libata: automatically use DMADIR if drive/bridge requires it
[ccrypt.git] / drivers / ata / libata-core.c
blob1845119cc7f01f8104df815162fd0d7d4502a530
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
69 #include "libata.h"
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
88 struct workqueue_struct *ata_aux_wq;
90 struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
99 struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
105 static struct ata_force_ent *ata_force_tbl;
106 static int ata_force_tbl_size;
108 static char ata_force_param_buf[PAGE_SIZE] __initdata;
109 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0444);
110 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112 int atapi_enabled = 1;
113 module_param(atapi_enabled, int, 0444);
114 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
116 int atapi_dmadir = 0;
117 module_param(atapi_dmadir, int, 0444);
118 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120 int atapi_passthru16 = 1;
121 module_param(atapi_passthru16, int, 0444);
122 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
124 int libata_fua = 0;
125 module_param_named(fua, libata_fua, int, 0444);
126 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
128 static int ata_ignore_hpa;
129 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
130 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
133 module_param_named(dma, libata_dma_mask, int, 0444);
134 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
137 module_param(ata_probe_timeout, int, 0444);
138 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140 int libata_noacpi = 0;
141 module_param_named(noacpi, libata_noacpi, int, 0444);
142 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
144 int libata_allow_tpm = 0;
145 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
146 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
148 MODULE_AUTHOR("Jeff Garzik");
149 MODULE_DESCRIPTION("Library module for ATA devices");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION);
155 * ata_force_cbl - force cable type according to libata.force
156 * @link: ATA link of interest
158 * Force cable type according to libata.force and whine about it.
159 * The last entry which has matching port number is used, so it
160 * can be specified as part of device force parameters. For
161 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
162 * same effect.
164 * LOCKING:
165 * EH context.
167 void ata_force_cbl(struct ata_port *ap)
169 int i;
171 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
172 const struct ata_force_ent *fe = &ata_force_tbl[i];
174 if (fe->port != -1 && fe->port != ap->print_id)
175 continue;
177 if (fe->param.cbl == ATA_CBL_NONE)
178 continue;
180 ap->cbl = fe->param.cbl;
181 ata_port_printk(ap, KERN_NOTICE,
182 "FORCE: cable set to %s\n", fe->param.name);
183 return;
188 * ata_force_spd_limit - force SATA spd limit according to libata.force
189 * @link: ATA link of interest
191 * Force SATA spd limit according to libata.force and whine about
192 * it. When only the port part is specified (e.g. 1:), the limit
193 * applies to all links connected to both the host link and all
194 * fan-out ports connected via PMP. If the device part is
195 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
196 * link not the host link. Device number 15 always points to the
197 * host link whether PMP is attached or not.
199 * LOCKING:
200 * EH context.
202 static void ata_force_spd_limit(struct ata_link *link)
204 int linkno, i;
206 if (ata_is_host_link(link))
207 linkno = 15;
208 else
209 linkno = link->pmp;
211 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
212 const struct ata_force_ent *fe = &ata_force_tbl[i];
214 if (fe->port != -1 && fe->port != link->ap->print_id)
215 continue;
217 if (fe->device != -1 && fe->device != linkno)
218 continue;
220 if (!fe->param.spd_limit)
221 continue;
223 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
224 ata_link_printk(link, KERN_NOTICE,
225 "FORCE: PHY spd limit set to %s\n", fe->param.name);
226 return;
231 * ata_force_xfermask - force xfermask according to libata.force
232 * @dev: ATA device of interest
234 * Force xfer_mask according to libata.force and whine about it.
235 * For consistency with link selection, device number 15 selects
236 * the first device connected to the host link.
238 * LOCKING:
239 * EH context.
241 static void ata_force_xfermask(struct ata_device *dev)
243 int devno = dev->link->pmp + dev->devno;
244 int alt_devno = devno;
245 int i;
247 /* allow n.15 for the first device attached to host port */
248 if (ata_is_host_link(dev->link) && devno == 0)
249 alt_devno = 15;
251 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
252 const struct ata_force_ent *fe = &ata_force_tbl[i];
253 unsigned long pio_mask, mwdma_mask, udma_mask;
255 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
256 continue;
258 if (fe->device != -1 && fe->device != devno &&
259 fe->device != alt_devno)
260 continue;
262 if (!fe->param.xfer_mask)
263 continue;
265 ata_unpack_xfermask(fe->param.xfer_mask,
266 &pio_mask, &mwdma_mask, &udma_mask);
267 if (udma_mask)
268 dev->udma_mask = udma_mask;
269 else if (mwdma_mask) {
270 dev->udma_mask = 0;
271 dev->mwdma_mask = mwdma_mask;
272 } else {
273 dev->udma_mask = 0;
274 dev->mwdma_mask = 0;
275 dev->pio_mask = pio_mask;
278 ata_dev_printk(dev, KERN_NOTICE,
279 "FORCE: xfer_mask set to %s\n", fe->param.name);
280 return;
285 * ata_force_horkage - force horkage according to libata.force
286 * @dev: ATA device of interest
288 * Force horkage according to libata.force and whine about it.
289 * For consistency with link selection, device number 15 selects
290 * the first device connected to the host link.
292 * LOCKING:
293 * EH context.
295 static void ata_force_horkage(struct ata_device *dev)
297 int devno = dev->link->pmp + dev->devno;
298 int alt_devno = devno;
299 int i;
301 /* allow n.15 for the first device attached to host port */
302 if (ata_is_host_link(dev->link) && devno == 0)
303 alt_devno = 15;
305 for (i = 0; i < ata_force_tbl_size; i++) {
306 const struct ata_force_ent *fe = &ata_force_tbl[i];
308 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
309 continue;
311 if (fe->device != -1 && fe->device != devno &&
312 fe->device != alt_devno)
313 continue;
315 if (!(~dev->horkage & fe->param.horkage_on) &&
316 !(dev->horkage & fe->param.horkage_off))
317 continue;
319 dev->horkage |= fe->param.horkage_on;
320 dev->horkage &= ~fe->param.horkage_off;
322 ata_dev_printk(dev, KERN_NOTICE,
323 "FORCE: horkage modified (%s)\n", fe->param.name);
328 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
329 * @tf: Taskfile to convert
330 * @pmp: Port multiplier port
331 * @is_cmd: This FIS is for command
332 * @fis: Buffer into which data will output
334 * Converts a standard ATA taskfile to a Serial ATA
335 * FIS structure (Register - Host to Device).
337 * LOCKING:
338 * Inherited from caller.
340 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
342 fis[0] = 0x27; /* Register - Host to Device FIS */
343 fis[1] = pmp & 0xf; /* Port multiplier number*/
344 if (is_cmd)
345 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
347 fis[2] = tf->command;
348 fis[3] = tf->feature;
350 fis[4] = tf->lbal;
351 fis[5] = tf->lbam;
352 fis[6] = tf->lbah;
353 fis[7] = tf->device;
355 fis[8] = tf->hob_lbal;
356 fis[9] = tf->hob_lbam;
357 fis[10] = tf->hob_lbah;
358 fis[11] = tf->hob_feature;
360 fis[12] = tf->nsect;
361 fis[13] = tf->hob_nsect;
362 fis[14] = 0;
363 fis[15] = tf->ctl;
365 fis[16] = 0;
366 fis[17] = 0;
367 fis[18] = 0;
368 fis[19] = 0;
372 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
373 * @fis: Buffer from which data will be input
374 * @tf: Taskfile to output
376 * Converts a serial ATA FIS structure to a standard ATA taskfile.
378 * LOCKING:
379 * Inherited from caller.
382 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
384 tf->command = fis[2]; /* status */
385 tf->feature = fis[3]; /* error */
387 tf->lbal = fis[4];
388 tf->lbam = fis[5];
389 tf->lbah = fis[6];
390 tf->device = fis[7];
392 tf->hob_lbal = fis[8];
393 tf->hob_lbam = fis[9];
394 tf->hob_lbah = fis[10];
396 tf->nsect = fis[12];
397 tf->hob_nsect = fis[13];
400 static const u8 ata_rw_cmds[] = {
401 /* pio multi */
402 ATA_CMD_READ_MULTI,
403 ATA_CMD_WRITE_MULTI,
404 ATA_CMD_READ_MULTI_EXT,
405 ATA_CMD_WRITE_MULTI_EXT,
409 ATA_CMD_WRITE_MULTI_FUA_EXT,
410 /* pio */
411 ATA_CMD_PIO_READ,
412 ATA_CMD_PIO_WRITE,
413 ATA_CMD_PIO_READ_EXT,
414 ATA_CMD_PIO_WRITE_EXT,
419 /* dma */
420 ATA_CMD_READ,
421 ATA_CMD_WRITE,
422 ATA_CMD_READ_EXT,
423 ATA_CMD_WRITE_EXT,
427 ATA_CMD_WRITE_FUA_EXT
431 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
432 * @tf: command to examine and configure
433 * @dev: device tf belongs to
435 * Examine the device configuration and tf->flags to calculate
436 * the proper read/write commands and protocol to use.
438 * LOCKING:
439 * caller.
441 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
443 u8 cmd;
445 int index, fua, lba48, write;
447 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
448 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
449 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
451 if (dev->flags & ATA_DFLAG_PIO) {
452 tf->protocol = ATA_PROT_PIO;
453 index = dev->multi_count ? 0 : 8;
454 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
455 /* Unable to use DMA due to host limitation */
456 tf->protocol = ATA_PROT_PIO;
457 index = dev->multi_count ? 0 : 8;
458 } else {
459 tf->protocol = ATA_PROT_DMA;
460 index = 16;
463 cmd = ata_rw_cmds[index + fua + lba48 + write];
464 if (cmd) {
465 tf->command = cmd;
466 return 0;
468 return -1;
472 * ata_tf_read_block - Read block address from ATA taskfile
473 * @tf: ATA taskfile of interest
474 * @dev: ATA device @tf belongs to
476 * LOCKING:
477 * None.
479 * Read block address from @tf. This function can handle all
480 * three address formats - LBA, LBA48 and CHS. tf->protocol and
481 * flags select the address format to use.
483 * RETURNS:
484 * Block address read from @tf.
486 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
488 u64 block = 0;
490 if (tf->flags & ATA_TFLAG_LBA) {
491 if (tf->flags & ATA_TFLAG_LBA48) {
492 block |= (u64)tf->hob_lbah << 40;
493 block |= (u64)tf->hob_lbam << 32;
494 block |= tf->hob_lbal << 24;
495 } else
496 block |= (tf->device & 0xf) << 24;
498 block |= tf->lbah << 16;
499 block |= tf->lbam << 8;
500 block |= tf->lbal;
501 } else {
502 u32 cyl, head, sect;
504 cyl = tf->lbam | (tf->lbah << 8);
505 head = tf->device & 0xf;
506 sect = tf->lbal;
508 block = (cyl * dev->heads + head) * dev->sectors + sect;
511 return block;
515 * ata_build_rw_tf - Build ATA taskfile for given read/write request
516 * @tf: Target ATA taskfile
517 * @dev: ATA device @tf belongs to
518 * @block: Block address
519 * @n_block: Number of blocks
520 * @tf_flags: RW/FUA etc...
521 * @tag: tag
523 * LOCKING:
524 * None.
526 * Build ATA taskfile @tf for read/write request described by
527 * @block, @n_block, @tf_flags and @tag on @dev.
529 * RETURNS:
531 * 0 on success, -ERANGE if the request is too large for @dev,
532 * -EINVAL if the request is invalid.
534 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
535 u64 block, u32 n_block, unsigned int tf_flags,
536 unsigned int tag)
538 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
539 tf->flags |= tf_flags;
541 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
542 /* yay, NCQ */
543 if (!lba_48_ok(block, n_block))
544 return -ERANGE;
546 tf->protocol = ATA_PROT_NCQ;
547 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
549 if (tf->flags & ATA_TFLAG_WRITE)
550 tf->command = ATA_CMD_FPDMA_WRITE;
551 else
552 tf->command = ATA_CMD_FPDMA_READ;
554 tf->nsect = tag << 3;
555 tf->hob_feature = (n_block >> 8) & 0xff;
556 tf->feature = n_block & 0xff;
558 tf->hob_lbah = (block >> 40) & 0xff;
559 tf->hob_lbam = (block >> 32) & 0xff;
560 tf->hob_lbal = (block >> 24) & 0xff;
561 tf->lbah = (block >> 16) & 0xff;
562 tf->lbam = (block >> 8) & 0xff;
563 tf->lbal = block & 0xff;
565 tf->device = 1 << 6;
566 if (tf->flags & ATA_TFLAG_FUA)
567 tf->device |= 1 << 7;
568 } else if (dev->flags & ATA_DFLAG_LBA) {
569 tf->flags |= ATA_TFLAG_LBA;
571 if (lba_28_ok(block, n_block)) {
572 /* use LBA28 */
573 tf->device |= (block >> 24) & 0xf;
574 } else if (lba_48_ok(block, n_block)) {
575 if (!(dev->flags & ATA_DFLAG_LBA48))
576 return -ERANGE;
578 /* use LBA48 */
579 tf->flags |= ATA_TFLAG_LBA48;
581 tf->hob_nsect = (n_block >> 8) & 0xff;
583 tf->hob_lbah = (block >> 40) & 0xff;
584 tf->hob_lbam = (block >> 32) & 0xff;
585 tf->hob_lbal = (block >> 24) & 0xff;
586 } else
587 /* request too large even for LBA48 */
588 return -ERANGE;
590 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
591 return -EINVAL;
593 tf->nsect = n_block & 0xff;
595 tf->lbah = (block >> 16) & 0xff;
596 tf->lbam = (block >> 8) & 0xff;
597 tf->lbal = block & 0xff;
599 tf->device |= ATA_LBA;
600 } else {
601 /* CHS */
602 u32 sect, head, cyl, track;
604 /* The request -may- be too large for CHS addressing. */
605 if (!lba_28_ok(block, n_block))
606 return -ERANGE;
608 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
609 return -EINVAL;
611 /* Convert LBA to CHS */
612 track = (u32)block / dev->sectors;
613 cyl = track / dev->heads;
614 head = track % dev->heads;
615 sect = (u32)block % dev->sectors + 1;
617 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
618 (u32)block, track, cyl, head, sect);
620 /* Check whether the converted CHS can fit.
621 Cylinder: 0-65535
622 Head: 0-15
623 Sector: 1-255*/
624 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
625 return -ERANGE;
627 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
628 tf->lbal = sect;
629 tf->lbam = cyl;
630 tf->lbah = cyl >> 8;
631 tf->device |= head;
634 return 0;
638 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
639 * @pio_mask: pio_mask
640 * @mwdma_mask: mwdma_mask
641 * @udma_mask: udma_mask
643 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
644 * unsigned int xfer_mask.
646 * LOCKING:
647 * None.
649 * RETURNS:
650 * Packed xfer_mask.
652 unsigned long ata_pack_xfermask(unsigned long pio_mask,
653 unsigned long mwdma_mask,
654 unsigned long udma_mask)
656 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
657 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
658 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
662 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
663 * @xfer_mask: xfer_mask to unpack
664 * @pio_mask: resulting pio_mask
665 * @mwdma_mask: resulting mwdma_mask
666 * @udma_mask: resulting udma_mask
668 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
669 * Any NULL distination masks will be ignored.
671 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
672 unsigned long *mwdma_mask, unsigned long *udma_mask)
674 if (pio_mask)
675 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
676 if (mwdma_mask)
677 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
678 if (udma_mask)
679 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
682 static const struct ata_xfer_ent {
683 int shift, bits;
684 u8 base;
685 } ata_xfer_tbl[] = {
686 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
687 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
688 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
689 { -1, },
693 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
694 * @xfer_mask: xfer_mask of interest
696 * Return matching XFER_* value for @xfer_mask. Only the highest
697 * bit of @xfer_mask is considered.
699 * LOCKING:
700 * None.
702 * RETURNS:
703 * Matching XFER_* value, 0xff if no match found.
705 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
707 int highbit = fls(xfer_mask) - 1;
708 const struct ata_xfer_ent *ent;
710 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
711 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
712 return ent->base + highbit - ent->shift;
713 return 0xff;
717 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
718 * @xfer_mode: XFER_* of interest
720 * Return matching xfer_mask for @xfer_mode.
722 * LOCKING:
723 * None.
725 * RETURNS:
726 * Matching xfer_mask, 0 if no match found.
728 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
730 const struct ata_xfer_ent *ent;
732 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
733 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
734 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
735 & ~((1 << ent->shift) - 1);
736 return 0;
740 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
741 * @xfer_mode: XFER_* of interest
743 * Return matching xfer_shift for @xfer_mode.
745 * LOCKING:
746 * None.
748 * RETURNS:
749 * Matching xfer_shift, -1 if no match found.
751 int ata_xfer_mode2shift(unsigned long xfer_mode)
753 const struct ata_xfer_ent *ent;
755 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
756 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
757 return ent->shift;
758 return -1;
762 * ata_mode_string - convert xfer_mask to string
763 * @xfer_mask: mask of bits supported; only highest bit counts.
765 * Determine string which represents the highest speed
766 * (highest bit in @modemask).
768 * LOCKING:
769 * None.
771 * RETURNS:
772 * Constant C string representing highest speed listed in
773 * @mode_mask, or the constant C string "<n/a>".
775 const char *ata_mode_string(unsigned long xfer_mask)
777 static const char * const xfer_mode_str[] = {
778 "PIO0",
779 "PIO1",
780 "PIO2",
781 "PIO3",
782 "PIO4",
783 "PIO5",
784 "PIO6",
785 "MWDMA0",
786 "MWDMA1",
787 "MWDMA2",
788 "MWDMA3",
789 "MWDMA4",
790 "UDMA/16",
791 "UDMA/25",
792 "UDMA/33",
793 "UDMA/44",
794 "UDMA/66",
795 "UDMA/100",
796 "UDMA/133",
797 "UDMA7",
799 int highbit;
801 highbit = fls(xfer_mask) - 1;
802 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
803 return xfer_mode_str[highbit];
804 return "<n/a>";
807 static const char *sata_spd_string(unsigned int spd)
809 static const char * const spd_str[] = {
810 "1.5 Gbps",
811 "3.0 Gbps",
814 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
815 return "<unknown>";
816 return spd_str[spd - 1];
819 void ata_dev_disable(struct ata_device *dev)
821 if (ata_dev_enabled(dev)) {
822 if (ata_msg_drv(dev->link->ap))
823 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
824 ata_acpi_on_disable(dev);
825 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
826 ATA_DNXFER_QUIET);
827 dev->class++;
831 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
833 struct ata_link *link = dev->link;
834 struct ata_port *ap = link->ap;
835 u32 scontrol;
836 unsigned int err_mask;
837 int rc;
840 * disallow DIPM for drivers which haven't set
841 * ATA_FLAG_IPM. This is because when DIPM is enabled,
842 * phy ready will be set in the interrupt status on
843 * state changes, which will cause some drivers to
844 * think there are errors - additionally drivers will
845 * need to disable hot plug.
847 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
848 ap->pm_policy = NOT_AVAILABLE;
849 return -EINVAL;
853 * For DIPM, we will only enable it for the
854 * min_power setting.
856 * Why? Because Disks are too stupid to know that
857 * If the host rejects a request to go to SLUMBER
858 * they should retry at PARTIAL, and instead it
859 * just would give up. So, for medium_power to
860 * work at all, we need to only allow HIPM.
862 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
863 if (rc)
864 return rc;
866 switch (policy) {
867 case MIN_POWER:
868 /* no restrictions on IPM transitions */
869 scontrol &= ~(0x3 << 8);
870 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
871 if (rc)
872 return rc;
874 /* enable DIPM */
875 if (dev->flags & ATA_DFLAG_DIPM)
876 err_mask = ata_dev_set_feature(dev,
877 SETFEATURES_SATA_ENABLE, SATA_DIPM);
878 break;
879 case MEDIUM_POWER:
880 /* allow IPM to PARTIAL */
881 scontrol &= ~(0x1 << 8);
882 scontrol |= (0x2 << 8);
883 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
884 if (rc)
885 return rc;
888 * we don't have to disable DIPM since IPM flags
889 * disallow transitions to SLUMBER, which effectively
890 * disable DIPM if it does not support PARTIAL
892 break;
893 case NOT_AVAILABLE:
894 case MAX_PERFORMANCE:
895 /* disable all IPM transitions */
896 scontrol |= (0x3 << 8);
897 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
898 if (rc)
899 return rc;
902 * we don't have to disable DIPM since IPM flags
903 * disallow all transitions which effectively
904 * disable DIPM anyway.
906 break;
909 /* FIXME: handle SET FEATURES failure */
910 (void) err_mask;
912 return 0;
916 * ata_dev_enable_pm - enable SATA interface power management
917 * @dev: device to enable power management
918 * @policy: the link power management policy
920 * Enable SATA Interface power management. This will enable
921 * Device Interface Power Management (DIPM) for min_power
922 * policy, and then call driver specific callbacks for
923 * enabling Host Initiated Power management.
925 * Locking: Caller.
926 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
928 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
930 int rc = 0;
931 struct ata_port *ap = dev->link->ap;
933 /* set HIPM first, then DIPM */
934 if (ap->ops->enable_pm)
935 rc = ap->ops->enable_pm(ap, policy);
936 if (rc)
937 goto enable_pm_out;
938 rc = ata_dev_set_dipm(dev, policy);
940 enable_pm_out:
941 if (rc)
942 ap->pm_policy = MAX_PERFORMANCE;
943 else
944 ap->pm_policy = policy;
945 return /* rc */; /* hopefully we can use 'rc' eventually */
948 #ifdef CONFIG_PM
950 * ata_dev_disable_pm - disable SATA interface power management
951 * @dev: device to disable power management
953 * Disable SATA Interface power management. This will disable
954 * Device Interface Power Management (DIPM) without changing
955 * policy, call driver specific callbacks for disabling Host
956 * Initiated Power management.
958 * Locking: Caller.
959 * Returns: void
961 static void ata_dev_disable_pm(struct ata_device *dev)
963 struct ata_port *ap = dev->link->ap;
965 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
966 if (ap->ops->disable_pm)
967 ap->ops->disable_pm(ap);
969 #endif /* CONFIG_PM */
971 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
973 ap->pm_policy = policy;
974 ap->link.eh_info.action |= ATA_EHI_LPM;
975 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
976 ata_port_schedule_eh(ap);
979 #ifdef CONFIG_PM
980 static void ata_lpm_enable(struct ata_host *host)
982 struct ata_link *link;
983 struct ata_port *ap;
984 struct ata_device *dev;
985 int i;
987 for (i = 0; i < host->n_ports; i++) {
988 ap = host->ports[i];
989 ata_port_for_each_link(link, ap) {
990 ata_link_for_each_dev(dev, link)
991 ata_dev_disable_pm(dev);
996 static void ata_lpm_disable(struct ata_host *host)
998 int i;
1000 for (i = 0; i < host->n_ports; i++) {
1001 struct ata_port *ap = host->ports[i];
1002 ata_lpm_schedule(ap, ap->pm_policy);
1005 #endif /* CONFIG_PM */
1009 * ata_devchk - PATA device presence detection
1010 * @ap: ATA channel to examine
1011 * @device: Device to examine (starting at zero)
1013 * This technique was originally described in
1014 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1015 * later found its way into the ATA/ATAPI spec.
1017 * Write a pattern to the ATA shadow registers,
1018 * and if a device is present, it will respond by
1019 * correctly storing and echoing back the
1020 * ATA shadow register contents.
1022 * LOCKING:
1023 * caller.
1026 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1028 struct ata_ioports *ioaddr = &ap->ioaddr;
1029 u8 nsect, lbal;
1031 ap->ops->dev_select(ap, device);
1033 iowrite8(0x55, ioaddr->nsect_addr);
1034 iowrite8(0xaa, ioaddr->lbal_addr);
1036 iowrite8(0xaa, ioaddr->nsect_addr);
1037 iowrite8(0x55, ioaddr->lbal_addr);
1039 iowrite8(0x55, ioaddr->nsect_addr);
1040 iowrite8(0xaa, ioaddr->lbal_addr);
1042 nsect = ioread8(ioaddr->nsect_addr);
1043 lbal = ioread8(ioaddr->lbal_addr);
1045 if ((nsect == 0x55) && (lbal == 0xaa))
1046 return 1; /* we found a device */
1048 return 0; /* nothing found */
1052 * ata_dev_classify - determine device type based on ATA-spec signature
1053 * @tf: ATA taskfile register set for device to be identified
1055 * Determine from taskfile register contents whether a device is
1056 * ATA or ATAPI, as per "Signature and persistence" section
1057 * of ATA/PI spec (volume 1, sect 5.14).
1059 * LOCKING:
1060 * None.
1062 * RETURNS:
1063 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1064 * %ATA_DEV_UNKNOWN the event of failure.
1066 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1068 /* Apple's open source Darwin code hints that some devices only
1069 * put a proper signature into the LBA mid/high registers,
1070 * So, we only check those. It's sufficient for uniqueness.
1072 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1073 * signatures for ATA and ATAPI devices attached on SerialATA,
1074 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1075 * spec has never mentioned about using different signatures
1076 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1077 * Multiplier specification began to use 0x69/0x96 to identify
1078 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1079 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1080 * 0x69/0x96 shortly and described them as reserved for
1081 * SerialATA.
1083 * We follow the current spec and consider that 0x69/0x96
1084 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1086 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1087 DPRINTK("found ATA device by sig\n");
1088 return ATA_DEV_ATA;
1091 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1092 DPRINTK("found ATAPI device by sig\n");
1093 return ATA_DEV_ATAPI;
1096 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1097 DPRINTK("found PMP device by sig\n");
1098 return ATA_DEV_PMP;
1101 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1102 printk(KERN_INFO "ata: SEMB device ignored\n");
1103 return ATA_DEV_SEMB_UNSUP; /* not yet */
1106 DPRINTK("unknown device\n");
1107 return ATA_DEV_UNKNOWN;
1111 * ata_dev_try_classify - Parse returned ATA device signature
1112 * @dev: ATA device to classify (starting at zero)
1113 * @present: device seems present
1114 * @r_err: Value of error register on completion
1116 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1117 * an ATA/ATAPI-defined set of values is placed in the ATA
1118 * shadow registers, indicating the results of device detection
1119 * and diagnostics.
1121 * Select the ATA device, and read the values from the ATA shadow
1122 * registers. Then parse according to the Error register value,
1123 * and the spec-defined values examined by ata_dev_classify().
1125 * LOCKING:
1126 * caller.
1128 * RETURNS:
1129 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1131 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1132 u8 *r_err)
1134 struct ata_port *ap = dev->link->ap;
1135 struct ata_taskfile tf;
1136 unsigned int class;
1137 u8 err;
1139 ap->ops->dev_select(ap, dev->devno);
1141 memset(&tf, 0, sizeof(tf));
1143 ap->ops->tf_read(ap, &tf);
1144 err = tf.feature;
1145 if (r_err)
1146 *r_err = err;
1148 /* see if device passed diags: continue and warn later */
1149 if (err == 0)
1150 /* diagnostic fail : do nothing _YET_ */
1151 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1152 else if (err == 1)
1153 /* do nothing */ ;
1154 else if ((dev->devno == 0) && (err == 0x81))
1155 /* do nothing */ ;
1156 else
1157 return ATA_DEV_NONE;
1159 /* determine if device is ATA or ATAPI */
1160 class = ata_dev_classify(&tf);
1162 if (class == ATA_DEV_UNKNOWN) {
1163 /* If the device failed diagnostic, it's likely to
1164 * have reported incorrect device signature too.
1165 * Assume ATA device if the device seems present but
1166 * device signature is invalid with diagnostic
1167 * failure.
1169 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1170 class = ATA_DEV_ATA;
1171 else
1172 class = ATA_DEV_NONE;
1173 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1174 class = ATA_DEV_NONE;
1176 return class;
1180 * ata_id_string - Convert IDENTIFY DEVICE page into string
1181 * @id: IDENTIFY DEVICE results we will examine
1182 * @s: string into which data is output
1183 * @ofs: offset into identify device page
1184 * @len: length of string to return. must be an even number.
1186 * The strings in the IDENTIFY DEVICE page are broken up into
1187 * 16-bit chunks. Run through the string, and output each
1188 * 8-bit chunk linearly, regardless of platform.
1190 * LOCKING:
1191 * caller.
1194 void ata_id_string(const u16 *id, unsigned char *s,
1195 unsigned int ofs, unsigned int len)
1197 unsigned int c;
1199 while (len > 0) {
1200 c = id[ofs] >> 8;
1201 *s = c;
1202 s++;
1204 c = id[ofs] & 0xff;
1205 *s = c;
1206 s++;
1208 ofs++;
1209 len -= 2;
1214 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1215 * @id: IDENTIFY DEVICE results we will examine
1216 * @s: string into which data is output
1217 * @ofs: offset into identify device page
1218 * @len: length of string to return. must be an odd number.
1220 * This function is identical to ata_id_string except that it
1221 * trims trailing spaces and terminates the resulting string with
1222 * null. @len must be actual maximum length (even number) + 1.
1224 * LOCKING:
1225 * caller.
1227 void ata_id_c_string(const u16 *id, unsigned char *s,
1228 unsigned int ofs, unsigned int len)
1230 unsigned char *p;
1232 WARN_ON(!(len & 1));
1234 ata_id_string(id, s, ofs, len - 1);
1236 p = s + strnlen(s, len - 1);
1237 while (p > s && p[-1] == ' ')
1238 p--;
1239 *p = '\0';
1242 static u64 ata_id_n_sectors(const u16 *id)
1244 if (ata_id_has_lba(id)) {
1245 if (ata_id_has_lba48(id))
1246 return ata_id_u64(id, 100);
1247 else
1248 return ata_id_u32(id, 60);
1249 } else {
1250 if (ata_id_current_chs_valid(id))
1251 return ata_id_u32(id, 57);
1252 else
1253 return id[1] * id[3] * id[6];
1257 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1259 u64 sectors = 0;
1261 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1262 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1263 sectors |= (tf->hob_lbal & 0xff) << 24;
1264 sectors |= (tf->lbah & 0xff) << 16;
1265 sectors |= (tf->lbam & 0xff) << 8;
1266 sectors |= (tf->lbal & 0xff);
1268 return ++sectors;
1271 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1273 u64 sectors = 0;
1275 sectors |= (tf->device & 0x0f) << 24;
1276 sectors |= (tf->lbah & 0xff) << 16;
1277 sectors |= (tf->lbam & 0xff) << 8;
1278 sectors |= (tf->lbal & 0xff);
1280 return ++sectors;
1284 * ata_read_native_max_address - Read native max address
1285 * @dev: target device
1286 * @max_sectors: out parameter for the result native max address
1288 * Perform an LBA48 or LBA28 native size query upon the device in
1289 * question.
1291 * RETURNS:
1292 * 0 on success, -EACCES if command is aborted by the drive.
1293 * -EIO on other errors.
1295 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1297 unsigned int err_mask;
1298 struct ata_taskfile tf;
1299 int lba48 = ata_id_has_lba48(dev->id);
1301 ata_tf_init(dev, &tf);
1303 /* always clear all address registers */
1304 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1306 if (lba48) {
1307 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1308 tf.flags |= ATA_TFLAG_LBA48;
1309 } else
1310 tf.command = ATA_CMD_READ_NATIVE_MAX;
1312 tf.protocol |= ATA_PROT_NODATA;
1313 tf.device |= ATA_LBA;
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1318 "max address (err_mask=0x%x)\n", err_mask);
1319 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1320 return -EACCES;
1321 return -EIO;
1324 if (lba48)
1325 *max_sectors = ata_tf_to_lba48(&tf);
1326 else
1327 *max_sectors = ata_tf_to_lba(&tf);
1328 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1329 (*max_sectors)--;
1330 return 0;
1334 * ata_set_max_sectors - Set max sectors
1335 * @dev: target device
1336 * @new_sectors: new max sectors value to set for the device
1338 * Set max sectors of @dev to @new_sectors.
1340 * RETURNS:
1341 * 0 on success, -EACCES if command is aborted or denied (due to
1342 * previous non-volatile SET_MAX) by the drive. -EIO on other
1343 * errors.
1345 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1347 unsigned int err_mask;
1348 struct ata_taskfile tf;
1349 int lba48 = ata_id_has_lba48(dev->id);
1351 new_sectors--;
1353 ata_tf_init(dev, &tf);
1355 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1357 if (lba48) {
1358 tf.command = ATA_CMD_SET_MAX_EXT;
1359 tf.flags |= ATA_TFLAG_LBA48;
1361 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1362 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1363 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1364 } else {
1365 tf.command = ATA_CMD_SET_MAX;
1367 tf.device |= (new_sectors >> 24) & 0xf;
1370 tf.protocol |= ATA_PROT_NODATA;
1371 tf.device |= ATA_LBA;
1373 tf.lbal = (new_sectors >> 0) & 0xff;
1374 tf.lbam = (new_sectors >> 8) & 0xff;
1375 tf.lbah = (new_sectors >> 16) & 0xff;
1377 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1378 if (err_mask) {
1379 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1380 "max address (err_mask=0x%x)\n", err_mask);
1381 if (err_mask == AC_ERR_DEV &&
1382 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1383 return -EACCES;
1384 return -EIO;
1387 return 0;
1391 * ata_hpa_resize - Resize a device with an HPA set
1392 * @dev: Device to resize
1394 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1395 * it if required to the full size of the media. The caller must check
1396 * the drive has the HPA feature set enabled.
1398 * RETURNS:
1399 * 0 on success, -errno on failure.
1401 static int ata_hpa_resize(struct ata_device *dev)
1403 struct ata_eh_context *ehc = &dev->link->eh_context;
1404 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1405 u64 sectors = ata_id_n_sectors(dev->id);
1406 u64 native_sectors;
1407 int rc;
1409 /* do we need to do it? */
1410 if (dev->class != ATA_DEV_ATA ||
1411 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1412 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1413 return 0;
1415 /* read native max address */
1416 rc = ata_read_native_max_address(dev, &native_sectors);
1417 if (rc) {
1418 /* If HPA isn't going to be unlocked, skip HPA
1419 * resizing from the next try.
1421 if (!ata_ignore_hpa) {
1422 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1423 "broken, will skip HPA handling\n");
1424 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1426 /* we can continue if device aborted the command */
1427 if (rc == -EACCES)
1428 rc = 0;
1431 return rc;
1434 /* nothing to do? */
1435 if (native_sectors <= sectors || !ata_ignore_hpa) {
1436 if (!print_info || native_sectors == sectors)
1437 return 0;
1439 if (native_sectors > sectors)
1440 ata_dev_printk(dev, KERN_INFO,
1441 "HPA detected: current %llu, native %llu\n",
1442 (unsigned long long)sectors,
1443 (unsigned long long)native_sectors);
1444 else if (native_sectors < sectors)
1445 ata_dev_printk(dev, KERN_WARNING,
1446 "native sectors (%llu) is smaller than "
1447 "sectors (%llu)\n",
1448 (unsigned long long)native_sectors,
1449 (unsigned long long)sectors);
1450 return 0;
1453 /* let's unlock HPA */
1454 rc = ata_set_max_sectors(dev, native_sectors);
1455 if (rc == -EACCES) {
1456 /* if device aborted the command, skip HPA resizing */
1457 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1458 "(%llu -> %llu), skipping HPA handling\n",
1459 (unsigned long long)sectors,
1460 (unsigned long long)native_sectors);
1461 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1462 return 0;
1463 } else if (rc)
1464 return rc;
1466 /* re-read IDENTIFY data */
1467 rc = ata_dev_reread_id(dev, 0);
1468 if (rc) {
1469 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1470 "data after HPA resizing\n");
1471 return rc;
1474 if (print_info) {
1475 u64 new_sectors = ata_id_n_sectors(dev->id);
1476 ata_dev_printk(dev, KERN_INFO,
1477 "HPA unlocked: %llu -> %llu, native %llu\n",
1478 (unsigned long long)sectors,
1479 (unsigned long long)new_sectors,
1480 (unsigned long long)native_sectors);
1483 return 0;
1487 * ata_noop_dev_select - Select device 0/1 on ATA bus
1488 * @ap: ATA channel to manipulate
1489 * @device: ATA device (numbered from zero) to select
1491 * This function performs no actual function.
1493 * May be used as the dev_select() entry in ata_port_operations.
1495 * LOCKING:
1496 * caller.
1498 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1504 * ata_std_dev_select - Select device 0/1 on ATA bus
1505 * @ap: ATA channel to manipulate
1506 * @device: ATA device (numbered from zero) to select
1508 * Use the method defined in the ATA specification to
1509 * make either device 0, or device 1, active on the
1510 * ATA channel. Works with both PIO and MMIO.
1512 * May be used as the dev_select() entry in ata_port_operations.
1514 * LOCKING:
1515 * caller.
1518 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1520 u8 tmp;
1522 if (device == 0)
1523 tmp = ATA_DEVICE_OBS;
1524 else
1525 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1527 iowrite8(tmp, ap->ioaddr.device_addr);
1528 ata_pause(ap); /* needed; also flushes, for mmio */
1532 * ata_dev_select - Select device 0/1 on ATA bus
1533 * @ap: ATA channel to manipulate
1534 * @device: ATA device (numbered from zero) to select
1535 * @wait: non-zero to wait for Status register BSY bit to clear
1536 * @can_sleep: non-zero if context allows sleeping
1538 * Use the method defined in the ATA specification to
1539 * make either device 0, or device 1, active on the
1540 * ATA channel.
1542 * This is a high-level version of ata_std_dev_select(),
1543 * which additionally provides the services of inserting
1544 * the proper pauses and status polling, where needed.
1546 * LOCKING:
1547 * caller.
1550 void ata_dev_select(struct ata_port *ap, unsigned int device,
1551 unsigned int wait, unsigned int can_sleep)
1553 if (ata_msg_probe(ap))
1554 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1555 "device %u, wait %u\n", device, wait);
1557 if (wait)
1558 ata_wait_idle(ap);
1560 ap->ops->dev_select(ap, device);
1562 if (wait) {
1563 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1564 msleep(150);
1565 ata_wait_idle(ap);
1570 * ata_dump_id - IDENTIFY DEVICE info debugging output
1571 * @id: IDENTIFY DEVICE page to dump
1573 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1574 * page.
1576 * LOCKING:
1577 * caller.
1580 static inline void ata_dump_id(const u16 *id)
1582 DPRINTK("49==0x%04x "
1583 "53==0x%04x "
1584 "63==0x%04x "
1585 "64==0x%04x "
1586 "75==0x%04x \n",
1587 id[49],
1588 id[53],
1589 id[63],
1590 id[64],
1591 id[75]);
1592 DPRINTK("80==0x%04x "
1593 "81==0x%04x "
1594 "82==0x%04x "
1595 "83==0x%04x "
1596 "84==0x%04x \n",
1597 id[80],
1598 id[81],
1599 id[82],
1600 id[83],
1601 id[84]);
1602 DPRINTK("88==0x%04x "
1603 "93==0x%04x\n",
1604 id[88],
1605 id[93]);
1609 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1610 * @id: IDENTIFY data to compute xfer mask from
1612 * Compute the xfermask for this device. This is not as trivial
1613 * as it seems if we must consider early devices correctly.
1615 * FIXME: pre IDE drive timing (do we care ?).
1617 * LOCKING:
1618 * None.
1620 * RETURNS:
1621 * Computed xfermask
1623 unsigned long ata_id_xfermask(const u16 *id)
1625 unsigned long pio_mask, mwdma_mask, udma_mask;
1627 /* Usual case. Word 53 indicates word 64 is valid */
1628 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1629 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1630 pio_mask <<= 3;
1631 pio_mask |= 0x7;
1632 } else {
1633 /* If word 64 isn't valid then Word 51 high byte holds
1634 * the PIO timing number for the maximum. Turn it into
1635 * a mask.
1637 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1638 if (mode < 5) /* Valid PIO range */
1639 pio_mask = (2 << mode) - 1;
1640 else
1641 pio_mask = 1;
1643 /* But wait.. there's more. Design your standards by
1644 * committee and you too can get a free iordy field to
1645 * process. However its the speeds not the modes that
1646 * are supported... Note drivers using the timing API
1647 * will get this right anyway
1651 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1653 if (ata_id_is_cfa(id)) {
1655 * Process compact flash extended modes
1657 int pio = id[163] & 0x7;
1658 int dma = (id[163] >> 3) & 7;
1660 if (pio)
1661 pio_mask |= (1 << 5);
1662 if (pio > 1)
1663 pio_mask |= (1 << 6);
1664 if (dma)
1665 mwdma_mask |= (1 << 3);
1666 if (dma > 1)
1667 mwdma_mask |= (1 << 4);
1670 udma_mask = 0;
1671 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1672 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1674 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1678 * ata_pio_queue_task - Queue port_task
1679 * @ap: The ata_port to queue port_task for
1680 * @fn: workqueue function to be scheduled
1681 * @data: data for @fn to use
1682 * @delay: delay time for workqueue function
1684 * Schedule @fn(@data) for execution after @delay jiffies using
1685 * port_task. There is one port_task per port and it's the
1686 * user(low level driver)'s responsibility to make sure that only
1687 * one task is active at any given time.
1689 * libata core layer takes care of synchronization between
1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1691 * synchronization.
1693 * LOCKING:
1694 * Inherited from caller.
1696 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1697 unsigned long delay)
1699 ap->port_task_data = data;
1701 /* may fail if ata_port_flush_task() in progress */
1702 queue_delayed_work(ata_wq, &ap->port_task, delay);
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1712 * LOCKING:
1713 * Kernel thread context (may sleep)
1715 void ata_port_flush_task(struct ata_port *ap)
1717 DPRINTK("ENTER\n");
1719 cancel_rearming_delayed_work(&ap->port_task);
1721 if (ata_msg_ctl(ap))
1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1727 struct completion *waiting = qc->private_data;
1729 complete(waiting);
1733 * ata_exec_internal_sg - execute libata internal command
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
1736 * @cdb: CDB for packet command
1737 * @dma_dir: Data tranfer direction of the command
1738 * @sgl: sg list for the data buffer of the command
1739 * @n_elem: Number of sg entries
1740 * @timeout: Timeout in msecs (0 for default)
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1748 * LOCKING:
1749 * None. Should be called with kernel context, might sleep.
1751 * RETURNS:
1752 * Zero on success, AC_ERR_* mask on failure
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 struct ata_taskfile *tf, const u8 *cdb,
1756 int dma_dir, struct scatterlist *sgl,
1757 unsigned int n_elem, unsigned long timeout)
1759 struct ata_link *link = dev->link;
1760 struct ata_port *ap = link->ap;
1761 u8 command = tf->command;
1762 struct ata_queued_cmd *qc;
1763 unsigned int tag, preempted_tag;
1764 u32 preempted_sactive, preempted_qc_active;
1765 int preempted_nr_active_links;
1766 DECLARE_COMPLETION_ONSTACK(wait);
1767 unsigned long flags;
1768 unsigned int err_mask;
1769 int rc;
1771 spin_lock_irqsave(ap->lock, flags);
1773 /* no internal command while frozen */
1774 if (ap->pflags & ATA_PFLAG_FROZEN) {
1775 spin_unlock_irqrestore(ap->lock, flags);
1776 return AC_ERR_SYSTEM;
1779 /* initialize internal qc */
1781 /* XXX: Tag 0 is used for drivers with legacy EH as some
1782 * drivers choke if any other tag is given. This breaks
1783 * ata_tag_internal() test for those drivers. Don't use new
1784 * EH stuff without converting to it.
1786 if (ap->ops->error_handler)
1787 tag = ATA_TAG_INTERNAL;
1788 else
1789 tag = 0;
1791 if (test_and_set_bit(tag, &ap->qc_allocated))
1792 BUG();
1793 qc = __ata_qc_from_tag(ap, tag);
1795 qc->tag = tag;
1796 qc->scsicmd = NULL;
1797 qc->ap = ap;
1798 qc->dev = dev;
1799 ata_qc_reinit(qc);
1801 preempted_tag = link->active_tag;
1802 preempted_sactive = link->sactive;
1803 preempted_qc_active = ap->qc_active;
1804 preempted_nr_active_links = ap->nr_active_links;
1805 link->active_tag = ATA_TAG_POISON;
1806 link->sactive = 0;
1807 ap->qc_active = 0;
1808 ap->nr_active_links = 0;
1810 /* prepare & issue qc */
1811 qc->tf = *tf;
1812 if (cdb)
1813 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1814 qc->flags |= ATA_QCFLAG_RESULT_TF;
1815 qc->dma_dir = dma_dir;
1816 if (dma_dir != DMA_NONE) {
1817 unsigned int i, buflen = 0;
1818 struct scatterlist *sg;
1820 for_each_sg(sgl, sg, n_elem, i)
1821 buflen += sg->length;
1823 ata_sg_init(qc, sgl, n_elem);
1824 qc->nbytes = buflen;
1827 qc->private_data = &wait;
1828 qc->complete_fn = ata_qc_complete_internal;
1830 ata_qc_issue(qc);
1832 spin_unlock_irqrestore(ap->lock, flags);
1834 if (!timeout)
1835 timeout = ata_probe_timeout * 1000 / HZ;
1837 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1839 ata_port_flush_task(ap);
1841 if (!rc) {
1842 spin_lock_irqsave(ap->lock, flags);
1844 /* We're racing with irq here. If we lose, the
1845 * following test prevents us from completing the qc
1846 * twice. If we win, the port is frozen and will be
1847 * cleaned up by ->post_internal_cmd().
1849 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1850 qc->err_mask |= AC_ERR_TIMEOUT;
1852 if (ap->ops->error_handler)
1853 ata_port_freeze(ap);
1854 else
1855 ata_qc_complete(qc);
1857 if (ata_msg_warn(ap))
1858 ata_dev_printk(dev, KERN_WARNING,
1859 "qc timeout (cmd 0x%x)\n", command);
1862 spin_unlock_irqrestore(ap->lock, flags);
1865 /* do post_internal_cmd */
1866 if (ap->ops->post_internal_cmd)
1867 ap->ops->post_internal_cmd(qc);
1869 /* perform minimal error analysis */
1870 if (qc->flags & ATA_QCFLAG_FAILED) {
1871 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1872 qc->err_mask |= AC_ERR_DEV;
1874 if (!qc->err_mask)
1875 qc->err_mask |= AC_ERR_OTHER;
1877 if (qc->err_mask & ~AC_ERR_OTHER)
1878 qc->err_mask &= ~AC_ERR_OTHER;
1881 /* finish up */
1882 spin_lock_irqsave(ap->lock, flags);
1884 *tf = qc->result_tf;
1885 err_mask = qc->err_mask;
1887 ata_qc_free(qc);
1888 link->active_tag = preempted_tag;
1889 link->sactive = preempted_sactive;
1890 ap->qc_active = preempted_qc_active;
1891 ap->nr_active_links = preempted_nr_active_links;
1893 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1894 * Until those drivers are fixed, we detect the condition
1895 * here, fail the command with AC_ERR_SYSTEM and reenable the
1896 * port.
1898 * Note that this doesn't change any behavior as internal
1899 * command failure results in disabling the device in the
1900 * higher layer for LLDDs without new reset/EH callbacks.
1902 * Kill the following code as soon as those drivers are fixed.
1904 if (ap->flags & ATA_FLAG_DISABLED) {
1905 err_mask |= AC_ERR_SYSTEM;
1906 ata_port_probe(ap);
1909 spin_unlock_irqrestore(ap->lock, flags);
1911 return err_mask;
1915 * ata_exec_internal - execute libata internal command
1916 * @dev: Device to which the command is sent
1917 * @tf: Taskfile registers for the command and the result
1918 * @cdb: CDB for packet command
1919 * @dma_dir: Data tranfer direction of the command
1920 * @buf: Data buffer of the command
1921 * @buflen: Length of data buffer
1922 * @timeout: Timeout in msecs (0 for default)
1924 * Wrapper around ata_exec_internal_sg() which takes simple
1925 * buffer instead of sg list.
1927 * LOCKING:
1928 * None. Should be called with kernel context, might sleep.
1930 * RETURNS:
1931 * Zero on success, AC_ERR_* mask on failure
1933 unsigned ata_exec_internal(struct ata_device *dev,
1934 struct ata_taskfile *tf, const u8 *cdb,
1935 int dma_dir, void *buf, unsigned int buflen,
1936 unsigned long timeout)
1938 struct scatterlist *psg = NULL, sg;
1939 unsigned int n_elem = 0;
1941 if (dma_dir != DMA_NONE) {
1942 WARN_ON(!buf);
1943 sg_init_one(&sg, buf, buflen);
1944 psg = &sg;
1945 n_elem++;
1948 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1949 timeout);
1953 * ata_do_simple_cmd - execute simple internal command
1954 * @dev: Device to which the command is sent
1955 * @cmd: Opcode to execute
1957 * Execute a 'simple' command, that only consists of the opcode
1958 * 'cmd' itself, without filling any other registers
1960 * LOCKING:
1961 * Kernel thread context (may sleep).
1963 * RETURNS:
1964 * Zero on success, AC_ERR_* mask on failure
1966 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1968 struct ata_taskfile tf;
1970 ata_tf_init(dev, &tf);
1972 tf.command = cmd;
1973 tf.flags |= ATA_TFLAG_DEVICE;
1974 tf.protocol = ATA_PROT_NODATA;
1976 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1980 * ata_pio_need_iordy - check if iordy needed
1981 * @adev: ATA device
1983 * Check if the current speed of the device requires IORDY. Used
1984 * by various controllers for chip configuration.
1987 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1989 /* Controller doesn't support IORDY. Probably a pointless check
1990 as the caller should know this */
1991 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1992 return 0;
1993 /* PIO3 and higher it is mandatory */
1994 if (adev->pio_mode > XFER_PIO_2)
1995 return 1;
1996 /* We turn it on when possible */
1997 if (ata_id_has_iordy(adev->id))
1998 return 1;
1999 return 0;
2003 * ata_pio_mask_no_iordy - Return the non IORDY mask
2004 * @adev: ATA device
2006 * Compute the highest mode possible if we are not using iordy. Return
2007 * -1 if no iordy mode is available.
2010 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2012 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2013 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2014 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2015 /* Is the speed faster than the drive allows non IORDY ? */
2016 if (pio) {
2017 /* This is cycle times not frequency - watch the logic! */
2018 if (pio > 240) /* PIO2 is 240nS per cycle */
2019 return 3 << ATA_SHIFT_PIO;
2020 return 7 << ATA_SHIFT_PIO;
2023 return 3 << ATA_SHIFT_PIO;
2027 * ata_dev_read_id - Read ID data from the specified device
2028 * @dev: target device
2029 * @p_class: pointer to class of the target device (may be changed)
2030 * @flags: ATA_READID_* flags
2031 * @id: buffer to read IDENTIFY data into
2033 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2034 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2035 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2036 * for pre-ATA4 drives.
2038 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2039 * now we abort if we hit that case.
2041 * LOCKING:
2042 * Kernel thread context (may sleep)
2044 * RETURNS:
2045 * 0 on success, -errno otherwise.
2047 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2048 unsigned int flags, u16 *id)
2050 struct ata_port *ap = dev->link->ap;
2051 unsigned int class = *p_class;
2052 struct ata_taskfile tf;
2053 unsigned int err_mask = 0;
2054 const char *reason;
2055 int may_fallback = 1, tried_spinup = 0;
2056 int rc;
2058 if (ata_msg_ctl(ap))
2059 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2061 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2062 retry:
2063 ata_tf_init(dev, &tf);
2065 switch (class) {
2066 case ATA_DEV_ATA:
2067 tf.command = ATA_CMD_ID_ATA;
2068 break;
2069 case ATA_DEV_ATAPI:
2070 tf.command = ATA_CMD_ID_ATAPI;
2071 break;
2072 default:
2073 rc = -ENODEV;
2074 reason = "unsupported class";
2075 goto err_out;
2078 tf.protocol = ATA_PROT_PIO;
2080 /* Some devices choke if TF registers contain garbage. Make
2081 * sure those are properly initialized.
2083 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2085 /* Device presence detection is unreliable on some
2086 * controllers. Always poll IDENTIFY if available.
2088 tf.flags |= ATA_TFLAG_POLLING;
2090 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2091 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2092 if (err_mask) {
2093 if (err_mask & AC_ERR_NODEV_HINT) {
2094 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2095 ap->print_id, dev->devno);
2096 return -ENOENT;
2099 /* Device or controller might have reported the wrong
2100 * device class. Give a shot at the other IDENTIFY if
2101 * the current one is aborted by the device.
2103 if (may_fallback &&
2104 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2105 may_fallback = 0;
2107 if (class == ATA_DEV_ATA)
2108 class = ATA_DEV_ATAPI;
2109 else
2110 class = ATA_DEV_ATA;
2111 goto retry;
2114 rc = -EIO;
2115 reason = "I/O error";
2116 goto err_out;
2119 /* Falling back doesn't make sense if ID data was read
2120 * successfully at least once.
2122 may_fallback = 0;
2124 swap_buf_le16(id, ATA_ID_WORDS);
2126 /* sanity check */
2127 rc = -EINVAL;
2128 reason = "device reports invalid type";
2130 if (class == ATA_DEV_ATA) {
2131 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2132 goto err_out;
2133 } else {
2134 if (ata_id_is_ata(id))
2135 goto err_out;
2138 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2139 tried_spinup = 1;
2141 * Drive powered-up in standby mode, and requires a specific
2142 * SET_FEATURES spin-up subcommand before it will accept
2143 * anything other than the original IDENTIFY command.
2145 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2146 if (err_mask && id[2] != 0x738c) {
2147 rc = -EIO;
2148 reason = "SPINUP failed";
2149 goto err_out;
2152 * If the drive initially returned incomplete IDENTIFY info,
2153 * we now must reissue the IDENTIFY command.
2155 if (id[2] == 0x37c8)
2156 goto retry;
2159 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2161 * The exact sequence expected by certain pre-ATA4 drives is:
2162 * SRST RESET
2163 * IDENTIFY (optional in early ATA)
2164 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2165 * anything else..
2166 * Some drives were very specific about that exact sequence.
2168 * Note that ATA4 says lba is mandatory so the second check
2169 * shoud never trigger.
2171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2172 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2173 if (err_mask) {
2174 rc = -EIO;
2175 reason = "INIT_DEV_PARAMS failed";
2176 goto err_out;
2179 /* current CHS translation info (id[53-58]) might be
2180 * changed. reread the identify device info.
2182 flags &= ~ATA_READID_POSTRESET;
2183 goto retry;
2187 *p_class = class;
2189 return 0;
2191 err_out:
2192 if (ata_msg_warn(ap))
2193 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2194 "(%s, err_mask=0x%x)\n", reason, err_mask);
2195 return rc;
2198 static inline u8 ata_dev_knobble(struct ata_device *dev)
2200 struct ata_port *ap = dev->link->ap;
2201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2204 static void ata_dev_config_ncq(struct ata_device *dev,
2205 char *desc, size_t desc_sz)
2207 struct ata_port *ap = dev->link->ap;
2208 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2210 if (!ata_id_has_ncq(dev->id)) {
2211 desc[0] = '\0';
2212 return;
2214 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2215 snprintf(desc, desc_sz, "NCQ (not used)");
2216 return;
2218 if (ap->flags & ATA_FLAG_NCQ) {
2219 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2220 dev->flags |= ATA_DFLAG_NCQ;
2223 if (hdepth >= ddepth)
2224 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2225 else
2226 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2230 * ata_dev_configure - Configure the specified ATA/ATAPI device
2231 * @dev: Target device to configure
2233 * Configure @dev according to @dev->id. Generic and low-level
2234 * driver specific fixups are also applied.
2236 * LOCKING:
2237 * Kernel thread context (may sleep)
2239 * RETURNS:
2240 * 0 on success, -errno otherwise
2242 int ata_dev_configure(struct ata_device *dev)
2244 struct ata_port *ap = dev->link->ap;
2245 struct ata_eh_context *ehc = &dev->link->eh_context;
2246 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2247 const u16 *id = dev->id;
2248 unsigned long xfer_mask;
2249 char revbuf[7]; /* XYZ-99\0 */
2250 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2251 char modelbuf[ATA_ID_PROD_LEN+1];
2252 int rc;
2254 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2255 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2256 __FUNCTION__);
2257 return 0;
2260 if (ata_msg_probe(ap))
2261 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2263 /* set horkage */
2264 dev->horkage |= ata_dev_blacklisted(dev);
2265 ata_force_horkage(dev);
2267 /* let ACPI work its magic */
2268 rc = ata_acpi_on_devcfg(dev);
2269 if (rc)
2270 return rc;
2272 /* massage HPA, do it early as it might change IDENTIFY data */
2273 rc = ata_hpa_resize(dev);
2274 if (rc)
2275 return rc;
2277 /* print device capabilities */
2278 if (ata_msg_probe(ap))
2279 ata_dev_printk(dev, KERN_DEBUG,
2280 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2281 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2282 __FUNCTION__,
2283 id[49], id[82], id[83], id[84],
2284 id[85], id[86], id[87], id[88]);
2286 /* initialize to-be-configured parameters */
2287 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2288 dev->max_sectors = 0;
2289 dev->cdb_len = 0;
2290 dev->n_sectors = 0;
2291 dev->cylinders = 0;
2292 dev->heads = 0;
2293 dev->sectors = 0;
2296 * common ATA, ATAPI feature tests
2299 /* find max transfer mode; for printk only */
2300 xfer_mask = ata_id_xfermask(id);
2302 if (ata_msg_probe(ap))
2303 ata_dump_id(id);
2305 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2306 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2307 sizeof(fwrevbuf));
2309 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2310 sizeof(modelbuf));
2312 /* ATA-specific feature tests */
2313 if (dev->class == ATA_DEV_ATA) {
2314 if (ata_id_is_cfa(id)) {
2315 if (id[162] & 1) /* CPRM may make this media unusable */
2316 ata_dev_printk(dev, KERN_WARNING,
2317 "supports DRM functions and may "
2318 "not be fully accessable.\n");
2319 snprintf(revbuf, 7, "CFA");
2320 } else {
2321 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2322 /* Warn the user if the device has TPM extensions */
2323 if (ata_id_has_tpm(id))
2324 ata_dev_printk(dev, KERN_WARNING,
2325 "supports DRM functions and may "
2326 "not be fully accessable.\n");
2329 dev->n_sectors = ata_id_n_sectors(id);
2331 if (dev->id[59] & 0x100)
2332 dev->multi_count = dev->id[59] & 0xff;
2334 if (ata_id_has_lba(id)) {
2335 const char *lba_desc;
2336 char ncq_desc[20];
2338 lba_desc = "LBA";
2339 dev->flags |= ATA_DFLAG_LBA;
2340 if (ata_id_has_lba48(id)) {
2341 dev->flags |= ATA_DFLAG_LBA48;
2342 lba_desc = "LBA48";
2344 if (dev->n_sectors >= (1UL << 28) &&
2345 ata_id_has_flush_ext(id))
2346 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2349 /* config NCQ */
2350 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2352 /* print device info to dmesg */
2353 if (ata_msg_drv(ap) && print_info) {
2354 ata_dev_printk(dev, KERN_INFO,
2355 "%s: %s, %s, max %s\n",
2356 revbuf, modelbuf, fwrevbuf,
2357 ata_mode_string(xfer_mask));
2358 ata_dev_printk(dev, KERN_INFO,
2359 "%Lu sectors, multi %u: %s %s\n",
2360 (unsigned long long)dev->n_sectors,
2361 dev->multi_count, lba_desc, ncq_desc);
2363 } else {
2364 /* CHS */
2366 /* Default translation */
2367 dev->cylinders = id[1];
2368 dev->heads = id[3];
2369 dev->sectors = id[6];
2371 if (ata_id_current_chs_valid(id)) {
2372 /* Current CHS translation is valid. */
2373 dev->cylinders = id[54];
2374 dev->heads = id[55];
2375 dev->sectors = id[56];
2378 /* print device info to dmesg */
2379 if (ata_msg_drv(ap) && print_info) {
2380 ata_dev_printk(dev, KERN_INFO,
2381 "%s: %s, %s, max %s\n",
2382 revbuf, modelbuf, fwrevbuf,
2383 ata_mode_string(xfer_mask));
2384 ata_dev_printk(dev, KERN_INFO,
2385 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2386 (unsigned long long)dev->n_sectors,
2387 dev->multi_count, dev->cylinders,
2388 dev->heads, dev->sectors);
2392 dev->cdb_len = 16;
2395 /* ATAPI-specific feature tests */
2396 else if (dev->class == ATA_DEV_ATAPI) {
2397 const char *cdb_intr_string = "";
2398 const char *atapi_an_string = "";
2399 const char *dma_dir_string = "";
2400 u32 sntf;
2402 rc = atapi_cdb_len(id);
2403 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2404 if (ata_msg_warn(ap))
2405 ata_dev_printk(dev, KERN_WARNING,
2406 "unsupported CDB len\n");
2407 rc = -EINVAL;
2408 goto err_out_nosup;
2410 dev->cdb_len = (unsigned int) rc;
2412 /* Enable ATAPI AN if both the host and device have
2413 * the support. If PMP is attached, SNTF is required
2414 * to enable ATAPI AN to discern between PHY status
2415 * changed notifications and ATAPI ANs.
2417 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2418 (!ap->nr_pmp_links ||
2419 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2420 unsigned int err_mask;
2422 /* issue SET feature command to turn this on */
2423 err_mask = ata_dev_set_feature(dev,
2424 SETFEATURES_SATA_ENABLE, SATA_AN);
2425 if (err_mask)
2426 ata_dev_printk(dev, KERN_ERR,
2427 "failed to enable ATAPI AN "
2428 "(err_mask=0x%x)\n", err_mask);
2429 else {
2430 dev->flags |= ATA_DFLAG_AN;
2431 atapi_an_string = ", ATAPI AN";
2435 if (ata_id_cdb_intr(dev->id)) {
2436 dev->flags |= ATA_DFLAG_CDB_INTR;
2437 cdb_intr_string = ", CDB intr";
2440 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2441 dev->flags |= ATA_DFLAG_DMADIR;
2442 dma_dir_string = ", DMADIR";
2445 /* print device info to dmesg */
2446 if (ata_msg_drv(ap) && print_info)
2447 ata_dev_printk(dev, KERN_INFO,
2448 "ATAPI: %s, %s, max %s%s%s%s\n",
2449 modelbuf, fwrevbuf,
2450 ata_mode_string(xfer_mask),
2451 cdb_intr_string, atapi_an_string,
2452 dma_dir_string);
2455 /* determine max_sectors */
2456 dev->max_sectors = ATA_MAX_SECTORS;
2457 if (dev->flags & ATA_DFLAG_LBA48)
2458 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2460 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2461 if (ata_id_has_hipm(dev->id))
2462 dev->flags |= ATA_DFLAG_HIPM;
2463 if (ata_id_has_dipm(dev->id))
2464 dev->flags |= ATA_DFLAG_DIPM;
2467 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2468 200 sectors */
2469 if (ata_dev_knobble(dev)) {
2470 if (ata_msg_drv(ap) && print_info)
2471 ata_dev_printk(dev, KERN_INFO,
2472 "applying bridge limits\n");
2473 dev->udma_mask &= ATA_UDMA5;
2474 dev->max_sectors = ATA_MAX_SECTORS;
2477 if ((dev->class == ATA_DEV_ATAPI) &&
2478 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2479 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2480 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2483 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2484 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2485 dev->max_sectors);
2487 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2488 dev->horkage |= ATA_HORKAGE_IPM;
2490 /* reset link pm_policy for this port to no pm */
2491 ap->pm_policy = MAX_PERFORMANCE;
2494 if (ap->ops->dev_config)
2495 ap->ops->dev_config(dev);
2497 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2498 /* Let the user know. We don't want to disallow opens for
2499 rescue purposes, or in case the vendor is just a blithering
2500 idiot. Do this after the dev_config call as some controllers
2501 with buggy firmware may want to avoid reporting false device
2502 bugs */
2504 if (print_info) {
2505 ata_dev_printk(dev, KERN_WARNING,
2506 "Drive reports diagnostics failure. This may indicate a drive\n");
2507 ata_dev_printk(dev, KERN_WARNING,
2508 "fault or invalid emulation. Contact drive vendor for information.\n");
2512 if (ata_msg_probe(ap))
2513 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2514 __FUNCTION__, ata_chk_status(ap));
2515 return 0;
2517 err_out_nosup:
2518 if (ata_msg_probe(ap))
2519 ata_dev_printk(dev, KERN_DEBUG,
2520 "%s: EXIT, err\n", __FUNCTION__);
2521 return rc;
2525 * ata_cable_40wire - return 40 wire cable type
2526 * @ap: port
2528 * Helper method for drivers which want to hardwire 40 wire cable
2529 * detection.
2532 int ata_cable_40wire(struct ata_port *ap)
2534 return ATA_CBL_PATA40;
2538 * ata_cable_80wire - return 80 wire cable type
2539 * @ap: port
2541 * Helper method for drivers which want to hardwire 80 wire cable
2542 * detection.
2545 int ata_cable_80wire(struct ata_port *ap)
2547 return ATA_CBL_PATA80;
2551 * ata_cable_unknown - return unknown PATA cable.
2552 * @ap: port
2554 * Helper method for drivers which have no PATA cable detection.
2557 int ata_cable_unknown(struct ata_port *ap)
2559 return ATA_CBL_PATA_UNK;
2563 * ata_cable_ignore - return ignored PATA cable.
2564 * @ap: port
2566 * Helper method for drivers which don't use cable type to limit
2567 * transfer mode.
2569 int ata_cable_ignore(struct ata_port *ap)
2571 return ATA_CBL_PATA_IGN;
2575 * ata_cable_sata - return SATA cable type
2576 * @ap: port
2578 * Helper method for drivers which have SATA cables
2581 int ata_cable_sata(struct ata_port *ap)
2583 return ATA_CBL_SATA;
2587 * ata_bus_probe - Reset and probe ATA bus
2588 * @ap: Bus to probe
2590 * Master ATA bus probing function. Initiates a hardware-dependent
2591 * bus reset, then attempts to identify any devices found on
2592 * the bus.
2594 * LOCKING:
2595 * PCI/etc. bus probe sem.
2597 * RETURNS:
2598 * Zero on success, negative errno otherwise.
2601 int ata_bus_probe(struct ata_port *ap)
2603 unsigned int classes[ATA_MAX_DEVICES];
2604 int tries[ATA_MAX_DEVICES];
2605 int rc;
2606 struct ata_device *dev;
2608 ata_port_probe(ap);
2610 ata_link_for_each_dev(dev, &ap->link)
2611 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2613 retry:
2614 ata_link_for_each_dev(dev, &ap->link) {
2615 /* If we issue an SRST then an ATA drive (not ATAPI)
2616 * may change configuration and be in PIO0 timing. If
2617 * we do a hard reset (or are coming from power on)
2618 * this is true for ATA or ATAPI. Until we've set a
2619 * suitable controller mode we should not touch the
2620 * bus as we may be talking too fast.
2622 dev->pio_mode = XFER_PIO_0;
2624 /* If the controller has a pio mode setup function
2625 * then use it to set the chipset to rights. Don't
2626 * touch the DMA setup as that will be dealt with when
2627 * configuring devices.
2629 if (ap->ops->set_piomode)
2630 ap->ops->set_piomode(ap, dev);
2633 /* reset and determine device classes */
2634 ap->ops->phy_reset(ap);
2636 ata_link_for_each_dev(dev, &ap->link) {
2637 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2638 dev->class != ATA_DEV_UNKNOWN)
2639 classes[dev->devno] = dev->class;
2640 else
2641 classes[dev->devno] = ATA_DEV_NONE;
2643 dev->class = ATA_DEV_UNKNOWN;
2646 ata_port_probe(ap);
2648 /* read IDENTIFY page and configure devices. We have to do the identify
2649 specific sequence bass-ackwards so that PDIAG- is released by
2650 the slave device */
2652 ata_link_for_each_dev(dev, &ap->link) {
2653 if (tries[dev->devno])
2654 dev->class = classes[dev->devno];
2656 if (!ata_dev_enabled(dev))
2657 continue;
2659 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2660 dev->id);
2661 if (rc)
2662 goto fail;
2665 /* Now ask for the cable type as PDIAG- should have been released */
2666 if (ap->ops->cable_detect)
2667 ap->cbl = ap->ops->cable_detect(ap);
2669 /* We may have SATA bridge glue hiding here irrespective of the
2670 reported cable types and sensed types */
2671 ata_link_for_each_dev(dev, &ap->link) {
2672 if (!ata_dev_enabled(dev))
2673 continue;
2674 /* SATA drives indicate we have a bridge. We don't know which
2675 end of the link the bridge is which is a problem */
2676 if (ata_id_is_sata(dev->id))
2677 ap->cbl = ATA_CBL_SATA;
2680 /* After the identify sequence we can now set up the devices. We do
2681 this in the normal order so that the user doesn't get confused */
2683 ata_link_for_each_dev(dev, &ap->link) {
2684 if (!ata_dev_enabled(dev))
2685 continue;
2687 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2688 rc = ata_dev_configure(dev);
2689 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2690 if (rc)
2691 goto fail;
2694 /* configure transfer mode */
2695 rc = ata_set_mode(&ap->link, &dev);
2696 if (rc)
2697 goto fail;
2699 ata_link_for_each_dev(dev, &ap->link)
2700 if (ata_dev_enabled(dev))
2701 return 0;
2703 /* no device present, disable port */
2704 ata_port_disable(ap);
2705 return -ENODEV;
2707 fail:
2708 tries[dev->devno]--;
2710 switch (rc) {
2711 case -EINVAL:
2712 /* eeek, something went very wrong, give up */
2713 tries[dev->devno] = 0;
2714 break;
2716 case -ENODEV:
2717 /* give it just one more chance */
2718 tries[dev->devno] = min(tries[dev->devno], 1);
2719 case -EIO:
2720 if (tries[dev->devno] == 1) {
2721 /* This is the last chance, better to slow
2722 * down than lose it.
2724 sata_down_spd_limit(&ap->link);
2725 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2729 if (!tries[dev->devno])
2730 ata_dev_disable(dev);
2732 goto retry;
2736 * ata_port_probe - Mark port as enabled
2737 * @ap: Port for which we indicate enablement
2739 * Modify @ap data structure such that the system
2740 * thinks that the entire port is enabled.
2742 * LOCKING: host lock, or some other form of
2743 * serialization.
2746 void ata_port_probe(struct ata_port *ap)
2748 ap->flags &= ~ATA_FLAG_DISABLED;
2752 * sata_print_link_status - Print SATA link status
2753 * @link: SATA link to printk link status about
2755 * This function prints link speed and status of a SATA link.
2757 * LOCKING:
2758 * None.
2760 void sata_print_link_status(struct ata_link *link)
2762 u32 sstatus, scontrol, tmp;
2764 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2765 return;
2766 sata_scr_read(link, SCR_CONTROL, &scontrol);
2768 if (ata_link_online(link)) {
2769 tmp = (sstatus >> 4) & 0xf;
2770 ata_link_printk(link, KERN_INFO,
2771 "SATA link up %s (SStatus %X SControl %X)\n",
2772 sata_spd_string(tmp), sstatus, scontrol);
2773 } else {
2774 ata_link_printk(link, KERN_INFO,
2775 "SATA link down (SStatus %X SControl %X)\n",
2776 sstatus, scontrol);
2781 * ata_dev_pair - return other device on cable
2782 * @adev: device
2784 * Obtain the other device on the same cable, or if none is
2785 * present NULL is returned
2788 struct ata_device *ata_dev_pair(struct ata_device *adev)
2790 struct ata_link *link = adev->link;
2791 struct ata_device *pair = &link->device[1 - adev->devno];
2792 if (!ata_dev_enabled(pair))
2793 return NULL;
2794 return pair;
2798 * ata_port_disable - Disable port.
2799 * @ap: Port to be disabled.
2801 * Modify @ap data structure such that the system
2802 * thinks that the entire port is disabled, and should
2803 * never attempt to probe or communicate with devices
2804 * on this port.
2806 * LOCKING: host lock, or some other form of
2807 * serialization.
2810 void ata_port_disable(struct ata_port *ap)
2812 ap->link.device[0].class = ATA_DEV_NONE;
2813 ap->link.device[1].class = ATA_DEV_NONE;
2814 ap->flags |= ATA_FLAG_DISABLED;
2818 * sata_down_spd_limit - adjust SATA spd limit downward
2819 * @link: Link to adjust SATA spd limit for
2821 * Adjust SATA spd limit of @link downward. Note that this
2822 * function only adjusts the limit. The change must be applied
2823 * using sata_set_spd().
2825 * LOCKING:
2826 * Inherited from caller.
2828 * RETURNS:
2829 * 0 on success, negative errno on failure
2831 int sata_down_spd_limit(struct ata_link *link)
2833 u32 sstatus, spd, mask;
2834 int rc, highbit;
2836 if (!sata_scr_valid(link))
2837 return -EOPNOTSUPP;
2839 /* If SCR can be read, use it to determine the current SPD.
2840 * If not, use cached value in link->sata_spd.
2842 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2843 if (rc == 0)
2844 spd = (sstatus >> 4) & 0xf;
2845 else
2846 spd = link->sata_spd;
2848 mask = link->sata_spd_limit;
2849 if (mask <= 1)
2850 return -EINVAL;
2852 /* unconditionally mask off the highest bit */
2853 highbit = fls(mask) - 1;
2854 mask &= ~(1 << highbit);
2856 /* Mask off all speeds higher than or equal to the current
2857 * one. Force 1.5Gbps if current SPD is not available.
2859 if (spd > 1)
2860 mask &= (1 << (spd - 1)) - 1;
2861 else
2862 mask &= 1;
2864 /* were we already at the bottom? */
2865 if (!mask)
2866 return -EINVAL;
2868 link->sata_spd_limit = mask;
2870 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2871 sata_spd_string(fls(mask)));
2873 return 0;
2876 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2878 struct ata_link *host_link = &link->ap->link;
2879 u32 limit, target, spd;
2881 limit = link->sata_spd_limit;
2883 /* Don't configure downstream link faster than upstream link.
2884 * It doesn't speed up anything and some PMPs choke on such
2885 * configuration.
2887 if (!ata_is_host_link(link) && host_link->sata_spd)
2888 limit &= (1 << host_link->sata_spd) - 1;
2890 if (limit == UINT_MAX)
2891 target = 0;
2892 else
2893 target = fls(limit);
2895 spd = (*scontrol >> 4) & 0xf;
2896 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2898 return spd != target;
2902 * sata_set_spd_needed - is SATA spd configuration needed
2903 * @link: Link in question
2905 * Test whether the spd limit in SControl matches
2906 * @link->sata_spd_limit. This function is used to determine
2907 * whether hardreset is necessary to apply SATA spd
2908 * configuration.
2910 * LOCKING:
2911 * Inherited from caller.
2913 * RETURNS:
2914 * 1 if SATA spd configuration is needed, 0 otherwise.
2916 int sata_set_spd_needed(struct ata_link *link)
2918 u32 scontrol;
2920 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2921 return 1;
2923 return __sata_set_spd_needed(link, &scontrol);
2927 * sata_set_spd - set SATA spd according to spd limit
2928 * @link: Link to set SATA spd for
2930 * Set SATA spd of @link according to sata_spd_limit.
2932 * LOCKING:
2933 * Inherited from caller.
2935 * RETURNS:
2936 * 0 if spd doesn't need to be changed, 1 if spd has been
2937 * changed. Negative errno if SCR registers are inaccessible.
2939 int sata_set_spd(struct ata_link *link)
2941 u32 scontrol;
2942 int rc;
2944 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2945 return rc;
2947 if (!__sata_set_spd_needed(link, &scontrol))
2948 return 0;
2950 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2951 return rc;
2953 return 1;
2957 * This mode timing computation functionality is ported over from
2958 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2961 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2962 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2963 * for UDMA6, which is currently supported only by Maxtor drives.
2965 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2968 static const struct ata_timing ata_timing[] = {
2969 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2970 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2971 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2972 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2973 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2974 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2975 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2976 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2978 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2979 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2980 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2982 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2983 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2984 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2985 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2986 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2988 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2989 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2990 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2991 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2992 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2993 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2994 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2995 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2997 { 0xFF }
3000 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3001 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3003 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3005 q->setup = EZ(t->setup * 1000, T);
3006 q->act8b = EZ(t->act8b * 1000, T);
3007 q->rec8b = EZ(t->rec8b * 1000, T);
3008 q->cyc8b = EZ(t->cyc8b * 1000, T);
3009 q->active = EZ(t->active * 1000, T);
3010 q->recover = EZ(t->recover * 1000, T);
3011 q->cycle = EZ(t->cycle * 1000, T);
3012 q->udma = EZ(t->udma * 1000, UT);
3015 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3016 struct ata_timing *m, unsigned int what)
3018 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3019 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3020 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3021 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3022 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3023 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3024 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3025 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3028 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3030 const struct ata_timing *t = ata_timing;
3032 while (xfer_mode > t->mode)
3033 t++;
3035 if (xfer_mode == t->mode)
3036 return t;
3037 return NULL;
3040 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3041 struct ata_timing *t, int T, int UT)
3043 const struct ata_timing *s;
3044 struct ata_timing p;
3047 * Find the mode.
3050 if (!(s = ata_timing_find_mode(speed)))
3051 return -EINVAL;
3053 memcpy(t, s, sizeof(*s));
3056 * If the drive is an EIDE drive, it can tell us it needs extended
3057 * PIO/MW_DMA cycle timing.
3060 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3061 memset(&p, 0, sizeof(p));
3062 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3063 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3064 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3065 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3066 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3068 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3072 * Convert the timing to bus clock counts.
3075 ata_timing_quantize(t, t, T, UT);
3078 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3079 * S.M.A.R.T * and some other commands. We have to ensure that the
3080 * DMA cycle timing is slower/equal than the fastest PIO timing.
3083 if (speed > XFER_PIO_6) {
3084 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3085 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3089 * Lengthen active & recovery time so that cycle time is correct.
3092 if (t->act8b + t->rec8b < t->cyc8b) {
3093 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3094 t->rec8b = t->cyc8b - t->act8b;
3097 if (t->active + t->recover < t->cycle) {
3098 t->active += (t->cycle - (t->active + t->recover)) / 2;
3099 t->recover = t->cycle - t->active;
3102 /* In a few cases quantisation may produce enough errors to
3103 leave t->cycle too low for the sum of active and recovery
3104 if so we must correct this */
3105 if (t->active + t->recover > t->cycle)
3106 t->cycle = t->active + t->recover;
3108 return 0;
3112 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3113 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3114 * @cycle: cycle duration in ns
3116 * Return matching xfer mode for @cycle. The returned mode is of
3117 * the transfer type specified by @xfer_shift. If @cycle is too
3118 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3119 * than the fastest known mode, the fasted mode is returned.
3121 * LOCKING:
3122 * None.
3124 * RETURNS:
3125 * Matching xfer_mode, 0xff if no match found.
3127 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3129 u8 base_mode = 0xff, last_mode = 0xff;
3130 const struct ata_xfer_ent *ent;
3131 const struct ata_timing *t;
3133 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3134 if (ent->shift == xfer_shift)
3135 base_mode = ent->base;
3137 for (t = ata_timing_find_mode(base_mode);
3138 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3139 unsigned short this_cycle;
3141 switch (xfer_shift) {
3142 case ATA_SHIFT_PIO:
3143 case ATA_SHIFT_MWDMA:
3144 this_cycle = t->cycle;
3145 break;
3146 case ATA_SHIFT_UDMA:
3147 this_cycle = t->udma;
3148 break;
3149 default:
3150 return 0xff;
3153 if (cycle > this_cycle)
3154 break;
3156 last_mode = t->mode;
3159 return last_mode;
3163 * ata_down_xfermask_limit - adjust dev xfer masks downward
3164 * @dev: Device to adjust xfer masks
3165 * @sel: ATA_DNXFER_* selector
3167 * Adjust xfer masks of @dev downward. Note that this function
3168 * does not apply the change. Invoking ata_set_mode() afterwards
3169 * will apply the limit.
3171 * LOCKING:
3172 * Inherited from caller.
3174 * RETURNS:
3175 * 0 on success, negative errno on failure
3177 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3179 char buf[32];
3180 unsigned long orig_mask, xfer_mask;
3181 unsigned long pio_mask, mwdma_mask, udma_mask;
3182 int quiet, highbit;
3184 quiet = !!(sel & ATA_DNXFER_QUIET);
3185 sel &= ~ATA_DNXFER_QUIET;
3187 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3188 dev->mwdma_mask,
3189 dev->udma_mask);
3190 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3192 switch (sel) {
3193 case ATA_DNXFER_PIO:
3194 highbit = fls(pio_mask) - 1;
3195 pio_mask &= ~(1 << highbit);
3196 break;
3198 case ATA_DNXFER_DMA:
3199 if (udma_mask) {
3200 highbit = fls(udma_mask) - 1;
3201 udma_mask &= ~(1 << highbit);
3202 if (!udma_mask)
3203 return -ENOENT;
3204 } else if (mwdma_mask) {
3205 highbit = fls(mwdma_mask) - 1;
3206 mwdma_mask &= ~(1 << highbit);
3207 if (!mwdma_mask)
3208 return -ENOENT;
3210 break;
3212 case ATA_DNXFER_40C:
3213 udma_mask &= ATA_UDMA_MASK_40C;
3214 break;
3216 case ATA_DNXFER_FORCE_PIO0:
3217 pio_mask &= 1;
3218 case ATA_DNXFER_FORCE_PIO:
3219 mwdma_mask = 0;
3220 udma_mask = 0;
3221 break;
3223 default:
3224 BUG();
3227 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3229 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3230 return -ENOENT;
3232 if (!quiet) {
3233 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3234 snprintf(buf, sizeof(buf), "%s:%s",
3235 ata_mode_string(xfer_mask),
3236 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3237 else
3238 snprintf(buf, sizeof(buf), "%s",
3239 ata_mode_string(xfer_mask));
3241 ata_dev_printk(dev, KERN_WARNING,
3242 "limiting speed to %s\n", buf);
3245 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3246 &dev->udma_mask);
3248 return 0;
3251 static int ata_dev_set_mode(struct ata_device *dev)
3253 struct ata_eh_context *ehc = &dev->link->eh_context;
3254 const char *dev_err_whine = "";
3255 int ign_dev_err = 0;
3256 unsigned int err_mask;
3257 int rc;
3259 dev->flags &= ~ATA_DFLAG_PIO;
3260 if (dev->xfer_shift == ATA_SHIFT_PIO)
3261 dev->flags |= ATA_DFLAG_PIO;
3263 err_mask = ata_dev_set_xfermode(dev);
3265 if (err_mask & ~AC_ERR_DEV)
3266 goto fail;
3268 /* revalidate */
3269 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3270 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3271 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3272 if (rc)
3273 return rc;
3275 /* Old CFA may refuse this command, which is just fine */
3276 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3277 ign_dev_err = 1;
3279 /* Some very old devices and some bad newer ones fail any kind of
3280 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3281 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3282 dev->pio_mode <= XFER_PIO_2)
3283 ign_dev_err = 1;
3285 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3286 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3287 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3288 dev->dma_mode == XFER_MW_DMA_0 &&
3289 (dev->id[63] >> 8) & 1)
3290 ign_dev_err = 1;
3292 /* if the device is actually configured correctly, ignore dev err */
3293 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3294 ign_dev_err = 1;
3296 if (err_mask & AC_ERR_DEV) {
3297 if (!ign_dev_err)
3298 goto fail;
3299 else
3300 dev_err_whine = " (device error ignored)";
3303 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3304 dev->xfer_shift, (int)dev->xfer_mode);
3306 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3307 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3308 dev_err_whine);
3310 return 0;
3312 fail:
3313 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3314 "(err_mask=0x%x)\n", err_mask);
3315 return -EIO;
3319 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3320 * @link: link on which timings will be programmed
3321 * @r_failed_dev: out parameter for failed device
3323 * Standard implementation of the function used to tune and set
3324 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3325 * ata_dev_set_mode() fails, pointer to the failing device is
3326 * returned in @r_failed_dev.
3328 * LOCKING:
3329 * PCI/etc. bus probe sem.
3331 * RETURNS:
3332 * 0 on success, negative errno otherwise
3335 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3337 struct ata_port *ap = link->ap;
3338 struct ata_device *dev;
3339 int rc = 0, used_dma = 0, found = 0;
3341 /* step 1: calculate xfer_mask */
3342 ata_link_for_each_dev(dev, link) {
3343 unsigned long pio_mask, dma_mask;
3344 unsigned int mode_mask;
3346 if (!ata_dev_enabled(dev))
3347 continue;
3349 mode_mask = ATA_DMA_MASK_ATA;
3350 if (dev->class == ATA_DEV_ATAPI)
3351 mode_mask = ATA_DMA_MASK_ATAPI;
3352 else if (ata_id_is_cfa(dev->id))
3353 mode_mask = ATA_DMA_MASK_CFA;
3355 ata_dev_xfermask(dev);
3356 ata_force_xfermask(dev);
3358 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3359 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3361 if (libata_dma_mask & mode_mask)
3362 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3363 else
3364 dma_mask = 0;
3366 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3367 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3369 found = 1;
3370 if (dev->dma_mode != 0xff)
3371 used_dma = 1;
3373 if (!found)
3374 goto out;
3376 /* step 2: always set host PIO timings */
3377 ata_link_for_each_dev(dev, link) {
3378 if (!ata_dev_enabled(dev))
3379 continue;
3381 if (dev->pio_mode == 0xff) {
3382 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3383 rc = -EINVAL;
3384 goto out;
3387 dev->xfer_mode = dev->pio_mode;
3388 dev->xfer_shift = ATA_SHIFT_PIO;
3389 if (ap->ops->set_piomode)
3390 ap->ops->set_piomode(ap, dev);
3393 /* step 3: set host DMA timings */
3394 ata_link_for_each_dev(dev, link) {
3395 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3396 continue;
3398 dev->xfer_mode = dev->dma_mode;
3399 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3400 if (ap->ops->set_dmamode)
3401 ap->ops->set_dmamode(ap, dev);
3404 /* step 4: update devices' xfer mode */
3405 ata_link_for_each_dev(dev, link) {
3406 /* don't update suspended devices' xfer mode */
3407 if (!ata_dev_enabled(dev))
3408 continue;
3410 rc = ata_dev_set_mode(dev);
3411 if (rc)
3412 goto out;
3415 /* Record simplex status. If we selected DMA then the other
3416 * host channels are not permitted to do so.
3418 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3419 ap->host->simplex_claimed = ap;
3421 out:
3422 if (rc)
3423 *r_failed_dev = dev;
3424 return rc;
3428 * ata_tf_to_host - issue ATA taskfile to host controller
3429 * @ap: port to which command is being issued
3430 * @tf: ATA taskfile register set
3432 * Issues ATA taskfile register set to ATA host controller,
3433 * with proper synchronization with interrupt handler and
3434 * other threads.
3436 * LOCKING:
3437 * spin_lock_irqsave(host lock)
3440 static inline void ata_tf_to_host(struct ata_port *ap,
3441 const struct ata_taskfile *tf)
3443 ap->ops->tf_load(ap, tf);
3444 ap->ops->exec_command(ap, tf);
3448 * ata_busy_sleep - sleep until BSY clears, or timeout
3449 * @ap: port containing status register to be polled
3450 * @tmout_pat: impatience timeout
3451 * @tmout: overall timeout
3453 * Sleep until ATA Status register bit BSY clears,
3454 * or a timeout occurs.
3456 * LOCKING:
3457 * Kernel thread context (may sleep).
3459 * RETURNS:
3460 * 0 on success, -errno otherwise.
3462 int ata_busy_sleep(struct ata_port *ap,
3463 unsigned long tmout_pat, unsigned long tmout)
3465 unsigned long timer_start, timeout;
3466 u8 status;
3468 status = ata_busy_wait(ap, ATA_BUSY, 300);
3469 timer_start = jiffies;
3470 timeout = timer_start + tmout_pat;
3471 while (status != 0xff && (status & ATA_BUSY) &&
3472 time_before(jiffies, timeout)) {
3473 msleep(50);
3474 status = ata_busy_wait(ap, ATA_BUSY, 3);
3477 if (status != 0xff && (status & ATA_BUSY))
3478 ata_port_printk(ap, KERN_WARNING,
3479 "port is slow to respond, please be patient "
3480 "(Status 0x%x)\n", status);
3482 timeout = timer_start + tmout;
3483 while (status != 0xff && (status & ATA_BUSY) &&
3484 time_before(jiffies, timeout)) {
3485 msleep(50);
3486 status = ata_chk_status(ap);
3489 if (status == 0xff)
3490 return -ENODEV;
3492 if (status & ATA_BUSY) {
3493 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3494 "(%lu secs, Status 0x%x)\n",
3495 tmout / HZ, status);
3496 return -EBUSY;
3499 return 0;
3503 * ata_wait_after_reset - wait before checking status after reset
3504 * @ap: port containing status register to be polled
3505 * @deadline: deadline jiffies for the operation
3507 * After reset, we need to pause a while before reading status.
3508 * Also, certain combination of controller and device report 0xff
3509 * for some duration (e.g. until SATA PHY is up and running)
3510 * which is interpreted as empty port in ATA world. This
3511 * function also waits for such devices to get out of 0xff
3512 * status.
3514 * LOCKING:
3515 * Kernel thread context (may sleep).
3517 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3519 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3521 if (time_before(until, deadline))
3522 deadline = until;
3524 /* Spec mandates ">= 2ms" before checking status. We wait
3525 * 150ms, because that was the magic delay used for ATAPI
3526 * devices in Hale Landis's ATADRVR, for the period of time
3527 * between when the ATA command register is written, and then
3528 * status is checked. Because waiting for "a while" before
3529 * checking status is fine, post SRST, we perform this magic
3530 * delay here as well.
3532 * Old drivers/ide uses the 2mS rule and then waits for ready.
3534 msleep(150);
3536 /* Wait for 0xff to clear. Some SATA devices take a long time
3537 * to clear 0xff after reset. For example, HHD424020F7SV00
3538 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3539 * than that.
3541 * Note that some PATA controllers (pata_ali) explode if
3542 * status register is read more than once when there's no
3543 * device attached.
3545 if (ap->flags & ATA_FLAG_SATA) {
3546 while (1) {
3547 u8 status = ata_chk_status(ap);
3549 if (status != 0xff || time_after(jiffies, deadline))
3550 return;
3552 msleep(50);
3558 * ata_wait_ready - sleep until BSY clears, or timeout
3559 * @ap: port containing status register to be polled
3560 * @deadline: deadline jiffies for the operation
3562 * Sleep until ATA Status register bit BSY clears, or timeout
3563 * occurs.
3565 * LOCKING:
3566 * Kernel thread context (may sleep).
3568 * RETURNS:
3569 * 0 on success, -errno otherwise.
3571 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3573 unsigned long start = jiffies;
3574 int warned = 0;
3576 while (1) {
3577 u8 status = ata_chk_status(ap);
3578 unsigned long now = jiffies;
3580 if (!(status & ATA_BUSY))
3581 return 0;
3582 if (!ata_link_online(&ap->link) && status == 0xff)
3583 return -ENODEV;
3584 if (time_after(now, deadline))
3585 return -EBUSY;
3587 if (!warned && time_after(now, start + 5 * HZ) &&
3588 (deadline - now > 3 * HZ)) {
3589 ata_port_printk(ap, KERN_WARNING,
3590 "port is slow to respond, please be patient "
3591 "(Status 0x%x)\n", status);
3592 warned = 1;
3595 msleep(50);
3599 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3600 unsigned long deadline)
3602 struct ata_ioports *ioaddr = &ap->ioaddr;
3603 unsigned int dev0 = devmask & (1 << 0);
3604 unsigned int dev1 = devmask & (1 << 1);
3605 int rc, ret = 0;
3607 /* if device 0 was found in ata_devchk, wait for its
3608 * BSY bit to clear
3610 if (dev0) {
3611 rc = ata_wait_ready(ap, deadline);
3612 if (rc) {
3613 if (rc != -ENODEV)
3614 return rc;
3615 ret = rc;
3619 /* if device 1 was found in ata_devchk, wait for register
3620 * access briefly, then wait for BSY to clear.
3622 if (dev1) {
3623 int i;
3625 ap->ops->dev_select(ap, 1);
3627 /* Wait for register access. Some ATAPI devices fail
3628 * to set nsect/lbal after reset, so don't waste too
3629 * much time on it. We're gonna wait for !BSY anyway.
3631 for (i = 0; i < 2; i++) {
3632 u8 nsect, lbal;
3634 nsect = ioread8(ioaddr->nsect_addr);
3635 lbal = ioread8(ioaddr->lbal_addr);
3636 if ((nsect == 1) && (lbal == 1))
3637 break;
3638 msleep(50); /* give drive a breather */
3641 rc = ata_wait_ready(ap, deadline);
3642 if (rc) {
3643 if (rc != -ENODEV)
3644 return rc;
3645 ret = rc;
3649 /* is all this really necessary? */
3650 ap->ops->dev_select(ap, 0);
3651 if (dev1)
3652 ap->ops->dev_select(ap, 1);
3653 if (dev0)
3654 ap->ops->dev_select(ap, 0);
3656 return ret;
3659 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3660 unsigned long deadline)
3662 struct ata_ioports *ioaddr = &ap->ioaddr;
3664 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3666 /* software reset. causes dev0 to be selected */
3667 iowrite8(ap->ctl, ioaddr->ctl_addr);
3668 udelay(20); /* FIXME: flush */
3669 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3670 udelay(20); /* FIXME: flush */
3671 iowrite8(ap->ctl, ioaddr->ctl_addr);
3673 /* wait a while before checking status */
3674 ata_wait_after_reset(ap, deadline);
3676 /* Before we perform post reset processing we want to see if
3677 * the bus shows 0xFF because the odd clown forgets the D7
3678 * pulldown resistor.
3680 if (ata_chk_status(ap) == 0xFF)
3681 return -ENODEV;
3683 return ata_bus_post_reset(ap, devmask, deadline);
3687 * ata_bus_reset - reset host port and associated ATA channel
3688 * @ap: port to reset
3690 * This is typically the first time we actually start issuing
3691 * commands to the ATA channel. We wait for BSY to clear, then
3692 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3693 * result. Determine what devices, if any, are on the channel
3694 * by looking at the device 0/1 error register. Look at the signature
3695 * stored in each device's taskfile registers, to determine if
3696 * the device is ATA or ATAPI.
3698 * LOCKING:
3699 * PCI/etc. bus probe sem.
3700 * Obtains host lock.
3702 * SIDE EFFECTS:
3703 * Sets ATA_FLAG_DISABLED if bus reset fails.
3706 void ata_bus_reset(struct ata_port *ap)
3708 struct ata_device *device = ap->link.device;
3709 struct ata_ioports *ioaddr = &ap->ioaddr;
3710 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3711 u8 err;
3712 unsigned int dev0, dev1 = 0, devmask = 0;
3713 int rc;
3715 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3717 /* determine if device 0/1 are present */
3718 if (ap->flags & ATA_FLAG_SATA_RESET)
3719 dev0 = 1;
3720 else {
3721 dev0 = ata_devchk(ap, 0);
3722 if (slave_possible)
3723 dev1 = ata_devchk(ap, 1);
3726 if (dev0)
3727 devmask |= (1 << 0);
3728 if (dev1)
3729 devmask |= (1 << 1);
3731 /* select device 0 again */
3732 ap->ops->dev_select(ap, 0);
3734 /* issue bus reset */
3735 if (ap->flags & ATA_FLAG_SRST) {
3736 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3737 if (rc && rc != -ENODEV)
3738 goto err_out;
3742 * determine by signature whether we have ATA or ATAPI devices
3744 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3745 if ((slave_possible) && (err != 0x81))
3746 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3748 /* is double-select really necessary? */
3749 if (device[1].class != ATA_DEV_NONE)
3750 ap->ops->dev_select(ap, 1);
3751 if (device[0].class != ATA_DEV_NONE)
3752 ap->ops->dev_select(ap, 0);
3754 /* if no devices were detected, disable this port */
3755 if ((device[0].class == ATA_DEV_NONE) &&
3756 (device[1].class == ATA_DEV_NONE))
3757 goto err_out;
3759 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3760 /* set up device control for ATA_FLAG_SATA_RESET */
3761 iowrite8(ap->ctl, ioaddr->ctl_addr);
3764 DPRINTK("EXIT\n");
3765 return;
3767 err_out:
3768 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3769 ata_port_disable(ap);
3771 DPRINTK("EXIT\n");
3775 * sata_link_debounce - debounce SATA phy status
3776 * @link: ATA link to debounce SATA phy status for
3777 * @params: timing parameters { interval, duratinon, timeout } in msec
3778 * @deadline: deadline jiffies for the operation
3780 * Make sure SStatus of @link reaches stable state, determined by
3781 * holding the same value where DET is not 1 for @duration polled
3782 * every @interval, before @timeout. Timeout constraints the
3783 * beginning of the stable state. Because DET gets stuck at 1 on
3784 * some controllers after hot unplugging, this functions waits
3785 * until timeout then returns 0 if DET is stable at 1.
3787 * @timeout is further limited by @deadline. The sooner of the
3788 * two is used.
3790 * LOCKING:
3791 * Kernel thread context (may sleep)
3793 * RETURNS:
3794 * 0 on success, -errno on failure.
3796 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3797 unsigned long deadline)
3799 unsigned long interval_msec = params[0];
3800 unsigned long duration = msecs_to_jiffies(params[1]);
3801 unsigned long last_jiffies, t;
3802 u32 last, cur;
3803 int rc;
3805 t = jiffies + msecs_to_jiffies(params[2]);
3806 if (time_before(t, deadline))
3807 deadline = t;
3809 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3810 return rc;
3811 cur &= 0xf;
3813 last = cur;
3814 last_jiffies = jiffies;
3816 while (1) {
3817 msleep(interval_msec);
3818 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3819 return rc;
3820 cur &= 0xf;
3822 /* DET stable? */
3823 if (cur == last) {
3824 if (cur == 1 && time_before(jiffies, deadline))
3825 continue;
3826 if (time_after(jiffies, last_jiffies + duration))
3827 return 0;
3828 continue;
3831 /* unstable, start over */
3832 last = cur;
3833 last_jiffies = jiffies;
3835 /* Check deadline. If debouncing failed, return
3836 * -EPIPE to tell upper layer to lower link speed.
3838 if (time_after(jiffies, deadline))
3839 return -EPIPE;
3844 * sata_link_resume - resume SATA link
3845 * @link: ATA link to resume SATA
3846 * @params: timing parameters { interval, duratinon, timeout } in msec
3847 * @deadline: deadline jiffies for the operation
3849 * Resume SATA phy @link and debounce it.
3851 * LOCKING:
3852 * Kernel thread context (may sleep)
3854 * RETURNS:
3855 * 0 on success, -errno on failure.
3857 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3858 unsigned long deadline)
3860 u32 scontrol;
3861 int rc;
3863 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3864 return rc;
3866 scontrol = (scontrol & 0x0f0) | 0x300;
3868 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3869 return rc;
3871 /* Some PHYs react badly if SStatus is pounded immediately
3872 * after resuming. Delay 200ms before debouncing.
3874 msleep(200);
3876 return sata_link_debounce(link, params, deadline);
3880 * ata_std_prereset - prepare for reset
3881 * @link: ATA link to be reset
3882 * @deadline: deadline jiffies for the operation
3884 * @link is about to be reset. Initialize it. Failure from
3885 * prereset makes libata abort whole reset sequence and give up
3886 * that port, so prereset should be best-effort. It does its
3887 * best to prepare for reset sequence but if things go wrong, it
3888 * should just whine, not fail.
3890 * LOCKING:
3891 * Kernel thread context (may sleep)
3893 * RETURNS:
3894 * 0 on success, -errno otherwise.
3896 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3898 struct ata_port *ap = link->ap;
3899 struct ata_eh_context *ehc = &link->eh_context;
3900 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3901 int rc;
3903 /* handle link resume */
3904 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3905 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3906 ehc->i.action |= ATA_EH_HARDRESET;
3908 /* Some PMPs don't work with only SRST, force hardreset if PMP
3909 * is supported.
3911 if (ap->flags & ATA_FLAG_PMP)
3912 ehc->i.action |= ATA_EH_HARDRESET;
3914 /* if we're about to do hardreset, nothing more to do */
3915 if (ehc->i.action & ATA_EH_HARDRESET)
3916 return 0;
3918 /* if SATA, resume link */
3919 if (ap->flags & ATA_FLAG_SATA) {
3920 rc = sata_link_resume(link, timing, deadline);
3921 /* whine about phy resume failure but proceed */
3922 if (rc && rc != -EOPNOTSUPP)
3923 ata_link_printk(link, KERN_WARNING, "failed to resume "
3924 "link for reset (errno=%d)\n", rc);
3927 /* Wait for !BSY if the controller can wait for the first D2H
3928 * Reg FIS and we don't know that no device is attached.
3930 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3931 rc = ata_wait_ready(ap, deadline);
3932 if (rc && rc != -ENODEV) {
3933 ata_link_printk(link, KERN_WARNING, "device not ready "
3934 "(errno=%d), forcing hardreset\n", rc);
3935 ehc->i.action |= ATA_EH_HARDRESET;
3939 return 0;
3943 * ata_std_softreset - reset host port via ATA SRST
3944 * @link: ATA link to reset
3945 * @classes: resulting classes of attached devices
3946 * @deadline: deadline jiffies for the operation
3948 * Reset host port using ATA SRST.
3950 * LOCKING:
3951 * Kernel thread context (may sleep)
3953 * RETURNS:
3954 * 0 on success, -errno otherwise.
3956 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3957 unsigned long deadline)
3959 struct ata_port *ap = link->ap;
3960 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3961 unsigned int devmask = 0;
3962 int rc;
3963 u8 err;
3965 DPRINTK("ENTER\n");
3967 if (ata_link_offline(link)) {
3968 classes[0] = ATA_DEV_NONE;
3969 goto out;
3972 /* determine if device 0/1 are present */
3973 if (ata_devchk(ap, 0))
3974 devmask |= (1 << 0);
3975 if (slave_possible && ata_devchk(ap, 1))
3976 devmask |= (1 << 1);
3978 /* select device 0 again */
3979 ap->ops->dev_select(ap, 0);
3981 /* issue bus reset */
3982 DPRINTK("about to softreset, devmask=%x\n", devmask);
3983 rc = ata_bus_softreset(ap, devmask, deadline);
3984 /* if link is occupied, -ENODEV too is an error */
3985 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3986 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3987 return rc;
3990 /* determine by signature whether we have ATA or ATAPI devices */
3991 classes[0] = ata_dev_try_classify(&link->device[0],
3992 devmask & (1 << 0), &err);
3993 if (slave_possible && err != 0x81)
3994 classes[1] = ata_dev_try_classify(&link->device[1],
3995 devmask & (1 << 1), &err);
3997 out:
3998 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3999 return 0;
4003 * sata_link_hardreset - reset link via SATA phy reset
4004 * @link: link to reset
4005 * @timing: timing parameters { interval, duratinon, timeout } in msec
4006 * @deadline: deadline jiffies for the operation
4008 * SATA phy-reset @link using DET bits of SControl register.
4010 * LOCKING:
4011 * Kernel thread context (may sleep)
4013 * RETURNS:
4014 * 0 on success, -errno otherwise.
4016 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4017 unsigned long deadline)
4019 u32 scontrol;
4020 int rc;
4022 DPRINTK("ENTER\n");
4024 if (sata_set_spd_needed(link)) {
4025 /* SATA spec says nothing about how to reconfigure
4026 * spd. To be on the safe side, turn off phy during
4027 * reconfiguration. This works for at least ICH7 AHCI
4028 * and Sil3124.
4030 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4031 goto out;
4033 scontrol = (scontrol & 0x0f0) | 0x304;
4035 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4036 goto out;
4038 sata_set_spd(link);
4041 /* issue phy wake/reset */
4042 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4043 goto out;
4045 scontrol = (scontrol & 0x0f0) | 0x301;
4047 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4048 goto out;
4050 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4051 * 10.4.2 says at least 1 ms.
4053 msleep(1);
4055 /* bring link back */
4056 rc = sata_link_resume(link, timing, deadline);
4057 out:
4058 DPRINTK("EXIT, rc=%d\n", rc);
4059 return rc;
4063 * sata_std_hardreset - reset host port via SATA phy reset
4064 * @link: link to reset
4065 * @class: resulting class of attached device
4066 * @deadline: deadline jiffies for the operation
4068 * SATA phy-reset host port using DET bits of SControl register,
4069 * wait for !BSY and classify the attached device.
4071 * LOCKING:
4072 * Kernel thread context (may sleep)
4074 * RETURNS:
4075 * 0 on success, -errno otherwise.
4077 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4078 unsigned long deadline)
4080 struct ata_port *ap = link->ap;
4081 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4082 int rc;
4084 DPRINTK("ENTER\n");
4086 /* do hardreset */
4087 rc = sata_link_hardreset(link, timing, deadline);
4088 if (rc) {
4089 ata_link_printk(link, KERN_ERR,
4090 "COMRESET failed (errno=%d)\n", rc);
4091 return rc;
4094 /* TODO: phy layer with polling, timeouts, etc. */
4095 if (ata_link_offline(link)) {
4096 *class = ATA_DEV_NONE;
4097 DPRINTK("EXIT, link offline\n");
4098 return 0;
4101 /* wait a while before checking status */
4102 ata_wait_after_reset(ap, deadline);
4104 /* If PMP is supported, we have to do follow-up SRST. Note
4105 * that some PMPs don't send D2H Reg FIS after hardreset at
4106 * all if the first port is empty. Wait for it just for a
4107 * second and request follow-up SRST.
4109 if (ap->flags & ATA_FLAG_PMP) {
4110 ata_wait_ready(ap, jiffies + HZ);
4111 return -EAGAIN;
4114 rc = ata_wait_ready(ap, deadline);
4115 /* link occupied, -ENODEV too is an error */
4116 if (rc) {
4117 ata_link_printk(link, KERN_ERR,
4118 "COMRESET failed (errno=%d)\n", rc);
4119 return rc;
4122 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4124 *class = ata_dev_try_classify(link->device, 1, NULL);
4126 DPRINTK("EXIT, class=%u\n", *class);
4127 return 0;
4131 * ata_std_postreset - standard postreset callback
4132 * @link: the target ata_link
4133 * @classes: classes of attached devices
4135 * This function is invoked after a successful reset. Note that
4136 * the device might have been reset more than once using
4137 * different reset methods before postreset is invoked.
4139 * LOCKING:
4140 * Kernel thread context (may sleep)
4142 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4144 struct ata_port *ap = link->ap;
4145 u32 serror;
4147 DPRINTK("ENTER\n");
4149 /* print link status */
4150 sata_print_link_status(link);
4152 /* clear SError */
4153 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4154 sata_scr_write(link, SCR_ERROR, serror);
4155 link->eh_info.serror = 0;
4157 /* is double-select really necessary? */
4158 if (classes[0] != ATA_DEV_NONE)
4159 ap->ops->dev_select(ap, 1);
4160 if (classes[1] != ATA_DEV_NONE)
4161 ap->ops->dev_select(ap, 0);
4163 /* bail out if no device is present */
4164 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4165 DPRINTK("EXIT, no device\n");
4166 return;
4169 /* set up device control */
4170 if (ap->ioaddr.ctl_addr)
4171 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4173 DPRINTK("EXIT\n");
4177 * ata_dev_same_device - Determine whether new ID matches configured device
4178 * @dev: device to compare against
4179 * @new_class: class of the new device
4180 * @new_id: IDENTIFY page of the new device
4182 * Compare @new_class and @new_id against @dev and determine
4183 * whether @dev is the device indicated by @new_class and
4184 * @new_id.
4186 * LOCKING:
4187 * None.
4189 * RETURNS:
4190 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4192 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4193 const u16 *new_id)
4195 const u16 *old_id = dev->id;
4196 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4197 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4199 if (dev->class != new_class) {
4200 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4201 dev->class, new_class);
4202 return 0;
4205 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4206 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4207 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4208 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4210 if (strcmp(model[0], model[1])) {
4211 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4212 "'%s' != '%s'\n", model[0], model[1]);
4213 return 0;
4216 if (strcmp(serial[0], serial[1])) {
4217 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4218 "'%s' != '%s'\n", serial[0], serial[1]);
4219 return 0;
4222 return 1;
4226 * ata_dev_reread_id - Re-read IDENTIFY data
4227 * @dev: target ATA device
4228 * @readid_flags: read ID flags
4230 * Re-read IDENTIFY page and make sure @dev is still attached to
4231 * the port.
4233 * LOCKING:
4234 * Kernel thread context (may sleep)
4236 * RETURNS:
4237 * 0 on success, negative errno otherwise
4239 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4241 unsigned int class = dev->class;
4242 u16 *id = (void *)dev->link->ap->sector_buf;
4243 int rc;
4245 /* read ID data */
4246 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4247 if (rc)
4248 return rc;
4250 /* is the device still there? */
4251 if (!ata_dev_same_device(dev, class, id))
4252 return -ENODEV;
4254 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4255 return 0;
4259 * ata_dev_revalidate - Revalidate ATA device
4260 * @dev: device to revalidate
4261 * @new_class: new class code
4262 * @readid_flags: read ID flags
4264 * Re-read IDENTIFY page, make sure @dev is still attached to the
4265 * port and reconfigure it according to the new IDENTIFY page.
4267 * LOCKING:
4268 * Kernel thread context (may sleep)
4270 * RETURNS:
4271 * 0 on success, negative errno otherwise
4273 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4274 unsigned int readid_flags)
4276 u64 n_sectors = dev->n_sectors;
4277 int rc;
4279 if (!ata_dev_enabled(dev))
4280 return -ENODEV;
4282 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4283 if (ata_class_enabled(new_class) &&
4284 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4285 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4286 dev->class, new_class);
4287 rc = -ENODEV;
4288 goto fail;
4291 /* re-read ID */
4292 rc = ata_dev_reread_id(dev, readid_flags);
4293 if (rc)
4294 goto fail;
4296 /* configure device according to the new ID */
4297 rc = ata_dev_configure(dev);
4298 if (rc)
4299 goto fail;
4301 /* verify n_sectors hasn't changed */
4302 if (dev->class == ATA_DEV_ATA && n_sectors &&
4303 dev->n_sectors != n_sectors) {
4304 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4305 "%llu != %llu\n",
4306 (unsigned long long)n_sectors,
4307 (unsigned long long)dev->n_sectors);
4309 /* restore original n_sectors */
4310 dev->n_sectors = n_sectors;
4312 rc = -ENODEV;
4313 goto fail;
4316 return 0;
4318 fail:
4319 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4320 return rc;
4323 struct ata_blacklist_entry {
4324 const char *model_num;
4325 const char *model_rev;
4326 unsigned long horkage;
4329 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4330 /* Devices with DMA related problems under Linux */
4331 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4332 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4333 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4334 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4335 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4336 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4337 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4338 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4339 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4340 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4341 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4342 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4343 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4344 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4345 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4346 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4347 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4348 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4349 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4350 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4351 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4352 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4353 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4354 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4355 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4356 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4357 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4358 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4359 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4360 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4361 /* Odd clown on sil3726/4726 PMPs */
4362 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4363 ATA_HORKAGE_SKIP_PM },
4365 /* Weird ATAPI devices */
4366 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4368 /* Devices we expect to fail diagnostics */
4370 /* Devices where NCQ should be avoided */
4371 /* NCQ is slow */
4372 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4373 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4374 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4375 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4376 /* NCQ is broken */
4377 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4378 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4379 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4380 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4382 /* Blacklist entries taken from Silicon Image 3124/3132
4383 Windows driver .inf file - also several Linux problem reports */
4384 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4385 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4386 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4388 /* devices which puke on READ_NATIVE_MAX */
4389 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4390 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4391 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4392 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4394 /* Devices which report 1 sector over size HPA */
4395 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4396 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4397 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4399 /* Devices which get the IVB wrong */
4400 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4401 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4402 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4403 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4404 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4406 /* End Marker */
4410 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4412 const char *p;
4413 int len;
4416 * check for trailing wildcard: *\0
4418 p = strchr(patt, wildchar);
4419 if (p && ((*(p + 1)) == 0))
4420 len = p - patt;
4421 else {
4422 len = strlen(name);
4423 if (!len) {
4424 if (!*patt)
4425 return 0;
4426 return -1;
4430 return strncmp(patt, name, len);
4433 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4435 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4436 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4437 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4439 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4440 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4442 while (ad->model_num) {
4443 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4444 if (ad->model_rev == NULL)
4445 return ad->horkage;
4446 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4447 return ad->horkage;
4449 ad++;
4451 return 0;
4454 static int ata_dma_blacklisted(const struct ata_device *dev)
4456 /* We don't support polling DMA.
4457 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4458 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4460 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4461 (dev->flags & ATA_DFLAG_CDB_INTR))
4462 return 1;
4463 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4467 * ata_is_40wire - check drive side detection
4468 * @dev: device
4470 * Perform drive side detection decoding, allowing for device vendors
4471 * who can't follow the documentation.
4474 static int ata_is_40wire(struct ata_device *dev)
4476 if (dev->horkage & ATA_HORKAGE_IVB)
4477 return ata_drive_40wire_relaxed(dev->id);
4478 return ata_drive_40wire(dev->id);
4482 * ata_dev_xfermask - Compute supported xfermask of the given device
4483 * @dev: Device to compute xfermask for
4485 * Compute supported xfermask of @dev and store it in
4486 * dev->*_mask. This function is responsible for applying all
4487 * known limits including host controller limits, device
4488 * blacklist, etc...
4490 * LOCKING:
4491 * None.
4493 static void ata_dev_xfermask(struct ata_device *dev)
4495 struct ata_link *link = dev->link;
4496 struct ata_port *ap = link->ap;
4497 struct ata_host *host = ap->host;
4498 unsigned long xfer_mask;
4500 /* controller modes available */
4501 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4502 ap->mwdma_mask, ap->udma_mask);
4504 /* drive modes available */
4505 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4506 dev->mwdma_mask, dev->udma_mask);
4507 xfer_mask &= ata_id_xfermask(dev->id);
4510 * CFA Advanced TrueIDE timings are not allowed on a shared
4511 * cable
4513 if (ata_dev_pair(dev)) {
4514 /* No PIO5 or PIO6 */
4515 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4516 /* No MWDMA3 or MWDMA 4 */
4517 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4520 if (ata_dma_blacklisted(dev)) {
4521 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4522 ata_dev_printk(dev, KERN_WARNING,
4523 "device is on DMA blacklist, disabling DMA\n");
4526 if ((host->flags & ATA_HOST_SIMPLEX) &&
4527 host->simplex_claimed && host->simplex_claimed != ap) {
4528 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4529 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4530 "other device, disabling DMA\n");
4533 if (ap->flags & ATA_FLAG_NO_IORDY)
4534 xfer_mask &= ata_pio_mask_no_iordy(dev);
4536 if (ap->ops->mode_filter)
4537 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4539 /* Apply cable rule here. Don't apply it early because when
4540 * we handle hot plug the cable type can itself change.
4541 * Check this last so that we know if the transfer rate was
4542 * solely limited by the cable.
4543 * Unknown or 80 wire cables reported host side are checked
4544 * drive side as well. Cases where we know a 40wire cable
4545 * is used safely for 80 are not checked here.
4547 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4548 /* UDMA/44 or higher would be available */
4549 if ((ap->cbl == ATA_CBL_PATA40) ||
4550 (ata_is_40wire(dev) &&
4551 (ap->cbl == ATA_CBL_PATA_UNK ||
4552 ap->cbl == ATA_CBL_PATA80))) {
4553 ata_dev_printk(dev, KERN_WARNING,
4554 "limited to UDMA/33 due to 40-wire cable\n");
4555 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4558 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4559 &dev->mwdma_mask, &dev->udma_mask);
4563 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4564 * @dev: Device to which command will be sent
4566 * Issue SET FEATURES - XFER MODE command to device @dev
4567 * on port @ap.
4569 * LOCKING:
4570 * PCI/etc. bus probe sem.
4572 * RETURNS:
4573 * 0 on success, AC_ERR_* mask otherwise.
4576 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4578 struct ata_taskfile tf;
4579 unsigned int err_mask;
4581 /* set up set-features taskfile */
4582 DPRINTK("set features - xfer mode\n");
4584 /* Some controllers and ATAPI devices show flaky interrupt
4585 * behavior after setting xfer mode. Use polling instead.
4587 ata_tf_init(dev, &tf);
4588 tf.command = ATA_CMD_SET_FEATURES;
4589 tf.feature = SETFEATURES_XFER;
4590 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4591 tf.protocol = ATA_PROT_NODATA;
4592 /* If we are using IORDY we must send the mode setting command */
4593 if (ata_pio_need_iordy(dev))
4594 tf.nsect = dev->xfer_mode;
4595 /* If the device has IORDY and the controller does not - turn it off */
4596 else if (ata_id_has_iordy(dev->id))
4597 tf.nsect = 0x01;
4598 else /* In the ancient relic department - skip all of this */
4599 return 0;
4601 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4603 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4604 return err_mask;
4607 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4608 * @dev: Device to which command will be sent
4609 * @enable: Whether to enable or disable the feature
4610 * @feature: The sector count represents the feature to set
4612 * Issue SET FEATURES - SATA FEATURES command to device @dev
4613 * on port @ap with sector count
4615 * LOCKING:
4616 * PCI/etc. bus probe sem.
4618 * RETURNS:
4619 * 0 on success, AC_ERR_* mask otherwise.
4621 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4622 u8 feature)
4624 struct ata_taskfile tf;
4625 unsigned int err_mask;
4627 /* set up set-features taskfile */
4628 DPRINTK("set features - SATA features\n");
4630 ata_tf_init(dev, &tf);
4631 tf.command = ATA_CMD_SET_FEATURES;
4632 tf.feature = enable;
4633 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4634 tf.protocol = ATA_PROT_NODATA;
4635 tf.nsect = feature;
4637 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4639 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4640 return err_mask;
4644 * ata_dev_init_params - Issue INIT DEV PARAMS command
4645 * @dev: Device to which command will be sent
4646 * @heads: Number of heads (taskfile parameter)
4647 * @sectors: Number of sectors (taskfile parameter)
4649 * LOCKING:
4650 * Kernel thread context (may sleep)
4652 * RETURNS:
4653 * 0 on success, AC_ERR_* mask otherwise.
4655 static unsigned int ata_dev_init_params(struct ata_device *dev,
4656 u16 heads, u16 sectors)
4658 struct ata_taskfile tf;
4659 unsigned int err_mask;
4661 /* Number of sectors per track 1-255. Number of heads 1-16 */
4662 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4663 return AC_ERR_INVALID;
4665 /* set up init dev params taskfile */
4666 DPRINTK("init dev params \n");
4668 ata_tf_init(dev, &tf);
4669 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4670 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4671 tf.protocol = ATA_PROT_NODATA;
4672 tf.nsect = sectors;
4673 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4675 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4676 /* A clean abort indicates an original or just out of spec drive
4677 and we should continue as we issue the setup based on the
4678 drive reported working geometry */
4679 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4680 err_mask = 0;
4682 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4683 return err_mask;
4687 * ata_sg_clean - Unmap DMA memory associated with command
4688 * @qc: Command containing DMA memory to be released
4690 * Unmap all mapped DMA memory associated with this command.
4692 * LOCKING:
4693 * spin_lock_irqsave(host lock)
4695 void ata_sg_clean(struct ata_queued_cmd *qc)
4697 struct ata_port *ap = qc->ap;
4698 struct scatterlist *sg = qc->sg;
4699 int dir = qc->dma_dir;
4701 WARN_ON(sg == NULL);
4703 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4705 if (qc->n_elem)
4706 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4708 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4709 qc->sg = NULL;
4713 * ata_fill_sg - Fill PCI IDE PRD table
4714 * @qc: Metadata associated with taskfile to be transferred
4716 * Fill PCI IDE PRD (scatter-gather) table with segments
4717 * associated with the current disk command.
4719 * LOCKING:
4720 * spin_lock_irqsave(host lock)
4723 static void ata_fill_sg(struct ata_queued_cmd *qc)
4725 struct ata_port *ap = qc->ap;
4726 struct scatterlist *sg;
4727 unsigned int si, pi;
4729 pi = 0;
4730 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4731 u32 addr, offset;
4732 u32 sg_len, len;
4734 /* determine if physical DMA addr spans 64K boundary.
4735 * Note h/w doesn't support 64-bit, so we unconditionally
4736 * truncate dma_addr_t to u32.
4738 addr = (u32) sg_dma_address(sg);
4739 sg_len = sg_dma_len(sg);
4741 while (sg_len) {
4742 offset = addr & 0xffff;
4743 len = sg_len;
4744 if ((offset + sg_len) > 0x10000)
4745 len = 0x10000 - offset;
4747 ap->prd[pi].addr = cpu_to_le32(addr);
4748 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4749 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4751 pi++;
4752 sg_len -= len;
4753 addr += len;
4757 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4761 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4762 * @qc: Metadata associated with taskfile to be transferred
4764 * Fill PCI IDE PRD (scatter-gather) table with segments
4765 * associated with the current disk command. Perform the fill
4766 * so that we avoid writing any length 64K records for
4767 * controllers that don't follow the spec.
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4773 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4775 struct ata_port *ap = qc->ap;
4776 struct scatterlist *sg;
4777 unsigned int si, pi;
4779 pi = 0;
4780 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4781 u32 addr, offset;
4782 u32 sg_len, len, blen;
4784 /* determine if physical DMA addr spans 64K boundary.
4785 * Note h/w doesn't support 64-bit, so we unconditionally
4786 * truncate dma_addr_t to u32.
4788 addr = (u32) sg_dma_address(sg);
4789 sg_len = sg_dma_len(sg);
4791 while (sg_len) {
4792 offset = addr & 0xffff;
4793 len = sg_len;
4794 if ((offset + sg_len) > 0x10000)
4795 len = 0x10000 - offset;
4797 blen = len & 0xffff;
4798 ap->prd[pi].addr = cpu_to_le32(addr);
4799 if (blen == 0) {
4800 /* Some PATA chipsets like the CS5530 can't
4801 cope with 0x0000 meaning 64K as the spec says */
4802 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4803 blen = 0x8000;
4804 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4806 ap->prd[pi].flags_len = cpu_to_le32(blen);
4807 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4809 pi++;
4810 sg_len -= len;
4811 addr += len;
4815 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4819 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4820 * @qc: Metadata associated with taskfile to check
4822 * Allow low-level driver to filter ATA PACKET commands, returning
4823 * a status indicating whether or not it is OK to use DMA for the
4824 * supplied PACKET command.
4826 * LOCKING:
4827 * spin_lock_irqsave(host lock)
4829 * RETURNS: 0 when ATAPI DMA can be used
4830 * nonzero otherwise
4832 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4834 struct ata_port *ap = qc->ap;
4836 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4837 * few ATAPI devices choke on such DMA requests.
4839 if (unlikely(qc->nbytes & 15))
4840 return 1;
4842 if (ap->ops->check_atapi_dma)
4843 return ap->ops->check_atapi_dma(qc);
4845 return 0;
4849 * ata_std_qc_defer - Check whether a qc needs to be deferred
4850 * @qc: ATA command in question
4852 * Non-NCQ commands cannot run with any other command, NCQ or
4853 * not. As upper layer only knows the queue depth, we are
4854 * responsible for maintaining exclusion. This function checks
4855 * whether a new command @qc can be issued.
4857 * LOCKING:
4858 * spin_lock_irqsave(host lock)
4860 * RETURNS:
4861 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4863 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4865 struct ata_link *link = qc->dev->link;
4867 if (qc->tf.protocol == ATA_PROT_NCQ) {
4868 if (!ata_tag_valid(link->active_tag))
4869 return 0;
4870 } else {
4871 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4872 return 0;
4875 return ATA_DEFER_LINK;
4879 * ata_qc_prep - Prepare taskfile for submission
4880 * @qc: Metadata associated with taskfile to be prepared
4882 * Prepare ATA taskfile for submission.
4884 * LOCKING:
4885 * spin_lock_irqsave(host lock)
4887 void ata_qc_prep(struct ata_queued_cmd *qc)
4889 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4890 return;
4892 ata_fill_sg(qc);
4896 * ata_dumb_qc_prep - Prepare taskfile for submission
4897 * @qc: Metadata associated with taskfile to be prepared
4899 * Prepare ATA taskfile for submission.
4901 * LOCKING:
4902 * spin_lock_irqsave(host lock)
4904 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4906 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4907 return;
4909 ata_fill_sg_dumb(qc);
4912 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4915 * ata_sg_init - Associate command with scatter-gather table.
4916 * @qc: Command to be associated
4917 * @sg: Scatter-gather table.
4918 * @n_elem: Number of elements in s/g table.
4920 * Initialize the data-related elements of queued_cmd @qc
4921 * to point to a scatter-gather table @sg, containing @n_elem
4922 * elements.
4924 * LOCKING:
4925 * spin_lock_irqsave(host lock)
4927 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4928 unsigned int n_elem)
4930 qc->sg = sg;
4931 qc->n_elem = n_elem;
4932 qc->cursg = qc->sg;
4936 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4937 * @qc: Command with scatter-gather table to be mapped.
4939 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4941 * LOCKING:
4942 * spin_lock_irqsave(host lock)
4944 * RETURNS:
4945 * Zero on success, negative on error.
4948 static int ata_sg_setup(struct ata_queued_cmd *qc)
4950 struct ata_port *ap = qc->ap;
4951 unsigned int n_elem;
4953 VPRINTK("ENTER, ata%u\n", ap->print_id);
4955 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4956 if (n_elem < 1)
4957 return -1;
4959 DPRINTK("%d sg elements mapped\n", n_elem);
4961 qc->n_elem = n_elem;
4962 qc->flags |= ATA_QCFLAG_DMAMAP;
4964 return 0;
4968 * swap_buf_le16 - swap halves of 16-bit words in place
4969 * @buf: Buffer to swap
4970 * @buf_words: Number of 16-bit words in buffer.
4972 * Swap halves of 16-bit words if needed to convert from
4973 * little-endian byte order to native cpu byte order, or
4974 * vice-versa.
4976 * LOCKING:
4977 * Inherited from caller.
4979 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4981 #ifdef __BIG_ENDIAN
4982 unsigned int i;
4984 for (i = 0; i < buf_words; i++)
4985 buf[i] = le16_to_cpu(buf[i]);
4986 #endif /* __BIG_ENDIAN */
4990 * ata_data_xfer - Transfer data by PIO
4991 * @dev: device to target
4992 * @buf: data buffer
4993 * @buflen: buffer length
4994 * @rw: read/write
4996 * Transfer data from/to the device data register by PIO.
4998 * LOCKING:
4999 * Inherited from caller.
5001 * RETURNS:
5002 * Bytes consumed.
5004 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5005 unsigned int buflen, int rw)
5007 struct ata_port *ap = dev->link->ap;
5008 void __iomem *data_addr = ap->ioaddr.data_addr;
5009 unsigned int words = buflen >> 1;
5011 /* Transfer multiple of 2 bytes */
5012 if (rw == READ)
5013 ioread16_rep(data_addr, buf, words);
5014 else
5015 iowrite16_rep(data_addr, buf, words);
5017 /* Transfer trailing 1 byte, if any. */
5018 if (unlikely(buflen & 0x01)) {
5019 __le16 align_buf[1] = { 0 };
5020 unsigned char *trailing_buf = buf + buflen - 1;
5022 if (rw == READ) {
5023 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5024 memcpy(trailing_buf, align_buf, 1);
5025 } else {
5026 memcpy(align_buf, trailing_buf, 1);
5027 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5029 words++;
5032 return words << 1;
5036 * ata_data_xfer_noirq - Transfer data by PIO
5037 * @dev: device to target
5038 * @buf: data buffer
5039 * @buflen: buffer length
5040 * @rw: read/write
5042 * Transfer data from/to the device data register by PIO. Do the
5043 * transfer with interrupts disabled.
5045 * LOCKING:
5046 * Inherited from caller.
5048 * RETURNS:
5049 * Bytes consumed.
5051 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5052 unsigned int buflen, int rw)
5054 unsigned long flags;
5055 unsigned int consumed;
5057 local_irq_save(flags);
5058 consumed = ata_data_xfer(dev, buf, buflen, rw);
5059 local_irq_restore(flags);
5061 return consumed;
5066 * ata_pio_sector - Transfer a sector of data.
5067 * @qc: Command on going
5069 * Transfer qc->sect_size bytes of data from/to the ATA device.
5071 * LOCKING:
5072 * Inherited from caller.
5075 static void ata_pio_sector(struct ata_queued_cmd *qc)
5077 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5078 struct ata_port *ap = qc->ap;
5079 struct page *page;
5080 unsigned int offset;
5081 unsigned char *buf;
5083 if (qc->curbytes == qc->nbytes - qc->sect_size)
5084 ap->hsm_task_state = HSM_ST_LAST;
5086 page = sg_page(qc->cursg);
5087 offset = qc->cursg->offset + qc->cursg_ofs;
5089 /* get the current page and offset */
5090 page = nth_page(page, (offset >> PAGE_SHIFT));
5091 offset %= PAGE_SIZE;
5093 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5095 if (PageHighMem(page)) {
5096 unsigned long flags;
5098 /* FIXME: use a bounce buffer */
5099 local_irq_save(flags);
5100 buf = kmap_atomic(page, KM_IRQ0);
5102 /* do the actual data transfer */
5103 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5105 kunmap_atomic(buf, KM_IRQ0);
5106 local_irq_restore(flags);
5107 } else {
5108 buf = page_address(page);
5109 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5112 qc->curbytes += qc->sect_size;
5113 qc->cursg_ofs += qc->sect_size;
5115 if (qc->cursg_ofs == qc->cursg->length) {
5116 qc->cursg = sg_next(qc->cursg);
5117 qc->cursg_ofs = 0;
5122 * ata_pio_sectors - Transfer one or many sectors.
5123 * @qc: Command on going
5125 * Transfer one or many sectors of data from/to the
5126 * ATA device for the DRQ request.
5128 * LOCKING:
5129 * Inherited from caller.
5132 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5134 if (is_multi_taskfile(&qc->tf)) {
5135 /* READ/WRITE MULTIPLE */
5136 unsigned int nsect;
5138 WARN_ON(qc->dev->multi_count == 0);
5140 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5141 qc->dev->multi_count);
5142 while (nsect--)
5143 ata_pio_sector(qc);
5144 } else
5145 ata_pio_sector(qc);
5147 ata_altstatus(qc->ap); /* flush */
5151 * atapi_send_cdb - Write CDB bytes to hardware
5152 * @ap: Port to which ATAPI device is attached.
5153 * @qc: Taskfile currently active
5155 * When device has indicated its readiness to accept
5156 * a CDB, this function is called. Send the CDB.
5158 * LOCKING:
5159 * caller.
5162 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5164 /* send SCSI cdb */
5165 DPRINTK("send cdb\n");
5166 WARN_ON(qc->dev->cdb_len < 12);
5168 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5169 ata_altstatus(ap); /* flush */
5171 switch (qc->tf.protocol) {
5172 case ATAPI_PROT_PIO:
5173 ap->hsm_task_state = HSM_ST;
5174 break;
5175 case ATAPI_PROT_NODATA:
5176 ap->hsm_task_state = HSM_ST_LAST;
5177 break;
5178 case ATAPI_PROT_DMA:
5179 ap->hsm_task_state = HSM_ST_LAST;
5180 /* initiate bmdma */
5181 ap->ops->bmdma_start(qc);
5182 break;
5187 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5188 * @qc: Command on going
5189 * @bytes: number of bytes
5191 * Transfer Transfer data from/to the ATAPI device.
5193 * LOCKING:
5194 * Inherited from caller.
5197 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5199 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5200 struct ata_port *ap = qc->ap;
5201 struct ata_device *dev = qc->dev;
5202 struct ata_eh_info *ehi = &dev->link->eh_info;
5203 struct scatterlist *sg;
5204 struct page *page;
5205 unsigned char *buf;
5206 unsigned int offset, count, consumed;
5208 next_sg:
5209 sg = qc->cursg;
5210 if (unlikely(!sg)) {
5211 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5212 "buf=%u cur=%u bytes=%u",
5213 qc->nbytes, qc->curbytes, bytes);
5214 return -1;
5217 page = sg_page(sg);
5218 offset = sg->offset + qc->cursg_ofs;
5220 /* get the current page and offset */
5221 page = nth_page(page, (offset >> PAGE_SHIFT));
5222 offset %= PAGE_SIZE;
5224 /* don't overrun current sg */
5225 count = min(sg->length - qc->cursg_ofs, bytes);
5227 /* don't cross page boundaries */
5228 count = min(count, (unsigned int)PAGE_SIZE - offset);
5230 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5232 if (PageHighMem(page)) {
5233 unsigned long flags;
5235 /* FIXME: use bounce buffer */
5236 local_irq_save(flags);
5237 buf = kmap_atomic(page, KM_IRQ0);
5239 /* do the actual data transfer */
5240 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5242 kunmap_atomic(buf, KM_IRQ0);
5243 local_irq_restore(flags);
5244 } else {
5245 buf = page_address(page);
5246 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5249 bytes -= min(bytes, consumed);
5250 qc->curbytes += count;
5251 qc->cursg_ofs += count;
5253 if (qc->cursg_ofs == sg->length) {
5254 qc->cursg = sg_next(qc->cursg);
5255 qc->cursg_ofs = 0;
5258 /* consumed can be larger than count only for the last transfer */
5259 WARN_ON(qc->cursg && count != consumed);
5261 if (bytes)
5262 goto next_sg;
5263 return 0;
5267 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5268 * @qc: Command on going
5270 * Transfer Transfer data from/to the ATAPI device.
5272 * LOCKING:
5273 * Inherited from caller.
5276 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5278 struct ata_port *ap = qc->ap;
5279 struct ata_device *dev = qc->dev;
5280 struct ata_eh_info *ehi = &dev->link->eh_info;
5281 unsigned int ireason, bc_lo, bc_hi, bytes;
5282 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5284 /* Abuse qc->result_tf for temp storage of intermediate TF
5285 * here to save some kernel stack usage.
5286 * For normal completion, qc->result_tf is not relevant. For
5287 * error, qc->result_tf is later overwritten by ata_qc_complete().
5288 * So, the correctness of qc->result_tf is not affected.
5290 ap->ops->tf_read(ap, &qc->result_tf);
5291 ireason = qc->result_tf.nsect;
5292 bc_lo = qc->result_tf.lbam;
5293 bc_hi = qc->result_tf.lbah;
5294 bytes = (bc_hi << 8) | bc_lo;
5296 /* shall be cleared to zero, indicating xfer of data */
5297 if (unlikely(ireason & (1 << 0)))
5298 goto atapi_check;
5300 /* make sure transfer direction matches expected */
5301 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5302 if (unlikely(do_write != i_write))
5303 goto atapi_check;
5305 if (unlikely(!bytes))
5306 goto atapi_check;
5308 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5310 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5311 goto err_out;
5312 ata_altstatus(ap); /* flush */
5314 return;
5316 atapi_check:
5317 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5318 ireason, bytes);
5319 err_out:
5320 qc->err_mask |= AC_ERR_HSM;
5321 ap->hsm_task_state = HSM_ST_ERR;
5325 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5326 * @ap: the target ata_port
5327 * @qc: qc on going
5329 * RETURNS:
5330 * 1 if ok in workqueue, 0 otherwise.
5333 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5335 if (qc->tf.flags & ATA_TFLAG_POLLING)
5336 return 1;
5338 if (ap->hsm_task_state == HSM_ST_FIRST) {
5339 if (qc->tf.protocol == ATA_PROT_PIO &&
5340 (qc->tf.flags & ATA_TFLAG_WRITE))
5341 return 1;
5343 if (ata_is_atapi(qc->tf.protocol) &&
5344 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5345 return 1;
5348 return 0;
5352 * ata_hsm_qc_complete - finish a qc running on standard HSM
5353 * @qc: Command to complete
5354 * @in_wq: 1 if called from workqueue, 0 otherwise
5356 * Finish @qc which is running on standard HSM.
5358 * LOCKING:
5359 * If @in_wq is zero, spin_lock_irqsave(host lock).
5360 * Otherwise, none on entry and grabs host lock.
5362 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5364 struct ata_port *ap = qc->ap;
5365 unsigned long flags;
5367 if (ap->ops->error_handler) {
5368 if (in_wq) {
5369 spin_lock_irqsave(ap->lock, flags);
5371 /* EH might have kicked in while host lock is
5372 * released.
5374 qc = ata_qc_from_tag(ap, qc->tag);
5375 if (qc) {
5376 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5377 ap->ops->irq_on(ap);
5378 ata_qc_complete(qc);
5379 } else
5380 ata_port_freeze(ap);
5383 spin_unlock_irqrestore(ap->lock, flags);
5384 } else {
5385 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5386 ata_qc_complete(qc);
5387 else
5388 ata_port_freeze(ap);
5390 } else {
5391 if (in_wq) {
5392 spin_lock_irqsave(ap->lock, flags);
5393 ap->ops->irq_on(ap);
5394 ata_qc_complete(qc);
5395 spin_unlock_irqrestore(ap->lock, flags);
5396 } else
5397 ata_qc_complete(qc);
5402 * ata_hsm_move - move the HSM to the next state.
5403 * @ap: the target ata_port
5404 * @qc: qc on going
5405 * @status: current device status
5406 * @in_wq: 1 if called from workqueue, 0 otherwise
5408 * RETURNS:
5409 * 1 when poll next status needed, 0 otherwise.
5411 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5412 u8 status, int in_wq)
5414 unsigned long flags = 0;
5415 int poll_next;
5417 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5419 /* Make sure ata_qc_issue_prot() does not throw things
5420 * like DMA polling into the workqueue. Notice that
5421 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5423 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5425 fsm_start:
5426 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5427 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5429 switch (ap->hsm_task_state) {
5430 case HSM_ST_FIRST:
5431 /* Send first data block or PACKET CDB */
5433 /* If polling, we will stay in the work queue after
5434 * sending the data. Otherwise, interrupt handler
5435 * takes over after sending the data.
5437 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5439 /* check device status */
5440 if (unlikely((status & ATA_DRQ) == 0)) {
5441 /* handle BSY=0, DRQ=0 as error */
5442 if (likely(status & (ATA_ERR | ATA_DF)))
5443 /* device stops HSM for abort/error */
5444 qc->err_mask |= AC_ERR_DEV;
5445 else
5446 /* HSM violation. Let EH handle this */
5447 qc->err_mask |= AC_ERR_HSM;
5449 ap->hsm_task_state = HSM_ST_ERR;
5450 goto fsm_start;
5453 /* Device should not ask for data transfer (DRQ=1)
5454 * when it finds something wrong.
5455 * We ignore DRQ here and stop the HSM by
5456 * changing hsm_task_state to HSM_ST_ERR and
5457 * let the EH abort the command or reset the device.
5459 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5460 /* Some ATAPI tape drives forget to clear the ERR bit
5461 * when doing the next command (mostly request sense).
5462 * We ignore ERR here to workaround and proceed sending
5463 * the CDB.
5465 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5466 ata_port_printk(ap, KERN_WARNING,
5467 "DRQ=1 with device error, "
5468 "dev_stat 0x%X\n", status);
5469 qc->err_mask |= AC_ERR_HSM;
5470 ap->hsm_task_state = HSM_ST_ERR;
5471 goto fsm_start;
5475 /* Send the CDB (atapi) or the first data block (ata pio out).
5476 * During the state transition, interrupt handler shouldn't
5477 * be invoked before the data transfer is complete and
5478 * hsm_task_state is changed. Hence, the following locking.
5480 if (in_wq)
5481 spin_lock_irqsave(ap->lock, flags);
5483 if (qc->tf.protocol == ATA_PROT_PIO) {
5484 /* PIO data out protocol.
5485 * send first data block.
5488 /* ata_pio_sectors() might change the state
5489 * to HSM_ST_LAST. so, the state is changed here
5490 * before ata_pio_sectors().
5492 ap->hsm_task_state = HSM_ST;
5493 ata_pio_sectors(qc);
5494 } else
5495 /* send CDB */
5496 atapi_send_cdb(ap, qc);
5498 if (in_wq)
5499 spin_unlock_irqrestore(ap->lock, flags);
5501 /* if polling, ata_pio_task() handles the rest.
5502 * otherwise, interrupt handler takes over from here.
5504 break;
5506 case HSM_ST:
5507 /* complete command or read/write the data register */
5508 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5509 /* ATAPI PIO protocol */
5510 if ((status & ATA_DRQ) == 0) {
5511 /* No more data to transfer or device error.
5512 * Device error will be tagged in HSM_ST_LAST.
5514 ap->hsm_task_state = HSM_ST_LAST;
5515 goto fsm_start;
5518 /* Device should not ask for data transfer (DRQ=1)
5519 * when it finds something wrong.
5520 * We ignore DRQ here and stop the HSM by
5521 * changing hsm_task_state to HSM_ST_ERR and
5522 * let the EH abort the command or reset the device.
5524 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5525 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5526 "device error, dev_stat 0x%X\n",
5527 status);
5528 qc->err_mask |= AC_ERR_HSM;
5529 ap->hsm_task_state = HSM_ST_ERR;
5530 goto fsm_start;
5533 atapi_pio_bytes(qc);
5535 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5536 /* bad ireason reported by device */
5537 goto fsm_start;
5539 } else {
5540 /* ATA PIO protocol */
5541 if (unlikely((status & ATA_DRQ) == 0)) {
5542 /* handle BSY=0, DRQ=0 as error */
5543 if (likely(status & (ATA_ERR | ATA_DF)))
5544 /* device stops HSM for abort/error */
5545 qc->err_mask |= AC_ERR_DEV;
5546 else
5547 /* HSM violation. Let EH handle this.
5548 * Phantom devices also trigger this
5549 * condition. Mark hint.
5551 qc->err_mask |= AC_ERR_HSM |
5552 AC_ERR_NODEV_HINT;
5554 ap->hsm_task_state = HSM_ST_ERR;
5555 goto fsm_start;
5558 /* For PIO reads, some devices may ask for
5559 * data transfer (DRQ=1) alone with ERR=1.
5560 * We respect DRQ here and transfer one
5561 * block of junk data before changing the
5562 * hsm_task_state to HSM_ST_ERR.
5564 * For PIO writes, ERR=1 DRQ=1 doesn't make
5565 * sense since the data block has been
5566 * transferred to the device.
5568 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5569 /* data might be corrputed */
5570 qc->err_mask |= AC_ERR_DEV;
5572 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5573 ata_pio_sectors(qc);
5574 status = ata_wait_idle(ap);
5577 if (status & (ATA_BUSY | ATA_DRQ))
5578 qc->err_mask |= AC_ERR_HSM;
5580 /* ata_pio_sectors() might change the
5581 * state to HSM_ST_LAST. so, the state
5582 * is changed after ata_pio_sectors().
5584 ap->hsm_task_state = HSM_ST_ERR;
5585 goto fsm_start;
5588 ata_pio_sectors(qc);
5590 if (ap->hsm_task_state == HSM_ST_LAST &&
5591 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5592 /* all data read */
5593 status = ata_wait_idle(ap);
5594 goto fsm_start;
5598 poll_next = 1;
5599 break;
5601 case HSM_ST_LAST:
5602 if (unlikely(!ata_ok(status))) {
5603 qc->err_mask |= __ac_err_mask(status);
5604 ap->hsm_task_state = HSM_ST_ERR;
5605 goto fsm_start;
5608 /* no more data to transfer */
5609 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5610 ap->print_id, qc->dev->devno, status);
5612 WARN_ON(qc->err_mask);
5614 ap->hsm_task_state = HSM_ST_IDLE;
5616 /* complete taskfile transaction */
5617 ata_hsm_qc_complete(qc, in_wq);
5619 poll_next = 0;
5620 break;
5622 case HSM_ST_ERR:
5623 /* make sure qc->err_mask is available to
5624 * know what's wrong and recover
5626 WARN_ON(qc->err_mask == 0);
5628 ap->hsm_task_state = HSM_ST_IDLE;
5630 /* complete taskfile transaction */
5631 ata_hsm_qc_complete(qc, in_wq);
5633 poll_next = 0;
5634 break;
5635 default:
5636 poll_next = 0;
5637 BUG();
5640 return poll_next;
5643 static void ata_pio_task(struct work_struct *work)
5645 struct ata_port *ap =
5646 container_of(work, struct ata_port, port_task.work);
5647 struct ata_queued_cmd *qc = ap->port_task_data;
5648 u8 status;
5649 int poll_next;
5651 fsm_start:
5652 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5655 * This is purely heuristic. This is a fast path.
5656 * Sometimes when we enter, BSY will be cleared in
5657 * a chk-status or two. If not, the drive is probably seeking
5658 * or something. Snooze for a couple msecs, then
5659 * chk-status again. If still busy, queue delayed work.
5661 status = ata_busy_wait(ap, ATA_BUSY, 5);
5662 if (status & ATA_BUSY) {
5663 msleep(2);
5664 status = ata_busy_wait(ap, ATA_BUSY, 10);
5665 if (status & ATA_BUSY) {
5666 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5667 return;
5671 /* move the HSM */
5672 poll_next = ata_hsm_move(ap, qc, status, 1);
5674 /* another command or interrupt handler
5675 * may be running at this point.
5677 if (poll_next)
5678 goto fsm_start;
5682 * ata_qc_new - Request an available ATA command, for queueing
5683 * @ap: Port associated with device @dev
5684 * @dev: Device from whom we request an available command structure
5686 * LOCKING:
5687 * None.
5690 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5692 struct ata_queued_cmd *qc = NULL;
5693 unsigned int i;
5695 /* no command while frozen */
5696 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5697 return NULL;
5699 /* the last tag is reserved for internal command. */
5700 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5701 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5702 qc = __ata_qc_from_tag(ap, i);
5703 break;
5706 if (qc)
5707 qc->tag = i;
5709 return qc;
5713 * ata_qc_new_init - Request an available ATA command, and initialize it
5714 * @dev: Device from whom we request an available command structure
5716 * LOCKING:
5717 * None.
5720 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5722 struct ata_port *ap = dev->link->ap;
5723 struct ata_queued_cmd *qc;
5725 qc = ata_qc_new(ap);
5726 if (qc) {
5727 qc->scsicmd = NULL;
5728 qc->ap = ap;
5729 qc->dev = dev;
5731 ata_qc_reinit(qc);
5734 return qc;
5738 * ata_qc_free - free unused ata_queued_cmd
5739 * @qc: Command to complete
5741 * Designed to free unused ata_queued_cmd object
5742 * in case something prevents using it.
5744 * LOCKING:
5745 * spin_lock_irqsave(host lock)
5747 void ata_qc_free(struct ata_queued_cmd *qc)
5749 struct ata_port *ap = qc->ap;
5750 unsigned int tag;
5752 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5754 qc->flags = 0;
5755 tag = qc->tag;
5756 if (likely(ata_tag_valid(tag))) {
5757 qc->tag = ATA_TAG_POISON;
5758 clear_bit(tag, &ap->qc_allocated);
5762 void __ata_qc_complete(struct ata_queued_cmd *qc)
5764 struct ata_port *ap = qc->ap;
5765 struct ata_link *link = qc->dev->link;
5767 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5768 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5770 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5771 ata_sg_clean(qc);
5773 /* command should be marked inactive atomically with qc completion */
5774 if (qc->tf.protocol == ATA_PROT_NCQ) {
5775 link->sactive &= ~(1 << qc->tag);
5776 if (!link->sactive)
5777 ap->nr_active_links--;
5778 } else {
5779 link->active_tag = ATA_TAG_POISON;
5780 ap->nr_active_links--;
5783 /* clear exclusive status */
5784 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5785 ap->excl_link == link))
5786 ap->excl_link = NULL;
5788 /* atapi: mark qc as inactive to prevent the interrupt handler
5789 * from completing the command twice later, before the error handler
5790 * is called. (when rc != 0 and atapi request sense is needed)
5792 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5793 ap->qc_active &= ~(1 << qc->tag);
5795 /* call completion callback */
5796 qc->complete_fn(qc);
5799 static void fill_result_tf(struct ata_queued_cmd *qc)
5801 struct ata_port *ap = qc->ap;
5803 qc->result_tf.flags = qc->tf.flags;
5804 ap->ops->tf_read(ap, &qc->result_tf);
5807 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5809 struct ata_device *dev = qc->dev;
5811 if (ata_tag_internal(qc->tag))
5812 return;
5814 if (ata_is_nodata(qc->tf.protocol))
5815 return;
5817 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5818 return;
5820 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5824 * ata_qc_complete - Complete an active ATA command
5825 * @qc: Command to complete
5826 * @err_mask: ATA Status register contents
5828 * Indicate to the mid and upper layers that an ATA
5829 * command has completed, with either an ok or not-ok status.
5831 * LOCKING:
5832 * spin_lock_irqsave(host lock)
5834 void ata_qc_complete(struct ata_queued_cmd *qc)
5836 struct ata_port *ap = qc->ap;
5838 /* XXX: New EH and old EH use different mechanisms to
5839 * synchronize EH with regular execution path.
5841 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5842 * Normal execution path is responsible for not accessing a
5843 * failed qc. libata core enforces the rule by returning NULL
5844 * from ata_qc_from_tag() for failed qcs.
5846 * Old EH depends on ata_qc_complete() nullifying completion
5847 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5848 * not synchronize with interrupt handler. Only PIO task is
5849 * taken care of.
5851 if (ap->ops->error_handler) {
5852 struct ata_device *dev = qc->dev;
5853 struct ata_eh_info *ehi = &dev->link->eh_info;
5855 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5857 if (unlikely(qc->err_mask))
5858 qc->flags |= ATA_QCFLAG_FAILED;
5860 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5861 if (!ata_tag_internal(qc->tag)) {
5862 /* always fill result TF for failed qc */
5863 fill_result_tf(qc);
5864 ata_qc_schedule_eh(qc);
5865 return;
5869 /* read result TF if requested */
5870 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5871 fill_result_tf(qc);
5873 /* Some commands need post-processing after successful
5874 * completion.
5876 switch (qc->tf.command) {
5877 case ATA_CMD_SET_FEATURES:
5878 if (qc->tf.feature != SETFEATURES_WC_ON &&
5879 qc->tf.feature != SETFEATURES_WC_OFF)
5880 break;
5881 /* fall through */
5882 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5883 case ATA_CMD_SET_MULTI: /* multi_count changed */
5884 /* revalidate device */
5885 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5886 ata_port_schedule_eh(ap);
5887 break;
5889 case ATA_CMD_SLEEP:
5890 dev->flags |= ATA_DFLAG_SLEEPING;
5891 break;
5894 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5895 ata_verify_xfer(qc);
5897 __ata_qc_complete(qc);
5898 } else {
5899 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5900 return;
5902 /* read result TF if failed or requested */
5903 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5904 fill_result_tf(qc);
5906 __ata_qc_complete(qc);
5911 * ata_qc_complete_multiple - Complete multiple qcs successfully
5912 * @ap: port in question
5913 * @qc_active: new qc_active mask
5914 * @finish_qc: LLDD callback invoked before completing a qc
5916 * Complete in-flight commands. This functions is meant to be
5917 * called from low-level driver's interrupt routine to complete
5918 * requests normally. ap->qc_active and @qc_active is compared
5919 * and commands are completed accordingly.
5921 * LOCKING:
5922 * spin_lock_irqsave(host lock)
5924 * RETURNS:
5925 * Number of completed commands on success, -errno otherwise.
5927 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5928 void (*finish_qc)(struct ata_queued_cmd *))
5930 int nr_done = 0;
5931 u32 done_mask;
5932 int i;
5934 done_mask = ap->qc_active ^ qc_active;
5936 if (unlikely(done_mask & qc_active)) {
5937 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5938 "(%08x->%08x)\n", ap->qc_active, qc_active);
5939 return -EINVAL;
5942 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5943 struct ata_queued_cmd *qc;
5945 if (!(done_mask & (1 << i)))
5946 continue;
5948 if ((qc = ata_qc_from_tag(ap, i))) {
5949 if (finish_qc)
5950 finish_qc(qc);
5951 ata_qc_complete(qc);
5952 nr_done++;
5956 return nr_done;
5960 * ata_qc_issue - issue taskfile to device
5961 * @qc: command to issue to device
5963 * Prepare an ATA command to submission to device.
5964 * This includes mapping the data into a DMA-able
5965 * area, filling in the S/G table, and finally
5966 * writing the taskfile to hardware, starting the command.
5968 * LOCKING:
5969 * spin_lock_irqsave(host lock)
5971 void ata_qc_issue(struct ata_queued_cmd *qc)
5973 struct ata_port *ap = qc->ap;
5974 struct ata_link *link = qc->dev->link;
5975 u8 prot = qc->tf.protocol;
5977 /* Make sure only one non-NCQ command is outstanding. The
5978 * check is skipped for old EH because it reuses active qc to
5979 * request ATAPI sense.
5981 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5983 if (ata_is_ncq(prot)) {
5984 WARN_ON(link->sactive & (1 << qc->tag));
5986 if (!link->sactive)
5987 ap->nr_active_links++;
5988 link->sactive |= 1 << qc->tag;
5989 } else {
5990 WARN_ON(link->sactive);
5992 ap->nr_active_links++;
5993 link->active_tag = qc->tag;
5996 qc->flags |= ATA_QCFLAG_ACTIVE;
5997 ap->qc_active |= 1 << qc->tag;
5999 /* We guarantee to LLDs that they will have at least one
6000 * non-zero sg if the command is a data command.
6002 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
6004 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6005 (ap->flags & ATA_FLAG_PIO_DMA)))
6006 if (ata_sg_setup(qc))
6007 goto sg_err;
6009 /* if device is sleeping, schedule softreset and abort the link */
6010 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6011 link->eh_info.action |= ATA_EH_SOFTRESET;
6012 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6013 ata_link_abort(link);
6014 return;
6017 ap->ops->qc_prep(qc);
6019 qc->err_mask |= ap->ops->qc_issue(qc);
6020 if (unlikely(qc->err_mask))
6021 goto err;
6022 return;
6024 sg_err:
6025 qc->err_mask |= AC_ERR_SYSTEM;
6026 err:
6027 ata_qc_complete(qc);
6031 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6032 * @qc: command to issue to device
6034 * Using various libata functions and hooks, this function
6035 * starts an ATA command. ATA commands are grouped into
6036 * classes called "protocols", and issuing each type of protocol
6037 * is slightly different.
6039 * May be used as the qc_issue() entry in ata_port_operations.
6041 * LOCKING:
6042 * spin_lock_irqsave(host lock)
6044 * RETURNS:
6045 * Zero on success, AC_ERR_* mask on failure
6048 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6050 struct ata_port *ap = qc->ap;
6052 /* Use polling pio if the LLD doesn't handle
6053 * interrupt driven pio and atapi CDB interrupt.
6055 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6056 switch (qc->tf.protocol) {
6057 case ATA_PROT_PIO:
6058 case ATA_PROT_NODATA:
6059 case ATAPI_PROT_PIO:
6060 case ATAPI_PROT_NODATA:
6061 qc->tf.flags |= ATA_TFLAG_POLLING;
6062 break;
6063 case ATAPI_PROT_DMA:
6064 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6065 /* see ata_dma_blacklisted() */
6066 BUG();
6067 break;
6068 default:
6069 break;
6073 /* select the device */
6074 ata_dev_select(ap, qc->dev->devno, 1, 0);
6076 /* start the command */
6077 switch (qc->tf.protocol) {
6078 case ATA_PROT_NODATA:
6079 if (qc->tf.flags & ATA_TFLAG_POLLING)
6080 ata_qc_set_polling(qc);
6082 ata_tf_to_host(ap, &qc->tf);
6083 ap->hsm_task_state = HSM_ST_LAST;
6085 if (qc->tf.flags & ATA_TFLAG_POLLING)
6086 ata_pio_queue_task(ap, qc, 0);
6088 break;
6090 case ATA_PROT_DMA:
6091 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6093 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6094 ap->ops->bmdma_setup(qc); /* set up bmdma */
6095 ap->ops->bmdma_start(qc); /* initiate bmdma */
6096 ap->hsm_task_state = HSM_ST_LAST;
6097 break;
6099 case ATA_PROT_PIO:
6100 if (qc->tf.flags & ATA_TFLAG_POLLING)
6101 ata_qc_set_polling(qc);
6103 ata_tf_to_host(ap, &qc->tf);
6105 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6106 /* PIO data out protocol */
6107 ap->hsm_task_state = HSM_ST_FIRST;
6108 ata_pio_queue_task(ap, qc, 0);
6110 /* always send first data block using
6111 * the ata_pio_task() codepath.
6113 } else {
6114 /* PIO data in protocol */
6115 ap->hsm_task_state = HSM_ST;
6117 if (qc->tf.flags & ATA_TFLAG_POLLING)
6118 ata_pio_queue_task(ap, qc, 0);
6120 /* if polling, ata_pio_task() handles the rest.
6121 * otherwise, interrupt handler takes over from here.
6125 break;
6127 case ATAPI_PROT_PIO:
6128 case ATAPI_PROT_NODATA:
6129 if (qc->tf.flags & ATA_TFLAG_POLLING)
6130 ata_qc_set_polling(qc);
6132 ata_tf_to_host(ap, &qc->tf);
6134 ap->hsm_task_state = HSM_ST_FIRST;
6136 /* send cdb by polling if no cdb interrupt */
6137 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6138 (qc->tf.flags & ATA_TFLAG_POLLING))
6139 ata_pio_queue_task(ap, qc, 0);
6140 break;
6142 case ATAPI_PROT_DMA:
6143 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6145 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6146 ap->ops->bmdma_setup(qc); /* set up bmdma */
6147 ap->hsm_task_state = HSM_ST_FIRST;
6149 /* send cdb by polling if no cdb interrupt */
6150 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6151 ata_pio_queue_task(ap, qc, 0);
6152 break;
6154 default:
6155 WARN_ON(1);
6156 return AC_ERR_SYSTEM;
6159 return 0;
6163 * ata_host_intr - Handle host interrupt for given (port, task)
6164 * @ap: Port on which interrupt arrived (possibly...)
6165 * @qc: Taskfile currently active in engine
6167 * Handle host interrupt for given queued command. Currently,
6168 * only DMA interrupts are handled. All other commands are
6169 * handled via polling with interrupts disabled (nIEN bit).
6171 * LOCKING:
6172 * spin_lock_irqsave(host lock)
6174 * RETURNS:
6175 * One if interrupt was handled, zero if not (shared irq).
6178 inline unsigned int ata_host_intr(struct ata_port *ap,
6179 struct ata_queued_cmd *qc)
6181 struct ata_eh_info *ehi = &ap->link.eh_info;
6182 u8 status, host_stat = 0;
6184 VPRINTK("ata%u: protocol %d task_state %d\n",
6185 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6187 /* Check whether we are expecting interrupt in this state */
6188 switch (ap->hsm_task_state) {
6189 case HSM_ST_FIRST:
6190 /* Some pre-ATAPI-4 devices assert INTRQ
6191 * at this state when ready to receive CDB.
6194 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6195 * The flag was turned on only for atapi devices. No
6196 * need to check ata_is_atapi(qc->tf.protocol) again.
6198 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6199 goto idle_irq;
6200 break;
6201 case HSM_ST_LAST:
6202 if (qc->tf.protocol == ATA_PROT_DMA ||
6203 qc->tf.protocol == ATAPI_PROT_DMA) {
6204 /* check status of DMA engine */
6205 host_stat = ap->ops->bmdma_status(ap);
6206 VPRINTK("ata%u: host_stat 0x%X\n",
6207 ap->print_id, host_stat);
6209 /* if it's not our irq... */
6210 if (!(host_stat & ATA_DMA_INTR))
6211 goto idle_irq;
6213 /* before we do anything else, clear DMA-Start bit */
6214 ap->ops->bmdma_stop(qc);
6216 if (unlikely(host_stat & ATA_DMA_ERR)) {
6217 /* error when transfering data to/from memory */
6218 qc->err_mask |= AC_ERR_HOST_BUS;
6219 ap->hsm_task_state = HSM_ST_ERR;
6222 break;
6223 case HSM_ST:
6224 break;
6225 default:
6226 goto idle_irq;
6229 /* check altstatus */
6230 status = ata_altstatus(ap);
6231 if (status & ATA_BUSY)
6232 goto idle_irq;
6234 /* check main status, clearing INTRQ */
6235 status = ata_chk_status(ap);
6236 if (unlikely(status & ATA_BUSY))
6237 goto idle_irq;
6239 /* ack bmdma irq events */
6240 ap->ops->irq_clear(ap);
6242 ata_hsm_move(ap, qc, status, 0);
6244 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6245 qc->tf.protocol == ATAPI_PROT_DMA))
6246 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6248 return 1; /* irq handled */
6250 idle_irq:
6251 ap->stats.idle_irq++;
6253 #ifdef ATA_IRQ_TRAP
6254 if ((ap->stats.idle_irq % 1000) == 0) {
6255 ata_chk_status(ap);
6256 ap->ops->irq_clear(ap);
6257 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6258 return 1;
6260 #endif
6261 return 0; /* irq not handled */
6265 * ata_interrupt - Default ATA host interrupt handler
6266 * @irq: irq line (unused)
6267 * @dev_instance: pointer to our ata_host information structure
6269 * Default interrupt handler for PCI IDE devices. Calls
6270 * ata_host_intr() for each port that is not disabled.
6272 * LOCKING:
6273 * Obtains host lock during operation.
6275 * RETURNS:
6276 * IRQ_NONE or IRQ_HANDLED.
6279 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6281 struct ata_host *host = dev_instance;
6282 unsigned int i;
6283 unsigned int handled = 0;
6284 unsigned long flags;
6286 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6287 spin_lock_irqsave(&host->lock, flags);
6289 for (i = 0; i < host->n_ports; i++) {
6290 struct ata_port *ap;
6292 ap = host->ports[i];
6293 if (ap &&
6294 !(ap->flags & ATA_FLAG_DISABLED)) {
6295 struct ata_queued_cmd *qc;
6297 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6298 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6299 (qc->flags & ATA_QCFLAG_ACTIVE))
6300 handled |= ata_host_intr(ap, qc);
6304 spin_unlock_irqrestore(&host->lock, flags);
6306 return IRQ_RETVAL(handled);
6310 * sata_scr_valid - test whether SCRs are accessible
6311 * @link: ATA link to test SCR accessibility for
6313 * Test whether SCRs are accessible for @link.
6315 * LOCKING:
6316 * None.
6318 * RETURNS:
6319 * 1 if SCRs are accessible, 0 otherwise.
6321 int sata_scr_valid(struct ata_link *link)
6323 struct ata_port *ap = link->ap;
6325 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6329 * sata_scr_read - read SCR register of the specified port
6330 * @link: ATA link to read SCR for
6331 * @reg: SCR to read
6332 * @val: Place to store read value
6334 * Read SCR register @reg of @link into *@val. This function is
6335 * guaranteed to succeed if @link is ap->link, the cable type of
6336 * the port is SATA and the port implements ->scr_read.
6338 * LOCKING:
6339 * None if @link is ap->link. Kernel thread context otherwise.
6341 * RETURNS:
6342 * 0 on success, negative errno on failure.
6344 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6346 if (ata_is_host_link(link)) {
6347 struct ata_port *ap = link->ap;
6349 if (sata_scr_valid(link))
6350 return ap->ops->scr_read(ap, reg, val);
6351 return -EOPNOTSUPP;
6354 return sata_pmp_scr_read(link, reg, val);
6358 * sata_scr_write - write SCR register of the specified port
6359 * @link: ATA link to write SCR for
6360 * @reg: SCR to write
6361 * @val: value to write
6363 * Write @val to SCR register @reg of @link. This function is
6364 * guaranteed to succeed if @link is ap->link, the cable type of
6365 * the port is SATA and the port implements ->scr_read.
6367 * LOCKING:
6368 * None if @link is ap->link. Kernel thread context otherwise.
6370 * RETURNS:
6371 * 0 on success, negative errno on failure.
6373 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6375 if (ata_is_host_link(link)) {
6376 struct ata_port *ap = link->ap;
6378 if (sata_scr_valid(link))
6379 return ap->ops->scr_write(ap, reg, val);
6380 return -EOPNOTSUPP;
6383 return sata_pmp_scr_write(link, reg, val);
6387 * sata_scr_write_flush - write SCR register of the specified port and flush
6388 * @link: ATA link to write SCR for
6389 * @reg: SCR to write
6390 * @val: value to write
6392 * This function is identical to sata_scr_write() except that this
6393 * function performs flush after writing to the register.
6395 * LOCKING:
6396 * None if @link is ap->link. Kernel thread context otherwise.
6398 * RETURNS:
6399 * 0 on success, negative errno on failure.
6401 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6403 if (ata_is_host_link(link)) {
6404 struct ata_port *ap = link->ap;
6405 int rc;
6407 if (sata_scr_valid(link)) {
6408 rc = ap->ops->scr_write(ap, reg, val);
6409 if (rc == 0)
6410 rc = ap->ops->scr_read(ap, reg, &val);
6411 return rc;
6413 return -EOPNOTSUPP;
6416 return sata_pmp_scr_write(link, reg, val);
6420 * ata_link_online - test whether the given link is online
6421 * @link: ATA link to test
6423 * Test whether @link is online. Note that this function returns
6424 * 0 if online status of @link cannot be obtained, so
6425 * ata_link_online(link) != !ata_link_offline(link).
6427 * LOCKING:
6428 * None.
6430 * RETURNS:
6431 * 1 if the port online status is available and online.
6433 int ata_link_online(struct ata_link *link)
6435 u32 sstatus;
6437 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6438 (sstatus & 0xf) == 0x3)
6439 return 1;
6440 return 0;
6444 * ata_link_offline - test whether the given link is offline
6445 * @link: ATA link to test
6447 * Test whether @link is offline. Note that this function
6448 * returns 0 if offline status of @link cannot be obtained, so
6449 * ata_link_online(link) != !ata_link_offline(link).
6451 * LOCKING:
6452 * None.
6454 * RETURNS:
6455 * 1 if the port offline status is available and offline.
6457 int ata_link_offline(struct ata_link *link)
6459 u32 sstatus;
6461 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6462 (sstatus & 0xf) != 0x3)
6463 return 1;
6464 return 0;
6467 int ata_flush_cache(struct ata_device *dev)
6469 unsigned int err_mask;
6470 u8 cmd;
6472 if (!ata_try_flush_cache(dev))
6473 return 0;
6475 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6476 cmd = ATA_CMD_FLUSH_EXT;
6477 else
6478 cmd = ATA_CMD_FLUSH;
6480 /* This is wrong. On a failed flush we get back the LBA of the lost
6481 sector and we should (assuming it wasn't aborted as unknown) issue
6482 a further flush command to continue the writeback until it
6483 does not error */
6484 err_mask = ata_do_simple_cmd(dev, cmd);
6485 if (err_mask) {
6486 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6487 return -EIO;
6490 return 0;
6493 #ifdef CONFIG_PM
6494 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6495 unsigned int action, unsigned int ehi_flags,
6496 int wait)
6498 unsigned long flags;
6499 int i, rc;
6501 for (i = 0; i < host->n_ports; i++) {
6502 struct ata_port *ap = host->ports[i];
6503 struct ata_link *link;
6505 /* Previous resume operation might still be in
6506 * progress. Wait for PM_PENDING to clear.
6508 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6509 ata_port_wait_eh(ap);
6510 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6513 /* request PM ops to EH */
6514 spin_lock_irqsave(ap->lock, flags);
6516 ap->pm_mesg = mesg;
6517 if (wait) {
6518 rc = 0;
6519 ap->pm_result = &rc;
6522 ap->pflags |= ATA_PFLAG_PM_PENDING;
6523 __ata_port_for_each_link(link, ap) {
6524 link->eh_info.action |= action;
6525 link->eh_info.flags |= ehi_flags;
6528 ata_port_schedule_eh(ap);
6530 spin_unlock_irqrestore(ap->lock, flags);
6532 /* wait and check result */
6533 if (wait) {
6534 ata_port_wait_eh(ap);
6535 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6536 if (rc)
6537 return rc;
6541 return 0;
6545 * ata_host_suspend - suspend host
6546 * @host: host to suspend
6547 * @mesg: PM message
6549 * Suspend @host. Actual operation is performed by EH. This
6550 * function requests EH to perform PM operations and waits for EH
6551 * to finish.
6553 * LOCKING:
6554 * Kernel thread context (may sleep).
6556 * RETURNS:
6557 * 0 on success, -errno on failure.
6559 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6561 int rc;
6564 * disable link pm on all ports before requesting
6565 * any pm activity
6567 ata_lpm_enable(host);
6569 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6570 return rc;
6574 * ata_host_resume - resume host
6575 * @host: host to resume
6577 * Resume @host. Actual operation is performed by EH. This
6578 * function requests EH to perform PM operations and returns.
6579 * Note that all resume operations are performed parallely.
6581 * LOCKING:
6582 * Kernel thread context (may sleep).
6584 void ata_host_resume(struct ata_host *host)
6586 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6587 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6589 /* reenable link pm */
6590 ata_lpm_disable(host);
6592 #endif
6595 * ata_port_start - Set port up for dma.
6596 * @ap: Port to initialize
6598 * Called just after data structures for each port are
6599 * initialized. Allocates space for PRD table.
6601 * May be used as the port_start() entry in ata_port_operations.
6603 * LOCKING:
6604 * Inherited from caller.
6606 int ata_port_start(struct ata_port *ap)
6608 struct device *dev = ap->dev;
6610 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6611 GFP_KERNEL);
6612 if (!ap->prd)
6613 return -ENOMEM;
6615 return 0;
6619 * ata_dev_init - Initialize an ata_device structure
6620 * @dev: Device structure to initialize
6622 * Initialize @dev in preparation for probing.
6624 * LOCKING:
6625 * Inherited from caller.
6627 void ata_dev_init(struct ata_device *dev)
6629 struct ata_link *link = dev->link;
6630 struct ata_port *ap = link->ap;
6631 unsigned long flags;
6633 /* SATA spd limit is bound to the first device */
6634 link->sata_spd_limit = link->hw_sata_spd_limit;
6635 link->sata_spd = 0;
6637 /* High bits of dev->flags are used to record warm plug
6638 * requests which occur asynchronously. Synchronize using
6639 * host lock.
6641 spin_lock_irqsave(ap->lock, flags);
6642 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6643 dev->horkage = 0;
6644 spin_unlock_irqrestore(ap->lock, flags);
6646 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6647 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6648 dev->pio_mask = UINT_MAX;
6649 dev->mwdma_mask = UINT_MAX;
6650 dev->udma_mask = UINT_MAX;
6654 * ata_link_init - Initialize an ata_link structure
6655 * @ap: ATA port link is attached to
6656 * @link: Link structure to initialize
6657 * @pmp: Port multiplier port number
6659 * Initialize @link.
6661 * LOCKING:
6662 * Kernel thread context (may sleep)
6664 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6666 int i;
6668 /* clear everything except for devices */
6669 memset(link, 0, offsetof(struct ata_link, device[0]));
6671 link->ap = ap;
6672 link->pmp = pmp;
6673 link->active_tag = ATA_TAG_POISON;
6674 link->hw_sata_spd_limit = UINT_MAX;
6676 /* can't use iterator, ap isn't initialized yet */
6677 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6678 struct ata_device *dev = &link->device[i];
6680 dev->link = link;
6681 dev->devno = dev - link->device;
6682 ata_dev_init(dev);
6687 * sata_link_init_spd - Initialize link->sata_spd_limit
6688 * @link: Link to configure sata_spd_limit for
6690 * Initialize @link->[hw_]sata_spd_limit to the currently
6691 * configured value.
6693 * LOCKING:
6694 * Kernel thread context (may sleep).
6696 * RETURNS:
6697 * 0 on success, -errno on failure.
6699 int sata_link_init_spd(struct ata_link *link)
6701 u32 scontrol;
6702 u8 spd;
6703 int rc;
6705 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6706 if (rc)
6707 return rc;
6709 spd = (scontrol >> 4) & 0xf;
6710 if (spd)
6711 link->hw_sata_spd_limit &= (1 << spd) - 1;
6713 ata_force_spd_limit(link);
6715 link->sata_spd_limit = link->hw_sata_spd_limit;
6717 return 0;
6721 * ata_port_alloc - allocate and initialize basic ATA port resources
6722 * @host: ATA host this allocated port belongs to
6724 * Allocate and initialize basic ATA port resources.
6726 * RETURNS:
6727 * Allocate ATA port on success, NULL on failure.
6729 * LOCKING:
6730 * Inherited from calling layer (may sleep).
6732 struct ata_port *ata_port_alloc(struct ata_host *host)
6734 struct ata_port *ap;
6736 DPRINTK("ENTER\n");
6738 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6739 if (!ap)
6740 return NULL;
6742 ap->pflags |= ATA_PFLAG_INITIALIZING;
6743 ap->lock = &host->lock;
6744 ap->flags = ATA_FLAG_DISABLED;
6745 ap->print_id = -1;
6746 ap->ctl = ATA_DEVCTL_OBS;
6747 ap->host = host;
6748 ap->dev = host->dev;
6749 ap->last_ctl = 0xFF;
6751 #if defined(ATA_VERBOSE_DEBUG)
6752 /* turn on all debugging levels */
6753 ap->msg_enable = 0x00FF;
6754 #elif defined(ATA_DEBUG)
6755 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6756 #else
6757 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6758 #endif
6760 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6761 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6762 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6763 INIT_LIST_HEAD(&ap->eh_done_q);
6764 init_waitqueue_head(&ap->eh_wait_q);
6765 init_timer_deferrable(&ap->fastdrain_timer);
6766 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6767 ap->fastdrain_timer.data = (unsigned long)ap;
6769 ap->cbl = ATA_CBL_NONE;
6771 ata_link_init(ap, &ap->link, 0);
6773 #ifdef ATA_IRQ_TRAP
6774 ap->stats.unhandled_irq = 1;
6775 ap->stats.idle_irq = 1;
6776 #endif
6777 return ap;
6780 static void ata_host_release(struct device *gendev, void *res)
6782 struct ata_host *host = dev_get_drvdata(gendev);
6783 int i;
6785 for (i = 0; i < host->n_ports; i++) {
6786 struct ata_port *ap = host->ports[i];
6788 if (!ap)
6789 continue;
6791 if (ap->scsi_host)
6792 scsi_host_put(ap->scsi_host);
6794 kfree(ap->pmp_link);
6795 kfree(ap);
6796 host->ports[i] = NULL;
6799 dev_set_drvdata(gendev, NULL);
6803 * ata_host_alloc - allocate and init basic ATA host resources
6804 * @dev: generic device this host is associated with
6805 * @max_ports: maximum number of ATA ports associated with this host
6807 * Allocate and initialize basic ATA host resources. LLD calls
6808 * this function to allocate a host, initializes it fully and
6809 * attaches it using ata_host_register().
6811 * @max_ports ports are allocated and host->n_ports is
6812 * initialized to @max_ports. The caller is allowed to decrease
6813 * host->n_ports before calling ata_host_register(). The unused
6814 * ports will be automatically freed on registration.
6816 * RETURNS:
6817 * Allocate ATA host on success, NULL on failure.
6819 * LOCKING:
6820 * Inherited from calling layer (may sleep).
6822 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6824 struct ata_host *host;
6825 size_t sz;
6826 int i;
6828 DPRINTK("ENTER\n");
6830 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6831 return NULL;
6833 /* alloc a container for our list of ATA ports (buses) */
6834 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6835 /* alloc a container for our list of ATA ports (buses) */
6836 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6837 if (!host)
6838 goto err_out;
6840 devres_add(dev, host);
6841 dev_set_drvdata(dev, host);
6843 spin_lock_init(&host->lock);
6844 host->dev = dev;
6845 host->n_ports = max_ports;
6847 /* allocate ports bound to this host */
6848 for (i = 0; i < max_ports; i++) {
6849 struct ata_port *ap;
6851 ap = ata_port_alloc(host);
6852 if (!ap)
6853 goto err_out;
6855 ap->port_no = i;
6856 host->ports[i] = ap;
6859 devres_remove_group(dev, NULL);
6860 return host;
6862 err_out:
6863 devres_release_group(dev, NULL);
6864 return NULL;
6868 * ata_host_alloc_pinfo - alloc host and init with port_info array
6869 * @dev: generic device this host is associated with
6870 * @ppi: array of ATA port_info to initialize host with
6871 * @n_ports: number of ATA ports attached to this host
6873 * Allocate ATA host and initialize with info from @ppi. If NULL
6874 * terminated, @ppi may contain fewer entries than @n_ports. The
6875 * last entry will be used for the remaining ports.
6877 * RETURNS:
6878 * Allocate ATA host on success, NULL on failure.
6880 * LOCKING:
6881 * Inherited from calling layer (may sleep).
6883 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6884 const struct ata_port_info * const * ppi,
6885 int n_ports)
6887 const struct ata_port_info *pi;
6888 struct ata_host *host;
6889 int i, j;
6891 host = ata_host_alloc(dev, n_ports);
6892 if (!host)
6893 return NULL;
6895 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6896 struct ata_port *ap = host->ports[i];
6898 if (ppi[j])
6899 pi = ppi[j++];
6901 ap->pio_mask = pi->pio_mask;
6902 ap->mwdma_mask = pi->mwdma_mask;
6903 ap->udma_mask = pi->udma_mask;
6904 ap->flags |= pi->flags;
6905 ap->link.flags |= pi->link_flags;
6906 ap->ops = pi->port_ops;
6908 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6909 host->ops = pi->port_ops;
6910 if (!host->private_data && pi->private_data)
6911 host->private_data = pi->private_data;
6914 return host;
6917 static void ata_host_stop(struct device *gendev, void *res)
6919 struct ata_host *host = dev_get_drvdata(gendev);
6920 int i;
6922 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6924 for (i = 0; i < host->n_ports; i++) {
6925 struct ata_port *ap = host->ports[i];
6927 if (ap->ops->port_stop)
6928 ap->ops->port_stop(ap);
6931 if (host->ops->host_stop)
6932 host->ops->host_stop(host);
6936 * ata_host_start - start and freeze ports of an ATA host
6937 * @host: ATA host to start ports for
6939 * Start and then freeze ports of @host. Started status is
6940 * recorded in host->flags, so this function can be called
6941 * multiple times. Ports are guaranteed to get started only
6942 * once. If host->ops isn't initialized yet, its set to the
6943 * first non-dummy port ops.
6945 * LOCKING:
6946 * Inherited from calling layer (may sleep).
6948 * RETURNS:
6949 * 0 if all ports are started successfully, -errno otherwise.
6951 int ata_host_start(struct ata_host *host)
6953 int have_stop = 0;
6954 void *start_dr = NULL;
6955 int i, rc;
6957 if (host->flags & ATA_HOST_STARTED)
6958 return 0;
6960 for (i = 0; i < host->n_ports; i++) {
6961 struct ata_port *ap = host->ports[i];
6963 if (!host->ops && !ata_port_is_dummy(ap))
6964 host->ops = ap->ops;
6966 if (ap->ops->port_stop)
6967 have_stop = 1;
6970 if (host->ops->host_stop)
6971 have_stop = 1;
6973 if (have_stop) {
6974 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6975 if (!start_dr)
6976 return -ENOMEM;
6979 for (i = 0; i < host->n_ports; i++) {
6980 struct ata_port *ap = host->ports[i];
6982 if (ap->ops->port_start) {
6983 rc = ap->ops->port_start(ap);
6984 if (rc) {
6985 if (rc != -ENODEV)
6986 dev_printk(KERN_ERR, host->dev,
6987 "failed to start port %d "
6988 "(errno=%d)\n", i, rc);
6989 goto err_out;
6992 ata_eh_freeze_port(ap);
6995 if (start_dr)
6996 devres_add(host->dev, start_dr);
6997 host->flags |= ATA_HOST_STARTED;
6998 return 0;
7000 err_out:
7001 while (--i >= 0) {
7002 struct ata_port *ap = host->ports[i];
7004 if (ap->ops->port_stop)
7005 ap->ops->port_stop(ap);
7007 devres_free(start_dr);
7008 return rc;
7012 * ata_sas_host_init - Initialize a host struct
7013 * @host: host to initialize
7014 * @dev: device host is attached to
7015 * @flags: host flags
7016 * @ops: port_ops
7018 * LOCKING:
7019 * PCI/etc. bus probe sem.
7022 /* KILLME - the only user left is ipr */
7023 void ata_host_init(struct ata_host *host, struct device *dev,
7024 unsigned long flags, const struct ata_port_operations *ops)
7026 spin_lock_init(&host->lock);
7027 host->dev = dev;
7028 host->flags = flags;
7029 host->ops = ops;
7033 * ata_host_register - register initialized ATA host
7034 * @host: ATA host to register
7035 * @sht: template for SCSI host
7037 * Register initialized ATA host. @host is allocated using
7038 * ata_host_alloc() and fully initialized by LLD. This function
7039 * starts ports, registers @host with ATA and SCSI layers and
7040 * probe registered devices.
7042 * LOCKING:
7043 * Inherited from calling layer (may sleep).
7045 * RETURNS:
7046 * 0 on success, -errno otherwise.
7048 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7050 int i, rc;
7052 /* host must have been started */
7053 if (!(host->flags & ATA_HOST_STARTED)) {
7054 dev_printk(KERN_ERR, host->dev,
7055 "BUG: trying to register unstarted host\n");
7056 WARN_ON(1);
7057 return -EINVAL;
7060 /* Blow away unused ports. This happens when LLD can't
7061 * determine the exact number of ports to allocate at
7062 * allocation time.
7064 for (i = host->n_ports; host->ports[i]; i++)
7065 kfree(host->ports[i]);
7067 /* give ports names and add SCSI hosts */
7068 for (i = 0; i < host->n_ports; i++)
7069 host->ports[i]->print_id = ata_print_id++;
7071 rc = ata_scsi_add_hosts(host, sht);
7072 if (rc)
7073 return rc;
7075 /* associate with ACPI nodes */
7076 ata_acpi_associate(host);
7078 /* set cable, sata_spd_limit and report */
7079 for (i = 0; i < host->n_ports; i++) {
7080 struct ata_port *ap = host->ports[i];
7081 unsigned long xfer_mask;
7083 /* set SATA cable type if still unset */
7084 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7085 ap->cbl = ATA_CBL_SATA;
7087 /* init sata_spd_limit to the current value */
7088 sata_link_init_spd(&ap->link);
7090 /* print per-port info to dmesg */
7091 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7092 ap->udma_mask);
7094 if (!ata_port_is_dummy(ap)) {
7095 ata_port_printk(ap, KERN_INFO,
7096 "%cATA max %s %s\n",
7097 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7098 ata_mode_string(xfer_mask),
7099 ap->link.eh_info.desc);
7100 ata_ehi_clear_desc(&ap->link.eh_info);
7101 } else
7102 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7105 /* perform each probe synchronously */
7106 DPRINTK("probe begin\n");
7107 for (i = 0; i < host->n_ports; i++) {
7108 struct ata_port *ap = host->ports[i];
7110 /* probe */
7111 if (ap->ops->error_handler) {
7112 struct ata_eh_info *ehi = &ap->link.eh_info;
7113 unsigned long flags;
7115 ata_port_probe(ap);
7117 /* kick EH for boot probing */
7118 spin_lock_irqsave(ap->lock, flags);
7120 ehi->probe_mask =
7121 (1 << ata_link_max_devices(&ap->link)) - 1;
7122 ehi->action |= ATA_EH_SOFTRESET;
7123 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7125 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7126 ap->pflags |= ATA_PFLAG_LOADING;
7127 ata_port_schedule_eh(ap);
7129 spin_unlock_irqrestore(ap->lock, flags);
7131 /* wait for EH to finish */
7132 ata_port_wait_eh(ap);
7133 } else {
7134 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7135 rc = ata_bus_probe(ap);
7136 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7138 if (rc) {
7139 /* FIXME: do something useful here?
7140 * Current libata behavior will
7141 * tear down everything when
7142 * the module is removed
7143 * or the h/w is unplugged.
7149 /* probes are done, now scan each port's disk(s) */
7150 DPRINTK("host probe begin\n");
7151 for (i = 0; i < host->n_ports; i++) {
7152 struct ata_port *ap = host->ports[i];
7154 ata_scsi_scan_host(ap, 1);
7155 ata_lpm_schedule(ap, ap->pm_policy);
7158 return 0;
7162 * ata_host_activate - start host, request IRQ and register it
7163 * @host: target ATA host
7164 * @irq: IRQ to request
7165 * @irq_handler: irq_handler used when requesting IRQ
7166 * @irq_flags: irq_flags used when requesting IRQ
7167 * @sht: scsi_host_template to use when registering the host
7169 * After allocating an ATA host and initializing it, most libata
7170 * LLDs perform three steps to activate the host - start host,
7171 * request IRQ and register it. This helper takes necessasry
7172 * arguments and performs the three steps in one go.
7174 * An invalid IRQ skips the IRQ registration and expects the host to
7175 * have set polling mode on the port. In this case, @irq_handler
7176 * should be NULL.
7178 * LOCKING:
7179 * Inherited from calling layer (may sleep).
7181 * RETURNS:
7182 * 0 on success, -errno otherwise.
7184 int ata_host_activate(struct ata_host *host, int irq,
7185 irq_handler_t irq_handler, unsigned long irq_flags,
7186 struct scsi_host_template *sht)
7188 int i, rc;
7190 rc = ata_host_start(host);
7191 if (rc)
7192 return rc;
7194 /* Special case for polling mode */
7195 if (!irq) {
7196 WARN_ON(irq_handler);
7197 return ata_host_register(host, sht);
7200 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7201 dev_driver_string(host->dev), host);
7202 if (rc)
7203 return rc;
7205 for (i = 0; i < host->n_ports; i++)
7206 ata_port_desc(host->ports[i], "irq %d", irq);
7208 rc = ata_host_register(host, sht);
7209 /* if failed, just free the IRQ and leave ports alone */
7210 if (rc)
7211 devm_free_irq(host->dev, irq, host);
7213 return rc;
7217 * ata_port_detach - Detach ATA port in prepration of device removal
7218 * @ap: ATA port to be detached
7220 * Detach all ATA devices and the associated SCSI devices of @ap;
7221 * then, remove the associated SCSI host. @ap is guaranteed to
7222 * be quiescent on return from this function.
7224 * LOCKING:
7225 * Kernel thread context (may sleep).
7227 static void ata_port_detach(struct ata_port *ap)
7229 unsigned long flags;
7230 struct ata_link *link;
7231 struct ata_device *dev;
7233 if (!ap->ops->error_handler)
7234 goto skip_eh;
7236 /* tell EH we're leaving & flush EH */
7237 spin_lock_irqsave(ap->lock, flags);
7238 ap->pflags |= ATA_PFLAG_UNLOADING;
7239 spin_unlock_irqrestore(ap->lock, flags);
7241 ata_port_wait_eh(ap);
7243 /* EH is now guaranteed to see UNLOADING - EH context belongs
7244 * to us. Disable all existing devices.
7246 ata_port_for_each_link(link, ap) {
7247 ata_link_for_each_dev(dev, link)
7248 ata_dev_disable(dev);
7251 /* Final freeze & EH. All in-flight commands are aborted. EH
7252 * will be skipped and retrials will be terminated with bad
7253 * target.
7255 spin_lock_irqsave(ap->lock, flags);
7256 ata_port_freeze(ap); /* won't be thawed */
7257 spin_unlock_irqrestore(ap->lock, flags);
7259 ata_port_wait_eh(ap);
7260 cancel_rearming_delayed_work(&ap->hotplug_task);
7262 skip_eh:
7263 /* remove the associated SCSI host */
7264 scsi_remove_host(ap->scsi_host);
7268 * ata_host_detach - Detach all ports of an ATA host
7269 * @host: Host to detach
7271 * Detach all ports of @host.
7273 * LOCKING:
7274 * Kernel thread context (may sleep).
7276 void ata_host_detach(struct ata_host *host)
7278 int i;
7280 for (i = 0; i < host->n_ports; i++)
7281 ata_port_detach(host->ports[i]);
7283 /* the host is dead now, dissociate ACPI */
7284 ata_acpi_dissociate(host);
7288 * ata_std_ports - initialize ioaddr with standard port offsets.
7289 * @ioaddr: IO address structure to be initialized
7291 * Utility function which initializes data_addr, error_addr,
7292 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7293 * device_addr, status_addr, and command_addr to standard offsets
7294 * relative to cmd_addr.
7296 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7299 void ata_std_ports(struct ata_ioports *ioaddr)
7301 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7302 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7303 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7304 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7305 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7306 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7307 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7308 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7309 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7310 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7314 #ifdef CONFIG_PCI
7317 * ata_pci_remove_one - PCI layer callback for device removal
7318 * @pdev: PCI device that was removed
7320 * PCI layer indicates to libata via this hook that hot-unplug or
7321 * module unload event has occurred. Detach all ports. Resource
7322 * release is handled via devres.
7324 * LOCKING:
7325 * Inherited from PCI layer (may sleep).
7327 void ata_pci_remove_one(struct pci_dev *pdev)
7329 struct device *dev = &pdev->dev;
7330 struct ata_host *host = dev_get_drvdata(dev);
7332 ata_host_detach(host);
7335 /* move to PCI subsystem */
7336 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7338 unsigned long tmp = 0;
7340 switch (bits->width) {
7341 case 1: {
7342 u8 tmp8 = 0;
7343 pci_read_config_byte(pdev, bits->reg, &tmp8);
7344 tmp = tmp8;
7345 break;
7347 case 2: {
7348 u16 tmp16 = 0;
7349 pci_read_config_word(pdev, bits->reg, &tmp16);
7350 tmp = tmp16;
7351 break;
7353 case 4: {
7354 u32 tmp32 = 0;
7355 pci_read_config_dword(pdev, bits->reg, &tmp32);
7356 tmp = tmp32;
7357 break;
7360 default:
7361 return -EINVAL;
7364 tmp &= bits->mask;
7366 return (tmp == bits->val) ? 1 : 0;
7369 #ifdef CONFIG_PM
7370 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7372 pci_save_state(pdev);
7373 pci_disable_device(pdev);
7375 if (mesg.event & PM_EVENT_SLEEP)
7376 pci_set_power_state(pdev, PCI_D3hot);
7379 int ata_pci_device_do_resume(struct pci_dev *pdev)
7381 int rc;
7383 pci_set_power_state(pdev, PCI_D0);
7384 pci_restore_state(pdev);
7386 rc = pcim_enable_device(pdev);
7387 if (rc) {
7388 dev_printk(KERN_ERR, &pdev->dev,
7389 "failed to enable device after resume (%d)\n", rc);
7390 return rc;
7393 pci_set_master(pdev);
7394 return 0;
7397 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7399 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7400 int rc = 0;
7402 rc = ata_host_suspend(host, mesg);
7403 if (rc)
7404 return rc;
7406 ata_pci_device_do_suspend(pdev, mesg);
7408 return 0;
7411 int ata_pci_device_resume(struct pci_dev *pdev)
7413 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7414 int rc;
7416 rc = ata_pci_device_do_resume(pdev);
7417 if (rc == 0)
7418 ata_host_resume(host);
7419 return rc;
7421 #endif /* CONFIG_PM */
7423 #endif /* CONFIG_PCI */
7425 static int __init ata_parse_force_one(char **cur,
7426 struct ata_force_ent *force_ent,
7427 const char **reason)
7429 /* FIXME: Currently, there's no way to tag init const data and
7430 * using __initdata causes build failure on some versions of
7431 * gcc. Once __initdataconst is implemented, add const to the
7432 * following structure.
7434 static struct ata_force_param force_tbl[] __initdata = {
7435 { "40c", .cbl = ATA_CBL_PATA40 },
7436 { "80c", .cbl = ATA_CBL_PATA80 },
7437 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7438 { "unk", .cbl = ATA_CBL_PATA_UNK },
7439 { "ign", .cbl = ATA_CBL_PATA_IGN },
7440 { "sata", .cbl = ATA_CBL_SATA },
7441 { "1.5Gbps", .spd_limit = 1 },
7442 { "3.0Gbps", .spd_limit = 2 },
7443 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7444 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7445 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7446 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7447 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7448 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7449 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7450 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7451 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7452 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7453 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7454 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7455 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7456 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7457 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7458 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7459 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7460 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7461 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7462 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7463 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7464 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7465 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7466 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7467 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7468 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7469 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7470 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7471 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7472 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7473 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7474 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7475 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7476 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7477 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7478 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7480 char *start = *cur, *p = *cur;
7481 char *id, *val, *endp;
7482 const struct ata_force_param *match_fp = NULL;
7483 int nr_matches = 0, i;
7485 /* find where this param ends and update *cur */
7486 while (*p != '\0' && *p != ',')
7487 p++;
7489 if (*p == '\0')
7490 *cur = p;
7491 else
7492 *cur = p + 1;
7494 *p = '\0';
7496 /* parse */
7497 p = strchr(start, ':');
7498 if (!p) {
7499 val = strstrip(start);
7500 goto parse_val;
7502 *p = '\0';
7504 id = strstrip(start);
7505 val = strstrip(p + 1);
7507 /* parse id */
7508 p = strchr(id, '.');
7509 if (p) {
7510 *p++ = '\0';
7511 force_ent->device = simple_strtoul(p, &endp, 10);
7512 if (p == endp || *endp != '\0') {
7513 *reason = "invalid device";
7514 return -EINVAL;
7518 force_ent->port = simple_strtoul(id, &endp, 10);
7519 if (p == endp || *endp != '\0') {
7520 *reason = "invalid port/link";
7521 return -EINVAL;
7524 parse_val:
7525 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7526 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7527 const struct ata_force_param *fp = &force_tbl[i];
7529 if (strncasecmp(val, fp->name, strlen(val)))
7530 continue;
7532 nr_matches++;
7533 match_fp = fp;
7535 if (strcasecmp(val, fp->name) == 0) {
7536 nr_matches = 1;
7537 break;
7541 if (!nr_matches) {
7542 *reason = "unknown value";
7543 return -EINVAL;
7545 if (nr_matches > 1) {
7546 *reason = "ambigious value";
7547 return -EINVAL;
7550 force_ent->param = *match_fp;
7552 return 0;
7555 static void __init ata_parse_force_param(void)
7557 int idx = 0, size = 1;
7558 int last_port = -1, last_device = -1;
7559 char *p, *cur, *next;
7561 /* calculate maximum number of params and allocate force_tbl */
7562 for (p = ata_force_param_buf; *p; p++)
7563 if (*p == ',')
7564 size++;
7566 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7567 if (!ata_force_tbl) {
7568 printk(KERN_WARNING "ata: failed to extend force table, "
7569 "libata.force ignored\n");
7570 return;
7573 /* parse and populate the table */
7574 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7575 const char *reason = "";
7576 struct ata_force_ent te = { .port = -1, .device = -1 };
7578 next = cur;
7579 if (ata_parse_force_one(&next, &te, &reason)) {
7580 printk(KERN_WARNING "ata: failed to parse force "
7581 "parameter \"%s\" (%s)\n",
7582 cur, reason);
7583 continue;
7586 if (te.port == -1) {
7587 te.port = last_port;
7588 te.device = last_device;
7591 ata_force_tbl[idx++] = te;
7593 last_port = te.port;
7594 last_device = te.device;
7597 ata_force_tbl_size = idx;
7600 static int __init ata_init(void)
7602 ata_probe_timeout *= HZ;
7604 ata_parse_force_param();
7606 ata_wq = create_workqueue("ata");
7607 if (!ata_wq)
7608 return -ENOMEM;
7610 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7611 if (!ata_aux_wq) {
7612 destroy_workqueue(ata_wq);
7613 return -ENOMEM;
7616 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7617 return 0;
7620 static void __exit ata_exit(void)
7622 kfree(ata_force_tbl);
7623 destroy_workqueue(ata_wq);
7624 destroy_workqueue(ata_aux_wq);
7627 subsys_initcall(ata_init);
7628 module_exit(ata_exit);
7630 static unsigned long ratelimit_time;
7631 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7633 int ata_ratelimit(void)
7635 int rc;
7636 unsigned long flags;
7638 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7640 if (time_after(jiffies, ratelimit_time)) {
7641 rc = 1;
7642 ratelimit_time = jiffies + (HZ/5);
7643 } else
7644 rc = 0;
7646 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7648 return rc;
7652 * ata_wait_register - wait until register value changes
7653 * @reg: IO-mapped register
7654 * @mask: Mask to apply to read register value
7655 * @val: Wait condition
7656 * @interval_msec: polling interval in milliseconds
7657 * @timeout_msec: timeout in milliseconds
7659 * Waiting for some bits of register to change is a common
7660 * operation for ATA controllers. This function reads 32bit LE
7661 * IO-mapped register @reg and tests for the following condition.
7663 * (*@reg & mask) != val
7665 * If the condition is met, it returns; otherwise, the process is
7666 * repeated after @interval_msec until timeout.
7668 * LOCKING:
7669 * Kernel thread context (may sleep)
7671 * RETURNS:
7672 * The final register value.
7674 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7675 unsigned long interval_msec,
7676 unsigned long timeout_msec)
7678 unsigned long timeout;
7679 u32 tmp;
7681 tmp = ioread32(reg);
7683 /* Calculate timeout _after_ the first read to make sure
7684 * preceding writes reach the controller before starting to
7685 * eat away the timeout.
7687 timeout = jiffies + (timeout_msec * HZ) / 1000;
7689 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7690 msleep(interval_msec);
7691 tmp = ioread32(reg);
7694 return tmp;
7698 * Dummy port_ops
7700 static void ata_dummy_noret(struct ata_port *ap) { }
7701 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7702 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7704 static u8 ata_dummy_check_status(struct ata_port *ap)
7706 return ATA_DRDY;
7709 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7711 return AC_ERR_SYSTEM;
7714 const struct ata_port_operations ata_dummy_port_ops = {
7715 .check_status = ata_dummy_check_status,
7716 .check_altstatus = ata_dummy_check_status,
7717 .dev_select = ata_noop_dev_select,
7718 .qc_prep = ata_noop_qc_prep,
7719 .qc_issue = ata_dummy_qc_issue,
7720 .freeze = ata_dummy_noret,
7721 .thaw = ata_dummy_noret,
7722 .error_handler = ata_dummy_noret,
7723 .post_internal_cmd = ata_dummy_qc_noret,
7724 .irq_clear = ata_dummy_noret,
7725 .port_start = ata_dummy_ret0,
7726 .port_stop = ata_dummy_noret,
7729 const struct ata_port_info ata_dummy_port_info = {
7730 .port_ops = &ata_dummy_port_ops,
7734 * libata is essentially a library of internal helper functions for
7735 * low-level ATA host controller drivers. As such, the API/ABI is
7736 * likely to change as new drivers are added and updated.
7737 * Do not depend on ABI/API stability.
7739 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7740 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7741 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7742 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7743 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7744 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7745 EXPORT_SYMBOL_GPL(ata_std_ports);
7746 EXPORT_SYMBOL_GPL(ata_host_init);
7747 EXPORT_SYMBOL_GPL(ata_host_alloc);
7748 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7749 EXPORT_SYMBOL_GPL(ata_host_start);
7750 EXPORT_SYMBOL_GPL(ata_host_register);
7751 EXPORT_SYMBOL_GPL(ata_host_activate);
7752 EXPORT_SYMBOL_GPL(ata_host_detach);
7753 EXPORT_SYMBOL_GPL(ata_sg_init);
7754 EXPORT_SYMBOL_GPL(ata_hsm_move);
7755 EXPORT_SYMBOL_GPL(ata_qc_complete);
7756 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7757 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7758 EXPORT_SYMBOL_GPL(ata_tf_load);
7759 EXPORT_SYMBOL_GPL(ata_tf_read);
7760 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7761 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7762 EXPORT_SYMBOL_GPL(sata_print_link_status);
7763 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7764 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7765 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7766 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7767 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7768 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7769 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7770 EXPORT_SYMBOL_GPL(ata_mode_string);
7771 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7772 EXPORT_SYMBOL_GPL(ata_check_status);
7773 EXPORT_SYMBOL_GPL(ata_altstatus);
7774 EXPORT_SYMBOL_GPL(ata_exec_command);
7775 EXPORT_SYMBOL_GPL(ata_port_start);
7776 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7777 EXPORT_SYMBOL_GPL(ata_interrupt);
7778 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7779 EXPORT_SYMBOL_GPL(ata_data_xfer);
7780 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7781 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7782 EXPORT_SYMBOL_GPL(ata_qc_prep);
7783 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7784 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7785 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7786 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7787 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7788 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7789 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7790 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7791 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7792 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7793 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7794 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7795 EXPORT_SYMBOL_GPL(ata_port_probe);
7796 EXPORT_SYMBOL_GPL(ata_dev_disable);
7797 EXPORT_SYMBOL_GPL(sata_set_spd);
7798 EXPORT_SYMBOL_GPL(sata_link_debounce);
7799 EXPORT_SYMBOL_GPL(sata_link_resume);
7800 EXPORT_SYMBOL_GPL(ata_bus_reset);
7801 EXPORT_SYMBOL_GPL(ata_std_prereset);
7802 EXPORT_SYMBOL_GPL(ata_std_softreset);
7803 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7804 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7805 EXPORT_SYMBOL_GPL(ata_std_postreset);
7806 EXPORT_SYMBOL_GPL(ata_dev_classify);
7807 EXPORT_SYMBOL_GPL(ata_dev_pair);
7808 EXPORT_SYMBOL_GPL(ata_port_disable);
7809 EXPORT_SYMBOL_GPL(ata_ratelimit);
7810 EXPORT_SYMBOL_GPL(ata_wait_register);
7811 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7812 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7813 EXPORT_SYMBOL_GPL(ata_wait_ready);
7814 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7815 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7816 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7817 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7818 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7819 EXPORT_SYMBOL_GPL(ata_host_intr);
7820 EXPORT_SYMBOL_GPL(sata_scr_valid);
7821 EXPORT_SYMBOL_GPL(sata_scr_read);
7822 EXPORT_SYMBOL_GPL(sata_scr_write);
7823 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7824 EXPORT_SYMBOL_GPL(ata_link_online);
7825 EXPORT_SYMBOL_GPL(ata_link_offline);
7826 #ifdef CONFIG_PM
7827 EXPORT_SYMBOL_GPL(ata_host_suspend);
7828 EXPORT_SYMBOL_GPL(ata_host_resume);
7829 #endif /* CONFIG_PM */
7830 EXPORT_SYMBOL_GPL(ata_id_string);
7831 EXPORT_SYMBOL_GPL(ata_id_c_string);
7832 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7834 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7835 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7836 EXPORT_SYMBOL_GPL(ata_timing_compute);
7837 EXPORT_SYMBOL_GPL(ata_timing_merge);
7838 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7840 #ifdef CONFIG_PCI
7841 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7842 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7843 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7844 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7845 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7846 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7847 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7848 #ifdef CONFIG_PM
7849 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7850 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7851 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7852 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7853 #endif /* CONFIG_PM */
7854 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7855 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7856 #endif /* CONFIG_PCI */
7858 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7859 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7860 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7861 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7862 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7864 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7865 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7866 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7867 EXPORT_SYMBOL_GPL(ata_port_desc);
7868 #ifdef CONFIG_PCI
7869 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7870 #endif /* CONFIG_PCI */
7871 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7872 EXPORT_SYMBOL_GPL(ata_link_abort);
7873 EXPORT_SYMBOL_GPL(ata_port_abort);
7874 EXPORT_SYMBOL_GPL(ata_port_freeze);
7875 EXPORT_SYMBOL_GPL(sata_async_notification);
7876 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7877 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7878 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7879 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7880 EXPORT_SYMBOL_GPL(ata_do_eh);
7881 EXPORT_SYMBOL_GPL(ata_irq_on);
7882 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7884 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7885 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7886 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7887 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7888 EXPORT_SYMBOL_GPL(ata_cable_sata);