split dev_queue
[cor.git] / mm / memcontrol.c
blobc5b5f74cfd4debb16651552d29a5dfd688c87093
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
326 int nid;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 return 0;
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
358 if (mem_cgroup_is_root(memcg))
359 return;
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
376 return 0;
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
391 return ret;
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret)
413 goto unlock;
415 unlock:
416 if (!ret)
417 memcg_shrinker_map_size = size;
418 mutex_unlock(&memcg_shrinker_map_mutex);
419 return ret;
422 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
424 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
425 struct memcg_shrinker_map *map;
427 rcu_read_lock();
428 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
429 /* Pairs with smp mb in shrink_slab() */
430 smp_mb__before_atomic();
431 set_bit(shrinker_id, map->map);
432 rcu_read_unlock();
437 * mem_cgroup_css_from_page - css of the memcg associated with a page
438 * @page: page of interest
440 * If memcg is bound to the default hierarchy, css of the memcg associated
441 * with @page is returned. The returned css remains associated with @page
442 * until it is released.
444 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
445 * is returned.
447 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
449 struct mem_cgroup *memcg;
451 memcg = page->mem_cgroup;
453 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
454 memcg = root_mem_cgroup;
456 return &memcg->css;
460 * page_cgroup_ino - return inode number of the memcg a page is charged to
461 * @page: the page
463 * Look up the closest online ancestor of the memory cgroup @page is charged to
464 * and return its inode number or 0 if @page is not charged to any cgroup. It
465 * is safe to call this function without holding a reference to @page.
467 * Note, this function is inherently racy, because there is nothing to prevent
468 * the cgroup inode from getting torn down and potentially reallocated a moment
469 * after page_cgroup_ino() returns, so it only should be used by callers that
470 * do not care (such as procfs interfaces).
472 ino_t page_cgroup_ino(struct page *page)
474 struct mem_cgroup *memcg;
475 unsigned long ino = 0;
477 rcu_read_lock();
478 if (PageSlab(page) && !PageTail(page))
479 memcg = memcg_from_slab_page(page);
480 else
481 memcg = READ_ONCE(page->mem_cgroup);
482 while (memcg && !(memcg->css.flags & CSS_ONLINE))
483 memcg = parent_mem_cgroup(memcg);
484 if (memcg)
485 ino = cgroup_ino(memcg->css.cgroup);
486 rcu_read_unlock();
487 return ino;
490 static struct mem_cgroup_per_node *
491 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
493 int nid = page_to_nid(page);
495 return memcg->nodeinfo[nid];
498 static struct mem_cgroup_tree_per_node *
499 soft_limit_tree_node(int nid)
501 return soft_limit_tree.rb_tree_per_node[nid];
504 static struct mem_cgroup_tree_per_node *
505 soft_limit_tree_from_page(struct page *page)
507 int nid = page_to_nid(page);
509 return soft_limit_tree.rb_tree_per_node[nid];
512 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
513 struct mem_cgroup_tree_per_node *mctz,
514 unsigned long new_usage_in_excess)
516 struct rb_node **p = &mctz->rb_root.rb_node;
517 struct rb_node *parent = NULL;
518 struct mem_cgroup_per_node *mz_node;
519 bool rightmost = true;
521 if (mz->on_tree)
522 return;
524 mz->usage_in_excess = new_usage_in_excess;
525 if (!mz->usage_in_excess)
526 return;
527 while (*p) {
528 parent = *p;
529 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
530 tree_node);
531 if (mz->usage_in_excess < mz_node->usage_in_excess) {
532 p = &(*p)->rb_left;
533 rightmost = false;
537 * We can't avoid mem cgroups that are over their soft
538 * limit by the same amount
540 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
541 p = &(*p)->rb_right;
544 if (rightmost)
545 mctz->rb_rightmost = &mz->tree_node;
547 rb_link_node(&mz->tree_node, parent, p);
548 rb_insert_color(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = true;
552 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
553 struct mem_cgroup_tree_per_node *mctz)
555 if (!mz->on_tree)
556 return;
558 if (&mz->tree_node == mctz->rb_rightmost)
559 mctz->rb_rightmost = rb_prev(&mz->tree_node);
561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false;
565 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
566 struct mem_cgroup_tree_per_node *mctz)
568 unsigned long flags;
570 spin_lock_irqsave(&mctz->lock, flags);
571 __mem_cgroup_remove_exceeded(mz, mctz);
572 spin_unlock_irqrestore(&mctz->lock, flags);
575 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
577 unsigned long nr_pages = page_counter_read(&memcg->memory);
578 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
579 unsigned long excess = 0;
581 if (nr_pages > soft_limit)
582 excess = nr_pages - soft_limit;
584 return excess;
587 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
589 unsigned long excess;
590 struct mem_cgroup_per_node *mz;
591 struct mem_cgroup_tree_per_node *mctz;
593 mctz = soft_limit_tree_from_page(page);
594 if (!mctz)
595 return;
597 * Necessary to update all ancestors when hierarchy is used.
598 * because their event counter is not touched.
600 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
601 mz = mem_cgroup_page_nodeinfo(memcg, page);
602 excess = soft_limit_excess(memcg);
604 * We have to update the tree if mz is on RB-tree or
605 * mem is over its softlimit.
607 if (excess || mz->on_tree) {
608 unsigned long flags;
610 spin_lock_irqsave(&mctz->lock, flags);
611 /* if on-tree, remove it */
612 if (mz->on_tree)
613 __mem_cgroup_remove_exceeded(mz, mctz);
615 * Insert again. mz->usage_in_excess will be updated.
616 * If excess is 0, no tree ops.
618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
619 spin_unlock_irqrestore(&mctz->lock, flags);
624 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
626 struct mem_cgroup_tree_per_node *mctz;
627 struct mem_cgroup_per_node *mz;
628 int nid;
630 for_each_node(nid) {
631 mz = mem_cgroup_nodeinfo(memcg, nid);
632 mctz = soft_limit_tree_node(nid);
633 if (mctz)
634 mem_cgroup_remove_exceeded(mz, mctz);
638 static struct mem_cgroup_per_node *
639 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
641 struct mem_cgroup_per_node *mz;
643 retry:
644 mz = NULL;
645 if (!mctz->rb_rightmost)
646 goto done; /* Nothing to reclaim from */
648 mz = rb_entry(mctz->rb_rightmost,
649 struct mem_cgroup_per_node, tree_node);
651 * Remove the node now but someone else can add it back,
652 * we will to add it back at the end of reclaim to its correct
653 * position in the tree.
655 __mem_cgroup_remove_exceeded(mz, mctz);
656 if (!soft_limit_excess(mz->memcg) ||
657 !css_tryget_online(&mz->memcg->css))
658 goto retry;
659 done:
660 return mz;
663 static struct mem_cgroup_per_node *
664 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
666 struct mem_cgroup_per_node *mz;
668 spin_lock_irq(&mctz->lock);
669 mz = __mem_cgroup_largest_soft_limit_node(mctz);
670 spin_unlock_irq(&mctz->lock);
671 return mz;
675 * __mod_memcg_state - update cgroup memory statistics
676 * @memcg: the memory cgroup
677 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
678 * @val: delta to add to the counter, can be negative
680 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
682 long x;
684 if (mem_cgroup_disabled())
685 return;
687 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
688 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
689 struct mem_cgroup *mi;
692 * Batch local counters to keep them in sync with
693 * the hierarchical ones.
695 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
696 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
697 atomic_long_add(x, &mi->vmstats[idx]);
698 x = 0;
700 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 static struct mem_cgroup_per_node *
704 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
706 struct mem_cgroup *parent;
708 parent = parent_mem_cgroup(pn->memcg);
709 if (!parent)
710 return NULL;
711 return mem_cgroup_nodeinfo(parent, nid);
715 * __mod_lruvec_state - update lruvec memory statistics
716 * @lruvec: the lruvec
717 * @idx: the stat item
718 * @val: delta to add to the counter, can be negative
720 * The lruvec is the intersection of the NUMA node and a cgroup. This
721 * function updates the all three counters that are affected by a
722 * change of state at this level: per-node, per-cgroup, per-lruvec.
724 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
725 int val)
727 pg_data_t *pgdat = lruvec_pgdat(lruvec);
728 struct mem_cgroup_per_node *pn;
729 struct mem_cgroup *memcg;
730 long x;
732 /* Update node */
733 __mod_node_page_state(pgdat, idx, val);
735 if (mem_cgroup_disabled())
736 return;
738 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
739 memcg = pn->memcg;
741 /* Update memcg */
742 __mod_memcg_state(memcg, idx, val);
744 /* Update lruvec */
745 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
747 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
748 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
749 struct mem_cgroup_per_node *pi;
751 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
752 atomic_long_add(x, &pi->lruvec_stat[idx]);
753 x = 0;
755 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
760 struct page *page = virt_to_head_page(p);
761 pg_data_t *pgdat = page_pgdat(page);
762 struct mem_cgroup *memcg;
763 struct lruvec *lruvec;
765 rcu_read_lock();
766 memcg = memcg_from_slab_page(page);
768 /* Untracked pages have no memcg, no lruvec. Update only the node */
769 if (!memcg || memcg == root_mem_cgroup) {
770 __mod_node_page_state(pgdat, idx, val);
771 } else {
772 lruvec = mem_cgroup_lruvec(memcg, pgdat);
773 __mod_lruvec_state(lruvec, idx, val);
775 rcu_read_unlock();
779 * __count_memcg_events - account VM events in a cgroup
780 * @memcg: the memory cgroup
781 * @idx: the event item
782 * @count: the number of events that occured
784 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
785 unsigned long count)
787 unsigned long x;
789 if (mem_cgroup_disabled())
790 return;
792 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
793 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
794 struct mem_cgroup *mi;
797 * Batch local counters to keep them in sync with
798 * the hierarchical ones.
800 __this_cpu_add(memcg->vmstats_local->events[idx], x);
801 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
802 atomic_long_add(x, &mi->vmevents[idx]);
803 x = 0;
805 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
808 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
810 return atomic_long_read(&memcg->vmevents[event]);
813 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
815 long x = 0;
816 int cpu;
818 for_each_possible_cpu(cpu)
819 x += per_cpu(memcg->vmstats_local->events[event], cpu);
820 return x;
823 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
824 struct page *page,
825 bool compound, int nr_pages)
828 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
829 * counted as CACHE even if it's on ANON LRU.
831 if (PageAnon(page))
832 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
833 else {
834 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
835 if (PageSwapBacked(page))
836 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
839 if (compound) {
840 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
841 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
844 /* pagein of a big page is an event. So, ignore page size */
845 if (nr_pages > 0)
846 __count_memcg_events(memcg, PGPGIN, 1);
847 else {
848 __count_memcg_events(memcg, PGPGOUT, 1);
849 nr_pages = -nr_pages; /* for event */
852 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
856 enum mem_cgroup_events_target target)
858 unsigned long val, next;
860 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
861 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
862 /* from time_after() in jiffies.h */
863 if ((long)(next - val) < 0) {
864 switch (target) {
865 case MEM_CGROUP_TARGET_THRESH:
866 next = val + THRESHOLDS_EVENTS_TARGET;
867 break;
868 case MEM_CGROUP_TARGET_SOFTLIMIT:
869 next = val + SOFTLIMIT_EVENTS_TARGET;
870 break;
871 default:
872 break;
874 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
875 return true;
877 return false;
881 * Check events in order.
884 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
889 bool do_softlimit;
891 do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_SOFTLIMIT);
893 mem_cgroup_threshold(memcg);
894 if (unlikely(do_softlimit))
895 mem_cgroup_update_tree(memcg, page);
899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
906 if (unlikely(!p))
907 return NULL;
909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
911 EXPORT_SYMBOL(mem_cgroup_from_task);
914 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
915 * @mm: mm from which memcg should be extracted. It can be NULL.
917 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
918 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
919 * returned.
921 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
923 struct mem_cgroup *memcg;
925 if (mem_cgroup_disabled())
926 return NULL;
928 rcu_read_lock();
929 do {
931 * Page cache insertions can happen withou an
932 * actual mm context, e.g. during disk probing
933 * on boot, loopback IO, acct() writes etc.
935 if (unlikely(!mm))
936 memcg = root_mem_cgroup;
937 else {
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 memcg = root_mem_cgroup;
942 } while (!css_tryget(&memcg->css));
943 rcu_read_unlock();
944 return memcg;
946 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
950 * @page: page from which memcg should be extracted.
952 * Obtain a reference on page->memcg and returns it if successful. Otherwise
953 * root_mem_cgroup is returned.
955 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
957 struct mem_cgroup *memcg = page->mem_cgroup;
959 if (mem_cgroup_disabled())
960 return NULL;
962 rcu_read_lock();
963 if (!memcg || !css_tryget_online(&memcg->css))
964 memcg = root_mem_cgroup;
965 rcu_read_unlock();
966 return memcg;
968 EXPORT_SYMBOL(get_mem_cgroup_from_page);
971 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
973 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
975 if (unlikely(current->active_memcg)) {
976 struct mem_cgroup *memcg = root_mem_cgroup;
978 rcu_read_lock();
979 if (css_tryget_online(&current->active_memcg->css))
980 memcg = current->active_memcg;
981 rcu_read_unlock();
982 return memcg;
984 return get_mem_cgroup_from_mm(current->mm);
988 * mem_cgroup_iter - iterate over memory cgroup hierarchy
989 * @root: hierarchy root
990 * @prev: previously returned memcg, NULL on first invocation
991 * @reclaim: cookie for shared reclaim walks, NULL for full walks
993 * Returns references to children of the hierarchy below @root, or
994 * @root itself, or %NULL after a full round-trip.
996 * Caller must pass the return value in @prev on subsequent
997 * invocations for reference counting, or use mem_cgroup_iter_break()
998 * to cancel a hierarchy walk before the round-trip is complete.
1000 * Reclaimers can specify a node and a priority level in @reclaim to
1001 * divide up the memcgs in the hierarchy among all concurrent
1002 * reclaimers operating on the same node and priority.
1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1005 struct mem_cgroup *prev,
1006 struct mem_cgroup_reclaim_cookie *reclaim)
1008 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1009 struct cgroup_subsys_state *css = NULL;
1010 struct mem_cgroup *memcg = NULL;
1011 struct mem_cgroup *pos = NULL;
1013 if (mem_cgroup_disabled())
1014 return NULL;
1016 if (!root)
1017 root = root_mem_cgroup;
1019 if (prev && !reclaim)
1020 pos = prev;
1022 if (!root->use_hierarchy && root != root_mem_cgroup) {
1023 if (prev)
1024 goto out;
1025 return root;
1028 rcu_read_lock();
1030 if (reclaim) {
1031 struct mem_cgroup_per_node *mz;
1033 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1034 iter = &mz->iter;
1036 if (prev && reclaim->generation != iter->generation)
1037 goto out_unlock;
1039 while (1) {
1040 pos = READ_ONCE(iter->position);
1041 if (!pos || css_tryget(&pos->css))
1042 break;
1044 * css reference reached zero, so iter->position will
1045 * be cleared by ->css_released. However, we should not
1046 * rely on this happening soon, because ->css_released
1047 * is called from a work queue, and by busy-waiting we
1048 * might block it. So we clear iter->position right
1049 * away.
1051 (void)cmpxchg(&iter->position, pos, NULL);
1055 if (pos)
1056 css = &pos->css;
1058 for (;;) {
1059 css = css_next_descendant_pre(css, &root->css);
1060 if (!css) {
1062 * Reclaimers share the hierarchy walk, and a
1063 * new one might jump in right at the end of
1064 * the hierarchy - make sure they see at least
1065 * one group and restart from the beginning.
1067 if (!prev)
1068 continue;
1069 break;
1073 * Verify the css and acquire a reference. The root
1074 * is provided by the caller, so we know it's alive
1075 * and kicking, and don't take an extra reference.
1077 memcg = mem_cgroup_from_css(css);
1079 if (css == &root->css)
1080 break;
1082 if (css_tryget(css))
1083 break;
1085 memcg = NULL;
1088 if (reclaim) {
1090 * The position could have already been updated by a competing
1091 * thread, so check that the value hasn't changed since we read
1092 * it to avoid reclaiming from the same cgroup twice.
1094 (void)cmpxchg(&iter->position, pos, memcg);
1096 if (pos)
1097 css_put(&pos->css);
1099 if (!memcg)
1100 iter->generation++;
1101 else if (!prev)
1102 reclaim->generation = iter->generation;
1105 out_unlock:
1106 rcu_read_unlock();
1107 out:
1108 if (prev && prev != root)
1109 css_put(&prev->css);
1111 return memcg;
1115 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116 * @root: hierarchy root
1117 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1119 void mem_cgroup_iter_break(struct mem_cgroup *root,
1120 struct mem_cgroup *prev)
1122 if (!root)
1123 root = root_mem_cgroup;
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1128 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1129 struct mem_cgroup *dead_memcg)
1131 struct mem_cgroup_reclaim_iter *iter;
1132 struct mem_cgroup_per_node *mz;
1133 int nid;
1135 for_each_node(nid) {
1136 mz = mem_cgroup_nodeinfo(from, nid);
1137 iter = &mz->iter;
1138 cmpxchg(&iter->position, dead_memcg, NULL);
1142 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1144 struct mem_cgroup *memcg = dead_memcg;
1145 struct mem_cgroup *last;
1147 do {
1148 __invalidate_reclaim_iterators(memcg, dead_memcg);
1149 last = memcg;
1150 } while ((memcg = parent_mem_cgroup(memcg)));
1153 * When cgruop1 non-hierarchy mode is used,
1154 * parent_mem_cgroup() does not walk all the way up to the
1155 * cgroup root (root_mem_cgroup). So we have to handle
1156 * dead_memcg from cgroup root separately.
1158 if (last != root_mem_cgroup)
1159 __invalidate_reclaim_iterators(root_mem_cgroup,
1160 dead_memcg);
1164 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165 * @memcg: hierarchy root
1166 * @fn: function to call for each task
1167 * @arg: argument passed to @fn
1169 * This function iterates over tasks attached to @memcg or to any of its
1170 * descendants and calls @fn for each task. If @fn returns a non-zero
1171 * value, the function breaks the iteration loop and returns the value.
1172 * Otherwise, it will iterate over all tasks and return 0.
1174 * This function must not be called for the root memory cgroup.
1176 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1177 int (*fn)(struct task_struct *, void *), void *arg)
1179 struct mem_cgroup *iter;
1180 int ret = 0;
1182 BUG_ON(memcg == root_mem_cgroup);
1184 for_each_mem_cgroup_tree(iter, memcg) {
1185 struct css_task_iter it;
1186 struct task_struct *task;
1188 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1189 while (!ret && (task = css_task_iter_next(&it)))
1190 ret = fn(task, arg);
1191 css_task_iter_end(&it);
1192 if (ret) {
1193 mem_cgroup_iter_break(memcg, iter);
1194 break;
1197 return ret;
1201 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1202 * @page: the page
1203 * @pgdat: pgdat of the page
1205 * This function is only safe when following the LRU page isolation
1206 * and putback protocol: the LRU lock must be held, and the page must
1207 * either be PageLRU() or the caller must have isolated/allocated it.
1209 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1211 struct mem_cgroup_per_node *mz;
1212 struct mem_cgroup *memcg;
1213 struct lruvec *lruvec;
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &pgdat->__lruvec;
1217 goto out;
1220 memcg = page->mem_cgroup;
1222 * Swapcache readahead pages are added to the LRU - and
1223 * possibly migrated - before they are charged.
1225 if (!memcg)
1226 memcg = root_mem_cgroup;
1228 mz = mem_cgroup_page_nodeinfo(memcg, page);
1229 lruvec = &mz->lruvec;
1230 out:
1232 * Since a node can be onlined after the mem_cgroup was created,
1233 * we have to be prepared to initialize lruvec->zone here;
1234 * and if offlined then reonlined, we need to reinitialize it.
1236 if (unlikely(lruvec->pgdat != pgdat))
1237 lruvec->pgdat = pgdat;
1238 return lruvec;
1242 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243 * @lruvec: mem_cgroup per zone lru vector
1244 * @lru: index of lru list the page is sitting on
1245 * @zid: zone id of the accounted pages
1246 * @nr_pages: positive when adding or negative when removing
1248 * This function must be called under lru_lock, just before a page is added
1249 * to or just after a page is removed from an lru list (that ordering being
1250 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1252 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1253 int zid, int nr_pages)
1255 struct mem_cgroup_per_node *mz;
1256 unsigned long *lru_size;
1257 long size;
1259 if (mem_cgroup_disabled())
1260 return;
1262 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1263 lru_size = &mz->lru_zone_size[zid][lru];
1265 if (nr_pages < 0)
1266 *lru_size += nr_pages;
1268 size = *lru_size;
1269 if (WARN_ONCE(size < 0,
1270 "%s(%p, %d, %d): lru_size %ld\n",
1271 __func__, lruvec, lru, nr_pages, size)) {
1272 VM_BUG_ON(1);
1273 *lru_size = 0;
1276 if (nr_pages > 0)
1277 *lru_size += nr_pages;
1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1282 * @memcg: the memory cgroup
1284 * Returns the maximum amount of memory @mem can be charged with, in
1285 * pages.
1287 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1289 unsigned long margin = 0;
1290 unsigned long count;
1291 unsigned long limit;
1293 count = page_counter_read(&memcg->memory);
1294 limit = READ_ONCE(memcg->memory.max);
1295 if (count < limit)
1296 margin = limit - count;
1298 if (do_memsw_account()) {
1299 count = page_counter_read(&memcg->memsw);
1300 limit = READ_ONCE(memcg->memsw.max);
1301 if (count <= limit)
1302 margin = min(margin, limit - count);
1303 else
1304 margin = 0;
1307 return margin;
1311 * A routine for checking "mem" is under move_account() or not.
1313 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314 * moving cgroups. This is for waiting at high-memory pressure
1315 * caused by "move".
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
1321 bool ret = false;
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
1332 ret = mem_cgroup_is_descendant(from, memcg) ||
1333 mem_cgroup_is_descendant(to, memcg);
1334 unlock:
1335 spin_unlock(&mc.lock);
1336 return ret;
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341 if (mc.moving_task && current != mc.moving_task) {
1342 if (mem_cgroup_under_move(memcg)) {
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1352 return false;
1355 static char *memory_stat_format(struct mem_cgroup *memcg)
1357 struct seq_buf s;
1358 int i;
1360 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1361 if (!s.buffer)
1362 return NULL;
1365 * Provide statistics on the state of the memory subsystem as
1366 * well as cumulative event counters that show past behavior.
1368 * This list is ordered following a combination of these gradients:
1369 * 1) generic big picture -> specifics and details
1370 * 2) reflecting userspace activity -> reflecting kernel heuristics
1372 * Current memory state:
1375 seq_buf_printf(&s, "anon %llu\n",
1376 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1377 PAGE_SIZE);
1378 seq_buf_printf(&s, "file %llu\n",
1379 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1380 PAGE_SIZE);
1381 seq_buf_printf(&s, "kernel_stack %llu\n",
1382 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1383 1024);
1384 seq_buf_printf(&s, "slab %llu\n",
1385 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1386 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1387 PAGE_SIZE);
1388 seq_buf_printf(&s, "sock %llu\n",
1389 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1390 PAGE_SIZE);
1392 seq_buf_printf(&s, "shmem %llu\n",
1393 (u64)memcg_page_state(memcg, NR_SHMEM) *
1394 PAGE_SIZE);
1395 seq_buf_printf(&s, "file_mapped %llu\n",
1396 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1397 PAGE_SIZE);
1398 seq_buf_printf(&s, "file_dirty %llu\n",
1399 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1400 PAGE_SIZE);
1401 seq_buf_printf(&s, "file_writeback %llu\n",
1402 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1403 PAGE_SIZE);
1406 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1407 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1408 * arse because it requires migrating the work out of rmap to a place
1409 * where the page->mem_cgroup is set up and stable.
1411 seq_buf_printf(&s, "anon_thp %llu\n",
1412 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1413 PAGE_SIZE);
1415 for (i = 0; i < NR_LRU_LISTS; i++)
1416 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1417 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1418 PAGE_SIZE);
1420 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1421 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1424 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1425 PAGE_SIZE);
1427 /* Accumulated memory events */
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1430 memcg_events(memcg, PGFAULT));
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1432 memcg_events(memcg, PGMAJFAULT));
1434 seq_buf_printf(&s, "workingset_refault %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_REFAULT));
1436 seq_buf_printf(&s, "workingset_activate %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1438 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1442 memcg_events(memcg, PGREFILL));
1443 seq_buf_printf(&s, "pgscan %lu\n",
1444 memcg_events(memcg, PGSCAN_KSWAPD) +
1445 memcg_events(memcg, PGSCAN_DIRECT));
1446 seq_buf_printf(&s, "pgsteal %lu\n",
1447 memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 memcg_events(memcg, PGSTEAL_DIRECT));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 memcg_events(memcg, PGACTIVATE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 memcg_events(memcg, PGDEACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 memcg_events(memcg, PGLAZYFREE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 memcg_events(memcg, PGLAZYFREED));
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460 memcg_events(memcg, THP_FAULT_ALLOC));
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1465 /* The above should easily fit into one page */
1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1468 return s.buffer;
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1473 * mem_cgroup_print_oom_context: Print OOM information relevant to
1474 * memory controller.
1475 * @memcg: The memory cgroup that went over limit
1476 * @p: Task that is going to be killed
1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479 * enabled
1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1483 rcu_read_lock();
1485 if (memcg) {
1486 pr_cont(",oom_memcg=");
1487 pr_cont_cgroup_path(memcg->css.cgroup);
1488 } else
1489 pr_cont(",global_oom");
1490 if (p) {
1491 pr_cont(",task_memcg=");
1492 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1494 rcu_read_unlock();
1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499 * memory controller.
1500 * @memcg: The memory cgroup that went over limit
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1504 char *buf;
1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->memory)),
1508 K((u64)memcg->memory.max), memcg->memory.failcnt);
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->swap)),
1512 K((u64)memcg->swap.max), memcg->swap.failcnt);
1513 else {
1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->memsw)),
1516 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 K((u64)page_counter_read(&memcg->kmem)),
1519 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522 pr_info("Memory cgroup stats for ");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 pr_cont(":");
1525 buf = memory_stat_format(memcg);
1526 if (!buf)
1527 return;
1528 pr_info("%s", buf);
1529 kfree(buf);
1533 * Return the memory (and swap, if configured) limit for a memcg.
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1537 unsigned long max;
1539 max = memcg->memory.max;
1540 if (mem_cgroup_swappiness(memcg)) {
1541 unsigned long memsw_max;
1542 unsigned long swap_max;
1544 memsw_max = memcg->memsw.max;
1545 swap_max = memcg->swap.max;
1546 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1547 max = min(max + swap_max, memsw_max);
1549 return max;
1552 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1554 return page_counter_read(&memcg->memory);
1557 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1558 int order)
1560 struct oom_control oc = {
1561 .zonelist = NULL,
1562 .nodemask = NULL,
1563 .memcg = memcg,
1564 .gfp_mask = gfp_mask,
1565 .order = order,
1567 bool ret;
1569 if (mutex_lock_killable(&oom_lock))
1570 return true;
1572 * A few threads which were not waiting at mutex_lock_killable() can
1573 * fail to bail out. Therefore, check again after holding oom_lock.
1575 ret = should_force_charge() || out_of_memory(&oc);
1576 mutex_unlock(&oom_lock);
1577 return ret;
1580 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1581 pg_data_t *pgdat,
1582 gfp_t gfp_mask,
1583 unsigned long *total_scanned)
1585 struct mem_cgroup *victim = NULL;
1586 int total = 0;
1587 int loop = 0;
1588 unsigned long excess;
1589 unsigned long nr_scanned;
1590 struct mem_cgroup_reclaim_cookie reclaim = {
1591 .pgdat = pgdat,
1594 excess = soft_limit_excess(root_memcg);
1596 while (1) {
1597 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1598 if (!victim) {
1599 loop++;
1600 if (loop >= 2) {
1602 * If we have not been able to reclaim
1603 * anything, it might because there are
1604 * no reclaimable pages under this hierarchy
1606 if (!total)
1607 break;
1609 * We want to do more targeted reclaim.
1610 * excess >> 2 is not to excessive so as to
1611 * reclaim too much, nor too less that we keep
1612 * coming back to reclaim from this cgroup
1614 if (total >= (excess >> 2) ||
1615 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1616 break;
1618 continue;
1620 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1621 pgdat, &nr_scanned);
1622 *total_scanned += nr_scanned;
1623 if (!soft_limit_excess(root_memcg))
1624 break;
1626 mem_cgroup_iter_break(root_memcg, victim);
1627 return total;
1630 #ifdef CONFIG_LOCKDEP
1631 static struct lockdep_map memcg_oom_lock_dep_map = {
1632 .name = "memcg_oom_lock",
1634 #endif
1636 static DEFINE_SPINLOCK(memcg_oom_lock);
1639 * Check OOM-Killer is already running under our hierarchy.
1640 * If someone is running, return false.
1642 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1644 struct mem_cgroup *iter, *failed = NULL;
1646 spin_lock(&memcg_oom_lock);
1648 for_each_mem_cgroup_tree(iter, memcg) {
1649 if (iter->oom_lock) {
1651 * this subtree of our hierarchy is already locked
1652 * so we cannot give a lock.
1654 failed = iter;
1655 mem_cgroup_iter_break(memcg, iter);
1656 break;
1657 } else
1658 iter->oom_lock = true;
1661 if (failed) {
1663 * OK, we failed to lock the whole subtree so we have
1664 * to clean up what we set up to the failing subtree
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 if (iter == failed) {
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1671 iter->oom_lock = false;
1673 } else
1674 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1676 spin_unlock(&memcg_oom_lock);
1678 return !failed;
1681 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1683 struct mem_cgroup *iter;
1685 spin_lock(&memcg_oom_lock);
1686 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1687 for_each_mem_cgroup_tree(iter, memcg)
1688 iter->oom_lock = false;
1689 spin_unlock(&memcg_oom_lock);
1692 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1694 struct mem_cgroup *iter;
1696 spin_lock(&memcg_oom_lock);
1697 for_each_mem_cgroup_tree(iter, memcg)
1698 iter->under_oom++;
1699 spin_unlock(&memcg_oom_lock);
1702 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1704 struct mem_cgroup *iter;
1707 * When a new child is created while the hierarchy is under oom,
1708 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1710 spin_lock(&memcg_oom_lock);
1711 for_each_mem_cgroup_tree(iter, memcg)
1712 if (iter->under_oom > 0)
1713 iter->under_oom--;
1714 spin_unlock(&memcg_oom_lock);
1717 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1719 struct oom_wait_info {
1720 struct mem_cgroup *memcg;
1721 wait_queue_entry_t wait;
1724 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1725 unsigned mode, int sync, void *arg)
1727 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1728 struct mem_cgroup *oom_wait_memcg;
1729 struct oom_wait_info *oom_wait_info;
1731 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1732 oom_wait_memcg = oom_wait_info->memcg;
1734 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1735 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1736 return 0;
1737 return autoremove_wake_function(wait, mode, sync, arg);
1740 static void memcg_oom_recover(struct mem_cgroup *memcg)
1743 * For the following lockless ->under_oom test, the only required
1744 * guarantee is that it must see the state asserted by an OOM when
1745 * this function is called as a result of userland actions
1746 * triggered by the notification of the OOM. This is trivially
1747 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 * triggering notification.
1750 if (memcg && memcg->under_oom)
1751 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1754 enum oom_status {
1755 OOM_SUCCESS,
1756 OOM_FAILED,
1757 OOM_ASYNC,
1758 OOM_SKIPPED
1761 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1763 enum oom_status ret;
1764 bool locked;
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 return OOM_SKIPPED;
1769 memcg_memory_event(memcg, MEMCG_OOM);
1772 * We are in the middle of the charge context here, so we
1773 * don't want to block when potentially sitting on a callstack
1774 * that holds all kinds of filesystem and mm locks.
1776 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 * handling until the charge can succeed; remember the context and put
1778 * the task to sleep at the end of the page fault when all locks are
1779 * released.
1781 * On the other hand, in-kernel OOM killer allows for an async victim
1782 * memory reclaim (oom_reaper) and that means that we are not solely
1783 * relying on the oom victim to make a forward progress and we can
1784 * invoke the oom killer here.
1786 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 * victim and then we have to bail out from the charge path.
1789 if (memcg->oom_kill_disable) {
1790 if (!current->in_user_fault)
1791 return OOM_SKIPPED;
1792 css_get(&memcg->css);
1793 current->memcg_in_oom = memcg;
1794 current->memcg_oom_gfp_mask = mask;
1795 current->memcg_oom_order = order;
1797 return OOM_ASYNC;
1800 mem_cgroup_mark_under_oom(memcg);
1802 locked = mem_cgroup_oom_trylock(memcg);
1804 if (locked)
1805 mem_cgroup_oom_notify(memcg);
1807 mem_cgroup_unmark_under_oom(memcg);
1808 if (mem_cgroup_out_of_memory(memcg, mask, order))
1809 ret = OOM_SUCCESS;
1810 else
1811 ret = OOM_FAILED;
1813 if (locked)
1814 mem_cgroup_oom_unlock(memcg);
1816 return ret;
1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1821 * @handle: actually kill/wait or just clean up the OOM state
1823 * This has to be called at the end of a page fault if the memcg OOM
1824 * handler was enabled.
1826 * Memcg supports userspace OOM handling where failed allocations must
1827 * sleep on a waitqueue until the userspace task resolves the
1828 * situation. Sleeping directly in the charge context with all kinds
1829 * of locks held is not a good idea, instead we remember an OOM state
1830 * in the task and mem_cgroup_oom_synchronize() has to be called at
1831 * the end of the page fault to complete the OOM handling.
1833 * Returns %true if an ongoing memcg OOM situation was detected and
1834 * completed, %false otherwise.
1836 bool mem_cgroup_oom_synchronize(bool handle)
1838 struct mem_cgroup *memcg = current->memcg_in_oom;
1839 struct oom_wait_info owait;
1840 bool locked;
1842 /* OOM is global, do not handle */
1843 if (!memcg)
1844 return false;
1846 if (!handle)
1847 goto cleanup;
1849 owait.memcg = memcg;
1850 owait.wait.flags = 0;
1851 owait.wait.func = memcg_oom_wake_function;
1852 owait.wait.private = current;
1853 INIT_LIST_HEAD(&owait.wait.entry);
1855 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1856 mem_cgroup_mark_under_oom(memcg);
1858 locked = mem_cgroup_oom_trylock(memcg);
1860 if (locked)
1861 mem_cgroup_oom_notify(memcg);
1863 if (locked && !memcg->oom_kill_disable) {
1864 mem_cgroup_unmark_under_oom(memcg);
1865 finish_wait(&memcg_oom_waitq, &owait.wait);
1866 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1867 current->memcg_oom_order);
1868 } else {
1869 schedule();
1870 mem_cgroup_unmark_under_oom(memcg);
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1874 if (locked) {
1875 mem_cgroup_oom_unlock(memcg);
1877 * There is no guarantee that an OOM-lock contender
1878 * sees the wakeups triggered by the OOM kill
1879 * uncharges. Wake any sleepers explicitely.
1881 memcg_oom_recover(memcg);
1883 cleanup:
1884 current->memcg_in_oom = NULL;
1885 css_put(&memcg->css);
1886 return true;
1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891 * @victim: task to be killed by the OOM killer
1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1894 * Returns a pointer to a memory cgroup, which has to be cleaned up
1895 * by killing all belonging OOM-killable tasks.
1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1899 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1900 struct mem_cgroup *oom_domain)
1902 struct mem_cgroup *oom_group = NULL;
1903 struct mem_cgroup *memcg;
1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 return NULL;
1908 if (!oom_domain)
1909 oom_domain = root_mem_cgroup;
1911 rcu_read_lock();
1913 memcg = mem_cgroup_from_task(victim);
1914 if (memcg == root_mem_cgroup)
1915 goto out;
1918 * Traverse the memory cgroup hierarchy from the victim task's
1919 * cgroup up to the OOMing cgroup (or root) to find the
1920 * highest-level memory cgroup with oom.group set.
1922 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1923 if (memcg->oom_group)
1924 oom_group = memcg;
1926 if (memcg == oom_domain)
1927 break;
1930 if (oom_group)
1931 css_get(&oom_group->css);
1932 out:
1933 rcu_read_unlock();
1935 return oom_group;
1938 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1940 pr_info("Tasks in ");
1941 pr_cont_cgroup_path(memcg->css.cgroup);
1942 pr_cont(" are going to be killed due to memory.oom.group set\n");
1946 * lock_page_memcg - lock a page->mem_cgroup binding
1947 * @page: the page
1949 * This function protects unlocked LRU pages from being moved to
1950 * another cgroup.
1952 * It ensures lifetime of the returned memcg. Caller is responsible
1953 * for the lifetime of the page; __unlock_page_memcg() is available
1954 * when @page might get freed inside the locked section.
1956 struct mem_cgroup *lock_page_memcg(struct page *page)
1958 struct mem_cgroup *memcg;
1959 unsigned long flags;
1962 * The RCU lock is held throughout the transaction. The fast
1963 * path can get away without acquiring the memcg->move_lock
1964 * because page moving starts with an RCU grace period.
1966 * The RCU lock also protects the memcg from being freed when
1967 * the page state that is going to change is the only thing
1968 * preventing the page itself from being freed. E.g. writeback
1969 * doesn't hold a page reference and relies on PG_writeback to
1970 * keep off truncation, migration and so forth.
1972 rcu_read_lock();
1974 if (mem_cgroup_disabled())
1975 return NULL;
1976 again:
1977 memcg = page->mem_cgroup;
1978 if (unlikely(!memcg))
1979 return NULL;
1981 if (atomic_read(&memcg->moving_account) <= 0)
1982 return memcg;
1984 spin_lock_irqsave(&memcg->move_lock, flags);
1985 if (memcg != page->mem_cgroup) {
1986 spin_unlock_irqrestore(&memcg->move_lock, flags);
1987 goto again;
1991 * When charge migration first begins, we can have locked and
1992 * unlocked page stat updates happening concurrently. Track
1993 * the task who has the lock for unlock_page_memcg().
1995 memcg->move_lock_task = current;
1996 memcg->move_lock_flags = flags;
1998 return memcg;
2000 EXPORT_SYMBOL(lock_page_memcg);
2003 * __unlock_page_memcg - unlock and unpin a memcg
2004 * @memcg: the memcg
2006 * Unlock and unpin a memcg returned by lock_page_memcg().
2008 void __unlock_page_memcg(struct mem_cgroup *memcg)
2010 if (memcg && memcg->move_lock_task == current) {
2011 unsigned long flags = memcg->move_lock_flags;
2013 memcg->move_lock_task = NULL;
2014 memcg->move_lock_flags = 0;
2016 spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 rcu_read_unlock();
2023 * unlock_page_memcg - unlock a page->mem_cgroup binding
2024 * @page: the page
2026 void unlock_page_memcg(struct page *page)
2028 __unlock_page_memcg(page->mem_cgroup);
2030 EXPORT_SYMBOL(unlock_page_memcg);
2032 struct memcg_stock_pcp {
2033 struct mem_cgroup *cached; /* this never be root cgroup */
2034 unsigned int nr_pages;
2035 struct work_struct work;
2036 unsigned long flags;
2037 #define FLUSHING_CACHED_CHARGE 0
2039 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2040 static DEFINE_MUTEX(percpu_charge_mutex);
2043 * consume_stock: Try to consume stocked charge on this cpu.
2044 * @memcg: memcg to consume from.
2045 * @nr_pages: how many pages to charge.
2047 * The charges will only happen if @memcg matches the current cpu's memcg
2048 * stock, and at least @nr_pages are available in that stock. Failure to
2049 * service an allocation will refill the stock.
2051 * returns true if successful, false otherwise.
2053 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2055 struct memcg_stock_pcp *stock;
2056 unsigned long flags;
2057 bool ret = false;
2059 if (nr_pages > MEMCG_CHARGE_BATCH)
2060 return ret;
2062 local_irq_save(flags);
2064 stock = this_cpu_ptr(&memcg_stock);
2065 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2066 stock->nr_pages -= nr_pages;
2067 ret = true;
2070 local_irq_restore(flags);
2072 return ret;
2076 * Returns stocks cached in percpu and reset cached information.
2078 static void drain_stock(struct memcg_stock_pcp *stock)
2080 struct mem_cgroup *old = stock->cached;
2082 if (stock->nr_pages) {
2083 page_counter_uncharge(&old->memory, stock->nr_pages);
2084 if (do_memsw_account())
2085 page_counter_uncharge(&old->memsw, stock->nr_pages);
2086 css_put_many(&old->css, stock->nr_pages);
2087 stock->nr_pages = 0;
2089 stock->cached = NULL;
2092 static void drain_local_stock(struct work_struct *dummy)
2094 struct memcg_stock_pcp *stock;
2095 unsigned long flags;
2098 * The only protection from memory hotplug vs. drain_stock races is
2099 * that we always operate on local CPU stock here with IRQ disabled
2101 local_irq_save(flags);
2103 stock = this_cpu_ptr(&memcg_stock);
2104 drain_stock(stock);
2105 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2107 local_irq_restore(flags);
2111 * Cache charges(val) to local per_cpu area.
2112 * This will be consumed by consume_stock() function, later.
2114 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2116 struct memcg_stock_pcp *stock;
2117 unsigned long flags;
2119 local_irq_save(flags);
2121 stock = this_cpu_ptr(&memcg_stock);
2122 if (stock->cached != memcg) { /* reset if necessary */
2123 drain_stock(stock);
2124 stock->cached = memcg;
2126 stock->nr_pages += nr_pages;
2128 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2129 drain_stock(stock);
2131 local_irq_restore(flags);
2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136 * of the hierarchy under it.
2138 static void drain_all_stock(struct mem_cgroup *root_memcg)
2140 int cpu, curcpu;
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex))
2144 return;
2146 * Notify other cpus that system-wide "drain" is running
2147 * We do not care about races with the cpu hotplug because cpu down
2148 * as well as workers from this path always operate on the local
2149 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2151 curcpu = get_cpu();
2152 for_each_online_cpu(cpu) {
2153 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2154 struct mem_cgroup *memcg;
2155 bool flush = false;
2157 rcu_read_lock();
2158 memcg = stock->cached;
2159 if (memcg && stock->nr_pages &&
2160 mem_cgroup_is_descendant(memcg, root_memcg))
2161 flush = true;
2162 rcu_read_unlock();
2164 if (flush &&
2165 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2166 if (cpu == curcpu)
2167 drain_local_stock(&stock->work);
2168 else
2169 schedule_work_on(cpu, &stock->work);
2172 put_cpu();
2173 mutex_unlock(&percpu_charge_mutex);
2176 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2178 struct memcg_stock_pcp *stock;
2179 struct mem_cgroup *memcg, *mi;
2181 stock = &per_cpu(memcg_stock, cpu);
2182 drain_stock(stock);
2184 for_each_mem_cgroup(memcg) {
2185 int i;
2187 for (i = 0; i < MEMCG_NR_STAT; i++) {
2188 int nid;
2189 long x;
2191 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2192 if (x)
2193 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2194 atomic_long_add(x, &memcg->vmstats[i]);
2196 if (i >= NR_VM_NODE_STAT_ITEMS)
2197 continue;
2199 for_each_node(nid) {
2200 struct mem_cgroup_per_node *pn;
2202 pn = mem_cgroup_nodeinfo(memcg, nid);
2203 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2204 if (x)
2205 do {
2206 atomic_long_add(x, &pn->lruvec_stat[i]);
2207 } while ((pn = parent_nodeinfo(pn, nid)));
2211 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2212 long x;
2214 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2215 if (x)
2216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2217 atomic_long_add(x, &memcg->vmevents[i]);
2221 return 0;
2224 static void reclaim_high(struct mem_cgroup *memcg,
2225 unsigned int nr_pages,
2226 gfp_t gfp_mask)
2228 do {
2229 if (page_counter_read(&memcg->memory) <= memcg->high)
2230 continue;
2231 memcg_memory_event(memcg, MEMCG_HIGH);
2232 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2233 } while ((memcg = parent_mem_cgroup(memcg)));
2236 static void high_work_func(struct work_struct *work)
2238 struct mem_cgroup *memcg;
2240 memcg = container_of(work, struct mem_cgroup, high_work);
2241 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2245 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2246 * enough to still cause a significant slowdown in most cases, while still
2247 * allowing diagnostics and tracing to proceed without becoming stuck.
2249 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252 * When calculating the delay, we use these either side of the exponentiation to
2253 * maintain precision and scale to a reasonable number of jiffies (see the table
2254 * below.
2256 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2257 * overage ratio to a delay.
2258 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2259 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2260 * to produce a reasonable delay curve.
2262 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2263 * reasonable delay curve compared to precision-adjusted overage, not
2264 * penalising heavily at first, but still making sure that growth beyond the
2265 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2266 * example, with a high of 100 megabytes:
2268 * +-------+------------------------+
2269 * | usage | time to allocate in ms |
2270 * +-------+------------------------+
2271 * | 100M | 0 |
2272 * | 101M | 6 |
2273 * | 102M | 25 |
2274 * | 103M | 57 |
2275 * | 104M | 102 |
2276 * | 105M | 159 |
2277 * | 106M | 230 |
2278 * | 107M | 313 |
2279 * | 108M | 409 |
2280 * | 109M | 518 |
2281 * | 110M | 639 |
2282 * | 111M | 774 |
2283 * | 112M | 921 |
2284 * | 113M | 1081 |
2285 * | 114M | 1254 |
2286 * | 115M | 1439 |
2287 * | 116M | 1638 |
2288 * | 117M | 1849 |
2289 * | 118M | 2000 |
2290 * | 119M | 2000 |
2291 * | 120M | 2000 |
2292 * +-------+------------------------+
2294 #define MEMCG_DELAY_PRECISION_SHIFT 20
2295 #define MEMCG_DELAY_SCALING_SHIFT 14
2298 * Scheduled by try_charge() to be executed from the userland return path
2299 * and reclaims memory over the high limit.
2301 void mem_cgroup_handle_over_high(void)
2303 unsigned long usage, high, clamped_high;
2304 unsigned long pflags;
2305 unsigned long penalty_jiffies, overage;
2306 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2307 struct mem_cgroup *memcg;
2309 if (likely(!nr_pages))
2310 return;
2312 memcg = get_mem_cgroup_from_mm(current->mm);
2313 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2314 current->memcg_nr_pages_over_high = 0;
2317 * memory.high is breached and reclaim is unable to keep up. Throttle
2318 * allocators proactively to slow down excessive growth.
2320 * We use overage compared to memory.high to calculate the number of
2321 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2322 * fairly lenient on small overages, and increasingly harsh when the
2323 * memcg in question makes it clear that it has no intention of stopping
2324 * its crazy behaviour, so we exponentially increase the delay based on
2325 * overage amount.
2328 usage = page_counter_read(&memcg->memory);
2329 high = READ_ONCE(memcg->high);
2331 if (usage <= high)
2332 goto out;
2335 * Prevent division by 0 in overage calculation by acting as if it was a
2336 * threshold of 1 page
2338 clamped_high = max(high, 1UL);
2340 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2341 clamped_high);
2343 penalty_jiffies = ((u64)overage * overage * HZ)
2344 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2359 * extremely slowly.
2361 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2364 * Don't sleep if the amount of jiffies this memcg owes us is so low
2365 * that it's not even worth doing, in an attempt to be nice to those who
2366 * go only a small amount over their memory.high value and maybe haven't
2367 * been aggressively reclaimed enough yet.
2369 if (penalty_jiffies <= HZ / 100)
2370 goto out;
2373 * If we exit early, we're guaranteed to die (since
2374 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2375 * need to account for any ill-begotten jiffies to pay them off later.
2377 psi_memstall_enter(&pflags);
2378 schedule_timeout_killable(penalty_jiffies);
2379 psi_memstall_leave(&pflags);
2381 out:
2382 css_put(&memcg->css);
2385 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2386 unsigned int nr_pages)
2388 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2389 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2390 struct mem_cgroup *mem_over_limit;
2391 struct page_counter *counter;
2392 unsigned long nr_reclaimed;
2393 bool may_swap = true;
2394 bool drained = false;
2395 enum oom_status oom_status;
2397 if (mem_cgroup_is_root(memcg))
2398 return 0;
2399 retry:
2400 if (consume_stock(memcg, nr_pages))
2401 return 0;
2403 if (!do_memsw_account() ||
2404 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2405 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2406 goto done_restock;
2407 if (do_memsw_account())
2408 page_counter_uncharge(&memcg->memsw, batch);
2409 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2410 } else {
2411 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2412 may_swap = false;
2415 if (batch > nr_pages) {
2416 batch = nr_pages;
2417 goto retry;
2421 * Memcg doesn't have a dedicated reserve for atomic
2422 * allocations. But like the global atomic pool, we need to
2423 * put the burden of reclaim on regular allocation requests
2424 * and let these go through as privileged allocations.
2426 if (gfp_mask & __GFP_ATOMIC)
2427 goto force;
2430 * Unlike in global OOM situations, memcg is not in a physical
2431 * memory shortage. Allow dying and OOM-killed tasks to
2432 * bypass the last charges so that they can exit quickly and
2433 * free their memory.
2435 if (unlikely(should_force_charge()))
2436 goto force;
2439 * Prevent unbounded recursion when reclaim operations need to
2440 * allocate memory. This might exceed the limits temporarily,
2441 * but we prefer facilitating memory reclaim and getting back
2442 * under the limit over triggering OOM kills in these cases.
2444 if (unlikely(current->flags & PF_MEMALLOC))
2445 goto force;
2447 if (unlikely(task_in_memcg_oom(current)))
2448 goto nomem;
2450 if (!gfpflags_allow_blocking(gfp_mask))
2451 goto nomem;
2453 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2455 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2456 gfp_mask, may_swap);
2458 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2459 goto retry;
2461 if (!drained) {
2462 drain_all_stock(mem_over_limit);
2463 drained = true;
2464 goto retry;
2467 if (gfp_mask & __GFP_NORETRY)
2468 goto nomem;
2470 * Even though the limit is exceeded at this point, reclaim
2471 * may have been able to free some pages. Retry the charge
2472 * before killing the task.
2474 * Only for regular pages, though: huge pages are rather
2475 * unlikely to succeed so close to the limit, and we fall back
2476 * to regular pages anyway in case of failure.
2478 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2479 goto retry;
2481 * At task move, charge accounts can be doubly counted. So, it's
2482 * better to wait until the end of task_move if something is going on.
2484 if (mem_cgroup_wait_acct_move(mem_over_limit))
2485 goto retry;
2487 if (nr_retries--)
2488 goto retry;
2490 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2491 goto nomem;
2493 if (gfp_mask & __GFP_NOFAIL)
2494 goto force;
2496 if (fatal_signal_pending(current))
2497 goto force;
2500 * keep retrying as long as the memcg oom killer is able to make
2501 * a forward progress or bypass the charge if the oom killer
2502 * couldn't make any progress.
2504 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2505 get_order(nr_pages * PAGE_SIZE));
2506 switch (oom_status) {
2507 case OOM_SUCCESS:
2508 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2509 goto retry;
2510 case OOM_FAILED:
2511 goto force;
2512 default:
2513 goto nomem;
2515 nomem:
2516 if (!(gfp_mask & __GFP_NOFAIL))
2517 return -ENOMEM;
2518 force:
2520 * The allocation either can't fail or will lead to more memory
2521 * being freed very soon. Allow memory usage go over the limit
2522 * temporarily by force charging it.
2524 page_counter_charge(&memcg->memory, nr_pages);
2525 if (do_memsw_account())
2526 page_counter_charge(&memcg->memsw, nr_pages);
2527 css_get_many(&memcg->css, nr_pages);
2529 return 0;
2531 done_restock:
2532 css_get_many(&memcg->css, batch);
2533 if (batch > nr_pages)
2534 refill_stock(memcg, batch - nr_pages);
2537 * If the hierarchy is above the normal consumption range, schedule
2538 * reclaim on returning to userland. We can perform reclaim here
2539 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2540 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2541 * not recorded as it most likely matches current's and won't
2542 * change in the meantime. As high limit is checked again before
2543 * reclaim, the cost of mismatch is negligible.
2545 do {
2546 if (page_counter_read(&memcg->memory) > memcg->high) {
2547 /* Don't bother a random interrupted task */
2548 if (in_interrupt()) {
2549 schedule_work(&memcg->high_work);
2550 break;
2552 current->memcg_nr_pages_over_high += batch;
2553 set_notify_resume(current);
2554 break;
2556 } while ((memcg = parent_mem_cgroup(memcg)));
2558 return 0;
2561 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2563 if (mem_cgroup_is_root(memcg))
2564 return;
2566 page_counter_uncharge(&memcg->memory, nr_pages);
2567 if (do_memsw_account())
2568 page_counter_uncharge(&memcg->memsw, nr_pages);
2570 css_put_many(&memcg->css, nr_pages);
2573 static void lock_page_lru(struct page *page, int *isolated)
2575 pg_data_t *pgdat = page_pgdat(page);
2577 spin_lock_irq(&pgdat->lru_lock);
2578 if (PageLRU(page)) {
2579 struct lruvec *lruvec;
2581 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2582 ClearPageLRU(page);
2583 del_page_from_lru_list(page, lruvec, page_lru(page));
2584 *isolated = 1;
2585 } else
2586 *isolated = 0;
2589 static void unlock_page_lru(struct page *page, int isolated)
2591 pg_data_t *pgdat = page_pgdat(page);
2593 if (isolated) {
2594 struct lruvec *lruvec;
2596 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2597 VM_BUG_ON_PAGE(PageLRU(page), page);
2598 SetPageLRU(page);
2599 add_page_to_lru_list(page, lruvec, page_lru(page));
2601 spin_unlock_irq(&pgdat->lru_lock);
2604 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2605 bool lrucare)
2607 int isolated;
2609 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2612 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2613 * may already be on some other mem_cgroup's LRU. Take care of it.
2615 if (lrucare)
2616 lock_page_lru(page, &isolated);
2619 * Nobody should be changing or seriously looking at
2620 * page->mem_cgroup at this point:
2622 * - the page is uncharged
2624 * - the page is off-LRU
2626 * - an anonymous fault has exclusive page access, except for
2627 * a locked page table
2629 * - a page cache insertion, a swapin fault, or a migration
2630 * have the page locked
2632 page->mem_cgroup = memcg;
2634 if (lrucare)
2635 unlock_page_lru(page, isolated);
2638 #ifdef CONFIG_MEMCG_KMEM
2639 static int memcg_alloc_cache_id(void)
2641 int id, size;
2642 int err;
2644 id = ida_simple_get(&memcg_cache_ida,
2645 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2646 if (id < 0)
2647 return id;
2649 if (id < memcg_nr_cache_ids)
2650 return id;
2653 * There's no space for the new id in memcg_caches arrays,
2654 * so we have to grow them.
2656 down_write(&memcg_cache_ids_sem);
2658 size = 2 * (id + 1);
2659 if (size < MEMCG_CACHES_MIN_SIZE)
2660 size = MEMCG_CACHES_MIN_SIZE;
2661 else if (size > MEMCG_CACHES_MAX_SIZE)
2662 size = MEMCG_CACHES_MAX_SIZE;
2664 err = memcg_update_all_caches(size);
2665 if (!err)
2666 err = memcg_update_all_list_lrus(size);
2667 if (!err)
2668 memcg_nr_cache_ids = size;
2670 up_write(&memcg_cache_ids_sem);
2672 if (err) {
2673 ida_simple_remove(&memcg_cache_ida, id);
2674 return err;
2676 return id;
2679 static void memcg_free_cache_id(int id)
2681 ida_simple_remove(&memcg_cache_ida, id);
2684 struct memcg_kmem_cache_create_work {
2685 struct mem_cgroup *memcg;
2686 struct kmem_cache *cachep;
2687 struct work_struct work;
2690 static void memcg_kmem_cache_create_func(struct work_struct *w)
2692 struct memcg_kmem_cache_create_work *cw =
2693 container_of(w, struct memcg_kmem_cache_create_work, work);
2694 struct mem_cgroup *memcg = cw->memcg;
2695 struct kmem_cache *cachep = cw->cachep;
2697 memcg_create_kmem_cache(memcg, cachep);
2699 css_put(&memcg->css);
2700 kfree(cw);
2704 * Enqueue the creation of a per-memcg kmem_cache.
2706 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2707 struct kmem_cache *cachep)
2709 struct memcg_kmem_cache_create_work *cw;
2711 if (!css_tryget_online(&memcg->css))
2712 return;
2714 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2715 if (!cw)
2716 return;
2718 cw->memcg = memcg;
2719 cw->cachep = cachep;
2720 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2722 queue_work(memcg_kmem_cache_wq, &cw->work);
2725 static inline bool memcg_kmem_bypass(void)
2727 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2728 return true;
2729 return false;
2733 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2734 * @cachep: the original global kmem cache
2736 * Return the kmem_cache we're supposed to use for a slab allocation.
2737 * We try to use the current memcg's version of the cache.
2739 * If the cache does not exist yet, if we are the first user of it, we
2740 * create it asynchronously in a workqueue and let the current allocation
2741 * go through with the original cache.
2743 * This function takes a reference to the cache it returns to assure it
2744 * won't get destroyed while we are working with it. Once the caller is
2745 * done with it, memcg_kmem_put_cache() must be called to release the
2746 * reference.
2748 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2750 struct mem_cgroup *memcg;
2751 struct kmem_cache *memcg_cachep;
2752 struct memcg_cache_array *arr;
2753 int kmemcg_id;
2755 VM_BUG_ON(!is_root_cache(cachep));
2757 if (memcg_kmem_bypass())
2758 return cachep;
2760 rcu_read_lock();
2762 if (unlikely(current->active_memcg))
2763 memcg = current->active_memcg;
2764 else
2765 memcg = mem_cgroup_from_task(current);
2767 if (!memcg || memcg == root_mem_cgroup)
2768 goto out_unlock;
2770 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2771 if (kmemcg_id < 0)
2772 goto out_unlock;
2774 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2777 * Make sure we will access the up-to-date value. The code updating
2778 * memcg_caches issues a write barrier to match the data dependency
2779 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2781 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2784 * If we are in a safe context (can wait, and not in interrupt
2785 * context), we could be be predictable and return right away.
2786 * This would guarantee that the allocation being performed
2787 * already belongs in the new cache.
2789 * However, there are some clashes that can arrive from locking.
2790 * For instance, because we acquire the slab_mutex while doing
2791 * memcg_create_kmem_cache, this means no further allocation
2792 * could happen with the slab_mutex held. So it's better to
2793 * defer everything.
2795 * If the memcg is dying or memcg_cache is about to be released,
2796 * don't bother creating new kmem_caches. Because memcg_cachep
2797 * is ZEROed as the fist step of kmem offlining, we don't need
2798 * percpu_ref_tryget_live() here. css_tryget_online() check in
2799 * memcg_schedule_kmem_cache_create() will prevent us from
2800 * creation of a new kmem_cache.
2802 if (unlikely(!memcg_cachep))
2803 memcg_schedule_kmem_cache_create(memcg, cachep);
2804 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2805 cachep = memcg_cachep;
2806 out_unlock:
2807 rcu_read_unlock();
2808 return cachep;
2812 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2813 * @cachep: the cache returned by memcg_kmem_get_cache
2815 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2817 if (!is_root_cache(cachep))
2818 percpu_ref_put(&cachep->memcg_params.refcnt);
2822 * __memcg_kmem_charge_memcg: charge a kmem page
2823 * @page: page to charge
2824 * @gfp: reclaim mode
2825 * @order: allocation order
2826 * @memcg: memory cgroup to charge
2828 * Returns 0 on success, an error code on failure.
2830 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2831 struct mem_cgroup *memcg)
2833 unsigned int nr_pages = 1 << order;
2834 struct page_counter *counter;
2835 int ret;
2837 ret = try_charge(memcg, gfp, nr_pages);
2838 if (ret)
2839 return ret;
2841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2842 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2845 * Enforce __GFP_NOFAIL allocation because callers are not
2846 * prepared to see failures and likely do not have any failure
2847 * handling code.
2849 if (gfp & __GFP_NOFAIL) {
2850 page_counter_charge(&memcg->kmem, nr_pages);
2851 return 0;
2853 cancel_charge(memcg, nr_pages);
2854 return -ENOMEM;
2856 return 0;
2860 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2861 * @page: page to charge
2862 * @gfp: reclaim mode
2863 * @order: allocation order
2865 * Returns 0 on success, an error code on failure.
2867 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2869 struct mem_cgroup *memcg;
2870 int ret = 0;
2872 if (memcg_kmem_bypass())
2873 return 0;
2875 memcg = get_mem_cgroup_from_current();
2876 if (!mem_cgroup_is_root(memcg)) {
2877 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2878 if (!ret) {
2879 page->mem_cgroup = memcg;
2880 __SetPageKmemcg(page);
2883 css_put(&memcg->css);
2884 return ret;
2888 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2889 * @memcg: memcg to uncharge
2890 * @nr_pages: number of pages to uncharge
2892 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2893 unsigned int nr_pages)
2895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2896 page_counter_uncharge(&memcg->kmem, nr_pages);
2898 page_counter_uncharge(&memcg->memory, nr_pages);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg->memsw, nr_pages);
2903 * __memcg_kmem_uncharge: uncharge a kmem page
2904 * @page: page to uncharge
2905 * @order: allocation order
2907 void __memcg_kmem_uncharge(struct page *page, int order)
2909 struct mem_cgroup *memcg = page->mem_cgroup;
2910 unsigned int nr_pages = 1 << order;
2912 if (!memcg)
2913 return;
2915 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2916 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2917 page->mem_cgroup = NULL;
2919 /* slab pages do not have PageKmemcg flag set */
2920 if (PageKmemcg(page))
2921 __ClearPageKmemcg(page);
2923 css_put_many(&memcg->css, nr_pages);
2925 #endif /* CONFIG_MEMCG_KMEM */
2927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930 * Because tail pages are not marked as "used", set it. We're under
2931 * pgdat->lru_lock and migration entries setup in all page mappings.
2933 void mem_cgroup_split_huge_fixup(struct page *head)
2935 int i;
2937 if (mem_cgroup_disabled())
2938 return;
2940 for (i = 1; i < HPAGE_PMD_NR; i++)
2941 head[i].mem_cgroup = head->mem_cgroup;
2943 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2947 #ifdef CONFIG_MEMCG_SWAP
2949 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2950 * @entry: swap entry to be moved
2951 * @from: mem_cgroup which the entry is moved from
2952 * @to: mem_cgroup which the entry is moved to
2954 * It succeeds only when the swap_cgroup's record for this entry is the same
2955 * as the mem_cgroup's id of @from.
2957 * Returns 0 on success, -EINVAL on failure.
2959 * The caller must have charged to @to, IOW, called page_counter_charge() about
2960 * both res and memsw, and called css_get().
2962 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2963 struct mem_cgroup *from, struct mem_cgroup *to)
2965 unsigned short old_id, new_id;
2967 old_id = mem_cgroup_id(from);
2968 new_id = mem_cgroup_id(to);
2970 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2971 mod_memcg_state(from, MEMCG_SWAP, -1);
2972 mod_memcg_state(to, MEMCG_SWAP, 1);
2973 return 0;
2975 return -EINVAL;
2977 #else
2978 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2979 struct mem_cgroup *from, struct mem_cgroup *to)
2981 return -EINVAL;
2983 #endif
2985 static DEFINE_MUTEX(memcg_max_mutex);
2987 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2988 unsigned long max, bool memsw)
2990 bool enlarge = false;
2991 bool drained = false;
2992 int ret;
2993 bool limits_invariant;
2994 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2996 do {
2997 if (signal_pending(current)) {
2998 ret = -EINTR;
2999 break;
3002 mutex_lock(&memcg_max_mutex);
3004 * Make sure that the new limit (memsw or memory limit) doesn't
3005 * break our basic invariant rule memory.max <= memsw.max.
3007 limits_invariant = memsw ? max >= memcg->memory.max :
3008 max <= memcg->memsw.max;
3009 if (!limits_invariant) {
3010 mutex_unlock(&memcg_max_mutex);
3011 ret = -EINVAL;
3012 break;
3014 if (max > counter->max)
3015 enlarge = true;
3016 ret = page_counter_set_max(counter, max);
3017 mutex_unlock(&memcg_max_mutex);
3019 if (!ret)
3020 break;
3022 if (!drained) {
3023 drain_all_stock(memcg);
3024 drained = true;
3025 continue;
3028 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3029 GFP_KERNEL, !memsw)) {
3030 ret = -EBUSY;
3031 break;
3033 } while (true);
3035 if (!ret && enlarge)
3036 memcg_oom_recover(memcg);
3038 return ret;
3041 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3042 gfp_t gfp_mask,
3043 unsigned long *total_scanned)
3045 unsigned long nr_reclaimed = 0;
3046 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3047 unsigned long reclaimed;
3048 int loop = 0;
3049 struct mem_cgroup_tree_per_node *mctz;
3050 unsigned long excess;
3051 unsigned long nr_scanned;
3053 if (order > 0)
3054 return 0;
3056 mctz = soft_limit_tree_node(pgdat->node_id);
3059 * Do not even bother to check the largest node if the root
3060 * is empty. Do it lockless to prevent lock bouncing. Races
3061 * are acceptable as soft limit is best effort anyway.
3063 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3064 return 0;
3067 * This loop can run a while, specially if mem_cgroup's continuously
3068 * keep exceeding their soft limit and putting the system under
3069 * pressure
3071 do {
3072 if (next_mz)
3073 mz = next_mz;
3074 else
3075 mz = mem_cgroup_largest_soft_limit_node(mctz);
3076 if (!mz)
3077 break;
3079 nr_scanned = 0;
3080 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3081 gfp_mask, &nr_scanned);
3082 nr_reclaimed += reclaimed;
3083 *total_scanned += nr_scanned;
3084 spin_lock_irq(&mctz->lock);
3085 __mem_cgroup_remove_exceeded(mz, mctz);
3088 * If we failed to reclaim anything from this memory cgroup
3089 * it is time to move on to the next cgroup
3091 next_mz = NULL;
3092 if (!reclaimed)
3093 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3095 excess = soft_limit_excess(mz->memcg);
3097 * One school of thought says that we should not add
3098 * back the node to the tree if reclaim returns 0.
3099 * But our reclaim could return 0, simply because due
3100 * to priority we are exposing a smaller subset of
3101 * memory to reclaim from. Consider this as a longer
3102 * term TODO.
3104 /* If excess == 0, no tree ops */
3105 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3106 spin_unlock_irq(&mctz->lock);
3107 css_put(&mz->memcg->css);
3108 loop++;
3110 * Could not reclaim anything and there are no more
3111 * mem cgroups to try or we seem to be looping without
3112 * reclaiming anything.
3114 if (!nr_reclaimed &&
3115 (next_mz == NULL ||
3116 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3117 break;
3118 } while (!nr_reclaimed);
3119 if (next_mz)
3120 css_put(&next_mz->memcg->css);
3121 return nr_reclaimed;
3125 * Test whether @memcg has children, dead or alive. Note that this
3126 * function doesn't care whether @memcg has use_hierarchy enabled and
3127 * returns %true if there are child csses according to the cgroup
3128 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3130 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3132 bool ret;
3134 rcu_read_lock();
3135 ret = css_next_child(NULL, &memcg->css);
3136 rcu_read_unlock();
3137 return ret;
3141 * Reclaims as many pages from the given memcg as possible.
3143 * Caller is responsible for holding css reference for memcg.
3145 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3147 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3149 /* we call try-to-free pages for make this cgroup empty */
3150 lru_add_drain_all();
3152 drain_all_stock(memcg);
3154 /* try to free all pages in this cgroup */
3155 while (nr_retries && page_counter_read(&memcg->memory)) {
3156 int progress;
3158 if (signal_pending(current))
3159 return -EINTR;
3161 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3162 GFP_KERNEL, true);
3163 if (!progress) {
3164 nr_retries--;
3165 /* maybe some writeback is necessary */
3166 congestion_wait(BLK_RW_ASYNC, HZ/10);
3171 return 0;
3174 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3175 char *buf, size_t nbytes,
3176 loff_t off)
3178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3180 if (mem_cgroup_is_root(memcg))
3181 return -EINVAL;
3182 return mem_cgroup_force_empty(memcg) ?: nbytes;
3185 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3186 struct cftype *cft)
3188 return mem_cgroup_from_css(css)->use_hierarchy;
3191 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3192 struct cftype *cft, u64 val)
3194 int retval = 0;
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3198 if (memcg->use_hierarchy == val)
3199 return 0;
3202 * If parent's use_hierarchy is set, we can't make any modifications
3203 * in the child subtrees. If it is unset, then the change can
3204 * occur, provided the current cgroup has no children.
3206 * For the root cgroup, parent_mem is NULL, we allow value to be
3207 * set if there are no children.
3209 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3210 (val == 1 || val == 0)) {
3211 if (!memcg_has_children(memcg))
3212 memcg->use_hierarchy = val;
3213 else
3214 retval = -EBUSY;
3215 } else
3216 retval = -EINVAL;
3218 return retval;
3221 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3223 unsigned long val;
3225 if (mem_cgroup_is_root(memcg)) {
3226 val = memcg_page_state(memcg, MEMCG_CACHE) +
3227 memcg_page_state(memcg, MEMCG_RSS);
3228 if (swap)
3229 val += memcg_page_state(memcg, MEMCG_SWAP);
3230 } else {
3231 if (!swap)
3232 val = page_counter_read(&memcg->memory);
3233 else
3234 val = page_counter_read(&memcg->memsw);
3236 return val;
3239 enum {
3240 RES_USAGE,
3241 RES_LIMIT,
3242 RES_MAX_USAGE,
3243 RES_FAILCNT,
3244 RES_SOFT_LIMIT,
3247 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3248 struct cftype *cft)
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251 struct page_counter *counter;
3253 switch (MEMFILE_TYPE(cft->private)) {
3254 case _MEM:
3255 counter = &memcg->memory;
3256 break;
3257 case _MEMSWAP:
3258 counter = &memcg->memsw;
3259 break;
3260 case _KMEM:
3261 counter = &memcg->kmem;
3262 break;
3263 case _TCP:
3264 counter = &memcg->tcpmem;
3265 break;
3266 default:
3267 BUG();
3270 switch (MEMFILE_ATTR(cft->private)) {
3271 case RES_USAGE:
3272 if (counter == &memcg->memory)
3273 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3274 if (counter == &memcg->memsw)
3275 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3276 return (u64)page_counter_read(counter) * PAGE_SIZE;
3277 case RES_LIMIT:
3278 return (u64)counter->max * PAGE_SIZE;
3279 case RES_MAX_USAGE:
3280 return (u64)counter->watermark * PAGE_SIZE;
3281 case RES_FAILCNT:
3282 return counter->failcnt;
3283 case RES_SOFT_LIMIT:
3284 return (u64)memcg->soft_limit * PAGE_SIZE;
3285 default:
3286 BUG();
3290 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3292 unsigned long stat[MEMCG_NR_STAT];
3293 struct mem_cgroup *mi;
3294 int node, cpu, i;
3295 int min_idx, max_idx;
3297 if (slab_only) {
3298 min_idx = NR_SLAB_RECLAIMABLE;
3299 max_idx = NR_SLAB_UNRECLAIMABLE;
3300 } else {
3301 min_idx = 0;
3302 max_idx = MEMCG_NR_STAT;
3305 for (i = min_idx; i < max_idx; i++)
3306 stat[i] = 0;
3308 for_each_online_cpu(cpu)
3309 for (i = min_idx; i < max_idx; i++)
3310 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3312 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3313 for (i = min_idx; i < max_idx; i++)
3314 atomic_long_add(stat[i], &mi->vmstats[i]);
3316 if (!slab_only)
3317 max_idx = NR_VM_NODE_STAT_ITEMS;
3319 for_each_node(node) {
3320 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3321 struct mem_cgroup_per_node *pi;
3323 for (i = min_idx; i < max_idx; i++)
3324 stat[i] = 0;
3326 for_each_online_cpu(cpu)
3327 for (i = min_idx; i < max_idx; i++)
3328 stat[i] += per_cpu(
3329 pn->lruvec_stat_cpu->count[i], cpu);
3331 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3332 for (i = min_idx; i < max_idx; i++)
3333 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3337 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3339 unsigned long events[NR_VM_EVENT_ITEMS];
3340 struct mem_cgroup *mi;
3341 int cpu, i;
3343 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3344 events[i] = 0;
3346 for_each_online_cpu(cpu)
3347 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3348 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3349 cpu);
3351 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3352 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3353 atomic_long_add(events[i], &mi->vmevents[i]);
3356 #ifdef CONFIG_MEMCG_KMEM
3357 static int memcg_online_kmem(struct mem_cgroup *memcg)
3359 int memcg_id;
3361 if (cgroup_memory_nokmem)
3362 return 0;
3364 BUG_ON(memcg->kmemcg_id >= 0);
3365 BUG_ON(memcg->kmem_state);
3367 memcg_id = memcg_alloc_cache_id();
3368 if (memcg_id < 0)
3369 return memcg_id;
3371 static_branch_inc(&memcg_kmem_enabled_key);
3373 * A memory cgroup is considered kmem-online as soon as it gets
3374 * kmemcg_id. Setting the id after enabling static branching will
3375 * guarantee no one starts accounting before all call sites are
3376 * patched.
3378 memcg->kmemcg_id = memcg_id;
3379 memcg->kmem_state = KMEM_ONLINE;
3380 INIT_LIST_HEAD(&memcg->kmem_caches);
3382 return 0;
3385 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3387 struct cgroup_subsys_state *css;
3388 struct mem_cgroup *parent, *child;
3389 int kmemcg_id;
3391 if (memcg->kmem_state != KMEM_ONLINE)
3392 return;
3394 * Clear the online state before clearing memcg_caches array
3395 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3396 * guarantees that no cache will be created for this cgroup
3397 * after we are done (see memcg_create_kmem_cache()).
3399 memcg->kmem_state = KMEM_ALLOCATED;
3401 parent = parent_mem_cgroup(memcg);
3402 if (!parent)
3403 parent = root_mem_cgroup;
3406 * Deactivate and reparent kmem_caches. Then flush percpu
3407 * slab statistics to have precise values at the parent and
3408 * all ancestor levels. It's required to keep slab stats
3409 * accurate after the reparenting of kmem_caches.
3411 memcg_deactivate_kmem_caches(memcg, parent);
3412 memcg_flush_percpu_vmstats(memcg, true);
3414 kmemcg_id = memcg->kmemcg_id;
3415 BUG_ON(kmemcg_id < 0);
3418 * Change kmemcg_id of this cgroup and all its descendants to the
3419 * parent's id, and then move all entries from this cgroup's list_lrus
3420 * to ones of the parent. After we have finished, all list_lrus
3421 * corresponding to this cgroup are guaranteed to remain empty. The
3422 * ordering is imposed by list_lru_node->lock taken by
3423 * memcg_drain_all_list_lrus().
3425 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3426 css_for_each_descendant_pre(css, &memcg->css) {
3427 child = mem_cgroup_from_css(css);
3428 BUG_ON(child->kmemcg_id != kmemcg_id);
3429 child->kmemcg_id = parent->kmemcg_id;
3430 if (!memcg->use_hierarchy)
3431 break;
3433 rcu_read_unlock();
3435 memcg_drain_all_list_lrus(kmemcg_id, parent);
3437 memcg_free_cache_id(kmemcg_id);
3440 static void memcg_free_kmem(struct mem_cgroup *memcg)
3442 /* css_alloc() failed, offlining didn't happen */
3443 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3444 memcg_offline_kmem(memcg);
3446 if (memcg->kmem_state == KMEM_ALLOCATED) {
3447 WARN_ON(!list_empty(&memcg->kmem_caches));
3448 static_branch_dec(&memcg_kmem_enabled_key);
3451 #else
3452 static int memcg_online_kmem(struct mem_cgroup *memcg)
3454 return 0;
3456 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3459 static void memcg_free_kmem(struct mem_cgroup *memcg)
3462 #endif /* CONFIG_MEMCG_KMEM */
3464 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3465 unsigned long max)
3467 int ret;
3469 mutex_lock(&memcg_max_mutex);
3470 ret = page_counter_set_max(&memcg->kmem, max);
3471 mutex_unlock(&memcg_max_mutex);
3472 return ret;
3475 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3477 int ret;
3479 mutex_lock(&memcg_max_mutex);
3481 ret = page_counter_set_max(&memcg->tcpmem, max);
3482 if (ret)
3483 goto out;
3485 if (!memcg->tcpmem_active) {
3487 * The active flag needs to be written after the static_key
3488 * update. This is what guarantees that the socket activation
3489 * function is the last one to run. See mem_cgroup_sk_alloc()
3490 * for details, and note that we don't mark any socket as
3491 * belonging to this memcg until that flag is up.
3493 * We need to do this, because static_keys will span multiple
3494 * sites, but we can't control their order. If we mark a socket
3495 * as accounted, but the accounting functions are not patched in
3496 * yet, we'll lose accounting.
3498 * We never race with the readers in mem_cgroup_sk_alloc(),
3499 * because when this value change, the code to process it is not
3500 * patched in yet.
3502 static_branch_inc(&memcg_sockets_enabled_key);
3503 memcg->tcpmem_active = true;
3505 out:
3506 mutex_unlock(&memcg_max_mutex);
3507 return ret;
3511 * The user of this function is...
3512 * RES_LIMIT.
3514 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3515 char *buf, size_t nbytes, loff_t off)
3517 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3518 unsigned long nr_pages;
3519 int ret;
3521 buf = strstrip(buf);
3522 ret = page_counter_memparse(buf, "-1", &nr_pages);
3523 if (ret)
3524 return ret;
3526 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3527 case RES_LIMIT:
3528 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3529 ret = -EINVAL;
3530 break;
3532 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3533 case _MEM:
3534 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3535 break;
3536 case _MEMSWAP:
3537 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3538 break;
3539 case _KMEM:
3540 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3541 "Please report your usecase to linux-mm@kvack.org if you "
3542 "depend on this functionality.\n");
3543 ret = memcg_update_kmem_max(memcg, nr_pages);
3544 break;
3545 case _TCP:
3546 ret = memcg_update_tcp_max(memcg, nr_pages);
3547 break;
3549 break;
3550 case RES_SOFT_LIMIT:
3551 memcg->soft_limit = nr_pages;
3552 ret = 0;
3553 break;
3555 return ret ?: nbytes;
3558 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3559 size_t nbytes, loff_t off)
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 struct page_counter *counter;
3564 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3565 case _MEM:
3566 counter = &memcg->memory;
3567 break;
3568 case _MEMSWAP:
3569 counter = &memcg->memsw;
3570 break;
3571 case _KMEM:
3572 counter = &memcg->kmem;
3573 break;
3574 case _TCP:
3575 counter = &memcg->tcpmem;
3576 break;
3577 default:
3578 BUG();
3581 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3582 case RES_MAX_USAGE:
3583 page_counter_reset_watermark(counter);
3584 break;
3585 case RES_FAILCNT:
3586 counter->failcnt = 0;
3587 break;
3588 default:
3589 BUG();
3592 return nbytes;
3595 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3596 struct cftype *cft)
3598 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3601 #ifdef CONFIG_MMU
3602 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3603 struct cftype *cft, u64 val)
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3607 if (val & ~MOVE_MASK)
3608 return -EINVAL;
3611 * No kind of locking is needed in here, because ->can_attach() will
3612 * check this value once in the beginning of the process, and then carry
3613 * on with stale data. This means that changes to this value will only
3614 * affect task migrations starting after the change.
3616 memcg->move_charge_at_immigrate = val;
3617 return 0;
3619 #else
3620 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3621 struct cftype *cft, u64 val)
3623 return -ENOSYS;
3625 #endif
3627 #ifdef CONFIG_NUMA
3629 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3630 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3631 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3633 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3634 int nid, unsigned int lru_mask)
3636 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3637 unsigned long nr = 0;
3638 enum lru_list lru;
3640 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3642 for_each_lru(lru) {
3643 if (!(BIT(lru) & lru_mask))
3644 continue;
3645 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3647 return nr;
3650 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3651 unsigned int lru_mask)
3653 unsigned long nr = 0;
3654 enum lru_list lru;
3656 for_each_lru(lru) {
3657 if (!(BIT(lru) & lru_mask))
3658 continue;
3659 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3661 return nr;
3664 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3666 struct numa_stat {
3667 const char *name;
3668 unsigned int lru_mask;
3671 static const struct numa_stat stats[] = {
3672 { "total", LRU_ALL },
3673 { "file", LRU_ALL_FILE },
3674 { "anon", LRU_ALL_ANON },
3675 { "unevictable", BIT(LRU_UNEVICTABLE) },
3677 const struct numa_stat *stat;
3678 int nid;
3679 unsigned long nr;
3680 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3682 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3683 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3684 seq_printf(m, "%s=%lu", stat->name, nr);
3685 for_each_node_state(nid, N_MEMORY) {
3686 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3687 stat->lru_mask);
3688 seq_printf(m, " N%d=%lu", nid, nr);
3690 seq_putc(m, '\n');
3693 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3694 struct mem_cgroup *iter;
3696 nr = 0;
3697 for_each_mem_cgroup_tree(iter, memcg)
3698 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3699 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3700 for_each_node_state(nid, N_MEMORY) {
3701 nr = 0;
3702 for_each_mem_cgroup_tree(iter, memcg)
3703 nr += mem_cgroup_node_nr_lru_pages(
3704 iter, nid, stat->lru_mask);
3705 seq_printf(m, " N%d=%lu", nid, nr);
3707 seq_putc(m, '\n');
3710 return 0;
3712 #endif /* CONFIG_NUMA */
3714 static const unsigned int memcg1_stats[] = {
3715 MEMCG_CACHE,
3716 MEMCG_RSS,
3717 MEMCG_RSS_HUGE,
3718 NR_SHMEM,
3719 NR_FILE_MAPPED,
3720 NR_FILE_DIRTY,
3721 NR_WRITEBACK,
3722 MEMCG_SWAP,
3725 static const char *const memcg1_stat_names[] = {
3726 "cache",
3727 "rss",
3728 "rss_huge",
3729 "shmem",
3730 "mapped_file",
3731 "dirty",
3732 "writeback",
3733 "swap",
3736 /* Universal VM events cgroup1 shows, original sort order */
3737 static const unsigned int memcg1_events[] = {
3738 PGPGIN,
3739 PGPGOUT,
3740 PGFAULT,
3741 PGMAJFAULT,
3744 static int memcg_stat_show(struct seq_file *m, void *v)
3746 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3747 unsigned long memory, memsw;
3748 struct mem_cgroup *mi;
3749 unsigned int i;
3751 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3753 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3754 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3755 continue;
3756 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3757 memcg_page_state_local(memcg, memcg1_stats[i]) *
3758 PAGE_SIZE);
3761 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3762 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3763 memcg_events_local(memcg, memcg1_events[i]));
3765 for (i = 0; i < NR_LRU_LISTS; i++)
3766 seq_printf(m, "%s %lu\n", lru_list_name(i),
3767 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3768 PAGE_SIZE);
3770 /* Hierarchical information */
3771 memory = memsw = PAGE_COUNTER_MAX;
3772 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3773 memory = min(memory, mi->memory.max);
3774 memsw = min(memsw, mi->memsw.max);
3776 seq_printf(m, "hierarchical_memory_limit %llu\n",
3777 (u64)memory * PAGE_SIZE);
3778 if (do_memsw_account())
3779 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3780 (u64)memsw * PAGE_SIZE);
3782 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3783 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3784 continue;
3785 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3786 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3787 PAGE_SIZE);
3790 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3791 seq_printf(m, "total_%s %llu\n",
3792 vm_event_name(memcg1_events[i]),
3793 (u64)memcg_events(memcg, memcg1_events[i]));
3795 for (i = 0; i < NR_LRU_LISTS; i++)
3796 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3797 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3798 PAGE_SIZE);
3800 #ifdef CONFIG_DEBUG_VM
3802 pg_data_t *pgdat;
3803 struct mem_cgroup_per_node *mz;
3804 struct zone_reclaim_stat *rstat;
3805 unsigned long recent_rotated[2] = {0, 0};
3806 unsigned long recent_scanned[2] = {0, 0};
3808 for_each_online_pgdat(pgdat) {
3809 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3810 rstat = &mz->lruvec.reclaim_stat;
3812 recent_rotated[0] += rstat->recent_rotated[0];
3813 recent_rotated[1] += rstat->recent_rotated[1];
3814 recent_scanned[0] += rstat->recent_scanned[0];
3815 recent_scanned[1] += rstat->recent_scanned[1];
3817 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3818 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3819 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3820 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3822 #endif
3824 return 0;
3827 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3828 struct cftype *cft)
3830 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3832 return mem_cgroup_swappiness(memcg);
3835 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3836 struct cftype *cft, u64 val)
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3840 if (val > 100)
3841 return -EINVAL;
3843 if (css->parent)
3844 memcg->swappiness = val;
3845 else
3846 vm_swappiness = val;
3848 return 0;
3851 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3853 struct mem_cgroup_threshold_ary *t;
3854 unsigned long usage;
3855 int i;
3857 rcu_read_lock();
3858 if (!swap)
3859 t = rcu_dereference(memcg->thresholds.primary);
3860 else
3861 t = rcu_dereference(memcg->memsw_thresholds.primary);
3863 if (!t)
3864 goto unlock;
3866 usage = mem_cgroup_usage(memcg, swap);
3869 * current_threshold points to threshold just below or equal to usage.
3870 * If it's not true, a threshold was crossed after last
3871 * call of __mem_cgroup_threshold().
3873 i = t->current_threshold;
3876 * Iterate backward over array of thresholds starting from
3877 * current_threshold and check if a threshold is crossed.
3878 * If none of thresholds below usage is crossed, we read
3879 * only one element of the array here.
3881 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3882 eventfd_signal(t->entries[i].eventfd, 1);
3884 /* i = current_threshold + 1 */
3885 i++;
3888 * Iterate forward over array of thresholds starting from
3889 * current_threshold+1 and check if a threshold is crossed.
3890 * If none of thresholds above usage is crossed, we read
3891 * only one element of the array here.
3893 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3894 eventfd_signal(t->entries[i].eventfd, 1);
3896 /* Update current_threshold */
3897 t->current_threshold = i - 1;
3898 unlock:
3899 rcu_read_unlock();
3902 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3904 while (memcg) {
3905 __mem_cgroup_threshold(memcg, false);
3906 if (do_memsw_account())
3907 __mem_cgroup_threshold(memcg, true);
3909 memcg = parent_mem_cgroup(memcg);
3913 static int compare_thresholds(const void *a, const void *b)
3915 const struct mem_cgroup_threshold *_a = a;
3916 const struct mem_cgroup_threshold *_b = b;
3918 if (_a->threshold > _b->threshold)
3919 return 1;
3921 if (_a->threshold < _b->threshold)
3922 return -1;
3924 return 0;
3927 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3929 struct mem_cgroup_eventfd_list *ev;
3931 spin_lock(&memcg_oom_lock);
3933 list_for_each_entry(ev, &memcg->oom_notify, list)
3934 eventfd_signal(ev->eventfd, 1);
3936 spin_unlock(&memcg_oom_lock);
3937 return 0;
3940 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3942 struct mem_cgroup *iter;
3944 for_each_mem_cgroup_tree(iter, memcg)
3945 mem_cgroup_oom_notify_cb(iter);
3948 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3949 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3951 struct mem_cgroup_thresholds *thresholds;
3952 struct mem_cgroup_threshold_ary *new;
3953 unsigned long threshold;
3954 unsigned long usage;
3955 int i, size, ret;
3957 ret = page_counter_memparse(args, "-1", &threshold);
3958 if (ret)
3959 return ret;
3961 mutex_lock(&memcg->thresholds_lock);
3963 if (type == _MEM) {
3964 thresholds = &memcg->thresholds;
3965 usage = mem_cgroup_usage(memcg, false);
3966 } else if (type == _MEMSWAP) {
3967 thresholds = &memcg->memsw_thresholds;
3968 usage = mem_cgroup_usage(memcg, true);
3969 } else
3970 BUG();
3972 /* Check if a threshold crossed before adding a new one */
3973 if (thresholds->primary)
3974 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3976 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3978 /* Allocate memory for new array of thresholds */
3979 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3980 if (!new) {
3981 ret = -ENOMEM;
3982 goto unlock;
3984 new->size = size;
3986 /* Copy thresholds (if any) to new array */
3987 if (thresholds->primary) {
3988 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3989 sizeof(struct mem_cgroup_threshold));
3992 /* Add new threshold */
3993 new->entries[size - 1].eventfd = eventfd;
3994 new->entries[size - 1].threshold = threshold;
3996 /* Sort thresholds. Registering of new threshold isn't time-critical */
3997 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3998 compare_thresholds, NULL);
4000 /* Find current threshold */
4001 new->current_threshold = -1;
4002 for (i = 0; i < size; i++) {
4003 if (new->entries[i].threshold <= usage) {
4005 * new->current_threshold will not be used until
4006 * rcu_assign_pointer(), so it's safe to increment
4007 * it here.
4009 ++new->current_threshold;
4010 } else
4011 break;
4014 /* Free old spare buffer and save old primary buffer as spare */
4015 kfree(thresholds->spare);
4016 thresholds->spare = thresholds->primary;
4018 rcu_assign_pointer(thresholds->primary, new);
4020 /* To be sure that nobody uses thresholds */
4021 synchronize_rcu();
4023 unlock:
4024 mutex_unlock(&memcg->thresholds_lock);
4026 return ret;
4029 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4030 struct eventfd_ctx *eventfd, const char *args)
4032 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4035 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4036 struct eventfd_ctx *eventfd, const char *args)
4038 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4041 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4042 struct eventfd_ctx *eventfd, enum res_type type)
4044 struct mem_cgroup_thresholds *thresholds;
4045 struct mem_cgroup_threshold_ary *new;
4046 unsigned long usage;
4047 int i, j, size;
4049 mutex_lock(&memcg->thresholds_lock);
4051 if (type == _MEM) {
4052 thresholds = &memcg->thresholds;
4053 usage = mem_cgroup_usage(memcg, false);
4054 } else if (type == _MEMSWAP) {
4055 thresholds = &memcg->memsw_thresholds;
4056 usage = mem_cgroup_usage(memcg, true);
4057 } else
4058 BUG();
4060 if (!thresholds->primary)
4061 goto unlock;
4063 /* Check if a threshold crossed before removing */
4064 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4066 /* Calculate new number of threshold */
4067 size = 0;
4068 for (i = 0; i < thresholds->primary->size; i++) {
4069 if (thresholds->primary->entries[i].eventfd != eventfd)
4070 size++;
4073 new = thresholds->spare;
4075 /* Set thresholds array to NULL if we don't have thresholds */
4076 if (!size) {
4077 kfree(new);
4078 new = NULL;
4079 goto swap_buffers;
4082 new->size = size;
4084 /* Copy thresholds and find current threshold */
4085 new->current_threshold = -1;
4086 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4087 if (thresholds->primary->entries[i].eventfd == eventfd)
4088 continue;
4090 new->entries[j] = thresholds->primary->entries[i];
4091 if (new->entries[j].threshold <= usage) {
4093 * new->current_threshold will not be used
4094 * until rcu_assign_pointer(), so it's safe to increment
4095 * it here.
4097 ++new->current_threshold;
4099 j++;
4102 swap_buffers:
4103 /* Swap primary and spare array */
4104 thresholds->spare = thresholds->primary;
4106 rcu_assign_pointer(thresholds->primary, new);
4108 /* To be sure that nobody uses thresholds */
4109 synchronize_rcu();
4111 /* If all events are unregistered, free the spare array */
4112 if (!new) {
4113 kfree(thresholds->spare);
4114 thresholds->spare = NULL;
4116 unlock:
4117 mutex_unlock(&memcg->thresholds_lock);
4120 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4121 struct eventfd_ctx *eventfd)
4123 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4126 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4127 struct eventfd_ctx *eventfd)
4129 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4132 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4133 struct eventfd_ctx *eventfd, const char *args)
4135 struct mem_cgroup_eventfd_list *event;
4137 event = kmalloc(sizeof(*event), GFP_KERNEL);
4138 if (!event)
4139 return -ENOMEM;
4141 spin_lock(&memcg_oom_lock);
4143 event->eventfd = eventfd;
4144 list_add(&event->list, &memcg->oom_notify);
4146 /* already in OOM ? */
4147 if (memcg->under_oom)
4148 eventfd_signal(eventfd, 1);
4149 spin_unlock(&memcg_oom_lock);
4151 return 0;
4154 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4155 struct eventfd_ctx *eventfd)
4157 struct mem_cgroup_eventfd_list *ev, *tmp;
4159 spin_lock(&memcg_oom_lock);
4161 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4162 if (ev->eventfd == eventfd) {
4163 list_del(&ev->list);
4164 kfree(ev);
4168 spin_unlock(&memcg_oom_lock);
4171 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4173 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4175 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4176 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4177 seq_printf(sf, "oom_kill %lu\n",
4178 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4179 return 0;
4182 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4183 struct cftype *cft, u64 val)
4185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4187 /* cannot set to root cgroup and only 0 and 1 are allowed */
4188 if (!css->parent || !((val == 0) || (val == 1)))
4189 return -EINVAL;
4191 memcg->oom_kill_disable = val;
4192 if (!val)
4193 memcg_oom_recover(memcg);
4195 return 0;
4198 #ifdef CONFIG_CGROUP_WRITEBACK
4200 #include <trace/events/writeback.h>
4202 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4204 return wb_domain_init(&memcg->cgwb_domain, gfp);
4207 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4209 wb_domain_exit(&memcg->cgwb_domain);
4212 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4214 wb_domain_size_changed(&memcg->cgwb_domain);
4217 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4221 if (!memcg->css.parent)
4222 return NULL;
4224 return &memcg->cgwb_domain;
4228 * idx can be of type enum memcg_stat_item or node_stat_item.
4229 * Keep in sync with memcg_exact_page().
4231 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4233 long x = atomic_long_read(&memcg->vmstats[idx]);
4234 int cpu;
4236 for_each_online_cpu(cpu)
4237 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4238 if (x < 0)
4239 x = 0;
4240 return x;
4244 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4245 * @wb: bdi_writeback in question
4246 * @pfilepages: out parameter for number of file pages
4247 * @pheadroom: out parameter for number of allocatable pages according to memcg
4248 * @pdirty: out parameter for number of dirty pages
4249 * @pwriteback: out parameter for number of pages under writeback
4251 * Determine the numbers of file, headroom, dirty, and writeback pages in
4252 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4253 * is a bit more involved.
4255 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4256 * headroom is calculated as the lowest headroom of itself and the
4257 * ancestors. Note that this doesn't consider the actual amount of
4258 * available memory in the system. The caller should further cap
4259 * *@pheadroom accordingly.
4261 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4262 unsigned long *pheadroom, unsigned long *pdirty,
4263 unsigned long *pwriteback)
4265 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4266 struct mem_cgroup *parent;
4268 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4270 /* this should eventually include NR_UNSTABLE_NFS */
4271 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4272 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4273 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4274 *pheadroom = PAGE_COUNTER_MAX;
4276 while ((parent = parent_mem_cgroup(memcg))) {
4277 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4278 unsigned long used = page_counter_read(&memcg->memory);
4280 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4281 memcg = parent;
4286 * Foreign dirty flushing
4288 * There's an inherent mismatch between memcg and writeback. The former
4289 * trackes ownership per-page while the latter per-inode. This was a
4290 * deliberate design decision because honoring per-page ownership in the
4291 * writeback path is complicated, may lead to higher CPU and IO overheads
4292 * and deemed unnecessary given that write-sharing an inode across
4293 * different cgroups isn't a common use-case.
4295 * Combined with inode majority-writer ownership switching, this works well
4296 * enough in most cases but there are some pathological cases. For
4297 * example, let's say there are two cgroups A and B which keep writing to
4298 * different but confined parts of the same inode. B owns the inode and
4299 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4300 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4301 * triggering background writeback. A will be slowed down without a way to
4302 * make writeback of the dirty pages happen.
4304 * Conditions like the above can lead to a cgroup getting repatedly and
4305 * severely throttled after making some progress after each
4306 * dirty_expire_interval while the underyling IO device is almost
4307 * completely idle.
4309 * Solving this problem completely requires matching the ownership tracking
4310 * granularities between memcg and writeback in either direction. However,
4311 * the more egregious behaviors can be avoided by simply remembering the
4312 * most recent foreign dirtying events and initiating remote flushes on
4313 * them when local writeback isn't enough to keep the memory clean enough.
4315 * The following two functions implement such mechanism. When a foreign
4316 * page - a page whose memcg and writeback ownerships don't match - is
4317 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4318 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4319 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4320 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4321 * foreign bdi_writebacks which haven't expired. Both the numbers of
4322 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4323 * limited to MEMCG_CGWB_FRN_CNT.
4325 * The mechanism only remembers IDs and doesn't hold any object references.
4326 * As being wrong occasionally doesn't matter, updates and accesses to the
4327 * records are lockless and racy.
4329 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4330 struct bdi_writeback *wb)
4332 struct mem_cgroup *memcg = page->mem_cgroup;
4333 struct memcg_cgwb_frn *frn;
4334 u64 now = get_jiffies_64();
4335 u64 oldest_at = now;
4336 int oldest = -1;
4337 int i;
4339 trace_track_foreign_dirty(page, wb);
4342 * Pick the slot to use. If there is already a slot for @wb, keep
4343 * using it. If not replace the oldest one which isn't being
4344 * written out.
4346 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4347 frn = &memcg->cgwb_frn[i];
4348 if (frn->bdi_id == wb->bdi->id &&
4349 frn->memcg_id == wb->memcg_css->id)
4350 break;
4351 if (time_before64(frn->at, oldest_at) &&
4352 atomic_read(&frn->done.cnt) == 1) {
4353 oldest = i;
4354 oldest_at = frn->at;
4358 if (i < MEMCG_CGWB_FRN_CNT) {
4360 * Re-using an existing one. Update timestamp lazily to
4361 * avoid making the cacheline hot. We want them to be
4362 * reasonably up-to-date and significantly shorter than
4363 * dirty_expire_interval as that's what expires the record.
4364 * Use the shorter of 1s and dirty_expire_interval / 8.
4366 unsigned long update_intv =
4367 min_t(unsigned long, HZ,
4368 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4370 if (time_before64(frn->at, now - update_intv))
4371 frn->at = now;
4372 } else if (oldest >= 0) {
4373 /* replace the oldest free one */
4374 frn = &memcg->cgwb_frn[oldest];
4375 frn->bdi_id = wb->bdi->id;
4376 frn->memcg_id = wb->memcg_css->id;
4377 frn->at = now;
4381 /* issue foreign writeback flushes for recorded foreign dirtying events */
4382 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4384 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4385 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4386 u64 now = jiffies_64;
4387 int i;
4389 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4390 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4393 * If the record is older than dirty_expire_interval,
4394 * writeback on it has already started. No need to kick it
4395 * off again. Also, don't start a new one if there's
4396 * already one in flight.
4398 if (time_after64(frn->at, now - intv) &&
4399 atomic_read(&frn->done.cnt) == 1) {
4400 frn->at = 0;
4401 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4402 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4403 WB_REASON_FOREIGN_FLUSH,
4404 &frn->done);
4409 #else /* CONFIG_CGROUP_WRITEBACK */
4411 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4413 return 0;
4416 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4420 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4424 #endif /* CONFIG_CGROUP_WRITEBACK */
4427 * DO NOT USE IN NEW FILES.
4429 * "cgroup.event_control" implementation.
4431 * This is way over-engineered. It tries to support fully configurable
4432 * events for each user. Such level of flexibility is completely
4433 * unnecessary especially in the light of the planned unified hierarchy.
4435 * Please deprecate this and replace with something simpler if at all
4436 * possible.
4440 * Unregister event and free resources.
4442 * Gets called from workqueue.
4444 static void memcg_event_remove(struct work_struct *work)
4446 struct mem_cgroup_event *event =
4447 container_of(work, struct mem_cgroup_event, remove);
4448 struct mem_cgroup *memcg = event->memcg;
4450 remove_wait_queue(event->wqh, &event->wait);
4452 event->unregister_event(memcg, event->eventfd);
4454 /* Notify userspace the event is going away. */
4455 eventfd_signal(event->eventfd, 1);
4457 eventfd_ctx_put(event->eventfd);
4458 kfree(event);
4459 css_put(&memcg->css);
4463 * Gets called on EPOLLHUP on eventfd when user closes it.
4465 * Called with wqh->lock held and interrupts disabled.
4467 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4468 int sync, void *key)
4470 struct mem_cgroup_event *event =
4471 container_of(wait, struct mem_cgroup_event, wait);
4472 struct mem_cgroup *memcg = event->memcg;
4473 __poll_t flags = key_to_poll(key);
4475 if (flags & EPOLLHUP) {
4477 * If the event has been detached at cgroup removal, we
4478 * can simply return knowing the other side will cleanup
4479 * for us.
4481 * We can't race against event freeing since the other
4482 * side will require wqh->lock via remove_wait_queue(),
4483 * which we hold.
4485 spin_lock(&memcg->event_list_lock);
4486 if (!list_empty(&event->list)) {
4487 list_del_init(&event->list);
4489 * We are in atomic context, but cgroup_event_remove()
4490 * may sleep, so we have to call it in workqueue.
4492 schedule_work(&event->remove);
4494 spin_unlock(&memcg->event_list_lock);
4497 return 0;
4500 static void memcg_event_ptable_queue_proc(struct file *file,
4501 wait_queue_head_t *wqh, poll_table *pt)
4503 struct mem_cgroup_event *event =
4504 container_of(pt, struct mem_cgroup_event, pt);
4506 event->wqh = wqh;
4507 add_wait_queue(wqh, &event->wait);
4511 * DO NOT USE IN NEW FILES.
4513 * Parse input and register new cgroup event handler.
4515 * Input must be in format '<event_fd> <control_fd> <args>'.
4516 * Interpretation of args is defined by control file implementation.
4518 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4519 char *buf, size_t nbytes, loff_t off)
4521 struct cgroup_subsys_state *css = of_css(of);
4522 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4523 struct mem_cgroup_event *event;
4524 struct cgroup_subsys_state *cfile_css;
4525 unsigned int efd, cfd;
4526 struct fd efile;
4527 struct fd cfile;
4528 const char *name;
4529 char *endp;
4530 int ret;
4532 buf = strstrip(buf);
4534 efd = simple_strtoul(buf, &endp, 10);
4535 if (*endp != ' ')
4536 return -EINVAL;
4537 buf = endp + 1;
4539 cfd = simple_strtoul(buf, &endp, 10);
4540 if ((*endp != ' ') && (*endp != '\0'))
4541 return -EINVAL;
4542 buf = endp + 1;
4544 event = kzalloc(sizeof(*event), GFP_KERNEL);
4545 if (!event)
4546 return -ENOMEM;
4548 event->memcg = memcg;
4549 INIT_LIST_HEAD(&event->list);
4550 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4551 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4552 INIT_WORK(&event->remove, memcg_event_remove);
4554 efile = fdget(efd);
4555 if (!efile.file) {
4556 ret = -EBADF;
4557 goto out_kfree;
4560 event->eventfd = eventfd_ctx_fileget(efile.file);
4561 if (IS_ERR(event->eventfd)) {
4562 ret = PTR_ERR(event->eventfd);
4563 goto out_put_efile;
4566 cfile = fdget(cfd);
4567 if (!cfile.file) {
4568 ret = -EBADF;
4569 goto out_put_eventfd;
4572 /* the process need read permission on control file */
4573 /* AV: shouldn't we check that it's been opened for read instead? */
4574 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4575 if (ret < 0)
4576 goto out_put_cfile;
4579 * Determine the event callbacks and set them in @event. This used
4580 * to be done via struct cftype but cgroup core no longer knows
4581 * about these events. The following is crude but the whole thing
4582 * is for compatibility anyway.
4584 * DO NOT ADD NEW FILES.
4586 name = cfile.file->f_path.dentry->d_name.name;
4588 if (!strcmp(name, "memory.usage_in_bytes")) {
4589 event->register_event = mem_cgroup_usage_register_event;
4590 event->unregister_event = mem_cgroup_usage_unregister_event;
4591 } else if (!strcmp(name, "memory.oom_control")) {
4592 event->register_event = mem_cgroup_oom_register_event;
4593 event->unregister_event = mem_cgroup_oom_unregister_event;
4594 } else if (!strcmp(name, "memory.pressure_level")) {
4595 event->register_event = vmpressure_register_event;
4596 event->unregister_event = vmpressure_unregister_event;
4597 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4598 event->register_event = memsw_cgroup_usage_register_event;
4599 event->unregister_event = memsw_cgroup_usage_unregister_event;
4600 } else {
4601 ret = -EINVAL;
4602 goto out_put_cfile;
4606 * Verify @cfile should belong to @css. Also, remaining events are
4607 * automatically removed on cgroup destruction but the removal is
4608 * asynchronous, so take an extra ref on @css.
4610 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4611 &memory_cgrp_subsys);
4612 ret = -EINVAL;
4613 if (IS_ERR(cfile_css))
4614 goto out_put_cfile;
4615 if (cfile_css != css) {
4616 css_put(cfile_css);
4617 goto out_put_cfile;
4620 ret = event->register_event(memcg, event->eventfd, buf);
4621 if (ret)
4622 goto out_put_css;
4624 vfs_poll(efile.file, &event->pt);
4626 spin_lock(&memcg->event_list_lock);
4627 list_add(&event->list, &memcg->event_list);
4628 spin_unlock(&memcg->event_list_lock);
4630 fdput(cfile);
4631 fdput(efile);
4633 return nbytes;
4635 out_put_css:
4636 css_put(css);
4637 out_put_cfile:
4638 fdput(cfile);
4639 out_put_eventfd:
4640 eventfd_ctx_put(event->eventfd);
4641 out_put_efile:
4642 fdput(efile);
4643 out_kfree:
4644 kfree(event);
4646 return ret;
4649 static struct cftype mem_cgroup_legacy_files[] = {
4651 .name = "usage_in_bytes",
4652 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4653 .read_u64 = mem_cgroup_read_u64,
4656 .name = "max_usage_in_bytes",
4657 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4658 .write = mem_cgroup_reset,
4659 .read_u64 = mem_cgroup_read_u64,
4662 .name = "limit_in_bytes",
4663 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4664 .write = mem_cgroup_write,
4665 .read_u64 = mem_cgroup_read_u64,
4668 .name = "soft_limit_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4670 .write = mem_cgroup_write,
4671 .read_u64 = mem_cgroup_read_u64,
4674 .name = "failcnt",
4675 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4676 .write = mem_cgroup_reset,
4677 .read_u64 = mem_cgroup_read_u64,
4680 .name = "stat",
4681 .seq_show = memcg_stat_show,
4684 .name = "force_empty",
4685 .write = mem_cgroup_force_empty_write,
4688 .name = "use_hierarchy",
4689 .write_u64 = mem_cgroup_hierarchy_write,
4690 .read_u64 = mem_cgroup_hierarchy_read,
4693 .name = "cgroup.event_control", /* XXX: for compat */
4694 .write = memcg_write_event_control,
4695 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4698 .name = "swappiness",
4699 .read_u64 = mem_cgroup_swappiness_read,
4700 .write_u64 = mem_cgroup_swappiness_write,
4703 .name = "move_charge_at_immigrate",
4704 .read_u64 = mem_cgroup_move_charge_read,
4705 .write_u64 = mem_cgroup_move_charge_write,
4708 .name = "oom_control",
4709 .seq_show = mem_cgroup_oom_control_read,
4710 .write_u64 = mem_cgroup_oom_control_write,
4711 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4714 .name = "pressure_level",
4716 #ifdef CONFIG_NUMA
4718 .name = "numa_stat",
4719 .seq_show = memcg_numa_stat_show,
4721 #endif
4723 .name = "kmem.limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4725 .write = mem_cgroup_write,
4726 .read_u64 = mem_cgroup_read_u64,
4729 .name = "kmem.usage_in_bytes",
4730 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4731 .read_u64 = mem_cgroup_read_u64,
4734 .name = "kmem.failcnt",
4735 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4736 .write = mem_cgroup_reset,
4737 .read_u64 = mem_cgroup_read_u64,
4740 .name = "kmem.max_usage_in_bytes",
4741 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4742 .write = mem_cgroup_reset,
4743 .read_u64 = mem_cgroup_read_u64,
4745 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4747 .name = "kmem.slabinfo",
4748 .seq_start = memcg_slab_start,
4749 .seq_next = memcg_slab_next,
4750 .seq_stop = memcg_slab_stop,
4751 .seq_show = memcg_slab_show,
4753 #endif
4755 .name = "kmem.tcp.limit_in_bytes",
4756 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4757 .write = mem_cgroup_write,
4758 .read_u64 = mem_cgroup_read_u64,
4761 .name = "kmem.tcp.usage_in_bytes",
4762 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4763 .read_u64 = mem_cgroup_read_u64,
4766 .name = "kmem.tcp.failcnt",
4767 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4768 .write = mem_cgroup_reset,
4769 .read_u64 = mem_cgroup_read_u64,
4772 .name = "kmem.tcp.max_usage_in_bytes",
4773 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4774 .write = mem_cgroup_reset,
4775 .read_u64 = mem_cgroup_read_u64,
4777 { }, /* terminate */
4781 * Private memory cgroup IDR
4783 * Swap-out records and page cache shadow entries need to store memcg
4784 * references in constrained space, so we maintain an ID space that is
4785 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4786 * memory-controlled cgroups to 64k.
4788 * However, there usually are many references to the oflline CSS after
4789 * the cgroup has been destroyed, such as page cache or reclaimable
4790 * slab objects, that don't need to hang on to the ID. We want to keep
4791 * those dead CSS from occupying IDs, or we might quickly exhaust the
4792 * relatively small ID space and prevent the creation of new cgroups
4793 * even when there are much fewer than 64k cgroups - possibly none.
4795 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4796 * be freed and recycled when it's no longer needed, which is usually
4797 * when the CSS is offlined.
4799 * The only exception to that are records of swapped out tmpfs/shmem
4800 * pages that need to be attributed to live ancestors on swapin. But
4801 * those references are manageable from userspace.
4804 static DEFINE_IDR(mem_cgroup_idr);
4806 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4808 if (memcg->id.id > 0) {
4809 idr_remove(&mem_cgroup_idr, memcg->id.id);
4810 memcg->id.id = 0;
4814 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4816 refcount_add(n, &memcg->id.ref);
4819 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4821 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4822 mem_cgroup_id_remove(memcg);
4824 /* Memcg ID pins CSS */
4825 css_put(&memcg->css);
4829 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4831 mem_cgroup_id_put_many(memcg, 1);
4835 * mem_cgroup_from_id - look up a memcg from a memcg id
4836 * @id: the memcg id to look up
4838 * Caller must hold rcu_read_lock().
4840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4842 WARN_ON_ONCE(!rcu_read_lock_held());
4843 return idr_find(&mem_cgroup_idr, id);
4846 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4848 struct mem_cgroup_per_node *pn;
4849 int tmp = node;
4851 * This routine is called against possible nodes.
4852 * But it's BUG to call kmalloc() against offline node.
4854 * TODO: this routine can waste much memory for nodes which will
4855 * never be onlined. It's better to use memory hotplug callback
4856 * function.
4858 if (!node_state(node, N_NORMAL_MEMORY))
4859 tmp = -1;
4860 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4861 if (!pn)
4862 return 1;
4864 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4865 if (!pn->lruvec_stat_local) {
4866 kfree(pn);
4867 return 1;
4870 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4871 if (!pn->lruvec_stat_cpu) {
4872 free_percpu(pn->lruvec_stat_local);
4873 kfree(pn);
4874 return 1;
4877 lruvec_init(&pn->lruvec);
4878 pn->usage_in_excess = 0;
4879 pn->on_tree = false;
4880 pn->memcg = memcg;
4882 memcg->nodeinfo[node] = pn;
4883 return 0;
4886 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4888 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4890 if (!pn)
4891 return;
4893 free_percpu(pn->lruvec_stat_cpu);
4894 free_percpu(pn->lruvec_stat_local);
4895 kfree(pn);
4898 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4900 int node;
4902 for_each_node(node)
4903 free_mem_cgroup_per_node_info(memcg, node);
4904 free_percpu(memcg->vmstats_percpu);
4905 free_percpu(memcg->vmstats_local);
4906 kfree(memcg);
4909 static void mem_cgroup_free(struct mem_cgroup *memcg)
4911 memcg_wb_domain_exit(memcg);
4913 * Flush percpu vmstats and vmevents to guarantee the value correctness
4914 * on parent's and all ancestor levels.
4916 memcg_flush_percpu_vmstats(memcg, false);
4917 memcg_flush_percpu_vmevents(memcg);
4918 __mem_cgroup_free(memcg);
4921 static struct mem_cgroup *mem_cgroup_alloc(void)
4923 struct mem_cgroup *memcg;
4924 unsigned int size;
4925 int node;
4926 int __maybe_unused i;
4928 size = sizeof(struct mem_cgroup);
4929 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4931 memcg = kzalloc(size, GFP_KERNEL);
4932 if (!memcg)
4933 return NULL;
4935 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4936 1, MEM_CGROUP_ID_MAX,
4937 GFP_KERNEL);
4938 if (memcg->id.id < 0)
4939 goto fail;
4941 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4942 if (!memcg->vmstats_local)
4943 goto fail;
4945 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4946 if (!memcg->vmstats_percpu)
4947 goto fail;
4949 for_each_node(node)
4950 if (alloc_mem_cgroup_per_node_info(memcg, node))
4951 goto fail;
4953 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4954 goto fail;
4956 INIT_WORK(&memcg->high_work, high_work_func);
4957 INIT_LIST_HEAD(&memcg->oom_notify);
4958 mutex_init(&memcg->thresholds_lock);
4959 spin_lock_init(&memcg->move_lock);
4960 vmpressure_init(&memcg->vmpressure);
4961 INIT_LIST_HEAD(&memcg->event_list);
4962 spin_lock_init(&memcg->event_list_lock);
4963 memcg->socket_pressure = jiffies;
4964 #ifdef CONFIG_MEMCG_KMEM
4965 memcg->kmemcg_id = -1;
4966 #endif
4967 #ifdef CONFIG_CGROUP_WRITEBACK
4968 INIT_LIST_HEAD(&memcg->cgwb_list);
4969 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4970 memcg->cgwb_frn[i].done =
4971 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4972 #endif
4973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4974 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4975 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4976 memcg->deferred_split_queue.split_queue_len = 0;
4977 #endif
4978 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4979 return memcg;
4980 fail:
4981 mem_cgroup_id_remove(memcg);
4982 __mem_cgroup_free(memcg);
4983 return NULL;
4986 static struct cgroup_subsys_state * __ref
4987 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4989 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4990 struct mem_cgroup *memcg;
4991 long error = -ENOMEM;
4993 memcg = mem_cgroup_alloc();
4994 if (!memcg)
4995 return ERR_PTR(error);
4997 memcg->high = PAGE_COUNTER_MAX;
4998 memcg->soft_limit = PAGE_COUNTER_MAX;
4999 if (parent) {
5000 memcg->swappiness = mem_cgroup_swappiness(parent);
5001 memcg->oom_kill_disable = parent->oom_kill_disable;
5003 if (parent && parent->use_hierarchy) {
5004 memcg->use_hierarchy = true;
5005 page_counter_init(&memcg->memory, &parent->memory);
5006 page_counter_init(&memcg->swap, &parent->swap);
5007 page_counter_init(&memcg->memsw, &parent->memsw);
5008 page_counter_init(&memcg->kmem, &parent->kmem);
5009 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5010 } else {
5011 page_counter_init(&memcg->memory, NULL);
5012 page_counter_init(&memcg->swap, NULL);
5013 page_counter_init(&memcg->memsw, NULL);
5014 page_counter_init(&memcg->kmem, NULL);
5015 page_counter_init(&memcg->tcpmem, NULL);
5017 * Deeper hierachy with use_hierarchy == false doesn't make
5018 * much sense so let cgroup subsystem know about this
5019 * unfortunate state in our controller.
5021 if (parent != root_mem_cgroup)
5022 memory_cgrp_subsys.broken_hierarchy = true;
5025 /* The following stuff does not apply to the root */
5026 if (!parent) {
5027 #ifdef CONFIG_MEMCG_KMEM
5028 INIT_LIST_HEAD(&memcg->kmem_caches);
5029 #endif
5030 root_mem_cgroup = memcg;
5031 return &memcg->css;
5034 error = memcg_online_kmem(memcg);
5035 if (error)
5036 goto fail;
5038 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5039 static_branch_inc(&memcg_sockets_enabled_key);
5041 return &memcg->css;
5042 fail:
5043 mem_cgroup_id_remove(memcg);
5044 mem_cgroup_free(memcg);
5045 return ERR_PTR(-ENOMEM);
5048 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5053 * A memcg must be visible for memcg_expand_shrinker_maps()
5054 * by the time the maps are allocated. So, we allocate maps
5055 * here, when for_each_mem_cgroup() can't skip it.
5057 if (memcg_alloc_shrinker_maps(memcg)) {
5058 mem_cgroup_id_remove(memcg);
5059 return -ENOMEM;
5062 /* Online state pins memcg ID, memcg ID pins CSS */
5063 refcount_set(&memcg->id.ref, 1);
5064 css_get(css);
5065 return 0;
5068 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5071 struct mem_cgroup_event *event, *tmp;
5074 * Unregister events and notify userspace.
5075 * Notify userspace about cgroup removing only after rmdir of cgroup
5076 * directory to avoid race between userspace and kernelspace.
5078 spin_lock(&memcg->event_list_lock);
5079 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5080 list_del_init(&event->list);
5081 schedule_work(&event->remove);
5083 spin_unlock(&memcg->event_list_lock);
5085 page_counter_set_min(&memcg->memory, 0);
5086 page_counter_set_low(&memcg->memory, 0);
5088 memcg_offline_kmem(memcg);
5089 wb_memcg_offline(memcg);
5091 drain_all_stock(memcg);
5093 mem_cgroup_id_put(memcg);
5096 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5100 invalidate_reclaim_iterators(memcg);
5103 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5106 int __maybe_unused i;
5108 #ifdef CONFIG_CGROUP_WRITEBACK
5109 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5110 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5111 #endif
5112 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5113 static_branch_dec(&memcg_sockets_enabled_key);
5115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5116 static_branch_dec(&memcg_sockets_enabled_key);
5118 vmpressure_cleanup(&memcg->vmpressure);
5119 cancel_work_sync(&memcg->high_work);
5120 mem_cgroup_remove_from_trees(memcg);
5121 memcg_free_shrinker_maps(memcg);
5122 memcg_free_kmem(memcg);
5123 mem_cgroup_free(memcg);
5127 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5128 * @css: the target css
5130 * Reset the states of the mem_cgroup associated with @css. This is
5131 * invoked when the userland requests disabling on the default hierarchy
5132 * but the memcg is pinned through dependency. The memcg should stop
5133 * applying policies and should revert to the vanilla state as it may be
5134 * made visible again.
5136 * The current implementation only resets the essential configurations.
5137 * This needs to be expanded to cover all the visible parts.
5139 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5141 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5143 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5144 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5145 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5146 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5147 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5148 page_counter_set_min(&memcg->memory, 0);
5149 page_counter_set_low(&memcg->memory, 0);
5150 memcg->high = PAGE_COUNTER_MAX;
5151 memcg->soft_limit = PAGE_COUNTER_MAX;
5152 memcg_wb_domain_size_changed(memcg);
5155 #ifdef CONFIG_MMU
5156 /* Handlers for move charge at task migration. */
5157 static int mem_cgroup_do_precharge(unsigned long count)
5159 int ret;
5161 /* Try a single bulk charge without reclaim first, kswapd may wake */
5162 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5163 if (!ret) {
5164 mc.precharge += count;
5165 return ret;
5168 /* Try charges one by one with reclaim, but do not retry */
5169 while (count--) {
5170 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5171 if (ret)
5172 return ret;
5173 mc.precharge++;
5174 cond_resched();
5176 return 0;
5179 union mc_target {
5180 struct page *page;
5181 swp_entry_t ent;
5184 enum mc_target_type {
5185 MC_TARGET_NONE = 0,
5186 MC_TARGET_PAGE,
5187 MC_TARGET_SWAP,
5188 MC_TARGET_DEVICE,
5191 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5192 unsigned long addr, pte_t ptent)
5194 struct page *page = vm_normal_page(vma, addr, ptent);
5196 if (!page || !page_mapped(page))
5197 return NULL;
5198 if (PageAnon(page)) {
5199 if (!(mc.flags & MOVE_ANON))
5200 return NULL;
5201 } else {
5202 if (!(mc.flags & MOVE_FILE))
5203 return NULL;
5205 if (!get_page_unless_zero(page))
5206 return NULL;
5208 return page;
5211 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5212 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5213 pte_t ptent, swp_entry_t *entry)
5215 struct page *page = NULL;
5216 swp_entry_t ent = pte_to_swp_entry(ptent);
5218 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5219 return NULL;
5222 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5223 * a device and because they are not accessible by CPU they are store
5224 * as special swap entry in the CPU page table.
5226 if (is_device_private_entry(ent)) {
5227 page = device_private_entry_to_page(ent);
5229 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5230 * a refcount of 1 when free (unlike normal page)
5232 if (!page_ref_add_unless(page, 1, 1))
5233 return NULL;
5234 return page;
5238 * Because lookup_swap_cache() updates some statistics counter,
5239 * we call find_get_page() with swapper_space directly.
5241 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5242 if (do_memsw_account())
5243 entry->val = ent.val;
5245 return page;
5247 #else
5248 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5249 pte_t ptent, swp_entry_t *entry)
5251 return NULL;
5253 #endif
5255 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5256 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5258 struct page *page = NULL;
5259 struct address_space *mapping;
5260 pgoff_t pgoff;
5262 if (!vma->vm_file) /* anonymous vma */
5263 return NULL;
5264 if (!(mc.flags & MOVE_FILE))
5265 return NULL;
5267 mapping = vma->vm_file->f_mapping;
5268 pgoff = linear_page_index(vma, addr);
5270 /* page is moved even if it's not RSS of this task(page-faulted). */
5271 #ifdef CONFIG_SWAP
5272 /* shmem/tmpfs may report page out on swap: account for that too. */
5273 if (shmem_mapping(mapping)) {
5274 page = find_get_entry(mapping, pgoff);
5275 if (xa_is_value(page)) {
5276 swp_entry_t swp = radix_to_swp_entry(page);
5277 if (do_memsw_account())
5278 *entry = swp;
5279 page = find_get_page(swap_address_space(swp),
5280 swp_offset(swp));
5282 } else
5283 page = find_get_page(mapping, pgoff);
5284 #else
5285 page = find_get_page(mapping, pgoff);
5286 #endif
5287 return page;
5291 * mem_cgroup_move_account - move account of the page
5292 * @page: the page
5293 * @compound: charge the page as compound or small page
5294 * @from: mem_cgroup which the page is moved from.
5295 * @to: mem_cgroup which the page is moved to. @from != @to.
5297 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5299 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5300 * from old cgroup.
5302 static int mem_cgroup_move_account(struct page *page,
5303 bool compound,
5304 struct mem_cgroup *from,
5305 struct mem_cgroup *to)
5307 struct lruvec *from_vec, *to_vec;
5308 struct pglist_data *pgdat;
5309 unsigned long flags;
5310 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5311 int ret;
5312 bool anon;
5314 VM_BUG_ON(from == to);
5315 VM_BUG_ON_PAGE(PageLRU(page), page);
5316 VM_BUG_ON(compound && !PageTransHuge(page));
5319 * Prevent mem_cgroup_migrate() from looking at
5320 * page->mem_cgroup of its source page while we change it.
5322 ret = -EBUSY;
5323 if (!trylock_page(page))
5324 goto out;
5326 ret = -EINVAL;
5327 if (page->mem_cgroup != from)
5328 goto out_unlock;
5330 anon = PageAnon(page);
5332 pgdat = page_pgdat(page);
5333 from_vec = mem_cgroup_lruvec(from, pgdat);
5334 to_vec = mem_cgroup_lruvec(to, pgdat);
5336 spin_lock_irqsave(&from->move_lock, flags);
5338 if (!anon && page_mapped(page)) {
5339 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5340 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5344 * move_lock grabbed above and caller set from->moving_account, so
5345 * mod_memcg_page_state will serialize updates to PageDirty.
5346 * So mapping should be stable for dirty pages.
5348 if (!anon && PageDirty(page)) {
5349 struct address_space *mapping = page_mapping(page);
5351 if (mapping_cap_account_dirty(mapping)) {
5352 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5353 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5357 if (PageWriteback(page)) {
5358 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5359 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5363 if (compound && !list_empty(page_deferred_list(page))) {
5364 spin_lock(&from->deferred_split_queue.split_queue_lock);
5365 list_del_init(page_deferred_list(page));
5366 from->deferred_split_queue.split_queue_len--;
5367 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5369 #endif
5371 * It is safe to change page->mem_cgroup here because the page
5372 * is referenced, charged, and isolated - we can't race with
5373 * uncharging, charging, migration, or LRU putback.
5376 /* caller should have done css_get */
5377 page->mem_cgroup = to;
5379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5380 if (compound && list_empty(page_deferred_list(page))) {
5381 spin_lock(&to->deferred_split_queue.split_queue_lock);
5382 list_add_tail(page_deferred_list(page),
5383 &to->deferred_split_queue.split_queue);
5384 to->deferred_split_queue.split_queue_len++;
5385 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5387 #endif
5389 spin_unlock_irqrestore(&from->move_lock, flags);
5391 ret = 0;
5393 local_irq_disable();
5394 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5395 memcg_check_events(to, page);
5396 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5397 memcg_check_events(from, page);
5398 local_irq_enable();
5399 out_unlock:
5400 unlock_page(page);
5401 out:
5402 return ret;
5406 * get_mctgt_type - get target type of moving charge
5407 * @vma: the vma the pte to be checked belongs
5408 * @addr: the address corresponding to the pte to be checked
5409 * @ptent: the pte to be checked
5410 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5412 * Returns
5413 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5414 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5415 * move charge. if @target is not NULL, the page is stored in target->page
5416 * with extra refcnt got(Callers should handle it).
5417 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5418 * target for charge migration. if @target is not NULL, the entry is stored
5419 * in target->ent.
5420 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5421 * (so ZONE_DEVICE page and thus not on the lru).
5422 * For now we such page is charge like a regular page would be as for all
5423 * intent and purposes it is just special memory taking the place of a
5424 * regular page.
5426 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5428 * Called with pte lock held.
5431 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5432 unsigned long addr, pte_t ptent, union mc_target *target)
5434 struct page *page = NULL;
5435 enum mc_target_type ret = MC_TARGET_NONE;
5436 swp_entry_t ent = { .val = 0 };
5438 if (pte_present(ptent))
5439 page = mc_handle_present_pte(vma, addr, ptent);
5440 else if (is_swap_pte(ptent))
5441 page = mc_handle_swap_pte(vma, ptent, &ent);
5442 else if (pte_none(ptent))
5443 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5445 if (!page && !ent.val)
5446 return ret;
5447 if (page) {
5449 * Do only loose check w/o serialization.
5450 * mem_cgroup_move_account() checks the page is valid or
5451 * not under LRU exclusion.
5453 if (page->mem_cgroup == mc.from) {
5454 ret = MC_TARGET_PAGE;
5455 if (is_device_private_page(page))
5456 ret = MC_TARGET_DEVICE;
5457 if (target)
5458 target->page = page;
5460 if (!ret || !target)
5461 put_page(page);
5464 * There is a swap entry and a page doesn't exist or isn't charged.
5465 * But we cannot move a tail-page in a THP.
5467 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5468 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5469 ret = MC_TARGET_SWAP;
5470 if (target)
5471 target->ent = ent;
5473 return ret;
5476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5478 * We don't consider PMD mapped swapping or file mapped pages because THP does
5479 * not support them for now.
5480 * Caller should make sure that pmd_trans_huge(pmd) is true.
5482 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5483 unsigned long addr, pmd_t pmd, union mc_target *target)
5485 struct page *page = NULL;
5486 enum mc_target_type ret = MC_TARGET_NONE;
5488 if (unlikely(is_swap_pmd(pmd))) {
5489 VM_BUG_ON(thp_migration_supported() &&
5490 !is_pmd_migration_entry(pmd));
5491 return ret;
5493 page = pmd_page(pmd);
5494 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5495 if (!(mc.flags & MOVE_ANON))
5496 return ret;
5497 if (page->mem_cgroup == mc.from) {
5498 ret = MC_TARGET_PAGE;
5499 if (target) {
5500 get_page(page);
5501 target->page = page;
5504 return ret;
5506 #else
5507 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5508 unsigned long addr, pmd_t pmd, union mc_target *target)
5510 return MC_TARGET_NONE;
5512 #endif
5514 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5515 unsigned long addr, unsigned long end,
5516 struct mm_walk *walk)
5518 struct vm_area_struct *vma = walk->vma;
5519 pte_t *pte;
5520 spinlock_t *ptl;
5522 ptl = pmd_trans_huge_lock(pmd, vma);
5523 if (ptl) {
5525 * Note their can not be MC_TARGET_DEVICE for now as we do not
5526 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5527 * this might change.
5529 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5530 mc.precharge += HPAGE_PMD_NR;
5531 spin_unlock(ptl);
5532 return 0;
5535 if (pmd_trans_unstable(pmd))
5536 return 0;
5537 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5538 for (; addr != end; pte++, addr += PAGE_SIZE)
5539 if (get_mctgt_type(vma, addr, *pte, NULL))
5540 mc.precharge++; /* increment precharge temporarily */
5541 pte_unmap_unlock(pte - 1, ptl);
5542 cond_resched();
5544 return 0;
5547 static const struct mm_walk_ops precharge_walk_ops = {
5548 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5551 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5553 unsigned long precharge;
5555 down_read(&mm->mmap_sem);
5556 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5557 up_read(&mm->mmap_sem);
5559 precharge = mc.precharge;
5560 mc.precharge = 0;
5562 return precharge;
5565 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5567 unsigned long precharge = mem_cgroup_count_precharge(mm);
5569 VM_BUG_ON(mc.moving_task);
5570 mc.moving_task = current;
5571 return mem_cgroup_do_precharge(precharge);
5574 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5575 static void __mem_cgroup_clear_mc(void)
5577 struct mem_cgroup *from = mc.from;
5578 struct mem_cgroup *to = mc.to;
5580 /* we must uncharge all the leftover precharges from mc.to */
5581 if (mc.precharge) {
5582 cancel_charge(mc.to, mc.precharge);
5583 mc.precharge = 0;
5586 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5587 * we must uncharge here.
5589 if (mc.moved_charge) {
5590 cancel_charge(mc.from, mc.moved_charge);
5591 mc.moved_charge = 0;
5593 /* we must fixup refcnts and charges */
5594 if (mc.moved_swap) {
5595 /* uncharge swap account from the old cgroup */
5596 if (!mem_cgroup_is_root(mc.from))
5597 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5599 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5602 * we charged both to->memory and to->memsw, so we
5603 * should uncharge to->memory.
5605 if (!mem_cgroup_is_root(mc.to))
5606 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5608 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5609 css_put_many(&mc.to->css, mc.moved_swap);
5611 mc.moved_swap = 0;
5613 memcg_oom_recover(from);
5614 memcg_oom_recover(to);
5615 wake_up_all(&mc.waitq);
5618 static void mem_cgroup_clear_mc(void)
5620 struct mm_struct *mm = mc.mm;
5623 * we must clear moving_task before waking up waiters at the end of
5624 * task migration.
5626 mc.moving_task = NULL;
5627 __mem_cgroup_clear_mc();
5628 spin_lock(&mc.lock);
5629 mc.from = NULL;
5630 mc.to = NULL;
5631 mc.mm = NULL;
5632 spin_unlock(&mc.lock);
5634 mmput(mm);
5637 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5639 struct cgroup_subsys_state *css;
5640 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5641 struct mem_cgroup *from;
5642 struct task_struct *leader, *p;
5643 struct mm_struct *mm;
5644 unsigned long move_flags;
5645 int ret = 0;
5647 /* charge immigration isn't supported on the default hierarchy */
5648 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5649 return 0;
5652 * Multi-process migrations only happen on the default hierarchy
5653 * where charge immigration is not used. Perform charge
5654 * immigration if @tset contains a leader and whine if there are
5655 * multiple.
5657 p = NULL;
5658 cgroup_taskset_for_each_leader(leader, css, tset) {
5659 WARN_ON_ONCE(p);
5660 p = leader;
5661 memcg = mem_cgroup_from_css(css);
5663 if (!p)
5664 return 0;
5667 * We are now commited to this value whatever it is. Changes in this
5668 * tunable will only affect upcoming migrations, not the current one.
5669 * So we need to save it, and keep it going.
5671 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5672 if (!move_flags)
5673 return 0;
5675 from = mem_cgroup_from_task(p);
5677 VM_BUG_ON(from == memcg);
5679 mm = get_task_mm(p);
5680 if (!mm)
5681 return 0;
5682 /* We move charges only when we move a owner of the mm */
5683 if (mm->owner == p) {
5684 VM_BUG_ON(mc.from);
5685 VM_BUG_ON(mc.to);
5686 VM_BUG_ON(mc.precharge);
5687 VM_BUG_ON(mc.moved_charge);
5688 VM_BUG_ON(mc.moved_swap);
5690 spin_lock(&mc.lock);
5691 mc.mm = mm;
5692 mc.from = from;
5693 mc.to = memcg;
5694 mc.flags = move_flags;
5695 spin_unlock(&mc.lock);
5696 /* We set mc.moving_task later */
5698 ret = mem_cgroup_precharge_mc(mm);
5699 if (ret)
5700 mem_cgroup_clear_mc();
5701 } else {
5702 mmput(mm);
5704 return ret;
5707 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5709 if (mc.to)
5710 mem_cgroup_clear_mc();
5713 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5714 unsigned long addr, unsigned long end,
5715 struct mm_walk *walk)
5717 int ret = 0;
5718 struct vm_area_struct *vma = walk->vma;
5719 pte_t *pte;
5720 spinlock_t *ptl;
5721 enum mc_target_type target_type;
5722 union mc_target target;
5723 struct page *page;
5725 ptl = pmd_trans_huge_lock(pmd, vma);
5726 if (ptl) {
5727 if (mc.precharge < HPAGE_PMD_NR) {
5728 spin_unlock(ptl);
5729 return 0;
5731 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5732 if (target_type == MC_TARGET_PAGE) {
5733 page = target.page;
5734 if (!isolate_lru_page(page)) {
5735 if (!mem_cgroup_move_account(page, true,
5736 mc.from, mc.to)) {
5737 mc.precharge -= HPAGE_PMD_NR;
5738 mc.moved_charge += HPAGE_PMD_NR;
5740 putback_lru_page(page);
5742 put_page(page);
5743 } else if (target_type == MC_TARGET_DEVICE) {
5744 page = target.page;
5745 if (!mem_cgroup_move_account(page, true,
5746 mc.from, mc.to)) {
5747 mc.precharge -= HPAGE_PMD_NR;
5748 mc.moved_charge += HPAGE_PMD_NR;
5750 put_page(page);
5752 spin_unlock(ptl);
5753 return 0;
5756 if (pmd_trans_unstable(pmd))
5757 return 0;
5758 retry:
5759 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5760 for (; addr != end; addr += PAGE_SIZE) {
5761 pte_t ptent = *(pte++);
5762 bool device = false;
5763 swp_entry_t ent;
5765 if (!mc.precharge)
5766 break;
5768 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5769 case MC_TARGET_DEVICE:
5770 device = true;
5771 /* fall through */
5772 case MC_TARGET_PAGE:
5773 page = target.page;
5775 * We can have a part of the split pmd here. Moving it
5776 * can be done but it would be too convoluted so simply
5777 * ignore such a partial THP and keep it in original
5778 * memcg. There should be somebody mapping the head.
5780 if (PageTransCompound(page))
5781 goto put;
5782 if (!device && isolate_lru_page(page))
5783 goto put;
5784 if (!mem_cgroup_move_account(page, false,
5785 mc.from, mc.to)) {
5786 mc.precharge--;
5787 /* we uncharge from mc.from later. */
5788 mc.moved_charge++;
5790 if (!device)
5791 putback_lru_page(page);
5792 put: /* get_mctgt_type() gets the page */
5793 put_page(page);
5794 break;
5795 case MC_TARGET_SWAP:
5796 ent = target.ent;
5797 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5798 mc.precharge--;
5799 /* we fixup refcnts and charges later. */
5800 mc.moved_swap++;
5802 break;
5803 default:
5804 break;
5807 pte_unmap_unlock(pte - 1, ptl);
5808 cond_resched();
5810 if (addr != end) {
5812 * We have consumed all precharges we got in can_attach().
5813 * We try charge one by one, but don't do any additional
5814 * charges to mc.to if we have failed in charge once in attach()
5815 * phase.
5817 ret = mem_cgroup_do_precharge(1);
5818 if (!ret)
5819 goto retry;
5822 return ret;
5825 static const struct mm_walk_ops charge_walk_ops = {
5826 .pmd_entry = mem_cgroup_move_charge_pte_range,
5829 static void mem_cgroup_move_charge(void)
5831 lru_add_drain_all();
5833 * Signal lock_page_memcg() to take the memcg's move_lock
5834 * while we're moving its pages to another memcg. Then wait
5835 * for already started RCU-only updates to finish.
5837 atomic_inc(&mc.from->moving_account);
5838 synchronize_rcu();
5839 retry:
5840 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5842 * Someone who are holding the mmap_sem might be waiting in
5843 * waitq. So we cancel all extra charges, wake up all waiters,
5844 * and retry. Because we cancel precharges, we might not be able
5845 * to move enough charges, but moving charge is a best-effort
5846 * feature anyway, so it wouldn't be a big problem.
5848 __mem_cgroup_clear_mc();
5849 cond_resched();
5850 goto retry;
5853 * When we have consumed all precharges and failed in doing
5854 * additional charge, the page walk just aborts.
5856 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5857 NULL);
5859 up_read(&mc.mm->mmap_sem);
5860 atomic_dec(&mc.from->moving_account);
5863 static void mem_cgroup_move_task(void)
5865 if (mc.to) {
5866 mem_cgroup_move_charge();
5867 mem_cgroup_clear_mc();
5870 #else /* !CONFIG_MMU */
5871 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5873 return 0;
5875 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5878 static void mem_cgroup_move_task(void)
5881 #endif
5884 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5885 * to verify whether we're attached to the default hierarchy on each mount
5886 * attempt.
5888 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5891 * use_hierarchy is forced on the default hierarchy. cgroup core
5892 * guarantees that @root doesn't have any children, so turning it
5893 * on for the root memcg is enough.
5895 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5896 root_mem_cgroup->use_hierarchy = true;
5897 else
5898 root_mem_cgroup->use_hierarchy = false;
5901 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5903 if (value == PAGE_COUNTER_MAX)
5904 seq_puts(m, "max\n");
5905 else
5906 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5908 return 0;
5911 static u64 memory_current_read(struct cgroup_subsys_state *css,
5912 struct cftype *cft)
5914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5916 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5919 static int memory_min_show(struct seq_file *m, void *v)
5921 return seq_puts_memcg_tunable(m,
5922 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5925 static ssize_t memory_min_write(struct kernfs_open_file *of,
5926 char *buf, size_t nbytes, loff_t off)
5928 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5929 unsigned long min;
5930 int err;
5932 buf = strstrip(buf);
5933 err = page_counter_memparse(buf, "max", &min);
5934 if (err)
5935 return err;
5937 page_counter_set_min(&memcg->memory, min);
5939 return nbytes;
5942 static int memory_low_show(struct seq_file *m, void *v)
5944 return seq_puts_memcg_tunable(m,
5945 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5948 static ssize_t memory_low_write(struct kernfs_open_file *of,
5949 char *buf, size_t nbytes, loff_t off)
5951 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5952 unsigned long low;
5953 int err;
5955 buf = strstrip(buf);
5956 err = page_counter_memparse(buf, "max", &low);
5957 if (err)
5958 return err;
5960 page_counter_set_low(&memcg->memory, low);
5962 return nbytes;
5965 static int memory_high_show(struct seq_file *m, void *v)
5967 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5970 static ssize_t memory_high_write(struct kernfs_open_file *of,
5971 char *buf, size_t nbytes, loff_t off)
5973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5974 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5975 bool drained = false;
5976 unsigned long high;
5977 int err;
5979 buf = strstrip(buf);
5980 err = page_counter_memparse(buf, "max", &high);
5981 if (err)
5982 return err;
5984 memcg->high = high;
5986 for (;;) {
5987 unsigned long nr_pages = page_counter_read(&memcg->memory);
5988 unsigned long reclaimed;
5990 if (nr_pages <= high)
5991 break;
5993 if (signal_pending(current))
5994 break;
5996 if (!drained) {
5997 drain_all_stock(memcg);
5998 drained = true;
5999 continue;
6002 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6003 GFP_KERNEL, true);
6005 if (!reclaimed && !nr_retries--)
6006 break;
6009 return nbytes;
6012 static int memory_max_show(struct seq_file *m, void *v)
6014 return seq_puts_memcg_tunable(m,
6015 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6018 static ssize_t memory_max_write(struct kernfs_open_file *of,
6019 char *buf, size_t nbytes, loff_t off)
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6023 bool drained = false;
6024 unsigned long max;
6025 int err;
6027 buf = strstrip(buf);
6028 err = page_counter_memparse(buf, "max", &max);
6029 if (err)
6030 return err;
6032 xchg(&memcg->memory.max, max);
6034 for (;;) {
6035 unsigned long nr_pages = page_counter_read(&memcg->memory);
6037 if (nr_pages <= max)
6038 break;
6040 if (signal_pending(current))
6041 break;
6043 if (!drained) {
6044 drain_all_stock(memcg);
6045 drained = true;
6046 continue;
6049 if (nr_reclaims) {
6050 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6051 GFP_KERNEL, true))
6052 nr_reclaims--;
6053 continue;
6056 memcg_memory_event(memcg, MEMCG_OOM);
6057 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6058 break;
6061 memcg_wb_domain_size_changed(memcg);
6062 return nbytes;
6065 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6067 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6068 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6069 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6070 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6071 seq_printf(m, "oom_kill %lu\n",
6072 atomic_long_read(&events[MEMCG_OOM_KILL]));
6075 static int memory_events_show(struct seq_file *m, void *v)
6077 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6079 __memory_events_show(m, memcg->memory_events);
6080 return 0;
6083 static int memory_events_local_show(struct seq_file *m, void *v)
6085 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6087 __memory_events_show(m, memcg->memory_events_local);
6088 return 0;
6091 static int memory_stat_show(struct seq_file *m, void *v)
6093 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6094 char *buf;
6096 buf = memory_stat_format(memcg);
6097 if (!buf)
6098 return -ENOMEM;
6099 seq_puts(m, buf);
6100 kfree(buf);
6101 return 0;
6104 static int memory_oom_group_show(struct seq_file *m, void *v)
6106 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6108 seq_printf(m, "%d\n", memcg->oom_group);
6110 return 0;
6113 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6114 char *buf, size_t nbytes, loff_t off)
6116 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6117 int ret, oom_group;
6119 buf = strstrip(buf);
6120 if (!buf)
6121 return -EINVAL;
6123 ret = kstrtoint(buf, 0, &oom_group);
6124 if (ret)
6125 return ret;
6127 if (oom_group != 0 && oom_group != 1)
6128 return -EINVAL;
6130 memcg->oom_group = oom_group;
6132 return nbytes;
6135 static struct cftype memory_files[] = {
6137 .name = "current",
6138 .flags = CFTYPE_NOT_ON_ROOT,
6139 .read_u64 = memory_current_read,
6142 .name = "min",
6143 .flags = CFTYPE_NOT_ON_ROOT,
6144 .seq_show = memory_min_show,
6145 .write = memory_min_write,
6148 .name = "low",
6149 .flags = CFTYPE_NOT_ON_ROOT,
6150 .seq_show = memory_low_show,
6151 .write = memory_low_write,
6154 .name = "high",
6155 .flags = CFTYPE_NOT_ON_ROOT,
6156 .seq_show = memory_high_show,
6157 .write = memory_high_write,
6160 .name = "max",
6161 .flags = CFTYPE_NOT_ON_ROOT,
6162 .seq_show = memory_max_show,
6163 .write = memory_max_write,
6166 .name = "events",
6167 .flags = CFTYPE_NOT_ON_ROOT,
6168 .file_offset = offsetof(struct mem_cgroup, events_file),
6169 .seq_show = memory_events_show,
6172 .name = "events.local",
6173 .flags = CFTYPE_NOT_ON_ROOT,
6174 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6175 .seq_show = memory_events_local_show,
6178 .name = "stat",
6179 .flags = CFTYPE_NOT_ON_ROOT,
6180 .seq_show = memory_stat_show,
6183 .name = "oom.group",
6184 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6185 .seq_show = memory_oom_group_show,
6186 .write = memory_oom_group_write,
6188 { } /* terminate */
6191 struct cgroup_subsys memory_cgrp_subsys = {
6192 .css_alloc = mem_cgroup_css_alloc,
6193 .css_online = mem_cgroup_css_online,
6194 .css_offline = mem_cgroup_css_offline,
6195 .css_released = mem_cgroup_css_released,
6196 .css_free = mem_cgroup_css_free,
6197 .css_reset = mem_cgroup_css_reset,
6198 .can_attach = mem_cgroup_can_attach,
6199 .cancel_attach = mem_cgroup_cancel_attach,
6200 .post_attach = mem_cgroup_move_task,
6201 .bind = mem_cgroup_bind,
6202 .dfl_cftypes = memory_files,
6203 .legacy_cftypes = mem_cgroup_legacy_files,
6204 .early_init = 0,
6208 * mem_cgroup_protected - check if memory consumption is in the normal range
6209 * @root: the top ancestor of the sub-tree being checked
6210 * @memcg: the memory cgroup to check
6212 * WARNING: This function is not stateless! It can only be used as part
6213 * of a top-down tree iteration, not for isolated queries.
6215 * Returns one of the following:
6216 * MEMCG_PROT_NONE: cgroup memory is not protected
6217 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6218 * an unprotected supply of reclaimable memory from other cgroups.
6219 * MEMCG_PROT_MIN: cgroup memory is protected
6221 * @root is exclusive; it is never protected when looked at directly
6223 * To provide a proper hierarchical behavior, effective memory.min/low values
6224 * are used. Below is the description of how effective memory.low is calculated.
6225 * Effective memory.min values is calculated in the same way.
6227 * Effective memory.low is always equal or less than the original memory.low.
6228 * If there is no memory.low overcommittment (which is always true for
6229 * top-level memory cgroups), these two values are equal.
6230 * Otherwise, it's a part of parent's effective memory.low,
6231 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6232 * memory.low usages, where memory.low usage is the size of actually
6233 * protected memory.
6235 * low_usage
6236 * elow = min( memory.low, parent->elow * ------------------ ),
6237 * siblings_low_usage
6239 * | memory.current, if memory.current < memory.low
6240 * low_usage = |
6241 * | 0, otherwise.
6244 * Such definition of the effective memory.low provides the expected
6245 * hierarchical behavior: parent's memory.low value is limiting
6246 * children, unprotected memory is reclaimed first and cgroups,
6247 * which are not using their guarantee do not affect actual memory
6248 * distribution.
6250 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6252 * A A/memory.low = 2G, A/memory.current = 6G
6253 * //\\
6254 * BC DE B/memory.low = 3G B/memory.current = 2G
6255 * C/memory.low = 1G C/memory.current = 2G
6256 * D/memory.low = 0 D/memory.current = 2G
6257 * E/memory.low = 10G E/memory.current = 0
6259 * and the memory pressure is applied, the following memory distribution
6260 * is expected (approximately):
6262 * A/memory.current = 2G
6264 * B/memory.current = 1.3G
6265 * C/memory.current = 0.6G
6266 * D/memory.current = 0
6267 * E/memory.current = 0
6269 * These calculations require constant tracking of the actual low usages
6270 * (see propagate_protected_usage()), as well as recursive calculation of
6271 * effective memory.low values. But as we do call mem_cgroup_protected()
6272 * path for each memory cgroup top-down from the reclaim,
6273 * it's possible to optimize this part, and save calculated elow
6274 * for next usage. This part is intentionally racy, but it's ok,
6275 * as memory.low is a best-effort mechanism.
6277 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6278 struct mem_cgroup *memcg)
6280 struct mem_cgroup *parent;
6281 unsigned long emin, parent_emin;
6282 unsigned long elow, parent_elow;
6283 unsigned long usage;
6285 if (mem_cgroup_disabled())
6286 return MEMCG_PROT_NONE;
6288 if (!root)
6289 root = root_mem_cgroup;
6290 if (memcg == root)
6291 return MEMCG_PROT_NONE;
6293 usage = page_counter_read(&memcg->memory);
6294 if (!usage)
6295 return MEMCG_PROT_NONE;
6297 emin = memcg->memory.min;
6298 elow = memcg->memory.low;
6300 parent = parent_mem_cgroup(memcg);
6301 /* No parent means a non-hierarchical mode on v1 memcg */
6302 if (!parent)
6303 return MEMCG_PROT_NONE;
6305 if (parent == root)
6306 goto exit;
6308 parent_emin = READ_ONCE(parent->memory.emin);
6309 emin = min(emin, parent_emin);
6310 if (emin && parent_emin) {
6311 unsigned long min_usage, siblings_min_usage;
6313 min_usage = min(usage, memcg->memory.min);
6314 siblings_min_usage = atomic_long_read(
6315 &parent->memory.children_min_usage);
6317 if (min_usage && siblings_min_usage)
6318 emin = min(emin, parent_emin * min_usage /
6319 siblings_min_usage);
6322 parent_elow = READ_ONCE(parent->memory.elow);
6323 elow = min(elow, parent_elow);
6324 if (elow && parent_elow) {
6325 unsigned long low_usage, siblings_low_usage;
6327 low_usage = min(usage, memcg->memory.low);
6328 siblings_low_usage = atomic_long_read(
6329 &parent->memory.children_low_usage);
6331 if (low_usage && siblings_low_usage)
6332 elow = min(elow, parent_elow * low_usage /
6333 siblings_low_usage);
6336 exit:
6337 memcg->memory.emin = emin;
6338 memcg->memory.elow = elow;
6340 if (usage <= emin)
6341 return MEMCG_PROT_MIN;
6342 else if (usage <= elow)
6343 return MEMCG_PROT_LOW;
6344 else
6345 return MEMCG_PROT_NONE;
6349 * mem_cgroup_try_charge - try charging a page
6350 * @page: page to charge
6351 * @mm: mm context of the victim
6352 * @gfp_mask: reclaim mode
6353 * @memcgp: charged memcg return
6354 * @compound: charge the page as compound or small page
6356 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6357 * pages according to @gfp_mask if necessary.
6359 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6360 * Otherwise, an error code is returned.
6362 * After page->mapping has been set up, the caller must finalize the
6363 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6364 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6366 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6367 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6368 bool compound)
6370 struct mem_cgroup *memcg = NULL;
6371 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6372 int ret = 0;
6374 if (mem_cgroup_disabled())
6375 goto out;
6377 if (PageSwapCache(page)) {
6379 * Every swap fault against a single page tries to charge the
6380 * page, bail as early as possible. shmem_unuse() encounters
6381 * already charged pages, too. The USED bit is protected by
6382 * the page lock, which serializes swap cache removal, which
6383 * in turn serializes uncharging.
6385 VM_BUG_ON_PAGE(!PageLocked(page), page);
6386 if (compound_head(page)->mem_cgroup)
6387 goto out;
6389 if (do_swap_account) {
6390 swp_entry_t ent = { .val = page_private(page), };
6391 unsigned short id = lookup_swap_cgroup_id(ent);
6393 rcu_read_lock();
6394 memcg = mem_cgroup_from_id(id);
6395 if (memcg && !css_tryget_online(&memcg->css))
6396 memcg = NULL;
6397 rcu_read_unlock();
6401 if (!memcg)
6402 memcg = get_mem_cgroup_from_mm(mm);
6404 ret = try_charge(memcg, gfp_mask, nr_pages);
6406 css_put(&memcg->css);
6407 out:
6408 *memcgp = memcg;
6409 return ret;
6412 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6413 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6414 bool compound)
6416 struct mem_cgroup *memcg;
6417 int ret;
6419 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6420 memcg = *memcgp;
6421 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6422 return ret;
6426 * mem_cgroup_commit_charge - commit a page charge
6427 * @page: page to charge
6428 * @memcg: memcg to charge the page to
6429 * @lrucare: page might be on LRU already
6430 * @compound: charge the page as compound or small page
6432 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6433 * after page->mapping has been set up. This must happen atomically
6434 * as part of the page instantiation, i.e. under the page table lock
6435 * for anonymous pages, under the page lock for page and swap cache.
6437 * In addition, the page must not be on the LRU during the commit, to
6438 * prevent racing with task migration. If it might be, use @lrucare.
6440 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6442 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6443 bool lrucare, bool compound)
6445 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6447 VM_BUG_ON_PAGE(!page->mapping, page);
6448 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6450 if (mem_cgroup_disabled())
6451 return;
6453 * Swap faults will attempt to charge the same page multiple
6454 * times. But reuse_swap_page() might have removed the page
6455 * from swapcache already, so we can't check PageSwapCache().
6457 if (!memcg)
6458 return;
6460 commit_charge(page, memcg, lrucare);
6462 local_irq_disable();
6463 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6464 memcg_check_events(memcg, page);
6465 local_irq_enable();
6467 if (do_memsw_account() && PageSwapCache(page)) {
6468 swp_entry_t entry = { .val = page_private(page) };
6470 * The swap entry might not get freed for a long time,
6471 * let's not wait for it. The page already received a
6472 * memory+swap charge, drop the swap entry duplicate.
6474 mem_cgroup_uncharge_swap(entry, nr_pages);
6479 * mem_cgroup_cancel_charge - cancel a page charge
6480 * @page: page to charge
6481 * @memcg: memcg to charge the page to
6482 * @compound: charge the page as compound or small page
6484 * Cancel a charge transaction started by mem_cgroup_try_charge().
6486 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6487 bool compound)
6489 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6491 if (mem_cgroup_disabled())
6492 return;
6494 * Swap faults will attempt to charge the same page multiple
6495 * times. But reuse_swap_page() might have removed the page
6496 * from swapcache already, so we can't check PageSwapCache().
6498 if (!memcg)
6499 return;
6501 cancel_charge(memcg, nr_pages);
6504 struct uncharge_gather {
6505 struct mem_cgroup *memcg;
6506 unsigned long pgpgout;
6507 unsigned long nr_anon;
6508 unsigned long nr_file;
6509 unsigned long nr_kmem;
6510 unsigned long nr_huge;
6511 unsigned long nr_shmem;
6512 struct page *dummy_page;
6515 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6517 memset(ug, 0, sizeof(*ug));
6520 static void uncharge_batch(const struct uncharge_gather *ug)
6522 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6523 unsigned long flags;
6525 if (!mem_cgroup_is_root(ug->memcg)) {
6526 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6527 if (do_memsw_account())
6528 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6529 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6530 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6531 memcg_oom_recover(ug->memcg);
6534 local_irq_save(flags);
6535 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6536 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6537 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6538 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6539 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6540 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6541 memcg_check_events(ug->memcg, ug->dummy_page);
6542 local_irq_restore(flags);
6544 if (!mem_cgroup_is_root(ug->memcg))
6545 css_put_many(&ug->memcg->css, nr_pages);
6548 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6550 VM_BUG_ON_PAGE(PageLRU(page), page);
6551 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6552 !PageHWPoison(page) , page);
6554 if (!page->mem_cgroup)
6555 return;
6558 * Nobody should be changing or seriously looking at
6559 * page->mem_cgroup at this point, we have fully
6560 * exclusive access to the page.
6563 if (ug->memcg != page->mem_cgroup) {
6564 if (ug->memcg) {
6565 uncharge_batch(ug);
6566 uncharge_gather_clear(ug);
6568 ug->memcg = page->mem_cgroup;
6571 if (!PageKmemcg(page)) {
6572 unsigned int nr_pages = 1;
6574 if (PageTransHuge(page)) {
6575 nr_pages = compound_nr(page);
6576 ug->nr_huge += nr_pages;
6578 if (PageAnon(page))
6579 ug->nr_anon += nr_pages;
6580 else {
6581 ug->nr_file += nr_pages;
6582 if (PageSwapBacked(page))
6583 ug->nr_shmem += nr_pages;
6585 ug->pgpgout++;
6586 } else {
6587 ug->nr_kmem += compound_nr(page);
6588 __ClearPageKmemcg(page);
6591 ug->dummy_page = page;
6592 page->mem_cgroup = NULL;
6595 static void uncharge_list(struct list_head *page_list)
6597 struct uncharge_gather ug;
6598 struct list_head *next;
6600 uncharge_gather_clear(&ug);
6603 * Note that the list can be a single page->lru; hence the
6604 * do-while loop instead of a simple list_for_each_entry().
6606 next = page_list->next;
6607 do {
6608 struct page *page;
6610 page = list_entry(next, struct page, lru);
6611 next = page->lru.next;
6613 uncharge_page(page, &ug);
6614 } while (next != page_list);
6616 if (ug.memcg)
6617 uncharge_batch(&ug);
6621 * mem_cgroup_uncharge - uncharge a page
6622 * @page: page to uncharge
6624 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6625 * mem_cgroup_commit_charge().
6627 void mem_cgroup_uncharge(struct page *page)
6629 struct uncharge_gather ug;
6631 if (mem_cgroup_disabled())
6632 return;
6634 /* Don't touch page->lru of any random page, pre-check: */
6635 if (!page->mem_cgroup)
6636 return;
6638 uncharge_gather_clear(&ug);
6639 uncharge_page(page, &ug);
6640 uncharge_batch(&ug);
6644 * mem_cgroup_uncharge_list - uncharge a list of page
6645 * @page_list: list of pages to uncharge
6647 * Uncharge a list of pages previously charged with
6648 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6650 void mem_cgroup_uncharge_list(struct list_head *page_list)
6652 if (mem_cgroup_disabled())
6653 return;
6655 if (!list_empty(page_list))
6656 uncharge_list(page_list);
6660 * mem_cgroup_migrate - charge a page's replacement
6661 * @oldpage: currently circulating page
6662 * @newpage: replacement page
6664 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6665 * be uncharged upon free.
6667 * Both pages must be locked, @newpage->mapping must be set up.
6669 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6671 struct mem_cgroup *memcg;
6672 unsigned int nr_pages;
6673 bool compound;
6674 unsigned long flags;
6676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6678 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6679 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6680 newpage);
6682 if (mem_cgroup_disabled())
6683 return;
6685 /* Page cache replacement: new page already charged? */
6686 if (newpage->mem_cgroup)
6687 return;
6689 /* Swapcache readahead pages can get replaced before being charged */
6690 memcg = oldpage->mem_cgroup;
6691 if (!memcg)
6692 return;
6694 /* Force-charge the new page. The old one will be freed soon */
6695 compound = PageTransHuge(newpage);
6696 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6698 page_counter_charge(&memcg->memory, nr_pages);
6699 if (do_memsw_account())
6700 page_counter_charge(&memcg->memsw, nr_pages);
6701 css_get_many(&memcg->css, nr_pages);
6703 commit_charge(newpage, memcg, false);
6705 local_irq_save(flags);
6706 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6707 memcg_check_events(memcg, newpage);
6708 local_irq_restore(flags);
6711 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6712 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6714 void mem_cgroup_sk_alloc(struct sock *sk)
6716 struct mem_cgroup *memcg;
6718 if (!mem_cgroup_sockets_enabled)
6719 return;
6722 * Socket cloning can throw us here with sk_memcg already
6723 * filled. It won't however, necessarily happen from
6724 * process context. So the test for root memcg given
6725 * the current task's memcg won't help us in this case.
6727 * Respecting the original socket's memcg is a better
6728 * decision in this case.
6730 if (sk->sk_memcg) {
6731 css_get(&sk->sk_memcg->css);
6732 return;
6735 rcu_read_lock();
6736 memcg = mem_cgroup_from_task(current);
6737 if (memcg == root_mem_cgroup)
6738 goto out;
6739 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6740 goto out;
6741 if (css_tryget_online(&memcg->css))
6742 sk->sk_memcg = memcg;
6743 out:
6744 rcu_read_unlock();
6747 void mem_cgroup_sk_free(struct sock *sk)
6749 if (sk->sk_memcg)
6750 css_put(&sk->sk_memcg->css);
6754 * mem_cgroup_charge_skmem - charge socket memory
6755 * @memcg: memcg to charge
6756 * @nr_pages: number of pages to charge
6758 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6759 * @memcg's configured limit, %false if the charge had to be forced.
6761 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6763 gfp_t gfp_mask = GFP_KERNEL;
6765 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6766 struct page_counter *fail;
6768 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6769 memcg->tcpmem_pressure = 0;
6770 return true;
6772 page_counter_charge(&memcg->tcpmem, nr_pages);
6773 memcg->tcpmem_pressure = 1;
6774 return false;
6777 /* Don't block in the packet receive path */
6778 if (in_softirq())
6779 gfp_mask = GFP_NOWAIT;
6781 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6783 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6784 return true;
6786 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6787 return false;
6791 * mem_cgroup_uncharge_skmem - uncharge socket memory
6792 * @memcg: memcg to uncharge
6793 * @nr_pages: number of pages to uncharge
6795 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6797 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6798 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6799 return;
6802 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6804 refill_stock(memcg, nr_pages);
6807 static int __init cgroup_memory(char *s)
6809 char *token;
6811 while ((token = strsep(&s, ",")) != NULL) {
6812 if (!*token)
6813 continue;
6814 if (!strcmp(token, "nosocket"))
6815 cgroup_memory_nosocket = true;
6816 if (!strcmp(token, "nokmem"))
6817 cgroup_memory_nokmem = true;
6819 return 0;
6821 __setup("cgroup.memory=", cgroup_memory);
6824 * subsys_initcall() for memory controller.
6826 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6827 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6828 * basically everything that doesn't depend on a specific mem_cgroup structure
6829 * should be initialized from here.
6831 static int __init mem_cgroup_init(void)
6833 int cpu, node;
6835 #ifdef CONFIG_MEMCG_KMEM
6837 * Kmem cache creation is mostly done with the slab_mutex held,
6838 * so use a workqueue with limited concurrency to avoid stalling
6839 * all worker threads in case lots of cgroups are created and
6840 * destroyed simultaneously.
6842 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6843 BUG_ON(!memcg_kmem_cache_wq);
6844 #endif
6846 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6847 memcg_hotplug_cpu_dead);
6849 for_each_possible_cpu(cpu)
6850 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6851 drain_local_stock);
6853 for_each_node(node) {
6854 struct mem_cgroup_tree_per_node *rtpn;
6856 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6857 node_online(node) ? node : NUMA_NO_NODE);
6859 rtpn->rb_root = RB_ROOT;
6860 rtpn->rb_rightmost = NULL;
6861 spin_lock_init(&rtpn->lock);
6862 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6865 return 0;
6867 subsys_initcall(mem_cgroup_init);
6869 #ifdef CONFIG_MEMCG_SWAP
6870 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6872 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6874 * The root cgroup cannot be destroyed, so it's refcount must
6875 * always be >= 1.
6877 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6878 VM_BUG_ON(1);
6879 break;
6881 memcg = parent_mem_cgroup(memcg);
6882 if (!memcg)
6883 memcg = root_mem_cgroup;
6885 return memcg;
6889 * mem_cgroup_swapout - transfer a memsw charge to swap
6890 * @page: page whose memsw charge to transfer
6891 * @entry: swap entry to move the charge to
6893 * Transfer the memsw charge of @page to @entry.
6895 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6897 struct mem_cgroup *memcg, *swap_memcg;
6898 unsigned int nr_entries;
6899 unsigned short oldid;
6901 VM_BUG_ON_PAGE(PageLRU(page), page);
6902 VM_BUG_ON_PAGE(page_count(page), page);
6904 if (!do_memsw_account())
6905 return;
6907 memcg = page->mem_cgroup;
6909 /* Readahead page, never charged */
6910 if (!memcg)
6911 return;
6914 * In case the memcg owning these pages has been offlined and doesn't
6915 * have an ID allocated to it anymore, charge the closest online
6916 * ancestor for the swap instead and transfer the memory+swap charge.
6918 swap_memcg = mem_cgroup_id_get_online(memcg);
6919 nr_entries = hpage_nr_pages(page);
6920 /* Get references for the tail pages, too */
6921 if (nr_entries > 1)
6922 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6923 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6924 nr_entries);
6925 VM_BUG_ON_PAGE(oldid, page);
6926 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6928 page->mem_cgroup = NULL;
6930 if (!mem_cgroup_is_root(memcg))
6931 page_counter_uncharge(&memcg->memory, nr_entries);
6933 if (memcg != swap_memcg) {
6934 if (!mem_cgroup_is_root(swap_memcg))
6935 page_counter_charge(&swap_memcg->memsw, nr_entries);
6936 page_counter_uncharge(&memcg->memsw, nr_entries);
6940 * Interrupts should be disabled here because the caller holds the
6941 * i_pages lock which is taken with interrupts-off. It is
6942 * important here to have the interrupts disabled because it is the
6943 * only synchronisation we have for updating the per-CPU variables.
6945 VM_BUG_ON(!irqs_disabled());
6946 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6947 -nr_entries);
6948 memcg_check_events(memcg, page);
6950 if (!mem_cgroup_is_root(memcg))
6951 css_put_many(&memcg->css, nr_entries);
6955 * mem_cgroup_try_charge_swap - try charging swap space for a page
6956 * @page: page being added to swap
6957 * @entry: swap entry to charge
6959 * Try to charge @page's memcg for the swap space at @entry.
6961 * Returns 0 on success, -ENOMEM on failure.
6963 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6965 unsigned int nr_pages = hpage_nr_pages(page);
6966 struct page_counter *counter;
6967 struct mem_cgroup *memcg;
6968 unsigned short oldid;
6970 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6971 return 0;
6973 memcg = page->mem_cgroup;
6975 /* Readahead page, never charged */
6976 if (!memcg)
6977 return 0;
6979 if (!entry.val) {
6980 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6981 return 0;
6984 memcg = mem_cgroup_id_get_online(memcg);
6986 if (!mem_cgroup_is_root(memcg) &&
6987 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6988 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6989 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6990 mem_cgroup_id_put(memcg);
6991 return -ENOMEM;
6994 /* Get references for the tail pages, too */
6995 if (nr_pages > 1)
6996 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6997 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6998 VM_BUG_ON_PAGE(oldid, page);
6999 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7001 return 0;
7005 * mem_cgroup_uncharge_swap - uncharge swap space
7006 * @entry: swap entry to uncharge
7007 * @nr_pages: the amount of swap space to uncharge
7009 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7011 struct mem_cgroup *memcg;
7012 unsigned short id;
7014 if (!do_swap_account)
7015 return;
7017 id = swap_cgroup_record(entry, 0, nr_pages);
7018 rcu_read_lock();
7019 memcg = mem_cgroup_from_id(id);
7020 if (memcg) {
7021 if (!mem_cgroup_is_root(memcg)) {
7022 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7023 page_counter_uncharge(&memcg->swap, nr_pages);
7024 else
7025 page_counter_uncharge(&memcg->memsw, nr_pages);
7027 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7028 mem_cgroup_id_put_many(memcg, nr_pages);
7030 rcu_read_unlock();
7033 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7035 long nr_swap_pages = get_nr_swap_pages();
7037 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7038 return nr_swap_pages;
7039 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7040 nr_swap_pages = min_t(long, nr_swap_pages,
7041 READ_ONCE(memcg->swap.max) -
7042 page_counter_read(&memcg->swap));
7043 return nr_swap_pages;
7046 bool mem_cgroup_swap_full(struct page *page)
7048 struct mem_cgroup *memcg;
7050 VM_BUG_ON_PAGE(!PageLocked(page), page);
7052 if (vm_swap_full())
7053 return true;
7054 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7055 return false;
7057 memcg = page->mem_cgroup;
7058 if (!memcg)
7059 return false;
7061 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7062 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7063 return true;
7065 return false;
7068 /* for remember boot option*/
7069 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7070 static int really_do_swap_account __initdata = 1;
7071 #else
7072 static int really_do_swap_account __initdata;
7073 #endif
7075 static int __init enable_swap_account(char *s)
7077 if (!strcmp(s, "1"))
7078 really_do_swap_account = 1;
7079 else if (!strcmp(s, "0"))
7080 really_do_swap_account = 0;
7081 return 1;
7083 __setup("swapaccount=", enable_swap_account);
7085 static u64 swap_current_read(struct cgroup_subsys_state *css,
7086 struct cftype *cft)
7088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7090 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7093 static int swap_max_show(struct seq_file *m, void *v)
7095 return seq_puts_memcg_tunable(m,
7096 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7099 static ssize_t swap_max_write(struct kernfs_open_file *of,
7100 char *buf, size_t nbytes, loff_t off)
7102 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7103 unsigned long max;
7104 int err;
7106 buf = strstrip(buf);
7107 err = page_counter_memparse(buf, "max", &max);
7108 if (err)
7109 return err;
7111 xchg(&memcg->swap.max, max);
7113 return nbytes;
7116 static int swap_events_show(struct seq_file *m, void *v)
7118 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7120 seq_printf(m, "max %lu\n",
7121 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7122 seq_printf(m, "fail %lu\n",
7123 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7125 return 0;
7128 static struct cftype swap_files[] = {
7130 .name = "swap.current",
7131 .flags = CFTYPE_NOT_ON_ROOT,
7132 .read_u64 = swap_current_read,
7135 .name = "swap.max",
7136 .flags = CFTYPE_NOT_ON_ROOT,
7137 .seq_show = swap_max_show,
7138 .write = swap_max_write,
7141 .name = "swap.events",
7142 .flags = CFTYPE_NOT_ON_ROOT,
7143 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7144 .seq_show = swap_events_show,
7146 { } /* terminate */
7149 static struct cftype memsw_cgroup_files[] = {
7151 .name = "memsw.usage_in_bytes",
7152 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7153 .read_u64 = mem_cgroup_read_u64,
7156 .name = "memsw.max_usage_in_bytes",
7157 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7158 .write = mem_cgroup_reset,
7159 .read_u64 = mem_cgroup_read_u64,
7162 .name = "memsw.limit_in_bytes",
7163 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7164 .write = mem_cgroup_write,
7165 .read_u64 = mem_cgroup_read_u64,
7168 .name = "memsw.failcnt",
7169 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7170 .write = mem_cgroup_reset,
7171 .read_u64 = mem_cgroup_read_u64,
7173 { }, /* terminate */
7176 static int __init mem_cgroup_swap_init(void)
7178 if (!mem_cgroup_disabled() && really_do_swap_account) {
7179 do_swap_account = 1;
7180 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7181 swap_files));
7182 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7183 memsw_cgroup_files));
7185 return 0;
7187 subsys_initcall(mem_cgroup_swap_init);
7189 #endif /* CONFIG_MEMCG_SWAP */