Allow assumptions to be lists or vectors in backend
[cl-satwrap.git] / satwrap.lisp
blob9bd436c890b234dba643762bd8ce02b819252787
1 ;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Base: 10; -*-
2 ;;;
3 ;;; satwrap.lisp --- SAT solvers wrapped for CL
5 ;; Copyright (C) 2010 Utz-Uwe Haus <lisp@uuhaus.de>
6 ;; $Id:$
7 ;; This code is free software; you can redistribute it and/or modify
8 ;; it under the terms of the version 3 of the GNU General
9 ;; Public License as published by the Free Software Foundation, as
10 ;; clarified by the prequel found in LICENSE.Lisp-GPL-Preface.
12 ;; This code is distributed in the hope that it will be useful, but
13 ;; without any warranty; without even the implied warranty of
14 ;; merchantability or fitness for a particular purpose. See the GNU
15 ;; Lesser General Public License for more details.
17 ;; Version 3 of the GNU General Public License is in the file
18 ;; LICENSE.GPL that was distributed with this file. If it is not
19 ;; present, you can access it from
20 ;; http://www.gnu.org/copyleft/gpl.txt (until superseded by a
21 ;; newer version) or write to the Free Software Foundation, Inc., 59
22 ;; Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 ;; Commentary:
26 ;;
28 ;;; Code:
30 (eval-when (:compile-toplevel :load-toplevel)
31 (declaim (optimize (speed 3) (debug 1) (safety 1))))
34 (in-package #:satwrap)
36 (defvar *default-sat-backend* :minisat
37 "Name of the default backend to be used by make-sat-solver.")
39 (defparameter *satwrap-backends*
40 `((:precosat . ,(find-class 'satwrap.precosat:precosat-backend))
41 (:minisat . ,(find-class 'satwrap.minisat:minisat-backend)))
42 "Alist of symbolic name to backend class name for all supported backends.")
44 (defun describe-supported-backends ()
45 "Return a list of (designator . description) pairs of the supported backends"
46 (loop :for (key . class) :in *satwrap-backends*
47 :as descr := (let ((instance (make-instance class)))
48 (format nil "~A version ~A"
49 (satwrap.backend:sat-backend-name instance)
50 (satwrap.backend:sat-backend-version instance)))
51 :collect `(,key . ,descr)))
54 ;;; Frontend:
55 (defclass sat-solver ()
56 ((backend :initarg :backend :accessor sat-solver-backend)
57 (numvars :initform 0 :accessor sat-solver-numvars)
58 ;; CNF; split into 'old' and 'new' to allow incremental solving
59 (new-clauses :initform '() :accessor sat-solver-new-clauses)
60 (old-clauses :initform '() :accessor sat-solver-old-clauses)
62 (:default-initargs :backend (make-instance (cdr (assoc *default-sat-backend*
63 *satwrap-backends*))))
64 (:documentation "A Sat solver abstraction"))
66 (defmethod sat-solver-numclauses ((solver sat-solver))
67 (+ (length (sat-solver-new-clauses solver))
68 (length (sat-solver-old-clauses solver))
71 (defmethod print-object ((solver sat-solver) stream)
72 (print-unreadable-object (solver stream :type T :identity T)
73 (format stream "~D vars, ~D clauses, backend ~A"
74 (sat-solver-numvars solver)
75 (sat-solver-numclauses solver)
76 (sat-solver-backend solver))))
78 (defmethod clause-valid ((solver sat-solver) (clause list))
79 "Check that CLAUSE is a valid clause for SOLVER."
80 (loop
81 :with max := (sat-solver-numvars solver)
82 :with min := (- max)
83 :for v :in clause
84 :always (and (not (zerop v))
85 (<= min v max))))
87 (defmethod clause-valid ((solver sat-solver) (clause vector))
88 "Check that CLAUSE is a valid clause for SOLVER."
89 (loop
90 :with max := (sat-solver-numvars solver)
91 :with min := (- max)
92 :for v :across clause
93 :always (and (not (zerop v))
94 (<= min v max))))
96 (defmacro iota (n &optional (start 1))
97 "Return a list of the N sequential integers starting at START (default: 1)."
98 (let ((i (gensym "i")))
99 `(loop :repeat ,n
100 :for ,i :from ,start
101 :collect ,i)))
103 (define-condition satwrap-condition (error)
105 (:documentation "Superclass of all conditions raised by satwrap code."))
107 (define-condition invalid-clause (satwrap-condition)
108 ((solver :initarg :solver :reader invalid-clause-solver)
109 (clause :initarg :clause :reader invalid-clause-clause))
110 (:report (lambda (condition stream)
111 (format stream "Invalid clause ~A for solver ~A"
112 (invalid-clause-clause condition)
113 (invalid-clause-solver condition)))))
115 (define-condition invalid-backend (satwrap-condition)
116 ((name :initarg :name :reader invalid-backend-name))
117 (:report (lambda (condition stream)
118 (declare (special *satwrap-backends* *default-sat-backend*))
119 (format stream "Invalid backend ~S specified. Supported: ~{~S~^, ~}, default ~S."
120 (invalid-backend-name condition)
121 (mapcar #'car *satwrap-backends*)
122 *default-sat-backend*))))
124 (defmethod flush-to-backend ((solver sat-solver))
125 "Populate backend, possibly flushing old backend contents."
126 (satwrap.backend:synchronize-backend (sat-solver-backend solver)
127 (sat-solver-numvars solver)
128 (sat-solver-new-clauses solver)
129 '() ;; deleted clauses, not yet supported
130 (sat-solver-old-clauses solver))
131 (loop :with deleted := '()
132 :for c :in (sat-solver-old-clauses solver)
133 :unless (find c deleted :test #'equal)
134 :do (push c (sat-solver-new-clauses solver)))
135 (setf (sat-solver-old-clauses solver) (sat-solver-new-clauses solver)
136 (sat-solver-new-clauses solver) '()))
139 (defun make-sat-solver (&optional (backend *default-sat-backend*))
140 "Return a new sat solver instance. Optional argument BACKEND can be used to
141 specify which backend should be used. It defaults to *default-sat-backend*."
142 (let ((be (assoc backend *satwrap-backends* :test #'eq)))
143 (if be
144 (make-instance 'sat-solver :backend (make-instance (cdr be)))
145 (error 'invalid-backend :name backend))))
147 (defgeneric add-variable (solver)
148 (:documentation "Add another variable to SOLVER. Returns new variable index.")
149 (:method ((solver sat-solver))
150 (incf (sat-solver-numvars solver))))
152 (defgeneric add-clause (solver clause)
153 (:documentation "Add CLAUSE to SOLVER's cnf formula. Clause is consumed.")
154 (:method ((solver sat-solver) (clause list))
155 (if (clause-valid solver clause)
156 (push clause (sat-solver-new-clauses solver))
157 (error 'invalid-clause :clause clause :solver solver)))
158 (:method ((solver sat-solver) (clause vector))
159 (add-clause solver (coerce clause 'list))))
161 (defgeneric add-clauses (solver clauses)
162 (:documentation "Add CLAUSES to SOLVER's cnf formula. Clauses are consumed.")
163 (:method ((solver sat-solver) (clauses list))
164 (dolist (c clauses)
165 (add-clause solver c))))
167 (defgeneric satisfiablep (solver &key assume)
168 (:documentation "Check whether current CNF in SOLVER is satisfiable.
169 Keyword argument :ASSUME can provide a sequence of literals assumed TRUE or FALSE.
170 Returns T or NIL.")
171 (:method ((solver sat-solver) &key (assume '()))
172 (if (clause-valid solver assume) ;; misusing 'clause' concept here
173 (progn
174 (flush-to-backend solver)
175 (satwrap.backend:satisfiablep (sat-solver-backend solver) assume))
176 (error 'invalid-clause :clause assume :solver solver))))
178 (defgeneric solution (solver &key interesting-vars)
179 (:documentation "Return solution for SOLVER. If unsat, return '(). If sat return
180 sequence of 0/1 values for variables [1...N]. Keyword argument INTERESTING-VARS can be used to restrict the variables whose values are reported. Solution components will be in the same order that INTERESTING-VARS lists the variables in.")
181 (:method ((solver sat-solver)
182 &key (interesting-vars (iota (sat-solver-numvars solver))))
183 (satwrap.backend:solution (sat-solver-backend solver) interesting-vars)))
185 (defgeneric get-essential-variables (solver)
186 (:documentation "Compute the variables that are essential, i.e. fixed in all solutions of SOLVER.
187 Returns a list of literals fixed, sign according to phase.")
188 (:method ((solver sat-solver))
189 ;; The backend may define a specialized method, but then it has to
190 ;; work on the one copy of data flushed to the solver. Precosat for example
191 ;; does not allow that, so we define the universal implementation here instead of
192 ;; a default implementation in the backend.
193 (let ((have-specialized-method
194 (find-method #'satwrap.backend:get-essential-variables
196 `(,(class-of (sat-solver-backend solver)))
197 nil)))
198 (if have-specialized-method
199 (progn
200 (flush-to-backend solver)
201 (satwrap.backend:get-essential-variables (sat-solver-backend solver)))
202 (let ((fixed '()))
203 (loop :for var :of-type (integer 1) :in (iota (sat-solver-numvars solver))
204 :as sat-for-+ := (satisfiablep solver :assume `(,var ,@fixed ))
205 :as sat-for-- := (satisfiablep solver :assume `(,(- var) ,@fixed))
206 :do (cond
207 ((and sat-for-+ (not sat-for--))
208 (push var fixed))
209 ((and (not sat-for-+) sat-for--)
210 (push (- var) fixed))))
211 fixed)))))
214 (defmacro with-sat-solver ((name numatoms &key (backend *default-sat-backend* backend-given))
215 &body body)
216 "Bind NAME to a fresh sat-solver with backend :BACKEND (default: *default-sat-backend*) and declare NUMATOMS variables numbered 1..NUMATOMS for the duration of BODY."
217 `(let ((,name (make-sat-solver ,(if backend-given
218 backend
219 '*default-sat-backend*))))
220 (loop :repeat ,numatoms :do (add-variable ,name))
221 (locally
222 ,@body)))
224 (defmacro with-index-hash ((mapping &key (test 'eq)) objects &body body)
225 "Execute BODY while binding MAPPING to a hash-table (with predicate
226 TEST, defaults to #'cl:eq) mapping the elements of the sequence OBJECTS
227 to integer 1..[length objects].
228 Typically used to map objects to variables inside WITH-SAT-SOLVER."
229 (let ((o (gensym "objects")))
230 `(let* ((,o ,objects)
231 (,mapping (etypecase ,o
232 (list (loop :with ht := (make-hash-table :test #',test)
233 :for x :in ,o
234 :for num :of-type fixnum :from 1
235 :do (setf (gethash x ht) num)
236 :finally (return ht)))
237 (vector (loop :with ht := (make-hash-table :test #',test)
238 :for x :across ,o
239 :for num :of-type fixnum :from 1
240 :do (setf (gethash x ht) num)
241 :finally (return ht))))))
242 ,@body)))
244 ;; convenience syntax for logical operations:
245 (defun standardize (tree)
246 "Convert tree of logical operations to elementary :NOT, :AND, :OR tree (preserving :ATOM).
247 Supports :IMPLY, :IFF, binary :XOR, and :NOR. "
248 (cond
249 ((consp tree)
250 (destructuring-bind (op . expr)
251 tree
252 (case op
253 ((:IMPLY :IMPLIES)
254 (if (= 2 (length expr))
255 `(:OR (:NOT ,(standardize (car expr)))
256 ,(standardize (cadr expr)))
257 (error "non-binary :IMPLY operation: ~A" tree)))
258 (:IFF
259 (if (= 2 (length expr))
260 `(:AND ,(standardize `(:IMPLIES ,(car expr) ,(cadr expr)))
261 ,(standardize `(:IMPLIES ,(cadr expr) ,(car expr))))
262 (error "non-binary :IFF operation: ~A" tree)))
263 (:XOR
264 (if (= 2 (length expr))
265 (let ((e1 (standardize (first expr)))
266 (e2 (standardize (second expr))))
267 `(:OR (:AND ,e1 (:NOT ,e2))
268 (:AND ,e2 (:NOT ,e1))))
269 (error "non-binary :XOR operation: ~A" tree)))
270 (:NOR
271 `(:AND ,@(mapcar #'(lambda (p) `(:NOT ,(standardize p))) expr)))
273 (T `(,op ,@(mapcar #'standardize expr))))))
274 (T tree)))
276 (defun standard-tree->nnf (tree)
277 "Move NOTs inward. Input must be AND/OR/NOT-only; returns NNF tree."
278 (cond
279 ((consp tree)
280 (destructuring-bind (op . expr)
281 tree
282 (case op
283 (:NOT (if (= 1 (length expr))
284 (let ((subexpr (first expr)))
285 (if (consp subexpr)
286 (case (first subexpr)
287 ;; double-not: drop 2 levels
288 (:NOT (standard-tree->nnf (cadr subexpr)))
289 ;; NOT AND:
290 (:AND `(:OR ,@(mapcar #'(lambda (c)
291 (standard-tree->nnf `(:NOT ,c)))
292 (cdr subexpr))))
293 ;; NOT OR:
294 (:OR `(:AND ,@(mapcar #'(lambda (c)
295 (standard-tree->nnf `(:NOT ,c)))
296 (cdr subexpr))))
297 ;; `quoted' atom: keep
298 (:ATOM `(:NOT ,subexpr))
299 (otherwise `(:NOT ,subexpr)))
300 ;; non-quoted atom:
301 `(:NOT ,subexpr)))
302 (error "non-unary :NOT expression: ~W" tree)))
303 ;; other operators: AND, OR, ATOM: descend
305 `(,op ,@(mapcar #'standard-tree->nnf expr))))))
306 ;; non-cons: stop
307 (T tree)))
309 (defun crossprod (list-of-lists)
310 "Return a list of all lists containing one element from each sublist of LIST-OF-LISTS."
311 (reduce #'(lambda (collected term)
312 (loop :for x :in term :appending
313 (loop :for tail :in collected
314 :collect `(,x ,@tail))))
315 list-of-lists
316 :initial-value '(())))
318 (defun is-cnf (tree)
319 "Check that TREE is in CNF."
320 (flet ((and-form (f)
321 (and (consp f)
322 (eq :AND (car f))))
323 (or-form (f)
324 (and (consp f)
325 (eq :OR (car f))))
326 (atomic (f)
327 (if (consp f)
328 (and (not (eq :OR (car f)))
329 (not (eq :AND (car f))))
330 T)))
331 (if (atomic tree)
333 (and (and-form tree)
334 (every #'(lambda (c)
335 (or (atomic c)
336 (and (or-form c)
337 (every #'atomic (cdr c)))))
338 (cdr tree))))))
340 (defun distribute (tree)
341 "Pull out :ANDs to reduce standardized tree in NNF to CNF."
342 (if (consp tree)
343 (case (car tree)
344 (:AND (let ((sub-cnfs (mapcar #'distribute (cdr tree))))
345 (assert (every #'is-cnf sub-cnfs)
346 (sub-cnfs)
347 "Not all in CNF: ~{~A~^~%~}" sub-cnfs)
348 (let (clauses)
349 (loop :for sub-cnf :in sub-cnfs
350 :if (and (consp sub-cnf)
351 (eq :AND (car sub-cnf)))
352 ;; AND(AND ..) = AND ..
353 :do (dolist (clause (cdr sub-cnf))
354 (push clause clauses))
355 :else :do (push sub-cnf clauses))
356 `(:AND ,@clauses))))
357 (:OR (let (ands)
358 (dolist (term (mapcar #'distribute (cdr tree)))
359 (assert (is-cnf term)
360 (term)
361 "~A not in CNF" term)
362 (if (consp term)
363 (case (car term)
364 (:AND (push (cdr term) ands))
365 (:OR (dolist (c (cdr term))
366 (push `(,c) ands)))
367 (otherwise (push `(,term) ands)))
368 (push `(,term) ands)))
369 (let ((clauses (crossprod ands)))
370 `(:AND ,@(mapcar #'(lambda (c)
371 (if (not (consp c))
373 `(:OR ,@ (loop :for subterm :in c
374 :if (and (consp subterm)
375 (eq :OR (car subterm)))
376 ;; (OR(OR...)) == (OR ...)
377 :append (cdr subterm)
378 ;; if C is not an OR-clause
379 ;; it is considered atomic:
380 :else :append `(,subterm)))))
381 clauses)))))
382 (otherwise
383 tree))
384 tree))
387 (defun tree->cnf (tree &optional (mapping #'cl:identity) (atom-test #'eql))
388 "Convert TREE to CNF, applying MAPPING to atoms and afterwards and removing duplicate literals in clauses using atom-test to test for equality. Also simplifies trivially fulfilled clauses to empty clause."
389 (labels ((atomic (f)
390 (if (consp f)
391 (and (not (eq :OR (car f)))
392 (not (eq :AND (car f))))
394 (map-literals (cnf)
395 ;; destructively apply MAPPING
396 (if (atomic cnf)
397 (setf cnf (funcall mapping cnf))
398 (setf (cdr cnf) ;; we must be looking at an AND
399 (mapcar #'(lambda (clause)
400 (if (atomic clause)
401 (funcall mapping clause)
402 `(:OR ,@(mapcar #'(lambda (lit)
403 (funcall mapping lit))
404 (cdr clause)))))
405 (cdr cnf))))
406 cnf)
407 (negated-litp (lit)
408 (and (consp lit) (eq :NOT (car lit))))
409 (atom-for (lit)
410 (if (consp lit)
411 (case (car lit)
412 (:NOT (atom-for (second lit)))
413 (:ATOM (second lit))
414 (otherwise lit))
415 lit))
416 (duplicate-literalsp (l1 l2)
417 (funcall atom-test (atom-for l1) (atom-for l2)))
418 (trivial-clausep (c)
419 (loop :for (lit . haystack) :on c
420 :as needle := (atom-for lit)
421 :as negated := (and (consp lit) (eq :NOT (car lit)))
422 :when (find-if #'(lambda (x)
423 (and (if negated
424 (not (negated-litp x))
425 (negated-litp x))
426 (funcall atom-test needle (atom-for x))))
427 haystack)
428 :return T
429 :finally (return NIL)))
430 (clean-clauses (cnf)
431 ;; destructively apply MAPPING
432 (if (atomic cnf)
433 (setf cnf cnf)
434 (setf (cdr cnf) ;; we must be looking at an AND
435 (loop :for clause :in (cdr cnf)
436 :if (atomic clause)
437 :collect clause
438 :else :if (not (trivial-clausep clause))
439 :collect `(:OR ,@(remove-duplicates
440 (cdr clause)
441 :test #'duplicate-literalsp)))))
442 cnf))
443 (clean-clauses
444 (map-literals
445 (distribute
446 (standard-tree->nnf
447 (standardize tree)))))))
450 (defgeneric add-formula (solver formula &key mapping atom-test)
451 (:documentation "Add logical FORMULA to SOLVER.
452 Formula is an expression tree that can contain high-level abbreviations :IMPLY, :IFF, :NOR and :XOR, as well as the basic :AND, :OR, :NOT. Everything else is considered an atom. Atoms can also be explicitly written as (:ATOM foo).
453 All atoms will be mapped through MAPPING before being added to the solver to convert your favorite atoms to phased variables. MAPPING is a function of 1 argument, the atom. It defaults to #'identity. Afterwards, clean clauses (removing duplicates and simplifying trivial clauses, comparing atoms using ATOM-TEST (default: #'eql).")
454 (:method ((solver sat-solver) (formula list) &key (mapping #'identity) (atom-test #'eql))
455 (dolist (c (cdr ;; drop outer :AND
456 (tree->cnf formula mapping atom-test)))
457 (add-clause solver (cdr ;; drop :OR
458 c)))))
460 (defgeneric add-and (solver literals &key mapping)
461 (:documentation "Add clauses for AND(literals) to SOLVER.")
462 (:method ((solver sat-solver) (literals list) &key (mapping #'identity))
463 (add-formula solver `(:AND ,@literals) mapping)))
465 (defgeneric add-or (solver literals &key mapping)
466 (:documentation "Add clauses for OR(literals) to SOLVER.")
467 (:method ((solver sat-solver) (literals list) &key (mapping #'identity))
468 (add-formula solver `(:OR ,@literals) mapping)))
470 (defgeneric add-xor (solver literals &key mapping)
471 (:documentation "Add clauses for binary XOR(literals) to SOLVER.")
472 (:method ((solver sat-solver) (literals list) &key (mapping #'identity))
473 (add-formula solver `(:XOR ,@literals) mapping)))
475 (defgeneric add-if (solver lhs rhs &key mapping)
476 (:documentation "Add clauses for lhs -> rhs to SOLVER.")
477 (:method ((solver sat-solver) (lhs list) (rhs list) &key (mapping #'identity))
478 (add-formula solver `(:IMPLIES ,lhs ,rhs) mapping)))
480 (defgeneric add-iff (solver lhs rhs &key mapping)
481 (:documentation "Add clauses for lhs <-> rhs to SOLVER.")
482 (:method ((solver sat-solver) (lhs list) (rhs list) &key (mapping #'identity))
483 (add-formula solver `(:IFF ,lhs ,rhs) mapping)))