split dev_queue
[cor.git] / mm / memory.c
blob606da187d1de904c226d3d53f56d696ab3d8964a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
85 #include "internal.h"
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
111 * Randomize the address space (stacks, mmaps, brk, etc.).
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
119 #else
121 #endif
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
131 return true;
133 #endif
135 static int __init disable_randmaps(char *s)
137 randomize_va_space = 0;
138 return 1;
140 __setup("norandmaps", disable_randmaps);
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
145 unsigned long highest_memmap_pfn __read_mostly;
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 static int __init init_zero_pfn(void)
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
155 core_initcall(init_zero_pfn);
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
159 trace_rss_stat(mm, member, count);
162 #if defined(SPLIT_RSS_COUNTING)
164 void sync_mm_rss(struct mm_struct *mm)
166 int i;
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
174 current->rss_stat.events = 0;
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 struct task_struct *task = current;
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct *task)
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 sync_mm_rss(task->mm);
198 #else /* SPLIT_RSS_COUNTING */
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 static void check_sync_rss_stat(struct task_struct *task)
207 #endif /* SPLIT_RSS_COUNTING */
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
216 pgtable_t token = pmd_pgtable(*pmd);
217 pmd_clear(pmd);
218 pte_free_tlb(tlb, token, addr);
219 mm_dec_nr_ptes(tlb->mm);
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
226 pmd_t *pmd;
227 unsigned long next;
228 unsigned long start;
230 start = addr;
231 pmd = pmd_offset(pud, addr);
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
236 free_pte_range(tlb, pmd, addr);
237 } while (pmd++, addr = next, addr != end);
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
247 if (end - 1 > ceiling - 1)
248 return;
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
252 pmd_free_tlb(tlb, pmd, start);
253 mm_dec_nr_pmds(tlb->mm);
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
260 pud_t *pud;
261 unsigned long next;
262 unsigned long start;
264 start = addr;
265 pud = pud_offset(p4d, addr);
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 } while (pud++, addr = next, addr != end);
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
281 if (end - 1 > ceiling - 1)
282 return;
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
287 mm_dec_nr_puds(tlb->mm);
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
315 if (end - 1 > ceiling - 1)
316 return;
318 p4d = p4d_offset(pgd, start);
319 pgd_clear(pgd);
320 p4d_free_tlb(tlb, p4d, start);
324 * This function frees user-level page tables of a process.
326 void free_pgd_range(struct mmu_gather *tlb,
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
330 pgd_t *pgd;
331 unsigned long next;
334 * The next few lines have given us lots of grief...
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
378 tlb_change_page_size(tlb, PAGE_SIZE);
379 pgd = pgd_offset(tlb->mm, addr);
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 } while (pgd++, addr = next, addr != end);
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 unsigned long floor, unsigned long ceiling)
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
402 if (is_vm_hugetlb_page(vma)) {
403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
405 } else {
407 * Optimization: gather nearby vmas into one call down
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 && !is_vm_hugetlb_page(next)) {
411 vma = next;
412 next = vma->vm_next;
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
419 vma = next;
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
425 spinlock_t *ptl;
426 pgtable_t new = pte_alloc_one(mm);
427 if (!new)
428 return -ENOMEM;
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 ptl = pmd_lock(mm, pmd);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 mm_inc_nr_ptes(mm);
448 pmd_populate(mm, pmd, new);
449 new = NULL;
451 spin_unlock(ptl);
452 if (new)
453 pte_free(mm, new);
454 return 0;
457 int __pte_alloc_kernel(pmd_t *pmd)
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
463 smp_wmb(); /* See comment in __pte_alloc */
465 spin_lock(&init_mm.page_table_lock);
466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
476 static inline void init_rss_vec(int *rss)
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
483 int i;
485 if (current->mm == mm)
486 sync_mm_rss(mm);
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
497 * The calling function must still handle the error.
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
521 if (nr_unshown) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
524 nr_unshown = 0;
526 nr_shown = 0;
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 if (page)
538 dump_page(page, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
546 dump_stack();
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
595 unsigned long pfn = pte_pfn(pte);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
607 return NULL;
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
630 if (is_zero_pfn(pfn))
631 return NULL;
633 check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
643 out:
644 return pfn_to_page(pfn);
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
651 unsigned long pfn = pmd_pfn(pmd);
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
673 if (pmd_devmap(pmd))
674 return NULL;
675 if (is_huge_zero_pmd(pmd))
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
684 out:
685 return pfn_to_page(pfn);
687 #endif
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 unsigned long addr, int *rss)
700 unsigned long vm_flags = vma->vm_flags;
701 pte_t pte = *src_pte;
702 struct page *page;
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
706 swp_entry_t entry = pte_to_swp_entry(pte);
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
724 rss[mm_counter(page)]++;
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
729 * COW mappings require pages in both
730 * parent and child to be set to read.
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 set_pte_at(src_mm, addr, src_pte, pte);
738 } else if (is_device_private_entry(entry)) {
739 page = device_private_entry_to_page(entry);
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
744 * respect.
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
750 get_page(page);
751 rss[mm_counter(page)]++;
752 page_dup_rmap(page, false);
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
761 if (is_write_device_private_entry(entry) &&
762 is_cow_mapping(vm_flags)) {
763 make_device_private_entry_read(&entry);
764 pte = swp_entry_to_pte(entry);
765 set_pte_at(src_mm, addr, src_pte, pte);
768 goto out_set_pte;
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
775 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776 ptep_set_wrprotect(src_mm, addr, src_pte);
777 pte = pte_wrprotect(pte);
781 * If it's a shared mapping, mark it clean in
782 * the child
784 if (vm_flags & VM_SHARED)
785 pte = pte_mkclean(pte);
786 pte = pte_mkold(pte);
788 page = vm_normal_page(vma, addr, pte);
789 if (page) {
790 get_page(page);
791 page_dup_rmap(page, false);
792 rss[mm_counter(page)]++;
793 } else if (pte_devmap(pte)) {
794 page = pte_page(pte);
797 out_set_pte:
798 set_pte_at(dst_mm, addr, dst_pte, pte);
799 return 0;
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 unsigned long addr, unsigned long end)
806 pte_t *orig_src_pte, *orig_dst_pte;
807 pte_t *src_pte, *dst_pte;
808 spinlock_t *src_ptl, *dst_ptl;
809 int progress = 0;
810 int rss[NR_MM_COUNTERS];
811 swp_entry_t entry = (swp_entry_t){0};
813 again:
814 init_rss_vec(rss);
816 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817 if (!dst_pte)
818 return -ENOMEM;
819 src_pte = pte_offset_map(src_pmd, addr);
820 src_ptl = pte_lockptr(src_mm, src_pmd);
821 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822 orig_src_pte = src_pte;
823 orig_dst_pte = dst_pte;
824 arch_enter_lazy_mmu_mode();
826 do {
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
831 if (progress >= 32) {
832 progress = 0;
833 if (need_resched() ||
834 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835 break;
837 if (pte_none(*src_pte)) {
838 progress++;
839 continue;
841 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842 vma, addr, rss);
843 if (entry.val)
844 break;
845 progress += 8;
846 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
848 arch_leave_lazy_mmu_mode();
849 spin_unlock(src_ptl);
850 pte_unmap(orig_src_pte);
851 add_mm_rss_vec(dst_mm, rss);
852 pte_unmap_unlock(orig_dst_pte, dst_ptl);
853 cond_resched();
855 if (entry.val) {
856 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857 return -ENOMEM;
858 progress = 0;
860 if (addr != end)
861 goto again;
862 return 0;
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 unsigned long addr, unsigned long end)
869 pmd_t *src_pmd, *dst_pmd;
870 unsigned long next;
872 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873 if (!dst_pmd)
874 return -ENOMEM;
875 src_pmd = pmd_offset(src_pud, addr);
876 do {
877 next = pmd_addr_end(addr, end);
878 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 || pmd_devmap(*src_pmd)) {
880 int err;
881 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882 err = copy_huge_pmd(dst_mm, src_mm,
883 dst_pmd, src_pmd, addr, vma);
884 if (err == -ENOMEM)
885 return -ENOMEM;
886 if (!err)
887 continue;
888 /* fall through */
890 if (pmd_none_or_clear_bad(src_pmd))
891 continue;
892 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893 vma, addr, next))
894 return -ENOMEM;
895 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896 return 0;
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901 unsigned long addr, unsigned long end)
903 pud_t *src_pud, *dst_pud;
904 unsigned long next;
906 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907 if (!dst_pud)
908 return -ENOMEM;
909 src_pud = pud_offset(src_p4d, addr);
910 do {
911 next = pud_addr_end(addr, end);
912 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913 int err;
915 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 err = copy_huge_pud(dst_mm, src_mm,
917 dst_pud, src_pud, addr, vma);
918 if (err == -ENOMEM)
919 return -ENOMEM;
920 if (!err)
921 continue;
922 /* fall through */
924 if (pud_none_or_clear_bad(src_pud))
925 continue;
926 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927 vma, addr, next))
928 return -ENOMEM;
929 } while (dst_pud++, src_pud++, addr = next, addr != end);
930 return 0;
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 unsigned long addr, unsigned long end)
937 p4d_t *src_p4d, *dst_p4d;
938 unsigned long next;
940 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941 if (!dst_p4d)
942 return -ENOMEM;
943 src_p4d = p4d_offset(src_pgd, addr);
944 do {
945 next = p4d_addr_end(addr, end);
946 if (p4d_none_or_clear_bad(src_p4d))
947 continue;
948 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949 vma, addr, next))
950 return -ENOMEM;
951 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952 return 0;
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 struct vm_area_struct *vma)
958 pgd_t *src_pgd, *dst_pgd;
959 unsigned long next;
960 unsigned long addr = vma->vm_start;
961 unsigned long end = vma->vm_end;
962 struct mmu_notifier_range range;
963 bool is_cow;
964 int ret;
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
972 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973 !vma->anon_vma)
974 return 0;
976 if (is_vm_hugetlb_page(vma))
977 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
979 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
984 ret = track_pfn_copy(vma);
985 if (ret)
986 return ret;
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
995 is_cow = is_cow_mapping(vma->vm_flags);
997 if (is_cow) {
998 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 0, vma, src_mm, addr, end);
1000 mmu_notifier_invalidate_range_start(&range);
1003 ret = 0;
1004 dst_pgd = pgd_offset(dst_mm, addr);
1005 src_pgd = pgd_offset(src_mm, addr);
1006 do {
1007 next = pgd_addr_end(addr, end);
1008 if (pgd_none_or_clear_bad(src_pgd))
1009 continue;
1010 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011 vma, addr, next))) {
1012 ret = -ENOMEM;
1013 break;
1015 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1017 if (is_cow)
1018 mmu_notifier_invalidate_range_end(&range);
1019 return ret;
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023 struct vm_area_struct *vma, pmd_t *pmd,
1024 unsigned long addr, unsigned long end,
1025 struct zap_details *details)
1027 struct mm_struct *mm = tlb->mm;
1028 int force_flush = 0;
1029 int rss[NR_MM_COUNTERS];
1030 spinlock_t *ptl;
1031 pte_t *start_pte;
1032 pte_t *pte;
1033 swp_entry_t entry;
1035 tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037 init_rss_vec(rss);
1038 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039 pte = start_pte;
1040 flush_tlb_batched_pending(mm);
1041 arch_enter_lazy_mmu_mode();
1042 do {
1043 pte_t ptent = *pte;
1044 if (pte_none(ptent))
1045 continue;
1047 if (need_resched())
1048 break;
1050 if (pte_present(ptent)) {
1051 struct page *page;
1053 page = vm_normal_page(vma, addr, ptent);
1054 if (unlikely(details) && page) {
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1060 if (details->check_mapping &&
1061 details->check_mapping != page_rmapping(page))
1062 continue;
1064 ptent = ptep_get_and_clear_full(mm, addr, pte,
1065 tlb->fullmm);
1066 tlb_remove_tlb_entry(tlb, pte, addr);
1067 if (unlikely(!page))
1068 continue;
1070 if (!PageAnon(page)) {
1071 if (pte_dirty(ptent)) {
1072 force_flush = 1;
1073 set_page_dirty(page);
1075 if (pte_young(ptent) &&
1076 likely(!(vma->vm_flags & VM_SEQ_READ)))
1077 mark_page_accessed(page);
1079 rss[mm_counter(page)]--;
1080 page_remove_rmap(page, false);
1081 if (unlikely(page_mapcount(page) < 0))
1082 print_bad_pte(vma, addr, ptent, page);
1083 if (unlikely(__tlb_remove_page(tlb, page))) {
1084 force_flush = 1;
1085 addr += PAGE_SIZE;
1086 break;
1088 continue;
1091 entry = pte_to_swp_entry(ptent);
1092 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 struct page *page = device_private_entry_to_page(entry);
1095 if (unlikely(details && details->check_mapping)) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details->check_mapping !=
1102 page_rmapping(page))
1103 continue;
1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 rss[mm_counter(page)]--;
1108 page_remove_rmap(page, false);
1109 put_page(page);
1110 continue;
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details))
1115 continue;
1117 if (!non_swap_entry(entry))
1118 rss[MM_SWAPENTS]--;
1119 else if (is_migration_entry(entry)) {
1120 struct page *page;
1122 page = migration_entry_to_page(entry);
1123 rss[mm_counter(page)]--;
1125 if (unlikely(!free_swap_and_cache(entry)))
1126 print_bad_pte(vma, addr, ptent, NULL);
1127 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128 } while (pte++, addr += PAGE_SIZE, addr != end);
1130 add_mm_rss_vec(mm, rss);
1131 arch_leave_lazy_mmu_mode();
1133 /* Do the actual TLB flush before dropping ptl */
1134 if (force_flush)
1135 tlb_flush_mmu_tlbonly(tlb);
1136 pte_unmap_unlock(start_pte, ptl);
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1144 if (force_flush) {
1145 force_flush = 0;
1146 tlb_flush_mmu(tlb);
1149 if (addr != end) {
1150 cond_resched();
1151 goto again;
1154 return addr;
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158 struct vm_area_struct *vma, pud_t *pud,
1159 unsigned long addr, unsigned long end,
1160 struct zap_details *details)
1162 pmd_t *pmd;
1163 unsigned long next;
1165 pmd = pmd_offset(pud, addr);
1166 do {
1167 next = pmd_addr_end(addr, end);
1168 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169 if (next - addr != HPAGE_PMD_SIZE)
1170 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172 goto next;
1173 /* fall through */
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1180 * mode.
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183 goto next;
1184 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186 cond_resched();
1187 } while (pmd++, addr = next, addr != end);
1189 return addr;
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193 struct vm_area_struct *vma, p4d_t *p4d,
1194 unsigned long addr, unsigned long end,
1195 struct zap_details *details)
1197 pud_t *pud;
1198 unsigned long next;
1200 pud = pud_offset(p4d, addr);
1201 do {
1202 next = pud_addr_end(addr, end);
1203 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 if (next - addr != HPAGE_PUD_SIZE) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 split_huge_pud(vma, pud, addr);
1207 } else if (zap_huge_pud(tlb, vma, pud, addr))
1208 goto next;
1209 /* fall through */
1211 if (pud_none_or_clear_bad(pud))
1212 continue;
1213 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215 cond_resched();
1216 } while (pud++, addr = next, addr != end);
1218 return addr;
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pgd_t *pgd,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1226 p4d_t *p4d;
1227 unsigned long next;
1229 p4d = p4d_offset(pgd, addr);
1230 do {
1231 next = p4d_addr_end(addr, end);
1232 if (p4d_none_or_clear_bad(p4d))
1233 continue;
1234 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 } while (p4d++, addr = next, addr != end);
1237 return addr;
1240 void unmap_page_range(struct mmu_gather *tlb,
1241 struct vm_area_struct *vma,
1242 unsigned long addr, unsigned long end,
1243 struct zap_details *details)
1245 pgd_t *pgd;
1246 unsigned long next;
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1251 do {
1252 next = pgd_addr_end(addr, end);
1253 if (pgd_none_or_clear_bad(pgd))
1254 continue;
1255 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256 } while (pgd++, addr = next, addr != end);
1257 tlb_end_vma(tlb, vma);
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
1263 unsigned long end_addr,
1264 struct zap_details *details)
1266 unsigned long start = max(vma->vm_start, start_addr);
1267 unsigned long end;
1269 if (start >= vma->vm_end)
1270 return;
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1273 return;
1275 if (vma->vm_file)
1276 uprobe_munmap(vma, start, end);
1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 untrack_pfn(vma, 0, 0);
1281 if (start != end) {
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1294 if (vma->vm_file) {
1295 i_mmap_lock_write(vma->vm_file->f_mapping);
1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
1299 } else
1300 unmap_page_range(tlb, vma, start, end, details);
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1311 * Unmap all pages in the vma list.
1313 * Only addresses between `start' and `end' will be unmapped.
1315 * The VMA list must be sorted in ascending virtual address order.
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 struct vm_area_struct *vma, unsigned long start_addr,
1324 unsigned long end_addr)
1326 struct mmu_notifier_range range;
1328 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 start_addr, end_addr);
1330 mmu_notifier_invalidate_range_start(&range);
1331 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333 mmu_notifier_invalidate_range_end(&range);
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
1339 * @start: starting address of pages to zap
1340 * @size: number of bytes to zap
1342 * Caller must protect the VMA list
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345 unsigned long size)
1347 struct mmu_notifier_range range;
1348 struct mmu_gather tlb;
1350 lru_add_drain();
1351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352 start, start + size);
1353 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 update_hiwater_rss(vma->vm_mm);
1355 mmu_notifier_invalidate_range_start(&range);
1356 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 mmu_notifier_invalidate_range_end(&range);
1359 tlb_finish_mmu(&tlb, start, range.end);
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1369 * The range must fit into one VMA.
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372 unsigned long size, struct zap_details *details)
1374 struct mmu_notifier_range range;
1375 struct mmu_gather tlb;
1377 lru_add_drain();
1378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 address, address + size);
1380 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 update_hiwater_rss(vma->vm_mm);
1382 mmu_notifier_invalidate_range_start(&range);
1383 unmap_single_vma(&tlb, vma, address, range.end, details);
1384 mmu_notifier_invalidate_range_end(&range);
1385 tlb_finish_mmu(&tlb, address, range.end);
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 * The entire address range must be fully contained within the vma.
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400 unsigned long size)
1402 if (address < vma->vm_start || address + size > vma->vm_end ||
1403 !(vma->vm_flags & VM_PFNMAP))
1404 return;
1406 zap_page_range_single(vma, address, size, NULL);
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411 spinlock_t **ptl)
1413 pgd_t *pgd;
1414 p4d_t *p4d;
1415 pud_t *pud;
1416 pmd_t *pmd;
1418 pgd = pgd_offset(mm, addr);
1419 p4d = p4d_alloc(mm, pgd, addr);
1420 if (!p4d)
1421 return NULL;
1422 pud = pud_alloc(mm, p4d, addr);
1423 if (!pud)
1424 return NULL;
1425 pmd = pmd_alloc(mm, pud, addr);
1426 if (!pmd)
1427 return NULL;
1429 VM_BUG_ON(pmd_trans_huge(*pmd));
1430 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1434 * This is the old fallback for page remapping.
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 struct page *page, pgprot_t prot)
1443 struct mm_struct *mm = vma->vm_mm;
1444 int retval;
1445 pte_t *pte;
1446 spinlock_t *ptl;
1448 retval = -EINVAL;
1449 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450 goto out;
1451 retval = -ENOMEM;
1452 flush_dcache_page(page);
1453 pte = get_locked_pte(mm, addr, &ptl);
1454 if (!pte)
1455 goto out;
1456 retval = -EBUSY;
1457 if (!pte_none(*pte))
1458 goto out_unlock;
1460 /* Ok, finally just insert the thing.. */
1461 get_page(page);
1462 inc_mm_counter_fast(mm, mm_counter_file(page));
1463 page_add_file_rmap(page, false);
1464 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466 retval = 0;
1467 out_unlock:
1468 pte_unmap_unlock(pte, ptl);
1469 out:
1470 return retval;
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1479 * This allows drivers to insert individual pages they've allocated
1480 * into a user vma.
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1493 * The page does not need to be reserved.
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1500 * Return: %0 on success, negative error code otherwise.
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 struct page *page)
1505 if (addr < vma->vm_start || addr >= vma->vm_end)
1506 return -EFAULT;
1507 if (!page_count(page))
1508 return -EINVAL;
1509 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 vma->vm_flags |= VM_MIXEDMAP;
1514 return insert_page(vma, addr, page, vma->vm_page_prot);
1516 EXPORT_SYMBOL(vm_insert_page);
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1525 * This allows drivers to map range of kernel pages into a user vma.
1527 * Return: 0 on success and error code otherwise.
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 unsigned long num, unsigned long offset)
1532 unsigned long count = vma_pages(vma);
1533 unsigned long uaddr = vma->vm_start;
1534 int ret, i;
1536 /* Fail if the user requested offset is beyond the end of the object */
1537 if (offset >= num)
1538 return -ENXIO;
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count > num - offset)
1542 return -ENXIO;
1544 for (i = 0; i < count; i++) {
1545 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546 if (ret < 0)
1547 return ret;
1548 uaddr += PAGE_SIZE;
1551 return 0;
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573 unsigned long num)
1575 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1577 EXPORT_SYMBOL(vm_map_pages);
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1587 * vm_pgoff.
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593 unsigned long num)
1595 return __vm_map_pages(vma, pages, num, 0);
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 pfn_t pfn, pgprot_t prot, bool mkwrite)
1602 struct mm_struct *mm = vma->vm_mm;
1603 pte_t *pte, entry;
1604 spinlock_t *ptl;
1606 pte = get_locked_pte(mm, addr, &ptl);
1607 if (!pte)
1608 return VM_FAULT_OOM;
1609 if (!pte_none(*pte)) {
1610 if (mkwrite) {
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1619 * update.
1621 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623 goto out_unlock;
1625 entry = pte_mkyoung(*pte);
1626 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 update_mmu_cache(vma, addr, pte);
1630 goto out_unlock;
1633 /* Ok, finally just insert the thing.. */
1634 if (pfn_t_devmap(pfn))
1635 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636 else
1637 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1639 if (mkwrite) {
1640 entry = pte_mkyoung(entry);
1641 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1644 set_pte_at(mm, addr, pte, entry);
1645 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1647 out_unlock:
1648 pte_unmap_unlock(pte, ptl);
1649 return VM_FAULT_NOPAGE;
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665 * impractical.
1667 * Context: Process context. May allocate using %GFP_KERNEL.
1668 * Return: vm_fault_t value.
1670 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1671 unsigned long pfn, pgprot_t pgprot)
1674 * Technically, architectures with pte_special can avoid all these
1675 * restrictions (same for remap_pfn_range). However we would like
1676 * consistency in testing and feature parity among all, so we should
1677 * try to keep these invariants in place for everybody.
1679 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1680 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1681 (VM_PFNMAP|VM_MIXEDMAP));
1682 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1683 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1685 if (addr < vma->vm_start || addr >= vma->vm_end)
1686 return VM_FAULT_SIGBUS;
1688 if (!pfn_modify_allowed(pfn, pgprot))
1689 return VM_FAULT_SIGBUS;
1691 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1693 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1694 false);
1696 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1699 * vmf_insert_pfn - insert single pfn into user vma
1700 * @vma: user vma to map to
1701 * @addr: target user address of this page
1702 * @pfn: source kernel pfn
1704 * Similar to vm_insert_page, this allows drivers to insert individual pages
1705 * they've allocated into a user vma. Same comments apply.
1707 * This function should only be called from a vm_ops->fault handler, and
1708 * in that case the handler should return the result of this function.
1710 * vma cannot be a COW mapping.
1712 * As this is called only for pages that do not currently exist, we
1713 * do not need to flush old virtual caches or the TLB.
1715 * Context: Process context. May allocate using %GFP_KERNEL.
1716 * Return: vm_fault_t value.
1718 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1719 unsigned long pfn)
1721 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1723 EXPORT_SYMBOL(vmf_insert_pfn);
1725 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1727 /* these checks mirror the abort conditions in vm_normal_page */
1728 if (vma->vm_flags & VM_MIXEDMAP)
1729 return true;
1730 if (pfn_t_devmap(pfn))
1731 return true;
1732 if (pfn_t_special(pfn))
1733 return true;
1734 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1735 return true;
1736 return false;
1739 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1740 unsigned long addr, pfn_t pfn, bool mkwrite)
1742 pgprot_t pgprot = vma->vm_page_prot;
1743 int err;
1745 BUG_ON(!vm_mixed_ok(vma, pfn));
1747 if (addr < vma->vm_start || addr >= vma->vm_end)
1748 return VM_FAULT_SIGBUS;
1750 track_pfn_insert(vma, &pgprot, pfn);
1752 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1753 return VM_FAULT_SIGBUS;
1756 * If we don't have pte special, then we have to use the pfn_valid()
1757 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1758 * refcount the page if pfn_valid is true (hence insert_page rather
1759 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1760 * without pte special, it would there be refcounted as a normal page.
1762 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1763 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1764 struct page *page;
1767 * At this point we are committed to insert_page()
1768 * regardless of whether the caller specified flags that
1769 * result in pfn_t_has_page() == false.
1771 page = pfn_to_page(pfn_t_to_pfn(pfn));
1772 err = insert_page(vma, addr, page, pgprot);
1773 } else {
1774 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1777 if (err == -ENOMEM)
1778 return VM_FAULT_OOM;
1779 if (err < 0 && err != -EBUSY)
1780 return VM_FAULT_SIGBUS;
1782 return VM_FAULT_NOPAGE;
1785 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1786 pfn_t pfn)
1788 return __vm_insert_mixed(vma, addr, pfn, false);
1790 EXPORT_SYMBOL(vmf_insert_mixed);
1793 * If the insertion of PTE failed because someone else already added a
1794 * different entry in the mean time, we treat that as success as we assume
1795 * the same entry was actually inserted.
1797 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1798 unsigned long addr, pfn_t pfn)
1800 return __vm_insert_mixed(vma, addr, pfn, true);
1802 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1805 * maps a range of physical memory into the requested pages. the old
1806 * mappings are removed. any references to nonexistent pages results
1807 * in null mappings (currently treated as "copy-on-access")
1809 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1810 unsigned long addr, unsigned long end,
1811 unsigned long pfn, pgprot_t prot)
1813 pte_t *pte;
1814 spinlock_t *ptl;
1815 int err = 0;
1817 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1818 if (!pte)
1819 return -ENOMEM;
1820 arch_enter_lazy_mmu_mode();
1821 do {
1822 BUG_ON(!pte_none(*pte));
1823 if (!pfn_modify_allowed(pfn, prot)) {
1824 err = -EACCES;
1825 break;
1827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828 pfn++;
1829 } while (pte++, addr += PAGE_SIZE, addr != end);
1830 arch_leave_lazy_mmu_mode();
1831 pte_unmap_unlock(pte - 1, ptl);
1832 return err;
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836 unsigned long addr, unsigned long end,
1837 unsigned long pfn, pgprot_t prot)
1839 pmd_t *pmd;
1840 unsigned long next;
1841 int err;
1843 pfn -= addr >> PAGE_SHIFT;
1844 pmd = pmd_alloc(mm, pud, addr);
1845 if (!pmd)
1846 return -ENOMEM;
1847 VM_BUG_ON(pmd_trans_huge(*pmd));
1848 do {
1849 next = pmd_addr_end(addr, end);
1850 err = remap_pte_range(mm, pmd, addr, next,
1851 pfn + (addr >> PAGE_SHIFT), prot);
1852 if (err)
1853 return err;
1854 } while (pmd++, addr = next, addr != end);
1855 return 0;
1858 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1859 unsigned long addr, unsigned long end,
1860 unsigned long pfn, pgprot_t prot)
1862 pud_t *pud;
1863 unsigned long next;
1864 int err;
1866 pfn -= addr >> PAGE_SHIFT;
1867 pud = pud_alloc(mm, p4d, addr);
1868 if (!pud)
1869 return -ENOMEM;
1870 do {
1871 next = pud_addr_end(addr, end);
1872 err = remap_pmd_range(mm, pud, addr, next,
1873 pfn + (addr >> PAGE_SHIFT), prot);
1874 if (err)
1875 return err;
1876 } while (pud++, addr = next, addr != end);
1877 return 0;
1880 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1881 unsigned long addr, unsigned long end,
1882 unsigned long pfn, pgprot_t prot)
1884 p4d_t *p4d;
1885 unsigned long next;
1886 int err;
1888 pfn -= addr >> PAGE_SHIFT;
1889 p4d = p4d_alloc(mm, pgd, addr);
1890 if (!p4d)
1891 return -ENOMEM;
1892 do {
1893 next = p4d_addr_end(addr, end);
1894 err = remap_pud_range(mm, p4d, addr, next,
1895 pfn + (addr >> PAGE_SHIFT), prot);
1896 if (err)
1897 return err;
1898 } while (p4d++, addr = next, addr != end);
1899 return 0;
1903 * remap_pfn_range - remap kernel memory to userspace
1904 * @vma: user vma to map to
1905 * @addr: target user address to start at
1906 * @pfn: physical address of kernel memory
1907 * @size: size of map area
1908 * @prot: page protection flags for this mapping
1910 * Note: this is only safe if the mm semaphore is held when called.
1912 * Return: %0 on success, negative error code otherwise.
1914 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1915 unsigned long pfn, unsigned long size, pgprot_t prot)
1917 pgd_t *pgd;
1918 unsigned long next;
1919 unsigned long end = addr + PAGE_ALIGN(size);
1920 struct mm_struct *mm = vma->vm_mm;
1921 unsigned long remap_pfn = pfn;
1922 int err;
1925 * Physically remapped pages are special. Tell the
1926 * rest of the world about it:
1927 * VM_IO tells people not to look at these pages
1928 * (accesses can have side effects).
1929 * VM_PFNMAP tells the core MM that the base pages are just
1930 * raw PFN mappings, and do not have a "struct page" associated
1931 * with them.
1932 * VM_DONTEXPAND
1933 * Disable vma merging and expanding with mremap().
1934 * VM_DONTDUMP
1935 * Omit vma from core dump, even when VM_IO turned off.
1937 * There's a horrible special case to handle copy-on-write
1938 * behaviour that some programs depend on. We mark the "original"
1939 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1940 * See vm_normal_page() for details.
1942 if (is_cow_mapping(vma->vm_flags)) {
1943 if (addr != vma->vm_start || end != vma->vm_end)
1944 return -EINVAL;
1945 vma->vm_pgoff = pfn;
1948 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1949 if (err)
1950 return -EINVAL;
1952 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1954 BUG_ON(addr >= end);
1955 pfn -= addr >> PAGE_SHIFT;
1956 pgd = pgd_offset(mm, addr);
1957 flush_cache_range(vma, addr, end);
1958 do {
1959 next = pgd_addr_end(addr, end);
1960 err = remap_p4d_range(mm, pgd, addr, next,
1961 pfn + (addr >> PAGE_SHIFT), prot);
1962 if (err)
1963 break;
1964 } while (pgd++, addr = next, addr != end);
1966 if (err)
1967 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1969 return err;
1971 EXPORT_SYMBOL(remap_pfn_range);
1974 * vm_iomap_memory - remap memory to userspace
1975 * @vma: user vma to map to
1976 * @start: start of area
1977 * @len: size of area
1979 * This is a simplified io_remap_pfn_range() for common driver use. The
1980 * driver just needs to give us the physical memory range to be mapped,
1981 * we'll figure out the rest from the vma information.
1983 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1984 * whatever write-combining details or similar.
1986 * Return: %0 on success, negative error code otherwise.
1988 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1990 unsigned long vm_len, pfn, pages;
1992 /* Check that the physical memory area passed in looks valid */
1993 if (start + len < start)
1994 return -EINVAL;
1996 * You *really* shouldn't map things that aren't page-aligned,
1997 * but we've historically allowed it because IO memory might
1998 * just have smaller alignment.
2000 len += start & ~PAGE_MASK;
2001 pfn = start >> PAGE_SHIFT;
2002 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2003 if (pfn + pages < pfn)
2004 return -EINVAL;
2006 /* We start the mapping 'vm_pgoff' pages into the area */
2007 if (vma->vm_pgoff > pages)
2008 return -EINVAL;
2009 pfn += vma->vm_pgoff;
2010 pages -= vma->vm_pgoff;
2012 /* Can we fit all of the mapping? */
2013 vm_len = vma->vm_end - vma->vm_start;
2014 if (vm_len >> PAGE_SHIFT > pages)
2015 return -EINVAL;
2017 /* Ok, let it rip */
2018 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2020 EXPORT_SYMBOL(vm_iomap_memory);
2022 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2023 unsigned long addr, unsigned long end,
2024 pte_fn_t fn, void *data)
2026 pte_t *pte;
2027 int err;
2028 spinlock_t *uninitialized_var(ptl);
2030 pte = (mm == &init_mm) ?
2031 pte_alloc_kernel(pmd, addr) :
2032 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2033 if (!pte)
2034 return -ENOMEM;
2036 BUG_ON(pmd_huge(*pmd));
2038 arch_enter_lazy_mmu_mode();
2040 do {
2041 err = fn(pte++, addr, data);
2042 if (err)
2043 break;
2044 } while (addr += PAGE_SIZE, addr != end);
2046 arch_leave_lazy_mmu_mode();
2048 if (mm != &init_mm)
2049 pte_unmap_unlock(pte-1, ptl);
2050 return err;
2053 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2054 unsigned long addr, unsigned long end,
2055 pte_fn_t fn, void *data)
2057 pmd_t *pmd;
2058 unsigned long next;
2059 int err;
2061 BUG_ON(pud_huge(*pud));
2063 pmd = pmd_alloc(mm, pud, addr);
2064 if (!pmd)
2065 return -ENOMEM;
2066 do {
2067 next = pmd_addr_end(addr, end);
2068 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2069 if (err)
2070 break;
2071 } while (pmd++, addr = next, addr != end);
2072 return err;
2075 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2076 unsigned long addr, unsigned long end,
2077 pte_fn_t fn, void *data)
2079 pud_t *pud;
2080 unsigned long next;
2081 int err;
2083 pud = pud_alloc(mm, p4d, addr);
2084 if (!pud)
2085 return -ENOMEM;
2086 do {
2087 next = pud_addr_end(addr, end);
2088 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2089 if (err)
2090 break;
2091 } while (pud++, addr = next, addr != end);
2092 return err;
2095 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2096 unsigned long addr, unsigned long end,
2097 pte_fn_t fn, void *data)
2099 p4d_t *p4d;
2100 unsigned long next;
2101 int err;
2103 p4d = p4d_alloc(mm, pgd, addr);
2104 if (!p4d)
2105 return -ENOMEM;
2106 do {
2107 next = p4d_addr_end(addr, end);
2108 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2109 if (err)
2110 break;
2111 } while (p4d++, addr = next, addr != end);
2112 return err;
2116 * Scan a region of virtual memory, filling in page tables as necessary
2117 * and calling a provided function on each leaf page table.
2119 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2120 unsigned long size, pte_fn_t fn, void *data)
2122 pgd_t *pgd;
2123 unsigned long next;
2124 unsigned long end = addr + size;
2125 int err;
2127 if (WARN_ON(addr >= end))
2128 return -EINVAL;
2130 pgd = pgd_offset(mm, addr);
2131 do {
2132 next = pgd_addr_end(addr, end);
2133 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2134 if (err)
2135 break;
2136 } while (pgd++, addr = next, addr != end);
2138 return err;
2140 EXPORT_SYMBOL_GPL(apply_to_page_range);
2143 * handle_pte_fault chooses page fault handler according to an entry which was
2144 * read non-atomically. Before making any commitment, on those architectures
2145 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2146 * parts, do_swap_page must check under lock before unmapping the pte and
2147 * proceeding (but do_wp_page is only called after already making such a check;
2148 * and do_anonymous_page can safely check later on).
2150 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2151 pte_t *page_table, pte_t orig_pte)
2153 int same = 1;
2154 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2155 if (sizeof(pte_t) > sizeof(unsigned long)) {
2156 spinlock_t *ptl = pte_lockptr(mm, pmd);
2157 spin_lock(ptl);
2158 same = pte_same(*page_table, orig_pte);
2159 spin_unlock(ptl);
2161 #endif
2162 pte_unmap(page_table);
2163 return same;
2166 static inline bool cow_user_page(struct page *dst, struct page *src,
2167 struct vm_fault *vmf)
2169 bool ret;
2170 void *kaddr;
2171 void __user *uaddr;
2172 bool force_mkyoung;
2173 struct vm_area_struct *vma = vmf->vma;
2174 struct mm_struct *mm = vma->vm_mm;
2175 unsigned long addr = vmf->address;
2177 debug_dma_assert_idle(src);
2179 if (likely(src)) {
2180 copy_user_highpage(dst, src, addr, vma);
2181 return true;
2185 * If the source page was a PFN mapping, we don't have
2186 * a "struct page" for it. We do a best-effort copy by
2187 * just copying from the original user address. If that
2188 * fails, we just zero-fill it. Live with it.
2190 kaddr = kmap_atomic(dst);
2191 uaddr = (void __user *)(addr & PAGE_MASK);
2194 * On architectures with software "accessed" bits, we would
2195 * take a double page fault, so mark it accessed here.
2197 force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2198 if (force_mkyoung) {
2199 pte_t entry;
2201 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2202 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2204 * Other thread has already handled the fault
2205 * and we don't need to do anything. If it's
2206 * not the case, the fault will be triggered
2207 * again on the same address.
2209 ret = false;
2210 goto pte_unlock;
2213 entry = pte_mkyoung(vmf->orig_pte);
2214 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2215 update_mmu_cache(vma, addr, vmf->pte);
2219 * This really shouldn't fail, because the page is there
2220 * in the page tables. But it might just be unreadable,
2221 * in which case we just give up and fill the result with
2222 * zeroes.
2224 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2226 * Give a warn in case there can be some obscure
2227 * use-case
2229 WARN_ON_ONCE(1);
2230 clear_page(kaddr);
2233 ret = true;
2235 pte_unlock:
2236 if (force_mkyoung)
2237 pte_unmap_unlock(vmf->pte, vmf->ptl);
2238 kunmap_atomic(kaddr);
2239 flush_dcache_page(dst);
2241 return ret;
2244 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2246 struct file *vm_file = vma->vm_file;
2248 if (vm_file)
2249 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2252 * Special mappings (e.g. VDSO) do not have any file so fake
2253 * a default GFP_KERNEL for them.
2255 return GFP_KERNEL;
2259 * Notify the address space that the page is about to become writable so that
2260 * it can prohibit this or wait for the page to get into an appropriate state.
2262 * We do this without the lock held, so that it can sleep if it needs to.
2264 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2266 vm_fault_t ret;
2267 struct page *page = vmf->page;
2268 unsigned int old_flags = vmf->flags;
2270 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2272 if (vmf->vma->vm_file &&
2273 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2274 return VM_FAULT_SIGBUS;
2276 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2277 /* Restore original flags so that caller is not surprised */
2278 vmf->flags = old_flags;
2279 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2280 return ret;
2281 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2282 lock_page(page);
2283 if (!page->mapping) {
2284 unlock_page(page);
2285 return 0; /* retry */
2287 ret |= VM_FAULT_LOCKED;
2288 } else
2289 VM_BUG_ON_PAGE(!PageLocked(page), page);
2290 return ret;
2294 * Handle dirtying of a page in shared file mapping on a write fault.
2296 * The function expects the page to be locked and unlocks it.
2298 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2300 struct vm_area_struct *vma = vmf->vma;
2301 struct address_space *mapping;
2302 struct page *page = vmf->page;
2303 bool dirtied;
2304 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2306 dirtied = set_page_dirty(page);
2307 VM_BUG_ON_PAGE(PageAnon(page), page);
2309 * Take a local copy of the address_space - page.mapping may be zeroed
2310 * by truncate after unlock_page(). The address_space itself remains
2311 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2312 * release semantics to prevent the compiler from undoing this copying.
2314 mapping = page_rmapping(page);
2315 unlock_page(page);
2317 if (!page_mkwrite)
2318 file_update_time(vma->vm_file);
2321 * Throttle page dirtying rate down to writeback speed.
2323 * mapping may be NULL here because some device drivers do not
2324 * set page.mapping but still dirty their pages
2326 * Drop the mmap_sem before waiting on IO, if we can. The file
2327 * is pinning the mapping, as per above.
2329 if ((dirtied || page_mkwrite) && mapping) {
2330 struct file *fpin;
2332 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2333 balance_dirty_pages_ratelimited(mapping);
2334 if (fpin) {
2335 fput(fpin);
2336 return VM_FAULT_RETRY;
2340 return 0;
2344 * Handle write page faults for pages that can be reused in the current vma
2346 * This can happen either due to the mapping being with the VM_SHARED flag,
2347 * or due to us being the last reference standing to the page. In either
2348 * case, all we need to do here is to mark the page as writable and update
2349 * any related book-keeping.
2351 static inline void wp_page_reuse(struct vm_fault *vmf)
2352 __releases(vmf->ptl)
2354 struct vm_area_struct *vma = vmf->vma;
2355 struct page *page = vmf->page;
2356 pte_t entry;
2358 * Clear the pages cpupid information as the existing
2359 * information potentially belongs to a now completely
2360 * unrelated process.
2362 if (page)
2363 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2365 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2366 entry = pte_mkyoung(vmf->orig_pte);
2367 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2368 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2369 update_mmu_cache(vma, vmf->address, vmf->pte);
2370 pte_unmap_unlock(vmf->pte, vmf->ptl);
2374 * Handle the case of a page which we actually need to copy to a new page.
2376 * Called with mmap_sem locked and the old page referenced, but
2377 * without the ptl held.
2379 * High level logic flow:
2381 * - Allocate a page, copy the content of the old page to the new one.
2382 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2383 * - Take the PTL. If the pte changed, bail out and release the allocated page
2384 * - If the pte is still the way we remember it, update the page table and all
2385 * relevant references. This includes dropping the reference the page-table
2386 * held to the old page, as well as updating the rmap.
2387 * - In any case, unlock the PTL and drop the reference we took to the old page.
2389 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2391 struct vm_area_struct *vma = vmf->vma;
2392 struct mm_struct *mm = vma->vm_mm;
2393 struct page *old_page = vmf->page;
2394 struct page *new_page = NULL;
2395 pte_t entry;
2396 int page_copied = 0;
2397 struct mem_cgroup *memcg;
2398 struct mmu_notifier_range range;
2400 if (unlikely(anon_vma_prepare(vma)))
2401 goto oom;
2403 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2404 new_page = alloc_zeroed_user_highpage_movable(vma,
2405 vmf->address);
2406 if (!new_page)
2407 goto oom;
2408 } else {
2409 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2410 vmf->address);
2411 if (!new_page)
2412 goto oom;
2414 if (!cow_user_page(new_page, old_page, vmf)) {
2416 * COW failed, if the fault was solved by other,
2417 * it's fine. If not, userspace would re-fault on
2418 * the same address and we will handle the fault
2419 * from the second attempt.
2421 put_page(new_page);
2422 if (old_page)
2423 put_page(old_page);
2424 return 0;
2428 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2429 goto oom_free_new;
2431 __SetPageUptodate(new_page);
2433 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2434 vmf->address & PAGE_MASK,
2435 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2436 mmu_notifier_invalidate_range_start(&range);
2439 * Re-check the pte - we dropped the lock
2441 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2442 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2443 if (old_page) {
2444 if (!PageAnon(old_page)) {
2445 dec_mm_counter_fast(mm,
2446 mm_counter_file(old_page));
2447 inc_mm_counter_fast(mm, MM_ANONPAGES);
2449 } else {
2450 inc_mm_counter_fast(mm, MM_ANONPAGES);
2452 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2453 entry = mk_pte(new_page, vma->vm_page_prot);
2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2456 * Clear the pte entry and flush it first, before updating the
2457 * pte with the new entry. This will avoid a race condition
2458 * seen in the presence of one thread doing SMC and another
2459 * thread doing COW.
2461 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2462 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2463 mem_cgroup_commit_charge(new_page, memcg, false, false);
2464 lru_cache_add_active_or_unevictable(new_page, vma);
2466 * We call the notify macro here because, when using secondary
2467 * mmu page tables (such as kvm shadow page tables), we want the
2468 * new page to be mapped directly into the secondary page table.
2470 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2471 update_mmu_cache(vma, vmf->address, vmf->pte);
2472 if (old_page) {
2474 * Only after switching the pte to the new page may
2475 * we remove the mapcount here. Otherwise another
2476 * process may come and find the rmap count decremented
2477 * before the pte is switched to the new page, and
2478 * "reuse" the old page writing into it while our pte
2479 * here still points into it and can be read by other
2480 * threads.
2482 * The critical issue is to order this
2483 * page_remove_rmap with the ptp_clear_flush above.
2484 * Those stores are ordered by (if nothing else,)
2485 * the barrier present in the atomic_add_negative
2486 * in page_remove_rmap.
2488 * Then the TLB flush in ptep_clear_flush ensures that
2489 * no process can access the old page before the
2490 * decremented mapcount is visible. And the old page
2491 * cannot be reused until after the decremented
2492 * mapcount is visible. So transitively, TLBs to
2493 * old page will be flushed before it can be reused.
2495 page_remove_rmap(old_page, false);
2498 /* Free the old page.. */
2499 new_page = old_page;
2500 page_copied = 1;
2501 } else {
2502 mem_cgroup_cancel_charge(new_page, memcg, false);
2505 if (new_page)
2506 put_page(new_page);
2508 pte_unmap_unlock(vmf->pte, vmf->ptl);
2510 * No need to double call mmu_notifier->invalidate_range() callback as
2511 * the above ptep_clear_flush_notify() did already call it.
2513 mmu_notifier_invalidate_range_only_end(&range);
2514 if (old_page) {
2516 * Don't let another task, with possibly unlocked vma,
2517 * keep the mlocked page.
2519 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2520 lock_page(old_page); /* LRU manipulation */
2521 if (PageMlocked(old_page))
2522 munlock_vma_page(old_page);
2523 unlock_page(old_page);
2525 put_page(old_page);
2527 return page_copied ? VM_FAULT_WRITE : 0;
2528 oom_free_new:
2529 put_page(new_page);
2530 oom:
2531 if (old_page)
2532 put_page(old_page);
2533 return VM_FAULT_OOM;
2537 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2538 * writeable once the page is prepared
2540 * @vmf: structure describing the fault
2542 * This function handles all that is needed to finish a write page fault in a
2543 * shared mapping due to PTE being read-only once the mapped page is prepared.
2544 * It handles locking of PTE and modifying it.
2546 * The function expects the page to be locked or other protection against
2547 * concurrent faults / writeback (such as DAX radix tree locks).
2549 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2550 * we acquired PTE lock.
2552 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2554 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2555 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2556 &vmf->ptl);
2558 * We might have raced with another page fault while we released the
2559 * pte_offset_map_lock.
2561 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2562 pte_unmap_unlock(vmf->pte, vmf->ptl);
2563 return VM_FAULT_NOPAGE;
2565 wp_page_reuse(vmf);
2566 return 0;
2570 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2571 * mapping
2573 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2575 struct vm_area_struct *vma = vmf->vma;
2577 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2578 vm_fault_t ret;
2580 pte_unmap_unlock(vmf->pte, vmf->ptl);
2581 vmf->flags |= FAULT_FLAG_MKWRITE;
2582 ret = vma->vm_ops->pfn_mkwrite(vmf);
2583 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2584 return ret;
2585 return finish_mkwrite_fault(vmf);
2587 wp_page_reuse(vmf);
2588 return VM_FAULT_WRITE;
2591 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2592 __releases(vmf->ptl)
2594 struct vm_area_struct *vma = vmf->vma;
2595 vm_fault_t ret = VM_FAULT_WRITE;
2597 get_page(vmf->page);
2599 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2600 vm_fault_t tmp;
2602 pte_unmap_unlock(vmf->pte, vmf->ptl);
2603 tmp = do_page_mkwrite(vmf);
2604 if (unlikely(!tmp || (tmp &
2605 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2606 put_page(vmf->page);
2607 return tmp;
2609 tmp = finish_mkwrite_fault(vmf);
2610 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2611 unlock_page(vmf->page);
2612 put_page(vmf->page);
2613 return tmp;
2615 } else {
2616 wp_page_reuse(vmf);
2617 lock_page(vmf->page);
2619 ret |= fault_dirty_shared_page(vmf);
2620 put_page(vmf->page);
2622 return ret;
2626 * This routine handles present pages, when users try to write
2627 * to a shared page. It is done by copying the page to a new address
2628 * and decrementing the shared-page counter for the old page.
2630 * Note that this routine assumes that the protection checks have been
2631 * done by the caller (the low-level page fault routine in most cases).
2632 * Thus we can safely just mark it writable once we've done any necessary
2633 * COW.
2635 * We also mark the page dirty at this point even though the page will
2636 * change only once the write actually happens. This avoids a few races,
2637 * and potentially makes it more efficient.
2639 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2640 * but allow concurrent faults), with pte both mapped and locked.
2641 * We return with mmap_sem still held, but pte unmapped and unlocked.
2643 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2644 __releases(vmf->ptl)
2646 struct vm_area_struct *vma = vmf->vma;
2648 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2649 if (!vmf->page) {
2651 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2652 * VM_PFNMAP VMA.
2654 * We should not cow pages in a shared writeable mapping.
2655 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2657 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2658 (VM_WRITE|VM_SHARED))
2659 return wp_pfn_shared(vmf);
2661 pte_unmap_unlock(vmf->pte, vmf->ptl);
2662 return wp_page_copy(vmf);
2666 * Take out anonymous pages first, anonymous shared vmas are
2667 * not dirty accountable.
2669 if (PageAnon(vmf->page)) {
2670 int total_map_swapcount;
2671 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2672 page_count(vmf->page) != 1))
2673 goto copy;
2674 if (!trylock_page(vmf->page)) {
2675 get_page(vmf->page);
2676 pte_unmap_unlock(vmf->pte, vmf->ptl);
2677 lock_page(vmf->page);
2678 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2679 vmf->address, &vmf->ptl);
2680 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681 unlock_page(vmf->page);
2682 pte_unmap_unlock(vmf->pte, vmf->ptl);
2683 put_page(vmf->page);
2684 return 0;
2686 put_page(vmf->page);
2688 if (PageKsm(vmf->page)) {
2689 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2690 vmf->address);
2691 unlock_page(vmf->page);
2692 if (!reused)
2693 goto copy;
2694 wp_page_reuse(vmf);
2695 return VM_FAULT_WRITE;
2697 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2698 if (total_map_swapcount == 1) {
2700 * The page is all ours. Move it to
2701 * our anon_vma so the rmap code will
2702 * not search our parent or siblings.
2703 * Protected against the rmap code by
2704 * the page lock.
2706 page_move_anon_rmap(vmf->page, vma);
2708 unlock_page(vmf->page);
2709 wp_page_reuse(vmf);
2710 return VM_FAULT_WRITE;
2712 unlock_page(vmf->page);
2713 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2714 (VM_WRITE|VM_SHARED))) {
2715 return wp_page_shared(vmf);
2717 copy:
2719 * Ok, we need to copy. Oh, well..
2721 get_page(vmf->page);
2723 pte_unmap_unlock(vmf->pte, vmf->ptl);
2724 return wp_page_copy(vmf);
2727 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2728 unsigned long start_addr, unsigned long end_addr,
2729 struct zap_details *details)
2731 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2734 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2735 struct zap_details *details)
2737 struct vm_area_struct *vma;
2738 pgoff_t vba, vea, zba, zea;
2740 vma_interval_tree_foreach(vma, root,
2741 details->first_index, details->last_index) {
2743 vba = vma->vm_pgoff;
2744 vea = vba + vma_pages(vma) - 1;
2745 zba = details->first_index;
2746 if (zba < vba)
2747 zba = vba;
2748 zea = details->last_index;
2749 if (zea > vea)
2750 zea = vea;
2752 unmap_mapping_range_vma(vma,
2753 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2754 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2755 details);
2760 * unmap_mapping_pages() - Unmap pages from processes.
2761 * @mapping: The address space containing pages to be unmapped.
2762 * @start: Index of first page to be unmapped.
2763 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2764 * @even_cows: Whether to unmap even private COWed pages.
2766 * Unmap the pages in this address space from any userspace process which
2767 * has them mmaped. Generally, you want to remove COWed pages as well when
2768 * a file is being truncated, but not when invalidating pages from the page
2769 * cache.
2771 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2772 pgoff_t nr, bool even_cows)
2774 struct zap_details details = { };
2776 details.check_mapping = even_cows ? NULL : mapping;
2777 details.first_index = start;
2778 details.last_index = start + nr - 1;
2779 if (details.last_index < details.first_index)
2780 details.last_index = ULONG_MAX;
2782 i_mmap_lock_write(mapping);
2783 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2784 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2785 i_mmap_unlock_write(mapping);
2789 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2790 * address_space corresponding to the specified byte range in the underlying
2791 * file.
2793 * @mapping: the address space containing mmaps to be unmapped.
2794 * @holebegin: byte in first page to unmap, relative to the start of
2795 * the underlying file. This will be rounded down to a PAGE_SIZE
2796 * boundary. Note that this is different from truncate_pagecache(), which
2797 * must keep the partial page. In contrast, we must get rid of
2798 * partial pages.
2799 * @holelen: size of prospective hole in bytes. This will be rounded
2800 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2801 * end of the file.
2802 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2803 * but 0 when invalidating pagecache, don't throw away private data.
2805 void unmap_mapping_range(struct address_space *mapping,
2806 loff_t const holebegin, loff_t const holelen, int even_cows)
2808 pgoff_t hba = holebegin >> PAGE_SHIFT;
2809 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2811 /* Check for overflow. */
2812 if (sizeof(holelen) > sizeof(hlen)) {
2813 long long holeend =
2814 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2815 if (holeend & ~(long long)ULONG_MAX)
2816 hlen = ULONG_MAX - hba + 1;
2819 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2821 EXPORT_SYMBOL(unmap_mapping_range);
2824 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2825 * but allow concurrent faults), and pte mapped but not yet locked.
2826 * We return with pte unmapped and unlocked.
2828 * We return with the mmap_sem locked or unlocked in the same cases
2829 * as does filemap_fault().
2831 vm_fault_t do_swap_page(struct vm_fault *vmf)
2833 struct vm_area_struct *vma = vmf->vma;
2834 struct page *page = NULL, *swapcache;
2835 struct mem_cgroup *memcg;
2836 swp_entry_t entry;
2837 pte_t pte;
2838 int locked;
2839 int exclusive = 0;
2840 vm_fault_t ret = 0;
2842 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2843 goto out;
2845 entry = pte_to_swp_entry(vmf->orig_pte);
2846 if (unlikely(non_swap_entry(entry))) {
2847 if (is_migration_entry(entry)) {
2848 migration_entry_wait(vma->vm_mm, vmf->pmd,
2849 vmf->address);
2850 } else if (is_device_private_entry(entry)) {
2851 vmf->page = device_private_entry_to_page(entry);
2852 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2853 } else if (is_hwpoison_entry(entry)) {
2854 ret = VM_FAULT_HWPOISON;
2855 } else {
2856 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2857 ret = VM_FAULT_SIGBUS;
2859 goto out;
2863 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2864 page = lookup_swap_cache(entry, vma, vmf->address);
2865 swapcache = page;
2867 if (!page) {
2868 struct swap_info_struct *si = swp_swap_info(entry);
2870 if (si->flags & SWP_SYNCHRONOUS_IO &&
2871 __swap_count(entry) == 1) {
2872 /* skip swapcache */
2873 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2874 vmf->address);
2875 if (page) {
2876 __SetPageLocked(page);
2877 __SetPageSwapBacked(page);
2878 set_page_private(page, entry.val);
2879 lru_cache_add_anon(page);
2880 swap_readpage(page, true);
2882 } else {
2883 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2884 vmf);
2885 swapcache = page;
2888 if (!page) {
2890 * Back out if somebody else faulted in this pte
2891 * while we released the pte lock.
2893 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2894 vmf->address, &vmf->ptl);
2895 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2896 ret = VM_FAULT_OOM;
2897 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2898 goto unlock;
2901 /* Had to read the page from swap area: Major fault */
2902 ret = VM_FAULT_MAJOR;
2903 count_vm_event(PGMAJFAULT);
2904 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2905 } else if (PageHWPoison(page)) {
2907 * hwpoisoned dirty swapcache pages are kept for killing
2908 * owner processes (which may be unknown at hwpoison time)
2910 ret = VM_FAULT_HWPOISON;
2911 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2912 goto out_release;
2915 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2917 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2918 if (!locked) {
2919 ret |= VM_FAULT_RETRY;
2920 goto out_release;
2924 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2925 * release the swapcache from under us. The page pin, and pte_same
2926 * test below, are not enough to exclude that. Even if it is still
2927 * swapcache, we need to check that the page's swap has not changed.
2929 if (unlikely((!PageSwapCache(page) ||
2930 page_private(page) != entry.val)) && swapcache)
2931 goto out_page;
2933 page = ksm_might_need_to_copy(page, vma, vmf->address);
2934 if (unlikely(!page)) {
2935 ret = VM_FAULT_OOM;
2936 page = swapcache;
2937 goto out_page;
2940 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2941 &memcg, false)) {
2942 ret = VM_FAULT_OOM;
2943 goto out_page;
2947 * Back out if somebody else already faulted in this pte.
2949 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2950 &vmf->ptl);
2951 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2952 goto out_nomap;
2954 if (unlikely(!PageUptodate(page))) {
2955 ret = VM_FAULT_SIGBUS;
2956 goto out_nomap;
2960 * The page isn't present yet, go ahead with the fault.
2962 * Be careful about the sequence of operations here.
2963 * To get its accounting right, reuse_swap_page() must be called
2964 * while the page is counted on swap but not yet in mapcount i.e.
2965 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2966 * must be called after the swap_free(), or it will never succeed.
2969 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2970 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2971 pte = mk_pte(page, vma->vm_page_prot);
2972 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2973 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2974 vmf->flags &= ~FAULT_FLAG_WRITE;
2975 ret |= VM_FAULT_WRITE;
2976 exclusive = RMAP_EXCLUSIVE;
2978 flush_icache_page(vma, page);
2979 if (pte_swp_soft_dirty(vmf->orig_pte))
2980 pte = pte_mksoft_dirty(pte);
2981 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2982 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2983 vmf->orig_pte = pte;
2985 /* ksm created a completely new copy */
2986 if (unlikely(page != swapcache && swapcache)) {
2987 page_add_new_anon_rmap(page, vma, vmf->address, false);
2988 mem_cgroup_commit_charge(page, memcg, false, false);
2989 lru_cache_add_active_or_unevictable(page, vma);
2990 } else {
2991 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2992 mem_cgroup_commit_charge(page, memcg, true, false);
2993 activate_page(page);
2996 swap_free(entry);
2997 if (mem_cgroup_swap_full(page) ||
2998 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2999 try_to_free_swap(page);
3000 unlock_page(page);
3001 if (page != swapcache && swapcache) {
3003 * Hold the lock to avoid the swap entry to be reused
3004 * until we take the PT lock for the pte_same() check
3005 * (to avoid false positives from pte_same). For
3006 * further safety release the lock after the swap_free
3007 * so that the swap count won't change under a
3008 * parallel locked swapcache.
3010 unlock_page(swapcache);
3011 put_page(swapcache);
3014 if (vmf->flags & FAULT_FLAG_WRITE) {
3015 ret |= do_wp_page(vmf);
3016 if (ret & VM_FAULT_ERROR)
3017 ret &= VM_FAULT_ERROR;
3018 goto out;
3021 /* No need to invalidate - it was non-present before */
3022 update_mmu_cache(vma, vmf->address, vmf->pte);
3023 unlock:
3024 pte_unmap_unlock(vmf->pte, vmf->ptl);
3025 out:
3026 return ret;
3027 out_nomap:
3028 mem_cgroup_cancel_charge(page, memcg, false);
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 out_page:
3031 unlock_page(page);
3032 out_release:
3033 put_page(page);
3034 if (page != swapcache && swapcache) {
3035 unlock_page(swapcache);
3036 put_page(swapcache);
3038 return ret;
3042 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3043 * but allow concurrent faults), and pte mapped but not yet locked.
3044 * We return with mmap_sem still held, but pte unmapped and unlocked.
3046 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3048 struct vm_area_struct *vma = vmf->vma;
3049 struct mem_cgroup *memcg;
3050 struct page *page;
3051 vm_fault_t ret = 0;
3052 pte_t entry;
3054 /* File mapping without ->vm_ops ? */
3055 if (vma->vm_flags & VM_SHARED)
3056 return VM_FAULT_SIGBUS;
3059 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3060 * pte_offset_map() on pmds where a huge pmd might be created
3061 * from a different thread.
3063 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3064 * parallel threads are excluded by other means.
3066 * Here we only have down_read(mmap_sem).
3068 if (pte_alloc(vma->vm_mm, vmf->pmd))
3069 return VM_FAULT_OOM;
3071 /* See the comment in pte_alloc_one_map() */
3072 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3073 return 0;
3075 /* Use the zero-page for reads */
3076 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3077 !mm_forbids_zeropage(vma->vm_mm)) {
3078 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3079 vma->vm_page_prot));
3080 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3081 vmf->address, &vmf->ptl);
3082 if (!pte_none(*vmf->pte))
3083 goto unlock;
3084 ret = check_stable_address_space(vma->vm_mm);
3085 if (ret)
3086 goto unlock;
3087 /* Deliver the page fault to userland, check inside PT lock */
3088 if (userfaultfd_missing(vma)) {
3089 pte_unmap_unlock(vmf->pte, vmf->ptl);
3090 return handle_userfault(vmf, VM_UFFD_MISSING);
3092 goto setpte;
3095 /* Allocate our own private page. */
3096 if (unlikely(anon_vma_prepare(vma)))
3097 goto oom;
3098 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3099 if (!page)
3100 goto oom;
3102 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3103 false))
3104 goto oom_free_page;
3107 * The memory barrier inside __SetPageUptodate makes sure that
3108 * preceding stores to the page contents become visible before
3109 * the set_pte_at() write.
3111 __SetPageUptodate(page);
3113 entry = mk_pte(page, vma->vm_page_prot);
3114 if (vma->vm_flags & VM_WRITE)
3115 entry = pte_mkwrite(pte_mkdirty(entry));
3117 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3118 &vmf->ptl);
3119 if (!pte_none(*vmf->pte))
3120 goto release;
3122 ret = check_stable_address_space(vma->vm_mm);
3123 if (ret)
3124 goto release;
3126 /* Deliver the page fault to userland, check inside PT lock */
3127 if (userfaultfd_missing(vma)) {
3128 pte_unmap_unlock(vmf->pte, vmf->ptl);
3129 mem_cgroup_cancel_charge(page, memcg, false);
3130 put_page(page);
3131 return handle_userfault(vmf, VM_UFFD_MISSING);
3134 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3135 page_add_new_anon_rmap(page, vma, vmf->address, false);
3136 mem_cgroup_commit_charge(page, memcg, false, false);
3137 lru_cache_add_active_or_unevictable(page, vma);
3138 setpte:
3139 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3141 /* No need to invalidate - it was non-present before */
3142 update_mmu_cache(vma, vmf->address, vmf->pte);
3143 unlock:
3144 pte_unmap_unlock(vmf->pte, vmf->ptl);
3145 return ret;
3146 release:
3147 mem_cgroup_cancel_charge(page, memcg, false);
3148 put_page(page);
3149 goto unlock;
3150 oom_free_page:
3151 put_page(page);
3152 oom:
3153 return VM_FAULT_OOM;
3157 * The mmap_sem must have been held on entry, and may have been
3158 * released depending on flags and vma->vm_ops->fault() return value.
3159 * See filemap_fault() and __lock_page_retry().
3161 static vm_fault_t __do_fault(struct vm_fault *vmf)
3163 struct vm_area_struct *vma = vmf->vma;
3164 vm_fault_t ret;
3167 * Preallocate pte before we take page_lock because this might lead to
3168 * deadlocks for memcg reclaim which waits for pages under writeback:
3169 * lock_page(A)
3170 * SetPageWriteback(A)
3171 * unlock_page(A)
3172 * lock_page(B)
3173 * lock_page(B)
3174 * pte_alloc_pne
3175 * shrink_page_list
3176 * wait_on_page_writeback(A)
3177 * SetPageWriteback(B)
3178 * unlock_page(B)
3179 * # flush A, B to clear the writeback
3181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3182 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3183 if (!vmf->prealloc_pte)
3184 return VM_FAULT_OOM;
3185 smp_wmb(); /* See comment in __pte_alloc() */
3188 ret = vma->vm_ops->fault(vmf);
3189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3190 VM_FAULT_DONE_COW)))
3191 return ret;
3193 if (unlikely(PageHWPoison(vmf->page))) {
3194 if (ret & VM_FAULT_LOCKED)
3195 unlock_page(vmf->page);
3196 put_page(vmf->page);
3197 vmf->page = NULL;
3198 return VM_FAULT_HWPOISON;
3201 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202 lock_page(vmf->page);
3203 else
3204 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3206 return ret;
3210 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3211 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3212 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3213 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3215 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3217 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3220 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3222 struct vm_area_struct *vma = vmf->vma;
3224 if (!pmd_none(*vmf->pmd))
3225 goto map_pte;
3226 if (vmf->prealloc_pte) {
3227 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3228 if (unlikely(!pmd_none(*vmf->pmd))) {
3229 spin_unlock(vmf->ptl);
3230 goto map_pte;
3233 mm_inc_nr_ptes(vma->vm_mm);
3234 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3235 spin_unlock(vmf->ptl);
3236 vmf->prealloc_pte = NULL;
3237 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3238 return VM_FAULT_OOM;
3240 map_pte:
3242 * If a huge pmd materialized under us just retry later. Use
3243 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3244 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3245 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3246 * running immediately after a huge pmd fault in a different thread of
3247 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3248 * All we have to ensure is that it is a regular pmd that we can walk
3249 * with pte_offset_map() and we can do that through an atomic read in
3250 * C, which is what pmd_trans_unstable() provides.
3252 if (pmd_devmap_trans_unstable(vmf->pmd))
3253 return VM_FAULT_NOPAGE;
3256 * At this point we know that our vmf->pmd points to a page of ptes
3257 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3258 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3259 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3260 * be valid and we will re-check to make sure the vmf->pte isn't
3261 * pte_none() under vmf->ptl protection when we return to
3262 * alloc_set_pte().
3264 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3265 &vmf->ptl);
3266 return 0;
3269 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3270 static void deposit_prealloc_pte(struct vm_fault *vmf)
3272 struct vm_area_struct *vma = vmf->vma;
3274 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3276 * We are going to consume the prealloc table,
3277 * count that as nr_ptes.
3279 mm_inc_nr_ptes(vma->vm_mm);
3280 vmf->prealloc_pte = NULL;
3283 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3285 struct vm_area_struct *vma = vmf->vma;
3286 bool write = vmf->flags & FAULT_FLAG_WRITE;
3287 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3288 pmd_t entry;
3289 int i;
3290 vm_fault_t ret;
3292 if (!transhuge_vma_suitable(vma, haddr))
3293 return VM_FAULT_FALLBACK;
3295 ret = VM_FAULT_FALLBACK;
3296 page = compound_head(page);
3299 * Archs like ppc64 need additonal space to store information
3300 * related to pte entry. Use the preallocated table for that.
3302 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3303 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3304 if (!vmf->prealloc_pte)
3305 return VM_FAULT_OOM;
3306 smp_wmb(); /* See comment in __pte_alloc() */
3309 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3310 if (unlikely(!pmd_none(*vmf->pmd)))
3311 goto out;
3313 for (i = 0; i < HPAGE_PMD_NR; i++)
3314 flush_icache_page(vma, page + i);
3316 entry = mk_huge_pmd(page, vma->vm_page_prot);
3317 if (write)
3318 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3320 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3321 page_add_file_rmap(page, true);
3323 * deposit and withdraw with pmd lock held
3325 if (arch_needs_pgtable_deposit())
3326 deposit_prealloc_pte(vmf);
3328 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3330 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3332 /* fault is handled */
3333 ret = 0;
3334 count_vm_event(THP_FILE_MAPPED);
3335 out:
3336 spin_unlock(vmf->ptl);
3337 return ret;
3339 #else
3340 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3342 BUILD_BUG();
3343 return 0;
3345 #endif
3348 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3349 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3351 * @vmf: fault environment
3352 * @memcg: memcg to charge page (only for private mappings)
3353 * @page: page to map
3355 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3356 * return.
3358 * Target users are page handler itself and implementations of
3359 * vm_ops->map_pages.
3361 * Return: %0 on success, %VM_FAULT_ code in case of error.
3363 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3364 struct page *page)
3366 struct vm_area_struct *vma = vmf->vma;
3367 bool write = vmf->flags & FAULT_FLAG_WRITE;
3368 pte_t entry;
3369 vm_fault_t ret;
3371 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3372 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3373 /* THP on COW? */
3374 VM_BUG_ON_PAGE(memcg, page);
3376 ret = do_set_pmd(vmf, page);
3377 if (ret != VM_FAULT_FALLBACK)
3378 return ret;
3381 if (!vmf->pte) {
3382 ret = pte_alloc_one_map(vmf);
3383 if (ret)
3384 return ret;
3387 /* Re-check under ptl */
3388 if (unlikely(!pte_none(*vmf->pte)))
3389 return VM_FAULT_NOPAGE;
3391 flush_icache_page(vma, page);
3392 entry = mk_pte(page, vma->vm_page_prot);
3393 if (write)
3394 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3395 /* copy-on-write page */
3396 if (write && !(vma->vm_flags & VM_SHARED)) {
3397 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3398 page_add_new_anon_rmap(page, vma, vmf->address, false);
3399 mem_cgroup_commit_charge(page, memcg, false, false);
3400 lru_cache_add_active_or_unevictable(page, vma);
3401 } else {
3402 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3403 page_add_file_rmap(page, false);
3405 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3407 /* no need to invalidate: a not-present page won't be cached */
3408 update_mmu_cache(vma, vmf->address, vmf->pte);
3410 return 0;
3415 * finish_fault - finish page fault once we have prepared the page to fault
3417 * @vmf: structure describing the fault
3419 * This function handles all that is needed to finish a page fault once the
3420 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3421 * given page, adds reverse page mapping, handles memcg charges and LRU
3422 * addition.
3424 * The function expects the page to be locked and on success it consumes a
3425 * reference of a page being mapped (for the PTE which maps it).
3427 * Return: %0 on success, %VM_FAULT_ code in case of error.
3429 vm_fault_t finish_fault(struct vm_fault *vmf)
3431 struct page *page;
3432 vm_fault_t ret = 0;
3434 /* Did we COW the page? */
3435 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3436 !(vmf->vma->vm_flags & VM_SHARED))
3437 page = vmf->cow_page;
3438 else
3439 page = vmf->page;
3442 * check even for read faults because we might have lost our CoWed
3443 * page
3445 if (!(vmf->vma->vm_flags & VM_SHARED))
3446 ret = check_stable_address_space(vmf->vma->vm_mm);
3447 if (!ret)
3448 ret = alloc_set_pte(vmf, vmf->memcg, page);
3449 if (vmf->pte)
3450 pte_unmap_unlock(vmf->pte, vmf->ptl);
3451 return ret;
3454 static unsigned long fault_around_bytes __read_mostly =
3455 rounddown_pow_of_two(65536);
3457 #ifdef CONFIG_DEBUG_FS
3458 static int fault_around_bytes_get(void *data, u64 *val)
3460 *val = fault_around_bytes;
3461 return 0;
3465 * fault_around_bytes must be rounded down to the nearest page order as it's
3466 * what do_fault_around() expects to see.
3468 static int fault_around_bytes_set(void *data, u64 val)
3470 if (val / PAGE_SIZE > PTRS_PER_PTE)
3471 return -EINVAL;
3472 if (val > PAGE_SIZE)
3473 fault_around_bytes = rounddown_pow_of_two(val);
3474 else
3475 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3476 return 0;
3478 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3479 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3481 static int __init fault_around_debugfs(void)
3483 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3484 &fault_around_bytes_fops);
3485 return 0;
3487 late_initcall(fault_around_debugfs);
3488 #endif
3491 * do_fault_around() tries to map few pages around the fault address. The hope
3492 * is that the pages will be needed soon and this will lower the number of
3493 * faults to handle.
3495 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3496 * not ready to be mapped: not up-to-date, locked, etc.
3498 * This function is called with the page table lock taken. In the split ptlock
3499 * case the page table lock only protects only those entries which belong to
3500 * the page table corresponding to the fault address.
3502 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3503 * only once.
3505 * fault_around_bytes defines how many bytes we'll try to map.
3506 * do_fault_around() expects it to be set to a power of two less than or equal
3507 * to PTRS_PER_PTE.
3509 * The virtual address of the area that we map is naturally aligned to
3510 * fault_around_bytes rounded down to the machine page size
3511 * (and therefore to page order). This way it's easier to guarantee
3512 * that we don't cross page table boundaries.
3514 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3516 unsigned long address = vmf->address, nr_pages, mask;
3517 pgoff_t start_pgoff = vmf->pgoff;
3518 pgoff_t end_pgoff;
3519 int off;
3520 vm_fault_t ret = 0;
3522 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3523 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3525 vmf->address = max(address & mask, vmf->vma->vm_start);
3526 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3527 start_pgoff -= off;
3530 * end_pgoff is either the end of the page table, the end of
3531 * the vma or nr_pages from start_pgoff, depending what is nearest.
3533 end_pgoff = start_pgoff -
3534 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3535 PTRS_PER_PTE - 1;
3536 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3537 start_pgoff + nr_pages - 1);
3539 if (pmd_none(*vmf->pmd)) {
3540 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3541 if (!vmf->prealloc_pte)
3542 goto out;
3543 smp_wmb(); /* See comment in __pte_alloc() */
3546 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3548 /* Huge page is mapped? Page fault is solved */
3549 if (pmd_trans_huge(*vmf->pmd)) {
3550 ret = VM_FAULT_NOPAGE;
3551 goto out;
3554 /* ->map_pages() haven't done anything useful. Cold page cache? */
3555 if (!vmf->pte)
3556 goto out;
3558 /* check if the page fault is solved */
3559 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3560 if (!pte_none(*vmf->pte))
3561 ret = VM_FAULT_NOPAGE;
3562 pte_unmap_unlock(vmf->pte, vmf->ptl);
3563 out:
3564 vmf->address = address;
3565 vmf->pte = NULL;
3566 return ret;
3569 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3571 struct vm_area_struct *vma = vmf->vma;
3572 vm_fault_t ret = 0;
3575 * Let's call ->map_pages() first and use ->fault() as fallback
3576 * if page by the offset is not ready to be mapped (cold cache or
3577 * something).
3579 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3580 ret = do_fault_around(vmf);
3581 if (ret)
3582 return ret;
3585 ret = __do_fault(vmf);
3586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3587 return ret;
3589 ret |= finish_fault(vmf);
3590 unlock_page(vmf->page);
3591 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3592 put_page(vmf->page);
3593 return ret;
3596 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3598 struct vm_area_struct *vma = vmf->vma;
3599 vm_fault_t ret;
3601 if (unlikely(anon_vma_prepare(vma)))
3602 return VM_FAULT_OOM;
3604 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3605 if (!vmf->cow_page)
3606 return VM_FAULT_OOM;
3608 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3609 &vmf->memcg, false)) {
3610 put_page(vmf->cow_page);
3611 return VM_FAULT_OOM;
3614 ret = __do_fault(vmf);
3615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3616 goto uncharge_out;
3617 if (ret & VM_FAULT_DONE_COW)
3618 return ret;
3620 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3621 __SetPageUptodate(vmf->cow_page);
3623 ret |= finish_fault(vmf);
3624 unlock_page(vmf->page);
3625 put_page(vmf->page);
3626 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3627 goto uncharge_out;
3628 return ret;
3629 uncharge_out:
3630 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3631 put_page(vmf->cow_page);
3632 return ret;
3635 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3637 struct vm_area_struct *vma = vmf->vma;
3638 vm_fault_t ret, tmp;
3640 ret = __do_fault(vmf);
3641 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3642 return ret;
3645 * Check if the backing address space wants to know that the page is
3646 * about to become writable
3648 if (vma->vm_ops->page_mkwrite) {
3649 unlock_page(vmf->page);
3650 tmp = do_page_mkwrite(vmf);
3651 if (unlikely(!tmp ||
3652 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3653 put_page(vmf->page);
3654 return tmp;
3658 ret |= finish_fault(vmf);
3659 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3660 VM_FAULT_RETRY))) {
3661 unlock_page(vmf->page);
3662 put_page(vmf->page);
3663 return ret;
3666 ret |= fault_dirty_shared_page(vmf);
3667 return ret;
3671 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3672 * but allow concurrent faults).
3673 * The mmap_sem may have been released depending on flags and our
3674 * return value. See filemap_fault() and __lock_page_or_retry().
3675 * If mmap_sem is released, vma may become invalid (for example
3676 * by other thread calling munmap()).
3678 static vm_fault_t do_fault(struct vm_fault *vmf)
3680 struct vm_area_struct *vma = vmf->vma;
3681 struct mm_struct *vm_mm = vma->vm_mm;
3682 vm_fault_t ret;
3685 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3687 if (!vma->vm_ops->fault) {
3689 * If we find a migration pmd entry or a none pmd entry, which
3690 * should never happen, return SIGBUS
3692 if (unlikely(!pmd_present(*vmf->pmd)))
3693 ret = VM_FAULT_SIGBUS;
3694 else {
3695 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3696 vmf->pmd,
3697 vmf->address,
3698 &vmf->ptl);
3700 * Make sure this is not a temporary clearing of pte
3701 * by holding ptl and checking again. A R/M/W update
3702 * of pte involves: take ptl, clearing the pte so that
3703 * we don't have concurrent modification by hardware
3704 * followed by an update.
3706 if (unlikely(pte_none(*vmf->pte)))
3707 ret = VM_FAULT_SIGBUS;
3708 else
3709 ret = VM_FAULT_NOPAGE;
3711 pte_unmap_unlock(vmf->pte, vmf->ptl);
3713 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3714 ret = do_read_fault(vmf);
3715 else if (!(vma->vm_flags & VM_SHARED))
3716 ret = do_cow_fault(vmf);
3717 else
3718 ret = do_shared_fault(vmf);
3720 /* preallocated pagetable is unused: free it */
3721 if (vmf->prealloc_pte) {
3722 pte_free(vm_mm, vmf->prealloc_pte);
3723 vmf->prealloc_pte = NULL;
3725 return ret;
3728 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3729 unsigned long addr, int page_nid,
3730 int *flags)
3732 get_page(page);
3734 count_vm_numa_event(NUMA_HINT_FAULTS);
3735 if (page_nid == numa_node_id()) {
3736 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3737 *flags |= TNF_FAULT_LOCAL;
3740 return mpol_misplaced(page, vma, addr);
3743 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3745 struct vm_area_struct *vma = vmf->vma;
3746 struct page *page = NULL;
3747 int page_nid = NUMA_NO_NODE;
3748 int last_cpupid;
3749 int target_nid;
3750 bool migrated = false;
3751 pte_t pte, old_pte;
3752 bool was_writable = pte_savedwrite(vmf->orig_pte);
3753 int flags = 0;
3756 * The "pte" at this point cannot be used safely without
3757 * validation through pte_unmap_same(). It's of NUMA type but
3758 * the pfn may be screwed if the read is non atomic.
3760 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3761 spin_lock(vmf->ptl);
3762 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3763 pte_unmap_unlock(vmf->pte, vmf->ptl);
3764 goto out;
3768 * Make it present again, Depending on how arch implementes non
3769 * accessible ptes, some can allow access by kernel mode.
3771 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3772 pte = pte_modify(old_pte, vma->vm_page_prot);
3773 pte = pte_mkyoung(pte);
3774 if (was_writable)
3775 pte = pte_mkwrite(pte);
3776 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3777 update_mmu_cache(vma, vmf->address, vmf->pte);
3779 page = vm_normal_page(vma, vmf->address, pte);
3780 if (!page) {
3781 pte_unmap_unlock(vmf->pte, vmf->ptl);
3782 return 0;
3785 /* TODO: handle PTE-mapped THP */
3786 if (PageCompound(page)) {
3787 pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 return 0;
3792 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3793 * much anyway since they can be in shared cache state. This misses
3794 * the case where a mapping is writable but the process never writes
3795 * to it but pte_write gets cleared during protection updates and
3796 * pte_dirty has unpredictable behaviour between PTE scan updates,
3797 * background writeback, dirty balancing and application behaviour.
3799 if (!pte_write(pte))
3800 flags |= TNF_NO_GROUP;
3803 * Flag if the page is shared between multiple address spaces. This
3804 * is later used when determining whether to group tasks together
3806 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3807 flags |= TNF_SHARED;
3809 last_cpupid = page_cpupid_last(page);
3810 page_nid = page_to_nid(page);
3811 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3812 &flags);
3813 pte_unmap_unlock(vmf->pte, vmf->ptl);
3814 if (target_nid == NUMA_NO_NODE) {
3815 put_page(page);
3816 goto out;
3819 /* Migrate to the requested node */
3820 migrated = migrate_misplaced_page(page, vma, target_nid);
3821 if (migrated) {
3822 page_nid = target_nid;
3823 flags |= TNF_MIGRATED;
3824 } else
3825 flags |= TNF_MIGRATE_FAIL;
3827 out:
3828 if (page_nid != NUMA_NO_NODE)
3829 task_numa_fault(last_cpupid, page_nid, 1, flags);
3830 return 0;
3833 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3835 if (vma_is_anonymous(vmf->vma))
3836 return do_huge_pmd_anonymous_page(vmf);
3837 if (vmf->vma->vm_ops->huge_fault)
3838 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3839 return VM_FAULT_FALLBACK;
3842 /* `inline' is required to avoid gcc 4.1.2 build error */
3843 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3845 if (vma_is_anonymous(vmf->vma))
3846 return do_huge_pmd_wp_page(vmf, orig_pmd);
3847 if (vmf->vma->vm_ops->huge_fault)
3848 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3850 /* COW handled on pte level: split pmd */
3851 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3852 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3854 return VM_FAULT_FALLBACK;
3857 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3859 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3862 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3865 /* No support for anonymous transparent PUD pages yet */
3866 if (vma_is_anonymous(vmf->vma))
3867 return VM_FAULT_FALLBACK;
3868 if (vmf->vma->vm_ops->huge_fault)
3869 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3871 return VM_FAULT_FALLBACK;
3874 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3877 /* No support for anonymous transparent PUD pages yet */
3878 if (vma_is_anonymous(vmf->vma))
3879 return VM_FAULT_FALLBACK;
3880 if (vmf->vma->vm_ops->huge_fault)
3881 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3882 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3883 return VM_FAULT_FALLBACK;
3887 * These routines also need to handle stuff like marking pages dirty
3888 * and/or accessed for architectures that don't do it in hardware (most
3889 * RISC architectures). The early dirtying is also good on the i386.
3891 * There is also a hook called "update_mmu_cache()" that architectures
3892 * with external mmu caches can use to update those (ie the Sparc or
3893 * PowerPC hashed page tables that act as extended TLBs).
3895 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3896 * concurrent faults).
3898 * The mmap_sem may have been released depending on flags and our return value.
3899 * See filemap_fault() and __lock_page_or_retry().
3901 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3903 pte_t entry;
3905 if (unlikely(pmd_none(*vmf->pmd))) {
3907 * Leave __pte_alloc() until later: because vm_ops->fault may
3908 * want to allocate huge page, and if we expose page table
3909 * for an instant, it will be difficult to retract from
3910 * concurrent faults and from rmap lookups.
3912 vmf->pte = NULL;
3913 } else {
3914 /* See comment in pte_alloc_one_map() */
3915 if (pmd_devmap_trans_unstable(vmf->pmd))
3916 return 0;
3918 * A regular pmd is established and it can't morph into a huge
3919 * pmd from under us anymore at this point because we hold the
3920 * mmap_sem read mode and khugepaged takes it in write mode.
3921 * So now it's safe to run pte_offset_map().
3923 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3924 vmf->orig_pte = *vmf->pte;
3927 * some architectures can have larger ptes than wordsize,
3928 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3929 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3930 * accesses. The code below just needs a consistent view
3931 * for the ifs and we later double check anyway with the
3932 * ptl lock held. So here a barrier will do.
3934 barrier();
3935 if (pte_none(vmf->orig_pte)) {
3936 pte_unmap(vmf->pte);
3937 vmf->pte = NULL;
3941 if (!vmf->pte) {
3942 if (vma_is_anonymous(vmf->vma))
3943 return do_anonymous_page(vmf);
3944 else
3945 return do_fault(vmf);
3948 if (!pte_present(vmf->orig_pte))
3949 return do_swap_page(vmf);
3951 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3952 return do_numa_page(vmf);
3954 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3955 spin_lock(vmf->ptl);
3956 entry = vmf->orig_pte;
3957 if (unlikely(!pte_same(*vmf->pte, entry)))
3958 goto unlock;
3959 if (vmf->flags & FAULT_FLAG_WRITE) {
3960 if (!pte_write(entry))
3961 return do_wp_page(vmf);
3962 entry = pte_mkdirty(entry);
3964 entry = pte_mkyoung(entry);
3965 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3966 vmf->flags & FAULT_FLAG_WRITE)) {
3967 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3968 } else {
3970 * This is needed only for protection faults but the arch code
3971 * is not yet telling us if this is a protection fault or not.
3972 * This still avoids useless tlb flushes for .text page faults
3973 * with threads.
3975 if (vmf->flags & FAULT_FLAG_WRITE)
3976 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3978 unlock:
3979 pte_unmap_unlock(vmf->pte, vmf->ptl);
3980 return 0;
3984 * By the time we get here, we already hold the mm semaphore
3986 * The mmap_sem may have been released depending on flags and our
3987 * return value. See filemap_fault() and __lock_page_or_retry().
3989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3990 unsigned long address, unsigned int flags)
3992 struct vm_fault vmf = {
3993 .vma = vma,
3994 .address = address & PAGE_MASK,
3995 .flags = flags,
3996 .pgoff = linear_page_index(vma, address),
3997 .gfp_mask = __get_fault_gfp_mask(vma),
3999 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4000 struct mm_struct *mm = vma->vm_mm;
4001 pgd_t *pgd;
4002 p4d_t *p4d;
4003 vm_fault_t ret;
4005 pgd = pgd_offset(mm, address);
4006 p4d = p4d_alloc(mm, pgd, address);
4007 if (!p4d)
4008 return VM_FAULT_OOM;
4010 vmf.pud = pud_alloc(mm, p4d, address);
4011 if (!vmf.pud)
4012 return VM_FAULT_OOM;
4013 retry_pud:
4014 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4015 ret = create_huge_pud(&vmf);
4016 if (!(ret & VM_FAULT_FALLBACK))
4017 return ret;
4018 } else {
4019 pud_t orig_pud = *vmf.pud;
4021 barrier();
4022 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4024 /* NUMA case for anonymous PUDs would go here */
4026 if (dirty && !pud_write(orig_pud)) {
4027 ret = wp_huge_pud(&vmf, orig_pud);
4028 if (!(ret & VM_FAULT_FALLBACK))
4029 return ret;
4030 } else {
4031 huge_pud_set_accessed(&vmf, orig_pud);
4032 return 0;
4037 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4038 if (!vmf.pmd)
4039 return VM_FAULT_OOM;
4041 /* Huge pud page fault raced with pmd_alloc? */
4042 if (pud_trans_unstable(vmf.pud))
4043 goto retry_pud;
4045 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4046 ret = create_huge_pmd(&vmf);
4047 if (!(ret & VM_FAULT_FALLBACK))
4048 return ret;
4049 } else {
4050 pmd_t orig_pmd = *vmf.pmd;
4052 barrier();
4053 if (unlikely(is_swap_pmd(orig_pmd))) {
4054 VM_BUG_ON(thp_migration_supported() &&
4055 !is_pmd_migration_entry(orig_pmd));
4056 if (is_pmd_migration_entry(orig_pmd))
4057 pmd_migration_entry_wait(mm, vmf.pmd);
4058 return 0;
4060 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4061 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4062 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4064 if (dirty && !pmd_write(orig_pmd)) {
4065 ret = wp_huge_pmd(&vmf, orig_pmd);
4066 if (!(ret & VM_FAULT_FALLBACK))
4067 return ret;
4068 } else {
4069 huge_pmd_set_accessed(&vmf, orig_pmd);
4070 return 0;
4075 return handle_pte_fault(&vmf);
4079 * By the time we get here, we already hold the mm semaphore
4081 * The mmap_sem may have been released depending on flags and our
4082 * return value. See filemap_fault() and __lock_page_or_retry().
4084 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4085 unsigned int flags)
4087 vm_fault_t ret;
4089 __set_current_state(TASK_RUNNING);
4091 count_vm_event(PGFAULT);
4092 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4094 /* do counter updates before entering really critical section. */
4095 check_sync_rss_stat(current);
4097 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4098 flags & FAULT_FLAG_INSTRUCTION,
4099 flags & FAULT_FLAG_REMOTE))
4100 return VM_FAULT_SIGSEGV;
4103 * Enable the memcg OOM handling for faults triggered in user
4104 * space. Kernel faults are handled more gracefully.
4106 if (flags & FAULT_FLAG_USER)
4107 mem_cgroup_enter_user_fault();
4109 if (unlikely(is_vm_hugetlb_page(vma)))
4110 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4111 else
4112 ret = __handle_mm_fault(vma, address, flags);
4114 if (flags & FAULT_FLAG_USER) {
4115 mem_cgroup_exit_user_fault();
4117 * The task may have entered a memcg OOM situation but
4118 * if the allocation error was handled gracefully (no
4119 * VM_FAULT_OOM), there is no need to kill anything.
4120 * Just clean up the OOM state peacefully.
4122 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4123 mem_cgroup_oom_synchronize(false);
4126 return ret;
4128 EXPORT_SYMBOL_GPL(handle_mm_fault);
4130 #ifndef __PAGETABLE_P4D_FOLDED
4132 * Allocate p4d page table.
4133 * We've already handled the fast-path in-line.
4135 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4137 p4d_t *new = p4d_alloc_one(mm, address);
4138 if (!new)
4139 return -ENOMEM;
4141 smp_wmb(); /* See comment in __pte_alloc */
4143 spin_lock(&mm->page_table_lock);
4144 if (pgd_present(*pgd)) /* Another has populated it */
4145 p4d_free(mm, new);
4146 else
4147 pgd_populate(mm, pgd, new);
4148 spin_unlock(&mm->page_table_lock);
4149 return 0;
4151 #endif /* __PAGETABLE_P4D_FOLDED */
4153 #ifndef __PAGETABLE_PUD_FOLDED
4155 * Allocate page upper directory.
4156 * We've already handled the fast-path in-line.
4158 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4160 pud_t *new = pud_alloc_one(mm, address);
4161 if (!new)
4162 return -ENOMEM;
4164 smp_wmb(); /* See comment in __pte_alloc */
4166 spin_lock(&mm->page_table_lock);
4167 #ifndef __ARCH_HAS_5LEVEL_HACK
4168 if (!p4d_present(*p4d)) {
4169 mm_inc_nr_puds(mm);
4170 p4d_populate(mm, p4d, new);
4171 } else /* Another has populated it */
4172 pud_free(mm, new);
4173 #else
4174 if (!pgd_present(*p4d)) {
4175 mm_inc_nr_puds(mm);
4176 pgd_populate(mm, p4d, new);
4177 } else /* Another has populated it */
4178 pud_free(mm, new);
4179 #endif /* __ARCH_HAS_5LEVEL_HACK */
4180 spin_unlock(&mm->page_table_lock);
4181 return 0;
4183 #endif /* __PAGETABLE_PUD_FOLDED */
4185 #ifndef __PAGETABLE_PMD_FOLDED
4187 * Allocate page middle directory.
4188 * We've already handled the fast-path in-line.
4190 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4192 spinlock_t *ptl;
4193 pmd_t *new = pmd_alloc_one(mm, address);
4194 if (!new)
4195 return -ENOMEM;
4197 smp_wmb(); /* See comment in __pte_alloc */
4199 ptl = pud_lock(mm, pud);
4200 if (!pud_present(*pud)) {
4201 mm_inc_nr_pmds(mm);
4202 pud_populate(mm, pud, new);
4203 } else /* Another has populated it */
4204 pmd_free(mm, new);
4205 spin_unlock(ptl);
4206 return 0;
4208 #endif /* __PAGETABLE_PMD_FOLDED */
4210 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4211 struct mmu_notifier_range *range,
4212 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4214 pgd_t *pgd;
4215 p4d_t *p4d;
4216 pud_t *pud;
4217 pmd_t *pmd;
4218 pte_t *ptep;
4220 pgd = pgd_offset(mm, address);
4221 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4222 goto out;
4224 p4d = p4d_offset(pgd, address);
4225 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4226 goto out;
4228 pud = pud_offset(p4d, address);
4229 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4230 goto out;
4232 pmd = pmd_offset(pud, address);
4233 VM_BUG_ON(pmd_trans_huge(*pmd));
4235 if (pmd_huge(*pmd)) {
4236 if (!pmdpp)
4237 goto out;
4239 if (range) {
4240 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4241 NULL, mm, address & PMD_MASK,
4242 (address & PMD_MASK) + PMD_SIZE);
4243 mmu_notifier_invalidate_range_start(range);
4245 *ptlp = pmd_lock(mm, pmd);
4246 if (pmd_huge(*pmd)) {
4247 *pmdpp = pmd;
4248 return 0;
4250 spin_unlock(*ptlp);
4251 if (range)
4252 mmu_notifier_invalidate_range_end(range);
4255 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4256 goto out;
4258 if (range) {
4259 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4260 address & PAGE_MASK,
4261 (address & PAGE_MASK) + PAGE_SIZE);
4262 mmu_notifier_invalidate_range_start(range);
4264 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4265 if (!pte_present(*ptep))
4266 goto unlock;
4267 *ptepp = ptep;
4268 return 0;
4269 unlock:
4270 pte_unmap_unlock(ptep, *ptlp);
4271 if (range)
4272 mmu_notifier_invalidate_range_end(range);
4273 out:
4274 return -EINVAL;
4277 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4278 pte_t **ptepp, spinlock_t **ptlp)
4280 int res;
4282 /* (void) is needed to make gcc happy */
4283 (void) __cond_lock(*ptlp,
4284 !(res = __follow_pte_pmd(mm, address, NULL,
4285 ptepp, NULL, ptlp)));
4286 return res;
4289 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4290 struct mmu_notifier_range *range,
4291 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4293 int res;
4295 /* (void) is needed to make gcc happy */
4296 (void) __cond_lock(*ptlp,
4297 !(res = __follow_pte_pmd(mm, address, range,
4298 ptepp, pmdpp, ptlp)));
4299 return res;
4301 EXPORT_SYMBOL(follow_pte_pmd);
4304 * follow_pfn - look up PFN at a user virtual address
4305 * @vma: memory mapping
4306 * @address: user virtual address
4307 * @pfn: location to store found PFN
4309 * Only IO mappings and raw PFN mappings are allowed.
4311 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4313 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4314 unsigned long *pfn)
4316 int ret = -EINVAL;
4317 spinlock_t *ptl;
4318 pte_t *ptep;
4320 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4321 return ret;
4323 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4324 if (ret)
4325 return ret;
4326 *pfn = pte_pfn(*ptep);
4327 pte_unmap_unlock(ptep, ptl);
4328 return 0;
4330 EXPORT_SYMBOL(follow_pfn);
4332 #ifdef CONFIG_HAVE_IOREMAP_PROT
4333 int follow_phys(struct vm_area_struct *vma,
4334 unsigned long address, unsigned int flags,
4335 unsigned long *prot, resource_size_t *phys)
4337 int ret = -EINVAL;
4338 pte_t *ptep, pte;
4339 spinlock_t *ptl;
4341 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4342 goto out;
4344 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4345 goto out;
4346 pte = *ptep;
4348 if ((flags & FOLL_WRITE) && !pte_write(pte))
4349 goto unlock;
4351 *prot = pgprot_val(pte_pgprot(pte));
4352 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4354 ret = 0;
4355 unlock:
4356 pte_unmap_unlock(ptep, ptl);
4357 out:
4358 return ret;
4361 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4362 void *buf, int len, int write)
4364 resource_size_t phys_addr;
4365 unsigned long prot = 0;
4366 void __iomem *maddr;
4367 int offset = addr & (PAGE_SIZE-1);
4369 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4370 return -EINVAL;
4372 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4373 if (!maddr)
4374 return -ENOMEM;
4376 if (write)
4377 memcpy_toio(maddr + offset, buf, len);
4378 else
4379 memcpy_fromio(buf, maddr + offset, len);
4380 iounmap(maddr);
4382 return len;
4384 EXPORT_SYMBOL_GPL(generic_access_phys);
4385 #endif
4388 * Access another process' address space as given in mm. If non-NULL, use the
4389 * given task for page fault accounting.
4391 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4392 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4394 struct vm_area_struct *vma;
4395 void *old_buf = buf;
4396 int write = gup_flags & FOLL_WRITE;
4398 if (down_read_killable(&mm->mmap_sem))
4399 return 0;
4401 /* ignore errors, just check how much was successfully transferred */
4402 while (len) {
4403 int bytes, ret, offset;
4404 void *maddr;
4405 struct page *page = NULL;
4407 ret = get_user_pages_remote(tsk, mm, addr, 1,
4408 gup_flags, &page, &vma, NULL);
4409 if (ret <= 0) {
4410 #ifndef CONFIG_HAVE_IOREMAP_PROT
4411 break;
4412 #else
4414 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4415 * we can access using slightly different code.
4417 vma = find_vma(mm, addr);
4418 if (!vma || vma->vm_start > addr)
4419 break;
4420 if (vma->vm_ops && vma->vm_ops->access)
4421 ret = vma->vm_ops->access(vma, addr, buf,
4422 len, write);
4423 if (ret <= 0)
4424 break;
4425 bytes = ret;
4426 #endif
4427 } else {
4428 bytes = len;
4429 offset = addr & (PAGE_SIZE-1);
4430 if (bytes > PAGE_SIZE-offset)
4431 bytes = PAGE_SIZE-offset;
4433 maddr = kmap(page);
4434 if (write) {
4435 copy_to_user_page(vma, page, addr,
4436 maddr + offset, buf, bytes);
4437 set_page_dirty_lock(page);
4438 } else {
4439 copy_from_user_page(vma, page, addr,
4440 buf, maddr + offset, bytes);
4442 kunmap(page);
4443 put_page(page);
4445 len -= bytes;
4446 buf += bytes;
4447 addr += bytes;
4449 up_read(&mm->mmap_sem);
4451 return buf - old_buf;
4455 * access_remote_vm - access another process' address space
4456 * @mm: the mm_struct of the target address space
4457 * @addr: start address to access
4458 * @buf: source or destination buffer
4459 * @len: number of bytes to transfer
4460 * @gup_flags: flags modifying lookup behaviour
4462 * The caller must hold a reference on @mm.
4464 * Return: number of bytes copied from source to destination.
4466 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4467 void *buf, int len, unsigned int gup_flags)
4469 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4473 * Access another process' address space.
4474 * Source/target buffer must be kernel space,
4475 * Do not walk the page table directly, use get_user_pages
4477 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4478 void *buf, int len, unsigned int gup_flags)
4480 struct mm_struct *mm;
4481 int ret;
4483 mm = get_task_mm(tsk);
4484 if (!mm)
4485 return 0;
4487 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4489 mmput(mm);
4491 return ret;
4493 EXPORT_SYMBOL_GPL(access_process_vm);
4496 * Print the name of a VMA.
4498 void print_vma_addr(char *prefix, unsigned long ip)
4500 struct mm_struct *mm = current->mm;
4501 struct vm_area_struct *vma;
4504 * we might be running from an atomic context so we cannot sleep
4506 if (!down_read_trylock(&mm->mmap_sem))
4507 return;
4509 vma = find_vma(mm, ip);
4510 if (vma && vma->vm_file) {
4511 struct file *f = vma->vm_file;
4512 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4513 if (buf) {
4514 char *p;
4516 p = file_path(f, buf, PAGE_SIZE);
4517 if (IS_ERR(p))
4518 p = "?";
4519 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4520 vma->vm_start,
4521 vma->vm_end - vma->vm_start);
4522 free_page((unsigned long)buf);
4525 up_read(&mm->mmap_sem);
4528 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4529 void __might_fault(const char *file, int line)
4532 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4533 * holding the mmap_sem, this is safe because kernel memory doesn't
4534 * get paged out, therefore we'll never actually fault, and the
4535 * below annotations will generate false positives.
4537 if (uaccess_kernel())
4538 return;
4539 if (pagefault_disabled())
4540 return;
4541 __might_sleep(file, line, 0);
4542 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4543 if (current->mm)
4544 might_lock_read(&current->mm->mmap_sem);
4545 #endif
4547 EXPORT_SYMBOL(__might_fault);
4548 #endif
4550 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4552 * Process all subpages of the specified huge page with the specified
4553 * operation. The target subpage will be processed last to keep its
4554 * cache lines hot.
4556 static inline void process_huge_page(
4557 unsigned long addr_hint, unsigned int pages_per_huge_page,
4558 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4559 void *arg)
4561 int i, n, base, l;
4562 unsigned long addr = addr_hint &
4563 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4565 /* Process target subpage last to keep its cache lines hot */
4566 might_sleep();
4567 n = (addr_hint - addr) / PAGE_SIZE;
4568 if (2 * n <= pages_per_huge_page) {
4569 /* If target subpage in first half of huge page */
4570 base = 0;
4571 l = n;
4572 /* Process subpages at the end of huge page */
4573 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4574 cond_resched();
4575 process_subpage(addr + i * PAGE_SIZE, i, arg);
4577 } else {
4578 /* If target subpage in second half of huge page */
4579 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4580 l = pages_per_huge_page - n;
4581 /* Process subpages at the begin of huge page */
4582 for (i = 0; i < base; i++) {
4583 cond_resched();
4584 process_subpage(addr + i * PAGE_SIZE, i, arg);
4588 * Process remaining subpages in left-right-left-right pattern
4589 * towards the target subpage
4591 for (i = 0; i < l; i++) {
4592 int left_idx = base + i;
4593 int right_idx = base + 2 * l - 1 - i;
4595 cond_resched();
4596 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4597 cond_resched();
4598 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4602 static void clear_gigantic_page(struct page *page,
4603 unsigned long addr,
4604 unsigned int pages_per_huge_page)
4606 int i;
4607 struct page *p = page;
4609 might_sleep();
4610 for (i = 0; i < pages_per_huge_page;
4611 i++, p = mem_map_next(p, page, i)) {
4612 cond_resched();
4613 clear_user_highpage(p, addr + i * PAGE_SIZE);
4617 static void clear_subpage(unsigned long addr, int idx, void *arg)
4619 struct page *page = arg;
4621 clear_user_highpage(page + idx, addr);
4624 void clear_huge_page(struct page *page,
4625 unsigned long addr_hint, unsigned int pages_per_huge_page)
4627 unsigned long addr = addr_hint &
4628 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4630 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4631 clear_gigantic_page(page, addr, pages_per_huge_page);
4632 return;
4635 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4638 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4639 unsigned long addr,
4640 struct vm_area_struct *vma,
4641 unsigned int pages_per_huge_page)
4643 int i;
4644 struct page *dst_base = dst;
4645 struct page *src_base = src;
4647 for (i = 0; i < pages_per_huge_page; ) {
4648 cond_resched();
4649 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4651 i++;
4652 dst = mem_map_next(dst, dst_base, i);
4653 src = mem_map_next(src, src_base, i);
4657 struct copy_subpage_arg {
4658 struct page *dst;
4659 struct page *src;
4660 struct vm_area_struct *vma;
4663 static void copy_subpage(unsigned long addr, int idx, void *arg)
4665 struct copy_subpage_arg *copy_arg = arg;
4667 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4668 addr, copy_arg->vma);
4671 void copy_user_huge_page(struct page *dst, struct page *src,
4672 unsigned long addr_hint, struct vm_area_struct *vma,
4673 unsigned int pages_per_huge_page)
4675 unsigned long addr = addr_hint &
4676 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4677 struct copy_subpage_arg arg = {
4678 .dst = dst,
4679 .src = src,
4680 .vma = vma,
4683 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4684 copy_user_gigantic_page(dst, src, addr, vma,
4685 pages_per_huge_page);
4686 return;
4689 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4692 long copy_huge_page_from_user(struct page *dst_page,
4693 const void __user *usr_src,
4694 unsigned int pages_per_huge_page,
4695 bool allow_pagefault)
4697 void *src = (void *)usr_src;
4698 void *page_kaddr;
4699 unsigned long i, rc = 0;
4700 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4702 for (i = 0; i < pages_per_huge_page; i++) {
4703 if (allow_pagefault)
4704 page_kaddr = kmap(dst_page + i);
4705 else
4706 page_kaddr = kmap_atomic(dst_page + i);
4707 rc = copy_from_user(page_kaddr,
4708 (const void __user *)(src + i * PAGE_SIZE),
4709 PAGE_SIZE);
4710 if (allow_pagefault)
4711 kunmap(dst_page + i);
4712 else
4713 kunmap_atomic(page_kaddr);
4715 ret_val -= (PAGE_SIZE - rc);
4716 if (rc)
4717 break;
4719 cond_resched();
4721 return ret_val;
4723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4725 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4727 static struct kmem_cache *page_ptl_cachep;
4729 void __init ptlock_cache_init(void)
4731 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4732 SLAB_PANIC, NULL);
4735 bool ptlock_alloc(struct page *page)
4737 spinlock_t *ptl;
4739 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4740 if (!ptl)
4741 return false;
4742 page->ptl = ptl;
4743 return true;
4746 void ptlock_free(struct page *page)
4748 kmem_cache_free(page_ptl_cachep, page->ptl);
4750 #endif