloc_enabled())
1225 return free_pages_prepare(page, 0, true);
1226 else
1227 return free_pages_prepare(page, 0, false);
1230 static bool bulkfree_pcp_prepare(struct page *page)
1232 return free_pages_check(page);
1234 #endif /* CONFIG_DEBUG_VM */
1236 static inline void prefetch_buddy(struct page *page)
1238 unsigned long pfn = page_to_pfn(page);
1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 struct page *buddy = page + (buddy_pfn - pfn);
1242 prefetch(buddy);
1246 * Frees a number of pages from the PCP lists
1247 * Assumes all pages on list are in same zone, and of same order.
1248 * count is the number of pages to free.
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1256 static void free_pcppages_bulk(struct zone *zone, int count,
1257 struct per_cpu_pages *pcp)
1259 int migratetype = 0;
1260 int batch_free = 0;
1261 int prefetch_nr = 0;
1262 bool isolated_pageblocks;
1263 struct page *page, *tmp;
1264 LIST_HEAD(head);
1266 while (count) {
1267 struct list_head *list;
1270 * Remove pages from lists in a round-robin fashion. A
1271 * batch_free count is maintained that is incremented when an
1272 * empty list is encountered. This is so more pages are freed
1273 * off fuller lists instead of spinning excessively around empty
1274 * lists
1276 do {
1277 batch_free++;
1278 if (++migratetype == MIGRATE_PCPTYPES)
1279 migratetype = 0;
1280 list = &pcp->lists[migratetype];
1281 } while (list_empty(list));
1283 /* This is the only non-empty list. Free them all. */
1284 if (batch_free == MIGRATE_PCPTYPES)
1285 batch_free = count;
1287 do {
1288 page = list_last_entry(list, struct page, lru);
1289 /* must delete to avoid corrupting pcp list */
1290 list_del(&page->lru);
1291 pcp->count--;
1293 if (bulkfree_pcp_prepare(page))
1294 continue;
1296 list_add_tail(&page->lru, &head);
1299 * We are going to put the page back to the global
1300 * pool, prefetch its buddy to speed up later access
1301 * under zone->lock. It is believed the overhead of
1302 * an additional test and calculating buddy_pfn here
1303 * can be offset by reduced memory latency later. To
1304 * avoid excessive prefetching due to large count, only
1305 * prefetch buddy for the first pcp->batch nr of pages.
1307 if (prefetch_nr++ < pcp->batch)
1308 prefetch_buddy(page);
1309 } while (--count && --batch_free && !list_empty(list));
1312 spin_lock(&zone->lock);
1313 isolated_pageblocks = has_isolate_pageblock(zone);
1316 * Use safe version since after __free_one_page(),
1317 * page->lru.next will not point to original list.
1319 list_for_each_entry_safe(page, tmp, &head, lru) {
1320 int mt = get_pcppage_migratetype(page);
1321 /* MIGRATE_ISOLATE page should not go to pcplists */
1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 /* Pageblock could have been isolated meanwhile */
1324 if (unlikely(isolated_pageblocks))
1325 mt = get_pageblock_migratetype(page);
1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 trace_mm_page_pcpu_drain(page, 0, mt);
1330 spin_unlock(&zone->lock);
1333 static void free_one_page(struct zone *zone,
1334 struct page *page, unsigned long pfn,
1335 unsigned int order,
1336 int migratetype)
1338 spin_lock(&zone->lock);
1339 if (unlikely(has_isolate_pageblock(zone) ||
1340 is_migrate_isolate(migratetype))) {
1341 migratetype = get_pfnblock_migratetype(page, pfn);
1343 __free_one_page(page, pfn, zone, order, migratetype);
1344 spin_unlock(&zone->lock);
1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 unsigned long zone, int nid)
1350 mm_zero_struct_page(page);
1351 set_page_links(page, zone, nid, pfn);
1352 init_page_count(page);
1353 page_mapcount_reset(page);
1354 page_cpupid_reset_last(page);
1355 page_kasan_tag_reset(page);
1357 INIT_LIST_HEAD(&page->lru);
1358 #ifdef WANT_PAGE_VIRTUAL
1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 if (!is_highmem_idx(zone))
1361 set_page_address(page, __va(pfn << PAGE_SHIFT));
1362 #endif
1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366 static void __meminit init_reserved_page(unsigned long pfn)
1368 pg_data_t *pgdat;
1369 int nid, zid;
1371 if (!early_page_uninitialised(pfn))
1372 return;
1374 nid = early_pfn_to_nid(pfn);
1375 pgdat = NODE_DATA(nid);
1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 struct zone *zone = &pgdat->node_zones[zid];
1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 break;
1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1385 #else
1386 static inline void init_reserved_page(unsigned long pfn)
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1399 unsigned long start_pfn = PFN_DOWN(start);
1400 unsigned long end_pfn = PFN_UP(end);
1402 for (; start_pfn < end_pfn; start_pfn++) {
1403 if (pfn_valid(start_pfn)) {
1404 struct page *page = pfn_to_page(start_pfn);
1406 init_reserved_page(start_pfn);
1408 /* Avoid false-positive PageTail() */
1409 INIT_LIST_HEAD(&page->lru);
1412 * no need for atomic set_bit because the struct
1413 * page is not visible yet so nobody should
1414 * access it yet.
1416 __SetPageReserved(page);
1421 static void __free_pages_ok(struct page *page, unsigned int order)
1423 unsigned long flags;
1424 int migratetype;
1425 unsigned long pfn = page_to_pfn(page);
1427 if (!free_pages_prepare(page, order, true))
1428 return;
1430 migratetype = get_pfnblock_migratetype(page, pfn);
1431 local_irq_save(flags);
1432 __count_vm_events(PGFREE, 1 << order);
1433 free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 local_irq_restore(flags);
1437 void __free_pages_core(struct page *page, unsigned int order)
1439 unsigned int nr_pages = 1 << order;
1440 struct page *p = page;
1441 unsigned int loop;
1443 prefetchw(p);
1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 prefetchw(p + 1);
1446 __ClearPageReserved(p);
1447 set_page_count(p, 0);
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 set_page_refcounted(page);
1454 __free_pages(page, order);
1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1462 int __meminit early_pfn_to_nid(unsigned long pfn)
1464 static DEFINE_SPINLOCK(early_pfn_lock);
1465 int nid;
1467 spin_lock(&early_pfn_lock);
1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 if (nid < 0)
1470 nid = first_online_node;
1471 spin_unlock(&early_pfn_lock);
1473 return nid;
1475 #endif
1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 /* Only safe to use early in boot when initialisation is single-threaded */
1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1481 int nid;
1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 if (nid >= 0 && nid != node)
1485 return false;
1486 return true;
1489 #else
1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1492 return true;
1494 #endif
1497 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 unsigned int order)
1500 if (early_page_uninitialised(pfn))
1501 return;
1502 __free_pages_core(page, order);
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 unsigned long end_pfn, struct zone *zone)
1525 struct page *start_page;
1526 struct page *end_page;
1528 /* end_pfn is one past the range we are checking */
1529 end_pfn--;
1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 return NULL;
1534 start_page = pfn_to_online_page(start_pfn);
1535 if (!start_page)
1536 return NULL;
1538 if (page_zone(start_page) != zone)
1539 return NULL;
1541 end_page = pfn_to_page(end_pfn);
1543 /* This gives a shorter code than deriving page_zone(end_page) */
1544 if (page_zone_id(start_page) != page_zone_id(end_page))
1545 return NULL;
1547 return start_page;
1550 void set_zone_contiguous(struct zone *zone)
1552 unsigned long block_start_pfn = zone->zone_start_pfn;
1553 unsigned long block_end_pfn;
1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 for (; block_start_pfn < zone_end_pfn(zone);
1557 block_start_pfn = block_end_pfn,
1558 block_end_pfn += pageblock_nr_pages) {
1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1562 if (!__pageblock_pfn_to_page(block_start_pfn,
1563 block_end_pfn, zone))
1564 return;
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1571 void clear_zone_contiguous(struct zone *zone)
1573 zone->contiguous = false;
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
1580 struct page *page;
1581 unsigned long i;
1583 if (!nr_pages)
1584 return;
1586 page = pfn_to_page(pfn);
1588 /* Free a large naturally-aligned chunk if possible */
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, pageblock_order);
1593 return;
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 __free_pages_core(page, 0);
1603 /* Completion tracking for deferred_init_memmap() threads */
1604 static atomic_t pgdat_init_n_undone __initdata;
1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1607 static inline void __init pgdat_init_report_one_done(void)
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
1623 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
1629 return true;
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1636 static void __init deferred_free_pages(unsigned long pfn,
1637 unsigned long end_pfn)
1639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
1642 for (; pfn < end_pfn; pfn++) {
1643 if (!deferred_pfn_valid(pfn)) {
1644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
1649 touch_nmi_watchdog();
1650 } else {
1651 nr_free++;
1654 /* Free the last block of pages to allocator */
1655 deferred_free_range(pfn - nr_free, nr_free);
1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1663 static unsigned long __init deferred_init_pages(struct zone *zone,
1664 unsigned long pfn,
1665 unsigned long end_pfn)
1667 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 int nid = zone_to_nid(zone);
1669 unsigned long nr_pages = 0;
1670 int zid = zone_idx(zone);
1671 struct page *page = NULL;
1673 for (; pfn < end_pfn; pfn++) {
1674 if (!deferred_pfn_valid(pfn)) {
1675 page = NULL;
1676 continue;
1677 } else if (!page || !(pfn & nr_pgmask)) {
1678 page = pfn_to_page(pfn);
1679 touch_nmi_watchdog();
1680 } else {
1681 page++;
1683 __init_single_page(page, pfn, zid, nid);
1684 nr_pages++;
1686 return (nr_pages);
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1695 static bool __init
1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 unsigned long *spfn, unsigned long *epfn,
1698 unsigned long first_init_pfn)
1700 u64 j;
1703 * Start out by walking through the ranges in this zone that have
1704 * already been initialized. We don't need to do anything with them
1705 * so we just need to flush them out of the system.
1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 if (*epfn <= first_init_pfn)
1709 continue;
1710 if (*spfn < first_init_pfn)
1711 *spfn = first_init_pfn;
1712 *i = j;
1713 return true;
1716 return false;
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1729 static unsigned long __init
1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 unsigned long *end_pfn)
1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 unsigned long nr_pages = 0;
1736 u64 j = *i;
1738 /* First we loop through and initialize the page values */
1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 unsigned long t;
1742 if (mo_pfn <= *start_pfn)
1743 break;
1745 t = min(mo_pfn, *end_pfn);
1746 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1748 if (mo_pfn < *end_pfn) {
1749 *start_pfn = mo_pfn;
1750 break;
1754 /* Reset values and now loop through freeing pages as needed */
1755 swap(j, *i);
1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 unsigned long t;
1760 if (mo_pfn <= spfn)
1761 break;
1763 t = min(mo_pfn, epfn);
1764 deferred_free_pages(spfn, t);
1766 if (mo_pfn <= epfn)
1767 break;
1770 return nr_pages;
1773 /* Initialise remaining memory on a node */
1774 static int __init deferred_init_memmap(void *data)
1776 pg_data_t *pgdat = data;
1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 unsigned long first_init_pfn, flags;
1780 unsigned long start = jiffies;
1781 struct zone *zone;
1782 int zid;
1783 u64 i;
1785 /* Bind memory initialisation thread to a local node if possible */
1786 if (!cpumask_empty(cpumask))
1787 set_cpus_allowed_ptr(current, cpumask);
1789 pgdat_resize_lock(pgdat, &flags);
1790 first_init_pfn = pgdat->first_deferred_pfn;
1791 if (first_init_pfn == ULONG_MAX) {
1792 pgdat_resize_unlock(pgdat, &flags);
1793 pgdat_init_report_one_done();
1794 return 0;
1797 /* Sanity check boundaries */
1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 pgdat->first_deferred_pfn = ULONG_MAX;
1802 /* Only the highest zone is deferred so find it */
1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 zone = pgdat->node_zones + zid;
1805 if (first_init_pfn < zone_end_pfn(zone))
1806 break;
1809 /* If the zone is empty somebody else may have cleared out the zone */
1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 first_init_pfn))
1812 goto zone_empty;
1815 * Initialize and free pages in MAX_ORDER sized increments so
1816 * that we can avoid introducing any issues with the buddy
1817 * allocator.
1819 while (spfn < epfn)
1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821 zone_empty:
1822 pgdat_resize_unlock(pgdat, &flags);
1824 /* Sanity check that the next zone really is unpopulated */
1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1827 pr_info("node %d initialised, %lu pages in %ums\n",
1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1830 pgdat_init_report_one_done();
1831 return 0;
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1849 static noinline bool __init
1850 deferred_grow_zone(struct zone *zone, unsigned int order)
1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 pg_data_t *pgdat = zone->zone_pgdat;
1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 unsigned long spfn, epfn, flags;
1856 unsigned long nr_pages = 0;
1857 u64 i;
1859 /* Only the last zone may have deferred pages */
1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 return false;
1863 pgdat_resize_lock(pgdat, &flags);
1866 * If deferred pages have been initialized while we were waiting for
1867 * the lock, return true, as the zone was grown. The caller will retry
1868 * this zone. We won't return to this function since the caller also
1869 * has this static branch.
1871 if (!static_branch_unlikely(&deferred_pages)) {
1872 pgdat_resize_unlock(pgdat, &flags);
1873 return true;
1877 * If someone grew this zone while we were waiting for spinlock, return
1878 * true, as there might be enough pages already.
1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 pgdat_resize_unlock(pgdat, &flags);
1882 return true;
1885 /* If the zone is empty somebody else may have cleared out the zone */
1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 first_deferred_pfn)) {
1888 pgdat->first_deferred_pfn = ULONG_MAX;
1889 pgdat_resize_unlock(pgdat, &flags);
1890 /* Retry only once. */
1891 return first_deferred_pfn != ULONG_MAX;
1895 * Initialize and free pages in MAX_ORDER sized increments so
1896 * that we can avoid introducing any issues with the buddy
1897 * allocator.
1899 while (spfn < epfn) {
1900 /* update our first deferred PFN for this section */
1901 first_deferred_pfn = spfn;
1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1905 /* We should only stop along section boundaries */
1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 continue;
1909 /* If our quota has been met we can stop here */
1910 if (nr_pages >= nr_pages_needed)
1911 break;
1914 pgdat->first_deferred_pfn = spfn;
1915 pgdat_resize_unlock(pgdat, &flags);
1917 return nr_pages > 0;
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1926 static bool __ref
1927 _deferred_grow_zone(struct zone *zone, unsigned int order)
1929 return deferred_grow_zone(zone, order);
1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1934 void __init page_alloc_init_late(void)
1936 struct zone *zone;
1937 int nid;
1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1941 /* There will be num_node_state(N_MEMORY) threads */
1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 for_each_node_state(nid, N_MEMORY) {
1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1947 /* Block until all are initialised */
1948 wait_for_completion(&pgdat_init_all_done_comp);
1951 * The number of managed pages has changed due to the initialisation
1952 * so the pcpu batch and high limits needs to be updated or the limits
1953 * will be artificially small.
1955 for_each_populated_zone(zone)
1956 zone_pcp_update(zone);
1959 * We initialized the rest of the deferred pages. Permanently disable
1960 * on-demand struct page initialization.
1962 static_branch_disable(&deferred_pages);
1964 /* Reinit limits that are based on free pages after the kernel is up */
1965 files_maxfiles_init();
1966 #endif
1968 /* Discard memblock private memory */
1969 memblock_discard();
1971 for_each_node_state(nid, N_MEMORY)
1972 shuffle_free_memory(NODE_DATA(nid));
1974 for_each_populated_zone(zone)
1975 set_zone_contiguous(zone);
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1978 init_debug_guardpage();
1979 #endif
1982 #ifdef CONFIG_CMA
1983 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1984 void __init init_cma_reserved_pageblock(struct page *page)
1986 unsigned i = pageblock_nr_pages;
1987 struct page *p = page;
1989 do {
1990 __ClearPageReserved(p);
1991 set_page_count(p, 0);
1992 } while (++p, --i);
1994 set_pageblock_migratetype(page, MIGRATE_CMA);
1996 if (pageblock_order >= MAX_ORDER) {
1997 i = pageblock_nr_pages;
1998 p = page;
1999 do {
2000 set_page_refcounted(p);
2001 __free_pages(p, MAX_ORDER - 1);
2002 p += MAX_ORDER_NR_PAGES;
2003 } while (i -= MAX_ORDER_NR_PAGES);
2004 } else {
2005 set_page_refcounted(page);
2006 __free_pages(page, pageblock_order);
2009 adjust_managed_page_count(page, pageblock_nr_pages);
2011 #endif
2014 * The order of subdivision here is critical for the IO subsystem.
2015 * Please do not alter this order without good reasons and regression
2016 * testing. Specifically, as large blocks of memory are subdivided,
2017 * the order in which smaller blocks are delivered depends on the order
2018 * they're subdivided in this function. This is the primary factor
2019 * influencing the order in which pages are delivered to the IO
2020 * subsystem according to empirical testing, and this is also justified
2021 * by considering the behavior of a buddy system containing a single
2022 * large block of memory acted on by a series of small allocations.
2023 * This behavior is a critical factor in sglist merging's success.
2025 * -- nyc
2027 static inline void expand(struct zone *zone, struct page *page,
2028 int low, int high, struct free_area *area,
2029 int migratetype)
2031 unsigned long size = 1 << high;
2033 while (high > low) {
2034 area--;
2035 high--;
2036 size >>= 1;
2037 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2040 * Mark as guard pages (or page), that will allow to
2041 * merge back to allocator when buddy will be freed.
2042 * Corresponding page table entries will not be touched,
2043 * pages will stay not present in virtual address space
2045 if (set_page_guard(zone, &page[size], high, migratetype))
2046 continue;
2048 add_to_free_area(&page[size], area, migratetype);
2049 set_page_order(&page[size], high);
2053 static void check_new_page_bad(struct page *page)
2055 const char *bad_reason = NULL;
2056 unsigned long bad_flags = 0;
2058 if (unlikely(atomic_read(&page->_mapcount) != -1))
2059 bad_reason = "nonzero mapcount";
2060 if (unlikely(page->mapping != NULL))
2061 bad_reason = "non-NULL mapping";
2062 if (unlikely(page_ref_count(page) != 0))
2063 bad_reason = "nonzero _refcount";
2064 if (unlikely(page->flags & __PG_HWPOISON)) {
2065 bad_reason = "HWPoisoned (hardware-corrupted)";
2066 bad_flags = __PG_HWPOISON;
2067 /* Don't complain about hwpoisoned pages */
2068 page_mapcount_reset(page); /* remove PageBuddy */
2069 return;
2071 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2072 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2073 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2075 #ifdef CONFIG_MEMCG
2076 if (unlikely(page->mem_cgroup))
2077 bad_reason = "page still charged to cgroup";
2078 #endif
2079 bad_page(page, bad_reason, bad_flags);
2083 * This page is about to be returned from the page allocator
2085 static inline int check_new_page(struct page *page)
2087 if (likely(page_expected_state(page,
2088 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2089 return 0;
2091 check_new_page_bad(page);
2092 return 1;
2095 static inline bool free_pages_prezeroed(void)
2097 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2098 page_poisoning_enabled()) || want_init_on_free();
2101 #ifdef CONFIG_DEBUG_VM
2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2105 * also checked when pcp lists are refilled from the free lists.
2107 static inline bool check_pcp_refill(struct page *page)
2109 if (debug_pagealloc_enabled())
2110 return check_new_page(page);
2111 else
2112 return false;
2115 static inline bool check_new_pcp(struct page *page)
2117 return check_new_page(page);
2119 #else
2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2123 * enabled, they are also checked when being allocated from the pcp lists.
2125 static inline bool check_pcp_refill(struct page *page)
2127 return check_new_page(page);
2129 static inline bool check_new_pcp(struct page *page)
2131 if (debug_pagealloc_enabled())
2132 return check_new_page(page);
2133 else
2134 return false;
2136 #endif /* CONFIG_DEBUG_VM */
2138 static bool check_new_pages(struct page *page, unsigned int order)
2140 int i;
2141 for (i = 0; i < (1 << order); i++) {
2142 struct page *p = page + i;
2144 if (unlikely(check_new_page(p)))
2145 return true;
2148 return false;
2151 inline void post_alloc_hook(struct page *page, unsigned int order,
2152 gfp_t gfp_flags)
2154 set_page_private(page, 0);
2155 set_page_refcounted(page);
2157 arch_alloc_page(page, order);
2158 if (debug_pagealloc_enabled())
2159 kernel_map_pages(page, 1 << order, 1);
2160 kasan_alloc_pages(page, order);
2161 kernel_poison_pages(page, 1 << order, 1);
2162 set_page_owner(page, order, gfp_flags);
2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2166 unsigned int alloc_flags)
2168 post_alloc_hook(page, order, gfp_flags);
2170 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2171 kernel_init_free_pages(page, 1 << order);
2173 if (order && (gfp_flags & __GFP_COMP))
2174 prep_compound_page(page, order);
2177 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2178 * allocate the page. The expectation is that the caller is taking
2179 * steps that will free more memory. The caller should avoid the page
2180 * being used for !PFMEMALLOC purposes.
2182 if (alloc_flags & ALLOC_NO_WATERMARKS)
2183 set_page_pfmemalloc(page);
2184 else
2185 clear_page_pfmemalloc(page);
2189 * Go through the free lists for the given migratetype and remove
2190 * the smallest available page from the freelists
2192 static __always_inline
2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2194 int migratetype)
2196 unsigned int current_order;
2197 struct free_area *area;
2198 struct page *page;
2200 /* Find a page of the appropriate size in the preferred list */
2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2202 area = &(zone->free_area[current_order]);
2203 page = get_page_from_free_area(area, migratetype);
2204 if (!page)
2205 continue;
2206 del_page_from_free_area(page, area);
2207 expand(zone, page, order, current_order, area, migratetype);
2208 set_pcppage_migratetype(page, migratetype);
2209 return page;
2212 return NULL;
2217 * This array describes the order lists are fallen back to when
2218 * the free lists for the desirable migrate type are depleted
2220 static int fallbacks[MIGRATE_TYPES][4] = {
2221 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2222 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2223 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2224 #ifdef CONFIG_CMA
2225 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2226 #endif
2227 #ifdef CONFIG_MEMORY_ISOLATION
2228 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2229 #endif
2232 #ifdef CONFIG_CMA
2233 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2234 unsigned int order)
2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2238 #else
2239 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2240 unsigned int order) { return NULL; }
2241 #endif
2244 * Move the free pages in a range to the free lists of the requested type.
2245 * Note that start_page and end_pages are not aligned on a pageblock
2246 * boundary. If alignment is required, use move_freepages_block()
2248 static int move_freepages(struct zone *zone,
2249 struct page *start_page, struct page *end_page,
2250 int migratetype, int *num_movable)
2252 struct page *page;
2253 unsigned int order;
2254 int pages_moved = 0;
2256 for (page = start_page; page <= end_page;) {
2257 if (!pfn_valid_within(page_to_pfn(page))) {
2258 page++;
2259 continue;
2262 if (!PageBuddy(page)) {
2264 * We assume that pages that could be isolated for
2265 * migration are movable. But we don't actually try
2266 * isolating, as that would be expensive.
2268 if (num_movable &&
2269 (PageLRU(page) || __PageMovable(page)))
2270 (*num_movable)++;
2272 page++;
2273 continue;
2276 /* Make sure we are not inadvertently changing nodes */
2277 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2278 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2280 order = page_order(page);
2281 move_to_free_area(page, &zone->free_area[order], migratetype);
2282 page += 1 << order;
2283 pages_moved += 1 << order;
2286 return pages_moved;
2289 int move_freepages_block(struct zone *zone, struct page *page,
2290 int migratetype, int *num_movable)
2292 unsigned long start_pfn, end_pfn;
2293 struct page *start_page, *end_page;
2295 if (num_movable)
2296 *num_movable = 0;
2298 start_pfn = page_to_pfn(page);
2299 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2300 start_page = pfn_to_page(start_pfn);
2301 end_page = start_page + pageblock_nr_pages - 1;
2302 end_pfn = start_pfn + pageblock_nr_pages - 1;
2304 /* Do not cross zone boundaries */
2305 if (!zone_spans_pfn(zone, start_pfn))
2306 start_page = page;
2307 if (!zone_spans_pfn(zone, end_pfn))
2308 return 0;
2310 return move_freepages(zone, start_page, end_page, migratetype,
2311 num_movable);
2314 static void change_pageblock_range(struct page *pageblock_page,
2315 int start_order, int migratetype)
2317 int nr_pageblocks = 1 << (start_order - pageblock_order);
2319 while (nr_pageblocks--) {
2320 set_pageblock_migratetype(pageblock_page, migratetype);
2321 pageblock_page += pageblock_nr_pages;
2326 * When we are falling back to another migratetype during allocation, try to
2327 * steal extra free pages from the same pageblocks to satisfy further
2328 * allocations, instead of polluting multiple pageblocks.
2330 * If we are stealing a relatively large buddy page, it is likely there will
2331 * be more free pages in the pageblock, so try to steal them all. For
2332 * reclaimable and unmovable allocations, we steal regardless of page size,
2333 * as fragmentation caused by those allocations polluting movable pageblocks
2334 * is worse than movable allocations stealing from unmovable and reclaimable
2335 * pageblocks.
2337 static bool can_steal_fallback(unsigned int order, int start_mt)
2340 * Leaving this order check is intended, although there is
2341 * relaxed order check in next check. The reason is that
2342 * we can actually steal whole pageblock if this condition met,
2343 * but, below check doesn't guarantee it and that is just heuristic
2344 * so could be changed anytime.
2346 if (order >= pageblock_order)
2347 return true;
2349 if (order >= pageblock_order / 2 ||
2350 start_mt == MIGRATE_RECLAIMABLE ||
2351 start_mt == MIGRATE_UNMOVABLE ||
2352 page_group_by_mobility_disabled)
2353 return true;
2355 return false;
2358 static inline void boost_watermark(struct zone *zone)
2360 unsigned long max_boost;
2362 if (!watermark_boost_factor)
2363 return;
2365 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2366 watermark_boost_factor, 10000);
2369 * high watermark may be uninitialised if fragmentation occurs
2370 * very early in boot so do not boost. We do not fall
2371 * through and boost by pageblock_nr_pages as failing
2372 * allocations that early means that reclaim is not going
2373 * to help and it may even be impossible to reclaim the
2374 * boosted watermark resulting in a hang.
2376 if (!max_boost)
2377 return;
2379 max_boost = max(pageblock_nr_pages, max_boost);
2381 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2382 max_boost);
2386 * This function implements actual steal behaviour. If order is large enough,
2387 * we can steal whole pageblock. If not, we first move freepages in this
2388 * pageblock to our migratetype and determine how many already-allocated pages
2389 * are there in the pageblock with a compatible migratetype. If at least half
2390 * of pages are free or compatible, we can change migratetype of the pageblock
2391 * itself, so pages freed in the future will be put on the correct free list.
2393 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2394 unsigned int alloc_flags, int start_type, bool whole_block)
2396 unsigned int current_order = page_order(page);
2397 struct free_area *area;
2398 int free_pages, movable_pages, alike_pages;
2399 int old_block_type;
2401 old_block_type = get_pageblock_migratetype(page);
2404 * This can happen due to races and we want to prevent broken
2405 * highatomic accounting.
2407 if (is_migrate_highatomic(old_block_type))
2408 goto single_page;
2410 /* Take ownership for orders >= pageblock_order */
2411 if (current_order >= pageblock_order) {
2412 change_pageblock_range(page, current_order, start_type);
2413 goto single_page;
2417 * Boost watermarks to increase reclaim pressure to reduce the
2418 * likelihood of future fallbacks. Wake kswapd now as the node
2419 * may be balanced overall and kswapd will not wake naturally.
2421 boost_watermark(zone);
2422 if (alloc_flags & ALLOC_KSWAPD)
2423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2425 /* We are not allowed to try stealing from the whole block */
2426 if (!whole_block)
2427 goto single_page;
2429 free_pages = move_freepages_block(zone, page, start_type,
2430 &movable_pages);
2432 * Determine how many pages are compatible with our allocation.
2433 * For movable allocation, it's the number of movable pages which
2434 * we just obtained. For other types it's a bit more tricky.
2436 if (start_type == MIGRATE_MOVABLE) {
2437 alike_pages = movable_pages;
2438 } else {
2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441 * to MOVABLE pageblock, consider all non-movable pages as
2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443 * vice versa, be conservative since we can't distinguish the
2444 * exact migratetype of non-movable pages.
2446 if (old_block_type == MIGRATE_MOVABLE)
2447 alike_pages = pageblock_nr_pages
2448 - (free_pages + movable_pages);
2449 else
2450 alike_pages = 0;
2453 /* moving whole block can fail due to zone boundary conditions */
2454 if (!free_pages)
2455 goto single_page;
2458 * If a sufficient number of pages in the block are either free or of
2459 * comparable migratability as our allocation, claim the whole block.
2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2462 page_group_by_mobility_disabled)
2463 set_pageblock_migratetype(page, start_type);
2465 return;
2467 single_page:
2468 area = &zone->free_area[current_order];
2469 move_to_free_area(page, area, start_type);
2473 * Check whether there is a suitable fallback freepage with requested order.
2474 * If only_stealable is true, this function returns fallback_mt only if
2475 * we can steal other freepages all together. This would help to reduce
2476 * fragmentation due to mixed migratetype pages in one pageblock.
2478 int find_suitable_fallback(struct free_area *area, unsigned int order,
2479 int migratetype, bool only_stealable, bool *can_steal)
2481 int i;
2482 int fallback_mt;
2484 if (area->nr_free == 0)
2485 return -1;
2487 *can_steal = false;
2488 for (i = 0;; i++) {
2489 fallback_mt = fallbacks[migratetype][i];
2490 if (fallback_mt == MIGRATE_TYPES)
2491 break;
2493 if (free_area_empty(area, fallback_mt))
2494 continue;
2496 if (can_steal_fallback(order, migratetype))
2497 *can_steal = true;
2499 if (!only_stealable)
2500 return fallback_mt;
2502 if (*can_steal)
2503 return fallback_mt;
2506 return -1;
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2513 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514 unsigned int alloc_order)
2516 int mt;
2517 unsigned long max_managed, flags;
2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2521 * Check is race-prone but harmless.
2523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2524 if (zone->nr_reserved_highatomic >= max_managed)
2525 return;
2527 spin_lock_irqsave(&zone->lock, flags);
2529 /* Recheck the nr_reserved_highatomic limit under the lock */
2530 if (zone->nr_reserved_highatomic >= max_managed)
2531 goto out_unlock;
2533 /* Yoink! */
2534 mt = get_pageblock_migratetype(page);
2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536 && !is_migrate_cma(mt)) {
2537 zone->nr_reserved_highatomic += pageblock_nr_pages;
2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2542 out_unlock:
2543 spin_unlock_irqrestore(&zone->lock, flags);
2547 * Used when an allocation is about to fail under memory pressure. This
2548 * potentially hurts the reliability of high-order allocations when under
2549 * intense memory pressure but failed atomic allocations should be easier
2550 * to recover from than an OOM.
2552 * If @force is true, try to unreserve a pageblock even though highatomic
2553 * pageblock is exhausted.
2555 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556 bool force)
2558 struct zonelist *zonelist = ac->zonelist;
2559 unsigned long flags;
2560 struct zoneref *z;
2561 struct zone *zone;
2562 struct page *page;
2563 int order;
2564 bool ret;
2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567 ac->nodemask) {
2569 * Preserve at least one pageblock unless memory pressure
2570 * is really high.
2572 if (!force && zone->nr_reserved_highatomic <=
2573 pageblock_nr_pages)
2574 continue;
2576 spin_lock_irqsave(&zone->lock, flags);
2577 for (order = 0; order < MAX_ORDER; order++) {
2578 struct free_area *area = &(zone->free_area[order]);
2580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2581 if (!page)
2582 continue;
2585 * In page freeing path, migratetype change is racy so
2586 * we can counter several free pages in a pageblock
2587 * in this loop althoug we changed the pageblock type
2588 * from highatomic to ac->migratetype. So we should
2589 * adjust the count once.
2591 if (is_migrate_highatomic_page(page)) {
2593 * It should never happen but changes to
2594 * locking could inadvertently allow a per-cpu
2595 * drain to add pages to MIGRATE_HIGHATOMIC
2596 * while unreserving so be safe and watch for
2597 * underflows.
2599 zone->nr_reserved_highatomic -= min(
2600 pageblock_nr_pages,
2601 zone->nr_reserved_highatomic);
2605 * Convert to ac->migratetype and avoid the normal
2606 * pageblock stealing heuristics. Minimally, the caller
2607 * is doing the work and needs the pages. More
2608 * importantly, if the block was always converted to
2609 * MIGRATE_UNMOVABLE or another type then the number
2610 * of pageblocks that cannot be completely freed
2611 * may increase.
2613 set_pageblock_migratetype(page, ac->migratetype);
2614 ret = move_freepages_block(zone, page, ac->migratetype,
2615 NULL);
2616 if (ret) {
2617 spin_unlock_irqrestore(&zone->lock, flags);
2618 return ret;
2621 spin_unlock_irqrestore(&zone->lock, flags);
2624 return false;
2628 * Try finding a free buddy page on the fallback list and put it on the free
2629 * list of requested migratetype, possibly along with other pages from the same
2630 * block, depending on fragmentation avoidance heuristics. Returns true if
2631 * fallback was found so that __rmqueue_smallest() can grab it.
2633 * The use of signed ints for order and current_order is a deliberate
2634 * deviation from the rest of this file, to make the for loop
2635 * condition simpler.
2637 static __always_inline bool
2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639 unsigned int alloc_flags)
2641 struct free_area *area;
2642 int current_order;
2643 int min_order = order;
2644 struct page *page;
2645 int fallback_mt;
2646 bool can_steal;
2649 * Do not steal pages from freelists belonging to other pageblocks
2650 * i.e. orders < pageblock_order. If there are no local zones free,
2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2653 if (alloc_flags & ALLOC_NOFRAGMENT)
2654 min_order = pageblock_order;
2657 * Find the largest available free page in the other list. This roughly
2658 * approximates finding the pageblock with the most free pages, which
2659 * would be too costly to do exactly.
2661 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2662 --current_order) {
2663 area = &(zone->free_area[current_order]);
2664 fallback_mt = find_suitable_fallback(area, current_order,
2665 start_migratetype, false, &can_steal);
2666 if (fallback_mt == -1)
2667 continue;
2670 * We cannot steal all free pages from the pageblock and the
2671 * requested migratetype is movable. In that case it's better to
2672 * steal and split the smallest available page instead of the
2673 * largest available page, because even if the next movable
2674 * allocation falls back into a different pageblock than this
2675 * one, it won't cause permanent fragmentation.
2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678 && current_order > order)
2679 goto find_smallest;
2681 goto do_steal;
2684 return false;
2686 find_smallest:
2687 for (current_order = order; current_order < MAX_ORDER;
2688 current_order++) {
2689 area = &(zone->free_area[current_order]);
2690 fallback_mt = find_suitable_fallback(area, current_order,
2691 start_migratetype, false, &can_steal);
2692 if (fallback_mt != -1)
2693 break;
2697 * This should not happen - we already found a suitable fallback
2698 * when looking for the largest page.
2700 VM_BUG_ON(current_order == MAX_ORDER);
2702 do_steal:
2703 page = get_page_from_free_area(area, fallback_mt);
2705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706 can_steal);
2708 trace_mm_page_alloc_extfrag(page, order, current_order,
2709 start_migratetype, fallback_mt);
2711 return true;
2716 * Do the hard work of removing an element from the buddy allocator.
2717 * Call me with the zone->lock already held.
2719 static __always_inline struct page *
2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721 unsigned int alloc_flags)
2723 struct page *page;
2725 retry:
2726 page = __rmqueue_smallest(zone, order, migratetype);
2727 if (unlikely(!page)) {
2728 if (migratetype == MIGRATE_MOVABLE)
2729 page = __rmqueue_cma_fallback(zone, order);
2731 if (!page && __rmqueue_fallback(zone, order, migratetype,
2732 alloc_flags))
2733 goto retry;
2736 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2737 return page;
2741 * Obtain a specified number of elements from the buddy allocator, all under
2742 * a single hold of the lock, for efficiency. Add them to the supplied list.
2743 * Returns the number of new pages which were placed at *list.
2745 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2746 unsigned long count, struct list_head *list,
2747 int migratetype, unsigned int alloc_flags)
2749 int i, alloced = 0;
2751 spin_lock(&zone->lock);
2752 for (i = 0; i < count; ++i) {
2753 struct page *page = __rmqueue(zone, order, migratetype,
2754 alloc_flags);
2755 if (unlikely(page == NULL))
2756 break;
2758 if (unlikely(check_pcp_refill(page)))
2759 continue;
2762 * Split buddy pages returned by expand() are received here in
2763 * physical page order. The page is added to the tail of
2764 * caller's list. From the callers perspective, the linked list
2765 * is ordered by page number under some conditions. This is
2766 * useful for IO devices that can forward direction from the
2767 * head, thus also in the physical page order. This is useful
2768 * for IO devices that can merge IO requests if the physical
2769 * pages are ordered properly.
2771 list_add_tail(&page->lru, list);
2772 alloced++;
2773 if (is_migrate_cma(get_pcppage_migratetype(page)))
2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775 -(1 << order));
2779 * i pages were removed from the buddy list even if some leak due
2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781 * on i. Do not confuse with 'alloced' which is the number of
2782 * pages added to the pcp list.
2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2785 spin_unlock(&zone->lock);
2786 return alloced;
2789 #ifdef CONFIG_NUMA
2791 * Called from the vmstat counter updater to drain pagesets of this
2792 * currently executing processor on remote nodes after they have
2793 * expired.
2795 * Note that this function must be called with the thread pinned to
2796 * a single processor.
2798 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2800 unsigned long flags;
2801 int to_drain, batch;
2803 local_irq_save(flags);
2804 batch = READ_ONCE(pcp->batch);
2805 to_drain = min(pcp->count, batch);
2806 if (to_drain > 0)
2807 free_pcppages_bulk(zone, to_drain, pcp);
2808 local_irq_restore(flags);
2810 #endif
2813 * Drain pcplists of the indicated processor and zone.
2815 * The processor must either be the current processor and the
2816 * thread pinned to the current processor or a processor that
2817 * is not online.
2819 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2821 unsigned long flags;
2822 struct per_cpu_pageset *pset;
2823 struct per_cpu_pages *pcp;
2825 local_irq_save(flags);
2826 pset = per_cpu_ptr(zone->pageset, cpu);
2828 pcp = &pset->pcp;
2829 if (pcp->count)
2830 free_pcppages_bulk(zone, pcp->count, pcp);
2831 local_irq_restore(flags);
2835 * Drain pcplists of all zones on the indicated processor.
2837 * The processor must either be the current processor and the
2838 * thread pinned to the current processor or a processor that
2839 * is not online.
2841 static void drain_pages(unsigned int cpu)
2843 struct zone *zone;
2845 for_each_populated_zone(zone) {
2846 drain_pages_zone(cpu, zone);
2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854 * the single zone's pages.
2856 void drain_local_pages(struct zone *zone)
2858 int cpu = smp_processor_id();
2860 if (zone)
2861 drain_pages_zone(cpu, zone);
2862 else
2863 drain_pages(cpu);
2866 static void drain_local_pages_wq(struct work_struct *work)
2868 struct pcpu_drain *drain;
2870 drain = container_of(work, struct pcpu_drain, work);
2873 * drain_all_pages doesn't use proper cpu hotplug protection so
2874 * we can race with cpu offline when the WQ can move this from
2875 * a cpu pinned worker to an unbound one. We can operate on a different
2876 * cpu which is allright but we also have to make sure to not move to
2877 * a different one.
2879 preempt_disable();
2880 drain_local_pages(drain->zone);
2881 preempt_enable();
2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2887 * When zone parameter is non-NULL, spill just the single zone's pages.
2889 * Note that this can be extremely slow as the draining happens in a workqueue.
2891 void drain_all_pages(struct zone *zone)
2893 int cpu;
2896 * Allocate in the BSS so we wont require allocation in
2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2899 static cpumask_t cpus_with_pcps;
2902 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 * initialized.
2905 if (WARN_ON_ONCE(!mm_percpu_wq))
2906 return;
2909 * Do not drain if one is already in progress unless it's specific to
2910 * a zone. Such callers are primarily CMA and memory hotplug and need
2911 * the drain to be complete when the call returns.
2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914 if (!zone)
2915 return;
2916 mutex_lock(&pcpu_drain_mutex);
2920 * We don't care about racing with CPU hotplug event
2921 * as offline notification will cause the notified
2922 * cpu to drain that CPU pcps and on_each_cpu_mask
2923 * disables preemption as part of its processing
2925 for_each_online_cpu(cpu) {
2926 struct per_cpu_pageset *pcp;
2927 struct zone *z;
2928 bool has_pcps = false;
2930 if (zone) {
2931 pcp = per_cpu_ptr(zone->pageset, cpu);
2932 if (pcp->pcp.count)
2933 has_pcps = true;
2934 } else {
2935 for_each_populated_zone(z) {
2936 pcp = per_cpu_ptr(z->pageset, cpu);
2937 if (pcp->pcp.count) {
2938 has_pcps = true;
2939 break;
2944 if (has_pcps)
2945 cpumask_set_cpu(cpu, &cpus_with_pcps);
2946 else
2947 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2950 for_each_cpu(cpu, &cpus_with_pcps) {
2951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2953 drain->zone = zone;
2954 INIT_WORK(&drain->work, drain_local_pages_wq);
2955 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2957 for_each_cpu(cpu, &cpus_with_pcps)
2958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2960 mutex_unlock(&pcpu_drain_mutex);
2963 #ifdef CONFIG_HIBERNATION
2966 * Touch the watchdog for every WD_PAGE_COUNT pages.
2968 #define WD_PAGE_COUNT (128*1024)
2970 void mark_free_pages(struct zone *zone)
2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2973 unsigned long flags;
2974 unsigned int order, t;
2975 struct page *page;
2977 if (zone_is_empty(zone))
2978 return;
2980 spin_lock_irqsave(&zone->lock, flags);
2982 max_zone_pfn = zone_end_pfn(zone);
2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984 if (pfn_valid(pfn)) {
2985 page = pfn_to_page(pfn);
2987 if (!--page_count) {
2988 touch_nmi_watchdog();
2989 page_count = WD_PAGE_COUNT;
2992 if (page_zone(page) != zone)
2993 continue;
2995 if (!swsusp_page_is_forbidden(page))
2996 swsusp_unset_page_free(page);
2999 for_each_migratetype_order(order, t) {
3000 list_for_each_entry(page,
3001 &zone->free_area[order].free_list[t], lru) {
3002 unsigned long i;
3004 pfn = page_to_pfn(page);
3005 for (i = 0; i < (1UL << order); i++) {
3006 if (!--page_count) {
3007 touch_nmi_watchdog();
3008 page_count = WD_PAGE_COUNT;
3010 swsusp_set_page_free(pfn_to_page(pfn + i));
3014 spin_unlock_irqrestore(&zone->lock, flags);
3016 #endif /* CONFIG_PM */
3018 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3020 int migratetype;
3022 if (!free_pcp_prepare(page))
3023 return false;
3025 migratetype = get_pfnblock_migratetype(page, pfn);
3026 set_pcppage_migratetype(page, migratetype);
3027 return true;
3030 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3032 struct zone *zone = page_zone(page);
3033 struct per_cpu_pages *pcp;
3034 int migratetype;
3036 migratetype = get_pcppage_migratetype(page);
3037 __count_vm_event(PGFREE);
3040 * We only track unmovable, reclaimable and movable on pcp lists.
3041 * Free ISOLATE pages back to the allocator because they are being
3042 * offlined but treat HIGHATOMIC as movable pages so we can get those
3043 * areas back if necessary. Otherwise, we may have to free
3044 * excessively into the page allocator
3046 if (migratetype >= MIGRATE_PCPTYPES) {
3047 if (unlikely(is_migrate_isolate(migratetype))) {
3048 free_one_page(zone, page, pfn, 0, migratetype);
3049 return;
3051 migratetype = MIGRATE_MOVABLE;
3054 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3055 list_add(&page->lru, &pcp->lists[migratetype]);
3056 pcp->count++;
3057 if (pcp->count >= pcp->high) {
3058 unsigned long batch = READ_ONCE(pcp->batch);
3059 free_pcppages_bulk(zone, batch, pcp);
3064 * Free a 0-order page
3066 void free_unref_page(struct page *page)
3068 unsigned long flags;
3069 unsigned long pfn = page_to_pfn(page);
3071 if (!free_unref_page_prepare(page, pfn))
3072 return;
3074 local_irq_save(flags);
3075 free_unref_page_commit(page, pfn);
3076 local_irq_restore(flags);
3080 * Free a list of 0-order pages
3082 void free_unref_page_list(struct list_head *list)
3084 struct page *page, *next;
3085 unsigned long flags, pfn;
3086 int batch_count = 0;
3088 /* Prepare pages for freeing */
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 pfn = page_to_pfn(page);
3091 if (!free_unref_page_prepare(page, pfn))
3092 list_del(&page->lru);
3093 set_page_private(page, pfn);
3096 local_irq_save(flags);
3097 list_for_each_entry_safe(page, next, list, lru) {
3098 unsigned long pfn = page_private(page);
3100 set_page_private(page, 0);
3101 trace_mm_page_free_batched(page);
3102 free_unref_page_commit(page, pfn);
3105 * Guard against excessive IRQ disabled times when we get
3106 * a large list of pages to free.
3108 if (++batch_count == SWAP_CLUSTER_MAX) {
3109 local_irq_restore(flags);
3110 batch_count = 0;
3111 local_irq_save(flags);
3114 local_irq_restore(flags);
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3120 * Each sub-page must be freed individually.
3122 * Note: this is probably too low level an operation for use in drivers.
3123 * Please consult with lkml before using this in your driver.
3125 void split_page(struct page *page, unsigned int order)
3127 int i;
3129 VM_BUG_ON_PAGE(PageCompound(page), page);
3130 VM_BUG_ON_PAGE(!page_count(page), page);
3132 for (i = 1; i < (1 << order); i++)
3133 set_page_refcounted(page + i);
3134 split_page_owner(page, order);
3136 EXPORT_SYMBOL_GPL(split_page);
3138 int __isolate_free_page(struct page *page, unsigned int order)
3140 struct free_area *area = &page_zone(page)->free_area[order];
3141 unsigned long watermark;
3142 struct zone *zone;
3143 int mt;
3145 BUG_ON(!PageBuddy(page));
3147 zone = page_zone(page);
3148 mt = get_pageblock_migratetype(page);
3150 if (!is_migrate_isolate(mt)) {
3152 * Obey watermarks as if the page was being allocated. We can
3153 * emulate a high-order watermark check with a raised order-0
3154 * watermark, because we already know our high-order page
3155 * exists.
3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3159 return 0;
3161 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3164 /* Remove page from free list */
3166 del_page_from_free_area(page, area);
3169 * Set the pageblock if the isolated page is at least half of a
3170 * pageblock
3172 if (order >= pageblock_order - 1) {
3173 struct page *endpage = page + (1 << order) - 1;
3174 for (; page < endpage; page += pageblock_nr_pages) {
3175 int mt = get_pageblock_migratetype(page);
3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3177 && !is_migrate_highatomic(mt))
3178 set_pageblock_migratetype(page,
3179 MIGRATE_MOVABLE);
3184 return 1UL << order;
3188 * Update NUMA hit/miss statistics
3190 * Must be called with interrupts disabled.
3192 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3194 #ifdef CONFIG_NUMA
3195 enum numa_stat_item local_stat = NUMA_LOCAL;
3197 /* skip numa counters update if numa stats is disabled */
3198 if (!static_branch_likely(&vm_numa_stat_key))
3199 return;
3201 if (zone_to_nid(z) != numa_node_id())
3202 local_stat = NUMA_OTHER;
3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3205 __inc_numa_state(z, NUMA_HIT);
3206 else {
3207 __inc_numa_state(z, NUMA_MISS);
3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3210 __inc_numa_state(z, local_stat);
3211 #endif
3214 /* Remove page from the per-cpu list, caller must protect the list */
3215 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3216 unsigned int alloc_flags,
3217 struct per_cpu_pages *pcp,
3218 struct list_head *list)
3220 struct page *page;
3222 do {
3223 if (list_empty(list)) {
3224 pcp->count += rmqueue_bulk(zone, 0,
3225 pcp->batch, list,
3226 migratetype, alloc_flags);
3227 if (unlikely(list_empty(list)))
3228 return NULL;
3231 page = list_first_entry(list, struct page, lru);
3232 list_del(&page->lru);
3233 pcp->count--;
3234 } while (check_new_pcp(page));
3236 return page;
3239 /* Lock and remove page from the per-cpu list */
3240 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3241 struct zone *zone, gfp_t gfp_flags,
3242 int migratetype, unsigned int alloc_flags)
3244 struct per_cpu_pages *pcp;
3245 struct list_head *list;
3246 struct page *page;
3247 unsigned long flags;
3249 local_irq_save(flags);
3250 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251 list = &pcp->lists[migratetype];
3252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3253 if (page) {
3254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3255 zone_statistics(preferred_zone, zone);
3257 local_irq_restore(flags);
3258 return page;
3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3264 static inline
3265 struct page *rmqueue(struct zone *preferred_zone,
3266 struct zone *zone, unsigned int order,
3267 gfp_t gfp_flags, unsigned int alloc_flags,
3268 int migratetype)
3270 unsigned long flags;
3271 struct page *page;
3273 if (likely(order == 0)) {
3274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275 migratetype, alloc_flags);
3276 goto out;
3280 * We most definitely don't want callers attempting to
3281 * allocate greater than order-1 page units with __GFP_NOFAIL.
3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284 spin_lock_irqsave(&zone->lock, flags);
3286 do {
3287 page = NULL;
3288 if (alloc_flags & ALLOC_HARDER) {
3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290 if (page)
3291 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3293 if (!page)
3294 page = __rmqueue(zone, order, migratetype, alloc_flags);
3295 } while (page && check_new_pages(page, order));
3296 spin_unlock(&zone->lock);
3297 if (!page)
3298 goto failed;
3299 __mod_zone_freepage_state(zone, -(1 << order),
3300 get_pcppage_migratetype(page));
3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 zone_statistics(preferred_zone, zone);
3304 local_irq_restore(flags);
3306 out:
3307 /* Separate test+clear to avoid unnecessary atomics */
3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3314 return page;
3316 failed:
3317 local_irq_restore(flags);
3318 return NULL;
3321 #ifdef CONFIG_FAIL_PAGE_ALLOC
3323 static struct {
3324 struct fault_attr attr;
3326 bool ignore_gfp_highmem;
3327 bool ignore_gfp_reclaim;
3328 u32 min_order;
3329 } fail_page_alloc = {
3330 .attr = FAULT_ATTR_INITIALIZER,
3331 .ignore_gfp_reclaim = true,
3332 .ignore_gfp_highmem = true,
3333 .min_order = 1,
3336 static int __init setup_fail_page_alloc(char *str)
3338 return setup_fault_attr(&fail_page_alloc.attr, str);
3340 __setup("fail_page_alloc=", setup_fail_page_alloc);
3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3344 if (order < fail_page_alloc.min_order)
3345 return false;
3346 if (gfp_mask & __GFP_NOFAIL)
3347 return false;
3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3349 return false;
3350 if (fail_page_alloc.ignore_gfp_reclaim &&
3351 (gfp_mask & __GFP_DIRECT_RECLAIM))
3352 return false;
3354 return should_fail(&fail_page_alloc.attr, 1 << order);
3357 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3359 static int __init fail_page_alloc_debugfs(void)
3361 umode_t mode = S_IFREG | 0600;
3362 struct dentry *dir;
3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365 &fail_page_alloc.attr);
3367 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368 &fail_page_alloc.ignore_gfp_reclaim);
3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370 &fail_page_alloc.ignore_gfp_highmem);
3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3373 return 0;
3376 late_initcall(fail_page_alloc_debugfs);
3378 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3380 #else /* CONFIG_FAIL_PAGE_ALLOC */
3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3384 return false;
3387 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3391 return __should_fail_alloc_page(gfp_mask, order);
3393 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3398 * one free page of a suitable size. Checking now avoids taking the zone lock
3399 * to check in the allocation paths if no pages are free.
3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402 int classzone_idx, unsigned int alloc_flags,
3403 long free_pages)
3405 long min = mark;
3406 int o;
3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3409 /* free_pages may go negative - that's OK */
3410 free_pages -= (1 << order) - 1;
3412 if (alloc_flags & ALLOC_HIGH)
3413 min -= min / 2;
3416 * If the caller does not have rights to ALLOC_HARDER then subtract
3417 * the high-atomic reserves. This will over-estimate the size of the
3418 * atomic reserve but it avoids a search.
3420 if (likely(!alloc_harder)) {
3421 free_pages -= z->nr_reserved_highatomic;
3422 } else {
3424 * OOM victims can try even harder than normal ALLOC_HARDER
3425 * users on the grounds that it's definitely going to be in
3426 * the exit path shortly and free memory. Any allocation it
3427 * makes during the free path will be small and short-lived.
3429 if (alloc_flags & ALLOC_OOM)
3430 min -= min / 2;
3431 else
3432 min -= min / 4;
3436 #ifdef CONFIG_CMA
3437 /* If allocation can't use CMA areas don't use free CMA pages */
3438 if (!(alloc_flags & ALLOC_CMA))
3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440 #endif
3443 * Check watermarks for an order-0 allocation request. If these
3444 * are not met, then a high-order request also cannot go ahead
3445 * even if a suitable page happened to be free.
3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3448 return false;
3450 /* If this is an order-0 request then the watermark is fine */
3451 if (!order)
3452 return true;
3454 /* For a high-order request, check at least one suitable page is free */
3455 for (o = order; o < MAX_ORDER; o++) {
3456 struct free_area *area = &z->free_area[o];
3457 int mt;
3459 if (!area->nr_free)
3460 continue;
3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3463 if (!free_area_empty(area, mt))
3464 return true;
3467 #ifdef CONFIG_CMA
3468 if ((alloc_flags & ALLOC_CMA) &&
3469 !free_area_empty(area, MIGRATE_CMA)) {
3470 return true;
3472 #endif
3473 if (alloc_harder &&
3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475 return true;
3477 return false;
3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3481 int classzone_idx, unsigned int alloc_flags)
3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484 zone_page_state(z, NR_FREE_PAGES));
3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3488 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3490 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3491 long cma_pages = 0;
3493 #ifdef CONFIG_CMA
3494 /* If allocation can't use CMA areas don't use free CMA pages */
3495 if (!(alloc_flags & ALLOC_CMA))
3496 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3497 #endif
3500 * Fast check for order-0 only. If this fails then the reserves
3501 * need to be calculated. There is a corner case where the check
3502 * passes but only the high-order atomic reserve are free. If
3503 * the caller is !atomic then it'll uselessly search the free
3504 * list. That corner case is then slower but it is harmless.
3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3507 return true;
3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3510 free_pages);
3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3514 unsigned long mark, int classzone_idx)
3516 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3518 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3519 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3522 free_pages);
3525 #ifdef CONFIG_NUMA
3526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3529 node_reclaim_distance;
3531 #else /* CONFIG_NUMA */
3532 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3534 return true;
3536 #endif /* CONFIG_NUMA */
3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3541 * premature use of a lower zone may cause lowmem pressure problems that
3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3543 * probably too small. It only makes sense to spread allocations to avoid
3544 * fragmentation between the Normal and DMA32 zones.
3546 static inline unsigned int
3547 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3549 unsigned int alloc_flags = 0;
3551 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3552 alloc_flags |= ALLOC_KSWAPD;
3554 #ifdef CONFIG_ZONE_DMA32
3555 if (!zone)
3556 return alloc_flags;
3558 if (zone_idx(zone) != ZONE_NORMAL)
3559 return alloc_flags;
3562 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3563 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3564 * on UMA that if Normal is populated then so is DMA32.
3566 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3567 if (nr_online_nodes > 1 && !populated_zone(--zone))
3568 return alloc_flags;
3570 alloc_flags |= ALLOC_NOFRAGMENT;
3571 #endif /* CONFIG_ZONE_DMA32 */
3572 return alloc_flags;
3576 * get_page_from_freelist goes through the zonelist trying to allocate
3577 * a page.
3579 static struct page *
3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3581 const struct alloc_context *ac)
3583 struct zoneref *z;
3584 struct zone *zone;
3585 struct pglist_data *last_pgdat_dirty_limit = NULL;
3586 bool no_fallback;
3588 retry:
3590 * Scan zonelist, looking for a zone with enough free.
3591 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3593 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3594 z = ac->preferred_zoneref;
3595 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3596 ac->nodemask) {
3597 struct page *page;
3598 unsigned long mark;
3600 if (cpusets_enabled() &&
3601 (alloc_flags & ALLOC_CPUSET) &&
3602 !__cpuset_zone_allowed(zone, gfp_mask))
3603 continue;
3605 * When allocating a page cache page for writing, we
3606 * want to get it from a node that is within its dirty
3607 * limit, such that no single node holds more than its
3608 * proportional share of globally allowed dirty pages.
3609 * The dirty limits take into account the node's
3610 * lowmem reserves and high watermark so that kswapd
3611 * should be able to balance it without having to
3612 * write pages from its LRU list.
3614 * XXX: For now, allow allocations to potentially
3615 * exceed the per-node dirty limit in the slowpath
3616 * (spread_dirty_pages unset) before going into reclaim,
3617 * which is important when on a NUMA setup the allowed
3618 * nodes are together not big enough to reach the
3619 * global limit. The proper fix for these situations
3620 * will require awareness of nodes in the
3621 * dirty-throttling and the flusher threads.
3623 if (ac->spread_dirty_pages) {
3624 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3625 continue;
3627 if (!node_dirty_ok(zone->zone_pgdat)) {
3628 last_pgdat_dirty_limit = zone->zone_pgdat;
3629 continue;
3633 if (no_fallback && nr_online_nodes > 1 &&
3634 zone != ac->preferred_zoneref->zone) {
3635 int local_nid;
3638 * If moving to a remote node, retry but allow
3639 * fragmenting fallbacks. Locality is more important
3640 * than fragmentation avoidance.
3642 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3643 if (zone_to_nid(zone) != local_nid) {
3644 alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 goto retry;
3649 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3650 if (!zone_watermark_fast(zone, order, mark,
3651 ac_classzone_idx(ac), alloc_flags)) {
3652 int ret;
3654 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3656 * Watermark failed for this zone, but see if we can
3657 * grow this zone if it contains deferred pages.
3659 if (static_branch_unlikely(&deferred_pages)) {
3660 if (_deferred_grow_zone(zone, order))
3661 goto try_this_zone;
3663 #endif
3664 /* Checked here to keep the fast path fast */
3665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3666 if (alloc_flags & ALLOC_NO_WATERMARKS)
3667 goto try_this_zone;
3669 if (node_reclaim_mode == 0 ||
3670 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3671 continue;
3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3674 switch (ret) {
3675 case NODE_RECLAIM_NOSCAN:
3676 /* did not scan */
3677 continue;
3678 case NODE_RECLAIM_FULL:
3679 /* scanned but unreclaimable */
3680 continue;
3681 default:
3682 /* did we reclaim enough */
3683 if (zone_watermark_ok(zone, order, mark,
3684 ac_classzone_idx(ac), alloc_flags))
3685 goto try_this_zone;
3687 continue;
3691 try_this_zone:
3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3693 gfp_mask, alloc_flags, ac->migratetype);
3694 if (page) {
3695 prep_new_page(page, order, gfp_mask, alloc_flags);
3698 * If this is a high-order atomic allocation then check
3699 * if the pageblock should be reserved for the future
3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3702 reserve_highatomic_pageblock(page, zone, order);
3704 return page;
3705 } else {
3706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3707 /* Try again if zone has deferred pages */
3708 if (static_branch_unlikely(&deferred_pages)) {
3709 if (_deferred_grow_zone(zone, order))
3710 goto try_this_zone;
3712 #endif
3717 * It's possible on a UMA machine to get through all zones that are
3718 * fragmented. If avoiding fragmentation, reset and try again.
3720 if (no_fallback) {
3721 alloc_flags &= ~ALLOC_NOFRAGMENT;
3722 goto retry;
3725 return NULL;
3728 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3730 unsigned int filter = SHOW_MEM_FILTER_NODES;
3733 * This documents exceptions given to allocations in certain
3734 * contexts that are allowed to allocate outside current's set
3735 * of allowed nodes.
3737 if (!(gfp_mask & __GFP_NOMEMALLOC))
3738 if (tsk_is_oom_victim(current) ||
3739 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 filter &= ~SHOW_MEM_FILTER_NODES;
3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3742 filter &= ~SHOW_MEM_FILTER_NODES;
3744 show_mem(filter, nodemask);
3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3749 struct va_format vaf;
3750 va_list args;
3751 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3753 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3754 return;
3756 va_start(args, fmt);
3757 vaf.fmt = fmt;
3758 vaf.va = &args;
3759 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3760 current->comm, &vaf, gfp_mask, &gfp_mask,
3761 nodemask_pr_args(nodemask));
3762 va_end(args);
3764 cpuset_print_current_mems_allowed();
3765 pr_cont("\n");
3766 dump_stack();
3767 warn_alloc_show_mem(gfp_mask, nodemask);
3770 static inline struct page *
3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3772 unsigned int alloc_flags,
3773 const struct alloc_context *ac)
3775 struct page *page;
3777 page = get_page_from_freelist(gfp_mask, order,
3778 alloc_flags|ALLOC_CPUSET, ac);
3780 * fallback to ignore cpuset restriction if our nodes
3781 * are depleted
3783 if (!page)
3784 page = get_page_from_freelist(gfp_mask, order,
3785 alloc_flags, ac);
3787 return page;
3790 static inline struct page *
3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3792 const struct alloc_context *ac, unsigned long *did_some_progress)
3794 struct oom_control oc = {
3795 .zonelist = ac->zonelist,
3796 .nodemask = ac->nodemask,
3797 .memcg = NULL,
3798 .gfp_mask = gfp_mask,
3799 .order = order,
3801 struct page *page;
3803 *did_some_progress = 0;
3806 * Acquire the oom lock. If that fails, somebody else is
3807 * making progress for us.
3809 if (!mutex_trylock(&oom_lock)) {
3810 *did_some_progress = 1;
3811 schedule_timeout_uninterruptible(1);
3812 return NULL;
3816 * Go through the zonelist yet one more time, keep very high watermark
3817 * here, this is only to catch a parallel oom killing, we must fail if
3818 * we're still under heavy pressure. But make sure that this reclaim
3819 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3820 * allocation which will never fail due to oom_lock already held.
3822 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3823 ~__GFP_DIRECT_RECLAIM, order,
3824 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3825 if (page)
3826 goto out;
3828 /* Coredumps can quickly deplete all memory reserves */
3829 if (current->flags & PF_DUMPCORE)
3830 goto out;
3831 /* The OOM killer will not help higher order allocs */
3832 if (order > PAGE_ALLOC_COSTLY_ORDER)
3833 goto out;
3835 * We have already exhausted all our reclaim opportunities without any
3836 * success so it is time to admit defeat. We will skip the OOM killer
3837 * because it is very likely that the caller has a more reasonable
3838 * fallback than shooting a random task.
3840 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3841 goto out;
3842 /* The OOM killer does not needlessly kill tasks for lowmem */
3843 if (ac->high_zoneidx < ZONE_NORMAL)
3844 goto out;
3845 if (pm_suspended_storage())
3846 goto out;
3848 * XXX: GFP_NOFS allocations should rather fail than rely on
3849 * other request to make a forward progress.
3850 * We are in an unfortunate situation where out_of_memory cannot
3851 * do much for this context but let's try it to at least get
3852 * access to memory reserved if the current task is killed (see
3853 * out_of_memory). Once filesystems are ready to handle allocation
3854 * failures more gracefully we should just bail out here.
3857 /* The OOM killer may not free memory on a specific node */
3858 if (gfp_mask & __GFP_THISNODE)
3859 goto out;
3861 /* Exhausted what can be done so it's blame time */
3862 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3863 *did_some_progress = 1;
3866 * Help non-failing allocations by giving them access to memory
3867 * reserves
3869 if (gfp_mask & __GFP_NOFAIL)
3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3871 ALLOC_NO_WATERMARKS, ac);
3873 out:
3874 mutex_unlock(&oom_lock);
3875 return page;
3879 * Maximum number of compaction retries wit a progress before OOM
3880 * killer is consider as the only way to move forward.
3882 #define MAX_COMPACT_RETRIES 16
3884 #ifdef CONFIG_COMPACTION
3885 /* Try memory compaction for high-order allocations before reclaim */
3886 static struct page *
3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3888 unsigned int alloc_flags, const struct alloc_context *ac,
3889 enum compact_priority prio, enum compact_result *compact_result)
3891 struct page *page = NULL;
3892 unsigned long pflags;
3893 unsigned int noreclaim_flag;
3895 if (!order)
3896 return NULL;
3898 psi_memstall_enter(&pflags);
3899 noreclaim_flag = memalloc_noreclaim_save();
3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3902 prio, &page);
3904 memalloc_noreclaim_restore(noreclaim_flag);
3905 psi_memstall_leave(&pflags);
3908 * At least in one zone compaction wasn't deferred or skipped, so let's
3909 * count a compaction stall
3911 count_vm_event(COMPACTSTALL);
3913 /* Prep a captured page if available */
3914 if (page)
3915 prep_new_page(page, order, gfp_mask, alloc_flags);
3917 /* Try get a page from the freelist if available */
3918 if (!page)
3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3921 if (page) {
3922 struct zone *zone = page_zone(page);
3924 zone->compact_blockskip_flush = false;
3925 compaction_defer_reset(zone, order, true);
3926 count_vm_event(COMPACTSUCCESS);
3927 return page;
3931 * It's bad if compaction run occurs and fails. The most likely reason
3932 * is that pages exist, but not enough to satisfy watermarks.
3934 count_vm_event(COMPACTFAIL);
3936 cond_resched();
3938 return NULL;
3941 static inline bool
3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3943 enum compact_result compact_result,
3944 enum compact_priority *compact_priority,
3945 int *compaction_retries)
3947 int max_retries = MAX_COMPACT_RETRIES;
3948 int min_priority;
3949 bool ret = false;
3950 int retries = *compaction_retries;
3951 enum compact_priority priority = *compact_priority;
3953 if (!order)
3954 return false;
3956 if (compaction_made_progress(compact_result))
3957 (*compaction_retries)++;
3960 * compaction considers all the zone as desperately out of memory
3961 * so it doesn't really make much sense to retry except when the
3962 * failure could be caused by insufficient priority
3964 if (compaction_failed(compact_result))
3965 goto check_priority;
3968 * compaction was skipped because there are not enough order-0 pages
3969 * to work with, so we retry only if it looks like reclaim can help.
3971 if (compaction_needs_reclaim(compact_result)) {
3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3973 goto out;
3977 * make sure the compaction wasn't deferred or didn't bail out early
3978 * due to locks contention before we declare that we should give up.
3979 * But the next retry should use a higher priority if allowed, so
3980 * we don't just keep bailing out endlessly.
3982 if (compaction_withdrawn(compact_result)) {
3983 goto check_priority;
3987 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3988 * costly ones because they are de facto nofail and invoke OOM
3989 * killer to move on while costly can fail and users are ready
3990 * to cope with that. 1/4 retries is rather arbitrary but we
3991 * would need much more detailed feedback from compaction to
3992 * make a better decision.
3994 if (order > PAGE_ALLOC_COSTLY_ORDER)
3995 max_retries /= 4;
3996 if (*compaction_retries <= max_retries) {
3997 ret = true;
3998 goto out;
4002 * Make sure there are attempts at the highest priority if we exhausted
4003 * all retries or failed at the lower priorities.
4005 check_priority:
4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4007 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4009 if (*compact_priority > min_priority) {
4010 (*compact_priority)--;
4011 *compaction_retries = 0;
4012 ret = true;
4014 out:
4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4016 return ret;
4018 #else
4019 static inline struct page *
4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4021 unsigned int alloc_flags, const struct alloc_context *ac,
4022 enum compact_priority prio, enum compact_result *compact_result)
4024 *compact_result = COMPACT_SKIPPED;
4025 return NULL;
4028 static inline bool
4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4030 enum compact_result compact_result,
4031 enum compact_priority *compact_priority,
4032 int *compaction_retries)
4034 struct zone *zone;
4035 struct zoneref *z;
4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4038 return false;
4041 * There are setups with compaction disabled which would prefer to loop
4042 * inside the allocator rather than hit the oom killer prematurely.
4043 * Let's give them a good hope and keep retrying while the order-0
4044 * watermarks are OK.
4046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4047 ac->nodemask) {
4048 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4049 ac_classzone_idx(ac), alloc_flags))
4050 return true;
4052 return false;
4054 #endif /* CONFIG_COMPACTION */
4056 #ifdef CONFIG_LOCKDEP
4057 static struct lockdep_map __fs_reclaim_map =
4058 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4060 static bool __need_fs_reclaim(gfp_t gfp_mask)
4062 gfp_mask = current_gfp_context(gfp_mask);
4064 /* no reclaim without waiting on it */
4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4066 return false;
4068 /* this guy won't enter reclaim */
4069 if (current->flags & PF_MEMALLOC)
4070 return false;
4072 /* We're only interested __GFP_FS allocations for now */
4073 if (!(gfp_mask & __GFP_FS))
4074 return false;
4076 if (gfp_mask & __GFP_NOLOCKDEP)
4077 return false;
4079 return true;
4082 void __fs_reclaim_acquire(void)
4084 lock_map_acquire(&__fs_reclaim_map);
4087 void __fs_reclaim_release(void)
4089 lock_map_release(&__fs_reclaim_map);
4092 void fs_reclaim_acquire(gfp_t gfp_mask)
4094 if (__need_fs_reclaim(gfp_mask))
4095 __fs_reclaim_acquire();
4097 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4099 void fs_reclaim_release(gfp_t gfp_mask)
4101 if (__need_fs_reclaim(gfp_mask))
4102 __fs_reclaim_release();
4104 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4105 #endif
4107 /* Perform direct synchronous page reclaim */
4108 static int
4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4110 const struct alloc_context *ac)
4112 int progress;
4113 unsigned int noreclaim_flag;
4114 unsigned long pflags;
4116 cond_resched();
4118 /* We now go into synchronous reclaim */
4119 cpuset_memory_pressure_bump();
4120 psi_memstall_enter(&pflags);
4121 fs_reclaim_acquire(gfp_mask);
4122 noreclaim_flag = memalloc_noreclaim_save();
4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4125 ac->nodemask);
4127 memalloc_noreclaim_restore(noreclaim_flag);
4128 fs_reclaim_release(gfp_mask);
4129 psi_memstall_leave(&pflags);
4131 cond_resched();
4133 return progress;
4136 /* The really slow allocator path where we enter direct reclaim */
4137 static inline struct page *
4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4139 unsigned int alloc_flags, const struct alloc_context *ac,
4140 unsigned long *did_some_progress)
4142 struct page *page = NULL;
4143 bool drained = false;
4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4146 if (unlikely(!(*did_some_progress)))
4147 return NULL;
4149 retry:
4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4153 * If an allocation failed after direct reclaim, it could be because
4154 * pages are pinned on the per-cpu lists or in high alloc reserves.
4155 * Shrink them them and try again
4157 if (!page && !drained) {
4158 unreserve_highatomic_pageblock(ac, false);
4159 drain_all_pages(NULL);
4160 drained = true;
4161 goto retry;
4164 return page;
4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168 const struct alloc_context *ac)
4170 struct zoneref *z;
4171 struct zone *zone;
4172 pg_data_t *last_pgdat = NULL;
4173 enum zone_type high_zoneidx = ac->high_zoneidx;
4175 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4176 ac->nodemask) {
4177 if (last_pgdat != zone->zone_pgdat)
4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4179 last_pgdat = zone->zone_pgdat;
4183 static inline unsigned int
4184 gfp_to_alloc_flags(gfp_t gfp_mask)
4186 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4188 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4189 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4192 * The caller may dip into page reserves a bit more if the caller
4193 * cannot run direct reclaim, or if the caller has realtime scheduling
4194 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4195 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4197 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4199 if (gfp_mask & __GFP_ATOMIC) {
4201 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4202 * if it can't schedule.
4204 if (!(gfp_mask & __GFP_NOMEMALLOC))
4205 alloc_flags |= ALLOC_HARDER;
4207 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4208 * comment for __cpuset_node_allowed().
4210 alloc_flags &= ~ALLOC_CPUSET;
4211 } else if (unlikely(rt_task(current)) && !in_interrupt())
4212 alloc_flags |= ALLOC_HARDER;
4214 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4215 alloc_flags |= ALLOC_KSWAPD;
4217 #ifdef CONFIG_CMA
4218 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4219 alloc_flags |= ALLOC_CMA;
4220 #endif
4221 return alloc_flags;
4224 static bool oom_reserves_allowed(struct task_struct *tsk)
4226 if (!tsk_is_oom_victim(tsk))
4227 return false;
4230 * !MMU doesn't have oom reaper so give access to memory reserves
4231 * only to the thread with TIF_MEMDIE set
4233 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4234 return false;
4236 return true;
4240 * Distinguish requests which really need access to full memory
4241 * reserves from oom victims which can live with a portion of it
4243 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4245 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4246 return 0;
4247 if (gfp_mask & __GFP_MEMALLOC)
4248 return ALLOC_NO_WATERMARKS;
4249 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4250 return ALLOC_NO_WATERMARKS;
4251 if (!in_interrupt()) {
4252 if (current->flags & PF_MEMALLOC)
4253 return ALLOC_NO_WATERMARKS;
4254 else if (oom_reserves_allowed(current))
4255 return ALLOC_OOM;
4258 return 0;
4261 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4263 return !!__gfp_pfmemalloc_flags(gfp_mask);
4267 * Checks whether it makes sense to retry the reclaim to make a forward progress
4268 * for the given allocation request.
4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4271 * without success, or when we couldn't even meet the watermark if we
4272 * reclaimed all remaining pages on the LRU lists.
4274 * Returns true if a retry is viable or false to enter the oom path.
4276 static inline bool
4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4278 struct alloc_context *ac, int alloc_flags,
4279 bool did_some_progress, int *no_progress_loops)
4281 struct zone *zone;
4282 struct zoneref *z;
4283 bool ret = false;
4286 * Costly allocations might have made a progress but this doesn't mean
4287 * their order will become available due to high fragmentation so
4288 * always increment the no progress counter for them
4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4291 *no_progress_loops = 0;
4292 else
4293 (*no_progress_loops)++;
4296 * Make sure we converge to OOM if we cannot make any progress
4297 * several times in the row.
4299 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4300 /* Before OOM, exhaust highatomic_reserve */
4301 return unreserve_highatomic_pageblock(ac, true);
4305 * Keep reclaiming pages while there is a chance this will lead
4306 * somewhere. If none of the target zones can satisfy our allocation
4307 * request even if all reclaimable pages are considered then we are
4308 * screwed and have to go OOM.
4310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4311 ac->nodemask) {
4312 unsigned long available;
4313 unsigned long reclaimable;
4314 unsigned long min_wmark = min_wmark_pages(zone);
4315 bool wmark;
4317 available = reclaimable = zone_reclaimable_pages(zone);
4318 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4321 * Would the allocation succeed if we reclaimed all
4322 * reclaimable pages?
4324 wmark = __zone_watermark_ok(zone, order, min_wmark,
4325 ac_classzone_idx(ac), alloc_flags, available);
4326 trace_reclaim_retry_zone(z, order, reclaimable,
4327 available, min_wmark, *no_progress_loops, wmark);
4328 if (wmark) {
4330 * If we didn't make any progress and have a lot of
4331 * dirty + writeback pages then we should wait for
4332 * an IO to complete to slow down the reclaim and
4333 * prevent from pre mature OOM
4335 if (!did_some_progress) {
4336 unsigned long write_pending;
4338 write_pending = zone_page_state_snapshot(zone,
4339 NR_ZONE_WRITE_PENDING);
4341 if (2 * write_pending > reclaimable) {
4342 congestion_wait(BLK_RW_ASYNC, HZ/10);
4343 return true;
4347 ret = true;
4348 goto out;
4352 out:
4354 * Memory allocation/reclaim might be called from a WQ context and the
4355 * current implementation of the WQ concurrency control doesn't
4356 * recognize that a particular WQ is congested if the worker thread is
4357 * looping without ever sleeping. Therefore we have to do a short sleep
4358 * here rather than calling cond_resched().
4360 if (current->flags & PF_WQ_WORKER)
4361 schedule_timeout_uninterruptible(1);
4362 else
4363 cond_resched();
4364 return ret;
4367 static inline bool
4368 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4371 * It's possible that cpuset's mems_allowed and the nodemask from
4372 * mempolicy don't intersect. This should be normally dealt with by
4373 * policy_nodemask(), but it's possible to race with cpuset update in
4374 * such a way the check therein was true, and then it became false
4375 * before we got our cpuset_mems_cookie here.
4376 * This assumes that for all allocations, ac->nodemask can come only
4377 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4378 * when it does not intersect with the cpuset restrictions) or the
4379 * caller can deal with a violated nodemask.
4381 if (cpusets_enabled() && ac->nodemask &&
4382 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4383 ac->nodemask = NULL;
4384 return true;
4388 * When updating a task's mems_allowed or mempolicy nodemask, it is
4389 * possible to race with parallel threads in such a way that our
4390 * allocation can fail while the mask is being updated. If we are about
4391 * to fail, check if the cpuset changed during allocation and if so,
4392 * retry.
4394 if (read_mems_allowed_retry(cpuset_mems_cookie))
4395 return true;
4397 return false;
4400 static inline struct page *
4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4402 struct alloc_context *ac)
4404 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4406 struct page *page = NULL;
4407 unsigned int alloc_flags;
4408 unsigned long did_some_progress;
4409 enum compact_priority compact_priority;
4410 enum compact_result compact_result;
4411 int compaction_retries;
4412 int no_progress_loops;
4413 unsigned int cpuset_mems_cookie;
4414 int reserve_flags;
4417 * We also sanity check to catch abuse of atomic reserves being used by
4418 * callers that are not in atomic context.
4420 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4421 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4422 gfp_mask &= ~__GFP_ATOMIC;
4424 retry_cpuset:
4425 compaction_retries = 0;
4426 no_progress_loops = 0;
4427 compact_priority = DEF_COMPACT_PRIORITY;
4428 cpuset_mems_cookie = read_mems_allowed_begin();
4431 * The fast path uses conservative alloc_flags to succeed only until
4432 * kswapd needs to be woken up, and to avoid the cost of setting up
4433 * alloc_flags precisely. So we do that now.
4435 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4438 * We need to recalculate the starting point for the zonelist iterator
4439 * because we might have used different nodemask in the fast path, or
4440 * there was a cpuset modification and we are retrying - otherwise we
4441 * could end up iterating over non-eligible zones endlessly.
4443 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444 ac->high_zoneidx, ac->nodemask);
4445 if (!ac->preferred_zoneref->zone)
4446 goto nopage;
4448 if (alloc_flags & ALLOC_KSWAPD)
4449 wake_all_kswapds(order, gfp_mask, ac);
4452 * The adjusted alloc_flags might result in immediate success, so try
4453 * that first
4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4456 if (page)
4457 goto got_pg;
4460 * For costly allocations, try direct compaction first, as it's likely
4461 * that we have enough base pages and don't need to reclaim. For non-
4462 * movable high-order allocations, do that as well, as compaction will
4463 * try prevent permanent fragmentation by migrating from blocks of the
4464 * same migratetype.
4465 * Don't try this for allocations that are allowed to ignore
4466 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4468 if (can_direct_reclaim &&
4469 (costly_order ||
4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4471 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4472 page = __alloc_pages_direct_compact(gfp_mask, order,
4473 alloc_flags, ac,
4474 INIT_COMPACT_PRIORITY,
4475 &compact_result);
4476 if (page)
4477 goto got_pg;
4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4480 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4482 * If allocating entire pageblock(s) and compaction
4483 * failed because all zones are below low watermarks
4484 * or is prohibited because it recently failed at this
4485 * order, fail immediately unless the allocator has
4486 * requested compaction and reclaim retry.
4488 * Reclaim is
4489 * - potentially very expensive because zones are far
4490 * below their low watermarks or this is part of very
4491 * bursty high order allocations,
4492 * - not guaranteed to help because isolate_freepages()
4493 * may not iterate over freed pages as part of its
4494 * linear scan, and
4495 * - unlikely to make entire pageblocks free on its
4496 * own.
4498 if (compact_result == COMPACT_SKIPPED ||
4499 compact_result == COMPACT_DEFERRED)
4500 goto nopage;
4504 * Checks for costly allocations with __GFP_NORETRY, which
4505 * includes THP page fault allocations
4507 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4509 * If compaction is deferred for high-order allocations,
4510 * it is because sync compaction recently failed. If
4511 * this is the case and the caller requested a THP
4512 * allocation, we do not want to heavily disrupt the
4513 * system, so we fail the allocation instead of entering
4514 * direct reclaim.
4516 if (compact_result == COMPACT_DEFERRED)
4517 goto nopage;
4520 * Looks like reclaim/compaction is worth trying, but
4521 * sync compaction could be very expensive, so keep
4522 * using async compaction.
4524 compact_priority = INIT_COMPACT_PRIORITY;
4528 retry:
4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4530 if (alloc_flags & ALLOC_KSWAPD)
4531 wake_all_kswapds(order, gfp_mask, ac);
4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4534 if (reserve_flags)
4535 alloc_flags = reserve_flags;
4538 * Reset the nodemask and zonelist iterators if memory policies can be
4539 * ignored. These allocations are high priority and system rather than
4540 * user oriented.
4542 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4543 ac->nodemask = NULL;
4544 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4545 ac->high_zoneidx, ac->nodemask);
4548 /* Attempt with potentially adjusted zonelist and alloc_flags */
4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4550 if (page)
4551 goto got_pg;
4553 /* Caller is not willing to reclaim, we can't balance anything */
4554 if (!can_direct_reclaim)
4555 goto nopage;
4557 /* Avoid recursion of direct reclaim */
4558 if (current->flags & PF_MEMALLOC)
4559 goto nopage;
4561 /* Try direct reclaim and then allocating */
4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4563 &did_some_progress);
4564 if (page)
4565 goto got_pg;
4567 /* Try direct compaction and then allocating */
4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4569 compact_priority, &compact_result);
4570 if (page)
4571 goto got_pg;
4573 /* Do not loop if specifically requested */
4574 if (gfp_mask & __GFP_NORETRY)
4575 goto nopage;
4578 * Do not retry costly high order allocations unless they are
4579 * __GFP_RETRY_MAYFAIL
4581 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4582 goto nopage;
4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4585 did_some_progress > 0, &no_progress_loops))
4586 goto retry;
4589 * It doesn't make any sense to retry for the compaction if the order-0
4590 * reclaim is not able to make any progress because the current
4591 * implementation of the compaction depends on the sufficient amount
4592 * of free memory (see __compaction_suitable)
4594 if (did_some_progress > 0 &&
4595 should_compact_retry(ac, order, alloc_flags,
4596 compact_result, &compact_priority,
4597 &compaction_retries))
4598 goto retry;
4601 /* Deal with possible cpuset update races before we start OOM killing */
4602 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4603 goto retry_cpuset;
4605 /* Reclaim has failed us, start killing things */
4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4607 if (page)
4608 goto got_pg;
4610 /* Avoid allocations with no watermarks from looping endlessly */
4611 if (tsk_is_oom_victim(current) &&
4612 (alloc_flags == ALLOC_OOM ||
4613 (gfp_mask & __GFP_NOMEMALLOC)))
4614 goto nopage;
4616 /* Retry as long as the OOM killer is making progress */
4617 if (did_some_progress) {
4618 no_progress_loops = 0;
4619 goto retry;
4622 nopage:
4623 /* Deal with possible cpuset update races before we fail */
4624 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4625 goto retry_cpuset;
4628 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629 * we always retry
4631 if (gfp_mask & __GFP_NOFAIL) {
4633 * All existing users of the __GFP_NOFAIL are blockable, so warn
4634 * of any new users that actually require GFP_NOWAIT
4636 if (WARN_ON_ONCE(!can_direct_reclaim))
4637 goto fail;
4640 * PF_MEMALLOC request from this context is rather bizarre
4641 * because we cannot reclaim anything and only can loop waiting
4642 * for somebody to do a work for us
4644 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4647 * non failing costly orders are a hard requirement which we
4648 * are not prepared for much so let's warn about these users
4649 * so that we can identify them and convert them to something
4650 * else.
4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4655 * Help non-failing allocations by giving them access to memory
4656 * reserves but do not use ALLOC_NO_WATERMARKS because this
4657 * could deplete whole memory reserves which would just make
4658 * the situation worse
4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4661 if (page)
4662 goto got_pg;
4664 cond_resched();
4665 goto retry;
4667 fail:
4668 warn_alloc(gfp_mask, ac->nodemask,
4669 "page allocation failure: order:%u", order);
4670 got_pg:
4671 return page;
4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4675 int preferred_nid, nodemask_t *nodemask,
4676 struct alloc_context *ac, gfp_t *alloc_mask,
4677 unsigned int *alloc_flags)
4679 ac->high_zoneidx = gfp_zone(gfp_mask);
4680 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4681 ac->nodemask = nodemask;
4682 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4684 if (cpusets_enabled()) {
4685 *alloc_mask |= __GFP_HARDWALL;
4686 if (!ac->nodemask)
4687 ac->nodemask = &cpuset_current_mems_allowed;
4688 else
4689 *alloc_flags |= ALLOC_CPUSET;
4692 fs_reclaim_acquire(gfp_mask);
4693 fs_reclaim_release(gfp_mask);
4695 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4697 if (should_fail_alloc_page(gfp_mask, order))
4698 return false;
4700 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4701 *alloc_flags |= ALLOC_CMA;
4703 return true;
4706 /* Determine whether to spread dirty pages and what the first usable zone */
4707 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4709 /* Dirty zone balancing only done in the fast path */
4710 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4713 * The preferred zone is used for statistics but crucially it is
4714 * also used as the starting point for the zonelist iterator. It
4715 * may get reset for allocations that ignore memory policies.
4717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4718 ac->high_zoneidx, ac->nodemask);
4722 * This is the 'heart' of the zoned buddy allocator.
4724 struct page *
4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4726 nodemask_t *nodemask)
4728 struct page *page;
4729 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4730 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4731 struct alloc_context ac = { };
4734 * There are several places where we assume that the order value is sane
4735 * so bail out early if the request is out of bound.
4737 if (unlikely(order >= MAX_ORDER)) {
4738 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4739 return NULL;
4742 gfp_mask &= gfp_allowed_mask;
4743 alloc_mask = gfp_mask;
4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4745 return NULL;
4747 finalise_ac(gfp_mask, &ac);
4750 * Forbid the first pass from falling back to types that fragment
4751 * memory until all local zones are considered.
4753 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4755 /* First allocation attempt */
4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4757 if (likely(page))
4758 goto out;
4761 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4762 * resp. GFP_NOIO which has to be inherited for all allocation requests
4763 * from a particular context which has been marked by
4764 * memalloc_no{fs,io}_{save,restore}.
4766 alloc_mask = current_gfp_context(gfp_mask);
4767 ac.spread_dirty_pages = false;
4770 * Restore the original nodemask if it was potentially replaced with
4771 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4773 if (unlikely(ac.nodemask != nodemask))
4774 ac.nodemask = nodemask;
4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4778 out:
4779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4781 __free_pages(page, order);
4782 page = NULL;
4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4787 return page;
4789 EXPORT_SYMBOL(__alloc_pages_nodemask);
4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794 * you need to access high mem.
4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4798 struct page *page;
4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4801 if (!page)
4802 return 0;
4803 return (unsigned long) page_address(page);
4805 EXPORT_SYMBOL(__get_free_pages);
4807 unsigned long get_zeroed_page(gfp_t gfp_mask)
4809 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4811 EXPORT_SYMBOL(get_zeroed_page);
4813 static inline void free_the_page(struct page *page, unsigned int order)
4815 if (order == 0) /* Via pcp? */
4816 free_unref_page(page);
4817 else
4818 __free_pages_ok(page, order);
4821 void __free_pages(struct page *page, unsigned int order)
4823 if (put_page_testzero(page))
4824 free_the_page(page, order);
4826 EXPORT_SYMBOL(__free_pages);
4828 void free_pages(unsigned long addr, unsigned int order)
4830 if (addr != 0) {
4831 VM_BUG_ON(!virt_addr_valid((void *)addr));
4832 __free_pages(virt_to_page((void *)addr), order);
4836 EXPORT_SYMBOL(free_pages);
4839 * Page Fragment:
4840 * An arbitrary-length arbitrary-offset area of memory which resides
4841 * within a 0 or higher order page. Multiple fragments within that page
4842 * are individually refcounted, in the page's reference counter.
4844 * The page_frag functions below provide a simple allocation framework for
4845 * page fragments. This is used by the network stack and network device
4846 * drivers to provide a backing region of memory for use as either an
4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4849 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4850 gfp_t gfp_mask)
4852 struct page *page = NULL;
4853 gfp_t gfp = gfp_mask;
4855 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4856 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4857 __GFP_NOMEMALLOC;
4858 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4859 PAGE_FRAG_CACHE_MAX_ORDER);
4860 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4861 #endif
4862 if (unlikely(!page))
4863 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4865 nc->va = page ? page_address(page) : NULL;
4867 return page;
4870 void __page_frag_cache_drain(struct page *page, unsigned int count)
4872 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4874 if (page_ref_sub_and_test(page, count))
4875 free_the_page(page, compound_order(page));
4877 EXPORT_SYMBOL(__page_frag_cache_drain);
4879 void *page_frag_alloc(struct page_frag_cache *nc,
4880 unsigned int fragsz, gfp_t gfp_mask)
4882 unsigned int size = PAGE_SIZE;
4883 struct page *page;
4884 int offset;
4886 if (unlikely(!nc->va)) {
4887 refill:
4888 page = __page_frag_cache_refill(nc, gfp_mask);
4889 if (!page)
4890 return NULL;
4892 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4893 /* if size can vary use size else just use PAGE_SIZE */
4894 size = nc->size;
4895 #endif
4896 /* Even if we own the page, we do not use atomic_set().
4897 * This would break get_page_unless_zero() users.
4899 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4901 /* reset page count bias and offset to start of new frag */
4902 nc->pfmemalloc = page_is_pfmemalloc(page);
4903 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4904 nc->offset = size;
4907 offset = nc->offset - fragsz;
4908 if (unlikely(offset < 0)) {
4909 page = virt_to_page(nc->va);
4911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4912 goto refill;
4914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4915 /* if size can vary use size else just use PAGE_SIZE */
4916 size = nc->size;
4917 #endif
4918 /* OK, page count is 0, we can safely set it */
4919 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4921 /* reset page count bias and offset to start of new frag */
4922 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4923 offset = size - fragsz;
4926 nc->pagecnt_bias--;
4927 nc->offset = offset;
4929 return nc->va + offset;
4931 EXPORT_SYMBOL(page_frag_alloc);
4934 * Frees a page fragment allocated out of either a compound or order 0 page.
4936 void page_frag_free(void *addr)
4938 struct page *page = virt_to_head_page(addr);
4940 if (unlikely(put_page_testzero(page)))
4941 free_the_page(page, compound_order(page));
4943 EXPORT_SYMBOL(page_frag_free);
4945 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4946 size_t size)
4948 if (addr) {
4949 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4950 unsigned long used = addr + PAGE_ALIGN(size);
4952 split_page(virt_to_page((void *)addr), order);
4953 while (used < alloc_end) {
4954 free_page(used);
4955 used += PAGE_SIZE;
4958 return (void *)addr;
4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963 * @size: the number of bytes to allocate
4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4966 * This function is similar to alloc_pages(), except that it allocates the
4967 * minimum number of pages to satisfy the request. alloc_pages() can only
4968 * allocate memory in power-of-two pages.
4970 * This function is also limited by MAX_ORDER.
4972 * Memory allocated by this function must be released by free_pages_exact().
4974 * Return: pointer to the allocated area or %NULL in case of error.
4976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4978 unsigned int order = get_order(size);
4979 unsigned long addr;
4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 gfp_mask &= ~__GFP_COMP;
4984 addr = __get_free_pages(gfp_mask, order);
4985 return make_alloc_exact(addr, order, size);
4987 EXPORT_SYMBOL(alloc_pages_exact);
4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991 * pages on a node.
4992 * @nid: the preferred node ID where memory should be allocated
4993 * @size: the number of bytes to allocate
4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997 * back.
4999 * Return: pointer to the allocated area or %NULL in case of error.
5001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5003 unsigned int order = get_order(size);
5004 struct page *p;
5006 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5007 gfp_mask &= ~__GFP_COMP;
5009 p = alloc_pages_node(nid, gfp_mask, order);
5010 if (!p)
5011 return NULL;
5012 return make_alloc_exact((unsigned long)page_address(p), order, size);
5016 * free_pages_exact - release memory allocated via alloc_pages_exact()
5017 * @virt: the value returned by alloc_pages_exact.
5018 * @size: size of allocation, same value as passed to alloc_pages_exact().
5020 * Release the memory allocated by a previous call to alloc_pages_exact.
5022 void free_pages_exact(void *virt, size_t size)
5024 unsigned long addr = (unsigned long)virt;
5025 unsigned long end = addr + PAGE_ALIGN(size);
5027 while (addr < end) {
5028 free_page(addr);
5029 addr += PAGE_SIZE;
5032 EXPORT_SYMBOL(free_pages_exact);
5035 * nr_free_zone_pages - count number of pages beyond high watermark
5036 * @offset: The zone index of the highest zone
5038 * nr_free_zone_pages() counts the number of pages which are beyond the
5039 * high watermark within all zones at or below a given zone index. For each
5040 * zone, the number of pages is calculated as:
5042 * nr_free_zone_pages = managed_pages - high_pages
5044 * Return: number of pages beyond high watermark.
5046 static unsigned long nr_free_zone_pages(int offset)
5048 struct zoneref *z;
5049 struct zone *zone;
5051 /* Just pick one node, since fallback list is circular */
5052 unsigned long sum = 0;
5054 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5056 for_each_zone_zonelist(zone, z, zonelist, offset) {
5057 unsigned long size = zone_managed_pages(zone);
5058 unsigned long high = high_wmark_pages(zone);
5059 if (size > high)
5060 sum += size - high;
5063 return sum;
5067 * nr_free_buffer_pages - count number of pages beyond high watermark
5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070 * watermark within ZONE_DMA and ZONE_NORMAL.
5072 * Return: number of pages beyond high watermark within ZONE_DMA and
5073 * ZONE_NORMAL.
5075 unsigned long nr_free_buffer_pages(void)
5077 return nr_free_zone_pages(gfp_zone(GFP_USER));
5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5082 * nr_free_pagecache_pages - count number of pages beyond high watermark
5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones.
5087 * Return: number of pages beyond high watermark within all zones.
5089 unsigned long nr_free_pagecache_pages(void)
5091 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5094 static inline void show_node(struct zone *zone)
5096 if (IS_ENABLED(CONFIG_NUMA))
5097 printk("Node %d ", zone_to_nid(zone));
5100 long si_mem_available(void)
5102 long available;
5103 unsigned long pagecache;
5104 unsigned long wmark_low = 0;
5105 unsigned long pages[NR_LRU_LISTS];
5106 unsigned long reclaimable;
5107 struct zone *zone;
5108 int lru;
5110 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5111 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5113 for_each_zone(zone)
5114 wmark_low += low_wmark_pages(zone);
5117 * Estimate the amount of memory available for userspace allocations,
5118 * without causing swapping.
5120 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5123 * Not all the page cache can be freed, otherwise the system will
5124 * start swapping. Assume at least half of the page cache, or the
5125 * low watermark worth of cache, needs to stay.
5127 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5128 pagecache -= min(pagecache / 2, wmark_low);
5129 available += pagecache;
5132 * Part of the reclaimable slab and other kernel memory consists of
5133 * items that are in use, and cannot be freed. Cap this estimate at the
5134 * low watermark.
5136 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5137 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5138 available += reclaimable - min(reclaimable / 2, wmark_low);
5140 if (available < 0)
5141 available = 0;
5142 return available;
5144 EXPORT_SYMBOL_GPL(si_mem_available);
5146 void si_meminfo(struct sysinfo *val)
5148 val->totalram = totalram_pages();
5149 val->sharedram = global_node_page_state(NR_SHMEM);
5150 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5151 val->bufferram = nr_blockdev_pages();
5152 val->totalhigh = totalhigh_pages();
5153 val->freehigh = nr_free_highpages();
5154 val->mem_unit = PAGE_SIZE;
5157 EXPORT_SYMBOL(si_meminfo);
5159 #ifdef CONFIG_NUMA
5160 void si_meminfo_node(struct sysinfo *val, int nid)
5162 int zone_type; /* needs to be signed */
5163 unsigned long managed_pages = 0;
5164 unsigned long managed_highpages = 0;
5165 unsigned long free_highpages = 0;
5166 pg_data_t *pgdat = NODE_DATA(nid);
5168 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5169 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5170 val->totalram = managed_pages;
5171 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5172 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5173 #ifdef CONFIG_HIGHMEM
5174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5175 struct zone *zone = &pgdat->node_zones[zone_type];
5177 if (is_highmem(zone)) {
5178 managed_highpages += zone_managed_pages(zone);
5179 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5182 val->totalhigh = managed_highpages;
5183 val->freehigh = free_highpages;
5184 #else
5185 val->totalhigh = managed_highpages;
5186 val->freehigh = free_highpages;
5187 #endif
5188 val->mem_unit = PAGE_SIZE;
5190 #endif
5193 * Determine whether the node should be displayed or not, depending on whether
5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5196 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5198 if (!(flags & SHOW_MEM_FILTER_NODES))
5199 return false;
5202 * no node mask - aka implicit memory numa policy. Do not bother with
5203 * the synchronization - read_mems_allowed_begin - because we do not
5204 * have to be precise here.
5206 if (!nodemask)
5207 nodemask = &cpuset_current_mems_allowed;
5209 return !node_isset(nid, *nodemask);
5212 #define K(x) ((x) << (PAGE_SHIFT-10))
5214 static void show_migration_types(unsigned char type)
5216 static const char types[MIGRATE_TYPES] = {
5217 [MIGRATE_UNMOVABLE] = 'U',
5218 [MIGRATE_MOVABLE] = 'M',
5219 [MIGRATE_RECLAIMABLE] = 'E',
5220 [MIGRATE_HIGHATOMIC] = 'H',
5221 #ifdef CONFIG_CMA
5222 [MIGRATE_CMA] = 'C',
5223 #endif
5224 #ifdef CONFIG_MEMORY_ISOLATION
5225 [MIGRATE_ISOLATE] = 'I',
5226 #endif
5228 char tmp[MIGRATE_TYPES + 1];
5229 char *p = tmp;
5230 int i;
5232 for (i = 0; i < MIGRATE_TYPES; i++) {
5233 if (type & (1 << i))
5234 *p++ = types[i];
5237 *p = '\0';
5238 printk(KERN_CONT "(%s) ", tmp);
5242 * Show free area list (used inside shift_scroll-lock stuff)
5243 * We also calculate the percentage fragmentation. We do this by counting the
5244 * memory on each free list with the exception of the first item on the list.
5246 * Bits in @filter:
5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248 * cpuset.
5250 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5252 unsigned long free_pcp = 0;
5253 int cpu;
5254 struct zone *zone;
5255 pg_data_t *pgdat;
5257 for_each_populated_zone(zone) {
5258 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5259 continue;
5261 for_each_online_cpu(cpu)
5262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5265 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5266 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5267 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5268 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5270 " free:%lu free_pcp:%lu free_cma:%lu\n",
5271 global_node_page_state(NR_ACTIVE_ANON),
5272 global_node_page_state(NR_INACTIVE_ANON),
5273 global_node_page_state(NR_ISOLATED_ANON),
5274 global_node_page_state(NR_ACTIVE_FILE),
5275 global_node_page_state(NR_INACTIVE_FILE),
5276 global_node_page_state(NR_ISOLATED_FILE),
5277 global_node_page_state(NR_UNEVICTABLE),
5278 global_node_page_state(NR_FILE_DIRTY),
5279 global_node_page_state(NR_WRITEBACK),
5280 global_node_page_state(NR_UNSTABLE_NFS),
5281 global_node_page_state(NR_SLAB_RECLAIMABLE),
5282 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5283 global_node_page_state(NR_FILE_MAPPED),
5284 global_node_page_state(NR_SHMEM),
5285 global_zone_page_state(NR_PAGETABLE),
5286 global_zone_page_state(NR_BOUNCE),
5287 global_zone_page_state(NR_FREE_PAGES),
5288 free_pcp,
5289 global_zone_page_state(NR_FREE_CMA_PAGES));
5291 for_each_online_pgdat(pgdat) {
5292 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5293 continue;
5295 printk("Node %d"
5296 " active_anon:%lukB"
5297 " inactive_anon:%lukB"
5298 " active_file:%lukB"
5299 " inactive_file:%lukB"
5300 " unevictable:%lukB"
5301 " isolated(anon):%lukB"
5302 " isolated(file):%lukB"
5303 " mapped:%lukB"
5304 " dirty:%lukB"
5305 " writeback:%lukB"
5306 " shmem:%lukB"
5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 " shmem_thp: %lukB"
5309 " shmem_pmdmapped: %lukB"
5310 " anon_thp: %lukB"
5311 #endif
5312 " writeback_tmp:%lukB"
5313 " unstable:%lukB"
5314 " all_unreclaimable? %s"
5315 "\n",
5316 pgdat->node_id,
5317 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5318 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5319 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5320 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5321 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5322 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5323 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5324 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5325 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5326 K(node_page_state(pgdat, NR_WRITEBACK)),
5327 K(node_page_state(pgdat, NR_SHMEM)),
5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5331 * HPAGE_PMD_NR),
5332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5333 #endif
5334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5336 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5337 "yes" : "no");
5340 for_each_populated_zone(zone) {
5341 int i;
5343 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5344 continue;
5346 free_pcp = 0;
5347 for_each_online_cpu(cpu)
5348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5350 show_node(zone);
5351 printk(KERN_CONT
5352 "%s"
5353 " free:%lukB"
5354 " min:%lukB"
5355 " low:%lukB"
5356 " high:%lukB"
5357 " reserved_highatomic:%luKB"
5358 " active_anon:%lukB"
5359 " inactive_anon:%lukB"
5360 " active_file:%lukB"
5361 " inactive_file:%lukB"
5362 " unevictable:%lukB"
5363 " writepending:%lukB"
5364 " present:%lukB"
5365 " managed:%lukB"
5366 " mlocked:%lukB"
5367 " kernel_stack:%lukB"
5368 " pagetables:%lukB"
5369 " bounce:%lukB"
5370 " free_pcp:%lukB"
5371 " local_pcp:%ukB"
5372 " free_cma:%lukB"
5373 "\n",
5374 zone->name,
5375 K(zone_page_state(zone, NR_FREE_PAGES)),
5376 K(min_wmark_pages(zone)),
5377 K(low_wmark_pages(zone)),
5378 K(high_wmark_pages(zone)),
5379 K(zone->nr_reserved_highatomic),
5380 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5381 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5382 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5383 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5384 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5385 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5386 K(zone->present_pages),
5387 K(zone_managed_pages(zone)),
5388 K(zone_page_state(zone, NR_MLOCK)),
5389 zone_page_state(zone, NR_KERNEL_STACK_KB),
5390 K(zone_page_state(zone, NR_PAGETABLE)),
5391 K(zone_page_state(zone, NR_BOUNCE)),
5392 K(free_pcp),
5393 K(this_cpu_read(zone->pageset->pcp.count)),
5394 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5395 printk("lowmem_reserve[]:");
5396 for (i = 0; i < MAX_NR_ZONES; i++)
5397 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5398 printk(KERN_CONT "\n");
5401 for_each_populated_zone(zone) {
5402 unsigned int order;
5403 unsigned long nr[MAX_ORDER], flags, total = 0;
5404 unsigned char types[MAX_ORDER];
5406 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5407 continue;
5408 show_node(zone);
5409 printk(KERN_CONT "%s: ", zone->name);
5411 spin_lock_irqsave(&zone->lock, flags);
5412 for (order = 0; order < MAX_ORDER; order++) {
5413 struct free_area *area = &zone->free_area[order];
5414 int type;
5416 nr[order] = area->nr_free;
5417 total += nr[order] << order;
5419 types[order] = 0;
5420 for (type = 0; type < MIGRATE_TYPES; type++) {
5421 if (!free_area_empty(area, type))
5422 types[order] |= 1 << type;
5425 spin_unlock_irqrestore(&zone->lock, flags);
5426 for (order = 0; order < MAX_ORDER; order++) {
5427 printk(KERN_CONT "%lu*%lukB ",
5428 nr[order], K(1UL) << order);
5429 if (nr[order])
5430 show_migration_types(types[order]);
5432 printk(KERN_CONT "= %lukB\n", K(total));
5435 hugetlb_show_meminfo();
5437 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5439 show_swap_cache_info();
5442 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5444 zoneref->zone = zone;
5445 zoneref->zone_idx = zone_idx(zone);
5449 * Builds allocation fallback zone lists.
5451 * Add all populated zones of a node to the zonelist.
5453 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5455 struct zone *zone;
5456 enum zone_type zone_type = MAX_NR_ZONES;
5457 int nr_zones = 0;
5459 do {
5460 zone_type--;
5461 zone = pgdat->node_zones + zone_type;
5462 if (managed_zone(zone)) {
5463 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5464 check_highest_zone(zone_type);
5466 } while (zone_type);
5468 return nr_zones;
5471 #ifdef CONFIG_NUMA
5473 static int __parse_numa_zonelist_order(char *s)
5476 * We used to support different zonlists modes but they turned
5477 * out to be just not useful. Let's keep the warning in place
5478 * if somebody still use the cmd line parameter so that we do
5479 * not fail it silently
5481 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5482 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5483 return -EINVAL;
5485 return 0;
5488 static __init int setup_numa_zonelist_order(char *s)
5490 if (!s)
5491 return 0;
5493 return __parse_numa_zonelist_order(s);
5495 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5497 char numa_zonelist_order[] = "Node";
5500 * sysctl handler for numa_zonelist_order
5502 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5503 void __user *buffer, size_t *length,
5504 loff_t *ppos)
5506 char *str;
5507 int ret;
5509 if (!write)
5510 return proc_dostring(table, write, buffer, length, ppos);
5511 str = memdup_user_nul(buffer, 16);
5512 if (IS_ERR(str))
5513 return PTR_ERR(str);
5515 ret = __parse_numa_zonelist_order(str);
5516 kfree(str);
5517 return ret;
5521 #define MAX_NODE_LOAD (nr_online_nodes)
5522 static int node_load[MAX_NUMNODES];
5525 * find_next_best_node - find the next node that should appear in a given node's fallback list
5526 * @node: node whose fallback list we're appending
5527 * @used_node_mask: nodemask_t of already used nodes
5529 * We use a number of factors to determine which is the next node that should
5530 * appear on a given node's fallback list. The node should not have appeared
5531 * already in @node's fallback list, and it should be the next closest node
5532 * according to the distance array (which contains arbitrary distance values
5533 * from each node to each node in the system), and should also prefer nodes
5534 * with no CPUs, since presumably they'll have very little allocation pressure
5535 * on them otherwise.
5537 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5539 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5541 int n, val;
5542 int min_val = INT_MAX;
5543 int best_node = NUMA_NO_NODE;
5544 const struct cpumask *tmp = cpumask_of_node(0);
5546 /* Use the local node if we haven't already */
5547 if (!node_isset(node, *used_node_mask)) {
5548 node_set(node, *used_node_mask);
5549 return node;
5552 for_each_node_state(n, N_MEMORY) {
5554 /* Don't want a node to appear more than once */
5555 if (node_isset(n, *used_node_mask))
5556 continue;
5558 /* Use the distance array to find the distance */
5559 val = node_distance(node, n);
5561 /* Penalize nodes under us ("prefer the next node") */
5562 val += (n < node);
5564 /* Give preference to headless and unused nodes */
5565 tmp = cpumask_of_node(n);
5566 if (!cpumask_empty(tmp))
5567 val += PENALTY_FOR_NODE_WITH_CPUS;
5569 /* Slight preference for less loaded node */
5570 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5571 val += node_load[n];
5573 if (val < min_val) {
5574 min_val = val;
5575 best_node = n;
5579 if (best_node >= 0)
5580 node_set(best_node, *used_node_mask);
5582 return best_node;
5587 * Build zonelists ordered by node and zones within node.
5588 * This results in maximum locality--normal zone overflows into local
5589 * DMA zone, if any--but risks exhausting DMA zone.
5591 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5592 unsigned nr_nodes)
5594 struct zoneref *zonerefs;
5595 int i;
5597 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5599 for (i = 0; i < nr_nodes; i++) {
5600 int nr_zones;
5602 pg_data_t *node = NODE_DATA(node_order[i]);
5604 nr_zones = build_zonerefs_node(node, zonerefs);
5605 zonerefs += nr_zones;
5607 zonerefs->zone = NULL;
5608 zonerefs->zone_idx = 0;
5612 * Build gfp_thisnode zonelists
5614 static void build_thisnode_zonelists(pg_data_t *pgdat)
5616 struct zoneref *zonerefs;
5617 int nr_zones;
5619 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5620 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5621 zonerefs += nr_zones;
5622 zonerefs->zone = NULL;
5623 zonerefs->zone_idx = 0;
5627 * Build zonelists ordered by zone and nodes within zones.
5628 * This results in conserving DMA zone[s] until all Normal memory is
5629 * exhausted, but results in overflowing to remote node while memory
5630 * may still exist in local DMA zone.
5633 static void build_zonelists(pg_data_t *pgdat)
5635 static int node_order[MAX_NUMNODES];
5636 int node, load, nr_nodes = 0;
5637 nodemask_t used_mask;
5638 int local_node, prev_node;
5640 /* NUMA-aware ordering of nodes */
5641 local_node = pgdat->node_id;
5642 load = nr_online_nodes;
5643 prev_node = local_node;
5644 nodes_clear(used_mask);
5646 memset(node_order, 0, sizeof(node_order));
5647 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5649 * We don't want to pressure a particular node.
5650 * So adding penalty to the first node in same
5651 * distance group to make it round-robin.
5653 if (node_distance(local_node, node) !=
5654 node_distance(local_node, prev_node))
5655 node_load[node] = load;
5657 node_order[nr_nodes++] = node;
5658 prev_node = node;
5659 load--;
5662 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5663 build_thisnode_zonelists(pgdat);
5666 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5668 * Return node id of node used for "local" allocations.
5669 * I.e., first node id of first zone in arg node's generic zonelist.
5670 * Used for initializing percpu 'numa_mem', which is used primarily
5671 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5673 int local_memory_node(int node)
5675 struct zoneref *z;
5677 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5678 gfp_zone(GFP_KERNEL),
5679 NULL);
5680 return zone_to_nid(z->zone);
5682 #endif
5684 static void setup_min_unmapped_ratio(void);
5685 static void setup_min_slab_ratio(void);
5686 #else /* CONFIG_NUMA */
5688 static void build_zonelists(pg_data_t *pgdat)
5690 int node, local_node;
5691 struct zoneref *zonerefs;
5692 int nr_zones;
5694 local_node = pgdat->node_id;
5696 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5697 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5698 zonerefs += nr_zones;
5701 * Now we build the zonelist so that it contains the zones
5702 * of all the other nodes.
5703 * We don't want to pressure a particular node, so when
5704 * building the zones for node N, we make sure that the
5705 * zones coming right after the local ones are those from
5706 * node N+1 (modulo N)
5708 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5709 if (!node_online(node))
5710 continue;
5711 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5712 zonerefs += nr_zones;
5714 for (node = 0; node < local_node; node++) {
5715 if (!node_online(node))
5716 continue;
5717 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5718 zonerefs += nr_zones;
5721 zonerefs->zone = NULL;
5722 zonerefs->zone_idx = 0;
5725 #endif /* CONFIG_NUMA */
5728 * Boot pageset table. One per cpu which is going to be used for all
5729 * zones and all nodes. The parameters will be set in such a way
5730 * that an item put on a list will immediately be handed over to
5731 * the buddy list. This is safe since pageset manipulation is done
5732 * with interrupts disabled.
5734 * The boot_pagesets must be kept even after bootup is complete for
5735 * unused processors and/or zones. They do play a role for bootstrapping
5736 * hotplugged processors.
5738 * zoneinfo_show() and maybe other functions do
5739 * not check if the processor is online before following the pageset pointer.
5740 * Other parts of the kernel may not check if the zone is available.
5742 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5743 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5744 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5746 static void __build_all_zonelists(void *data)
5748 int nid;
5749 int __maybe_unused cpu;
5750 pg_data_t *self = data;
5751 static DEFINE_SPINLOCK(lock);
5753 spin_lock(&lock);
5755 #ifdef CONFIG_NUMA
5756 memset(node_load, 0, sizeof(node_load));
5757 #endif
5760 * This node is hotadded and no memory is yet present. So just
5761 * building zonelists is fine - no need to touch other nodes.
5763 if (self && !node_online(self->node_id)) {
5764 build_zonelists(self);
5765 } else {
5766 for_each_online_node(nid) {
5767 pg_data_t *pgdat = NODE_DATA(nid);
5769 build_zonelists(pgdat);
5772 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5774 * We now know the "local memory node" for each node--
5775 * i.e., the node of the first zone in the generic zonelist.
5776 * Set up numa_mem percpu variable for on-line cpus. During
5777 * boot, only the boot cpu should be on-line; we'll init the
5778 * secondary cpus' numa_mem as they come on-line. During
5779 * node/memory hotplug, we'll fixup all on-line cpus.
5781 for_each_online_cpu(cpu)
5782 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5783 #endif
5786 spin_unlock(&lock);
5789 static noinline void __init
5790 build_all_zonelists_init(void)
5792 int cpu;
5794 __build_all_zonelists(NULL);
5797 * Initialize the boot_pagesets that are going to be used
5798 * for bootstrapping processors. The real pagesets for
5799 * each zone will be allocated later when the per cpu
5800 * allocator is available.
5802 * boot_pagesets are used also for bootstrapping offline
5803 * cpus if the system is already booted because the pagesets
5804 * are needed to initialize allocators on a specific cpu too.
5805 * F.e. the percpu allocator needs the page allocator which
5806 * needs the percpu allocator in order to allocate its pagesets
5807 * (a chicken-egg dilemma).
5809 for_each_possible_cpu(cpu)
5810 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5812 mminit_verify_zonelist();
5813 cpuset_init_current_mems_allowed();
5817 * unless system_state == SYSTEM_BOOTING.
5819 * __ref due to call of __init annotated helper build_all_zonelists_init
5820 * [protected by SYSTEM_BOOTING].
5822 void __ref build_all_zonelists(pg_data_t *pgdat)
5824 if (system_state == SYSTEM_BOOTING) {
5825 build_all_zonelists_init();
5826 } else {
5827 __build_all_zonelists(pgdat);
5828 /* cpuset refresh routine should be here */
5830 vm_total_pages = nr_free_pagecache_pages();
5832 * Disable grouping by mobility if the number of pages in the
5833 * system is too low to allow the mechanism to work. It would be
5834 * more accurate, but expensive to check per-zone. This check is
5835 * made on memory-hotadd so a system can start with mobility
5836 * disabled and enable it later
5838 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5839 page_group_by_mobility_disabled = 1;
5840 else
5841 page_group_by_mobility_disabled = 0;
5843 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5844 nr_online_nodes,
5845 page_group_by_mobility_disabled ? "off" : "on",
5846 vm_total_pages);
5847 #ifdef CONFIG_NUMA
5848 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5849 #endif
5852 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5853 static bool __meminit
5854 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5856 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5857 static struct memblock_region *r;
5859 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5860 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5861 for_each_memblock(memory, r) {
5862 if (*pfn < memblock_region_memory_end_pfn(r))
5863 break;
5866 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5867 memblock_is_mirror(r)) {
5868 *pfn = memblock_region_memory_end_pfn(r);
5869 return true;
5872 #endif
5873 return false;
5877 * Initially all pages are reserved - free ones are freed
5878 * up by memblock_free_all() once the early boot process is
5879 * done. Non-atomic initialization, single-pass.
5881 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5882 unsigned long start_pfn, enum memmap_context context,
5883 struct vmem_altmap *altmap)
5885 unsigned long pfn, end_pfn = start_pfn + size;
5886 struct page *page;
5888 if (highest_memmap_pfn < end_pfn - 1)
5889 highest_memmap_pfn = end_pfn - 1;
5891 #ifdef CONFIG_ZONE_DEVICE
5893 * Honor reservation requested by the driver for this ZONE_DEVICE
5894 * memory. We limit the total number of pages to initialize to just
5895 * those that might contain the memory mapping. We will defer the
5896 * ZONE_DEVICE page initialization until after we have released
5897 * the hotplug lock.
5899 if (zone == ZONE_DEVICE) {
5900 if (!altmap)
5901 return;
5903 if (start_pfn == altmap->base_pfn)
5904 start_pfn += altmap->reserve;
5905 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5907 #endif
5909 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5911 * There can be holes in boot-time mem_map[]s handed to this
5912 * function. They do not exist on hotplugged memory.
5914 if (context == MEMMAP_EARLY) {
5915 if (!early_pfn_valid(pfn))
5916 continue;
5917 if (!early_pfn_in_nid(pfn, nid))
5918 continue;
5919 if (overlap_memmap_init(zone, &pfn))
5920 continue;
5921 if (defer_init(nid, pfn, end_pfn))
5922 break;
5925 page = pfn_to_page(pfn);
5926 __init_single_page(page, pfn, zone, nid);
5927 if (context == MEMMAP_HOTPLUG)
5928 __SetPageReserved(page);
5931 * Mark the block movable so that blocks are reserved for
5932 * movable at startup. This will force kernel allocations
5933 * to reserve their blocks rather than leaking throughout
5934 * the address space during boot when many long-lived
5935 * kernel allocations are made.
5937 * bitmap is created for zone's valid pfn range. but memmap
5938 * can be created for invalid pages (for alignment)
5939 * check here not to call set_pageblock_migratetype() against
5940 * pfn out of zone.
5942 if (!(pfn & (pageblock_nr_pages - 1))) {
5943 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5944 cond_resched();
5949 #ifdef CONFIG_ZONE_DEVICE
5950 void __ref memmap_init_zone_device(struct zone *zone,
5951 unsigned long start_pfn,
5952 unsigned long size,
5953 struct dev_pagemap *pgmap)
5955 unsigned long pfn, end_pfn = start_pfn + size;
5956 struct pglist_data *pgdat = zone->zone_pgdat;
5957 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5958 unsigned long zone_idx = zone_idx(zone);
5959 unsigned long start = jiffies;
5960 int nid = pgdat->node_id;
5962 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5963 return;
5966 * The call to memmap_init_zone should have already taken care
5967 * of the pages reserved for the memmap, so we can just jump to
5968 * the end of that region and start processing the device pages.
5970 if (altmap) {
5971 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5972 size = end_pfn - start_pfn;
5975 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5976 struct page *page = pfn_to_page(pfn);
5978 __init_single_page(page, pfn, zone_idx, nid);
5981 * Mark page reserved as it will need to wait for onlining
5982 * phase for it to be fully associated with a zone.
5984 * We can use the non-atomic __set_bit operation for setting
5985 * the flag as we are still initializing the pages.
5987 __SetPageReserved(page);
5990 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5991 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5992 * ever freed or placed on a driver-private list.
5994 page->pgmap = pgmap;
5995 page->zone_device_data = NULL;
5998 * Mark the block movable so that blocks are reserved for
5999 * movable at startup. This will force kernel allocations
6000 * to reserve their blocks rather than leaking throughout
6001 * the address space during boot when many long-lived
6002 * kernel allocations are made.
6004 * bitmap is created for zone's valid pfn range. but memmap
6005 * can be created for invalid pages (for alignment)
6006 * check here not to call set_pageblock_migratetype() against
6007 * pfn out of zone.
6009 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6010 * because this is done early in section_activate()
6012 if (!(pfn & (pageblock_nr_pages - 1))) {
6013 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6014 cond_resched();
6018 pr_info("%s initialised %lu pages in %ums\n", __func__,
6019 size, jiffies_to_msecs(jiffies - start));
6022 #endif
6023 static void __meminit zone_init_free_lists(struct zone *zone)
6025 unsigned int order, t;
6026 for_each_migratetype_order(order, t) {
6027 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6028 zone->free_area[order].nr_free = 0;
6032 void __meminit __weak memmap_init(unsigned long size, int nid,
6033 unsigned long zone, unsigned long start_pfn)
6035 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6038 static int zone_batchsize(struct zone *zone)
6040 #ifdef CONFIG_MMU
6041 int batch;
6044 * The per-cpu-pages pools are set to around 1000th of the
6045 * size of the zone.
6047 batch = zone_managed_pages(zone) / 1024;
6048 /* But no more than a meg. */
6049 if (batch * PAGE_SIZE > 1024 * 1024)
6050 batch = (1024 * 1024) / PAGE_SIZE;
6051 batch /= 4; /* We effectively *= 4 below */
6052 if (batch < 1)
6053 batch = 1;
6056 * Clamp the batch to a 2^n - 1 value. Having a power
6057 * of 2 value was found to be more likely to have
6058 * suboptimal cache aliasing properties in some cases.
6060 * For example if 2 tasks are alternately allocating
6061 * batches of pages, one task can end up with a lot
6062 * of pages of one half of the possible page colors
6063 * and the other with pages of the other colors.
6065 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6067 return batch;
6069 #else
6070 /* The deferral and batching of frees should be suppressed under NOMMU
6071 * conditions.
6073 * The problem is that NOMMU needs to be able to allocate large chunks
6074 * of contiguous memory as there's no hardware page translation to
6075 * assemble apparent contiguous memory from discontiguous pages.
6077 * Queueing large contiguous runs of pages for batching, however,
6078 * causes the pages to actually be freed in smaller chunks. As there
6079 * can be a significant delay between the individual batches being
6080 * recycled, this leads to the once large chunks of space being
6081 * fragmented and becoming unavailable for high-order allocations.
6083 return 0;
6084 #endif
6088 * pcp->high and pcp->batch values are related and dependent on one another:
6089 * ->batch must never be higher then ->high.
6090 * The following function updates them in a safe manner without read side
6091 * locking.
6093 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6094 * those fields changing asynchronously (acording the the above rule).
6096 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6097 * outside of boot time (or some other assurance that no concurrent updaters
6098 * exist).
6100 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6101 unsigned long batch)
6103 /* start with a fail safe value for batch */
6104 pcp->batch = 1;
6105 smp_wmb();
6107 /* Update high, then batch, in order */
6108 pcp->high = high;
6109 smp_wmb();
6111 pcp->batch = batch;
6114 /* a companion to pageset_set_high() */
6115 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6117 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6120 static void pageset_init(struct per_cpu_pageset *p)
6122 struct per_cpu_pages *pcp;
6123 int migratetype;
6125 memset(p, 0, sizeof(*p));
6127 pcp = &p->pcp;
6128 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6129 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6132 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6134 pageset_init(p);
6135 pageset_set_batch(p, batch);
6139 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6140 * to the value high for the pageset p.
6142 static void pageset_set_high(struct per_cpu_pageset *p,
6143 unsigned long high)
6145 unsigned long batch = max(1UL, high / 4);
6146 if ((high / 4) > (PAGE_SHIFT * 8))
6147 batch = PAGE_SHIFT * 8;
6149 pageset_update(&p->pcp, high, batch);
6152 static void pageset_set_high_and_batch(struct zone *zone,
6153 struct per_cpu_pageset *pcp)
6155 if (percpu_pagelist_fraction)
6156 pageset_set_high(pcp,
6157 (zone_managed_pages(zone) /
6158 percpu_pagelist_fraction));
6159 else
6160 pageset_set_batch(pcp, zone_batchsize(zone));
6163 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6165 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6167 pageset_init(pcp);
6168 pageset_set_high_and_batch(zone, pcp);
6171 void __meminit setup_zone_pageset(struct zone *zone)
6173 int cpu;
6174 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6175 for_each_possible_cpu(cpu)
6176 zone_pageset_init(zone, cpu);
6180 * Allocate per cpu pagesets and initialize them.
6181 * Before this call only boot pagesets were available.
6183 void __init setup_per_cpu_pageset(void)
6185 struct pglist_data *pgdat;
6186 struct zone *zone;
6188 for_each_populated_zone(zone)
6189 setup_zone_pageset(zone);
6191 for_each_online_pgdat(pgdat)
6192 pgdat->per_cpu_nodestats =
6193 alloc_percpu(struct per_cpu_nodestat);
6196 static __meminit void zone_pcp_init(struct zone *zone)
6199 * per cpu subsystem is not up at this point. The following code
6200 * relies on the ability of the linker to provide the
6201 * offset of a (static) per cpu variable into the per cpu area.
6203 zone->pageset = &boot_pageset;
6205 if (populated_zone(zone))
6206 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6207 zone->name, zone->present_pages,
6208 zone_batchsize(zone));
6211 void __meminit init_currently_empty_zone(struct zone *zone,
6212 unsigned long zone_start_pfn,
6213 unsigned long size)
6215 struct pglist_data *pgdat = zone->zone_pgdat;
6216 int zone_idx = zone_idx(zone) + 1;
6218 if (zone_idx > pgdat->nr_zones)
6219 pgdat->nr_zones = zone_idx;
6221 zone->zone_start_pfn = zone_start_pfn;
6223 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6224 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6225 pgdat->node_id,
6226 (unsigned long)zone_idx(zone),
6227 zone_start_pfn, (zone_start_pfn + size));
6229 zone_init_free_lists(zone);
6230 zone->initialized = 1;
6233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6237 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6239 int __meminit __early_pfn_to_nid(unsigned long pfn,
6240 struct mminit_pfnnid_cache *state)
6242 unsigned long start_pfn, end_pfn;
6243 int nid;
6245 if (state->last_start <= pfn && pfn < state->last_end)
6246 return state->last_nid;
6248 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6249 if (nid != NUMA_NO_NODE) {
6250 state->last_start = start_pfn;
6251 state->last_end = end_pfn;
6252 state->last_nid = nid;
6255 return nid;
6257 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6260 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6261 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6262 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6264 * If an architecture guarantees that all ranges registered contain no holes
6265 * and may be freed, this this function may be used instead of calling
6266 * memblock_free_early_nid() manually.
6268 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6270 unsigned long start_pfn, end_pfn;
6271 int i, this_nid;
6273 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6274 start_pfn = min(start_pfn, max_low_pfn);
6275 end_pfn = min(end_pfn, max_low_pfn);
6277 if (start_pfn < end_pfn)
6278 memblock_free_early_nid(PFN_PHYS(start_pfn),
6279 (end_pfn - start_pfn) << PAGE_SHIFT,
6280 this_nid);
6285 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6286 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6288 * If an architecture guarantees that all ranges registered contain no holes and may
6289 * be freed, this function may be used instead of calling memory_present() manually.
6291 void __init sparse_memory_present_with_active_regions(int nid)
6293 unsigned long start_pfn, end_pfn;
6294 int i, this_nid;
6296 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6297 memory_present(this_nid, start_pfn, end_pfn);
6301 * get_pfn_range_for_nid - Return the start and end page frames for a node
6302 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6303 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6304 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6306 * It returns the start and end page frame of a node based on information
6307 * provided by memblock_set_node(). If called for a node
6308 * with no available memory, a warning is printed and the start and end
6309 * PFNs will be 0.
6311 void __init get_pfn_range_for_nid(unsigned int nid,
6312 unsigned long *start_pfn, unsigned long *end_pfn)
6314 unsigned long this_start_pfn, this_end_pfn;
6315 int i;
6317 *start_pfn = -1UL;
6318 *end_pfn = 0;
6320 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6321 *start_pfn = min(*start_pfn, this_start_pfn);
6322 *end_pfn = max(*end_pfn, this_end_pfn);
6325 if (*start_pfn == -1UL)
6326 *start_pfn = 0;
6330 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6331 * assumption is made that zones within a node are ordered in monotonic
6332 * increasing memory addresses so that the "highest" populated zone is used
6334 static void __init find_usable_zone_for_movable(void)
6336 int zone_index;
6337 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6338 if (zone_index == ZONE_MOVABLE)
6339 continue;
6341 if (arch_zone_highest_possible_pfn[zone_index] >
6342 arch_zone_lowest_possible_pfn[zone_index])
6343 break;
6346 VM_BUG_ON(zone_index == -1);
6347 movable_zone = zone_index;
6351 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6352 * because it is sized independent of architecture. Unlike the other zones,
6353 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6354 * in each node depending on the size of each node and how evenly kernelcore
6355 * is distributed. This helper function adjusts the zone ranges
6356 * provided by the architecture for a given node by using the end of the
6357 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6358 * zones within a node are in order of monotonic increases memory addresses
6360 static void __init adjust_zone_range_for_zone_movable(int nid,
6361 unsigned long zone_type,
6362 unsigned long node_start_pfn,
6363 unsigned long node_end_pfn,
6364 unsigned long *zone_start_pfn,
6365 unsigned long *zone_end_pfn)
6367 /* Only adjust if ZONE_MOVABLE is on this node */
6368 if (zone_movable_pfn[nid]) {
6369 /* Size ZONE_MOVABLE */
6370 if (zone_type == ZONE_MOVABLE) {
6371 *zone_start_pfn = zone_movable_pfn[nid];
6372 *zone_end_pfn = min(node_end_pfn,
6373 arch_zone_highest_possible_pfn[movable_zone]);
6375 /* Adjust for ZONE_MOVABLE starting within this range */
6376 } else if (!mirrored_kernelcore &&
6377 *zone_start_pfn < zone_movable_pfn[nid] &&
6378 *zone_end_pfn > zone_movable_pfn[nid]) {
6379 *zone_end_pfn = zone_movable_pfn[nid];
6381 /* Check if this whole range is within ZONE_MOVABLE */
6382 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6383 *zone_start_pfn = *zone_end_pfn;
6388 * Return the number of pages a zone spans in a node, including holes
6389 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6391 static unsigned long __init zone_spanned_pages_in_node(int nid,
6392 unsigned long zone_type,
6393 unsigned long node_start_pfn,
6394 unsigned long node_end_pfn,
6395 unsigned long *zone_start_pfn,
6396 unsigned long *zone_end_pfn,
6397 unsigned long *ignored)
6399 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6400 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6401 /* When hotadd a new node from cpu_up(), the node should be empty */
6402 if (!node_start_pfn && !node_end_pfn)
6403 return 0;
6405 /* Get the start and end of the zone */
6406 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6407 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6408 adjust_zone_range_for_zone_movable(nid, zone_type,
6409 node_start_pfn, node_end_pfn,
6410 zone_start_pfn, zone_end_pfn);
6412 /* Check that this node has pages within the zone's required range */
6413 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6414 return 0;
6416 /* Move the zone boundaries inside the node if necessary */
6417 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6418 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6420 /* Return the spanned pages */
6421 return *zone_end_pfn - *zone_start_pfn;
6425 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6426 * then all holes in the requested range will be accounted for.
6428 unsigned long __init __absent_pages_in_range(int nid,
6429 unsigned long range_start_pfn,
6430 unsigned long range_end_pfn)
6432 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6433 unsigned long start_pfn, end_pfn;
6434 int i;
6436 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6437 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6438 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6439 nr_absent -= end_pfn - start_pfn;
6441 return nr_absent;
6445 * absent_pages_in_range - Return number of page frames in holes within a range
6446 * @start_pfn: The start PFN to start searching for holes
6447 * @end_pfn: The end PFN to stop searching for holes
6449 * Return: the number of pages frames in memory holes within a range.
6451 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6452 unsigned long end_pfn)
6454 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6457 /* Return the number of page frames in holes in a zone on a node */
6458 static unsigned long __init zone_absent_pages_in_node(int nid,
6459 unsigned long zone_type,
6460 unsigned long node_start_pfn,
6461 unsigned long node_end_pfn,
6462 unsigned long *ignored)
6464 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6465 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6466 unsigned long zone_start_pfn, zone_end_pfn;
6467 unsigned long nr_absent;
6469 /* When hotadd a new node from cpu_up(), the node should be empty */
6470 if (!node_start_pfn && !node_end_pfn)
6471 return 0;
6473 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6474 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476 adjust_zone_range_for_zone_movable(nid, zone_type,
6477 node_start_pfn, node_end_pfn,
6478 &zone_start_pfn, &zone_end_pfn);
6479 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6482 * ZONE_MOVABLE handling.
6483 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6484 * and vice versa.
6486 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6487 unsigned long start_pfn, end_pfn;
6488 struct memblock_region *r;
6490 for_each_memblock(memory, r) {
6491 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6492 zone_start_pfn, zone_end_pfn);
6493 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6494 zone_start_pfn, zone_end_pfn);
6496 if (zone_type == ZONE_MOVABLE &&
6497 memblock_is_mirror(r))
6498 nr_absent += end_pfn - start_pfn;
6500 if (zone_type == ZONE_NORMAL &&
6501 !memblock_is_mirror(r))
6502 nr_absent += end_pfn - start_pfn;
6506 return nr_absent;
6509 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6510 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6511 unsigned long zone_type,
6512 unsigned long node_start_pfn,
6513 unsigned long node_end_pfn,
6514 unsigned long *zone_start_pfn,
6515 unsigned long *zone_end_pfn,
6516 unsigned long *zones_size)
6518 unsigned int zone;
6520 *zone_start_pfn = node_start_pfn;
6521 for (zone = 0; zone < zone_type; zone++)
6522 *zone_start_pfn += zones_size[zone];
6524 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6526 return zones_size[zone_type];
6529 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6530 unsigned long zone_type,
6531 unsigned long node_start_pfn,
6532 unsigned long node_end_pfn,
6533 unsigned long *zholes_size)
6535 if (!zholes_size)
6536 return 0;
6538 return zholes_size[zone_type];
6541 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6543 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6544 unsigned long node_start_pfn,
6545 unsigned long node_end_pfn,
6546 unsigned long *zones_size,
6547 unsigned long *zholes_size)
6549 unsigned long realtotalpages = 0, totalpages = 0;
6550 enum zone_type i;
6552 for (i = 0; i < MAX_NR_ZONES; i++) {
6553 struct zone *zone = pgdat->node_zones + i;
6554 unsigned long zone_start_pfn, zone_end_pfn;
6555 unsigned long size, real_size;
6557 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6558 node_start_pfn,
6559 node_end_pfn,
6560 &zone_start_pfn,
6561 &zone_end_pfn,
6562 zones_size);
6563 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6564 node_start_pfn, node_end_pfn,
6565 zholes_size);
6566 if (size)
6567 zone->zone_start_pfn = zone_start_pfn;
6568 else
6569 zone->zone_start_pfn = 0;
6570 zone->spanned_pages = size;
6571 zone->present_pages = real_size;
6573 totalpages += size;
6574 realtotalpages += real_size;
6577 pgdat->node_spanned_pages = totalpages;
6578 pgdat->node_present_pages = realtotalpages;
6579 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6580 realtotalpages);
6583 #ifndef CONFIG_SPARSEMEM
6585 * Calculate the size of the zone->blockflags rounded to an unsigned long
6586 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6587 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6588 * round what is now in bits to nearest long in bits, then return it in
6589 * bytes.
6591 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6593 unsigned long usemapsize;
6595 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6596 usemapsize = roundup(zonesize, pageblock_nr_pages);
6597 usemapsize = usemapsize >> pageblock_order;
6598 usemapsize *= NR_PAGEBLOCK_BITS;
6599 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6601 return usemapsize / 8;
6604 static void __ref setup_usemap(struct pglist_data *pgdat,
6605 struct zone *zone,
6606 unsigned long zone_start_pfn,
6607 unsigned long zonesize)
6609 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6610 zone->pageblock_flags = NULL;
6611 if (usemapsize) {
6612 zone->pageblock_flags =
6613 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6614 pgdat->node_id);
6615 if (!zone->pageblock_flags)
6616 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6617 usemapsize, zone->name, pgdat->node_id);
6620 #else
6621 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6622 unsigned long zone_start_pfn, unsigned long zonesize) {}
6623 #endif /* CONFIG_SPARSEMEM */
6625 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6627 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6628 void __init set_pageblock_order(void)
6630 unsigned int order;
6632 /* Check that pageblock_nr_pages has not already been setup */
6633 if (pageblock_order)
6634 return;
6636 if (HPAGE_SHIFT > PAGE_SHIFT)
6637 order = HUGETLB_PAGE_ORDER;
6638 else
6639 order = MAX_ORDER - 1;
6642 * Assume the largest contiguous order of interest is a huge page.
6643 * This value may be variable depending on boot parameters on IA64 and
6644 * powerpc.
6646 pageblock_order = order;
6648 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6651 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6652 * is unused as pageblock_order is set at compile-time. See
6653 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6654 * the kernel config
6656 void __init set_pageblock_order(void)
6660 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6662 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6663 unsigned long present_pages)
6665 unsigned long pages = spanned_pages;
6668 * Provide a more accurate estimation if there are holes within
6669 * the zone and SPARSEMEM is in use. If there are holes within the
6670 * zone, each populated memory region may cost us one or two extra
6671 * memmap pages due to alignment because memmap pages for each
6672 * populated regions may not be naturally aligned on page boundary.
6673 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6675 if (spanned_pages > present_pages + (present_pages >> 4) &&
6676 IS_ENABLED(CONFIG_SPARSEMEM))
6677 pages = present_pages;
6679 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6683 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6685 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6687 spin_lock_init(&ds_queue->split_queue_lock);
6688 INIT_LIST_HEAD(&ds_queue->split_queue);
6689 ds_queue->split_queue_len = 0;
6691 #else
6692 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6693 #endif
6695 #ifdef CONFIG_COMPACTION
6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6698 init_waitqueue_head(&pgdat->kcompactd_wait);
6700 #else
6701 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6702 #endif
6704 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6706 pgdat_resize_init(pgdat);
6708 pgdat_init_split_queue(pgdat);
6709 pgdat_init_kcompactd(pgdat);
6711 init_waitqueue_head(&pgdat->kswapd_wait);
6712 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6714 pgdat_page_ext_init(pgdat);
6715 spin_lock_init(&pgdat->lru_lock);
6716 lruvec_init(&pgdat->__lruvec);
6719 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6720 unsigned long remaining_pages)
6722 atomic_long_set(&zone->managed_pages, remaining_pages);
6723 zone_set_nid(zone, nid);
6724 zone->name = zone_names[idx];
6725 zone->zone_pgdat = NODE_DATA(nid);
6726 spin_lock_init(&zone->lock);
6727 zone_seqlock_init(zone);
6728 zone_pcp_init(zone);
6732 * Set up the zone data structures
6733 * - init pgdat internals
6734 * - init all zones belonging to this node
6736 * NOTE: this function is only called during memory hotplug
6738 #ifdef CONFIG_MEMORY_HOTPLUG
6739 void __ref free_area_init_core_hotplug(int nid)
6741 enum zone_type z;
6742 pg_data_t *pgdat = NODE_DATA(nid);
6744 pgdat_init_internals(pgdat);
6745 for (z = 0; z < MAX_NR_ZONES; z++)
6746 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6748 #endif
6751 * Set up the zone data structures:
6752 * - mark all pages reserved
6753 * - mark all memory queues empty
6754 * - clear the memory bitmaps
6756 * NOTE: pgdat should get zeroed by caller.
6757 * NOTE: this function is only called during early init.
6759 static void __init free_area_init_core(struct pglist_data *pgdat)
6761 enum zone_type j;
6762 int nid = pgdat->node_id;
6764 pgdat_init_internals(pgdat);
6765 pgdat->per_cpu_nodestats = &boot_nodestats;
6767 for (j = 0; j < MAX_NR_ZONES; j++) {
6768 struct zone *zone = pgdat->node_zones + j;
6769 unsigned long size, freesize, memmap_pages;
6770 unsigned long zone_start_pfn = zone->zone_start_pfn;
6772 size = zone->spanned_pages;
6773 freesize = zone->present_pages;
6776 * Adjust freesize so that it accounts for how much memory
6777 * is used by this zone for memmap. This affects the watermark
6778 * and per-cpu initialisations
6780 memmap_pages = calc_memmap_size(size, freesize);
6781 if (!is_highmem_idx(j)) {
6782 if (freesize >= memmap_pages) {
6783 freesize -= memmap_pages;
6784 if (memmap_pages)
6785 printk(KERN_DEBUG
6786 " %s zone: %lu pages used for memmap\n",
6787 zone_names[j], memmap_pages);
6788 } else
6789 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6790 zone_names[j], memmap_pages, freesize);
6793 /* Account for reserved pages */
6794 if (j == 0 && freesize > dma_reserve) {
6795 freesize -= dma_reserve;
6796 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6797 zone_names[0], dma_reserve);
6800 if (!is_highmem_idx(j))
6801 nr_kernel_pages += freesize;
6802 /* Charge for highmem memmap if there are enough kernel pages */
6803 else if (nr_kernel_pages > memmap_pages * 2)
6804 nr_kernel_pages -= memmap_pages;
6805 nr_all_pages += freesize;
6808 * Set an approximate value for lowmem here, it will be adjusted
6809 * when the bootmem allocator frees pages into the buddy system.
6810 * And all highmem pages will be managed by the buddy system.
6812 zone_init_internals(zone, j, nid, freesize);
6814 if (!size)
6815 continue;
6817 set_pageblock_order();
6818 setup_usemap(pgdat, zone, zone_start_pfn, size);
6819 init_currently_empty_zone(zone, zone_start_pfn, size);
6820 memmap_init(size, nid, j, zone_start_pfn);
6824 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6825 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6827 unsigned long __maybe_unused start = 0;
6828 unsigned long __maybe_unused offset = 0;
6830 /* Skip empty nodes */
6831 if (!pgdat->node_spanned_pages)
6832 return;
6834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6835 offset = pgdat->node_start_pfn - start;
6836 /* ia64 gets its own node_mem_map, before this, without bootmem */
6837 if (!pgdat->node_mem_map) {
6838 unsigned long size, end;
6839 struct page *map;
6842 * The zone's endpoints aren't required to be MAX_ORDER
6843 * aligned but the node_mem_map endpoints must be in order
6844 * for the buddy allocator to function correctly.
6846 end = pgdat_end_pfn(pgdat);
6847 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6848 size = (end - start) * sizeof(struct page);
6849 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6850 pgdat->node_id);
6851 if (!map)
6852 panic("Failed to allocate %ld bytes for node %d memory map\n",
6853 size, pgdat->node_id);
6854 pgdat->node_mem_map = map + offset;
6856 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6857 __func__, pgdat->node_id, (unsigned long)pgdat,
6858 (unsigned long)pgdat->node_mem_map);
6859 #ifndef CONFIG_NEED_MULTIPLE_NODES
6861 * With no DISCONTIG, the global mem_map is just set as node 0's
6863 if (pgdat == NODE_DATA(0)) {
6864 mem_map = NODE_DATA(0)->node_mem_map;
6865 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6866 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6867 mem_map -= offset;
6868 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6870 #endif
6872 #else
6873 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6874 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6876 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6879 pgdat->first_deferred_pfn = ULONG_MAX;
6881 #else
6882 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6883 #endif
6885 void __init free_area_init_node(int nid, unsigned long *zones_size,
6886 unsigned long node_start_pfn,
6887 unsigned long *zholes_size)
6889 pg_data_t *pgdat = NODE_DATA(nid);
6890 unsigned long start_pfn = 0;
6891 unsigned long end_pfn = 0;
6893 /* pg_data_t should be reset to zero when it's allocated */
6894 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6896 pgdat->node_id = nid;
6897 pgdat->node_start_pfn = node_start_pfn;
6898 pgdat->per_cpu_nodestats = NULL;
6899 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6900 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6901 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6902 (u64)start_pfn << PAGE_SHIFT,
6903 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6904 #else
6905 start_pfn = node_start_pfn;
6906 #endif
6907 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6908 zones_size, zholes_size);
6910 alloc_node_mem_map(pgdat);
6911 pgdat_set_deferred_range(pgdat);
6913 free_area_init_core(pgdat);
6916 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6918 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6919 * pages zeroed
6921 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6923 unsigned long pfn;
6924 u64 pgcnt = 0;
6926 for (pfn = spfn; pfn < epfn; pfn++) {
6927 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6928 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6929 + pageblock_nr_pages - 1;
6930 continue;
6932 mm_zero_struct_page(pfn_to_page(pfn));
6933 pgcnt++;
6936 return pgcnt;
6940 * Only struct pages that are backed by physical memory are zeroed and
6941 * initialized by going through __init_single_page(). But, there are some
6942 * struct pages which are reserved in memblock allocator and their fields
6943 * may be accessed (for example page_to_pfn() on some configuration accesses
6944 * flags). We must explicitly zero those struct pages.
6946 * This function also addresses a similar issue where struct pages are left
6947 * uninitialized because the physical address range is not covered by
6948 * memblock.memory or memblock.reserved. That could happen when memblock
6949 * layout is manually configured via memmap=.
6951 void __init zero_resv_unavail(void)
6953 phys_addr_t start, end;
6954 u64 i, pgcnt;
6955 phys_addr_t next = 0;
6958 * Loop through unavailable ranges not covered by memblock.memory.
6960 pgcnt = 0;
6961 for_each_mem_range(i, &memblock.memory, NULL,
6962 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6963 if (next < start)
6964 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6965 next = end;
6967 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6970 * Struct pages that do not have backing memory. This could be because
6971 * firmware is using some of this memory, or for some other reasons.
6973 if (pgcnt)
6974 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6976 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6978 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6980 #if MAX_NUMNODES > 1
6982 * Figure out the number of possible node ids.
6984 void __init setup_nr_node_ids(void)
6986 unsigned int highest;
6988 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6989 nr_node_ids = highest + 1;
6991 #endif
6994 * node_map_pfn_alignment - determine the maximum internode alignment
6996 * This function should be called after node map is populated and sorted.
6997 * It calculates the maximum power of two alignment which can distinguish
6998 * all the nodes.
7000 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7001 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7002 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7003 * shifted, 1GiB is enough and this function will indicate so.
7005 * This is used to test whether pfn -> nid mapping of the chosen memory
7006 * model has fine enough granularity to avoid incorrect mapping for the
7007 * populated node map.
7009 * Return: the determined alignment in pfn's. 0 if there is no alignment
7010 * requirement (single node).
7012 unsigned long __init node_map_pfn_alignment(void)
7014 unsigned long accl_mask = 0, last_end = 0;
7015 unsigned long start, end, mask;
7016 int last_nid = NUMA_NO_NODE;
7017 int i, nid;
7019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7020 if (!start || last_nid < 0 || last_nid == nid) {
7021 last_nid = nid;
7022 last_end = end;
7023 continue;
7027 * Start with a mask granular enough to pin-point to the
7028 * start pfn and tick off bits one-by-one until it becomes
7029 * too coarse to separate the current node from the last.
7031 mask = ~((1 << __ffs(start)) - 1);
7032 while (mask && last_end <= (start & (mask << 1)))
7033 mask <<= 1;
7035 /* accumulate all internode masks */
7036 accl_mask |= mask;
7039 /* convert mask to number of pages */
7040 return ~accl_mask + 1;
7043 /* Find the lowest pfn for a node */
7044 static unsigned long __init find_min_pfn_for_node(int nid)
7046 unsigned long min_pfn = ULONG_MAX;
7047 unsigned long start_pfn;
7048 int i;
7050 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7051 min_pfn = min(min_pfn, start_pfn);
7053 if (min_pfn == ULONG_MAX) {
7054 pr_warn("Could not find start_pfn for node %d\n", nid);
7055 return 0;
7058 return min_pfn;
7062 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7064 * Return: the minimum PFN based on information provided via
7065 * memblock_set_node().
7067 unsigned long __init find_min_pfn_with_active_regions(void)
7069 return find_min_pfn_for_node(MAX_NUMNODES);
7073 * early_calculate_totalpages()
7074 * Sum pages in active regions for movable zone.
7075 * Populate N_MEMORY for calculating usable_nodes.
7077 static unsigned long __init early_calculate_totalpages(void)
7079 unsigned long totalpages = 0;
7080 unsigned long start_pfn, end_pfn;
7081 int i, nid;
7083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7084 unsigned long pages = end_pfn - start_pfn;
7086 totalpages += pages;
7087 if (pages)
7088 node_set_state(nid, N_MEMORY);
7090 return totalpages;
7094 * Find the PFN the Movable zone begins in each node. Kernel memory
7095 * is spread evenly between nodes as long as the nodes have enough
7096 * memory. When they don't, some nodes will have more kernelcore than
7097 * others
7099 static void __init find_zone_movable_pfns_for_nodes(void)
7101 int i, nid;
7102 unsigned long usable_startpfn;
7103 unsigned long kernelcore_node, kernelcore_remaining;
7104 /* save the state before borrow the nodemask */
7105 nodemask_t saved_node_state = node_states[N_MEMORY];
7106 unsigned long totalpages = early_calculate_totalpages();
7107 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7108 struct memblock_region *r;
7110 /* Need to find movable_zone earlier when movable_node is specified. */
7111 find_usable_zone_for_movable();
7114 * If movable_node is specified, ignore kernelcore and movablecore
7115 * options.
7117 if (movable_node_is_enabled()) {
7118 for_each_memblock(memory, r) {
7119 if (!memblock_is_hotpluggable(r))
7120 continue;
7122 nid = r->nid;
7124 usable_startpfn = PFN_DOWN(r->base);
7125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7126 min(usable_startpfn, zone_movable_pfn[nid]) :
7127 usable_startpfn;
7130 goto out2;
7134 * If kernelcore=mirror is specified, ignore movablecore option
7136 if (mirrored_kernelcore) {
7137 bool mem_below_4gb_not_mirrored = false;
7139 for_each_memblock(memory, r) {
7140 if (memblock_is_mirror(r))
7141 continue;
7143 nid = r->nid;
7145 usable_startpfn = memblock_region_memory_base_pfn(r);
7147 if (usable_startpfn < 0x100000) {
7148 mem_below_4gb_not_mirrored = true;
7149 continue;
7152 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7153 min(usable_startpfn, zone_movable_pfn[nid]) :
7154 usable_startpfn;
7157 if (mem_below_4gb_not_mirrored)
7158 pr_warn("This configuration results in unmirrored kernel memory.");
7160 goto out2;
7164 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7165 * amount of necessary memory.
7167 if (required_kernelcore_percent)
7168 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7169 10000UL;
7170 if (required_movablecore_percent)
7171 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7172 10000UL;
7175 * If movablecore= was specified, calculate what size of
7176 * kernelcore that corresponds so that memory usable for
7177 * any allocation type is evenly spread. If both kernelcore
7178 * and movablecore are specified, then the value of kernelcore
7179 * will be used for required_kernelcore if it's greater than
7180 * what movablecore would have allowed.
7182 if (required_movablecore) {
7183 unsigned long corepages;
7186 * Round-up so that ZONE_MOVABLE is at least as large as what
7187 * was requested by the user
7189 required_movablecore =
7190 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7191 required_movablecore = min(totalpages, required_movablecore);
7192 corepages = totalpages - required_movablecore;
7194 required_kernelcore = max(required_kernelcore, corepages);
7198 * If kernelcore was not specified or kernelcore size is larger
7199 * than totalpages, there is no ZONE_MOVABLE.
7201 if (!required_kernelcore || required_kernelcore >= totalpages)
7202 goto out;
7204 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7205 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7207 restart:
7208 /* Spread kernelcore memory as evenly as possible throughout nodes */
7209 kernelcore_node = required_kernelcore / usable_nodes;
7210 for_each_node_state(nid, N_MEMORY) {
7211 unsigned long start_pfn, end_pfn;
7214 * Recalculate kernelcore_node if the division per node
7215 * now exceeds what is necessary to satisfy the requested
7216 * amount of memory for the kernel
7218 if (required_kernelcore < kernelcore_node)
7219 kernelcore_node = required_kernelcore / usable_nodes;
7222 * As the map is walked, we track how much memory is usable
7223 * by the kernel using kernelcore_remaining. When it is
7224 * 0, the rest of the node is usable by ZONE_MOVABLE
7226 kernelcore_remaining = kernelcore_node;
7228 /* Go through each range of PFNs within this node */
7229 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7230 unsigned long size_pages;
7232 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7233 if (start_pfn >= end_pfn)
7234 continue;
7236 /* Account for what is only usable for kernelcore */
7237 if (start_pfn < usable_startpfn) {
7238 unsigned long kernel_pages;
7239 kernel_pages = min(end_pfn, usable_startpfn)
7240 - start_pfn;
7242 kernelcore_remaining -= min(kernel_pages,
7243 kernelcore_remaining);
7244 required_kernelcore -= min(kernel_pages,
7245 required_kernelcore);
7247 /* Continue if range is now fully accounted */
7248 if (end_pfn <= usable_startpfn) {
7251 * Push zone_movable_pfn to the end so
7252 * that if we have to rebalance
7253 * kernelcore across nodes, we will
7254 * not double account here
7256 zone_movable_pfn[nid] = end_pfn;
7257 continue;
7259 start_pfn = usable_startpfn;
7263 * The usable PFN range for ZONE_MOVABLE is from
7264 * start_pfn->end_pfn. Calculate size_pages as the
7265 * number of pages used as kernelcore
7267 size_pages = end_pfn - start_pfn;
7268 if (size_pages > kernelcore_remaining)
7269 size_pages = kernelcore_remaining;
7270 zone_movable_pfn[nid] = start_pfn + size_pages;
7273 * Some kernelcore has been met, update counts and
7274 * break if the kernelcore for this node has been
7275 * satisfied
7277 required_kernelcore -= min(required_kernelcore,
7278 size_pages);
7279 kernelcore_remaining -= size_pages;
7280 if (!kernelcore_remaining)
7281 break;
7286 * If there is still required_kernelcore, we do another pass with one
7287 * less node in the count. This will push zone_movable_pfn[nid] further
7288 * along on the nodes that still have memory until kernelcore is
7289 * satisfied
7291 usable_nodes--;
7292 if (usable_nodes && required_kernelcore > usable_nodes)
7293 goto restart;
7295 out2:
7296 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7297 for (nid = 0; nid < MAX_NUMNODES; nid++)
7298 zone_movable_pfn[nid] =
7299 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7301 out:
7302 /* restore the node_state */
7303 node_states[N_MEMORY] = saved_node_state;
7306 /* Any regular or high memory on that node ? */
7307 static void check_for_memory(pg_data_t *pgdat, int nid)
7309 enum zone_type zone_type;
7311 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7312 struct zone *zone = &pgdat->node_zones[zone_type];
7313 if (populated_zone(zone)) {
7314 if (IS_ENABLED(CONFIG_HIGHMEM))
7315 node_set_state(nid, N_HIGH_MEMORY);
7316 if (zone_type <= ZONE_NORMAL)
7317 node_set_state(nid, N_NORMAL_MEMORY);
7318 break;
7324 * free_area_init_nodes - Initialise all pg_data_t and zone data
7325 * @max_zone_pfn: an array of max PFNs for each zone
7327 * This will call free_area_init_node() for each active node in the system.
7328 * Using the page ranges provided by memblock_set_node(), the size of each
7329 * zone in each node and their holes is calculated. If the maximum PFN
7330 * between two adjacent zones match, it is assumed that the zone is empty.
7331 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7332 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7333 * starts where the previous one ended. For example, ZONE_DMA32 starts
7334 * at arch_max_dma_pfn.
7336 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7338 unsigned long start_pfn, end_pfn;
7339 int i, nid;
7341 /* Record where the zone boundaries are */
7342 memset(arch_zone_lowest_possible_pfn, 0,
7343 sizeof(arch_zone_lowest_possible_pfn));
7344 memset(arch_zone_highest_possible_pfn, 0,
7345 sizeof(arch_zone_highest_possible_pfn));
7347 start_pfn = find_min_pfn_with_active_regions();
7349 for (i = 0; i < MAX_NR_ZONES; i++) {
7350 if (i == ZONE_MOVABLE)
7351 continue;
7353 end_pfn = max(max_zone_pfn[i], start_pfn);
7354 arch_zone_lowest_possible_pfn[i] = start_pfn;
7355 arch_zone_highest_possible_pfn[i] = end_pfn;
7357 start_pfn = end_pfn;
7360 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7361 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7362 find_zone_movable_pfns_for_nodes();
7364 /* Print out the zone ranges */
7365 pr_info("Zone ranges:\n");
7366 for (i = 0; i < MAX_NR_ZONES; i++) {
7367 if (i == ZONE_MOVABLE)
7368 continue;
7369 pr_info(" %-8s ", zone_names[i]);
7370 if (arch_zone_lowest_possible_pfn[i] ==
7371 arch_zone_highest_possible_pfn[i])
7372 pr_cont("empty\n");
7373 else
7374 pr_cont("[mem %#018Lx-%#018Lx]\n",
7375 (u64)arch_zone_lowest_possible_pfn[i]
7376 << PAGE_SHIFT,
7377 ((u64)arch_zone_highest_possible_pfn[i]
7378 << PAGE_SHIFT) - 1);
7381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7382 pr_info("Movable zone start for each node\n");
7383 for (i = 0; i < MAX_NUMNODES; i++) {
7384 if (zone_movable_pfn[i])
7385 pr_info(" Node %d: %#018Lx\n", i,
7386 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7390 * Print out the early node map, and initialize the
7391 * subsection-map relative to active online memory ranges to
7392 * enable future "sub-section" extensions of the memory map.
7394 pr_info("Early memory node ranges\n");
7395 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7396 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7397 (u64)start_pfn << PAGE_SHIFT,
7398 ((u64)end_pfn << PAGE_SHIFT) - 1);
7399 subsection_map_init(start_pfn, end_pfn - start_pfn);
7402 /* Initialise every node */
7403 mminit_verify_pageflags_layout();
7404 setup_nr_node_ids();
7405 zero_resv_unavail();
7406 for_each_online_node(nid) {
7407 pg_data_t *pgdat = NODE_DATA(nid);
7408 free_area_init_node(nid, NULL,
7409 find_min_pfn_for_node(nid), NULL);
7411 /* Any memory on that node */
7412 if (pgdat->node_present_pages)
7413 node_set_state(nid, N_MEMORY);
7414 check_for_memory(pgdat, nid);
7418 static int __init cmdline_parse_core(char *p, unsigned long *core,
7419 unsigned long *percent)
7421 unsigned long long coremem;
7422 char *endptr;
7424 if (!p)
7425 return -EINVAL;
7427 /* Value may be a percentage of total memory, otherwise bytes */
7428 coremem = simple_strtoull(p, &endptr, 0);
7429 if (*endptr == '%') {
7430 /* Paranoid check for percent values greater than 100 */
7431 WARN_ON(coremem > 100);
7433 *percent = coremem;
7434 } else {
7435 coremem = memparse(p, &p);
7436 /* Paranoid check that UL is enough for the coremem value */
7437 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7439 *core = coremem >> PAGE_SHIFT;
7440 *percent = 0UL;
7442 return 0;
7446 * kernelcore=size sets the amount of memory for use for allocations that
7447 * cannot be reclaimed or migrated.
7449 static int __init cmdline_parse_kernelcore(char *p)
7451 /* parse kernelcore=mirror */
7452 if (parse_option_str(p, "mirror")) {
7453 mirrored_kernelcore = true;
7454 return 0;
7457 return cmdline_parse_core(p, &required_kernelcore,
7458 &required_kernelcore_percent);
7462 * movablecore=size sets the amount of memory for use for allocations that
7463 * can be reclaimed or migrated.
7465 static int __init cmdline_parse_movablecore(char *p)
7467 return cmdline_parse_core(p, &required_movablecore,
7468 &required_movablecore_percent);
7471 early_param("kernelcore", cmdline_parse_kernelcore);
7472 early_param("movablecore", cmdline_parse_movablecore);
7474 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7476 void adjust_managed_page_count(struct page *page, long count)
7478 atomic_long_add(count, &page_zone(page)->managed_pages);
7479 totalram_pages_add(count);
7480 #ifdef CONFIG_HIGHMEM
7481 if (PageHighMem(page))
7482 totalhigh_pages_add(count);
7483 #endif
7485 EXPORT_SYMBOL(adjust_managed_page_count);
7487 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7489 void *pos;
7490 unsigned long pages = 0;
7492 start = (void *)PAGE_ALIGN((unsigned long)start);
7493 end = (void *)((unsigned long)end & PAGE_MASK);
7494 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7495 struct page *page = virt_to_page(pos);
7496 void *direct_map_addr;
7499 * 'direct_map_addr' might be different from 'pos'
7500 * because some architectures' virt_to_page()
7501 * work with aliases. Getting the direct map
7502 * address ensures that we get a _writeable_
7503 * alias for the memset().
7505 direct_map_addr = page_address(page);
7506 if ((unsigned int)poison <= 0xFF)
7507 memset(direct_map_addr, poison, PAGE_SIZE);
7509 free_reserved_page(page);
7512 if (pages && s)
7513 pr_info("Freeing %s memory: %ldK\n",
7514 s, pages << (PAGE_SHIFT - 10));
7516 return pages;
7519 #ifdef CONFIG_HIGHMEM
7520 void free_highmem_page(struct page *page)
7522 __free_reserved_page(page);
7523 totalram_pages_inc();
7524 atomic_long_inc(&page_zone(page)->managed_pages);
7525 totalhigh_pages_inc();
7527 #endif
7530 void __init mem_init_print_info(const char *str)
7532 unsigned long physpages, codesize, datasize, rosize, bss_size;
7533 unsigned long init_code_size, init_data_size;
7535 physpages = get_num_physpages();
7536 codesize = _etext - _stext;
7537 datasize = _edata - _sdata;
7538 rosize = __end_rodata - __start_rodata;
7539 bss_size = __bss_stop - __bss_start;
7540 init_data_size = __init_end - __init_begin;
7541 init_code_size = _einittext - _sinittext;
7544 * Detect special cases and adjust section sizes accordingly:
7545 * 1) .init.* may be embedded into .data sections
7546 * 2) .init.text.* may be out of [__init_begin, __init_end],
7547 * please refer to arch/tile/kernel/vmlinux.lds.S.
7548 * 3) .rodata.* may be embedded into .text or .data sections.
7550 #define adj_init_size(start, end, size, pos, adj) \
7551 do { \
7552 if (start <= pos && pos < end && size > adj) \
7553 size -= adj; \
7554 } while (0)
7556 adj_init_size(__init_begin, __init_end, init_data_size,
7557 _sinittext, init_code_size);
7558 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7559 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7560 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7561 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7563 #undef adj_init_size
7565 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7566 #ifdef CONFIG_HIGHMEM
7567 ", %luK highmem"
7568 #endif
7569 "%s%s)\n",
7570 nr_free_pages() << (PAGE_SHIFT - 10),
7571 physpages << (PAGE_SHIFT - 10),
7572 codesize >> 10, datasize >> 10, rosize >> 10,
7573 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7574 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7575 totalcma_pages << (PAGE_SHIFT - 10),
7576 #ifdef CONFIG_HIGHMEM
7577 totalhigh_pages() << (PAGE_SHIFT - 10),
7578 #endif
7579 str ? ", " : "", str ? str : "");
7583 * set_dma_reserve - set the specified number of pages reserved in the first zone
7584 * @new_dma_reserve: The number of pages to mark reserved
7586 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7587 * In the DMA zone, a significant percentage may be consumed by kernel image
7588 * and other unfreeable allocations which can skew the watermarks badly. This
7589 * function may optionally be used to account for unfreeable pages in the
7590 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7591 * smaller per-cpu batchsize.
7593 void __init set_dma_reserve(unsigned long new_dma_reserve)
7595 dma_reserve = new_dma_reserve;
7598 void __init free_area_init(unsigned long *zones_size)
7600 zero_resv_unavail();
7601 free_area_init_node(0, zones_size,
7602 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7605 static int page_alloc_cpu_dead(unsigned int cpu)
7608 lru_add_drain_cpu(cpu);
7609 drain_pages(cpu);
7612 * Spill the event counters of the dead processor
7613 * into the current processors event counters.
7614 * This artificially elevates the count of the current
7615 * processor.
7617 vm_events_fold_cpu(cpu);
7620 * Zero the differential counters of the dead processor
7621 * so that the vm statistics are consistent.
7623 * This is only okay since the processor is dead and cannot
7624 * race with what we are doing.
7626 cpu_vm_stats_fold(cpu);
7627 return 0;
7630 #ifdef CONFIG_NUMA
7631 int hashdist = HASHDIST_DEFAULT;
7633 static int __init set_hashdist(char *str)
7635 if (!str)
7636 return 0;
7637 hashdist = simple_strtoul(str, &str, 0);
7638 return 1;
7640 __setup("hashdist=", set_hashdist);
7641 #endif
7643 void __init page_alloc_init(void)
7645 int ret;
7647 #ifdef CONFIG_NUMA
7648 if (num_node_state(N_MEMORY) == 1)
7649 hashdist = 0;
7650 #endif
7652 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7653 "mm/page_alloc:dead", NULL,
7654 page_alloc_cpu_dead);
7655 WARN_ON(ret < 0);
7659 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7660 * or min_free_kbytes changes.
7662 static void calculate_totalreserve_pages(void)
7664 struct pglist_data *pgdat;
7665 unsigned long reserve_pages = 0;
7666 enum zone_type i, j;
7668 for_each_online_pgdat(pgdat) {
7670 pgdat->totalreserve_pages = 0;
7672 for (i = 0; i < MAX_NR_ZONES; i++) {
7673 struct zone *zone = pgdat->node_zones + i;
7674 long max = 0;
7675 unsigned long managed_pages = zone_managed_pages(zone);
7677 /* Find valid and maximum lowmem_reserve in the zone */
7678 for (j = i; j < MAX_NR_ZONES; j++) {
7679 if (zone->lowmem_reserve[j] > max)
7680 max = zone->lowmem_reserve[j];
7683 /* we treat the high watermark as reserved pages. */
7684 max += high_wmark_pages(zone);
7686 if (max > managed_pages)
7687 max = managed_pages;
7689 pgdat->totalreserve_pages += max;
7691 reserve_pages += max;
7694 totalreserve_pages = reserve_pages;
7698 * setup_per_zone_lowmem_reserve - called whenever
7699 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7700 * has a correct pages reserved value, so an adequate number of
7701 * pages are left in the zone after a successful __alloc_pages().
7703 static void setup_per_zone_lowmem_reserve(void)
7705 struct pglist_data *pgdat;
7706 enum zone_type j, idx;
7708 for_each_online_pgdat(pgdat) {
7709 for (j = 0; j < MAX_NR_ZONES; j++) {
7710 struct zone *zone = pgdat->node_zones + j;
7711 unsigned long managed_pages = zone_managed_pages(zone);
7713 zone->lowmem_reserve[j] = 0;
7715 idx = j;
7716 while (idx) {
7717 struct zone *lower_zone;
7719 idx--;
7720 lower_zone = pgdat->node_zones + idx;
7722 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7723 sysctl_lowmem_reserve_ratio[idx] = 0;
7724 lower_zone->lowmem_reserve[j] = 0;
7725 } else {
7726 lower_zone->lowmem_reserve[j] =
7727 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7729 managed_pages += zone_managed_pages(lower_zone);
7734 /* update totalreserve_pages */
7735 calculate_totalreserve_pages();
7738 static void __setup_per_zone_wmarks(void)
7740 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7741 unsigned long lowmem_pages = 0;
7742 struct zone *zone;
7743 unsigned long flags;
7745 /* Calculate total number of !ZONE_HIGHMEM pages */
7746 for_each_zone(zone) {
7747 if (!is_highmem(zone))
7748 lowmem_pages += zone_managed_pages(zone);
7751 for_each_zone(zone) {
7752 u64 tmp;
7754 spin_lock_irqsave(&zone->lock, flags);
7755 tmp = (u64)pages_min * zone_managed_pages(zone);
7756 do_div(tmp, lowmem_pages);
7757 if (is_highmem(zone)) {
7759 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7760 * need highmem pages, so cap pages_min to a small
7761 * value here.
7763 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7764 * deltas control async page reclaim, and so should
7765 * not be capped for highmem.
7767 unsigned long min_pages;
7769 min_pages = zone_managed_pages(zone) / 1024;
7770 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7771 zone->_watermark[WMARK_MIN] = min_pages;
7772 } else {
7774 * If it's a lowmem zone, reserve a number of pages
7775 * proportionate to the zone's size.
7777 zone->_watermark[WMARK_MIN] = tmp;
7781 * Set the kswapd watermarks distance according to the
7782 * scale factor in proportion to available memory, but
7783 * ensure a minimum size on small systems.
7785 tmp = max_t(u64, tmp >> 2,
7786 mult_frac(zone_managed_pages(zone),
7787 watermark_scale_factor, 10000));
7789 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7790 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7791 zone->watermark_boost = 0;
7793 spin_unlock_irqrestore(&zone->lock, flags);
7796 /* update totalreserve_pages */
7797 calculate_totalreserve_pages();
7801 * setup_per_zone_wmarks - called when min_free_kbytes changes
7802 * or when memory is hot-{added|removed}
7804 * Ensures that the watermark[min,low,high] values for each zone are set
7805 * correctly with respect to min_free_kbytes.
7807 void setup_per_zone_wmarks(void)
7809 static DEFINE_SPINLOCK(lock);
7811 spin_lock(&lock);
7812 __setup_per_zone_wmarks();
7813 spin_unlock(&lock);
7817 * Initialise min_free_kbytes.
7819 * For small machines we want it small (128k min). For large machines
7820 * we want it large (64MB max). But it is not linear, because network
7821 * bandwidth does not increase linearly with machine size. We use
7823 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7824 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7826 * which yields
7828 * 16MB: 512k
7829 * 32MB: 724k
7830 * 64MB: 1024k
7831 * 128MB: 1448k
7832 * 256MB: 2048k
7833 * 512MB: 2896k
7834 * 1024MB: 4096k
7835 * 2048MB: 5792k
7836 * 4096MB: 8192k
7837 * 8192MB: 11584k
7838 * 16384MB: 16384k
7840 int __meminit init_per_zone_wmark_min(void)
7842 unsigned long lowmem_kbytes;
7843 int new_min_free_kbytes;
7845 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7846 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7848 if (new_min_free_kbytes > user_min_free_kbytes) {
7849 min_free_kbytes = new_min_free_kbytes;
7850 if (min_free_kbytes < 128)
7851 min_free_kbytes = 128;
7852 if (min_free_kbytes > 65536)
7853 min_free_kbytes = 65536;
7854 } else {
7855 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7856 new_min_free_kbytes, user_min_free_kbytes);
7858 setup_per_zone_wmarks();
7859 refresh_zone_stat_thresholds();
7860 setup_per_zone_lowmem_reserve();
7862 #ifdef CONFIG_NUMA
7863 setup_min_unmapped_ratio();
7864 setup_min_slab_ratio();
7865 #endif
7867 return 0;
7869 core_initcall(init_per_zone_wmark_min)
7872 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7873 * that we can call two helper functions whenever min_free_kbytes
7874 * changes.
7876 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7877 void __user *buffer, size_t *length, loff_t *ppos)
7879 int rc;
7881 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7882 if (rc)
7883 return rc;
7885 if (write) {
7886 user_min_free_kbytes = min_free_kbytes;
7887 setup_per_zone_wmarks();
7889 return 0;
7892 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7893 void __user *buffer, size_t *length, loff_t *ppos)
7895 int rc;
7897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7898 if (rc)
7899 return rc;
7901 return 0;
7904 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7905 void __user *buffer, size_t *length, loff_t *ppos)
7907 int rc;
7909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7910 if (rc)
7911 return rc;
7913 if (write)
7914 setup_per_zone_wmarks();
7916 return 0;
7919 #ifdef CONFIG_NUMA
7920 static void setup_min_unmapped_ratio(void)
7922 pg_data_t *pgdat;
7923 struct zone *zone;
7925 for_each_online_pgdat(pgdat)
7926 pgdat->min_unmapped_pages = 0;
7928 for_each_zone(zone)
7929 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7930 sysctl_min_unmapped_ratio) / 100;
7934 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7935 void __user *buffer, size_t *length, loff_t *ppos)
7937 int rc;
7939 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7940 if (rc)
7941 return rc;
7943 setup_min_unmapped_ratio();
7945 return 0;
7948 static void setup_min_slab_ratio(void)
7950 pg_data_t *pgdat;
7951 struct zone *zone;
7953 for_each_online_pgdat(pgdat)
7954 pgdat->min_slab_pages = 0;
7956 for_each_zone(zone)
7957 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7958 sysctl_min_slab_ratio) / 100;
7961 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7962 void __user *buffer, size_t *length, loff_t *ppos)
7964 int rc;
7966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7967 if (rc)
7968 return rc;
7970 setup_min_slab_ratio();
7972 return 0;
7974 #endif
7977 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7978 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7979 * whenever sysctl_lowmem_reserve_ratio changes.
7981 * The reserve ratio obviously has absolutely no relation with the
7982 * minimum watermarks. The lowmem reserve ratio can only make sense
7983 * if in function of the boot time zone sizes.
7985 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7986 void __user *buffer, size_t *length, loff_t *ppos)
7988 proc_dointvec_minmax(table, write, buffer, length, ppos);
7989 setup_per_zone_lowmem_reserve();
7990 return 0;
7993 static void __zone_pcp_update(struct zone *zone)
7995 unsigned int cpu;
7997 for_each_possible_cpu(cpu)
7998 pageset_set_high_and_batch(zone,
7999 per_cpu_ptr(zone->pageset, cpu));
8003 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8004 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8005 * pagelist can have before it gets flushed back to buddy allocator.
8007 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8008 void __user *buffer, size_t *length, loff_t *ppos)
8010 struct zone *zone;
8011 int old_percpu_pagelist_fraction;
8012 int ret;
8014 mutex_lock(&pcp_batch_high_lock);
8015 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8017 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8018 if (!write || ret < 0)
8019 goto out;
8021 /* Sanity checking to avoid pcp imbalance */
8022 if (percpu_pagelist_fraction &&
8023 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8024 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8025 ret = -EINVAL;
8026 goto out;
8029 /* No change? */
8030 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8031 goto out;
8033 for_each_populated_zone(zone)
8034 __zone_pcp_update(zone);
8035 out:
8036 mutex_unlock(&pcp_batch_high_lock);
8037 return ret;
8040 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8042 * Returns the number of pages that arch has reserved but
8043 * is not known to alloc_large_system_hash().
8045 static unsigned long __init arch_reserved_kernel_pages(void)
8047 return 0;
8049 #endif
8052 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8053 * machines. As memory size is increased the scale is also increased but at
8054 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8055 * quadruples the scale is increased by one, which means the size of hash table
8056 * only doubles, instead of quadrupling as well.
8057 * Because 32-bit systems cannot have large physical memory, where this scaling
8058 * makes sense, it is disabled on such platforms.
8060 #if __BITS_PER_LONG > 32
8061 #define ADAPT_SCALE_BASE (64ul << 30)
8062 #define ADAPT_SCALE_SHIFT 2
8063 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8064 #endif
8067 * allocate a large system hash table from bootmem
8068 * - it is assumed that the hash table must contain an exact power-of-2
8069 * quantity of entries
8070 * - limit is the number of hash buckets, not the total allocation size
8072 void *__init alloc_large_system_hash(const char *tablename,
8073 unsigned long bucketsize,
8074 unsigned long numentries,
8075 int scale,
8076 int flags,
8077 unsigned int *_hash_shift,
8078 unsigned int *_hash_mask,
8079 unsigned long low_limit,
8080 unsigned long high_limit)
8082 unsigned long long max = high_limit;
8083 unsigned long log2qty, size;
8084 void *table = NULL;
8085 gfp_t gfp_flags;
8086 bool virt;
8088 /* allow the kernel cmdline to have a say */
8089 if (!numentries) {
8090 /* round applicable memory size up to nearest megabyte */
8091 numentries = nr_kernel_pages;
8092 numentries -= arch_reserved_kernel_pages();
8094 /* It isn't necessary when PAGE_SIZE >= 1MB */
8095 if (PAGE_SHIFT < 20)
8096 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8098 #if __BITS_PER_LONG > 32
8099 if (!high_limit) {
8100 unsigned long adapt;
8102 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8103 adapt <<= ADAPT_SCALE_SHIFT)
8104 scale++;
8106 #endif
8108 /* limit to 1 bucket per 2^scale bytes of low memory */
8109 if (scale > PAGE_SHIFT)
8110 numentries >>= (scale - PAGE_SHIFT);
8111 else
8112 numentries <<= (PAGE_SHIFT - scale);
8114 /* Make sure we've got at least a 0-order allocation.. */
8115 if (unlikely(flags & HASH_SMALL)) {
8116 /* Makes no sense without HASH_EARLY */
8117 WARN_ON(!(flags & HASH_EARLY));
8118 if (!(numentries >> *_hash_shift)) {
8119 numentries = 1UL << *_hash_shift;
8120 BUG_ON(!numentries);
8122 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8123 numentries = PAGE_SIZE / bucketsize;
8125 numentries = roundup_pow_of_two(numentries);
8127 /* limit allocation size to 1/16 total memory by default */
8128 if (max == 0) {
8129 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8130 do_div(max, bucketsize);
8132 max = min(max, 0x80000000ULL);
8134 if (numentries < low_limit)
8135 numentries = low_limit;
8136 if (numentries > max)
8137 numentries = max;
8139 log2qty = ilog2(numentries);
8141 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8142 do {
8143 virt = false;
8144 size = bucketsize << log2qty;
8145 if (flags & HASH_EARLY) {
8146 if (flags & HASH_ZERO)
8147 table = memblock_alloc(size, SMP_CACHE_BYTES);
8148 else
8149 table = memblock_alloc_raw(size,
8150 SMP_CACHE_BYTES);
8151 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8152 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8153 virt = true;
8154 } else {
8156 * If bucketsize is not a power-of-two, we may free
8157 * some pages at the end of hash table which
8158 * alloc_pages_exact() automatically does
8160 table = alloc_pages_exact(size, gfp_flags);
8161 kmemleak_alloc(table, size, 1, gfp_flags);
8163 } while (!table && size > PAGE_SIZE && --log2qty);
8165 if (!table)
8166 panic("Failed to allocate %s hash table\n", tablename);
8168 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8169 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8170 virt ? "vmalloc" : "linear");
8172 if (_hash_shift)
8173 *_hash_shift = log2qty;
8174 if (_hash_mask)
8175 *_hash_mask = (1 << log2qty) - 1;
8177 return table;
8181 * This function checks whether pageblock includes unmovable pages or not.
8182 * If @count is not zero, it is okay to include less @count unmovable pages
8184 * PageLRU check without isolation or lru_lock could race so that
8185 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8186 * check without lock_page also may miss some movable non-lru pages at
8187 * race condition. So you can't expect this function should be exact.
8189 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8190 int migratetype, int flags)
8192 unsigned long found;
8193 unsigned long iter = 0;
8194 unsigned long pfn = page_to_pfn(page);
8195 const char *reason = "unmovable page";
8198 * TODO we could make this much more efficient by not checking every
8199 * page in the range if we know all of them are in MOVABLE_ZONE and
8200 * that the movable zone guarantees that pages are migratable but
8201 * the later is not the case right now unfortunatelly. E.g. movablecore
8202 * can still lead to having bootmem allocations in zone_movable.
8205 if (is_migrate_cma_page(page)) {
8207 * CMA allocations (alloc_contig_range) really need to mark
8208 * isolate CMA pageblocks even when they are not movable in fact
8209 * so consider them movable here.
8211 if (is_migrate_cma(migratetype))
8212 return false;
8214 reason = "CMA page";
8215 goto unmovable;
8218 for (found = 0; iter < pageblock_nr_pages; iter++) {
8219 unsigned long check = pfn + iter;
8221 if (!pfn_valid_within(check))
8222 continue;
8224 page = pfn_to_page(check);
8226 if (PageReserved(page))
8227 goto unmovable;
8230 * If the zone is movable and we have ruled out all reserved
8231 * pages then it should be reasonably safe to assume the rest
8232 * is movable.
8234 if (zone_idx(zone) == ZONE_MOVABLE)
8235 continue;
8238 * Hugepages are not in LRU lists, but they're movable.
8239 * We need not scan over tail pages because we don't
8240 * handle each tail page individually in migration.
8242 if (PageHuge(page)) {
8243 struct page *head = compound_head(page);
8244 unsigned int skip_pages;
8246 if (!hugepage_migration_supported(page_hstate(head)))
8247 goto unmovable;
8249 skip_pages = compound_nr(head) - (page - head);
8250 iter += skip_pages - 1;
8251 continue;
8255 * We can't use page_count without pin a page
8256 * because another CPU can free compound page.
8257 * This check already skips compound tails of THP
8258 * because their page->_refcount is zero at all time.
8260 if (!page_ref_count(page)) {
8261 if (PageBuddy(page))
8262 iter += (1 << page_order(page)) - 1;
8263 continue;
8267 * The HWPoisoned page may be not in buddy system, and
8268 * page_count() is not 0.
8270 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8271 continue;
8273 if (__PageMovable(page))
8274 continue;
8276 if (!PageLRU(page))
8277 found++;
8279 * If there are RECLAIMABLE pages, we need to check
8280 * it. But now, memory offline itself doesn't call
8281 * shrink_node_slabs() and it still to be fixed.
8284 * If the page is not RAM, page_count()should be 0.
8285 * we don't need more check. This is an _used_ not-movable page.
8287 * The problematic thing here is PG_reserved pages. PG_reserved
8288 * is set to both of a memory hole page and a _used_ kernel
8289 * page at boot.
8291 if (found > count)
8292 goto unmovable;
8294 return false;
8295 unmovable:
8296 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8297 if (flags & REPORT_FAILURE)
8298 dump_page(pfn_to_page(pfn + iter), reason);
8299 return true;
8302 #ifdef CONFIG_CONTIG_ALLOC
8303 static unsigned long pfn_max_align_down(unsigned long pfn)
8305 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306 pageblock_nr_pages) - 1);
8309 static unsigned long pfn_max_align_up(unsigned long pfn)
8311 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8312 pageblock_nr_pages));
8315 /* [start, end) must belong to a single zone. */
8316 static int __alloc_contig_migrate_range(struct compact_control *cc,
8317 unsigned long start, unsigned long end)
8319 /* This function is based on compact_zone() from compaction.c. */
8320 unsigned long nr_reclaimed;
8321 unsigned long pfn = start;
8322 unsigned int tries = 0;
8323 int ret = 0;
8325 migrate_prep();
8327 while (pfn < end || !list_empty(&cc->migratepages)) {
8328 if (fatal_signal_pending(current)) {
8329 ret = -EINTR;
8330 break;
8333 if (list_empty(&cc->migratepages)) {
8334 cc->nr_migratepages = 0;
8335 pfn = isolate_migratepages_range(cc, pfn, end);
8336 if (!pfn) {
8337 ret = -EINTR;
8338 break;
8340 tries = 0;
8341 } else if (++tries == 5) {
8342 ret = ret < 0 ? ret : -EBUSY;
8343 break;
8346 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8347 &cc->migratepages);
8348 cc->nr_migratepages -= nr_reclaimed;
8350 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8351 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8353 if (ret < 0) {
8354 putback_movable_pages(&cc->migratepages);
8355 return ret;
8357 return 0;
8361 * alloc_contig_range() -- tries to allocate given range of pages
8362 * @start: start PFN to allocate
8363 * @end: one-past-the-last PFN to allocate
8364 * @migratetype: migratetype of the underlaying pageblocks (either
8365 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8366 * in range must have the same migratetype and it must
8367 * be either of the two.
8368 * @gfp_mask: GFP mask to use during compaction
8370 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8371 * aligned. The PFN range must belong to a single zone.
8373 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8374 * pageblocks in the range. Once isolated, the pageblocks should not
8375 * be modified by others.
8377 * Return: zero on success or negative error code. On success all
8378 * pages which PFN is in [start, end) are allocated for the caller and
8379 * need to be freed with free_contig_range().
8381 int alloc_contig_range(unsigned long start, unsigned long end,
8382 unsigned migratetype, gfp_t gfp_mask)
8384 unsigned long outer_start, outer_end;
8385 unsigned int order;
8386 int ret = 0;
8388 struct compact_control cc = {
8389 .nr_migratepages = 0,
8390 .order = -1,
8391 .zone = page_zone(pfn_to_page(start)),
8392 .mode = MIGRATE_SYNC,
8393 .ignore_skip_hint = true,
8394 .no_set_skip_hint = true,
8395 .gfp_mask = current_gfp_context(gfp_mask),
8397 INIT_LIST_HEAD(&cc.migratepages);
8400 * What we do here is we mark all pageblocks in range as
8401 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8402 * have different sizes, and due to the way page allocator
8403 * work, we align the range to biggest of the two pages so
8404 * that page allocator won't try to merge buddies from
8405 * different pageblocks and change MIGRATE_ISOLATE to some
8406 * other migration type.
8408 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8409 * migrate the pages from an unaligned range (ie. pages that
8410 * we are interested in). This will put all the pages in
8411 * range back to page allocator as MIGRATE_ISOLATE.
8413 * When this is done, we take the pages in range from page
8414 * allocator removing them from the buddy system. This way
8415 * page allocator will never consider using them.
8417 * This lets us mark the pageblocks back as
8418 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8419 * aligned range but not in the unaligned, original range are
8420 * put back to page allocator so that buddy can use them.
8423 ret = start_isolate_page_range(pfn_max_align_down(start),
8424 pfn_max_align_up(end), migratetype, 0);
8425 if (ret < 0)
8426 return ret;
8429 * In case of -EBUSY, we'd like to know which page causes problem.
8430 * So, just fall through. test_pages_isolated() has a tracepoint
8431 * which will report the busy page.
8433 * It is possible that busy pages could become available before
8434 * the call to test_pages_isolated, and the range will actually be
8435 * allocated. So, if we fall through be sure to clear ret so that
8436 * -EBUSY is not accidentally used or returned to caller.
8438 ret = __alloc_contig_migrate_range(&cc, start, end);
8439 if (ret && ret != -EBUSY)
8440 goto done;
8441 ret =0;
8444 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8445 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8446 * more, all pages in [start, end) are free in page allocator.
8447 * What we are going to do is to allocate all pages from
8448 * [start, end) (that is remove them from page allocator).
8450 * The only problem is that pages at the beginning and at the
8451 * end of interesting range may be not aligned with pages that
8452 * page allocator holds, ie. they can be part of higher order
8453 * pages. Because of this, we reserve the bigger range and
8454 * once this is done free the pages we are not interested in.
8456 * We don't have to hold zone->lock here because the pages are
8457 * isolated thus they won't get removed from buddy.
8460 lru_add_drain_all();
8462 order = 0;
8463 outer_start = start;
8464 while (!PageBuddy(pfn_to_page(outer_start))) {
8465 if (++order >= MAX_ORDER) {
8466 outer_start = start;
8467 break;
8469 outer_start &= ~0UL << order;
8472 if (outer_start != start) {
8473 order = page_order(pfn_to_page(outer_start));
8476 * outer_start page could be small order buddy page and
8477 * it doesn't include start page. Adjust outer_start
8478 * in this case to report failed page properly
8479 * on tracepoint in test_pages_isolated()
8481 if (outer_start + (1UL << order) <= start)
8482 outer_start = start;
8485 /* Make sure the range is really isolated. */
8486 if (test_pages_isolated(outer_start, end, 0)) {
8487 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8488 __func__, outer_start, end);
8489 ret = -EBUSY;
8490 goto done;
8493 /* Grab isolated pages from freelists. */
8494 outer_end = isolate_freepages_range(&cc, outer_start, end);
8495 if (!outer_end) {
8496 ret = -EBUSY;
8497 goto done;
8500 /* Free head and tail (if any) */
8501 if (start != outer_start)
8502 free_contig_range(outer_start, start - outer_start);
8503 if (end != outer_end)
8504 free_contig_range(end, outer_end - end);
8506 done:
8507 undo_isolate_page_range(pfn_max_align_down(start),
8508 pfn_max_align_up(end), migratetype);
8509 return ret;
8512 static int __alloc_contig_pages(unsigned long start_pfn,
8513 unsigned long nr_pages, gfp_t gfp_mask)
8515 unsigned long end_pfn = start_pfn + nr_pages;
8517 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8518 gfp_mask);
8521 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8522 unsigned long nr_pages)
8524 unsigned long i, end_pfn = start_pfn + nr_pages;
8525 struct page *page;
8527 for (i = start_pfn; i < end_pfn; i++) {
8528 page = pfn_to_online_page(i);
8529 if (!page)
8530 return false;
8532 if (page_zone(page) != z)
8533 return false;
8535 if (PageReserved(page))
8536 return false;
8538 if (page_count(page) > 0)
8539 return false;
8541 if (PageHuge(page))
8542 return false;
8544 return true;
8547 static bool zone_spans_last_pfn(const struct zone *zone,
8548 unsigned long start_pfn, unsigned long nr_pages)
8550 unsigned long last_pfn = start_pfn + nr_pages - 1;
8552 return zone_spans_pfn(zone, last_pfn);
8556 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8557 * @nr_pages: Number of contiguous pages to allocate
8558 * @gfp_mask: GFP mask to limit search and used during compaction
8559 * @nid: Target node
8560 * @nodemask: Mask for other possible nodes
8562 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8563 * on an applicable zonelist to find a contiguous pfn range which can then be
8564 * tried for allocation with alloc_contig_range(). This routine is intended
8565 * for allocation requests which can not be fulfilled with the buddy allocator.
8567 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8568 * power of two then the alignment is guaranteed to be to the given nr_pages
8569 * (e.g. 1GB request would be aligned to 1GB).
8571 * Allocated pages can be freed with free_contig_range() or by manually calling
8572 * __free_page() on each allocated page.
8574 * Return: pointer to contiguous pages on success, or NULL if not successful.
8576 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8577 int nid, nodemask_t *nodemask)
8579 unsigned long ret, pfn, flags;
8580 struct zonelist *zonelist;
8581 struct zone *zone;
8582 struct zoneref *z;
8584 zonelist = node_zonelist(nid, gfp_mask);
8585 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8586 gfp_zone(gfp_mask), nodemask) {
8587 spin_lock_irqsave(&zone->lock, flags);
8589 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8590 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8591 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8593 * We release the zone lock here because
8594 * alloc_contig_range() will also lock the zone
8595 * at some point. If there's an allocation
8596 * spinning on this lock, it may win the race
8597 * and cause alloc_contig_range() to fail...
8599 spin_unlock_irqrestore(&zone->lock, flags);
8600 ret = __alloc_contig_pages(pfn, nr_pages,
8601 gfp_mask);
8602 if (!ret)
8603 return pfn_to_page(pfn);
8604 spin_lock_irqsave(&zone->lock, flags);
8606 pfn += nr_pages;
8608 spin_unlock_irqrestore(&zone->lock, flags);
8610 return NULL;
8612 #endif /* CONFIG_CONTIG_ALLOC */
8614 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8616 unsigned int count = 0;
8618 for (; nr_pages--; pfn++) {
8619 struct page *page = pfn_to_page(pfn);
8621 count += page_count(page) != 1;
8622 __free_page(page);
8624 WARN(count != 0, "%d pages are still in use!\n", count);
8628 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8629 * page high values need to be recalulated.
8631 void __meminit zone_pcp_update(struct zone *zone)
8633 mutex_lock(&pcp_batch_high_lock);
8634 __zone_pcp_update(zone);
8635 mutex_unlock(&pcp_batch_high_lock);
8638 void zone_pcp_reset(struct zone *zone)
8640 unsigned long flags;
8641 int cpu;
8642 struct per_cpu_pageset *pset;
8644 /* avoid races with drain_pages() */
8645 local_irq_save(flags);
8646 if (zone->pageset != &boot_pageset) {
8647 for_each_online_cpu(cpu) {
8648 pset = per_cpu_ptr(zone->pageset, cpu);
8649 drain_zonestat(zone, pset);
8651 free_percpu(zone->pageset);
8652 zone->pageset = &boot_pageset;
8654 local_irq_restore(flags);
8657 #ifdef CONFIG_MEMORY_HOTREMOVE
8659 * All pages in the range must be in a single zone and isolated
8660 * before calling this.
8662 unsigned long
8663 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8665 struct page *page;
8666 struct zone *zone;
8667 unsigned int order;
8668 unsigned long pfn;
8669 unsigned long flags;
8670 unsigned long offlined_pages = 0;
8672 /* find the first valid pfn */
8673 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8674 if (pfn_valid(pfn))
8675 break;
8676 if (pfn == end_pfn)
8677 return offlined_pages;
8679 offline_mem_sections(pfn, end_pfn);
8680 zone = page_zone(pfn_to_page(pfn));
8681 spin_lock_irqsave(&zone->lock, flags);
8682 pfn = start_pfn;
8683 while (pfn < end_pfn) {
8684 if (!pfn_valid(pfn)) {
8685 pfn++;
8686 continue;
8688 page = pfn_to_page(pfn);
8690 * The HWPoisoned page may be not in buddy system, and
8691 * page_count() is not 0.
8693 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8694 pfn++;
8695 offlined_pages++;
8696 continue;
8699 BUG_ON(page_count(page));
8700 BUG_ON(!PageBuddy(page));
8701 order = page_order(page);
8702 offlined_pages += 1 << order;
8703 #ifdef CONFIG_DEBUG_VM
8704 pr_info("remove from free list %lx %d %lx\n",
8705 pfn, 1 << order, end_pfn);
8706 #endif
8707 del_page_from_free_area(page, &zone->free_area[order]);
8708 pfn += (1 << order);
8710 spin_unlock_irqrestore(&zone->lock, flags);
8712 return offlined_pages;
8714 #endif
8716 bool is_free_buddy_page(struct page *page)
8718 struct zone *zone = page_zone(page);
8719 unsigned long pfn = page_to_pfn(page);
8720 unsigned long flags;
8721 unsigned int order;
8723 spin_lock_irqsave(&zone->lock, flags);
8724 for (order = 0; order < MAX_ORDER; order++) {
8725 struct page *page_head = page - (pfn & ((1 << order) - 1));
8727 if (PageBuddy(page_head) && page_order(page_head) >= order)
8728 break;
8730 spin_unlock_irqrestore(&zone->lock, flags);
8732 return order < MAX_ORDER;
8735 #ifdef CONFIG_MEMORY_FAILURE
8737 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8738 * test is performed under the zone lock to prevent a race against page
8739 * allocation.
8741 bool set_hwpoison_free_buddy_page(struct page *page)
8743 struct zone *zone = page_zone(page);
8744 unsigned long pfn = page_to_pfn(page);
8745 unsigned long flags;
8746 unsigned int order;
8747 bool hwpoisoned = false;
8749 spin_lock_irqsave(&zone->lock, flags);
8750 for (order = 0; order < MAX_ORDER; order++) {
8751 struct page *page_head = page - (pfn & ((1 << order) - 1));
8753 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8754 if (!TestSetPageHWPoison(page))
8755 hwpoisoned = true;
8756 break;
8759 spin_unlock_irqrestore(&zone->lock, flags);
8761 return hwpoisoned;
8763 #endif