split dev_queue
[cor.git] / mm / mmu_notifier.c
blobf76ea05b1cb011391af5e19fcc05774aa950bb3a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/mmu_notifier.c
5 * Copyright (C) 2008 Qumranet, Inc.
6 * Copyright (C) 2008 SGI
7 * Christoph Lameter <cl@linux.com>
8 */
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 .name = "mmu_notifier_invalidate_range_start"
29 #endif
32 * The mmu notifier_mm structure is allocated and installed in
33 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
34 * critical section and it's released only when mm_count reaches zero
35 * in mmdrop().
37 struct mmu_notifier_mm {
38 /* all mmu notifiers registered in this mm are queued in this list */
39 struct hlist_head list;
40 bool has_itree;
41 /* to serialize the list modifications and hlist_unhashed */
42 spinlock_t lock;
43 unsigned long invalidate_seq;
44 unsigned long active_invalidate_ranges;
45 struct rb_root_cached itree;
46 wait_queue_head_t wq;
47 struct hlist_head deferred_list;
51 * This is a collision-retry read-side/write-side 'lock', a lot like a
52 * seqcount, however this allows multiple write-sides to hold it at
53 * once. Conceptually the write side is protecting the values of the PTEs in
54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55 * writer exists.
57 * Note that the core mm creates nested invalidate_range_start()/end() regions
58 * within the same thread, and runs invalidate_range_start()/end() in parallel
59 * on multiple CPUs. This is designed to not reduce concurrency or block
60 * progress on the mm side.
62 * As a secondary function, holding the full write side also serves to prevent
63 * writers for the itree, this is an optimization to avoid extra locking
64 * during invalidate_range_start/end notifiers.
66 * The write side has two states, fully excluded:
67 * - mm->active_invalidate_ranges != 0
68 * - mnn->invalidate_seq & 1 == True (odd)
69 * - some range on the mm_struct is being invalidated
70 * - the itree is not allowed to change
72 * And partially excluded:
73 * - mm->active_invalidate_ranges != 0
74 * - mnn->invalidate_seq & 1 == False (even)
75 * - some range on the mm_struct is being invalidated
76 * - the itree is allowed to change
78 * Operations on mmu_notifier_mm->invalidate_seq (under spinlock):
79 * seq |= 1 # Begin writing
80 * seq++ # Release the writing state
81 * seq & 1 # True if a writer exists
83 * The later state avoids some expensive work on inv_end in the common case of
84 * no mni monitoring the VA.
86 static bool mn_itree_is_invalidating(struct mmu_notifier_mm *mmn_mm)
88 lockdep_assert_held(&mmn_mm->lock);
89 return mmn_mm->invalidate_seq & 1;
92 static struct mmu_interval_notifier *
93 mn_itree_inv_start_range(struct mmu_notifier_mm *mmn_mm,
94 const struct mmu_notifier_range *range,
95 unsigned long *seq)
97 struct interval_tree_node *node;
98 struct mmu_interval_notifier *res = NULL;
100 spin_lock(&mmn_mm->lock);
101 mmn_mm->active_invalidate_ranges++;
102 node = interval_tree_iter_first(&mmn_mm->itree, range->start,
103 range->end - 1);
104 if (node) {
105 mmn_mm->invalidate_seq |= 1;
106 res = container_of(node, struct mmu_interval_notifier,
107 interval_tree);
110 *seq = mmn_mm->invalidate_seq;
111 spin_unlock(&mmn_mm->lock);
112 return res;
115 static struct mmu_interval_notifier *
116 mn_itree_inv_next(struct mmu_interval_notifier *mni,
117 const struct mmu_notifier_range *range)
119 struct interval_tree_node *node;
121 node = interval_tree_iter_next(&mni->interval_tree, range->start,
122 range->end - 1);
123 if (!node)
124 return NULL;
125 return container_of(node, struct mmu_interval_notifier, interval_tree);
128 static void mn_itree_inv_end(struct mmu_notifier_mm *mmn_mm)
130 struct mmu_interval_notifier *mni;
131 struct hlist_node *next;
133 spin_lock(&mmn_mm->lock);
134 if (--mmn_mm->active_invalidate_ranges ||
135 !mn_itree_is_invalidating(mmn_mm)) {
136 spin_unlock(&mmn_mm->lock);
137 return;
140 /* Make invalidate_seq even */
141 mmn_mm->invalidate_seq++;
144 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
145 * Adds and removes are queued until the final inv_end happens then
146 * they are progressed. This arrangement for tree updates is used to
147 * avoid using a blocking lock during invalidate_range_start.
149 hlist_for_each_entry_safe(mni, next, &mmn_mm->deferred_list,
150 deferred_item) {
151 if (RB_EMPTY_NODE(&mni->interval_tree.rb))
152 interval_tree_insert(&mni->interval_tree,
153 &mmn_mm->itree);
154 else
155 interval_tree_remove(&mni->interval_tree,
156 &mmn_mm->itree);
157 hlist_del(&mni->deferred_item);
159 spin_unlock(&mmn_mm->lock);
161 wake_up_all(&mmn_mm->wq);
165 * mmu_interval_read_begin - Begin a read side critical section against a VA
166 * range
167 * mni: The range to use
169 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
170 * collision-retry scheme similar to seqcount for the VA range under mni. If
171 * the mm invokes invalidation during the critical section then
172 * mmu_interval_read_retry() will return true.
174 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
175 * require a blocking context. The critical region formed by this can sleep,
176 * and the required 'user_lock' can also be a sleeping lock.
178 * The caller is required to provide a 'user_lock' to serialize both teardown
179 * and setup.
181 * The return value should be passed to mmu_interval_read_retry().
183 unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni)
185 struct mmu_notifier_mm *mmn_mm = mni->mm->mmu_notifier_mm;
186 unsigned long seq;
187 bool is_invalidating;
190 * If the mni has a different seq value under the user_lock than we
191 * started with then it has collided.
193 * If the mni currently has the same seq value as the mmn_mm seq, then
194 * it is currently between invalidate_start/end and is colliding.
196 * The locking looks broadly like this:
197 * mn_tree_invalidate_start(): mmu_interval_read_begin():
198 * spin_lock
199 * seq = READ_ONCE(mni->invalidate_seq);
200 * seq == mmn_mm->invalidate_seq
201 * spin_unlock
202 * spin_lock
203 * seq = ++mmn_mm->invalidate_seq
204 * spin_unlock
205 * op->invalidate_range():
206 * user_lock
207 * mmu_interval_set_seq()
208 * mni->invalidate_seq = seq
209 * user_unlock
211 * [Required: mmu_interval_read_retry() == true]
213 * mn_itree_inv_end():
214 * spin_lock
215 * seq = ++mmn_mm->invalidate_seq
216 * spin_unlock
218 * user_lock
219 * mmu_interval_read_retry():
220 * mni->invalidate_seq != seq
221 * user_unlock
223 * Barriers are not needed here as any races here are closed by an
224 * eventual mmu_interval_read_retry(), which provides a barrier via the
225 * user_lock.
227 spin_lock(&mmn_mm->lock);
228 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
229 seq = READ_ONCE(mni->invalidate_seq);
230 is_invalidating = seq == mmn_mm->invalidate_seq;
231 spin_unlock(&mmn_mm->lock);
234 * mni->invalidate_seq must always be set to an odd value via
235 * mmu_interval_set_seq() using the provided cur_seq from
236 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
237 * will always clear the below sleep in some reasonable time as
238 * mmn_mm->invalidate_seq is even in the idle state.
240 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
241 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
242 if (is_invalidating)
243 wait_event(mmn_mm->wq,
244 READ_ONCE(mmn_mm->invalidate_seq) != seq);
247 * Notice that mmu_interval_read_retry() can already be true at this
248 * point, avoiding loops here allows the caller to provide a global
249 * time bound.
252 return seq;
254 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
256 static void mn_itree_release(struct mmu_notifier_mm *mmn_mm,
257 struct mm_struct *mm)
259 struct mmu_notifier_range range = {
260 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
261 .event = MMU_NOTIFY_RELEASE,
262 .mm = mm,
263 .start = 0,
264 .end = ULONG_MAX,
266 struct mmu_interval_notifier *mni;
267 unsigned long cur_seq;
268 bool ret;
270 for (mni = mn_itree_inv_start_range(mmn_mm, &range, &cur_seq); mni;
271 mni = mn_itree_inv_next(mni, &range)) {
272 ret = mni->ops->invalidate(mni, &range, cur_seq);
273 WARN_ON(!ret);
276 mn_itree_inv_end(mmn_mm);
280 * This function can't run concurrently against mmu_notifier_register
281 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
282 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
283 * in parallel despite there being no task using this mm any more,
284 * through the vmas outside of the exit_mmap context, such as with
285 * vmtruncate. This serializes against mmu_notifier_unregister with
286 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
287 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
288 * can't go away from under us as exit_mmap holds an mm_count pin
289 * itself.
291 static void mn_hlist_release(struct mmu_notifier_mm *mmn_mm,
292 struct mm_struct *mm)
294 struct mmu_notifier *mn;
295 int id;
298 * SRCU here will block mmu_notifier_unregister until
299 * ->release returns.
301 id = srcu_read_lock(&srcu);
302 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist)
304 * If ->release runs before mmu_notifier_unregister it must be
305 * handled, as it's the only way for the driver to flush all
306 * existing sptes and stop the driver from establishing any more
307 * sptes before all the pages in the mm are freed.
309 if (mn->ops->release)
310 mn->ops->release(mn, mm);
312 spin_lock(&mmn_mm->lock);
313 while (unlikely(!hlist_empty(&mmn_mm->list))) {
314 mn = hlist_entry(mmn_mm->list.first, struct mmu_notifier,
315 hlist);
317 * We arrived before mmu_notifier_unregister so
318 * mmu_notifier_unregister will do nothing other than to wait
319 * for ->release to finish and for mmu_notifier_unregister to
320 * return.
322 hlist_del_init_rcu(&mn->hlist);
324 spin_unlock(&mmn_mm->lock);
325 srcu_read_unlock(&srcu, id);
328 * synchronize_srcu here prevents mmu_notifier_release from returning to
329 * exit_mmap (which would proceed with freeing all pages in the mm)
330 * until the ->release method returns, if it was invoked by
331 * mmu_notifier_unregister.
333 * The mmu_notifier_mm can't go away from under us because one mm_count
334 * is held by exit_mmap.
336 synchronize_srcu(&srcu);
339 void __mmu_notifier_release(struct mm_struct *mm)
341 struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
343 if (mmn_mm->has_itree)
344 mn_itree_release(mmn_mm, mm);
346 if (!hlist_empty(&mmn_mm->list))
347 mn_hlist_release(mmn_mm, mm);
351 * If no young bitflag is supported by the hardware, ->clear_flush_young can
352 * unmap the address and return 1 or 0 depending if the mapping previously
353 * existed or not.
355 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
356 unsigned long start,
357 unsigned long end)
359 struct mmu_notifier *mn;
360 int young = 0, id;
362 id = srcu_read_lock(&srcu);
363 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
364 if (mn->ops->clear_flush_young)
365 young |= mn->ops->clear_flush_young(mn, mm, start, end);
367 srcu_read_unlock(&srcu, id);
369 return young;
372 int __mmu_notifier_clear_young(struct mm_struct *mm,
373 unsigned long start,
374 unsigned long end)
376 struct mmu_notifier *mn;
377 int young = 0, id;
379 id = srcu_read_lock(&srcu);
380 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
381 if (mn->ops->clear_young)
382 young |= mn->ops->clear_young(mn, mm, start, end);
384 srcu_read_unlock(&srcu, id);
386 return young;
389 int __mmu_notifier_test_young(struct mm_struct *mm,
390 unsigned long address)
392 struct mmu_notifier *mn;
393 int young = 0, id;
395 id = srcu_read_lock(&srcu);
396 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
397 if (mn->ops->test_young) {
398 young = mn->ops->test_young(mn, mm, address);
399 if (young)
400 break;
403 srcu_read_unlock(&srcu, id);
405 return young;
408 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
409 pte_t pte)
411 struct mmu_notifier *mn;
412 int id;
414 id = srcu_read_lock(&srcu);
415 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
416 if (mn->ops->change_pte)
417 mn->ops->change_pte(mn, mm, address, pte);
419 srcu_read_unlock(&srcu, id);
422 static int mn_itree_invalidate(struct mmu_notifier_mm *mmn_mm,
423 const struct mmu_notifier_range *range)
425 struct mmu_interval_notifier *mni;
426 unsigned long cur_seq;
428 for (mni = mn_itree_inv_start_range(mmn_mm, range, &cur_seq); mni;
429 mni = mn_itree_inv_next(mni, range)) {
430 bool ret;
432 ret = mni->ops->invalidate(mni, range, cur_seq);
433 if (!ret) {
434 if (WARN_ON(mmu_notifier_range_blockable(range)))
435 continue;
436 goto out_would_block;
439 return 0;
441 out_would_block:
443 * On -EAGAIN the non-blocking caller is not allowed to call
444 * invalidate_range_end()
446 mn_itree_inv_end(mmn_mm);
447 return -EAGAIN;
450 static int mn_hlist_invalidate_range_start(struct mmu_notifier_mm *mmn_mm,
451 struct mmu_notifier_range *range)
453 struct mmu_notifier *mn;
454 int ret = 0;
455 int id;
457 id = srcu_read_lock(&srcu);
458 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
459 if (mn->ops->invalidate_range_start) {
460 int _ret;
462 if (!mmu_notifier_range_blockable(range))
463 non_block_start();
464 _ret = mn->ops->invalidate_range_start(mn, range);
465 if (!mmu_notifier_range_blockable(range))
466 non_block_end();
467 if (_ret) {
468 pr_info("%pS callback failed with %d in %sblockable context.\n",
469 mn->ops->invalidate_range_start, _ret,
470 !mmu_notifier_range_blockable(range) ? "non-" : "");
471 WARN_ON(mmu_notifier_range_blockable(range) ||
472 _ret != -EAGAIN);
473 ret = _ret;
477 srcu_read_unlock(&srcu, id);
479 return ret;
482 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
484 struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
485 int ret;
487 if (mmn_mm->has_itree) {
488 ret = mn_itree_invalidate(mmn_mm, range);
489 if (ret)
490 return ret;
492 if (!hlist_empty(&mmn_mm->list))
493 return mn_hlist_invalidate_range_start(mmn_mm, range);
494 return 0;
497 static void mn_hlist_invalidate_end(struct mmu_notifier_mm *mmn_mm,
498 struct mmu_notifier_range *range,
499 bool only_end)
501 struct mmu_notifier *mn;
502 int id;
504 id = srcu_read_lock(&srcu);
505 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
507 * Call invalidate_range here too to avoid the need for the
508 * subsystem of having to register an invalidate_range_end
509 * call-back when there is invalidate_range already. Usually a
510 * subsystem registers either invalidate_range_start()/end() or
511 * invalidate_range(), so this will be no additional overhead
512 * (besides the pointer check).
514 * We skip call to invalidate_range() if we know it is safe ie
515 * call site use mmu_notifier_invalidate_range_only_end() which
516 * is safe to do when we know that a call to invalidate_range()
517 * already happen under page table lock.
519 if (!only_end && mn->ops->invalidate_range)
520 mn->ops->invalidate_range(mn, range->mm,
521 range->start,
522 range->end);
523 if (mn->ops->invalidate_range_end) {
524 if (!mmu_notifier_range_blockable(range))
525 non_block_start();
526 mn->ops->invalidate_range_end(mn, range);
527 if (!mmu_notifier_range_blockable(range))
528 non_block_end();
531 srcu_read_unlock(&srcu, id);
534 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
535 bool only_end)
537 struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
539 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
540 if (mmn_mm->has_itree)
541 mn_itree_inv_end(mmn_mm);
543 if (!hlist_empty(&mmn_mm->list))
544 mn_hlist_invalidate_end(mmn_mm, range, only_end);
545 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
548 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
549 unsigned long start, unsigned long end)
551 struct mmu_notifier *mn;
552 int id;
554 id = srcu_read_lock(&srcu);
555 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
556 if (mn->ops->invalidate_range)
557 mn->ops->invalidate_range(mn, mm, start, end);
559 srcu_read_unlock(&srcu, id);
563 * Same as mmu_notifier_register but here the caller must hold the mmap_sem in
564 * write mode. A NULL mn signals the notifier is being registered for itree
565 * mode.
567 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
569 struct mmu_notifier_mm *mmu_notifier_mm = NULL;
570 int ret;
572 lockdep_assert_held_write(&mm->mmap_sem);
573 BUG_ON(atomic_read(&mm->mm_users) <= 0);
575 if (IS_ENABLED(CONFIG_LOCKDEP)) {
576 fs_reclaim_acquire(GFP_KERNEL);
577 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
578 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
579 fs_reclaim_release(GFP_KERNEL);
582 if (!mm->mmu_notifier_mm) {
584 * kmalloc cannot be called under mm_take_all_locks(), but we
585 * know that mm->mmu_notifier_mm can't change while we hold
586 * the write side of the mmap_sem.
588 mmu_notifier_mm =
589 kzalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
590 if (!mmu_notifier_mm)
591 return -ENOMEM;
593 INIT_HLIST_HEAD(&mmu_notifier_mm->list);
594 spin_lock_init(&mmu_notifier_mm->lock);
595 mmu_notifier_mm->invalidate_seq = 2;
596 mmu_notifier_mm->itree = RB_ROOT_CACHED;
597 init_waitqueue_head(&mmu_notifier_mm->wq);
598 INIT_HLIST_HEAD(&mmu_notifier_mm->deferred_list);
601 ret = mm_take_all_locks(mm);
602 if (unlikely(ret))
603 goto out_clean;
606 * Serialize the update against mmu_notifier_unregister. A
607 * side note: mmu_notifier_release can't run concurrently with
608 * us because we hold the mm_users pin (either implicitly as
609 * current->mm or explicitly with get_task_mm() or similar).
610 * We can't race against any other mmu notifier method either
611 * thanks to mm_take_all_locks().
613 * release semantics on the initialization of the mmu_notifier_mm's
614 * contents are provided for unlocked readers. acquire can only be
615 * used while holding the mmgrab or mmget, and is safe because once
616 * created the mmu_notififer_mm is not freed until the mm is
617 * destroyed. As above, users holding the mmap_sem or one of the
618 * mm_take_all_locks() do not need to use acquire semantics.
620 if (mmu_notifier_mm)
621 smp_store_release(&mm->mmu_notifier_mm, mmu_notifier_mm);
623 if (mn) {
624 /* Pairs with the mmdrop in mmu_notifier_unregister_* */
625 mmgrab(mm);
626 mn->mm = mm;
627 mn->users = 1;
629 spin_lock(&mm->mmu_notifier_mm->lock);
630 hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
631 spin_unlock(&mm->mmu_notifier_mm->lock);
632 } else
633 mm->mmu_notifier_mm->has_itree = true;
635 mm_drop_all_locks(mm);
636 BUG_ON(atomic_read(&mm->mm_users) <= 0);
637 return 0;
639 out_clean:
640 kfree(mmu_notifier_mm);
641 return ret;
643 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
646 * mmu_notifier_register - Register a notifier on a mm
647 * @mn: The notifier to attach
648 * @mm: The mm to attach the notifier to
650 * Must not hold mmap_sem nor any other VM related lock when calling
651 * this registration function. Must also ensure mm_users can't go down
652 * to zero while this runs to avoid races with mmu_notifier_release,
653 * so mm has to be current->mm or the mm should be pinned safely such
654 * as with get_task_mm(). If the mm is not current->mm, the mm_users
655 * pin should be released by calling mmput after mmu_notifier_register
656 * returns.
658 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
659 * unregister the notifier.
661 * While the caller has a mmu_notifier get the mn->mm pointer will remain
662 * valid, and can be converted to an active mm pointer via mmget_not_zero().
664 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
666 int ret;
668 down_write(&mm->mmap_sem);
669 ret = __mmu_notifier_register(mn, mm);
670 up_write(&mm->mmap_sem);
671 return ret;
673 EXPORT_SYMBOL_GPL(mmu_notifier_register);
675 static struct mmu_notifier *
676 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
678 struct mmu_notifier *mn;
680 spin_lock(&mm->mmu_notifier_mm->lock);
681 hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
682 if (mn->ops != ops)
683 continue;
685 if (likely(mn->users != UINT_MAX))
686 mn->users++;
687 else
688 mn = ERR_PTR(-EOVERFLOW);
689 spin_unlock(&mm->mmu_notifier_mm->lock);
690 return mn;
692 spin_unlock(&mm->mmu_notifier_mm->lock);
693 return NULL;
697 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
698 * the mm & ops
699 * @ops: The operations struct being subscribe with
700 * @mm : The mm to attach notifiers too
702 * This function either allocates a new mmu_notifier via
703 * ops->alloc_notifier(), or returns an already existing notifier on the
704 * list. The value of the ops pointer is used to determine when two notifiers
705 * are the same.
707 * Each call to mmu_notifier_get() must be paired with a call to
708 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
710 * While the caller has a mmu_notifier get the mm pointer will remain valid,
711 * and can be converted to an active mm pointer via mmget_not_zero().
713 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
714 struct mm_struct *mm)
716 struct mmu_notifier *mn;
717 int ret;
719 lockdep_assert_held_write(&mm->mmap_sem);
721 if (mm->mmu_notifier_mm) {
722 mn = find_get_mmu_notifier(mm, ops);
723 if (mn)
724 return mn;
727 mn = ops->alloc_notifier(mm);
728 if (IS_ERR(mn))
729 return mn;
730 mn->ops = ops;
731 ret = __mmu_notifier_register(mn, mm);
732 if (ret)
733 goto out_free;
734 return mn;
735 out_free:
736 mn->ops->free_notifier(mn);
737 return ERR_PTR(ret);
739 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
741 /* this is called after the last mmu_notifier_unregister() returned */
742 void __mmu_notifier_mm_destroy(struct mm_struct *mm)
744 BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
745 kfree(mm->mmu_notifier_mm);
746 mm->mmu_notifier_mm = LIST_POISON1; /* debug */
750 * This releases the mm_count pin automatically and frees the mm
751 * structure if it was the last user of it. It serializes against
752 * running mmu notifiers with SRCU and against mmu_notifier_unregister
753 * with the unregister lock + SRCU. All sptes must be dropped before
754 * calling mmu_notifier_unregister. ->release or any other notifier
755 * method may be invoked concurrently with mmu_notifier_unregister,
756 * and only after mmu_notifier_unregister returned we're guaranteed
757 * that ->release or any other method can't run anymore.
759 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
761 BUG_ON(atomic_read(&mm->mm_count) <= 0);
763 if (!hlist_unhashed(&mn->hlist)) {
765 * SRCU here will force exit_mmap to wait for ->release to
766 * finish before freeing the pages.
768 int id;
770 id = srcu_read_lock(&srcu);
772 * exit_mmap will block in mmu_notifier_release to guarantee
773 * that ->release is called before freeing the pages.
775 if (mn->ops->release)
776 mn->ops->release(mn, mm);
777 srcu_read_unlock(&srcu, id);
779 spin_lock(&mm->mmu_notifier_mm->lock);
781 * Can not use list_del_rcu() since __mmu_notifier_release
782 * can delete it before we hold the lock.
784 hlist_del_init_rcu(&mn->hlist);
785 spin_unlock(&mm->mmu_notifier_mm->lock);
789 * Wait for any running method to finish, of course including
790 * ->release if it was run by mmu_notifier_release instead of us.
792 synchronize_srcu(&srcu);
794 BUG_ON(atomic_read(&mm->mm_count) <= 0);
796 mmdrop(mm);
798 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
800 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
802 struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
803 struct mm_struct *mm = mn->mm;
805 mn->ops->free_notifier(mn);
806 /* Pairs with the get in __mmu_notifier_register() */
807 mmdrop(mm);
811 * mmu_notifier_put - Release the reference on the notifier
812 * @mn: The notifier to act on
814 * This function must be paired with each mmu_notifier_get(), it releases the
815 * reference obtained by the get. If this is the last reference then process
816 * to free the notifier will be run asynchronously.
818 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
819 * when the mm_struct is destroyed. Instead free_notifier is always called to
820 * release any resources held by the user.
822 * As ops->release is not guaranteed to be called, the user must ensure that
823 * all sptes are dropped, and no new sptes can be established before
824 * mmu_notifier_put() is called.
826 * This function can be called from the ops->release callback, however the
827 * caller must still ensure it is called pairwise with mmu_notifier_get().
829 * Modules calling this function must call mmu_notifier_synchronize() in
830 * their __exit functions to ensure the async work is completed.
832 void mmu_notifier_put(struct mmu_notifier *mn)
834 struct mm_struct *mm = mn->mm;
836 spin_lock(&mm->mmu_notifier_mm->lock);
837 if (WARN_ON(!mn->users) || --mn->users)
838 goto out_unlock;
839 hlist_del_init_rcu(&mn->hlist);
840 spin_unlock(&mm->mmu_notifier_mm->lock);
842 call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
843 return;
845 out_unlock:
846 spin_unlock(&mm->mmu_notifier_mm->lock);
848 EXPORT_SYMBOL_GPL(mmu_notifier_put);
850 static int __mmu_interval_notifier_insert(
851 struct mmu_interval_notifier *mni, struct mm_struct *mm,
852 struct mmu_notifier_mm *mmn_mm, unsigned long start,
853 unsigned long length, const struct mmu_interval_notifier_ops *ops)
855 mni->mm = mm;
856 mni->ops = ops;
857 RB_CLEAR_NODE(&mni->interval_tree.rb);
858 mni->interval_tree.start = start;
860 * Note that the representation of the intervals in the interval tree
861 * considers the ending point as contained in the interval.
863 if (length == 0 ||
864 check_add_overflow(start, length - 1, &mni->interval_tree.last))
865 return -EOVERFLOW;
867 /* Must call with a mmget() held */
868 if (WARN_ON(atomic_read(&mm->mm_count) <= 0))
869 return -EINVAL;
871 /* pairs with mmdrop in mmu_interval_notifier_remove() */
872 mmgrab(mm);
875 * If some invalidate_range_start/end region is going on in parallel
876 * we don't know what VA ranges are affected, so we must assume this
877 * new range is included.
879 * If the itree is invalidating then we are not allowed to change
880 * it. Retrying until invalidation is done is tricky due to the
881 * possibility for live lock, instead defer the add to
882 * mn_itree_inv_end() so this algorithm is deterministic.
884 * In all cases the value for the mni->invalidate_seq should be
885 * odd, see mmu_interval_read_begin()
887 spin_lock(&mmn_mm->lock);
888 if (mmn_mm->active_invalidate_ranges) {
889 if (mn_itree_is_invalidating(mmn_mm))
890 hlist_add_head(&mni->deferred_item,
891 &mmn_mm->deferred_list);
892 else {
893 mmn_mm->invalidate_seq |= 1;
894 interval_tree_insert(&mni->interval_tree,
895 &mmn_mm->itree);
897 mni->invalidate_seq = mmn_mm->invalidate_seq;
898 } else {
899 WARN_ON(mn_itree_is_invalidating(mmn_mm));
901 * The starting seq for a mni not under invalidation should be
902 * odd, not equal to the current invalidate_seq and
903 * invalidate_seq should not 'wrap' to the new seq any time
904 * soon.
906 mni->invalidate_seq = mmn_mm->invalidate_seq - 1;
907 interval_tree_insert(&mni->interval_tree, &mmn_mm->itree);
909 spin_unlock(&mmn_mm->lock);
910 return 0;
914 * mmu_interval_notifier_insert - Insert an interval notifier
915 * @mni: Interval notifier to register
916 * @start: Starting virtual address to monitor
917 * @length: Length of the range to monitor
918 * @mm : mm_struct to attach to
920 * This function subscribes the interval notifier for notifications from the
921 * mm. Upon return the ops related to mmu_interval_notifier will be called
922 * whenever an event that intersects with the given range occurs.
924 * Upon return the range_notifier may not be present in the interval tree yet.
925 * The caller must use the normal interval notifier read flow via
926 * mmu_interval_read_begin() to establish SPTEs for this range.
928 int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni,
929 struct mm_struct *mm, unsigned long start,
930 unsigned long length,
931 const struct mmu_interval_notifier_ops *ops)
933 struct mmu_notifier_mm *mmn_mm;
934 int ret;
936 might_lock(&mm->mmap_sem);
938 mmn_mm = smp_load_acquire(&mm->mmu_notifier_mm);
939 if (!mmn_mm || !mmn_mm->has_itree) {
940 ret = mmu_notifier_register(NULL, mm);
941 if (ret)
942 return ret;
943 mmn_mm = mm->mmu_notifier_mm;
945 return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
946 ops);
948 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
950 int mmu_interval_notifier_insert_locked(
951 struct mmu_interval_notifier *mni, struct mm_struct *mm,
952 unsigned long start, unsigned long length,
953 const struct mmu_interval_notifier_ops *ops)
955 struct mmu_notifier_mm *mmn_mm;
956 int ret;
958 lockdep_assert_held_write(&mm->mmap_sem);
960 mmn_mm = mm->mmu_notifier_mm;
961 if (!mmn_mm || !mmn_mm->has_itree) {
962 ret = __mmu_notifier_register(NULL, mm);
963 if (ret)
964 return ret;
965 mmn_mm = mm->mmu_notifier_mm;
967 return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
968 ops);
970 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
973 * mmu_interval_notifier_remove - Remove a interval notifier
974 * @mni: Interval notifier to unregister
976 * This function must be paired with mmu_interval_notifier_insert(). It cannot
977 * be called from any ops callback.
979 * Once this returns ops callbacks are no longer running on other CPUs and
980 * will not be called in future.
982 void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni)
984 struct mm_struct *mm = mni->mm;
985 struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
986 unsigned long seq = 0;
988 might_sleep();
990 spin_lock(&mmn_mm->lock);
991 if (mn_itree_is_invalidating(mmn_mm)) {
993 * remove is being called after insert put this on the
994 * deferred list, but before the deferred list was processed.
996 if (RB_EMPTY_NODE(&mni->interval_tree.rb)) {
997 hlist_del(&mni->deferred_item);
998 } else {
999 hlist_add_head(&mni->deferred_item,
1000 &mmn_mm->deferred_list);
1001 seq = mmn_mm->invalidate_seq;
1003 } else {
1004 WARN_ON(RB_EMPTY_NODE(&mni->interval_tree.rb));
1005 interval_tree_remove(&mni->interval_tree, &mmn_mm->itree);
1007 spin_unlock(&mmn_mm->lock);
1010 * The possible sleep on progress in the invalidation requires the
1011 * caller not hold any locks held by invalidation callbacks.
1013 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1014 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1015 if (seq)
1016 wait_event(mmn_mm->wq,
1017 READ_ONCE(mmn_mm->invalidate_seq) != seq);
1019 /* pairs with mmgrab in mmu_interval_notifier_insert() */
1020 mmdrop(mm);
1022 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1025 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1027 * This function ensures that all outstanding async SRU work from
1028 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1029 * associated with an unused mmu_notifier will no longer be called.
1031 * Before using the caller must ensure that all of its mmu_notifiers have been
1032 * fully released via mmu_notifier_put().
1034 * Modules using the mmu_notifier_put() API should call this in their __exit
1035 * function to avoid module unloading races.
1037 void mmu_notifier_synchronize(void)
1039 synchronize_srcu(&srcu);
1041 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1043 bool
1044 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1046 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1047 return false;
1048 /* Return true if the vma still have the read flag set. */
1049 return range->vma->vm_flags & VM_READ;
1051 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);