split dev_queue
[cor.git] / mm / hugetlb.c
blobac65bb5e38ac267dec41c3e09bdaa53501da4c9a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
52 __initdata LIST_HEAD(huge_boot_pages);
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
64 DEFINE_SPINLOCK(hugetlb_lock);
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80 spin_unlock(&spool->lock);
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
89 kfree(spool);
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
96 struct hugepage_subpool *spool;
98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 if (!spool)
100 return NULL;
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
112 spool->rsv_hpages = min_hpages;
114 return spool;
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 long delta)
136 long ret = delta;
138 if (!spool)
139 return ret;
141 spin_lock(&spool->lock);
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 if (delta > spool->rsv_hpages) {
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
167 unlock_ret:
168 spin_unlock(&spool->lock);
169 return ret;
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 long delta)
181 long ret = delta;
183 if (!spool)
184 return delta;
186 spin_lock(&spool->lock);
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
207 unlock_or_release_subpool(spool);
209 return ret;
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 return HUGETLBFS_SB(inode->i_sb)->spool;
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 return subpool_inode(file_inode(vma->vm_file));
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
241 struct file_region {
242 struct list_head link;
243 long from;
244 long to;
247 /* Must be called with resv->lock held. Calling this with count_only == true
248 * will count the number of pages to be added but will not modify the linked
249 * list.
251 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
252 bool count_only)
254 long chg = 0;
255 struct list_head *head = &resv->regions;
256 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
258 /* Locate the region we are before or in. */
259 list_for_each_entry(rg, head, link)
260 if (f <= rg->to)
261 break;
263 /* Round our left edge to the current segment if it encloses us. */
264 if (f > rg->from)
265 f = rg->from;
267 chg = t - f;
269 /* Check for and consume any regions we now overlap with. */
270 nrg = rg;
271 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
272 if (&rg->link == head)
273 break;
274 if (rg->from > t)
275 break;
277 /* We overlap with this area, if it extends further than
278 * us then we must extend ourselves. Account for its
279 * existing reservation.
281 if (rg->to > t) {
282 chg += rg->to - t;
283 t = rg->to;
285 chg -= rg->to - rg->from;
287 if (!count_only && rg != nrg) {
288 list_del(&rg->link);
289 kfree(rg);
293 if (!count_only) {
294 nrg->from = f;
295 nrg->to = t;
298 return chg;
302 * Add the huge page range represented by [f, t) to the reserve
303 * map. Existing regions will be expanded to accommodate the specified
304 * range, or a region will be taken from the cache. Sufficient regions
305 * must exist in the cache due to the previous call to region_chg with
306 * the same range.
308 * Return the number of new huge pages added to the map. This
309 * number is greater than or equal to zero.
311 static long region_add(struct resv_map *resv, long f, long t)
313 struct list_head *head = &resv->regions;
314 struct file_region *rg, *nrg;
315 long add = 0;
317 spin_lock(&resv->lock);
318 /* Locate the region we are either in or before. */
319 list_for_each_entry(rg, head, link)
320 if (f <= rg->to)
321 break;
324 * If no region exists which can be expanded to include the
325 * specified range, pull a region descriptor from the cache
326 * and use it for this range.
328 if (&rg->link == head || t < rg->from) {
329 VM_BUG_ON(resv->region_cache_count <= 0);
331 resv->region_cache_count--;
332 nrg = list_first_entry(&resv->region_cache, struct file_region,
333 link);
334 list_del(&nrg->link);
336 nrg->from = f;
337 nrg->to = t;
338 list_add(&nrg->link, rg->link.prev);
340 add += t - f;
341 goto out_locked;
344 add = add_reservation_in_range(resv, f, t, false);
346 out_locked:
347 resv->adds_in_progress--;
348 spin_unlock(&resv->lock);
349 VM_BUG_ON(add < 0);
350 return add;
354 * Examine the existing reserve map and determine how many
355 * huge pages in the specified range [f, t) are NOT currently
356 * represented. This routine is called before a subsequent
357 * call to region_add that will actually modify the reserve
358 * map to add the specified range [f, t). region_chg does
359 * not change the number of huge pages represented by the
360 * map. A new file_region structure is added to the cache
361 * as a placeholder, so that the subsequent region_add
362 * call will have all the regions it needs and will not fail.
364 * Returns the number of huge pages that need to be added to the existing
365 * reservation map for the range [f, t). This number is greater or equal to
366 * zero. -ENOMEM is returned if a new file_region structure or cache entry
367 * is needed and can not be allocated.
369 static long region_chg(struct resv_map *resv, long f, long t)
371 long chg = 0;
373 spin_lock(&resv->lock);
374 retry_locked:
375 resv->adds_in_progress++;
378 * Check for sufficient descriptors in the cache to accommodate
379 * the number of in progress add operations.
381 if (resv->adds_in_progress > resv->region_cache_count) {
382 struct file_region *trg;
384 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385 /* Must drop lock to allocate a new descriptor. */
386 resv->adds_in_progress--;
387 spin_unlock(&resv->lock);
389 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
390 if (!trg)
391 return -ENOMEM;
393 spin_lock(&resv->lock);
394 list_add(&trg->link, &resv->region_cache);
395 resv->region_cache_count++;
396 goto retry_locked;
399 chg = add_reservation_in_range(resv, f, t, true);
401 spin_unlock(&resv->lock);
402 return chg;
406 * Abort the in progress add operation. The adds_in_progress field
407 * of the resv_map keeps track of the operations in progress between
408 * calls to region_chg and region_add. Operations are sometimes
409 * aborted after the call to region_chg. In such cases, region_abort
410 * is called to decrement the adds_in_progress counter.
412 * NOTE: The range arguments [f, t) are not needed or used in this
413 * routine. They are kept to make reading the calling code easier as
414 * arguments will match the associated region_chg call.
416 static void region_abort(struct resv_map *resv, long f, long t)
418 spin_lock(&resv->lock);
419 VM_BUG_ON(!resv->region_cache_count);
420 resv->adds_in_progress--;
421 spin_unlock(&resv->lock);
425 * Delete the specified range [f, t) from the reserve map. If the
426 * t parameter is LONG_MAX, this indicates that ALL regions after f
427 * should be deleted. Locate the regions which intersect [f, t)
428 * and either trim, delete or split the existing regions.
430 * Returns the number of huge pages deleted from the reserve map.
431 * In the normal case, the return value is zero or more. In the
432 * case where a region must be split, a new region descriptor must
433 * be allocated. If the allocation fails, -ENOMEM will be returned.
434 * NOTE: If the parameter t == LONG_MAX, then we will never split
435 * a region and possibly return -ENOMEM. Callers specifying
436 * t == LONG_MAX do not need to check for -ENOMEM error.
438 static long region_del(struct resv_map *resv, long f, long t)
440 struct list_head *head = &resv->regions;
441 struct file_region *rg, *trg;
442 struct file_region *nrg = NULL;
443 long del = 0;
445 retry:
446 spin_lock(&resv->lock);
447 list_for_each_entry_safe(rg, trg, head, link) {
449 * Skip regions before the range to be deleted. file_region
450 * ranges are normally of the form [from, to). However, there
451 * may be a "placeholder" entry in the map which is of the form
452 * (from, to) with from == to. Check for placeholder entries
453 * at the beginning of the range to be deleted.
455 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
456 continue;
458 if (rg->from >= t)
459 break;
461 if (f > rg->from && t < rg->to) { /* Must split region */
463 * Check for an entry in the cache before dropping
464 * lock and attempting allocation.
466 if (!nrg &&
467 resv->region_cache_count > resv->adds_in_progress) {
468 nrg = list_first_entry(&resv->region_cache,
469 struct file_region,
470 link);
471 list_del(&nrg->link);
472 resv->region_cache_count--;
475 if (!nrg) {
476 spin_unlock(&resv->lock);
477 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
478 if (!nrg)
479 return -ENOMEM;
480 goto retry;
483 del += t - f;
485 /* New entry for end of split region */
486 nrg->from = t;
487 nrg->to = rg->to;
488 INIT_LIST_HEAD(&nrg->link);
490 /* Original entry is trimmed */
491 rg->to = f;
493 list_add(&nrg->link, &rg->link);
494 nrg = NULL;
495 break;
498 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
499 del += rg->to - rg->from;
500 list_del(&rg->link);
501 kfree(rg);
502 continue;
505 if (f <= rg->from) { /* Trim beginning of region */
506 del += t - rg->from;
507 rg->from = t;
508 } else { /* Trim end of region */
509 del += rg->to - f;
510 rg->to = f;
514 spin_unlock(&resv->lock);
515 kfree(nrg);
516 return del;
520 * A rare out of memory error was encountered which prevented removal of
521 * the reserve map region for a page. The huge page itself was free'ed
522 * and removed from the page cache. This routine will adjust the subpool
523 * usage count, and the global reserve count if needed. By incrementing
524 * these counts, the reserve map entry which could not be deleted will
525 * appear as a "reserved" entry instead of simply dangling with incorrect
526 * counts.
528 void hugetlb_fix_reserve_counts(struct inode *inode)
530 struct hugepage_subpool *spool = subpool_inode(inode);
531 long rsv_adjust;
533 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
534 if (rsv_adjust) {
535 struct hstate *h = hstate_inode(inode);
537 hugetlb_acct_memory(h, 1);
542 * Count and return the number of huge pages in the reserve map
543 * that intersect with the range [f, t).
545 static long region_count(struct resv_map *resv, long f, long t)
547 struct list_head *head = &resv->regions;
548 struct file_region *rg;
549 long chg = 0;
551 spin_lock(&resv->lock);
552 /* Locate each segment we overlap with, and count that overlap. */
553 list_for_each_entry(rg, head, link) {
554 long seg_from;
555 long seg_to;
557 if (rg->to <= f)
558 continue;
559 if (rg->from >= t)
560 break;
562 seg_from = max(rg->from, f);
563 seg_to = min(rg->to, t);
565 chg += seg_to - seg_from;
567 spin_unlock(&resv->lock);
569 return chg;
573 * Convert the address within this vma to the page offset within
574 * the mapping, in pagecache page units; huge pages here.
576 static pgoff_t vma_hugecache_offset(struct hstate *h,
577 struct vm_area_struct *vma, unsigned long address)
579 return ((address - vma->vm_start) >> huge_page_shift(h)) +
580 (vma->vm_pgoff >> huge_page_order(h));
583 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
584 unsigned long address)
586 return vma_hugecache_offset(hstate_vma(vma), vma, address);
588 EXPORT_SYMBOL_GPL(linear_hugepage_index);
591 * Return the size of the pages allocated when backing a VMA. In the majority
592 * cases this will be same size as used by the page table entries.
594 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
596 if (vma->vm_ops && vma->vm_ops->pagesize)
597 return vma->vm_ops->pagesize(vma);
598 return PAGE_SIZE;
600 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
603 * Return the page size being used by the MMU to back a VMA. In the majority
604 * of cases, the page size used by the kernel matches the MMU size. On
605 * architectures where it differs, an architecture-specific 'strong'
606 * version of this symbol is required.
608 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
610 return vma_kernel_pagesize(vma);
614 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
615 * bits of the reservation map pointer, which are always clear due to
616 * alignment.
618 #define HPAGE_RESV_OWNER (1UL << 0)
619 #define HPAGE_RESV_UNMAPPED (1UL << 1)
620 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
623 * These helpers are used to track how many pages are reserved for
624 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
625 * is guaranteed to have their future faults succeed.
627 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
628 * the reserve counters are updated with the hugetlb_lock held. It is safe
629 * to reset the VMA at fork() time as it is not in use yet and there is no
630 * chance of the global counters getting corrupted as a result of the values.
632 * The private mapping reservation is represented in a subtly different
633 * manner to a shared mapping. A shared mapping has a region map associated
634 * with the underlying file, this region map represents the backing file
635 * pages which have ever had a reservation assigned which this persists even
636 * after the page is instantiated. A private mapping has a region map
637 * associated with the original mmap which is attached to all VMAs which
638 * reference it, this region map represents those offsets which have consumed
639 * reservation ie. where pages have been instantiated.
641 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
643 return (unsigned long)vma->vm_private_data;
646 static void set_vma_private_data(struct vm_area_struct *vma,
647 unsigned long value)
649 vma->vm_private_data = (void *)value;
652 struct resv_map *resv_map_alloc(void)
654 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
655 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
657 if (!resv_map || !rg) {
658 kfree(resv_map);
659 kfree(rg);
660 return NULL;
663 kref_init(&resv_map->refs);
664 spin_lock_init(&resv_map->lock);
665 INIT_LIST_HEAD(&resv_map->regions);
667 resv_map->adds_in_progress = 0;
669 INIT_LIST_HEAD(&resv_map->region_cache);
670 list_add(&rg->link, &resv_map->region_cache);
671 resv_map->region_cache_count = 1;
673 return resv_map;
676 void resv_map_release(struct kref *ref)
678 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
679 struct list_head *head = &resv_map->region_cache;
680 struct file_region *rg, *trg;
682 /* Clear out any active regions before we release the map. */
683 region_del(resv_map, 0, LONG_MAX);
685 /* ... and any entries left in the cache */
686 list_for_each_entry_safe(rg, trg, head, link) {
687 list_del(&rg->link);
688 kfree(rg);
691 VM_BUG_ON(resv_map->adds_in_progress);
693 kfree(resv_map);
696 static inline struct resv_map *inode_resv_map(struct inode *inode)
699 * At inode evict time, i_mapping may not point to the original
700 * address space within the inode. This original address space
701 * contains the pointer to the resv_map. So, always use the
702 * address space embedded within the inode.
703 * The VERY common case is inode->mapping == &inode->i_data but,
704 * this may not be true for device special inodes.
706 return (struct resv_map *)(&inode->i_data)->private_data;
709 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
711 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
712 if (vma->vm_flags & VM_MAYSHARE) {
713 struct address_space *mapping = vma->vm_file->f_mapping;
714 struct inode *inode = mapping->host;
716 return inode_resv_map(inode);
718 } else {
719 return (struct resv_map *)(get_vma_private_data(vma) &
720 ~HPAGE_RESV_MASK);
724 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
726 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
727 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
729 set_vma_private_data(vma, (get_vma_private_data(vma) &
730 HPAGE_RESV_MASK) | (unsigned long)map);
733 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
735 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
736 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
738 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
741 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
743 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
745 return (get_vma_private_data(vma) & flag) != 0;
748 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
749 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 if (!(vma->vm_flags & VM_MAYSHARE))
753 vma->vm_private_data = (void *)0;
756 /* Returns true if the VMA has associated reserve pages */
757 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
759 if (vma->vm_flags & VM_NORESERVE) {
761 * This address is already reserved by other process(chg == 0),
762 * so, we should decrement reserved count. Without decrementing,
763 * reserve count remains after releasing inode, because this
764 * allocated page will go into page cache and is regarded as
765 * coming from reserved pool in releasing step. Currently, we
766 * don't have any other solution to deal with this situation
767 * properly, so add work-around here.
769 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
770 return true;
771 else
772 return false;
775 /* Shared mappings always use reserves */
776 if (vma->vm_flags & VM_MAYSHARE) {
778 * We know VM_NORESERVE is not set. Therefore, there SHOULD
779 * be a region map for all pages. The only situation where
780 * there is no region map is if a hole was punched via
781 * fallocate. In this case, there really are no reverves to
782 * use. This situation is indicated if chg != 0.
784 if (chg)
785 return false;
786 else
787 return true;
791 * Only the process that called mmap() has reserves for
792 * private mappings.
794 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
796 * Like the shared case above, a hole punch or truncate
797 * could have been performed on the private mapping.
798 * Examine the value of chg to determine if reserves
799 * actually exist or were previously consumed.
800 * Very Subtle - The value of chg comes from a previous
801 * call to vma_needs_reserves(). The reserve map for
802 * private mappings has different (opposite) semantics
803 * than that of shared mappings. vma_needs_reserves()
804 * has already taken this difference in semantics into
805 * account. Therefore, the meaning of chg is the same
806 * as in the shared case above. Code could easily be
807 * combined, but keeping it separate draws attention to
808 * subtle differences.
810 if (chg)
811 return false;
812 else
813 return true;
816 return false;
819 static void enqueue_huge_page(struct hstate *h, struct page *page)
821 int nid = page_to_nid(page);
822 list_move(&page->lru, &h->hugepage_freelists[nid]);
823 h->free_huge_pages++;
824 h->free_huge_pages_node[nid]++;
827 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
829 struct page *page;
831 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
832 if (!PageHWPoison(page))
833 break;
835 * if 'non-isolated free hugepage' not found on the list,
836 * the allocation fails.
838 if (&h->hugepage_freelists[nid] == &page->lru)
839 return NULL;
840 list_move(&page->lru, &h->hugepage_activelist);
841 set_page_refcounted(page);
842 h->free_huge_pages--;
843 h->free_huge_pages_node[nid]--;
844 return page;
847 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
848 nodemask_t *nmask)
850 unsigned int cpuset_mems_cookie;
851 struct zonelist *zonelist;
852 struct zone *zone;
853 struct zoneref *z;
854 int node = NUMA_NO_NODE;
856 zonelist = node_zonelist(nid, gfp_mask);
858 retry_cpuset:
859 cpuset_mems_cookie = read_mems_allowed_begin();
860 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
861 struct page *page;
863 if (!cpuset_zone_allowed(zone, gfp_mask))
864 continue;
866 * no need to ask again on the same node. Pool is node rather than
867 * zone aware
869 if (zone_to_nid(zone) == node)
870 continue;
871 node = zone_to_nid(zone);
873 page = dequeue_huge_page_node_exact(h, node);
874 if (page)
875 return page;
877 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
878 goto retry_cpuset;
880 return NULL;
883 /* Movability of hugepages depends on migration support. */
884 static inline gfp_t htlb_alloc_mask(struct hstate *h)
886 if (hugepage_movable_supported(h))
887 return GFP_HIGHUSER_MOVABLE;
888 else
889 return GFP_HIGHUSER;
892 static struct page *dequeue_huge_page_vma(struct hstate *h,
893 struct vm_area_struct *vma,
894 unsigned long address, int avoid_reserve,
895 long chg)
897 struct page *page;
898 struct mempolicy *mpol;
899 gfp_t gfp_mask;
900 nodemask_t *nodemask;
901 int nid;
904 * A child process with MAP_PRIVATE mappings created by their parent
905 * have no page reserves. This check ensures that reservations are
906 * not "stolen". The child may still get SIGKILLed
908 if (!vma_has_reserves(vma, chg) &&
909 h->free_huge_pages - h->resv_huge_pages == 0)
910 goto err;
912 /* If reserves cannot be used, ensure enough pages are in the pool */
913 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
914 goto err;
916 gfp_mask = htlb_alloc_mask(h);
917 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
918 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
919 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
920 SetPagePrivate(page);
921 h->resv_huge_pages--;
924 mpol_cond_put(mpol);
925 return page;
927 err:
928 return NULL;
932 * common helper functions for hstate_next_node_to_{alloc|free}.
933 * We may have allocated or freed a huge page based on a different
934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935 * be outside of *nodes_allowed. Ensure that we use an allowed
936 * node for alloc or free.
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 nid = next_node_in(nid, *nodes_allowed);
941 VM_BUG_ON(nid >= MAX_NUMNODES);
943 return nid;
946 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
948 if (!node_isset(nid, *nodes_allowed))
949 nid = next_node_allowed(nid, nodes_allowed);
950 return nid;
954 * returns the previously saved node ["this node"] from which to
955 * allocate a persistent huge page for the pool and advance the
956 * next node from which to allocate, handling wrap at end of node
957 * mask.
959 static int hstate_next_node_to_alloc(struct hstate *h,
960 nodemask_t *nodes_allowed)
962 int nid;
964 VM_BUG_ON(!nodes_allowed);
966 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
967 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
969 return nid;
973 * helper for free_pool_huge_page() - return the previously saved
974 * node ["this node"] from which to free a huge page. Advance the
975 * next node id whether or not we find a free huge page to free so
976 * that the next attempt to free addresses the next node.
978 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
980 int nid;
982 VM_BUG_ON(!nodes_allowed);
984 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
985 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
987 return nid;
990 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
991 for (nr_nodes = nodes_weight(*mask); \
992 nr_nodes > 0 && \
993 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
994 nr_nodes--)
996 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
997 for (nr_nodes = nodes_weight(*mask); \
998 nr_nodes > 0 && \
999 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1000 nr_nodes--)
1002 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1003 static void destroy_compound_gigantic_page(struct page *page,
1004 unsigned int order)
1006 int i;
1007 int nr_pages = 1 << order;
1008 struct page *p = page + 1;
1010 atomic_set(compound_mapcount_ptr(page), 0);
1011 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1012 clear_compound_head(p);
1013 set_page_refcounted(p);
1016 set_compound_order(page, 0);
1017 __ClearPageHead(page);
1020 static void free_gigantic_page(struct page *page, unsigned int order)
1022 free_contig_range(page_to_pfn(page), 1 << order);
1025 #ifdef CONFIG_CONTIG_ALLOC
1026 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1027 int nid, nodemask_t *nodemask)
1029 unsigned long nr_pages = 1UL << huge_page_order(h);
1031 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1034 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1035 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1036 #else /* !CONFIG_CONTIG_ALLOC */
1037 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1038 int nid, nodemask_t *nodemask)
1040 return NULL;
1042 #endif /* CONFIG_CONTIG_ALLOC */
1044 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1045 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1046 int nid, nodemask_t *nodemask)
1048 return NULL;
1050 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1051 static inline void destroy_compound_gigantic_page(struct page *page,
1052 unsigned int order) { }
1053 #endif
1055 static void update_and_free_page(struct hstate *h, struct page *page)
1057 int i;
1059 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1060 return;
1062 h->nr_huge_pages--;
1063 h->nr_huge_pages_node[page_to_nid(page)]--;
1064 for (i = 0; i < pages_per_huge_page(h); i++) {
1065 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1066 1 << PG_referenced | 1 << PG_dirty |
1067 1 << PG_active | 1 << PG_private |
1068 1 << PG_writeback);
1070 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1071 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1072 set_page_refcounted(page);
1073 if (hstate_is_gigantic(h)) {
1074 destroy_compound_gigantic_page(page, huge_page_order(h));
1075 free_gigantic_page(page, huge_page_order(h));
1076 } else {
1077 __free_pages(page, huge_page_order(h));
1081 struct hstate *size_to_hstate(unsigned long size)
1083 struct hstate *h;
1085 for_each_hstate(h) {
1086 if (huge_page_size(h) == size)
1087 return h;
1089 return NULL;
1093 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1094 * to hstate->hugepage_activelist.)
1096 * This function can be called for tail pages, but never returns true for them.
1098 bool page_huge_active(struct page *page)
1100 VM_BUG_ON_PAGE(!PageHuge(page), page);
1101 return PageHead(page) && PagePrivate(&page[1]);
1104 /* never called for tail page */
1105 static void set_page_huge_active(struct page *page)
1107 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1108 SetPagePrivate(&page[1]);
1111 static void clear_page_huge_active(struct page *page)
1113 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1114 ClearPagePrivate(&page[1]);
1118 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1119 * code
1121 static inline bool PageHugeTemporary(struct page *page)
1123 if (!PageHuge(page))
1124 return false;
1126 return (unsigned long)page[2].mapping == -1U;
1129 static inline void SetPageHugeTemporary(struct page *page)
1131 page[2].mapping = (void *)-1U;
1134 static inline void ClearPageHugeTemporary(struct page *page)
1136 page[2].mapping = NULL;
1139 void free_huge_page(struct page *page)
1142 * Can't pass hstate in here because it is called from the
1143 * compound page destructor.
1145 struct hstate *h = page_hstate(page);
1146 int nid = page_to_nid(page);
1147 struct hugepage_subpool *spool =
1148 (struct hugepage_subpool *)page_private(page);
1149 bool restore_reserve;
1151 VM_BUG_ON_PAGE(page_count(page), page);
1152 VM_BUG_ON_PAGE(page_mapcount(page), page);
1154 set_page_private(page, 0);
1155 page->mapping = NULL;
1156 restore_reserve = PagePrivate(page);
1157 ClearPagePrivate(page);
1160 * If PagePrivate() was set on page, page allocation consumed a
1161 * reservation. If the page was associated with a subpool, there
1162 * would have been a page reserved in the subpool before allocation
1163 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1164 * reservtion, do not call hugepage_subpool_put_pages() as this will
1165 * remove the reserved page from the subpool.
1167 if (!restore_reserve) {
1169 * A return code of zero implies that the subpool will be
1170 * under its minimum size if the reservation is not restored
1171 * after page is free. Therefore, force restore_reserve
1172 * operation.
1174 if (hugepage_subpool_put_pages(spool, 1) == 0)
1175 restore_reserve = true;
1178 spin_lock(&hugetlb_lock);
1179 clear_page_huge_active(page);
1180 hugetlb_cgroup_uncharge_page(hstate_index(h),
1181 pages_per_huge_page(h), page);
1182 if (restore_reserve)
1183 h->resv_huge_pages++;
1185 if (PageHugeTemporary(page)) {
1186 list_del(&page->lru);
1187 ClearPageHugeTemporary(page);
1188 update_and_free_page(h, page);
1189 } else if (h->surplus_huge_pages_node[nid]) {
1190 /* remove the page from active list */
1191 list_del(&page->lru);
1192 update_and_free_page(h, page);
1193 h->surplus_huge_pages--;
1194 h->surplus_huge_pages_node[nid]--;
1195 } else {
1196 arch_clear_hugepage_flags(page);
1197 enqueue_huge_page(h, page);
1199 spin_unlock(&hugetlb_lock);
1202 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1204 INIT_LIST_HEAD(&page->lru);
1205 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1206 spin_lock(&hugetlb_lock);
1207 set_hugetlb_cgroup(page, NULL);
1208 h->nr_huge_pages++;
1209 h->nr_huge_pages_node[nid]++;
1210 spin_unlock(&hugetlb_lock);
1213 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1215 int i;
1216 int nr_pages = 1 << order;
1217 struct page *p = page + 1;
1219 /* we rely on prep_new_huge_page to set the destructor */
1220 set_compound_order(page, order);
1221 __ClearPageReserved(page);
1222 __SetPageHead(page);
1223 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225 * For gigantic hugepages allocated through bootmem at
1226 * boot, it's safer to be consistent with the not-gigantic
1227 * hugepages and clear the PG_reserved bit from all tail pages
1228 * too. Otherwse drivers using get_user_pages() to access tail
1229 * pages may get the reference counting wrong if they see
1230 * PG_reserved set on a tail page (despite the head page not
1231 * having PG_reserved set). Enforcing this consistency between
1232 * head and tail pages allows drivers to optimize away a check
1233 * on the head page when they need know if put_page() is needed
1234 * after get_user_pages().
1236 __ClearPageReserved(p);
1237 set_page_count(p, 0);
1238 set_compound_head(p, page);
1240 atomic_set(compound_mapcount_ptr(page), -1);
1244 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1245 * transparent huge pages. See the PageTransHuge() documentation for more
1246 * details.
1248 int PageHuge(struct page *page)
1250 if (!PageCompound(page))
1251 return 0;
1253 page = compound_head(page);
1254 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1256 EXPORT_SYMBOL_GPL(PageHuge);
1259 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1260 * normal or transparent huge pages.
1262 int PageHeadHuge(struct page *page_head)
1264 if (!PageHead(page_head))
1265 return 0;
1267 return get_compound_page_dtor(page_head) == free_huge_page;
1270 pgoff_t __basepage_index(struct page *page)
1272 struct page *page_head = compound_head(page);
1273 pgoff_t index = page_index(page_head);
1274 unsigned long compound_idx;
1276 if (!PageHuge(page_head))
1277 return page_index(page);
1279 if (compound_order(page_head) >= MAX_ORDER)
1280 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1281 else
1282 compound_idx = page - page_head;
1284 return (index << compound_order(page_head)) + compound_idx;
1287 static struct page *alloc_buddy_huge_page(struct hstate *h,
1288 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1289 nodemask_t *node_alloc_noretry)
1291 int order = huge_page_order(h);
1292 struct page *page;
1293 bool alloc_try_hard = true;
1296 * By default we always try hard to allocate the page with
1297 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1298 * a loop (to adjust global huge page counts) and previous allocation
1299 * failed, do not continue to try hard on the same node. Use the
1300 * node_alloc_noretry bitmap to manage this state information.
1302 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1303 alloc_try_hard = false;
1304 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1305 if (alloc_try_hard)
1306 gfp_mask |= __GFP_RETRY_MAYFAIL;
1307 if (nid == NUMA_NO_NODE)
1308 nid = numa_mem_id();
1309 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1310 if (page)
1311 __count_vm_event(HTLB_BUDDY_PGALLOC);
1312 else
1313 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1316 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1317 * indicates an overall state change. Clear bit so that we resume
1318 * normal 'try hard' allocations.
1320 if (node_alloc_noretry && page && !alloc_try_hard)
1321 node_clear(nid, *node_alloc_noretry);
1324 * If we tried hard to get a page but failed, set bit so that
1325 * subsequent attempts will not try as hard until there is an
1326 * overall state change.
1328 if (node_alloc_noretry && !page && alloc_try_hard)
1329 node_set(nid, *node_alloc_noretry);
1331 return page;
1335 * Common helper to allocate a fresh hugetlb page. All specific allocators
1336 * should use this function to get new hugetlb pages
1338 static struct page *alloc_fresh_huge_page(struct hstate *h,
1339 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1340 nodemask_t *node_alloc_noretry)
1342 struct page *page;
1344 if (hstate_is_gigantic(h))
1345 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1346 else
1347 page = alloc_buddy_huge_page(h, gfp_mask,
1348 nid, nmask, node_alloc_noretry);
1349 if (!page)
1350 return NULL;
1352 if (hstate_is_gigantic(h))
1353 prep_compound_gigantic_page(page, huge_page_order(h));
1354 prep_new_huge_page(h, page, page_to_nid(page));
1356 return page;
1360 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1361 * manner.
1363 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1364 nodemask_t *node_alloc_noretry)
1366 struct page *page;
1367 int nr_nodes, node;
1368 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1370 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1371 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1372 node_alloc_noretry);
1373 if (page)
1374 break;
1377 if (!page)
1378 return 0;
1380 put_page(page); /* free it into the hugepage allocator */
1382 return 1;
1386 * Free huge page from pool from next node to free.
1387 * Attempt to keep persistent huge pages more or less
1388 * balanced over allowed nodes.
1389 * Called with hugetlb_lock locked.
1391 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1392 bool acct_surplus)
1394 int nr_nodes, node;
1395 int ret = 0;
1397 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1399 * If we're returning unused surplus pages, only examine
1400 * nodes with surplus pages.
1402 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1403 !list_empty(&h->hugepage_freelists[node])) {
1404 struct page *page =
1405 list_entry(h->hugepage_freelists[node].next,
1406 struct page, lru);
1407 list_del(&page->lru);
1408 h->free_huge_pages--;
1409 h->free_huge_pages_node[node]--;
1410 if (acct_surplus) {
1411 h->surplus_huge_pages--;
1412 h->surplus_huge_pages_node[node]--;
1414 update_and_free_page(h, page);
1415 ret = 1;
1416 break;
1420 return ret;
1424 * Dissolve a given free hugepage into free buddy pages. This function does
1425 * nothing for in-use hugepages and non-hugepages.
1426 * This function returns values like below:
1428 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1429 * (allocated or reserved.)
1430 * 0: successfully dissolved free hugepages or the page is not a
1431 * hugepage (considered as already dissolved)
1433 int dissolve_free_huge_page(struct page *page)
1435 int rc = -EBUSY;
1437 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1438 if (!PageHuge(page))
1439 return 0;
1441 spin_lock(&hugetlb_lock);
1442 if (!PageHuge(page)) {
1443 rc = 0;
1444 goto out;
1447 if (!page_count(page)) {
1448 struct page *head = compound_head(page);
1449 struct hstate *h = page_hstate(head);
1450 int nid = page_to_nid(head);
1451 if (h->free_huge_pages - h->resv_huge_pages == 0)
1452 goto out;
1454 * Move PageHWPoison flag from head page to the raw error page,
1455 * which makes any subpages rather than the error page reusable.
1457 if (PageHWPoison(head) && page != head) {
1458 SetPageHWPoison(page);
1459 ClearPageHWPoison(head);
1461 list_del(&head->lru);
1462 h->free_huge_pages--;
1463 h->free_huge_pages_node[nid]--;
1464 h->max_huge_pages--;
1465 update_and_free_page(h, head);
1466 rc = 0;
1468 out:
1469 spin_unlock(&hugetlb_lock);
1470 return rc;
1474 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1475 * make specified memory blocks removable from the system.
1476 * Note that this will dissolve a free gigantic hugepage completely, if any
1477 * part of it lies within the given range.
1478 * Also note that if dissolve_free_huge_page() returns with an error, all
1479 * free hugepages that were dissolved before that error are lost.
1481 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1483 unsigned long pfn;
1484 struct page *page;
1485 int rc = 0;
1487 if (!hugepages_supported())
1488 return rc;
1490 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1491 page = pfn_to_page(pfn);
1492 rc = dissolve_free_huge_page(page);
1493 if (rc)
1494 break;
1497 return rc;
1501 * Allocates a fresh surplus page from the page allocator.
1503 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1504 int nid, nodemask_t *nmask)
1506 struct page *page = NULL;
1508 if (hstate_is_gigantic(h))
1509 return NULL;
1511 spin_lock(&hugetlb_lock);
1512 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1513 goto out_unlock;
1514 spin_unlock(&hugetlb_lock);
1516 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1517 if (!page)
1518 return NULL;
1520 spin_lock(&hugetlb_lock);
1522 * We could have raced with the pool size change.
1523 * Double check that and simply deallocate the new page
1524 * if we would end up overcommiting the surpluses. Abuse
1525 * temporary page to workaround the nasty free_huge_page
1526 * codeflow
1528 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1529 SetPageHugeTemporary(page);
1530 spin_unlock(&hugetlb_lock);
1531 put_page(page);
1532 return NULL;
1533 } else {
1534 h->surplus_huge_pages++;
1535 h->surplus_huge_pages_node[page_to_nid(page)]++;
1538 out_unlock:
1539 spin_unlock(&hugetlb_lock);
1541 return page;
1544 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1545 int nid, nodemask_t *nmask)
1547 struct page *page;
1549 if (hstate_is_gigantic(h))
1550 return NULL;
1552 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1553 if (!page)
1554 return NULL;
1557 * We do not account these pages as surplus because they are only
1558 * temporary and will be released properly on the last reference
1560 SetPageHugeTemporary(page);
1562 return page;
1566 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1568 static
1569 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1570 struct vm_area_struct *vma, unsigned long addr)
1572 struct page *page;
1573 struct mempolicy *mpol;
1574 gfp_t gfp_mask = htlb_alloc_mask(h);
1575 int nid;
1576 nodemask_t *nodemask;
1578 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1579 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1580 mpol_cond_put(mpol);
1582 return page;
1585 /* page migration callback function */
1586 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1588 gfp_t gfp_mask = htlb_alloc_mask(h);
1589 struct page *page = NULL;
1591 if (nid != NUMA_NO_NODE)
1592 gfp_mask |= __GFP_THISNODE;
1594 spin_lock(&hugetlb_lock);
1595 if (h->free_huge_pages - h->resv_huge_pages > 0)
1596 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1597 spin_unlock(&hugetlb_lock);
1599 if (!page)
1600 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1602 return page;
1605 /* page migration callback function */
1606 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1607 nodemask_t *nmask)
1609 gfp_t gfp_mask = htlb_alloc_mask(h);
1611 spin_lock(&hugetlb_lock);
1612 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1613 struct page *page;
1615 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1616 if (page) {
1617 spin_unlock(&hugetlb_lock);
1618 return page;
1621 spin_unlock(&hugetlb_lock);
1623 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1626 /* mempolicy aware migration callback */
1627 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1628 unsigned long address)
1630 struct mempolicy *mpol;
1631 nodemask_t *nodemask;
1632 struct page *page;
1633 gfp_t gfp_mask;
1634 int node;
1636 gfp_mask = htlb_alloc_mask(h);
1637 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1638 page = alloc_huge_page_nodemask(h, node, nodemask);
1639 mpol_cond_put(mpol);
1641 return page;
1645 * Increase the hugetlb pool such that it can accommodate a reservation
1646 * of size 'delta'.
1648 static int gather_surplus_pages(struct hstate *h, int delta)
1650 struct list_head surplus_list;
1651 struct page *page, *tmp;
1652 int ret, i;
1653 int needed, allocated;
1654 bool alloc_ok = true;
1656 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1657 if (needed <= 0) {
1658 h->resv_huge_pages += delta;
1659 return 0;
1662 allocated = 0;
1663 INIT_LIST_HEAD(&surplus_list);
1665 ret = -ENOMEM;
1666 retry:
1667 spin_unlock(&hugetlb_lock);
1668 for (i = 0; i < needed; i++) {
1669 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1670 NUMA_NO_NODE, NULL);
1671 if (!page) {
1672 alloc_ok = false;
1673 break;
1675 list_add(&page->lru, &surplus_list);
1676 cond_resched();
1678 allocated += i;
1681 * After retaking hugetlb_lock, we need to recalculate 'needed'
1682 * because either resv_huge_pages or free_huge_pages may have changed.
1684 spin_lock(&hugetlb_lock);
1685 needed = (h->resv_huge_pages + delta) -
1686 (h->free_huge_pages + allocated);
1687 if (needed > 0) {
1688 if (alloc_ok)
1689 goto retry;
1691 * We were not able to allocate enough pages to
1692 * satisfy the entire reservation so we free what
1693 * we've allocated so far.
1695 goto free;
1698 * The surplus_list now contains _at_least_ the number of extra pages
1699 * needed to accommodate the reservation. Add the appropriate number
1700 * of pages to the hugetlb pool and free the extras back to the buddy
1701 * allocator. Commit the entire reservation here to prevent another
1702 * process from stealing the pages as they are added to the pool but
1703 * before they are reserved.
1705 needed += allocated;
1706 h->resv_huge_pages += delta;
1707 ret = 0;
1709 /* Free the needed pages to the hugetlb pool */
1710 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1711 if ((--needed) < 0)
1712 break;
1714 * This page is now managed by the hugetlb allocator and has
1715 * no users -- drop the buddy allocator's reference.
1717 put_page_testzero(page);
1718 VM_BUG_ON_PAGE(page_count(page), page);
1719 enqueue_huge_page(h, page);
1721 free:
1722 spin_unlock(&hugetlb_lock);
1724 /* Free unnecessary surplus pages to the buddy allocator */
1725 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1726 put_page(page);
1727 spin_lock(&hugetlb_lock);
1729 return ret;
1733 * This routine has two main purposes:
1734 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1735 * in unused_resv_pages. This corresponds to the prior adjustments made
1736 * to the associated reservation map.
1737 * 2) Free any unused surplus pages that may have been allocated to satisfy
1738 * the reservation. As many as unused_resv_pages may be freed.
1740 * Called with hugetlb_lock held. However, the lock could be dropped (and
1741 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1742 * we must make sure nobody else can claim pages we are in the process of
1743 * freeing. Do this by ensuring resv_huge_page always is greater than the
1744 * number of huge pages we plan to free when dropping the lock.
1746 static void return_unused_surplus_pages(struct hstate *h,
1747 unsigned long unused_resv_pages)
1749 unsigned long nr_pages;
1751 /* Cannot return gigantic pages currently */
1752 if (hstate_is_gigantic(h))
1753 goto out;
1756 * Part (or even all) of the reservation could have been backed
1757 * by pre-allocated pages. Only free surplus pages.
1759 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1762 * We want to release as many surplus pages as possible, spread
1763 * evenly across all nodes with memory. Iterate across these nodes
1764 * until we can no longer free unreserved surplus pages. This occurs
1765 * when the nodes with surplus pages have no free pages.
1766 * free_pool_huge_page() will balance the the freed pages across the
1767 * on-line nodes with memory and will handle the hstate accounting.
1769 * Note that we decrement resv_huge_pages as we free the pages. If
1770 * we drop the lock, resv_huge_pages will still be sufficiently large
1771 * to cover subsequent pages we may free.
1773 while (nr_pages--) {
1774 h->resv_huge_pages--;
1775 unused_resv_pages--;
1776 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1777 goto out;
1778 cond_resched_lock(&hugetlb_lock);
1781 out:
1782 /* Fully uncommit the reservation */
1783 h->resv_huge_pages -= unused_resv_pages;
1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789 * are used by the huge page allocation routines to manage reservations.
1791 * vma_needs_reservation is called to determine if the huge page at addr
1792 * within the vma has an associated reservation. If a reservation is
1793 * needed, the value 1 is returned. The caller is then responsible for
1794 * managing the global reservation and subpool usage counts. After
1795 * the huge page has been allocated, vma_commit_reservation is called
1796 * to add the page to the reservation map. If the page allocation fails,
1797 * the reservation must be ended instead of committed. vma_end_reservation
1798 * is called in such cases.
1800 * In the normal case, vma_commit_reservation returns the same value
1801 * as the preceding vma_needs_reservation call. The only time this
1802 * is not the case is if a reserve map was changed between calls. It
1803 * is the responsibility of the caller to notice the difference and
1804 * take appropriate action.
1806 * vma_add_reservation is used in error paths where a reservation must
1807 * be restored when a newly allocated huge page must be freed. It is
1808 * to be called after calling vma_needs_reservation to determine if a
1809 * reservation exists.
1811 enum vma_resv_mode {
1812 VMA_NEEDS_RESV,
1813 VMA_COMMIT_RESV,
1814 VMA_END_RESV,
1815 VMA_ADD_RESV,
1817 static long __vma_reservation_common(struct hstate *h,
1818 struct vm_area_struct *vma, unsigned long addr,
1819 enum vma_resv_mode mode)
1821 struct resv_map *resv;
1822 pgoff_t idx;
1823 long ret;
1825 resv = vma_resv_map(vma);
1826 if (!resv)
1827 return 1;
1829 idx = vma_hugecache_offset(h, vma, addr);
1830 switch (mode) {
1831 case VMA_NEEDS_RESV:
1832 ret = region_chg(resv, idx, idx + 1);
1833 break;
1834 case VMA_COMMIT_RESV:
1835 ret = region_add(resv, idx, idx + 1);
1836 break;
1837 case VMA_END_RESV:
1838 region_abort(resv, idx, idx + 1);
1839 ret = 0;
1840 break;
1841 case VMA_ADD_RESV:
1842 if (vma->vm_flags & VM_MAYSHARE)
1843 ret = region_add(resv, idx, idx + 1);
1844 else {
1845 region_abort(resv, idx, idx + 1);
1846 ret = region_del(resv, idx, idx + 1);
1848 break;
1849 default:
1850 BUG();
1853 if (vma->vm_flags & VM_MAYSHARE)
1854 return ret;
1855 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1857 * In most cases, reserves always exist for private mappings.
1858 * However, a file associated with mapping could have been
1859 * hole punched or truncated after reserves were consumed.
1860 * As subsequent fault on such a range will not use reserves.
1861 * Subtle - The reserve map for private mappings has the
1862 * opposite meaning than that of shared mappings. If NO
1863 * entry is in the reserve map, it means a reservation exists.
1864 * If an entry exists in the reserve map, it means the
1865 * reservation has already been consumed. As a result, the
1866 * return value of this routine is the opposite of the
1867 * value returned from reserve map manipulation routines above.
1869 if (ret)
1870 return 0;
1871 else
1872 return 1;
1874 else
1875 return ret < 0 ? ret : 0;
1878 static long vma_needs_reservation(struct hstate *h,
1879 struct vm_area_struct *vma, unsigned long addr)
1881 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1884 static long vma_commit_reservation(struct hstate *h,
1885 struct vm_area_struct *vma, unsigned long addr)
1887 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1890 static void vma_end_reservation(struct hstate *h,
1891 struct vm_area_struct *vma, unsigned long addr)
1893 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1896 static long vma_add_reservation(struct hstate *h,
1897 struct vm_area_struct *vma, unsigned long addr)
1899 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1903 * This routine is called to restore a reservation on error paths. In the
1904 * specific error paths, a huge page was allocated (via alloc_huge_page)
1905 * and is about to be freed. If a reservation for the page existed,
1906 * alloc_huge_page would have consumed the reservation and set PagePrivate
1907 * in the newly allocated page. When the page is freed via free_huge_page,
1908 * the global reservation count will be incremented if PagePrivate is set.
1909 * However, free_huge_page can not adjust the reserve map. Adjust the
1910 * reserve map here to be consistent with global reserve count adjustments
1911 * to be made by free_huge_page.
1913 static void restore_reserve_on_error(struct hstate *h,
1914 struct vm_area_struct *vma, unsigned long address,
1915 struct page *page)
1917 if (unlikely(PagePrivate(page))) {
1918 long rc = vma_needs_reservation(h, vma, address);
1920 if (unlikely(rc < 0)) {
1922 * Rare out of memory condition in reserve map
1923 * manipulation. Clear PagePrivate so that
1924 * global reserve count will not be incremented
1925 * by free_huge_page. This will make it appear
1926 * as though the reservation for this page was
1927 * consumed. This may prevent the task from
1928 * faulting in the page at a later time. This
1929 * is better than inconsistent global huge page
1930 * accounting of reserve counts.
1932 ClearPagePrivate(page);
1933 } else if (rc) {
1934 rc = vma_add_reservation(h, vma, address);
1935 if (unlikely(rc < 0))
1937 * See above comment about rare out of
1938 * memory condition.
1940 ClearPagePrivate(page);
1941 } else
1942 vma_end_reservation(h, vma, address);
1946 struct page *alloc_huge_page(struct vm_area_struct *vma,
1947 unsigned long addr, int avoid_reserve)
1949 struct hugepage_subpool *spool = subpool_vma(vma);
1950 struct hstate *h = hstate_vma(vma);
1951 struct page *page;
1952 long map_chg, map_commit;
1953 long gbl_chg;
1954 int ret, idx;
1955 struct hugetlb_cgroup *h_cg;
1957 idx = hstate_index(h);
1959 * Examine the region/reserve map to determine if the process
1960 * has a reservation for the page to be allocated. A return
1961 * code of zero indicates a reservation exists (no change).
1963 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1964 if (map_chg < 0)
1965 return ERR_PTR(-ENOMEM);
1968 * Processes that did not create the mapping will have no
1969 * reserves as indicated by the region/reserve map. Check
1970 * that the allocation will not exceed the subpool limit.
1971 * Allocations for MAP_NORESERVE mappings also need to be
1972 * checked against any subpool limit.
1974 if (map_chg || avoid_reserve) {
1975 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1976 if (gbl_chg < 0) {
1977 vma_end_reservation(h, vma, addr);
1978 return ERR_PTR(-ENOSPC);
1982 * Even though there was no reservation in the region/reserve
1983 * map, there could be reservations associated with the
1984 * subpool that can be used. This would be indicated if the
1985 * return value of hugepage_subpool_get_pages() is zero.
1986 * However, if avoid_reserve is specified we still avoid even
1987 * the subpool reservations.
1989 if (avoid_reserve)
1990 gbl_chg = 1;
1993 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1994 if (ret)
1995 goto out_subpool_put;
1997 spin_lock(&hugetlb_lock);
1999 * glb_chg is passed to indicate whether or not a page must be taken
2000 * from the global free pool (global change). gbl_chg == 0 indicates
2001 * a reservation exists for the allocation.
2003 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2004 if (!page) {
2005 spin_unlock(&hugetlb_lock);
2006 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2007 if (!page)
2008 goto out_uncharge_cgroup;
2009 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2010 SetPagePrivate(page);
2011 h->resv_huge_pages--;
2013 spin_lock(&hugetlb_lock);
2014 list_move(&page->lru, &h->hugepage_activelist);
2015 /* Fall through */
2017 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2018 spin_unlock(&hugetlb_lock);
2020 set_page_private(page, (unsigned long)spool);
2022 map_commit = vma_commit_reservation(h, vma, addr);
2023 if (unlikely(map_chg > map_commit)) {
2025 * The page was added to the reservation map between
2026 * vma_needs_reservation and vma_commit_reservation.
2027 * This indicates a race with hugetlb_reserve_pages.
2028 * Adjust for the subpool count incremented above AND
2029 * in hugetlb_reserve_pages for the same page. Also,
2030 * the reservation count added in hugetlb_reserve_pages
2031 * no longer applies.
2033 long rsv_adjust;
2035 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2036 hugetlb_acct_memory(h, -rsv_adjust);
2038 return page;
2040 out_uncharge_cgroup:
2041 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2042 out_subpool_put:
2043 if (map_chg || avoid_reserve)
2044 hugepage_subpool_put_pages(spool, 1);
2045 vma_end_reservation(h, vma, addr);
2046 return ERR_PTR(-ENOSPC);
2049 int alloc_bootmem_huge_page(struct hstate *h)
2050 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2051 int __alloc_bootmem_huge_page(struct hstate *h)
2053 struct huge_bootmem_page *m;
2054 int nr_nodes, node;
2056 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2057 void *addr;
2059 addr = memblock_alloc_try_nid_raw(
2060 huge_page_size(h), huge_page_size(h),
2061 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2062 if (addr) {
2064 * Use the beginning of the huge page to store the
2065 * huge_bootmem_page struct (until gather_bootmem
2066 * puts them into the mem_map).
2068 m = addr;
2069 goto found;
2072 return 0;
2074 found:
2075 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2076 /* Put them into a private list first because mem_map is not up yet */
2077 INIT_LIST_HEAD(&m->list);
2078 list_add(&m->list, &huge_boot_pages);
2079 m->hstate = h;
2080 return 1;
2083 static void __init prep_compound_huge_page(struct page *page,
2084 unsigned int order)
2086 if (unlikely(order > (MAX_ORDER - 1)))
2087 prep_compound_gigantic_page(page, order);
2088 else
2089 prep_compound_page(page, order);
2092 /* Put bootmem huge pages into the standard lists after mem_map is up */
2093 static void __init gather_bootmem_prealloc(void)
2095 struct huge_bootmem_page *m;
2097 list_for_each_entry(m, &huge_boot_pages, list) {
2098 struct page *page = virt_to_page(m);
2099 struct hstate *h = m->hstate;
2101 WARN_ON(page_count(page) != 1);
2102 prep_compound_huge_page(page, h->order);
2103 WARN_ON(PageReserved(page));
2104 prep_new_huge_page(h, page, page_to_nid(page));
2105 put_page(page); /* free it into the hugepage allocator */
2108 * If we had gigantic hugepages allocated at boot time, we need
2109 * to restore the 'stolen' pages to totalram_pages in order to
2110 * fix confusing memory reports from free(1) and another
2111 * side-effects, like CommitLimit going negative.
2113 if (hstate_is_gigantic(h))
2114 adjust_managed_page_count(page, 1 << h->order);
2115 cond_resched();
2119 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2121 unsigned long i;
2122 nodemask_t *node_alloc_noretry;
2124 if (!hstate_is_gigantic(h)) {
2126 * Bit mask controlling how hard we retry per-node allocations.
2127 * Ignore errors as lower level routines can deal with
2128 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2129 * time, we are likely in bigger trouble.
2131 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2132 GFP_KERNEL);
2133 } else {
2134 /* allocations done at boot time */
2135 node_alloc_noretry = NULL;
2138 /* bit mask controlling how hard we retry per-node allocations */
2139 if (node_alloc_noretry)
2140 nodes_clear(*node_alloc_noretry);
2142 for (i = 0; i < h->max_huge_pages; ++i) {
2143 if (hstate_is_gigantic(h)) {
2144 if (!alloc_bootmem_huge_page(h))
2145 break;
2146 } else if (!alloc_pool_huge_page(h,
2147 &node_states[N_MEMORY],
2148 node_alloc_noretry))
2149 break;
2150 cond_resched();
2152 if (i < h->max_huge_pages) {
2153 char buf[32];
2155 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2156 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2157 h->max_huge_pages, buf, i);
2158 h->max_huge_pages = i;
2161 kfree(node_alloc_noretry);
2164 static void __init hugetlb_init_hstates(void)
2166 struct hstate *h;
2168 for_each_hstate(h) {
2169 if (minimum_order > huge_page_order(h))
2170 minimum_order = huge_page_order(h);
2172 /* oversize hugepages were init'ed in early boot */
2173 if (!hstate_is_gigantic(h))
2174 hugetlb_hstate_alloc_pages(h);
2176 VM_BUG_ON(minimum_order == UINT_MAX);
2179 static void __init report_hugepages(void)
2181 struct hstate *h;
2183 for_each_hstate(h) {
2184 char buf[32];
2186 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2187 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2188 buf, h->free_huge_pages);
2192 #ifdef CONFIG_HIGHMEM
2193 static void try_to_free_low(struct hstate *h, unsigned long count,
2194 nodemask_t *nodes_allowed)
2196 int i;
2198 if (hstate_is_gigantic(h))
2199 return;
2201 for_each_node_mask(i, *nodes_allowed) {
2202 struct page *page, *next;
2203 struct list_head *freel = &h->hugepage_freelists[i];
2204 list_for_each_entry_safe(page, next, freel, lru) {
2205 if (count >= h->nr_huge_pages)
2206 return;
2207 if (PageHighMem(page))
2208 continue;
2209 list_del(&page->lru);
2210 update_and_free_page(h, page);
2211 h->free_huge_pages--;
2212 h->free_huge_pages_node[page_to_nid(page)]--;
2216 #else
2217 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2218 nodemask_t *nodes_allowed)
2221 #endif
2224 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2225 * balanced by operating on them in a round-robin fashion.
2226 * Returns 1 if an adjustment was made.
2228 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2229 int delta)
2231 int nr_nodes, node;
2233 VM_BUG_ON(delta != -1 && delta != 1);
2235 if (delta < 0) {
2236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2237 if (h->surplus_huge_pages_node[node])
2238 goto found;
2240 } else {
2241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242 if (h->surplus_huge_pages_node[node] <
2243 h->nr_huge_pages_node[node])
2244 goto found;
2247 return 0;
2249 found:
2250 h->surplus_huge_pages += delta;
2251 h->surplus_huge_pages_node[node] += delta;
2252 return 1;
2255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2257 nodemask_t *nodes_allowed)
2259 unsigned long min_count, ret;
2260 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2263 * Bit mask controlling how hard we retry per-node allocations.
2264 * If we can not allocate the bit mask, do not attempt to allocate
2265 * the requested huge pages.
2267 if (node_alloc_noretry)
2268 nodes_clear(*node_alloc_noretry);
2269 else
2270 return -ENOMEM;
2272 spin_lock(&hugetlb_lock);
2275 * Check for a node specific request.
2276 * Changing node specific huge page count may require a corresponding
2277 * change to the global count. In any case, the passed node mask
2278 * (nodes_allowed) will restrict alloc/free to the specified node.
2280 if (nid != NUMA_NO_NODE) {
2281 unsigned long old_count = count;
2283 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2285 * User may have specified a large count value which caused the
2286 * above calculation to overflow. In this case, they wanted
2287 * to allocate as many huge pages as possible. Set count to
2288 * largest possible value to align with their intention.
2290 if (count < old_count)
2291 count = ULONG_MAX;
2295 * Gigantic pages runtime allocation depend on the capability for large
2296 * page range allocation.
2297 * If the system does not provide this feature, return an error when
2298 * the user tries to allocate gigantic pages but let the user free the
2299 * boottime allocated gigantic pages.
2301 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2302 if (count > persistent_huge_pages(h)) {
2303 spin_unlock(&hugetlb_lock);
2304 NODEMASK_FREE(node_alloc_noretry);
2305 return -EINVAL;
2307 /* Fall through to decrease pool */
2311 * Increase the pool size
2312 * First take pages out of surplus state. Then make up the
2313 * remaining difference by allocating fresh huge pages.
2315 * We might race with alloc_surplus_huge_page() here and be unable
2316 * to convert a surplus huge page to a normal huge page. That is
2317 * not critical, though, it just means the overall size of the
2318 * pool might be one hugepage larger than it needs to be, but
2319 * within all the constraints specified by the sysctls.
2321 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2322 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2323 break;
2326 while (count > persistent_huge_pages(h)) {
2328 * If this allocation races such that we no longer need the
2329 * page, free_huge_page will handle it by freeing the page
2330 * and reducing the surplus.
2332 spin_unlock(&hugetlb_lock);
2334 /* yield cpu to avoid soft lockup */
2335 cond_resched();
2337 ret = alloc_pool_huge_page(h, nodes_allowed,
2338 node_alloc_noretry);
2339 spin_lock(&hugetlb_lock);
2340 if (!ret)
2341 goto out;
2343 /* Bail for signals. Probably ctrl-c from user */
2344 if (signal_pending(current))
2345 goto out;
2349 * Decrease the pool size
2350 * First return free pages to the buddy allocator (being careful
2351 * to keep enough around to satisfy reservations). Then place
2352 * pages into surplus state as needed so the pool will shrink
2353 * to the desired size as pages become free.
2355 * By placing pages into the surplus state independent of the
2356 * overcommit value, we are allowing the surplus pool size to
2357 * exceed overcommit. There are few sane options here. Since
2358 * alloc_surplus_huge_page() is checking the global counter,
2359 * though, we'll note that we're not allowed to exceed surplus
2360 * and won't grow the pool anywhere else. Not until one of the
2361 * sysctls are changed, or the surplus pages go out of use.
2363 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2364 min_count = max(count, min_count);
2365 try_to_free_low(h, min_count, nodes_allowed);
2366 while (min_count < persistent_huge_pages(h)) {
2367 if (!free_pool_huge_page(h, nodes_allowed, 0))
2368 break;
2369 cond_resched_lock(&hugetlb_lock);
2371 while (count < persistent_huge_pages(h)) {
2372 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2373 break;
2375 out:
2376 h->max_huge_pages = persistent_huge_pages(h);
2377 spin_unlock(&hugetlb_lock);
2379 NODEMASK_FREE(node_alloc_noretry);
2381 return 0;
2384 #define HSTATE_ATTR_RO(_name) \
2385 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2387 #define HSTATE_ATTR(_name) \
2388 static struct kobj_attribute _name##_attr = \
2389 __ATTR(_name, 0644, _name##_show, _name##_store)
2391 static struct kobject *hugepages_kobj;
2392 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2394 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2396 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2398 int i;
2400 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2401 if (hstate_kobjs[i] == kobj) {
2402 if (nidp)
2403 *nidp = NUMA_NO_NODE;
2404 return &hstates[i];
2407 return kobj_to_node_hstate(kobj, nidp);
2410 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2411 struct kobj_attribute *attr, char *buf)
2413 struct hstate *h;
2414 unsigned long nr_huge_pages;
2415 int nid;
2417 h = kobj_to_hstate(kobj, &nid);
2418 if (nid == NUMA_NO_NODE)
2419 nr_huge_pages = h->nr_huge_pages;
2420 else
2421 nr_huge_pages = h->nr_huge_pages_node[nid];
2423 return sprintf(buf, "%lu\n", nr_huge_pages);
2426 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2427 struct hstate *h, int nid,
2428 unsigned long count, size_t len)
2430 int err;
2431 nodemask_t nodes_allowed, *n_mask;
2433 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2434 return -EINVAL;
2436 if (nid == NUMA_NO_NODE) {
2438 * global hstate attribute
2440 if (!(obey_mempolicy &&
2441 init_nodemask_of_mempolicy(&nodes_allowed)))
2442 n_mask = &node_states[N_MEMORY];
2443 else
2444 n_mask = &nodes_allowed;
2445 } else {
2447 * Node specific request. count adjustment happens in
2448 * set_max_huge_pages() after acquiring hugetlb_lock.
2450 init_nodemask_of_node(&nodes_allowed, nid);
2451 n_mask = &nodes_allowed;
2454 err = set_max_huge_pages(h, count, nid, n_mask);
2456 return err ? err : len;
2459 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2460 struct kobject *kobj, const char *buf,
2461 size_t len)
2463 struct hstate *h;
2464 unsigned long count;
2465 int nid;
2466 int err;
2468 err = kstrtoul(buf, 10, &count);
2469 if (err)
2470 return err;
2472 h = kobj_to_hstate(kobj, &nid);
2473 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2476 static ssize_t nr_hugepages_show(struct kobject *kobj,
2477 struct kobj_attribute *attr, char *buf)
2479 return nr_hugepages_show_common(kobj, attr, buf);
2482 static ssize_t nr_hugepages_store(struct kobject *kobj,
2483 struct kobj_attribute *attr, const char *buf, size_t len)
2485 return nr_hugepages_store_common(false, kobj, buf, len);
2487 HSTATE_ATTR(nr_hugepages);
2489 #ifdef CONFIG_NUMA
2492 * hstate attribute for optionally mempolicy-based constraint on persistent
2493 * huge page alloc/free.
2495 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2496 struct kobj_attribute *attr, char *buf)
2498 return nr_hugepages_show_common(kobj, attr, buf);
2501 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2502 struct kobj_attribute *attr, const char *buf, size_t len)
2504 return nr_hugepages_store_common(true, kobj, buf, len);
2506 HSTATE_ATTR(nr_hugepages_mempolicy);
2507 #endif
2510 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2511 struct kobj_attribute *attr, char *buf)
2513 struct hstate *h = kobj_to_hstate(kobj, NULL);
2514 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2517 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2518 struct kobj_attribute *attr, const char *buf, size_t count)
2520 int err;
2521 unsigned long input;
2522 struct hstate *h = kobj_to_hstate(kobj, NULL);
2524 if (hstate_is_gigantic(h))
2525 return -EINVAL;
2527 err = kstrtoul(buf, 10, &input);
2528 if (err)
2529 return err;
2531 spin_lock(&hugetlb_lock);
2532 h->nr_overcommit_huge_pages = input;
2533 spin_unlock(&hugetlb_lock);
2535 return count;
2537 HSTATE_ATTR(nr_overcommit_hugepages);
2539 static ssize_t free_hugepages_show(struct kobject *kobj,
2540 struct kobj_attribute *attr, char *buf)
2542 struct hstate *h;
2543 unsigned long free_huge_pages;
2544 int nid;
2546 h = kobj_to_hstate(kobj, &nid);
2547 if (nid == NUMA_NO_NODE)
2548 free_huge_pages = h->free_huge_pages;
2549 else
2550 free_huge_pages = h->free_huge_pages_node[nid];
2552 return sprintf(buf, "%lu\n", free_huge_pages);
2554 HSTATE_ATTR_RO(free_hugepages);
2556 static ssize_t resv_hugepages_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2559 struct hstate *h = kobj_to_hstate(kobj, NULL);
2560 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2562 HSTATE_ATTR_RO(resv_hugepages);
2564 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2565 struct kobj_attribute *attr, char *buf)
2567 struct hstate *h;
2568 unsigned long surplus_huge_pages;
2569 int nid;
2571 h = kobj_to_hstate(kobj, &nid);
2572 if (nid == NUMA_NO_NODE)
2573 surplus_huge_pages = h->surplus_huge_pages;
2574 else
2575 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2577 return sprintf(buf, "%lu\n", surplus_huge_pages);
2579 HSTATE_ATTR_RO(surplus_hugepages);
2581 static struct attribute *hstate_attrs[] = {
2582 &nr_hugepages_attr.attr,
2583 &nr_overcommit_hugepages_attr.attr,
2584 &free_hugepages_attr.attr,
2585 &resv_hugepages_attr.attr,
2586 &surplus_hugepages_attr.attr,
2587 #ifdef CONFIG_NUMA
2588 &nr_hugepages_mempolicy_attr.attr,
2589 #endif
2590 NULL,
2593 static const struct attribute_group hstate_attr_group = {
2594 .attrs = hstate_attrs,
2597 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2598 struct kobject **hstate_kobjs,
2599 const struct attribute_group *hstate_attr_group)
2601 int retval;
2602 int hi = hstate_index(h);
2604 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2605 if (!hstate_kobjs[hi])
2606 return -ENOMEM;
2608 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2609 if (retval)
2610 kobject_put(hstate_kobjs[hi]);
2612 return retval;
2615 static void __init hugetlb_sysfs_init(void)
2617 struct hstate *h;
2618 int err;
2620 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2621 if (!hugepages_kobj)
2622 return;
2624 for_each_hstate(h) {
2625 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2626 hstate_kobjs, &hstate_attr_group);
2627 if (err)
2628 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2632 #ifdef CONFIG_NUMA
2635 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2636 * with node devices in node_devices[] using a parallel array. The array
2637 * index of a node device or _hstate == node id.
2638 * This is here to avoid any static dependency of the node device driver, in
2639 * the base kernel, on the hugetlb module.
2641 struct node_hstate {
2642 struct kobject *hugepages_kobj;
2643 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2645 static struct node_hstate node_hstates[MAX_NUMNODES];
2648 * A subset of global hstate attributes for node devices
2650 static struct attribute *per_node_hstate_attrs[] = {
2651 &nr_hugepages_attr.attr,
2652 &free_hugepages_attr.attr,
2653 &surplus_hugepages_attr.attr,
2654 NULL,
2657 static const struct attribute_group per_node_hstate_attr_group = {
2658 .attrs = per_node_hstate_attrs,
2662 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2663 * Returns node id via non-NULL nidp.
2665 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2667 int nid;
2669 for (nid = 0; nid < nr_node_ids; nid++) {
2670 struct node_hstate *nhs = &node_hstates[nid];
2671 int i;
2672 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2673 if (nhs->hstate_kobjs[i] == kobj) {
2674 if (nidp)
2675 *nidp = nid;
2676 return &hstates[i];
2680 BUG();
2681 return NULL;
2685 * Unregister hstate attributes from a single node device.
2686 * No-op if no hstate attributes attached.
2688 static void hugetlb_unregister_node(struct node *node)
2690 struct hstate *h;
2691 struct node_hstate *nhs = &node_hstates[node->dev.id];
2693 if (!nhs->hugepages_kobj)
2694 return; /* no hstate attributes */
2696 for_each_hstate(h) {
2697 int idx = hstate_index(h);
2698 if (nhs->hstate_kobjs[idx]) {
2699 kobject_put(nhs->hstate_kobjs[idx]);
2700 nhs->hstate_kobjs[idx] = NULL;
2704 kobject_put(nhs->hugepages_kobj);
2705 nhs->hugepages_kobj = NULL;
2710 * Register hstate attributes for a single node device.
2711 * No-op if attributes already registered.
2713 static void hugetlb_register_node(struct node *node)
2715 struct hstate *h;
2716 struct node_hstate *nhs = &node_hstates[node->dev.id];
2717 int err;
2719 if (nhs->hugepages_kobj)
2720 return; /* already allocated */
2722 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2723 &node->dev.kobj);
2724 if (!nhs->hugepages_kobj)
2725 return;
2727 for_each_hstate(h) {
2728 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2729 nhs->hstate_kobjs,
2730 &per_node_hstate_attr_group);
2731 if (err) {
2732 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2733 h->name, node->dev.id);
2734 hugetlb_unregister_node(node);
2735 break;
2741 * hugetlb init time: register hstate attributes for all registered node
2742 * devices of nodes that have memory. All on-line nodes should have
2743 * registered their associated device by this time.
2745 static void __init hugetlb_register_all_nodes(void)
2747 int nid;
2749 for_each_node_state(nid, N_MEMORY) {
2750 struct node *node = node_devices[nid];
2751 if (node->dev.id == nid)
2752 hugetlb_register_node(node);
2756 * Let the node device driver know we're here so it can
2757 * [un]register hstate attributes on node hotplug.
2759 register_hugetlbfs_with_node(hugetlb_register_node,
2760 hugetlb_unregister_node);
2762 #else /* !CONFIG_NUMA */
2764 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2766 BUG();
2767 if (nidp)
2768 *nidp = -1;
2769 return NULL;
2772 static void hugetlb_register_all_nodes(void) { }
2774 #endif
2776 static int __init hugetlb_init(void)
2778 int i;
2780 if (!hugepages_supported())
2781 return 0;
2783 if (!size_to_hstate(default_hstate_size)) {
2784 if (default_hstate_size != 0) {
2785 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2786 default_hstate_size, HPAGE_SIZE);
2789 default_hstate_size = HPAGE_SIZE;
2790 if (!size_to_hstate(default_hstate_size))
2791 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2793 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2794 if (default_hstate_max_huge_pages) {
2795 if (!default_hstate.max_huge_pages)
2796 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2799 hugetlb_init_hstates();
2800 gather_bootmem_prealloc();
2801 report_hugepages();
2803 hugetlb_sysfs_init();
2804 hugetlb_register_all_nodes();
2805 hugetlb_cgroup_file_init();
2807 #ifdef CONFIG_SMP
2808 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2809 #else
2810 num_fault_mutexes = 1;
2811 #endif
2812 hugetlb_fault_mutex_table =
2813 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2814 GFP_KERNEL);
2815 BUG_ON(!hugetlb_fault_mutex_table);
2817 for (i = 0; i < num_fault_mutexes; i++)
2818 mutex_init(&hugetlb_fault_mutex_table[i]);
2819 return 0;
2821 subsys_initcall(hugetlb_init);
2823 /* Should be called on processing a hugepagesz=... option */
2824 void __init hugetlb_bad_size(void)
2826 parsed_valid_hugepagesz = false;
2829 void __init hugetlb_add_hstate(unsigned int order)
2831 struct hstate *h;
2832 unsigned long i;
2834 if (size_to_hstate(PAGE_SIZE << order)) {
2835 pr_warn("hugepagesz= specified twice, ignoring\n");
2836 return;
2838 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2839 BUG_ON(order == 0);
2840 h = &hstates[hugetlb_max_hstate++];
2841 h->order = order;
2842 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2843 h->nr_huge_pages = 0;
2844 h->free_huge_pages = 0;
2845 for (i = 0; i < MAX_NUMNODES; ++i)
2846 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2847 INIT_LIST_HEAD(&h->hugepage_activelist);
2848 h->next_nid_to_alloc = first_memory_node;
2849 h->next_nid_to_free = first_memory_node;
2850 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2851 huge_page_size(h)/1024);
2853 parsed_hstate = h;
2856 static int __init hugetlb_nrpages_setup(char *s)
2858 unsigned long *mhp;
2859 static unsigned long *last_mhp;
2861 if (!parsed_valid_hugepagesz) {
2862 pr_warn("hugepages = %s preceded by "
2863 "an unsupported hugepagesz, ignoring\n", s);
2864 parsed_valid_hugepagesz = true;
2865 return 1;
2868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2869 * so this hugepages= parameter goes to the "default hstate".
2871 else if (!hugetlb_max_hstate)
2872 mhp = &default_hstate_max_huge_pages;
2873 else
2874 mhp = &parsed_hstate->max_huge_pages;
2876 if (mhp == last_mhp) {
2877 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2878 return 1;
2881 if (sscanf(s, "%lu", mhp) <= 0)
2882 *mhp = 0;
2885 * Global state is always initialized later in hugetlb_init.
2886 * But we need to allocate >= MAX_ORDER hstates here early to still
2887 * use the bootmem allocator.
2889 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2890 hugetlb_hstate_alloc_pages(parsed_hstate);
2892 last_mhp = mhp;
2894 return 1;
2896 __setup("hugepages=", hugetlb_nrpages_setup);
2898 static int __init hugetlb_default_setup(char *s)
2900 default_hstate_size = memparse(s, &s);
2901 return 1;
2903 __setup("default_hugepagesz=", hugetlb_default_setup);
2905 static unsigned int cpuset_mems_nr(unsigned int *array)
2907 int node;
2908 unsigned int nr = 0;
2910 for_each_node_mask(node, cpuset_current_mems_allowed)
2911 nr += array[node];
2913 return nr;
2916 #ifdef CONFIG_SYSCTL
2917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2918 struct ctl_table *table, int write,
2919 void __user *buffer, size_t *length, loff_t *ppos)
2921 struct hstate *h = &default_hstate;
2922 unsigned long tmp = h->max_huge_pages;
2923 int ret;
2925 if (!hugepages_supported())
2926 return -EOPNOTSUPP;
2928 table->data = &tmp;
2929 table->maxlen = sizeof(unsigned long);
2930 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2931 if (ret)
2932 goto out;
2934 if (write)
2935 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2936 NUMA_NO_NODE, tmp, *length);
2937 out:
2938 return ret;
2941 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2942 void __user *buffer, size_t *length, loff_t *ppos)
2945 return hugetlb_sysctl_handler_common(false, table, write,
2946 buffer, length, ppos);
2949 #ifdef CONFIG_NUMA
2950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2951 void __user *buffer, size_t *length, loff_t *ppos)
2953 return hugetlb_sysctl_handler_common(true, table, write,
2954 buffer, length, ppos);
2956 #endif /* CONFIG_NUMA */
2958 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2959 void __user *buffer,
2960 size_t *length, loff_t *ppos)
2962 struct hstate *h = &default_hstate;
2963 unsigned long tmp;
2964 int ret;
2966 if (!hugepages_supported())
2967 return -EOPNOTSUPP;
2969 tmp = h->nr_overcommit_huge_pages;
2971 if (write && hstate_is_gigantic(h))
2972 return -EINVAL;
2974 table->data = &tmp;
2975 table->maxlen = sizeof(unsigned long);
2976 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977 if (ret)
2978 goto out;
2980 if (write) {
2981 spin_lock(&hugetlb_lock);
2982 h->nr_overcommit_huge_pages = tmp;
2983 spin_unlock(&hugetlb_lock);
2985 out:
2986 return ret;
2989 #endif /* CONFIG_SYSCTL */
2991 void hugetlb_report_meminfo(struct seq_file *m)
2993 struct hstate *h;
2994 unsigned long total = 0;
2996 if (!hugepages_supported())
2997 return;
2999 for_each_hstate(h) {
3000 unsigned long count = h->nr_huge_pages;
3002 total += (PAGE_SIZE << huge_page_order(h)) * count;
3004 if (h == &default_hstate)
3005 seq_printf(m,
3006 "HugePages_Total: %5lu\n"
3007 "HugePages_Free: %5lu\n"
3008 "HugePages_Rsvd: %5lu\n"
3009 "HugePages_Surp: %5lu\n"
3010 "Hugepagesize: %8lu kB\n",
3011 count,
3012 h->free_huge_pages,
3013 h->resv_huge_pages,
3014 h->surplus_huge_pages,
3015 (PAGE_SIZE << huge_page_order(h)) / 1024);
3018 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3021 int hugetlb_report_node_meminfo(int nid, char *buf)
3023 struct hstate *h = &default_hstate;
3024 if (!hugepages_supported())
3025 return 0;
3026 return sprintf(buf,
3027 "Node %d HugePages_Total: %5u\n"
3028 "Node %d HugePages_Free: %5u\n"
3029 "Node %d HugePages_Surp: %5u\n",
3030 nid, h->nr_huge_pages_node[nid],
3031 nid, h->free_huge_pages_node[nid],
3032 nid, h->surplus_huge_pages_node[nid]);
3035 void hugetlb_show_meminfo(void)
3037 struct hstate *h;
3038 int nid;
3040 if (!hugepages_supported())
3041 return;
3043 for_each_node_state(nid, N_MEMORY)
3044 for_each_hstate(h)
3045 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3046 nid,
3047 h->nr_huge_pages_node[nid],
3048 h->free_huge_pages_node[nid],
3049 h->surplus_huge_pages_node[nid],
3050 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3053 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3055 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3056 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3060 unsigned long hugetlb_total_pages(void)
3062 struct hstate *h;
3063 unsigned long nr_total_pages = 0;
3065 for_each_hstate(h)
3066 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3067 return nr_total_pages;
3070 static int hugetlb_acct_memory(struct hstate *h, long delta)
3072 int ret = -ENOMEM;
3074 spin_lock(&hugetlb_lock);
3076 * When cpuset is configured, it breaks the strict hugetlb page
3077 * reservation as the accounting is done on a global variable. Such
3078 * reservation is completely rubbish in the presence of cpuset because
3079 * the reservation is not checked against page availability for the
3080 * current cpuset. Application can still potentially OOM'ed by kernel
3081 * with lack of free htlb page in cpuset that the task is in.
3082 * Attempt to enforce strict accounting with cpuset is almost
3083 * impossible (or too ugly) because cpuset is too fluid that
3084 * task or memory node can be dynamically moved between cpusets.
3086 * The change of semantics for shared hugetlb mapping with cpuset is
3087 * undesirable. However, in order to preserve some of the semantics,
3088 * we fall back to check against current free page availability as
3089 * a best attempt and hopefully to minimize the impact of changing
3090 * semantics that cpuset has.
3092 if (delta > 0) {
3093 if (gather_surplus_pages(h, delta) < 0)
3094 goto out;
3096 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3097 return_unused_surplus_pages(h, delta);
3098 goto out;
3102 ret = 0;
3103 if (delta < 0)
3104 return_unused_surplus_pages(h, (unsigned long) -delta);
3106 out:
3107 spin_unlock(&hugetlb_lock);
3108 return ret;
3111 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3113 struct resv_map *resv = vma_resv_map(vma);
3116 * This new VMA should share its siblings reservation map if present.
3117 * The VMA will only ever have a valid reservation map pointer where
3118 * it is being copied for another still existing VMA. As that VMA
3119 * has a reference to the reservation map it cannot disappear until
3120 * after this open call completes. It is therefore safe to take a
3121 * new reference here without additional locking.
3123 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3124 kref_get(&resv->refs);
3127 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3129 struct hstate *h = hstate_vma(vma);
3130 struct resv_map *resv = vma_resv_map(vma);
3131 struct hugepage_subpool *spool = subpool_vma(vma);
3132 unsigned long reserve, start, end;
3133 long gbl_reserve;
3135 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3136 return;
3138 start = vma_hugecache_offset(h, vma, vma->vm_start);
3139 end = vma_hugecache_offset(h, vma, vma->vm_end);
3141 reserve = (end - start) - region_count(resv, start, end);
3143 kref_put(&resv->refs, resv_map_release);
3145 if (reserve) {
3147 * Decrement reserve counts. The global reserve count may be
3148 * adjusted if the subpool has a minimum size.
3150 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3151 hugetlb_acct_memory(h, -gbl_reserve);
3155 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3157 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3158 return -EINVAL;
3159 return 0;
3162 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3164 struct hstate *hstate = hstate_vma(vma);
3166 return 1UL << huge_page_shift(hstate);
3170 * We cannot handle pagefaults against hugetlb pages at all. They cause
3171 * handle_mm_fault() to try to instantiate regular-sized pages in the
3172 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3173 * this far.
3175 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3177 BUG();
3178 return 0;
3182 * When a new function is introduced to vm_operations_struct and added
3183 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3184 * This is because under System V memory model, mappings created via
3185 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3186 * their original vm_ops are overwritten with shm_vm_ops.
3188 const struct vm_operations_struct hugetlb_vm_ops = {
3189 .fault = hugetlb_vm_op_fault,
3190 .open = hugetlb_vm_op_open,
3191 .close = hugetlb_vm_op_close,
3192 .split = hugetlb_vm_op_split,
3193 .pagesize = hugetlb_vm_op_pagesize,
3196 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3197 int writable)
3199 pte_t entry;
3201 if (writable) {
3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3203 vma->vm_page_prot)));
3204 } else {
3205 entry = huge_pte_wrprotect(mk_huge_pte(page,
3206 vma->vm_page_prot));
3208 entry = pte_mkyoung(entry);
3209 entry = pte_mkhuge(entry);
3210 entry = arch_make_huge_pte(entry, vma, page, writable);
3212 return entry;
3215 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3216 unsigned long address, pte_t *ptep)
3218 pte_t entry;
3220 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3221 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3222 update_mmu_cache(vma, address, ptep);
3225 bool is_hugetlb_entry_migration(pte_t pte)
3227 swp_entry_t swp;
3229 if (huge_pte_none(pte) || pte_present(pte))
3230 return false;
3231 swp = pte_to_swp_entry(pte);
3232 if (non_swap_entry(swp) && is_migration_entry(swp))
3233 return true;
3234 else
3235 return false;
3238 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3240 swp_entry_t swp;
3242 if (huge_pte_none(pte) || pte_present(pte))
3243 return 0;
3244 swp = pte_to_swp_entry(pte);
3245 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3246 return 1;
3247 else
3248 return 0;
3251 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3252 struct vm_area_struct *vma)
3254 pte_t *src_pte, *dst_pte, entry, dst_entry;
3255 struct page *ptepage;
3256 unsigned long addr;
3257 int cow;
3258 struct hstate *h = hstate_vma(vma);
3259 unsigned long sz = huge_page_size(h);
3260 struct mmu_notifier_range range;
3261 int ret = 0;
3263 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3265 if (cow) {
3266 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3267 vma->vm_start,
3268 vma->vm_end);
3269 mmu_notifier_invalidate_range_start(&range);
3272 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3273 spinlock_t *src_ptl, *dst_ptl;
3274 src_pte = huge_pte_offset(src, addr, sz);
3275 if (!src_pte)
3276 continue;
3277 dst_pte = huge_pte_alloc(dst, addr, sz);
3278 if (!dst_pte) {
3279 ret = -ENOMEM;
3280 break;
3284 * If the pagetables are shared don't copy or take references.
3285 * dst_pte == src_pte is the common case of src/dest sharing.
3287 * However, src could have 'unshared' and dst shares with
3288 * another vma. If dst_pte !none, this implies sharing.
3289 * Check here before taking page table lock, and once again
3290 * after taking the lock below.
3292 dst_entry = huge_ptep_get(dst_pte);
3293 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3294 continue;
3296 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3297 src_ptl = huge_pte_lockptr(h, src, src_pte);
3298 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3299 entry = huge_ptep_get(src_pte);
3300 dst_entry = huge_ptep_get(dst_pte);
3301 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3303 * Skip if src entry none. Also, skip in the
3304 * unlikely case dst entry !none as this implies
3305 * sharing with another vma.
3308 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3309 is_hugetlb_entry_hwpoisoned(entry))) {
3310 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3312 if (is_write_migration_entry(swp_entry) && cow) {
3314 * COW mappings require pages in both
3315 * parent and child to be set to read.
3317 make_migration_entry_read(&swp_entry);
3318 entry = swp_entry_to_pte(swp_entry);
3319 set_huge_swap_pte_at(src, addr, src_pte,
3320 entry, sz);
3322 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3323 } else {
3324 if (cow) {
3326 * No need to notify as we are downgrading page
3327 * table protection not changing it to point
3328 * to a new page.
3330 * See Documentation/vm/mmu_notifier.rst
3332 huge_ptep_set_wrprotect(src, addr, src_pte);
3334 entry = huge_ptep_get(src_pte);
3335 ptepage = pte_page(entry);
3336 get_page(ptepage);
3337 page_dup_rmap(ptepage, true);
3338 set_huge_pte_at(dst, addr, dst_pte, entry);
3339 hugetlb_count_add(pages_per_huge_page(h), dst);
3341 spin_unlock(src_ptl);
3342 spin_unlock(dst_ptl);
3345 if (cow)
3346 mmu_notifier_invalidate_range_end(&range);
3348 return ret;
3351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3352 unsigned long start, unsigned long end,
3353 struct page *ref_page)
3355 struct mm_struct *mm = vma->vm_mm;
3356 unsigned long address;
3357 pte_t *ptep;
3358 pte_t pte;
3359 spinlock_t *ptl;
3360 struct page *page;
3361 struct hstate *h = hstate_vma(vma);
3362 unsigned long sz = huge_page_size(h);
3363 struct mmu_notifier_range range;
3365 WARN_ON(!is_vm_hugetlb_page(vma));
3366 BUG_ON(start & ~huge_page_mask(h));
3367 BUG_ON(end & ~huge_page_mask(h));
3370 * This is a hugetlb vma, all the pte entries should point
3371 * to huge page.
3373 tlb_change_page_size(tlb, sz);
3374 tlb_start_vma(tlb, vma);
3377 * If sharing possible, alert mmu notifiers of worst case.
3379 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3380 end);
3381 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3382 mmu_notifier_invalidate_range_start(&range);
3383 address = start;
3384 for (; address < end; address += sz) {
3385 ptep = huge_pte_offset(mm, address, sz);
3386 if (!ptep)
3387 continue;
3389 ptl = huge_pte_lock(h, mm, ptep);
3390 if (huge_pmd_unshare(mm, &address, ptep)) {
3391 spin_unlock(ptl);
3393 * We just unmapped a page of PMDs by clearing a PUD.
3394 * The caller's TLB flush range should cover this area.
3396 continue;
3399 pte = huge_ptep_get(ptep);
3400 if (huge_pte_none(pte)) {
3401 spin_unlock(ptl);
3402 continue;
3406 * Migrating hugepage or HWPoisoned hugepage is already
3407 * unmapped and its refcount is dropped, so just clear pte here.
3409 if (unlikely(!pte_present(pte))) {
3410 huge_pte_clear(mm, address, ptep, sz);
3411 spin_unlock(ptl);
3412 continue;
3415 page = pte_page(pte);
3417 * If a reference page is supplied, it is because a specific
3418 * page is being unmapped, not a range. Ensure the page we
3419 * are about to unmap is the actual page of interest.
3421 if (ref_page) {
3422 if (page != ref_page) {
3423 spin_unlock(ptl);
3424 continue;
3427 * Mark the VMA as having unmapped its page so that
3428 * future faults in this VMA will fail rather than
3429 * looking like data was lost
3431 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3434 pte = huge_ptep_get_and_clear(mm, address, ptep);
3435 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3436 if (huge_pte_dirty(pte))
3437 set_page_dirty(page);
3439 hugetlb_count_sub(pages_per_huge_page(h), mm);
3440 page_remove_rmap(page, true);
3442 spin_unlock(ptl);
3443 tlb_remove_page_size(tlb, page, huge_page_size(h));
3445 * Bail out after unmapping reference page if supplied
3447 if (ref_page)
3448 break;
3450 mmu_notifier_invalidate_range_end(&range);
3451 tlb_end_vma(tlb, vma);
3454 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3455 struct vm_area_struct *vma, unsigned long start,
3456 unsigned long end, struct page *ref_page)
3458 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3461 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3462 * test will fail on a vma being torn down, and not grab a page table
3463 * on its way out. We're lucky that the flag has such an appropriate
3464 * name, and can in fact be safely cleared here. We could clear it
3465 * before the __unmap_hugepage_range above, but all that's necessary
3466 * is to clear it before releasing the i_mmap_rwsem. This works
3467 * because in the context this is called, the VMA is about to be
3468 * destroyed and the i_mmap_rwsem is held.
3470 vma->vm_flags &= ~VM_MAYSHARE;
3473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3474 unsigned long end, struct page *ref_page)
3476 struct mm_struct *mm;
3477 struct mmu_gather tlb;
3478 unsigned long tlb_start = start;
3479 unsigned long tlb_end = end;
3482 * If shared PMDs were possibly used within this vma range, adjust
3483 * start/end for worst case tlb flushing.
3484 * Note that we can not be sure if PMDs are shared until we try to
3485 * unmap pages. However, we want to make sure TLB flushing covers
3486 * the largest possible range.
3488 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3490 mm = vma->vm_mm;
3492 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3493 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3494 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3498 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3499 * mappping it owns the reserve page for. The intention is to unmap the page
3500 * from other VMAs and let the children be SIGKILLed if they are faulting the
3501 * same region.
3503 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3504 struct page *page, unsigned long address)
3506 struct hstate *h = hstate_vma(vma);
3507 struct vm_area_struct *iter_vma;
3508 struct address_space *mapping;
3509 pgoff_t pgoff;
3512 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3513 * from page cache lookup which is in HPAGE_SIZE units.
3515 address = address & huge_page_mask(h);
3516 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3517 vma->vm_pgoff;
3518 mapping = vma->vm_file->f_mapping;
3521 * Take the mapping lock for the duration of the table walk. As
3522 * this mapping should be shared between all the VMAs,
3523 * __unmap_hugepage_range() is called as the lock is already held
3525 i_mmap_lock_write(mapping);
3526 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3527 /* Do not unmap the current VMA */
3528 if (iter_vma == vma)
3529 continue;
3532 * Shared VMAs have their own reserves and do not affect
3533 * MAP_PRIVATE accounting but it is possible that a shared
3534 * VMA is using the same page so check and skip such VMAs.
3536 if (iter_vma->vm_flags & VM_MAYSHARE)
3537 continue;
3540 * Unmap the page from other VMAs without their own reserves.
3541 * They get marked to be SIGKILLed if they fault in these
3542 * areas. This is because a future no-page fault on this VMA
3543 * could insert a zeroed page instead of the data existing
3544 * from the time of fork. This would look like data corruption
3546 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3547 unmap_hugepage_range(iter_vma, address,
3548 address + huge_page_size(h), page);
3550 i_mmap_unlock_write(mapping);
3554 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3555 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3556 * cannot race with other handlers or page migration.
3557 * Keep the pte_same checks anyway to make transition from the mutex easier.
3559 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3560 unsigned long address, pte_t *ptep,
3561 struct page *pagecache_page, spinlock_t *ptl)
3563 pte_t pte;
3564 struct hstate *h = hstate_vma(vma);
3565 struct page *old_page, *new_page;
3566 int outside_reserve = 0;
3567 vm_fault_t ret = 0;
3568 unsigned long haddr = address & huge_page_mask(h);
3569 struct mmu_notifier_range range;
3571 pte = huge_ptep_get(ptep);
3572 old_page = pte_page(pte);
3574 retry_avoidcopy:
3575 /* If no-one else is actually using this page, avoid the copy
3576 * and just make the page writable */
3577 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3578 page_move_anon_rmap(old_page, vma);
3579 set_huge_ptep_writable(vma, haddr, ptep);
3580 return 0;
3584 * If the process that created a MAP_PRIVATE mapping is about to
3585 * perform a COW due to a shared page count, attempt to satisfy
3586 * the allocation without using the existing reserves. The pagecache
3587 * page is used to determine if the reserve at this address was
3588 * consumed or not. If reserves were used, a partial faulted mapping
3589 * at the time of fork() could consume its reserves on COW instead
3590 * of the full address range.
3592 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3593 old_page != pagecache_page)
3594 outside_reserve = 1;
3596 get_page(old_page);
3599 * Drop page table lock as buddy allocator may be called. It will
3600 * be acquired again before returning to the caller, as expected.
3602 spin_unlock(ptl);
3603 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3605 if (IS_ERR(new_page)) {
3607 * If a process owning a MAP_PRIVATE mapping fails to COW,
3608 * it is due to references held by a child and an insufficient
3609 * huge page pool. To guarantee the original mappers
3610 * reliability, unmap the page from child processes. The child
3611 * may get SIGKILLed if it later faults.
3613 if (outside_reserve) {
3614 put_page(old_page);
3615 BUG_ON(huge_pte_none(pte));
3616 unmap_ref_private(mm, vma, old_page, haddr);
3617 BUG_ON(huge_pte_none(pte));
3618 spin_lock(ptl);
3619 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3620 if (likely(ptep &&
3621 pte_same(huge_ptep_get(ptep), pte)))
3622 goto retry_avoidcopy;
3624 * race occurs while re-acquiring page table
3625 * lock, and our job is done.
3627 return 0;
3630 ret = vmf_error(PTR_ERR(new_page));
3631 goto out_release_old;
3635 * When the original hugepage is shared one, it does not have
3636 * anon_vma prepared.
3638 if (unlikely(anon_vma_prepare(vma))) {
3639 ret = VM_FAULT_OOM;
3640 goto out_release_all;
3643 copy_user_huge_page(new_page, old_page, address, vma,
3644 pages_per_huge_page(h));
3645 __SetPageUptodate(new_page);
3647 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3648 haddr + huge_page_size(h));
3649 mmu_notifier_invalidate_range_start(&range);
3652 * Retake the page table lock to check for racing updates
3653 * before the page tables are altered
3655 spin_lock(ptl);
3656 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3657 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3658 ClearPagePrivate(new_page);
3660 /* Break COW */
3661 huge_ptep_clear_flush(vma, haddr, ptep);
3662 mmu_notifier_invalidate_range(mm, range.start, range.end);
3663 set_huge_pte_at(mm, haddr, ptep,
3664 make_huge_pte(vma, new_page, 1));
3665 page_remove_rmap(old_page, true);
3666 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3667 set_page_huge_active(new_page);
3668 /* Make the old page be freed below */
3669 new_page = old_page;
3671 spin_unlock(ptl);
3672 mmu_notifier_invalidate_range_end(&range);
3673 out_release_all:
3674 restore_reserve_on_error(h, vma, haddr, new_page);
3675 put_page(new_page);
3676 out_release_old:
3677 put_page(old_page);
3679 spin_lock(ptl); /* Caller expects lock to be held */
3680 return ret;
3683 /* Return the pagecache page at a given address within a VMA */
3684 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3685 struct vm_area_struct *vma, unsigned long address)
3687 struct address_space *mapping;
3688 pgoff_t idx;
3690 mapping = vma->vm_file->f_mapping;
3691 idx = vma_hugecache_offset(h, vma, address);
3693 return find_lock_page(mapping, idx);
3697 * Return whether there is a pagecache page to back given address within VMA.
3698 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3700 static bool hugetlbfs_pagecache_present(struct hstate *h,
3701 struct vm_area_struct *vma, unsigned long address)
3703 struct address_space *mapping;
3704 pgoff_t idx;
3705 struct page *page;
3707 mapping = vma->vm_file->f_mapping;
3708 idx = vma_hugecache_offset(h, vma, address);
3710 page = find_get_page(mapping, idx);
3711 if (page)
3712 put_page(page);
3713 return page != NULL;
3716 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3717 pgoff_t idx)
3719 struct inode *inode = mapping->host;
3720 struct hstate *h = hstate_inode(inode);
3721 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3723 if (err)
3724 return err;
3725 ClearPagePrivate(page);
3728 * set page dirty so that it will not be removed from cache/file
3729 * by non-hugetlbfs specific code paths.
3731 set_page_dirty(page);
3733 spin_lock(&inode->i_lock);
3734 inode->i_blocks += blocks_per_huge_page(h);
3735 spin_unlock(&inode->i_lock);
3736 return 0;
3739 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3740 struct vm_area_struct *vma,
3741 struct address_space *mapping, pgoff_t idx,
3742 unsigned long address, pte_t *ptep, unsigned int flags)
3744 struct hstate *h = hstate_vma(vma);
3745 vm_fault_t ret = VM_FAULT_SIGBUS;
3746 int anon_rmap = 0;
3747 unsigned long size;
3748 struct page *page;
3749 pte_t new_pte;
3750 spinlock_t *ptl;
3751 unsigned long haddr = address & huge_page_mask(h);
3752 bool new_page = false;
3755 * Currently, we are forced to kill the process in the event the
3756 * original mapper has unmapped pages from the child due to a failed
3757 * COW. Warn that such a situation has occurred as it may not be obvious
3759 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3760 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3761 current->pid);
3762 return ret;
3766 * Use page lock to guard against racing truncation
3767 * before we get page_table_lock.
3769 retry:
3770 page = find_lock_page(mapping, idx);
3771 if (!page) {
3772 size = i_size_read(mapping->host) >> huge_page_shift(h);
3773 if (idx >= size)
3774 goto out;
3777 * Check for page in userfault range
3779 if (userfaultfd_missing(vma)) {
3780 u32 hash;
3781 struct vm_fault vmf = {
3782 .vma = vma,
3783 .address = haddr,
3784 .flags = flags,
3786 * Hard to debug if it ends up being
3787 * used by a callee that assumes
3788 * something about the other
3789 * uninitialized fields... same as in
3790 * memory.c
3795 * hugetlb_fault_mutex must be dropped before
3796 * handling userfault. Reacquire after handling
3797 * fault to make calling code simpler.
3799 hash = hugetlb_fault_mutex_hash(mapping, idx);
3800 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3801 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3802 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3803 goto out;
3806 page = alloc_huge_page(vma, haddr, 0);
3807 if (IS_ERR(page)) {
3809 * Returning error will result in faulting task being
3810 * sent SIGBUS. The hugetlb fault mutex prevents two
3811 * tasks from racing to fault in the same page which
3812 * could result in false unable to allocate errors.
3813 * Page migration does not take the fault mutex, but
3814 * does a clear then write of pte's under page table
3815 * lock. Page fault code could race with migration,
3816 * notice the clear pte and try to allocate a page
3817 * here. Before returning error, get ptl and make
3818 * sure there really is no pte entry.
3820 ptl = huge_pte_lock(h, mm, ptep);
3821 if (!huge_pte_none(huge_ptep_get(ptep))) {
3822 ret = 0;
3823 spin_unlock(ptl);
3824 goto out;
3826 spin_unlock(ptl);
3827 ret = vmf_error(PTR_ERR(page));
3828 goto out;
3830 clear_huge_page(page, address, pages_per_huge_page(h));
3831 __SetPageUptodate(page);
3832 new_page = true;
3834 if (vma->vm_flags & VM_MAYSHARE) {
3835 int err = huge_add_to_page_cache(page, mapping, idx);
3836 if (err) {
3837 put_page(page);
3838 if (err == -EEXIST)
3839 goto retry;
3840 goto out;
3842 } else {
3843 lock_page(page);
3844 if (unlikely(anon_vma_prepare(vma))) {
3845 ret = VM_FAULT_OOM;
3846 goto backout_unlocked;
3848 anon_rmap = 1;
3850 } else {
3852 * If memory error occurs between mmap() and fault, some process
3853 * don't have hwpoisoned swap entry for errored virtual address.
3854 * So we need to block hugepage fault by PG_hwpoison bit check.
3856 if (unlikely(PageHWPoison(page))) {
3857 ret = VM_FAULT_HWPOISON |
3858 VM_FAULT_SET_HINDEX(hstate_index(h));
3859 goto backout_unlocked;
3864 * If we are going to COW a private mapping later, we examine the
3865 * pending reservations for this page now. This will ensure that
3866 * any allocations necessary to record that reservation occur outside
3867 * the spinlock.
3869 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3870 if (vma_needs_reservation(h, vma, haddr) < 0) {
3871 ret = VM_FAULT_OOM;
3872 goto backout_unlocked;
3874 /* Just decrements count, does not deallocate */
3875 vma_end_reservation(h, vma, haddr);
3878 ptl = huge_pte_lock(h, mm, ptep);
3879 size = i_size_read(mapping->host) >> huge_page_shift(h);
3880 if (idx >= size)
3881 goto backout;
3883 ret = 0;
3884 if (!huge_pte_none(huge_ptep_get(ptep)))
3885 goto backout;
3887 if (anon_rmap) {
3888 ClearPagePrivate(page);
3889 hugepage_add_new_anon_rmap(page, vma, haddr);
3890 } else
3891 page_dup_rmap(page, true);
3892 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3893 && (vma->vm_flags & VM_SHARED)));
3894 set_huge_pte_at(mm, haddr, ptep, new_pte);
3896 hugetlb_count_add(pages_per_huge_page(h), mm);
3897 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3898 /* Optimization, do the COW without a second fault */
3899 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3902 spin_unlock(ptl);
3905 * Only make newly allocated pages active. Existing pages found
3906 * in the pagecache could be !page_huge_active() if they have been
3907 * isolated for migration.
3909 if (new_page)
3910 set_page_huge_active(page);
3912 unlock_page(page);
3913 out:
3914 return ret;
3916 backout:
3917 spin_unlock(ptl);
3918 backout_unlocked:
3919 unlock_page(page);
3920 restore_reserve_on_error(h, vma, haddr, page);
3921 put_page(page);
3922 goto out;
3925 #ifdef CONFIG_SMP
3926 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3928 unsigned long key[2];
3929 u32 hash;
3931 key[0] = (unsigned long) mapping;
3932 key[1] = idx;
3934 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3936 return hash & (num_fault_mutexes - 1);
3938 #else
3940 * For uniprocesor systems we always use a single mutex, so just
3941 * return 0 and avoid the hashing overhead.
3943 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3945 return 0;
3947 #endif
3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3950 unsigned long address, unsigned int flags)
3952 pte_t *ptep, entry;
3953 spinlock_t *ptl;
3954 vm_fault_t ret;
3955 u32 hash;
3956 pgoff_t idx;
3957 struct page *page = NULL;
3958 struct page *pagecache_page = NULL;
3959 struct hstate *h = hstate_vma(vma);
3960 struct address_space *mapping;
3961 int need_wait_lock = 0;
3962 unsigned long haddr = address & huge_page_mask(h);
3964 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3965 if (ptep) {
3966 entry = huge_ptep_get(ptep);
3967 if (unlikely(is_hugetlb_entry_migration(entry))) {
3968 migration_entry_wait_huge(vma, mm, ptep);
3969 return 0;
3970 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3971 return VM_FAULT_HWPOISON_LARGE |
3972 VM_FAULT_SET_HINDEX(hstate_index(h));
3973 } else {
3974 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975 if (!ptep)
3976 return VM_FAULT_OOM;
3979 mapping = vma->vm_file->f_mapping;
3980 idx = vma_hugecache_offset(h, vma, haddr);
3983 * Serialize hugepage allocation and instantiation, so that we don't
3984 * get spurious allocation failures if two CPUs race to instantiate
3985 * the same page in the page cache.
3987 hash = hugetlb_fault_mutex_hash(mapping, idx);
3988 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3990 entry = huge_ptep_get(ptep);
3991 if (huge_pte_none(entry)) {
3992 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3993 goto out_mutex;
3996 ret = 0;
3999 * entry could be a migration/hwpoison entry at this point, so this
4000 * check prevents the kernel from going below assuming that we have
4001 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003 * handle it.
4005 if (!pte_present(entry))
4006 goto out_mutex;
4009 * If we are going to COW the mapping later, we examine the pending
4010 * reservations for this page now. This will ensure that any
4011 * allocations necessary to record that reservation occur outside the
4012 * spinlock. For private mappings, we also lookup the pagecache
4013 * page now as it is used to determine if a reservation has been
4014 * consumed.
4016 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4017 if (vma_needs_reservation(h, vma, haddr) < 0) {
4018 ret = VM_FAULT_OOM;
4019 goto out_mutex;
4021 /* Just decrements count, does not deallocate */
4022 vma_end_reservation(h, vma, haddr);
4024 if (!(vma->vm_flags & VM_MAYSHARE))
4025 pagecache_page = hugetlbfs_pagecache_page(h,
4026 vma, haddr);
4029 ptl = huge_pte_lock(h, mm, ptep);
4031 /* Check for a racing update before calling hugetlb_cow */
4032 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033 goto out_ptl;
4036 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 * pagecache_page, so here we need take the former one
4038 * when page != pagecache_page or !pagecache_page.
4040 page = pte_page(entry);
4041 if (page != pagecache_page)
4042 if (!trylock_page(page)) {
4043 need_wait_lock = 1;
4044 goto out_ptl;
4047 get_page(page);
4049 if (flags & FAULT_FLAG_WRITE) {
4050 if (!huge_pte_write(entry)) {
4051 ret = hugetlb_cow(mm, vma, address, ptep,
4052 pagecache_page, ptl);
4053 goto out_put_page;
4055 entry = huge_pte_mkdirty(entry);
4057 entry = pte_mkyoung(entry);
4058 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4059 flags & FAULT_FLAG_WRITE))
4060 update_mmu_cache(vma, haddr, ptep);
4061 out_put_page:
4062 if (page != pagecache_page)
4063 unlock_page(page);
4064 put_page(page);
4065 out_ptl:
4066 spin_unlock(ptl);
4068 if (pagecache_page) {
4069 unlock_page(pagecache_page);
4070 put_page(pagecache_page);
4072 out_mutex:
4073 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4075 * Generally it's safe to hold refcount during waiting page lock. But
4076 * here we just wait to defer the next page fault to avoid busy loop and
4077 * the page is not used after unlocked before returning from the current
4078 * page fault. So we are safe from accessing freed page, even if we wait
4079 * here without taking refcount.
4081 if (need_wait_lock)
4082 wait_on_page_locked(page);
4083 return ret;
4087 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4088 * modifications for huge pages.
4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091 pte_t *dst_pte,
4092 struct vm_area_struct *dst_vma,
4093 unsigned long dst_addr,
4094 unsigned long src_addr,
4095 struct page **pagep)
4097 struct address_space *mapping;
4098 pgoff_t idx;
4099 unsigned long size;
4100 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4101 struct hstate *h = hstate_vma(dst_vma);
4102 pte_t _dst_pte;
4103 spinlock_t *ptl;
4104 int ret;
4105 struct page *page;
4107 if (!*pagep) {
4108 ret = -ENOMEM;
4109 page = alloc_huge_page(dst_vma, dst_addr, 0);
4110 if (IS_ERR(page))
4111 goto out;
4113 ret = copy_huge_page_from_user(page,
4114 (const void __user *) src_addr,
4115 pages_per_huge_page(h), false);
4117 /* fallback to copy_from_user outside mmap_sem */
4118 if (unlikely(ret)) {
4119 ret = -ENOENT;
4120 *pagep = page;
4121 /* don't free the page */
4122 goto out;
4124 } else {
4125 page = *pagep;
4126 *pagep = NULL;
4130 * The memory barrier inside __SetPageUptodate makes sure that
4131 * preceding stores to the page contents become visible before
4132 * the set_pte_at() write.
4134 __SetPageUptodate(page);
4136 mapping = dst_vma->vm_file->f_mapping;
4137 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4140 * If shared, add to page cache
4142 if (vm_shared) {
4143 size = i_size_read(mapping->host) >> huge_page_shift(h);
4144 ret = -EFAULT;
4145 if (idx >= size)
4146 goto out_release_nounlock;
4149 * Serialization between remove_inode_hugepages() and
4150 * huge_add_to_page_cache() below happens through the
4151 * hugetlb_fault_mutex_table that here must be hold by
4152 * the caller.
4154 ret = huge_add_to_page_cache(page, mapping, idx);
4155 if (ret)
4156 goto out_release_nounlock;
4159 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160 spin_lock(ptl);
4163 * Recheck the i_size after holding PT lock to make sure not
4164 * to leave any page mapped (as page_mapped()) beyond the end
4165 * of the i_size (remove_inode_hugepages() is strict about
4166 * enforcing that). If we bail out here, we'll also leave a
4167 * page in the radix tree in the vm_shared case beyond the end
4168 * of the i_size, but remove_inode_hugepages() will take care
4169 * of it as soon as we drop the hugetlb_fault_mutex_table.
4171 size = i_size_read(mapping->host) >> huge_page_shift(h);
4172 ret = -EFAULT;
4173 if (idx >= size)
4174 goto out_release_unlock;
4176 ret = -EEXIST;
4177 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178 goto out_release_unlock;
4180 if (vm_shared) {
4181 page_dup_rmap(page, true);
4182 } else {
4183 ClearPagePrivate(page);
4184 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4187 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188 if (dst_vma->vm_flags & VM_WRITE)
4189 _dst_pte = huge_pte_mkdirty(_dst_pte);
4190 _dst_pte = pte_mkyoung(_dst_pte);
4192 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4194 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195 dst_vma->vm_flags & VM_WRITE);
4196 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4198 /* No need to invalidate - it was non-present before */
4199 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4201 spin_unlock(ptl);
4202 set_page_huge_active(page);
4203 if (vm_shared)
4204 unlock_page(page);
4205 ret = 0;
4206 out:
4207 return ret;
4208 out_release_unlock:
4209 spin_unlock(ptl);
4210 if (vm_shared)
4211 unlock_page(page);
4212 out_release_nounlock:
4213 put_page(page);
4214 goto out;
4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218 struct page **pages, struct vm_area_struct **vmas,
4219 unsigned long *position, unsigned long *nr_pages,
4220 long i, unsigned int flags, int *nonblocking)
4222 unsigned long pfn_offset;
4223 unsigned long vaddr = *position;
4224 unsigned long remainder = *nr_pages;
4225 struct hstate *h = hstate_vma(vma);
4226 int err = -EFAULT;
4228 while (vaddr < vma->vm_end && remainder) {
4229 pte_t *pte;
4230 spinlock_t *ptl = NULL;
4231 int absent;
4232 struct page *page;
4235 * If we have a pending SIGKILL, don't keep faulting pages and
4236 * potentially allocating memory.
4238 if (fatal_signal_pending(current)) {
4239 remainder = 0;
4240 break;
4244 * Some archs (sparc64, sh*) have multiple pte_ts to
4245 * each hugepage. We have to make sure we get the
4246 * first, for the page indexing below to work.
4248 * Note that page table lock is not held when pte is null.
4250 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251 huge_page_size(h));
4252 if (pte)
4253 ptl = huge_pte_lock(h, mm, pte);
4254 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4257 * When coredumping, it suits get_dump_page if we just return
4258 * an error where there's an empty slot with no huge pagecache
4259 * to back it. This way, we avoid allocating a hugepage, and
4260 * the sparse dumpfile avoids allocating disk blocks, but its
4261 * huge holes still show up with zeroes where they need to be.
4263 if (absent && (flags & FOLL_DUMP) &&
4264 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4265 if (pte)
4266 spin_unlock(ptl);
4267 remainder = 0;
4268 break;
4272 * We need call hugetlb_fault for both hugepages under migration
4273 * (in which case hugetlb_fault waits for the migration,) and
4274 * hwpoisoned hugepages (in which case we need to prevent the
4275 * caller from accessing to them.) In order to do this, we use
4276 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 * both cases, and because we can't follow correct pages
4279 * directly from any kind of swap entries.
4281 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4282 ((flags & FOLL_WRITE) &&
4283 !huge_pte_write(huge_ptep_get(pte)))) {
4284 vm_fault_t ret;
4285 unsigned int fault_flags = 0;
4287 if (pte)
4288 spin_unlock(ptl);
4289 if (flags & FOLL_WRITE)
4290 fault_flags |= FAULT_FLAG_WRITE;
4291 if (nonblocking)
4292 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293 if (flags & FOLL_NOWAIT)
4294 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295 FAULT_FLAG_RETRY_NOWAIT;
4296 if (flags & FOLL_TRIED) {
4297 VM_WARN_ON_ONCE(fault_flags &
4298 FAULT_FLAG_ALLOW_RETRY);
4299 fault_flags |= FAULT_FLAG_TRIED;
4301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302 if (ret & VM_FAULT_ERROR) {
4303 err = vm_fault_to_errno(ret, flags);
4304 remainder = 0;
4305 break;
4307 if (ret & VM_FAULT_RETRY) {
4308 if (nonblocking &&
4309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4310 *nonblocking = 0;
4311 *nr_pages = 0;
4313 * VM_FAULT_RETRY must not return an
4314 * error, it will return zero
4315 * instead.
4317 * No need to update "position" as the
4318 * caller will not check it after
4319 * *nr_pages is set to 0.
4321 return i;
4323 continue;
4326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4327 page = pte_page(huge_ptep_get(pte));
4330 * Instead of doing 'try_get_page()' below in the same_page
4331 * loop, just check the count once here.
4333 if (unlikely(page_count(page) <= 0)) {
4334 if (pages) {
4335 spin_unlock(ptl);
4336 remainder = 0;
4337 err = -ENOMEM;
4338 break;
4343 * If subpage information not requested, update counters
4344 * and skip the same_page loop below.
4346 if (!pages && !vmas && !pfn_offset &&
4347 (vaddr + huge_page_size(h) < vma->vm_end) &&
4348 (remainder >= pages_per_huge_page(h))) {
4349 vaddr += huge_page_size(h);
4350 remainder -= pages_per_huge_page(h);
4351 i += pages_per_huge_page(h);
4352 spin_unlock(ptl);
4353 continue;
4356 same_page:
4357 if (pages) {
4358 pages[i] = mem_map_offset(page, pfn_offset);
4359 get_page(pages[i]);
4362 if (vmas)
4363 vmas[i] = vma;
4365 vaddr += PAGE_SIZE;
4366 ++pfn_offset;
4367 --remainder;
4368 ++i;
4369 if (vaddr < vma->vm_end && remainder &&
4370 pfn_offset < pages_per_huge_page(h)) {
4372 * We use pfn_offset to avoid touching the pageframes
4373 * of this compound page.
4375 goto same_page;
4377 spin_unlock(ptl);
4379 *nr_pages = remainder;
4381 * setting position is actually required only if remainder is
4382 * not zero but it's faster not to add a "if (remainder)"
4383 * branch.
4385 *position = vaddr;
4387 return i ? i : err;
4390 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4392 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4393 * implement this.
4395 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4396 #endif
4398 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4399 unsigned long address, unsigned long end, pgprot_t newprot)
4401 struct mm_struct *mm = vma->vm_mm;
4402 unsigned long start = address;
4403 pte_t *ptep;
4404 pte_t pte;
4405 struct hstate *h = hstate_vma(vma);
4406 unsigned long pages = 0;
4407 bool shared_pmd = false;
4408 struct mmu_notifier_range range;
4411 * In the case of shared PMDs, the area to flush could be beyond
4412 * start/end. Set range.start/range.end to cover the maximum possible
4413 * range if PMD sharing is possible.
4415 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4416 0, vma, mm, start, end);
4417 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4419 BUG_ON(address >= end);
4420 flush_cache_range(vma, range.start, range.end);
4422 mmu_notifier_invalidate_range_start(&range);
4423 i_mmap_lock_write(vma->vm_file->f_mapping);
4424 for (; address < end; address += huge_page_size(h)) {
4425 spinlock_t *ptl;
4426 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4427 if (!ptep)
4428 continue;
4429 ptl = huge_pte_lock(h, mm, ptep);
4430 if (huge_pmd_unshare(mm, &address, ptep)) {
4431 pages++;
4432 spin_unlock(ptl);
4433 shared_pmd = true;
4434 continue;
4436 pte = huge_ptep_get(ptep);
4437 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4438 spin_unlock(ptl);
4439 continue;
4441 if (unlikely(is_hugetlb_entry_migration(pte))) {
4442 swp_entry_t entry = pte_to_swp_entry(pte);
4444 if (is_write_migration_entry(entry)) {
4445 pte_t newpte;
4447 make_migration_entry_read(&entry);
4448 newpte = swp_entry_to_pte(entry);
4449 set_huge_swap_pte_at(mm, address, ptep,
4450 newpte, huge_page_size(h));
4451 pages++;
4453 spin_unlock(ptl);
4454 continue;
4456 if (!huge_pte_none(pte)) {
4457 pte_t old_pte;
4459 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4460 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4461 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4462 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4463 pages++;
4465 spin_unlock(ptl);
4468 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4469 * may have cleared our pud entry and done put_page on the page table:
4470 * once we release i_mmap_rwsem, another task can do the final put_page
4471 * and that page table be reused and filled with junk. If we actually
4472 * did unshare a page of pmds, flush the range corresponding to the pud.
4474 if (shared_pmd)
4475 flush_hugetlb_tlb_range(vma, range.start, range.end);
4476 else
4477 flush_hugetlb_tlb_range(vma, start, end);
4479 * No need to call mmu_notifier_invalidate_range() we are downgrading
4480 * page table protection not changing it to point to a new page.
4482 * See Documentation/vm/mmu_notifier.rst
4484 i_mmap_unlock_write(vma->vm_file->f_mapping);
4485 mmu_notifier_invalidate_range_end(&range);
4487 return pages << h->order;
4490 int hugetlb_reserve_pages(struct inode *inode,
4491 long from, long to,
4492 struct vm_area_struct *vma,
4493 vm_flags_t vm_flags)
4495 long ret, chg;
4496 struct hstate *h = hstate_inode(inode);
4497 struct hugepage_subpool *spool = subpool_inode(inode);
4498 struct resv_map *resv_map;
4499 long gbl_reserve;
4501 /* This should never happen */
4502 if (from > to) {
4503 VM_WARN(1, "%s called with a negative range\n", __func__);
4504 return -EINVAL;
4508 * Only apply hugepage reservation if asked. At fault time, an
4509 * attempt will be made for VM_NORESERVE to allocate a page
4510 * without using reserves
4512 if (vm_flags & VM_NORESERVE)
4513 return 0;
4516 * Shared mappings base their reservation on the number of pages that
4517 * are already allocated on behalf of the file. Private mappings need
4518 * to reserve the full area even if read-only as mprotect() may be
4519 * called to make the mapping read-write. Assume !vma is a shm mapping
4521 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4523 * resv_map can not be NULL as hugetlb_reserve_pages is only
4524 * called for inodes for which resv_maps were created (see
4525 * hugetlbfs_get_inode).
4527 resv_map = inode_resv_map(inode);
4529 chg = region_chg(resv_map, from, to);
4531 } else {
4532 resv_map = resv_map_alloc();
4533 if (!resv_map)
4534 return -ENOMEM;
4536 chg = to - from;
4538 set_vma_resv_map(vma, resv_map);
4539 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4542 if (chg < 0) {
4543 ret = chg;
4544 goto out_err;
4548 * There must be enough pages in the subpool for the mapping. If
4549 * the subpool has a minimum size, there may be some global
4550 * reservations already in place (gbl_reserve).
4552 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4553 if (gbl_reserve < 0) {
4554 ret = -ENOSPC;
4555 goto out_err;
4559 * Check enough hugepages are available for the reservation.
4560 * Hand the pages back to the subpool if there are not
4562 ret = hugetlb_acct_memory(h, gbl_reserve);
4563 if (ret < 0) {
4564 /* put back original number of pages, chg */
4565 (void)hugepage_subpool_put_pages(spool, chg);
4566 goto out_err;
4570 * Account for the reservations made. Shared mappings record regions
4571 * that have reservations as they are shared by multiple VMAs.
4572 * When the last VMA disappears, the region map says how much
4573 * the reservation was and the page cache tells how much of
4574 * the reservation was consumed. Private mappings are per-VMA and
4575 * only the consumed reservations are tracked. When the VMA
4576 * disappears, the original reservation is the VMA size and the
4577 * consumed reservations are stored in the map. Hence, nothing
4578 * else has to be done for private mappings here
4580 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4581 long add = region_add(resv_map, from, to);
4583 if (unlikely(chg > add)) {
4585 * pages in this range were added to the reserve
4586 * map between region_chg and region_add. This
4587 * indicates a race with alloc_huge_page. Adjust
4588 * the subpool and reserve counts modified above
4589 * based on the difference.
4591 long rsv_adjust;
4593 rsv_adjust = hugepage_subpool_put_pages(spool,
4594 chg - add);
4595 hugetlb_acct_memory(h, -rsv_adjust);
4598 return 0;
4599 out_err:
4600 if (!vma || vma->vm_flags & VM_MAYSHARE)
4601 /* Don't call region_abort if region_chg failed */
4602 if (chg >= 0)
4603 region_abort(resv_map, from, to);
4604 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4605 kref_put(&resv_map->refs, resv_map_release);
4606 return ret;
4609 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4610 long freed)
4612 struct hstate *h = hstate_inode(inode);
4613 struct resv_map *resv_map = inode_resv_map(inode);
4614 long chg = 0;
4615 struct hugepage_subpool *spool = subpool_inode(inode);
4616 long gbl_reserve;
4619 * Since this routine can be called in the evict inode path for all
4620 * hugetlbfs inodes, resv_map could be NULL.
4622 if (resv_map) {
4623 chg = region_del(resv_map, start, end);
4625 * region_del() can fail in the rare case where a region
4626 * must be split and another region descriptor can not be
4627 * allocated. If end == LONG_MAX, it will not fail.
4629 if (chg < 0)
4630 return chg;
4633 spin_lock(&inode->i_lock);
4634 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4635 spin_unlock(&inode->i_lock);
4638 * If the subpool has a minimum size, the number of global
4639 * reservations to be released may be adjusted.
4641 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4642 hugetlb_acct_memory(h, -gbl_reserve);
4644 return 0;
4647 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4648 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4649 struct vm_area_struct *vma,
4650 unsigned long addr, pgoff_t idx)
4652 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4653 svma->vm_start;
4654 unsigned long sbase = saddr & PUD_MASK;
4655 unsigned long s_end = sbase + PUD_SIZE;
4657 /* Allow segments to share if only one is marked locked */
4658 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4659 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4662 * match the virtual addresses, permission and the alignment of the
4663 * page table page.
4665 if (pmd_index(addr) != pmd_index(saddr) ||
4666 vm_flags != svm_flags ||
4667 sbase < svma->vm_start || svma->vm_end < s_end)
4668 return 0;
4670 return saddr;
4673 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4675 unsigned long base = addr & PUD_MASK;
4676 unsigned long end = base + PUD_SIZE;
4679 * check on proper vm_flags and page table alignment
4681 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4682 return true;
4683 return false;
4687 * Determine if start,end range within vma could be mapped by shared pmd.
4688 * If yes, adjust start and end to cover range associated with possible
4689 * shared pmd mappings.
4691 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4692 unsigned long *start, unsigned long *end)
4694 unsigned long check_addr = *start;
4696 if (!(vma->vm_flags & VM_MAYSHARE))
4697 return;
4699 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4700 unsigned long a_start = check_addr & PUD_MASK;
4701 unsigned long a_end = a_start + PUD_SIZE;
4704 * If sharing is possible, adjust start/end if necessary.
4706 if (range_in_vma(vma, a_start, a_end)) {
4707 if (a_start < *start)
4708 *start = a_start;
4709 if (a_end > *end)
4710 *end = a_end;
4716 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4717 * and returns the corresponding pte. While this is not necessary for the
4718 * !shared pmd case because we can allocate the pmd later as well, it makes the
4719 * code much cleaner. pmd allocation is essential for the shared case because
4720 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4721 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4722 * bad pmd for sharing.
4724 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4726 struct vm_area_struct *vma = find_vma(mm, addr);
4727 struct address_space *mapping = vma->vm_file->f_mapping;
4728 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4729 vma->vm_pgoff;
4730 struct vm_area_struct *svma;
4731 unsigned long saddr;
4732 pte_t *spte = NULL;
4733 pte_t *pte;
4734 spinlock_t *ptl;
4736 if (!vma_shareable(vma, addr))
4737 return (pte_t *)pmd_alloc(mm, pud, addr);
4739 i_mmap_lock_read(mapping);
4740 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4741 if (svma == vma)
4742 continue;
4744 saddr = page_table_shareable(svma, vma, addr, idx);
4745 if (saddr) {
4746 spte = huge_pte_offset(svma->vm_mm, saddr,
4747 vma_mmu_pagesize(svma));
4748 if (spte) {
4749 get_page(virt_to_page(spte));
4750 break;
4755 if (!spte)
4756 goto out;
4758 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4759 if (pud_none(*pud)) {
4760 pud_populate(mm, pud,
4761 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4762 mm_inc_nr_pmds(mm);
4763 } else {
4764 put_page(virt_to_page(spte));
4766 spin_unlock(ptl);
4767 out:
4768 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4769 i_mmap_unlock_read(mapping);
4770 return pte;
4774 * unmap huge page backed by shared pte.
4776 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4777 * indicated by page_count > 1, unmap is achieved by clearing pud and
4778 * decrementing the ref count. If count == 1, the pte page is not shared.
4780 * called with page table lock held.
4782 * returns: 1 successfully unmapped a shared pte page
4783 * 0 the underlying pte page is not shared, or it is the last user
4785 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4787 pgd_t *pgd = pgd_offset(mm, *addr);
4788 p4d_t *p4d = p4d_offset(pgd, *addr);
4789 pud_t *pud = pud_offset(p4d, *addr);
4791 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4792 if (page_count(virt_to_page(ptep)) == 1)
4793 return 0;
4795 pud_clear(pud);
4796 put_page(virt_to_page(ptep));
4797 mm_dec_nr_pmds(mm);
4798 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4799 return 1;
4801 #define want_pmd_share() (1)
4802 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4803 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4805 return NULL;
4808 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4810 return 0;
4813 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4814 unsigned long *start, unsigned long *end)
4817 #define want_pmd_share() (0)
4818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4821 pte_t *huge_pte_alloc(struct mm_struct *mm,
4822 unsigned long addr, unsigned long sz)
4824 pgd_t *pgd;
4825 p4d_t *p4d;
4826 pud_t *pud;
4827 pte_t *pte = NULL;
4829 pgd = pgd_offset(mm, addr);
4830 p4d = p4d_alloc(mm, pgd, addr);
4831 if (!p4d)
4832 return NULL;
4833 pud = pud_alloc(mm, p4d, addr);
4834 if (pud) {
4835 if (sz == PUD_SIZE) {
4836 pte = (pte_t *)pud;
4837 } else {
4838 BUG_ON(sz != PMD_SIZE);
4839 if (want_pmd_share() && pud_none(*pud))
4840 pte = huge_pmd_share(mm, addr, pud);
4841 else
4842 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4845 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4847 return pte;
4851 * huge_pte_offset() - Walk the page table to resolve the hugepage
4852 * entry at address @addr
4854 * Return: Pointer to page table or swap entry (PUD or PMD) for
4855 * address @addr, or NULL if a p*d_none() entry is encountered and the
4856 * size @sz doesn't match the hugepage size at this level of the page
4857 * table.
4859 pte_t *huge_pte_offset(struct mm_struct *mm,
4860 unsigned long addr, unsigned long sz)
4862 pgd_t *pgd;
4863 p4d_t *p4d;
4864 pud_t *pud;
4865 pmd_t *pmd;
4867 pgd = pgd_offset(mm, addr);
4868 if (!pgd_present(*pgd))
4869 return NULL;
4870 p4d = p4d_offset(pgd, addr);
4871 if (!p4d_present(*p4d))
4872 return NULL;
4874 pud = pud_offset(p4d, addr);
4875 if (sz != PUD_SIZE && pud_none(*pud))
4876 return NULL;
4877 /* hugepage or swap? */
4878 if (pud_huge(*pud) || !pud_present(*pud))
4879 return (pte_t *)pud;
4881 pmd = pmd_offset(pud, addr);
4882 if (sz != PMD_SIZE && pmd_none(*pmd))
4883 return NULL;
4884 /* hugepage or swap? */
4885 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4886 return (pte_t *)pmd;
4888 return NULL;
4891 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4894 * These functions are overwritable if your architecture needs its own
4895 * behavior.
4897 struct page * __weak
4898 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4899 int write)
4901 return ERR_PTR(-EINVAL);
4904 struct page * __weak
4905 follow_huge_pd(struct vm_area_struct *vma,
4906 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4908 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4909 return NULL;
4912 struct page * __weak
4913 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4914 pmd_t *pmd, int flags)
4916 struct page *page = NULL;
4917 spinlock_t *ptl;
4918 pte_t pte;
4919 retry:
4920 ptl = pmd_lockptr(mm, pmd);
4921 spin_lock(ptl);
4923 * make sure that the address range covered by this pmd is not
4924 * unmapped from other threads.
4926 if (!pmd_huge(*pmd))
4927 goto out;
4928 pte = huge_ptep_get((pte_t *)pmd);
4929 if (pte_present(pte)) {
4930 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4931 if (flags & FOLL_GET)
4932 get_page(page);
4933 } else {
4934 if (is_hugetlb_entry_migration(pte)) {
4935 spin_unlock(ptl);
4936 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4937 goto retry;
4940 * hwpoisoned entry is treated as no_page_table in
4941 * follow_page_mask().
4944 out:
4945 spin_unlock(ptl);
4946 return page;
4949 struct page * __weak
4950 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4951 pud_t *pud, int flags)
4953 if (flags & FOLL_GET)
4954 return NULL;
4956 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4959 struct page * __weak
4960 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4962 if (flags & FOLL_GET)
4963 return NULL;
4965 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4968 bool isolate_huge_page(struct page *page, struct list_head *list)
4970 bool ret = true;
4972 VM_BUG_ON_PAGE(!PageHead(page), page);
4973 spin_lock(&hugetlb_lock);
4974 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4975 ret = false;
4976 goto unlock;
4978 clear_page_huge_active(page);
4979 list_move_tail(&page->lru, list);
4980 unlock:
4981 spin_unlock(&hugetlb_lock);
4982 return ret;
4985 void putback_active_hugepage(struct page *page)
4987 VM_BUG_ON_PAGE(!PageHead(page), page);
4988 spin_lock(&hugetlb_lock);
4989 set_page_huge_active(page);
4990 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4991 spin_unlock(&hugetlb_lock);
4992 put_page(page);
4995 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4997 struct hstate *h = page_hstate(oldpage);
4999 hugetlb_cgroup_migrate(oldpage, newpage);
5000 set_page_owner_migrate_reason(newpage, reason);
5003 * transfer temporary state of the new huge page. This is
5004 * reverse to other transitions because the newpage is going to
5005 * be final while the old one will be freed so it takes over
5006 * the temporary status.
5008 * Also note that we have to transfer the per-node surplus state
5009 * here as well otherwise the global surplus count will not match
5010 * the per-node's.
5012 if (PageHugeTemporary(newpage)) {
5013 int old_nid = page_to_nid(oldpage);
5014 int new_nid = page_to_nid(newpage);
5016 SetPageHugeTemporary(oldpage);
5017 ClearPageHugeTemporary(newpage);
5019 spin_lock(&hugetlb_lock);
5020 if (h->surplus_huge_pages_node[old_nid]) {
5021 h->surplus_huge_pages_node[old_nid]--;
5022 h->surplus_huge_pages_node[new_nid]++;
5024 spin_unlock(&hugetlb_lock);