Move TargetInfo::adjustInlineAsmType to TargetCodeGenInfo
[clang.git] / lib / CodeGen / CGStmt.cpp
blobcd238112ed1d325d1ee2e9bf89265df54fb3d362
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
28 //===----------------------------------------------------------------------===//
29 // Statement Emission
30 //===----------------------------------------------------------------------===//
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33 if (CGDebugInfo *DI = getDebugInfo()) {
34 if (isa<DeclStmt>(S))
35 DI->setLocation(S->getLocEnd());
36 else
37 DI->setLocation(S->getLocStart());
38 DI->UpdateLineDirectiveRegion(Builder);
39 DI->EmitStopPoint(Builder);
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44 assert(S && "Null statement?");
46 // Check if we can handle this without bothering to generate an
47 // insert point or debug info.
48 if (EmitSimpleStmt(S))
49 return;
51 // Check if we are generating unreachable code.
52 if (!HaveInsertPoint()) {
53 // If so, and the statement doesn't contain a label, then we do not need to
54 // generate actual code. This is safe because (1) the current point is
55 // unreachable, so we don't need to execute the code, and (2) we've already
56 // handled the statements which update internal data structures (like the
57 // local variable map) which could be used by subsequent statements.
58 if (!ContainsLabel(S)) {
59 // Verify that any decl statements were handled as simple, they may be in
60 // scope of subsequent reachable statements.
61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62 return;
65 // Otherwise, make a new block to hold the code.
66 EnsureInsertPoint();
69 // Generate a stoppoint if we are emitting debug info.
70 EmitStopPoint(S);
72 switch (S->getStmtClass()) {
73 case Stmt::NoStmtClass:
74 case Stmt::CXXCatchStmtClass:
75 llvm_unreachable("invalid statement class to emit generically");
76 case Stmt::NullStmtClass:
77 case Stmt::CompoundStmtClass:
78 case Stmt::DeclStmtClass:
79 case Stmt::LabelStmtClass:
80 case Stmt::GotoStmtClass:
81 case Stmt::BreakStmtClass:
82 case Stmt::ContinueStmtClass:
83 case Stmt::DefaultStmtClass:
84 case Stmt::CaseStmtClass:
85 llvm_unreachable("should have emitted these statements as simple");
87 #define STMT(Type, Base)
88 #define ABSTRACT_STMT(Op)
89 #define EXPR(Type, Base) \
90 case Stmt::Type##Class:
91 #include "clang/AST/StmtNodes.inc"
93 // Remember the block we came in on.
94 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
95 assert(incoming && "expression emission must have an insertion point");
97 EmitIgnoredExpr(cast<Expr>(S));
99 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
100 assert(outgoing && "expression emission cleared block!");
102 // The expression emitters assume (reasonably!) that the insertion
103 // point is always set. To maintain that, the call-emission code
104 // for noreturn functions has to enter a new block with no
105 // predecessors. We want to kill that block and mark the current
106 // insertion point unreachable in the common case of a call like
107 // "exit();". Since expression emission doesn't otherwise create
108 // blocks with no predecessors, we can just test for that.
109 // However, we must be careful not to do this to our incoming
110 // block, because *statement* emission does sometimes create
111 // reachable blocks which will have no predecessors until later in
112 // the function. This occurs with, e.g., labels that are not
113 // reachable by fallthrough.
114 if (incoming != outgoing && outgoing->use_empty()) {
115 outgoing->eraseFromParent();
116 Builder.ClearInsertionPoint();
118 break;
121 case Stmt::IndirectGotoStmtClass:
122 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
124 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
125 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
126 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
127 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
129 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
131 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
132 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
134 case Stmt::ObjCAtTryStmtClass:
135 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
136 break;
137 case Stmt::ObjCAtCatchStmtClass:
138 assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
139 break;
140 case Stmt::ObjCAtFinallyStmtClass:
141 assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
142 break;
143 case Stmt::ObjCAtThrowStmtClass:
144 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
145 break;
146 case Stmt::ObjCAtSynchronizedStmtClass:
147 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
148 break;
149 case Stmt::ObjCForCollectionStmtClass:
150 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
151 break;
153 case Stmt::CXXTryStmtClass:
154 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
155 break;
159 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
160 switch (S->getStmtClass()) {
161 default: return false;
162 case Stmt::NullStmtClass: break;
163 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
164 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
165 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
166 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
167 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
168 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
169 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
170 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
173 return true;
176 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
177 /// this captures the expression result of the last sub-statement and returns it
178 /// (for use by the statement expression extension).
179 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
180 AggValueSlot AggSlot) {
181 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
182 "LLVM IR generation of compound statement ('{}')");
184 CGDebugInfo *DI = getDebugInfo();
185 if (DI) {
186 DI->setLocation(S.getLBracLoc());
187 DI->EmitRegionStart(Builder);
190 // Keep track of the current cleanup stack depth.
191 RunCleanupsScope Scope(*this);
193 for (CompoundStmt::const_body_iterator I = S.body_begin(),
194 E = S.body_end()-GetLast; I != E; ++I)
195 EmitStmt(*I);
197 if (DI) {
198 DI->setLocation(S.getRBracLoc());
199 DI->EmitRegionEnd(Builder);
202 RValue RV;
203 if (!GetLast)
204 RV = RValue::get(0);
205 else {
206 // We have to special case labels here. They are statements, but when put
207 // at the end of a statement expression, they yield the value of their
208 // subexpression. Handle this by walking through all labels we encounter,
209 // emitting them before we evaluate the subexpr.
210 const Stmt *LastStmt = S.body_back();
211 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
212 EmitLabel(LS->getDecl());
213 LastStmt = LS->getSubStmt();
216 EnsureInsertPoint();
218 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
221 return RV;
224 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
225 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
227 // If there is a cleanup stack, then we it isn't worth trying to
228 // simplify this block (we would need to remove it from the scope map
229 // and cleanup entry).
230 if (!EHStack.empty())
231 return;
233 // Can only simplify direct branches.
234 if (!BI || !BI->isUnconditional())
235 return;
237 BB->replaceAllUsesWith(BI->getSuccessor(0));
238 BI->eraseFromParent();
239 BB->eraseFromParent();
242 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
243 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
245 // Fall out of the current block (if necessary).
246 EmitBranch(BB);
248 if (IsFinished && BB->use_empty()) {
249 delete BB;
250 return;
253 // Place the block after the current block, if possible, or else at
254 // the end of the function.
255 if (CurBB && CurBB->getParent())
256 CurFn->getBasicBlockList().insertAfter(CurBB, BB);
257 else
258 CurFn->getBasicBlockList().push_back(BB);
259 Builder.SetInsertPoint(BB);
262 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
263 // Emit a branch from the current block to the target one if this
264 // was a real block. If this was just a fall-through block after a
265 // terminator, don't emit it.
266 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
268 if (!CurBB || CurBB->getTerminator()) {
269 // If there is no insert point or the previous block is already
270 // terminated, don't touch it.
271 } else {
272 // Otherwise, create a fall-through branch.
273 Builder.CreateBr(Target);
276 Builder.ClearInsertionPoint();
279 CodeGenFunction::JumpDest
280 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
281 JumpDest &Dest = LabelMap[D];
282 if (Dest.isValid()) return Dest;
284 // Create, but don't insert, the new block.
285 Dest = JumpDest(createBasicBlock(D->getName()),
286 EHScopeStack::stable_iterator::invalid(),
287 NextCleanupDestIndex++);
288 return Dest;
291 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
292 JumpDest &Dest = LabelMap[D];
294 // If we didn't need a forward reference to this label, just go
295 // ahead and create a destination at the current scope.
296 if (!Dest.isValid()) {
297 Dest = getJumpDestInCurrentScope(D->getName());
299 // Otherwise, we need to give this label a target depth and remove
300 // it from the branch-fixups list.
301 } else {
302 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
303 Dest = JumpDest(Dest.getBlock(),
304 EHStack.stable_begin(),
305 Dest.getDestIndex());
307 ResolveBranchFixups(Dest.getBlock());
310 EmitBlock(Dest.getBlock());
314 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
315 EmitLabel(S.getDecl());
316 EmitStmt(S.getSubStmt());
319 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
320 // If this code is reachable then emit a stop point (if generating
321 // debug info). We have to do this ourselves because we are on the
322 // "simple" statement path.
323 if (HaveInsertPoint())
324 EmitStopPoint(&S);
326 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
330 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
331 if (const LabelDecl *Target = S.getConstantTarget()) {
332 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
333 return;
336 // Ensure that we have an i8* for our PHI node.
337 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
338 Int8PtrTy, "addr");
339 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
342 // Get the basic block for the indirect goto.
343 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
345 // The first instruction in the block has to be the PHI for the switch dest,
346 // add an entry for this branch.
347 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
349 EmitBranch(IndGotoBB);
352 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
353 // C99 6.8.4.1: The first substatement is executed if the expression compares
354 // unequal to 0. The condition must be a scalar type.
355 RunCleanupsScope ConditionScope(*this);
357 if (S.getConditionVariable())
358 EmitAutoVarDecl(*S.getConditionVariable());
360 // If the condition constant folds and can be elided, try to avoid emitting
361 // the condition and the dead arm of the if/else.
362 if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
363 // Figure out which block (then or else) is executed.
364 const Stmt *Executed = S.getThen(), *Skipped = S.getElse();
365 if (Cond == -1) // Condition false?
366 std::swap(Executed, Skipped);
368 // If the skipped block has no labels in it, just emit the executed block.
369 // This avoids emitting dead code and simplifies the CFG substantially.
370 if (!ContainsLabel(Skipped)) {
371 if (Executed) {
372 RunCleanupsScope ExecutedScope(*this);
373 EmitStmt(Executed);
375 return;
379 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
380 // the conditional branch.
381 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
382 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
383 llvm::BasicBlock *ElseBlock = ContBlock;
384 if (S.getElse())
385 ElseBlock = createBasicBlock("if.else");
386 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
388 // Emit the 'then' code.
389 EmitBlock(ThenBlock);
391 RunCleanupsScope ThenScope(*this);
392 EmitStmt(S.getThen());
394 EmitBranch(ContBlock);
396 // Emit the 'else' code if present.
397 if (const Stmt *Else = S.getElse()) {
398 EmitBlock(ElseBlock);
400 RunCleanupsScope ElseScope(*this);
401 EmitStmt(Else);
403 EmitBranch(ContBlock);
406 // Emit the continuation block for code after the if.
407 EmitBlock(ContBlock, true);
410 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
411 // Emit the header for the loop, which will also become
412 // the continue target.
413 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
414 EmitBlock(LoopHeader.getBlock());
416 // Create an exit block for when the condition fails, which will
417 // also become the break target.
418 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
420 // Store the blocks to use for break and continue.
421 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
423 // C++ [stmt.while]p2:
424 // When the condition of a while statement is a declaration, the
425 // scope of the variable that is declared extends from its point
426 // of declaration (3.3.2) to the end of the while statement.
427 // [...]
428 // The object created in a condition is destroyed and created
429 // with each iteration of the loop.
430 RunCleanupsScope ConditionScope(*this);
432 if (S.getConditionVariable())
433 EmitAutoVarDecl(*S.getConditionVariable());
435 // Evaluate the conditional in the while header. C99 6.8.5.1: The
436 // evaluation of the controlling expression takes place before each
437 // execution of the loop body.
438 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
440 // while(1) is common, avoid extra exit blocks. Be sure
441 // to correctly handle break/continue though.
442 bool EmitBoolCondBranch = true;
443 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
444 if (C->isOne())
445 EmitBoolCondBranch = false;
447 // As long as the condition is true, go to the loop body.
448 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
449 if (EmitBoolCondBranch) {
450 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
451 if (ConditionScope.requiresCleanups())
452 ExitBlock = createBasicBlock("while.exit");
454 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
456 if (ExitBlock != LoopExit.getBlock()) {
457 EmitBlock(ExitBlock);
458 EmitBranchThroughCleanup(LoopExit);
462 // Emit the loop body. We have to emit this in a cleanup scope
463 // because it might be a singleton DeclStmt.
465 RunCleanupsScope BodyScope(*this);
466 EmitBlock(LoopBody);
467 EmitStmt(S.getBody());
470 BreakContinueStack.pop_back();
472 // Immediately force cleanup.
473 ConditionScope.ForceCleanup();
475 // Branch to the loop header again.
476 EmitBranch(LoopHeader.getBlock());
478 // Emit the exit block.
479 EmitBlock(LoopExit.getBlock(), true);
481 // The LoopHeader typically is just a branch if we skipped emitting
482 // a branch, try to erase it.
483 if (!EmitBoolCondBranch)
484 SimplifyForwardingBlocks(LoopHeader.getBlock());
487 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
488 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
489 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
491 // Store the blocks to use for break and continue.
492 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
494 // Emit the body of the loop.
495 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
496 EmitBlock(LoopBody);
498 RunCleanupsScope BodyScope(*this);
499 EmitStmt(S.getBody());
502 BreakContinueStack.pop_back();
504 EmitBlock(LoopCond.getBlock());
506 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
507 // after each execution of the loop body."
509 // Evaluate the conditional in the while header.
510 // C99 6.8.5p2/p4: The first substatement is executed if the expression
511 // compares unequal to 0. The condition must be a scalar type.
512 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
514 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
515 // to correctly handle break/continue though.
516 bool EmitBoolCondBranch = true;
517 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
518 if (C->isZero())
519 EmitBoolCondBranch = false;
521 // As long as the condition is true, iterate the loop.
522 if (EmitBoolCondBranch)
523 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
525 // Emit the exit block.
526 EmitBlock(LoopExit.getBlock());
528 // The DoCond block typically is just a branch if we skipped
529 // emitting a branch, try to erase it.
530 if (!EmitBoolCondBranch)
531 SimplifyForwardingBlocks(LoopCond.getBlock());
534 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
535 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
537 RunCleanupsScope ForScope(*this);
539 CGDebugInfo *DI = getDebugInfo();
540 if (DI) {
541 DI->setLocation(S.getSourceRange().getBegin());
542 DI->EmitRegionStart(Builder);
545 // Evaluate the first part before the loop.
546 if (S.getInit())
547 EmitStmt(S.getInit());
549 // Start the loop with a block that tests the condition.
550 // If there's an increment, the continue scope will be overwritten
551 // later.
552 JumpDest Continue = getJumpDestInCurrentScope("for.cond");
553 llvm::BasicBlock *CondBlock = Continue.getBlock();
554 EmitBlock(CondBlock);
556 // Create a cleanup scope for the condition variable cleanups.
557 RunCleanupsScope ConditionScope(*this);
559 llvm::Value *BoolCondVal = 0;
560 if (S.getCond()) {
561 // If the for statement has a condition scope, emit the local variable
562 // declaration.
563 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
564 if (S.getConditionVariable()) {
565 EmitAutoVarDecl(*S.getConditionVariable());
568 // If there are any cleanups between here and the loop-exit scope,
569 // create a block to stage a loop exit along.
570 if (ForScope.requiresCleanups())
571 ExitBlock = createBasicBlock("for.cond.cleanup");
573 // As long as the condition is true, iterate the loop.
574 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
576 // C99 6.8.5p2/p4: The first substatement is executed if the expression
577 // compares unequal to 0. The condition must be a scalar type.
578 BoolCondVal = EvaluateExprAsBool(S.getCond());
579 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
581 if (ExitBlock != LoopExit.getBlock()) {
582 EmitBlock(ExitBlock);
583 EmitBranchThroughCleanup(LoopExit);
586 EmitBlock(ForBody);
587 } else {
588 // Treat it as a non-zero constant. Don't even create a new block for the
589 // body, just fall into it.
592 // If the for loop doesn't have an increment we can just use the
593 // condition as the continue block. Otherwise we'll need to create
594 // a block for it (in the current scope, i.e. in the scope of the
595 // condition), and that we will become our continue block.
596 if (S.getInc())
597 Continue = getJumpDestInCurrentScope("for.inc");
599 // Store the blocks to use for break and continue.
600 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
603 // Create a separate cleanup scope for the body, in case it is not
604 // a compound statement.
605 RunCleanupsScope BodyScope(*this);
606 EmitStmt(S.getBody());
609 // If there is an increment, emit it next.
610 if (S.getInc()) {
611 EmitBlock(Continue.getBlock());
612 EmitStmt(S.getInc());
615 BreakContinueStack.pop_back();
617 ConditionScope.ForceCleanup();
618 EmitBranch(CondBlock);
620 ForScope.ForceCleanup();
622 if (DI) {
623 DI->setLocation(S.getSourceRange().getEnd());
624 DI->EmitRegionEnd(Builder);
627 // Emit the fall-through block.
628 EmitBlock(LoopExit.getBlock(), true);
631 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
632 if (RV.isScalar()) {
633 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
634 } else if (RV.isAggregate()) {
635 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
636 } else {
637 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
639 EmitBranchThroughCleanup(ReturnBlock);
642 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
643 /// if the function returns void, or may be missing one if the function returns
644 /// non-void. Fun stuff :).
645 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
646 // Emit the result value, even if unused, to evalute the side effects.
647 const Expr *RV = S.getRetValue();
649 // FIXME: Clean this up by using an LValue for ReturnTemp,
650 // EmitStoreThroughLValue, and EmitAnyExpr.
651 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
652 !Target.useGlobalsForAutomaticVariables()) {
653 // Apply the named return value optimization for this return statement,
654 // which means doing nothing: the appropriate result has already been
655 // constructed into the NRVO variable.
657 // If there is an NRVO flag for this variable, set it to 1 into indicate
658 // that the cleanup code should not destroy the variable.
659 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
660 Builder.CreateStore(Builder.getTrue(), NRVOFlag);
661 } else if (!ReturnValue) {
662 // Make sure not to return anything, but evaluate the expression
663 // for side effects.
664 if (RV)
665 EmitAnyExpr(RV);
666 } else if (RV == 0) {
667 // Do nothing (return value is left uninitialized)
668 } else if (FnRetTy->isReferenceType()) {
669 // If this function returns a reference, take the address of the expression
670 // rather than the value.
671 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
672 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
673 } else if (!hasAggregateLLVMType(RV->getType())) {
674 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
675 } else if (RV->getType()->isAnyComplexType()) {
676 EmitComplexExprIntoAddr(RV, ReturnValue, false);
677 } else {
678 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true));
681 EmitBranchThroughCleanup(ReturnBlock);
684 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
685 // As long as debug info is modeled with instructions, we have to ensure we
686 // have a place to insert here and write the stop point here.
687 if (getDebugInfo()) {
688 EnsureInsertPoint();
689 EmitStopPoint(&S);
692 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
693 I != E; ++I)
694 EmitDecl(**I);
697 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
698 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
700 // If this code is reachable then emit a stop point (if generating
701 // debug info). We have to do this ourselves because we are on the
702 // "simple" statement path.
703 if (HaveInsertPoint())
704 EmitStopPoint(&S);
706 JumpDest Block = BreakContinueStack.back().BreakBlock;
707 EmitBranchThroughCleanup(Block);
710 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
711 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
713 // If this code is reachable then emit a stop point (if generating
714 // debug info). We have to do this ourselves because we are on the
715 // "simple" statement path.
716 if (HaveInsertPoint())
717 EmitStopPoint(&S);
719 JumpDest Block = BreakContinueStack.back().ContinueBlock;
720 EmitBranchThroughCleanup(Block);
723 /// EmitCaseStmtRange - If case statement range is not too big then
724 /// add multiple cases to switch instruction, one for each value within
725 /// the range. If range is too big then emit "if" condition check.
726 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
727 assert(S.getRHS() && "Expected RHS value in CaseStmt");
729 llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
730 llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
732 // Emit the code for this case. We do this first to make sure it is
733 // properly chained from our predecessor before generating the
734 // switch machinery to enter this block.
735 EmitBlock(createBasicBlock("sw.bb"));
736 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
737 EmitStmt(S.getSubStmt());
739 // If range is empty, do nothing.
740 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
741 return;
743 llvm::APInt Range = RHS - LHS;
744 // FIXME: parameters such as this should not be hardcoded.
745 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
746 // Range is small enough to add multiple switch instruction cases.
747 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
748 SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), LHS),
749 CaseDest);
750 LHS++;
752 return;
755 // The range is too big. Emit "if" condition into a new block,
756 // making sure to save and restore the current insertion point.
757 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
759 // Push this test onto the chain of range checks (which terminates
760 // in the default basic block). The switch's default will be changed
761 // to the top of this chain after switch emission is complete.
762 llvm::BasicBlock *FalseDest = CaseRangeBlock;
763 CaseRangeBlock = createBasicBlock("sw.caserange");
765 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
766 Builder.SetInsertPoint(CaseRangeBlock);
768 // Emit range check.
769 llvm::Value *Diff =
770 Builder.CreateSub(SwitchInsn->getCondition(),
771 llvm::ConstantInt::get(getLLVMContext(), LHS), "tmp");
772 llvm::Value *Cond =
773 Builder.CreateICmpULE(Diff, llvm::ConstantInt::get(getLLVMContext(), Range),
774 "inbounds");
775 Builder.CreateCondBr(Cond, CaseDest, FalseDest);
777 // Restore the appropriate insertion point.
778 if (RestoreBB)
779 Builder.SetInsertPoint(RestoreBB);
780 else
781 Builder.ClearInsertionPoint();
784 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
785 if (S.getRHS()) {
786 EmitCaseStmtRange(S);
787 return;
790 EmitBlock(createBasicBlock("sw.bb"));
791 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
792 llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
793 SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), CaseVal),
794 CaseDest);
796 // Recursively emitting the statement is acceptable, but is not wonderful for
797 // code where we have many case statements nested together, i.e.:
798 // case 1:
799 // case 2:
800 // case 3: etc.
801 // Handling this recursively will create a new block for each case statement
802 // that falls through to the next case which is IR intensive. It also causes
803 // deep recursion which can run into stack depth limitations. Handle
804 // sequential non-range case statements specially.
805 const CaseStmt *CurCase = &S;
806 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
808 // Otherwise, iteratively add consequtive cases to this switch stmt.
809 while (NextCase && NextCase->getRHS() == 0) {
810 CurCase = NextCase;
811 CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
812 SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), CaseVal),
813 CaseDest);
815 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
818 // Normal default recursion for non-cases.
819 EmitStmt(CurCase->getSubStmt());
822 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
823 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
824 assert(DefaultBlock->empty() &&
825 "EmitDefaultStmt: Default block already defined?");
826 EmitBlock(DefaultBlock);
827 EmitStmt(S.getSubStmt());
830 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
831 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
833 RunCleanupsScope ConditionScope(*this);
835 if (S.getConditionVariable())
836 EmitAutoVarDecl(*S.getConditionVariable());
838 llvm::Value *CondV = EmitScalarExpr(S.getCond());
840 // Handle nested switch statements.
841 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
842 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
844 // Create basic block to hold stuff that comes after switch
845 // statement. We also need to create a default block now so that
846 // explicit case ranges tests can have a place to jump to on
847 // failure.
848 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
849 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
850 CaseRangeBlock = DefaultBlock;
852 // Clear the insertion point to indicate we are in unreachable code.
853 Builder.ClearInsertionPoint();
855 // All break statements jump to NextBlock. If BreakContinueStack is non empty
856 // then reuse last ContinueBlock.
857 JumpDest OuterContinue;
858 if (!BreakContinueStack.empty())
859 OuterContinue = BreakContinueStack.back().ContinueBlock;
861 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
863 // Emit switch body.
864 EmitStmt(S.getBody());
866 BreakContinueStack.pop_back();
868 // Update the default block in case explicit case range tests have
869 // been chained on top.
870 SwitchInsn->setSuccessor(0, CaseRangeBlock);
872 // If a default was never emitted:
873 if (!DefaultBlock->getParent()) {
874 // If we have cleanups, emit the default block so that there's a
875 // place to jump through the cleanups from.
876 if (ConditionScope.requiresCleanups()) {
877 EmitBlock(DefaultBlock);
879 // Otherwise, just forward the default block to the switch end.
880 } else {
881 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
882 delete DefaultBlock;
886 ConditionScope.ForceCleanup();
888 // Emit continuation.
889 EmitBlock(SwitchExit.getBlock(), true);
891 SwitchInsn = SavedSwitchInsn;
892 CaseRangeBlock = SavedCRBlock;
895 static std::string
896 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
897 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
898 std::string Result;
900 while (*Constraint) {
901 switch (*Constraint) {
902 default:
903 Result += Target.convertConstraint(*Constraint);
904 break;
905 // Ignore these
906 case '*':
907 case '?':
908 case '!':
909 case '=': // Will see this and the following in mult-alt constraints.
910 case '+':
911 break;
912 case ',':
913 Result += "|";
914 break;
915 case 'g':
916 Result += "imr";
917 break;
918 case '[': {
919 assert(OutCons &&
920 "Must pass output names to constraints with a symbolic name");
921 unsigned Index;
922 bool result = Target.resolveSymbolicName(Constraint,
923 &(*OutCons)[0],
924 OutCons->size(), Index);
925 assert(result && "Could not resolve symbolic name"); (void)result;
926 Result += llvm::utostr(Index);
927 break;
931 Constraint++;
934 return Result;
937 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
938 /// as using a particular register add that as a constraint that will be used
939 /// in this asm stmt.
940 static std::string
941 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
942 const TargetInfo &Target, CodeGenModule &CGM,
943 const AsmStmt &Stmt) {
944 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
945 if (!AsmDeclRef)
946 return Constraint;
947 const ValueDecl &Value = *AsmDeclRef->getDecl();
948 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
949 if (!Variable)
950 return Constraint;
951 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
952 if (!Attr)
953 return Constraint;
954 llvm::StringRef Register = Attr->getLabel();
955 assert(Target.isValidGCCRegisterName(Register));
956 // FIXME: We should check which registers are compatible with "r" or "x".
957 if (Constraint != "r" && Constraint != "x") {
958 CGM.ErrorUnsupported(&Stmt, "__asm__");
959 return Constraint;
961 return "{" + Register.str() + "}";
964 llvm::Value*
965 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
966 const TargetInfo::ConstraintInfo &Info,
967 LValue InputValue, QualType InputType,
968 std::string &ConstraintStr) {
969 llvm::Value *Arg;
970 if (Info.allowsRegister() || !Info.allowsMemory()) {
971 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
972 Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal();
973 } else {
974 const llvm::Type *Ty = ConvertType(InputType);
975 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
976 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
977 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
978 Ty = llvm::PointerType::getUnqual(Ty);
980 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
981 Ty));
982 } else {
983 Arg = InputValue.getAddress();
984 ConstraintStr += '*';
987 } else {
988 Arg = InputValue.getAddress();
989 ConstraintStr += '*';
992 return Arg;
995 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
996 const TargetInfo::ConstraintInfo &Info,
997 const Expr *InputExpr,
998 std::string &ConstraintStr) {
999 if (Info.allowsRegister() || !Info.allowsMemory())
1000 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1001 return EmitScalarExpr(InputExpr);
1003 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1004 LValue Dest = EmitLValue(InputExpr);
1005 return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1008 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1009 /// asm call instruction. The !srcloc MDNode contains a list of constant
1010 /// integers which are the source locations of the start of each line in the
1011 /// asm.
1012 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1013 CodeGenFunction &CGF) {
1014 llvm::SmallVector<llvm::Value *, 8> Locs;
1015 // Add the location of the first line to the MDNode.
1016 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1017 Str->getLocStart().getRawEncoding()));
1018 llvm::StringRef StrVal = Str->getString();
1019 if (!StrVal.empty()) {
1020 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1021 const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1023 // Add the location of the start of each subsequent line of the asm to the
1024 // MDNode.
1025 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1026 if (StrVal[i] != '\n') continue;
1027 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1028 CGF.Target);
1029 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1030 LineLoc.getRawEncoding()));
1034 return llvm::MDNode::get(CGF.getLLVMContext(), Locs.data(), Locs.size());
1037 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1038 // Analyze the asm string to decompose it into its pieces. We know that Sema
1039 // has already done this, so it is guaranteed to be successful.
1040 llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1041 unsigned DiagOffs;
1042 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1044 // Assemble the pieces into the final asm string.
1045 std::string AsmString;
1046 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1047 if (Pieces[i].isString())
1048 AsmString += Pieces[i].getString();
1049 else if (Pieces[i].getModifier() == '\0')
1050 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1051 else
1052 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1053 Pieces[i].getModifier() + '}';
1056 // Get all the output and input constraints together.
1057 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1058 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1060 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1061 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1062 S.getOutputName(i));
1063 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1064 assert(IsValid && "Failed to parse output constraint");
1065 OutputConstraintInfos.push_back(Info);
1068 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1069 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1070 S.getInputName(i));
1071 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1072 S.getNumOutputs(), Info);
1073 assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1074 InputConstraintInfos.push_back(Info);
1077 std::string Constraints;
1079 std::vector<LValue> ResultRegDests;
1080 std::vector<QualType> ResultRegQualTys;
1081 std::vector<const llvm::Type *> ResultRegTypes;
1082 std::vector<const llvm::Type *> ResultTruncRegTypes;
1083 std::vector<const llvm::Type*> ArgTypes;
1084 std::vector<llvm::Value*> Args;
1086 // Keep track of inout constraints.
1087 std::string InOutConstraints;
1088 std::vector<llvm::Value*> InOutArgs;
1089 std::vector<const llvm::Type*> InOutArgTypes;
1091 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1092 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1094 // Simplify the output constraint.
1095 std::string OutputConstraint(S.getOutputConstraint(i));
1096 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1098 const Expr *OutExpr = S.getOutputExpr(i);
1099 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1101 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, Target,
1102 CGM, S);
1104 LValue Dest = EmitLValue(OutExpr);
1105 if (!Constraints.empty())
1106 Constraints += ',';
1108 // If this is a register output, then make the inline asm return it
1109 // by-value. If this is a memory result, return the value by-reference.
1110 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1111 Constraints += "=" + OutputConstraint;
1112 ResultRegQualTys.push_back(OutExpr->getType());
1113 ResultRegDests.push_back(Dest);
1114 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1115 ResultTruncRegTypes.push_back(ResultRegTypes.back());
1117 // If this output is tied to an input, and if the input is larger, then
1118 // we need to set the actual result type of the inline asm node to be the
1119 // same as the input type.
1120 if (Info.hasMatchingInput()) {
1121 unsigned InputNo;
1122 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1123 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1124 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1125 break;
1127 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1129 QualType InputTy = S.getInputExpr(InputNo)->getType();
1130 QualType OutputType = OutExpr->getType();
1132 uint64_t InputSize = getContext().getTypeSize(InputTy);
1133 if (getContext().getTypeSize(OutputType) < InputSize) {
1134 // Form the asm to return the value as a larger integer or fp type.
1135 ResultRegTypes.back() = ConvertType(InputTy);
1138 if (const llvm::Type* AdjTy =
1139 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1140 ResultRegTypes.back()))
1141 ResultRegTypes.back() = AdjTy;
1142 } else {
1143 ArgTypes.push_back(Dest.getAddress()->getType());
1144 Args.push_back(Dest.getAddress());
1145 Constraints += "=*";
1146 Constraints += OutputConstraint;
1149 if (Info.isReadWrite()) {
1150 InOutConstraints += ',';
1152 const Expr *InputExpr = S.getOutputExpr(i);
1153 llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1154 InOutConstraints);
1156 if (Info.allowsRegister())
1157 InOutConstraints += llvm::utostr(i);
1158 else
1159 InOutConstraints += OutputConstraint;
1161 InOutArgTypes.push_back(Arg->getType());
1162 InOutArgs.push_back(Arg);
1166 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1168 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1169 const Expr *InputExpr = S.getInputExpr(i);
1171 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1173 if (!Constraints.empty())
1174 Constraints += ',';
1176 // Simplify the input constraint.
1177 std::string InputConstraint(S.getInputConstraint(i));
1178 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1179 &OutputConstraintInfos);
1181 InputConstraint =
1182 AddVariableConstraints(InputConstraint,
1183 *InputExpr->IgnoreParenNoopCasts(getContext()),
1184 Target, CGM, S);
1186 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1188 // If this input argument is tied to a larger output result, extend the
1189 // input to be the same size as the output. The LLVM backend wants to see
1190 // the input and output of a matching constraint be the same size. Note
1191 // that GCC does not define what the top bits are here. We use zext because
1192 // that is usually cheaper, but LLVM IR should really get an anyext someday.
1193 if (Info.hasTiedOperand()) {
1194 unsigned Output = Info.getTiedOperand();
1195 QualType OutputType = S.getOutputExpr(Output)->getType();
1196 QualType InputTy = InputExpr->getType();
1198 if (getContext().getTypeSize(OutputType) >
1199 getContext().getTypeSize(InputTy)) {
1200 // Use ptrtoint as appropriate so that we can do our extension.
1201 if (isa<llvm::PointerType>(Arg->getType()))
1202 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1203 const llvm::Type *OutputTy = ConvertType(OutputType);
1204 if (isa<llvm::IntegerType>(OutputTy))
1205 Arg = Builder.CreateZExt(Arg, OutputTy);
1206 else
1207 Arg = Builder.CreateFPExt(Arg, OutputTy);
1210 if (const llvm::Type* AdjTy =
1211 getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1212 Arg->getType()))
1213 Arg = Builder.CreateBitCast(Arg, AdjTy);
1215 ArgTypes.push_back(Arg->getType());
1216 Args.push_back(Arg);
1217 Constraints += InputConstraint;
1220 // Append the "input" part of inout constraints last.
1221 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1222 ArgTypes.push_back(InOutArgTypes[i]);
1223 Args.push_back(InOutArgs[i]);
1225 Constraints += InOutConstraints;
1227 // Clobbers
1228 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1229 llvm::StringRef Clobber = S.getClobber(i)->getString();
1231 Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1233 if (i != 0 || NumConstraints != 0)
1234 Constraints += ',';
1236 Constraints += "~{";
1237 Constraints += Clobber;
1238 Constraints += '}';
1241 // Add machine specific clobbers
1242 std::string MachineClobbers = Target.getClobbers();
1243 if (!MachineClobbers.empty()) {
1244 if (!Constraints.empty())
1245 Constraints += ',';
1246 Constraints += MachineClobbers;
1249 const llvm::Type *ResultType;
1250 if (ResultRegTypes.empty())
1251 ResultType = llvm::Type::getVoidTy(getLLVMContext());
1252 else if (ResultRegTypes.size() == 1)
1253 ResultType = ResultRegTypes[0];
1254 else
1255 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1257 const llvm::FunctionType *FTy =
1258 llvm::FunctionType::get(ResultType, ArgTypes, false);
1260 llvm::InlineAsm *IA =
1261 llvm::InlineAsm::get(FTy, AsmString, Constraints,
1262 S.isVolatile() || S.getNumOutputs() == 0);
1263 llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1264 Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1266 // Slap the source location of the inline asm into a !srcloc metadata on the
1267 // call.
1268 Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1270 // Extract all of the register value results from the asm.
1271 std::vector<llvm::Value*> RegResults;
1272 if (ResultRegTypes.size() == 1) {
1273 RegResults.push_back(Result);
1274 } else {
1275 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1276 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1277 RegResults.push_back(Tmp);
1281 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1282 llvm::Value *Tmp = RegResults[i];
1284 // If the result type of the LLVM IR asm doesn't match the result type of
1285 // the expression, do the conversion.
1286 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1287 const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1289 // Truncate the integer result to the right size, note that TruncTy can be
1290 // a pointer.
1291 if (TruncTy->isFloatingPointTy())
1292 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1293 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1294 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1295 Tmp = Builder.CreateTrunc(Tmp,
1296 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1297 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1298 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1299 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1300 Tmp = Builder.CreatePtrToInt(Tmp,
1301 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1302 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1303 } else if (TruncTy->isIntegerTy()) {
1304 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1305 } else if (TruncTy->isVectorTy()) {
1306 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1310 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1311 ResultRegQualTys[i]);