Now it works.
[cbs-scheduler.git] / kernel / workqueue.c
blob25305f1879cd1f9ab0958c0154adef7e9d8872d6
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/syscalls.h>
30 #include <linux/kthread.h>
31 #include <linux/hardirq.h>
32 #include <linux/mempolicy.h>
33 #include <linux/freezer.h>
34 #include <linux/kallsyms.h>
35 #include <linux/debug_locks.h>
36 #include <linux/lockdep.h>
37 #include <trace/workqueue.h>
39 #include <asm/uaccess.h>
42 * The per-CPU workqueue (if single thread, we always use the first
43 * possible cpu).
45 struct cpu_workqueue_struct {
47 spinlock_t lock;
49 struct list_head worklist;
50 wait_queue_head_t more_work;
51 struct work_struct *current_work;
53 struct workqueue_struct *wq;
54 struct task_struct *thread;
56 int run_depth; /* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned;
60 * The externally visible workqueue abstraction is an array of
61 * per-CPU workqueues:
63 struct workqueue_struct {
64 struct cpu_workqueue_struct *cpu_wq;
65 struct list_head list;
66 const char *name;
67 int singlethread;
68 int freezeable; /* Freeze threads during suspend */
69 int rt;
70 #ifdef CONFIG_LOCKDEP
71 struct lockdep_map lockdep_map;
72 #endif
75 /* Serializes the accesses to the list of workqueues. */
76 static DEFINE_SPINLOCK(workqueue_lock);
77 static LIST_HEAD(workqueues);
79 static int singlethread_cpu __read_mostly;
80 static const struct cpumask *cpu_singlethread_map __read_mostly;
82 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
83 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
84 * which comes in between can't use for_each_online_cpu(). We could
85 * use cpu_possible_map, the cpumask below is more a documentation
86 * than optimization.
88 static cpumask_var_t cpu_populated_map __read_mostly;
90 /* If it's single threaded, it isn't in the list of workqueues. */
91 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
93 return wq->singlethread;
96 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
98 return is_wq_single_threaded(wq)
99 ? cpu_singlethread_map : cpu_populated_map;
102 static
103 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
105 if (unlikely(is_wq_single_threaded(wq)))
106 cpu = singlethread_cpu;
107 return per_cpu_ptr(wq->cpu_wq, cpu);
111 * Set the workqueue on which a work item is to be run
112 * - Must *only* be called if the pending flag is set
114 static inline void set_wq_data(struct work_struct *work,
115 struct cpu_workqueue_struct *cwq)
117 unsigned long new;
119 BUG_ON(!work_pending(work));
121 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
122 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
123 atomic_long_set(&work->data, new);
126 static inline
127 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
129 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
132 DEFINE_TRACE(workqueue_insertion);
134 static void insert_work(struct cpu_workqueue_struct *cwq,
135 struct work_struct *work, struct list_head *head)
137 trace_workqueue_insertion(cwq->thread, work);
139 set_wq_data(work, cwq);
141 * Ensure that we get the right work->data if we see the
142 * result of list_add() below, see try_to_grab_pending().
144 smp_wmb();
145 list_add_tail(&work->entry, head);
146 wake_up(&cwq->more_work);
149 static void __queue_work(struct cpu_workqueue_struct *cwq,
150 struct work_struct *work)
152 unsigned long flags;
154 spin_lock_irqsave(&cwq->lock, flags);
155 insert_work(cwq, work, &cwq->worklist);
156 spin_unlock_irqrestore(&cwq->lock, flags);
160 * queue_work - queue work on a workqueue
161 * @wq: workqueue to use
162 * @work: work to queue
164 * Returns 0 if @work was already on a queue, non-zero otherwise.
166 * We queue the work to the CPU on which it was submitted, but if the CPU dies
167 * it can be processed by another CPU.
169 * Especially no such guarantee on PREEMPT_RT.
171 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
173 int ret = 0, cpu = raw_smp_processor_id();
175 ret = queue_work_on(cpu, wq, work);
177 return ret;
179 EXPORT_SYMBOL_GPL(queue_work);
182 * queue_work_on - queue work on specific cpu
183 * @cpu: CPU number to execute work on
184 * @wq: workqueue to use
185 * @work: work to queue
187 * Returns 0 if @work was already on a queue, non-zero otherwise.
189 * We queue the work to a specific CPU, the caller must ensure it
190 * can't go away.
193 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
195 int ret = 0;
197 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
198 BUG_ON(!list_empty(&work->entry));
199 __queue_work(wq_per_cpu(wq, cpu), work);
200 ret = 1;
202 return ret;
204 EXPORT_SYMBOL_GPL(queue_work_on);
206 static void delayed_work_timer_fn(unsigned long __data)
208 struct delayed_work *dwork = (struct delayed_work *)__data;
209 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
210 struct workqueue_struct *wq = cwq->wq;
212 __queue_work(wq_per_cpu(wq, raw_smp_processor_id()), &dwork->work);
216 * queue_delayed_work - queue work on a workqueue after delay
217 * @wq: workqueue to use
218 * @dwork: delayable work to queue
219 * @delay: number of jiffies to wait before queueing
221 * Returns 0 if @work was already on a queue, non-zero otherwise.
223 int queue_delayed_work(struct workqueue_struct *wq,
224 struct delayed_work *dwork, unsigned long delay)
226 if (delay == 0)
227 return queue_work(wq, &dwork->work);
229 return queue_delayed_work_on(-1, wq, dwork, delay);
231 EXPORT_SYMBOL_GPL(queue_delayed_work);
234 * queue_delayed_work_on - queue work on specific CPU after delay
235 * @cpu: CPU number to execute work on
236 * @wq: workqueue to use
237 * @dwork: work to queue
238 * @delay: number of jiffies to wait before queueing
240 * Returns 0 if @work was already on a queue, non-zero otherwise.
242 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
243 struct delayed_work *dwork, unsigned long delay)
245 int ret = 0;
246 struct timer_list *timer = &dwork->timer;
247 struct work_struct *work = &dwork->work;
249 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
250 BUG_ON(timer_pending(timer));
251 BUG_ON(!list_empty(&work->entry));
253 timer_stats_timer_set_start_info(&dwork->timer);
255 /* This stores cwq for the moment, for the timer_fn */
256 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
257 timer->expires = jiffies + delay;
258 timer->data = (unsigned long)dwork;
259 timer->function = delayed_work_timer_fn;
261 if (unlikely(cpu >= 0))
262 add_timer_on(timer, cpu);
263 else
264 add_timer(timer);
265 ret = 1;
267 return ret;
269 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
271 DEFINE_TRACE(workqueue_execution);
273 static void run_workqueue(struct cpu_workqueue_struct *cwq)
275 spin_lock_irq(&cwq->lock);
276 cwq->run_depth++;
277 if (cwq->run_depth > 3) {
278 /* morton gets to eat his hat */
279 printk("%s: recursion depth exceeded: %d\n",
280 __func__, cwq->run_depth);
281 dump_stack();
283 while (!list_empty(&cwq->worklist)) {
284 struct work_struct *work = list_entry(cwq->worklist.next,
285 struct work_struct, entry);
286 work_func_t f = work->func;
287 #ifdef CONFIG_LOCKDEP
289 * It is permissible to free the struct work_struct
290 * from inside the function that is called from it,
291 * this we need to take into account for lockdep too.
292 * To avoid bogus "held lock freed" warnings as well
293 * as problems when looking into work->lockdep_map,
294 * make a copy and use that here.
296 struct lockdep_map lockdep_map = work->lockdep_map;
297 #endif
298 trace_workqueue_execution(cwq->thread, work);
299 cwq->current_work = work;
300 list_del_init(cwq->worklist.next);
301 spin_unlock_irq(&cwq->lock);
303 BUG_ON(get_wq_data(work) != cwq);
304 work_clear_pending(work);
305 lock_map_acquire(&cwq->wq->lockdep_map);
306 lock_map_acquire(&lockdep_map);
307 f(work);
308 lock_map_release(&lockdep_map);
309 lock_map_release(&cwq->wq->lockdep_map);
311 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
312 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
313 "%s/0x%08x/%d\n",
314 current->comm, preempt_count(),
315 task_pid_nr(current));
316 printk(KERN_ERR " last function: ");
317 print_symbol("%s\n", (unsigned long)f);
318 debug_show_held_locks(current);
319 dump_stack();
322 spin_lock_irq(&cwq->lock);
323 cwq->current_work = NULL;
325 cwq->run_depth--;
326 spin_unlock_irq(&cwq->lock);
329 static int worker_thread(void *__cwq)
331 struct cpu_workqueue_struct *cwq = __cwq;
332 DEFINE_WAIT(wait);
334 if (cwq->wq->freezeable)
335 set_freezable();
337 set_user_nice(current, -5);
339 for (;;) {
340 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
341 if (!freezing(current) &&
342 !kthread_should_stop() &&
343 list_empty(&cwq->worklist))
344 schedule();
345 finish_wait(&cwq->more_work, &wait);
347 try_to_freeze();
349 if (kthread_should_stop())
350 break;
352 run_workqueue(cwq);
355 return 0;
358 struct wq_barrier {
359 struct work_struct work;
360 struct completion done;
363 static void wq_barrier_func(struct work_struct *work)
365 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
366 complete(&barr->done);
369 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
370 struct wq_barrier *barr, struct list_head *head)
372 INIT_WORK(&barr->work, wq_barrier_func);
373 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
375 init_completion(&barr->done);
377 insert_work(cwq, &barr->work, head);
380 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
382 int active;
384 if (cwq->thread == current) {
386 * Probably keventd trying to flush its own queue. So simply run
387 * it by hand rather than deadlocking.
389 run_workqueue(cwq);
390 active = 1;
391 } else {
392 struct wq_barrier barr;
394 active = 0;
395 spin_lock_irq(&cwq->lock);
396 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
397 insert_wq_barrier(cwq, &barr, &cwq->worklist);
398 active = 1;
400 spin_unlock_irq(&cwq->lock);
402 if (active)
403 wait_for_completion(&barr.done);
406 return active;
410 * flush_workqueue - ensure that any scheduled work has run to completion.
411 * @wq: workqueue to flush
413 * Forces execution of the workqueue and blocks until its completion.
414 * This is typically used in driver shutdown handlers.
416 * We sleep until all works which were queued on entry have been handled,
417 * but we are not livelocked by new incoming ones.
419 * This function used to run the workqueues itself. Now we just wait for the
420 * helper threads to do it.
422 void flush_workqueue(struct workqueue_struct *wq)
424 const struct cpumask *cpu_map = wq_cpu_map(wq);
425 int cpu;
427 might_sleep();
428 lock_map_acquire(&wq->lockdep_map);
429 lock_map_release(&wq->lockdep_map);
430 for_each_cpu_mask_nr(cpu, *cpu_map)
431 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
433 EXPORT_SYMBOL_GPL(flush_workqueue);
436 * flush_work - block until a work_struct's callback has terminated
437 * @work: the work which is to be flushed
439 * Returns false if @work has already terminated.
441 * It is expected that, prior to calling flush_work(), the caller has
442 * arranged for the work to not be requeued, otherwise it doesn't make
443 * sense to use this function.
445 int flush_work(struct work_struct *work)
447 struct cpu_workqueue_struct *cwq;
448 struct list_head *prev;
449 struct wq_barrier barr;
451 might_sleep();
452 cwq = get_wq_data(work);
453 if (!cwq)
454 return 0;
456 lock_map_acquire(&cwq->wq->lockdep_map);
457 lock_map_release(&cwq->wq->lockdep_map);
459 prev = NULL;
460 spin_lock_irq(&cwq->lock);
461 if (!list_empty(&work->entry)) {
463 * See the comment near try_to_grab_pending()->smp_rmb().
464 * If it was re-queued under us we are not going to wait.
466 smp_rmb();
467 if (unlikely(cwq != get_wq_data(work)))
468 goto out;
469 prev = &work->entry;
470 } else {
471 if (cwq->current_work != work)
472 goto out;
473 prev = &cwq->worklist;
475 insert_wq_barrier(cwq, &barr, prev->next);
476 out:
477 spin_unlock_irq(&cwq->lock);
478 if (!prev)
479 return 0;
481 wait_for_completion(&barr.done);
482 return 1;
484 EXPORT_SYMBOL_GPL(flush_work);
487 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
488 * so this work can't be re-armed in any way.
490 static int try_to_grab_pending(struct work_struct *work)
492 struct cpu_workqueue_struct *cwq;
493 int ret = -1;
495 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
496 return 0;
499 * The queueing is in progress, or it is already queued. Try to
500 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
503 cwq = get_wq_data(work);
504 if (!cwq)
505 return ret;
507 spin_lock_irq(&cwq->lock);
508 if (!list_empty(&work->entry)) {
510 * This work is queued, but perhaps we locked the wrong cwq.
511 * In that case we must see the new value after rmb(), see
512 * insert_work()->wmb().
514 smp_rmb();
515 if (cwq == get_wq_data(work)) {
516 list_del_init(&work->entry);
517 ret = 1;
520 spin_unlock_irq(&cwq->lock);
522 return ret;
525 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
526 struct work_struct *work)
528 struct wq_barrier barr;
529 int running = 0;
531 spin_lock_irq(&cwq->lock);
532 if (unlikely(cwq->current_work == work)) {
533 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
534 running = 1;
536 spin_unlock_irq(&cwq->lock);
538 if (unlikely(running))
539 wait_for_completion(&barr.done);
542 static void wait_on_work(struct work_struct *work)
544 struct cpu_workqueue_struct *cwq;
545 struct workqueue_struct *wq;
546 const struct cpumask *cpu_map;
547 int cpu;
549 might_sleep();
551 lock_map_acquire(&work->lockdep_map);
552 lock_map_release(&work->lockdep_map);
554 cwq = get_wq_data(work);
555 if (!cwq)
556 return;
558 wq = cwq->wq;
559 cpu_map = wq_cpu_map(wq);
561 for_each_cpu_mask_nr(cpu, *cpu_map)
562 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
565 static int __cancel_work_timer(struct work_struct *work,
566 struct timer_list* timer)
568 int ret;
570 do {
571 ret = (timer && likely(del_timer(timer)));
572 if (!ret)
573 ret = try_to_grab_pending(work);
574 wait_on_work(work);
575 } while (unlikely(ret < 0));
577 work_clear_pending(work);
578 return ret;
582 * cancel_work_sync - block until a work_struct's callback has terminated
583 * @work: the work which is to be flushed
585 * Returns true if @work was pending.
587 * cancel_work_sync() will cancel the work if it is queued. If the work's
588 * callback appears to be running, cancel_work_sync() will block until it
589 * has completed.
591 * It is possible to use this function if the work re-queues itself. It can
592 * cancel the work even if it migrates to another workqueue, however in that
593 * case it only guarantees that work->func() has completed on the last queued
594 * workqueue.
596 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
597 * pending, otherwise it goes into a busy-wait loop until the timer expires.
599 * The caller must ensure that workqueue_struct on which this work was last
600 * queued can't be destroyed before this function returns.
602 int cancel_work_sync(struct work_struct *work)
604 return __cancel_work_timer(work, NULL);
606 EXPORT_SYMBOL_GPL(cancel_work_sync);
609 * cancel_delayed_work_sync - reliably kill off a delayed work.
610 * @dwork: the delayed work struct
612 * Returns true if @dwork was pending.
614 * It is possible to use this function if @dwork rearms itself via queue_work()
615 * or queue_delayed_work(). See also the comment for cancel_work_sync().
617 int cancel_delayed_work_sync(struct delayed_work *dwork)
619 return __cancel_work_timer(&dwork->work, &dwork->timer);
621 EXPORT_SYMBOL(cancel_delayed_work_sync);
623 static struct workqueue_struct *keventd_wq __read_mostly;
626 * schedule_work - put work task in global workqueue
627 * @work: job to be done
629 * This puts a job in the kernel-global workqueue.
631 int schedule_work(struct work_struct *work)
633 return queue_work(keventd_wq, work);
635 EXPORT_SYMBOL(schedule_work);
638 * schedule_work_on - put work task on a specific cpu
639 * @cpu: cpu to put the work task on
640 * @work: job to be done
642 * This puts a job on a specific cpu
644 int schedule_work_on(int cpu, struct work_struct *work)
646 return queue_work_on(cpu, keventd_wq, work);
648 EXPORT_SYMBOL(schedule_work_on);
651 * schedule_delayed_work - put work task in global workqueue after delay
652 * @dwork: job to be done
653 * @delay: number of jiffies to wait or 0 for immediate execution
655 * After waiting for a given time this puts a job in the kernel-global
656 * workqueue.
658 int schedule_delayed_work(struct delayed_work *dwork,
659 unsigned long delay)
661 return queue_delayed_work(keventd_wq, dwork, delay);
663 EXPORT_SYMBOL(schedule_delayed_work);
666 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
667 * @cpu: cpu to use
668 * @dwork: job to be done
669 * @delay: number of jiffies to wait
671 * After waiting for a given time this puts a job in the kernel-global
672 * workqueue on the specified CPU.
674 int schedule_delayed_work_on(int cpu,
675 struct delayed_work *dwork, unsigned long delay)
677 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
679 EXPORT_SYMBOL(schedule_delayed_work_on);
682 * schedule_on_each_cpu - call a function on each online CPU from keventd
683 * @func: the function to call
685 * Returns zero on success.
686 * Returns -ve errno on failure.
688 * schedule_on_each_cpu() is very slow.
690 int schedule_on_each_cpu(work_func_t func)
692 int cpu;
693 struct work_struct *works;
695 works = alloc_percpu(struct work_struct);
696 if (!works)
697 return -ENOMEM;
699 get_online_cpus();
700 for_each_online_cpu(cpu) {
701 struct work_struct *work = per_cpu_ptr(works, cpu);
703 INIT_WORK(work, func);
704 schedule_work_on(cpu, work);
706 for_each_online_cpu(cpu)
707 flush_work(per_cpu_ptr(works, cpu));
708 put_online_cpus();
709 free_percpu(works);
710 return 0;
713 void flush_scheduled_work(void)
715 flush_workqueue(keventd_wq);
717 EXPORT_SYMBOL(flush_scheduled_work);
720 * execute_in_process_context - reliably execute the routine with user context
721 * @fn: the function to execute
722 * @ew: guaranteed storage for the execute work structure (must
723 * be available when the work executes)
725 * Executes the function immediately if process context is available,
726 * otherwise schedules the function for delayed execution.
728 * Returns: 0 - function was executed
729 * 1 - function was scheduled for execution
731 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
733 if (!in_interrupt()) {
734 fn(&ew->work);
735 return 0;
738 INIT_WORK(&ew->work, fn);
739 schedule_work(&ew->work);
741 return 1;
743 EXPORT_SYMBOL_GPL(execute_in_process_context);
745 int keventd_up(void)
747 return keventd_wq != NULL;
750 int current_is_keventd(void)
752 struct cpu_workqueue_struct *cwq;
753 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
754 int ret = 0;
756 BUG_ON(!keventd_wq);
758 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
759 if (current == cwq->thread)
760 ret = 1;
762 return ret;
766 static struct cpu_workqueue_struct *
767 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
769 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
771 cwq->wq = wq;
772 spin_lock_init(&cwq->lock);
773 INIT_LIST_HEAD(&cwq->worklist);
774 init_waitqueue_head(&cwq->more_work);
776 return cwq;
779 DEFINE_TRACE(workqueue_creation);
781 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
783 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
784 struct workqueue_struct *wq = cwq->wq;
785 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
786 struct task_struct *p;
788 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
790 * Nobody can add the work_struct to this cwq,
791 * if (caller is __create_workqueue)
792 * nobody should see this wq
793 * else // caller is CPU_UP_PREPARE
794 * cpu is not on cpu_online_map
795 * so we can abort safely.
797 if (IS_ERR(p))
798 return PTR_ERR(p);
799 if (cwq->wq->rt)
800 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
801 cwq->thread = p;
803 trace_workqueue_creation(cwq->thread, cpu);
805 return 0;
808 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
810 struct task_struct *p = cwq->thread;
812 if (p != NULL) {
813 if (cpu >= 0)
814 kthread_bind(p, cpu);
815 wake_up_process(p);
819 struct workqueue_struct *__create_workqueue_key(const char *name,
820 int singlethread,
821 int freezeable,
822 int rt,
823 struct lock_class_key *key,
824 const char *lock_name)
826 struct workqueue_struct *wq;
827 struct cpu_workqueue_struct *cwq;
828 int err = 0, cpu;
830 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
831 if (!wq)
832 return NULL;
834 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
835 if (!wq->cpu_wq) {
836 kfree(wq);
837 return NULL;
840 wq->name = name;
841 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
842 wq->singlethread = singlethread;
843 wq->freezeable = freezeable;
844 wq->rt = rt;
845 INIT_LIST_HEAD(&wq->list);
847 if (singlethread) {
848 cwq = init_cpu_workqueue(wq, singlethread_cpu);
849 err = create_workqueue_thread(cwq, singlethread_cpu);
850 start_workqueue_thread(cwq, -1);
851 } else {
852 cpu_maps_update_begin();
854 * We must place this wq on list even if the code below fails.
855 * cpu_down(cpu) can remove cpu from cpu_populated_map before
856 * destroy_workqueue() takes the lock, in that case we leak
857 * cwq[cpu]->thread.
859 spin_lock(&workqueue_lock);
860 list_add(&wq->list, &workqueues);
861 spin_unlock(&workqueue_lock);
863 * We must initialize cwqs for each possible cpu even if we
864 * are going to call destroy_workqueue() finally. Otherwise
865 * cpu_up() can hit the uninitialized cwq once we drop the
866 * lock.
868 for_each_possible_cpu(cpu) {
869 cwq = init_cpu_workqueue(wq, cpu);
870 if (err || !cpu_online(cpu))
871 continue;
872 err = create_workqueue_thread(cwq, cpu);
873 start_workqueue_thread(cwq, cpu);
875 cpu_maps_update_done();
878 if (err) {
879 destroy_workqueue(wq);
880 wq = NULL;
882 return wq;
884 EXPORT_SYMBOL_GPL(__create_workqueue_key);
886 DEFINE_TRACE(workqueue_destruction);
888 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
891 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
892 * cpu_add_remove_lock protects cwq->thread.
894 if (cwq->thread == NULL)
895 return;
897 lock_map_acquire(&cwq->wq->lockdep_map);
898 lock_map_release(&cwq->wq->lockdep_map);
900 flush_cpu_workqueue(cwq);
902 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
903 * a concurrent flush_workqueue() can insert a barrier after us.
904 * However, in that case run_workqueue() won't return and check
905 * kthread_should_stop() until it flushes all work_struct's.
906 * When ->worklist becomes empty it is safe to exit because no
907 * more work_structs can be queued on this cwq: flush_workqueue
908 * checks list_empty(), and a "normal" queue_work() can't use
909 * a dead CPU.
911 trace_workqueue_destruction(cwq->thread);
912 kthread_stop(cwq->thread);
913 cwq->thread = NULL;
916 void set_workqueue_thread_prio(struct workqueue_struct *wq, int cpu,
917 int policy, int rt_priority, int nice)
919 struct sched_param param = { .sched_priority = rt_priority };
920 struct cpu_workqueue_struct *cwq;
921 mm_segment_t oldfs = get_fs();
922 struct task_struct *p;
923 unsigned long flags;
924 int ret;
926 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
927 spin_lock_irqsave(&cwq->lock, flags);
928 p = cwq->thread;
929 spin_unlock_irqrestore(&cwq->lock, flags);
931 set_user_nice(p, nice);
933 set_fs(KERNEL_DS);
934 ret = sys_sched_setscheduler(p->pid, policy, &param);
935 set_fs(oldfs);
937 WARN_ON(ret);
940 void set_workqueue_prio(struct workqueue_struct *wq, int policy,
941 int rt_priority, int nice)
943 int cpu;
945 /* We don't need the distraction of CPUs appearing and vanishing. */
946 get_online_cpus();
947 spin_lock(&workqueue_lock);
948 if (is_wq_single_threaded(wq))
949 set_workqueue_thread_prio(wq, 0, policy, rt_priority, nice);
950 else {
951 for_each_online_cpu(cpu)
952 set_workqueue_thread_prio(wq, cpu, policy,
953 rt_priority, nice);
955 spin_unlock(&workqueue_lock);
956 put_online_cpus();
960 * destroy_workqueue - safely terminate a workqueue
961 * @wq: target workqueue
963 * Safely destroy a workqueue. All work currently pending will be done first.
965 void destroy_workqueue(struct workqueue_struct *wq)
967 const struct cpumask *cpu_map = wq_cpu_map(wq);
968 int cpu;
970 cpu_maps_update_begin();
971 spin_lock(&workqueue_lock);
972 list_del(&wq->list);
973 spin_unlock(&workqueue_lock);
975 for_each_cpu_mask_nr(cpu, *cpu_map)
976 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
977 cpu_maps_update_done();
979 free_percpu(wq->cpu_wq);
980 kfree(wq);
982 EXPORT_SYMBOL_GPL(destroy_workqueue);
984 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
985 unsigned long action,
986 void *hcpu)
988 unsigned int cpu = (unsigned long)hcpu;
989 struct cpu_workqueue_struct *cwq;
990 struct workqueue_struct *wq;
991 int ret = NOTIFY_OK;
993 action &= ~CPU_TASKS_FROZEN;
995 switch (action) {
996 case CPU_UP_PREPARE:
997 cpumask_set_cpu(cpu, cpu_populated_map);
999 undo:
1000 list_for_each_entry(wq, &workqueues, list) {
1001 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1003 switch (action) {
1004 case CPU_UP_PREPARE:
1005 if (!create_workqueue_thread(cwq, cpu))
1006 break;
1007 printk(KERN_ERR "workqueue [%s] for %i failed\n",
1008 wq->name, cpu);
1009 action = CPU_UP_CANCELED;
1010 ret = NOTIFY_BAD;
1011 goto undo;
1013 case CPU_ONLINE:
1014 start_workqueue_thread(cwq, cpu);
1015 break;
1017 case CPU_UP_CANCELED:
1018 start_workqueue_thread(cwq, -1);
1019 case CPU_POST_DEAD:
1020 cleanup_workqueue_thread(cwq);
1021 break;
1025 switch (action) {
1026 case CPU_UP_CANCELED:
1027 case CPU_POST_DEAD:
1028 cpumask_clear_cpu(cpu, cpu_populated_map);
1031 return ret;
1034 #ifdef CONFIG_SMP
1035 static struct workqueue_struct *work_on_cpu_wq __read_mostly;
1037 struct work_for_cpu {
1038 struct work_struct work;
1039 long (*fn)(void *);
1040 void *arg;
1041 long ret;
1044 static void do_work_for_cpu(struct work_struct *w)
1046 struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
1048 wfc->ret = wfc->fn(wfc->arg);
1052 * work_on_cpu - run a function in user context on a particular cpu
1053 * @cpu: the cpu to run on
1054 * @fn: the function to run
1055 * @arg: the function arg
1057 * This will return the value @fn returns.
1058 * It is up to the caller to ensure that the cpu doesn't go offline.
1060 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1062 struct work_for_cpu wfc;
1064 INIT_WORK(&wfc.work, do_work_for_cpu);
1065 wfc.fn = fn;
1066 wfc.arg = arg;
1067 queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
1068 flush_work(&wfc.work);
1070 return wfc.ret;
1072 EXPORT_SYMBOL_GPL(work_on_cpu);
1073 #endif /* CONFIG_SMP */
1075 void __init init_workqueues(void)
1077 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1079 cpumask_copy(cpu_populated_map, cpu_online_mask);
1080 singlethread_cpu = cpumask_first(cpu_possible_mask);
1081 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1082 hotcpu_notifier(workqueue_cpu_callback, 0);
1083 keventd_wq = create_workqueue("events");
1084 BUG_ON(!keventd_wq);
1085 set_workqueue_prio(keventd_wq, SCHED_FIFO, 1, -20);
1086 #ifdef CONFIG_SMP
1087 work_on_cpu_wq = create_workqueue("work_on_cpu");
1088 BUG_ON(!work_on_cpu_wq);
1089 #endif