Now it works.
[cbs-scheduler.git] / mm / swap.c
blob2288fdd9e8be74534dc0143da23d0af878593a8a
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/interrupt.h>
35 #include "internal.h"
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
41 * On PREEMPT_RT we don't want to disable preemption for cpu variables.
42 * We grab a cpu and then use that cpu to lock the variables accordingly.
44 * (On !PREEMPT_RT this turns into normal preempt-off sections, as before.)
46 static DEFINE_PER_CPU_LOCKED(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
47 static DEFINE_PER_CPU_LOCKED(struct pagevec, lru_rotate_pvecs);
49 #define swap_get_cpu_var_irq_save(var, flags, cpu) \
50 ({ \
51 (void)flags; \
52 &get_cpu_var_locked(var, &cpu); \
55 #define swap_put_cpu_var_irq_restore(var, flags, cpu) \
56 put_cpu_var_locked(var, cpu)
58 #define swap_get_cpu_var(var, cpu) \
59 &get_cpu_var_locked(var, &cpu)
61 #define swap_put_cpu_var(var, cpu) \
62 put_cpu_var_locked(var, cpu)
64 #define swap_per_cpu_lock(var, cpu) \
65 ({ \
66 spin_lock(&__get_cpu_lock(var, cpu)); \
67 &__get_cpu_var_locked(var, cpu); \
70 #define swap_per_cpu_unlock(var, cpu) \
71 spin_unlock(&__get_cpu_lock(var, cpu));
73 #define swap_get_cpu() raw_smp_processor_id()
75 #define swap_put_cpu()
78 * This path almost never happens for VM activity - pages are normally
79 * freed via pagevecs. But it gets used by networking.
81 static void __page_cache_release(struct page *page)
83 if (PageLRU(page)) {
84 unsigned long flags;
85 struct zone *zone = page_zone(page);
87 spin_lock_irqsave(&zone->lru_lock, flags);
88 VM_BUG_ON(!PageLRU(page));
89 __ClearPageLRU(page);
90 del_page_from_lru(zone, page);
91 spin_unlock_irqrestore(&zone->lru_lock, flags);
93 free_hot_page(page);
96 static void put_compound_page(struct page *page)
98 page = compound_head(page);
99 if (put_page_testzero(page)) {
100 compound_page_dtor *dtor;
102 dtor = get_compound_page_dtor(page);
103 (*dtor)(page);
107 void put_page(struct page *page)
109 if (unlikely(PageCompound(page)))
110 put_compound_page(page);
111 else if (put_page_testzero(page))
112 __page_cache_release(page);
114 EXPORT_SYMBOL(put_page);
117 * put_pages_list() - release a list of pages
118 * @pages: list of pages threaded on page->lru
120 * Release a list of pages which are strung together on page.lru. Currently
121 * used by read_cache_pages() and related error recovery code.
123 void put_pages_list(struct list_head *pages)
125 while (!list_empty(pages)) {
126 struct page *victim;
128 victim = list_entry(pages->prev, struct page, lru);
129 list_del(&victim->lru);
130 page_cache_release(victim);
133 EXPORT_SYMBOL(put_pages_list);
136 * pagevec_move_tail() must be called with IRQ disabled.
137 * Otherwise this may cause nasty races.
139 static void pagevec_move_tail(struct pagevec *pvec)
141 int i;
142 int pgmoved = 0;
143 struct zone *zone = NULL;
145 for (i = 0; i < pagevec_count(pvec); i++) {
146 struct page *page = pvec->pages[i];
147 struct zone *pagezone = page_zone(page);
149 if (pagezone != zone) {
150 if (zone)
151 spin_unlock(&zone->lru_lock);
152 zone = pagezone;
153 spin_lock(&zone->lru_lock);
155 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
156 int lru = page_is_file_cache(page);
157 list_move_tail(&page->lru, &zone->lru[lru].list);
158 pgmoved++;
161 if (zone)
162 spin_unlock(&zone->lru_lock);
163 __count_vm_events(PGROTATED, pgmoved);
164 release_pages(pvec->pages, pvec->nr, pvec->cold);
165 pagevec_reinit(pvec);
169 * Writeback is about to end against a page which has been marked for immediate
170 * reclaim. If it still appears to be reclaimable, move it to the tail of the
171 * inactive list.
173 void rotate_reclaimable_page(struct page *page)
175 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
176 !PageUnevictable(page) && PageLRU(page)) {
177 struct pagevec *pvec;
178 unsigned long flags;
179 int cpu;
181 page_cache_get(page);
182 pvec = swap_get_cpu_var_irq_save(lru_rotate_pvecs, flags, cpu);
183 if (!pagevec_add(pvec, page))
184 pagevec_move_tail(pvec);
185 swap_put_cpu_var_irq_restore(lru_rotate_pvecs, flags, cpu);
189 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
190 int file, int rotated)
192 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
193 struct zone_reclaim_stat *memcg_reclaim_stat;
195 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
197 reclaim_stat->recent_scanned[file]++;
198 if (rotated)
199 reclaim_stat->recent_rotated[file]++;
201 if (!memcg_reclaim_stat)
202 return;
204 memcg_reclaim_stat->recent_scanned[file]++;
205 if (rotated)
206 memcg_reclaim_stat->recent_rotated[file]++;
210 * FIXME: speed this up?
212 void activate_page(struct page *page)
214 struct zone *zone = page_zone(page);
216 spin_lock_irq(&zone->lru_lock);
217 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
218 int file = page_is_file_cache(page);
219 int lru = LRU_BASE + file;
220 del_page_from_lru_list(zone, page, lru);
222 SetPageActive(page);
223 lru += LRU_ACTIVE;
224 add_page_to_lru_list(zone, page, lru);
225 __count_vm_event(PGACTIVATE);
227 update_page_reclaim_stat(zone, page, !!file, 1);
229 spin_unlock_irq(&zone->lru_lock);
233 * Mark a page as having seen activity.
235 * inactive,unreferenced -> inactive,referenced
236 * inactive,referenced -> active,unreferenced
237 * active,unreferenced -> active,referenced
239 void mark_page_accessed(struct page *page)
241 if (!PageActive(page) && !PageUnevictable(page) &&
242 PageReferenced(page) && PageLRU(page)) {
243 activate_page(page);
244 ClearPageReferenced(page);
245 } else if (!PageReferenced(page)) {
246 SetPageReferenced(page);
250 EXPORT_SYMBOL(mark_page_accessed);
252 void __lru_cache_add(struct page *page, enum lru_list lru)
254 struct pagevec *pvec;
255 int cpu;
257 pvec = swap_get_cpu_var(lru_add_pvecs, cpu)[lru];
258 page_cache_get(page);
259 if (!pagevec_add(pvec, page))
260 ____pagevec_lru_add(pvec, lru);
261 swap_put_cpu_var(lru_add_pvecs, cpu);
265 * lru_cache_add_lru - add a page to a page list
266 * @page: the page to be added to the LRU.
267 * @lru: the LRU list to which the page is added.
269 void lru_cache_add_lru(struct page *page, enum lru_list lru)
271 if (PageActive(page)) {
272 VM_BUG_ON(PageUnevictable(page));
273 ClearPageActive(page);
274 } else if (PageUnevictable(page)) {
275 VM_BUG_ON(PageActive(page));
276 ClearPageUnevictable(page);
279 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
280 __lru_cache_add(page, lru);
284 * add_page_to_unevictable_list - add a page to the unevictable list
285 * @page: the page to be added to the unevictable list
287 * Add page directly to its zone's unevictable list. To avoid races with
288 * tasks that might be making the page evictable, through eg. munlock,
289 * munmap or exit, while it's not on the lru, we want to add the page
290 * while it's locked or otherwise "invisible" to other tasks. This is
291 * difficult to do when using the pagevec cache, so bypass that.
293 void add_page_to_unevictable_list(struct page *page)
295 struct zone *zone = page_zone(page);
297 spin_lock_irq(&zone->lru_lock);
298 SetPageUnevictable(page);
299 SetPageLRU(page);
300 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
301 spin_unlock_irq(&zone->lru_lock);
305 * Drain pages out of the cpu's pagevecs.
306 * Either "cpu" is the current CPU, and preemption has already been
307 * disabled; or "cpu" is being hot-unplugged, and is already dead.
309 static void drain_cpu_pagevecs(int cpu)
311 struct pagevec *pvecs, *pvec;
312 int lru;
314 pvecs = swap_per_cpu_lock(lru_add_pvecs, cpu)[0];
315 for_each_lru(lru) {
316 pvec = &pvecs[lru - LRU_BASE];
317 if (pagevec_count(pvec))
318 ____pagevec_lru_add(pvec, lru);
320 swap_per_cpu_unlock(lru_add_pvecs, cpu);
322 pvec = swap_per_cpu_lock(lru_rotate_pvecs, cpu);
323 if (pagevec_count(pvec)) {
324 unsigned long flags;
326 /* No harm done if a racing interrupt already did this */
327 local_irq_save_nort(flags);
328 pagevec_move_tail(pvec);
329 local_irq_restore_nort(flags);
331 swap_per_cpu_unlock(lru_rotate_pvecs, cpu);
334 void lru_add_drain(void)
336 int cpu;
338 cpu = swap_get_cpu();
339 drain_cpu_pagevecs(cpu);
340 swap_put_cpu();
343 static void lru_add_drain_per_cpu(struct work_struct *dummy)
345 lru_add_drain();
349 * Returns 0 for success
351 int lru_add_drain_all(void)
353 return schedule_on_each_cpu(lru_add_drain_per_cpu);
357 * Batched page_cache_release(). Decrement the reference count on all the
358 * passed pages. If it fell to zero then remove the page from the LRU and
359 * free it.
361 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
362 * for the remainder of the operation.
364 * The locking in this function is against shrink_inactive_list(): we recheck
365 * the page count inside the lock to see whether shrink_inactive_list()
366 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
367 * will free it.
369 void release_pages(struct page **pages, int nr, int cold)
371 int i;
372 struct pagevec pages_to_free;
373 struct zone *zone = NULL;
374 unsigned long uninitialized_var(flags);
376 pagevec_init(&pages_to_free, cold);
377 for (i = 0; i < nr; i++) {
378 struct page *page = pages[i];
380 if (unlikely(PageCompound(page))) {
381 if (zone) {
382 spin_unlock_irqrestore(&zone->lru_lock, flags);
383 zone = NULL;
385 put_compound_page(page);
386 continue;
389 if (!put_page_testzero(page))
390 continue;
392 if (PageLRU(page)) {
393 struct zone *pagezone = page_zone(page);
395 if (pagezone != zone) {
396 if (zone)
397 spin_unlock_irqrestore(&zone->lru_lock,
398 flags);
399 zone = pagezone;
400 spin_lock_irqsave(&zone->lru_lock, flags);
402 VM_BUG_ON(!PageLRU(page));
403 __ClearPageLRU(page);
404 del_page_from_lru(zone, page);
407 if (!pagevec_add(&pages_to_free, page)) {
408 if (zone) {
409 spin_unlock_irqrestore(&zone->lru_lock, flags);
410 zone = NULL;
412 __pagevec_free(&pages_to_free);
413 pagevec_reinit(&pages_to_free);
416 if (zone)
417 spin_unlock_irqrestore(&zone->lru_lock, flags);
419 pagevec_free(&pages_to_free);
423 * The pages which we're about to release may be in the deferred lru-addition
424 * queues. That would prevent them from really being freed right now. That's
425 * OK from a correctness point of view but is inefficient - those pages may be
426 * cache-warm and we want to give them back to the page allocator ASAP.
428 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
429 * and __pagevec_lru_add_active() call release_pages() directly to avoid
430 * mutual recursion.
432 void __pagevec_release(struct pagevec *pvec)
434 lru_add_drain();
435 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
436 pagevec_reinit(pvec);
439 EXPORT_SYMBOL(__pagevec_release);
442 * Add the passed pages to the LRU, then drop the caller's refcount
443 * on them. Reinitialises the caller's pagevec.
445 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
447 int i;
448 struct zone *zone = NULL;
450 VM_BUG_ON(is_unevictable_lru(lru));
452 for (i = 0; i < pagevec_count(pvec); i++) {
453 struct page *page = pvec->pages[i];
454 struct zone *pagezone = page_zone(page);
455 int file;
456 int active;
458 if (pagezone != zone) {
459 if (zone)
460 spin_unlock_irq(&zone->lru_lock);
461 zone = pagezone;
462 spin_lock_irq(&zone->lru_lock);
464 VM_BUG_ON(PageActive(page));
465 VM_BUG_ON(PageUnevictable(page));
466 VM_BUG_ON(PageLRU(page));
467 SetPageLRU(page);
468 active = is_active_lru(lru);
469 file = is_file_lru(lru);
470 if (active)
471 SetPageActive(page);
472 update_page_reclaim_stat(zone, page, file, active);
473 add_page_to_lru_list(zone, page, lru);
475 if (zone)
476 spin_unlock_irq(&zone->lru_lock);
477 release_pages(pvec->pages, pvec->nr, pvec->cold);
478 pagevec_reinit(pvec);
481 EXPORT_SYMBOL(____pagevec_lru_add);
484 * Try to drop buffers from the pages in a pagevec
486 void pagevec_strip(struct pagevec *pvec)
488 int i;
490 for (i = 0; i < pagevec_count(pvec); i++) {
491 struct page *page = pvec->pages[i];
493 if (PagePrivate(page) && trylock_page(page)) {
494 if (PagePrivate(page))
495 try_to_release_page(page, 0);
496 unlock_page(page);
502 * pagevec_swap_free - try to free swap space from the pages in a pagevec
503 * @pvec: pagevec with swapcache pages to free the swap space of
505 * The caller needs to hold an extra reference to each page and
506 * not hold the page lock on the pages. This function uses a
507 * trylock on the page lock so it may not always free the swap
508 * space associated with a page.
510 void pagevec_swap_free(struct pagevec *pvec)
512 int i;
514 for (i = 0; i < pagevec_count(pvec); i++) {
515 struct page *page = pvec->pages[i];
517 if (PageSwapCache(page) && trylock_page(page)) {
518 try_to_free_swap(page);
519 unlock_page(page);
525 * pagevec_lookup - gang pagecache lookup
526 * @pvec: Where the resulting pages are placed
527 * @mapping: The address_space to search
528 * @start: The starting page index
529 * @nr_pages: The maximum number of pages
531 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
532 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
533 * reference against the pages in @pvec.
535 * The search returns a group of mapping-contiguous pages with ascending
536 * indexes. There may be holes in the indices due to not-present pages.
538 * pagevec_lookup() returns the number of pages which were found.
540 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
541 pgoff_t start, unsigned nr_pages)
543 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
544 return pagevec_count(pvec);
547 EXPORT_SYMBOL(pagevec_lookup);
549 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
550 pgoff_t *index, int tag, unsigned nr_pages)
552 pvec->nr = find_get_pages_tag(mapping, index, tag,
553 nr_pages, pvec->pages);
554 return pagevec_count(pvec);
557 EXPORT_SYMBOL(pagevec_lookup_tag);
560 * Perform any setup for the swap system
562 void __init swap_setup(void)
564 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
566 #ifdef CONFIG_SWAP
567 bdi_init(swapper_space.backing_dev_info);
568 #endif
570 /* Use a smaller cluster for small-memory machines */
571 if (megs < 16)
572 page_cluster = 2;
573 else
574 page_cluster = 3;
576 * Right now other parts of the system means that we
577 * _really_ don't want to cluster much more