btrfs-progs: check/original: Avoid infinite loop when failed to repair inode
[btrfs-progs-unstable/devel.git] / convert / main.c
blob3736a14955d19fb18573534d6183fcce462169db
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 * Btrfs convert design:
22 * The overall design of btrfs convert is like the following:
24 * |<------------------Old fs----------------------------->|
25 * |<- used ->| |<- used ->| |<- used ->|
26 * ||
27 * \/
28 * |<---------------Btrfs fs------------------------------>|
29 * |<- Old data chunk ->|< new chunk (D/M/S)>|<- ODC ->|
30 * |<-Old-FE->| |<-Old-FE->|<- Btrfs extents ->|<-Old-FE->|
32 * ODC = Old data chunk, btrfs chunks containing old fs data
33 * Mapped 1:1 (logical address == device offset)
34 * Old-FE = file extents pointing to old fs.
36 * So old fs used space is (mostly) kept as is, while btrfs will insert
37 * its chunk (Data/Meta/Sys) into large enough free space.
38 * In this way, we can create different profiles for metadata/data for
39 * converted fs.
41 * We must reserve and relocate 3 ranges for btrfs:
42 * * [0, 1M) - area never used for any data except the first
43 * superblock
44 * * [btrfs_sb_offset(1), +64K) - 1st superblock backup copy
45 * * [btrfs_sb_offset(2), +64K) - 2nd, dtto
47 * Most work is spent handling corner cases around these reserved ranges.
49 * Detailed workflow is:
50 * 1) Scan old fs used space and calculate data chunk layout
51 * 1.1) Scan old fs
52 * We can a map used space of old fs
54 * 1.2) Calculate data chunk layout - this is the hard part
55 * New data chunks must meet 3 conditions using result fomr 1.1
56 * a. Large enough to be a chunk
57 * b. Doesn't intersect reserved ranges
58 * c. Covers all the remaining old fs used space
60 * NOTE: This can be simplified if we don't need to handle backup supers
62 * 1.3) Calculate usable space for new btrfs chunks
63 * Btrfs chunk usable space must meet 3 conditions using result from 1.2
64 * a. Large enough to be a chunk
65 * b. Doesn't intersect reserved ranges
66 * c. Doesn't cover any data chunks in 1.1
68 * 2) Create basic btrfs filesystem structure
69 * Initial metadata and sys chunks are inserted in the first availabe
70 * space found in step 1.3
71 * Then insert all data chunks into the basic btrfs
73 * 3) Create convert image
74 * We need to relocate reserved ranges here.
75 * After this step, the convert image is done, and we can use the image
76 * as reflink source to create old files
78 * 4) Iterate old fs to create files
79 * We just reflink file extents from old fs to newly created files on
80 * btrfs.
83 #include "kerncompat.h"
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <sys/types.h>
88 #include <fcntl.h>
89 #include <unistd.h>
90 #include <getopt.h>
91 #include <pthread.h>
92 #include <stdbool.h>
94 #include "ctree.h"
95 #include "disk-io.h"
96 #include "volumes.h"
97 #include "transaction.h"
98 #include "utils.h"
99 #include "task-utils.h"
100 #include "help.h"
101 #include "mkfs/common.h"
102 #include "convert/common.h"
103 #include "convert/source-fs.h"
104 #include "fsfeatures.h"
106 extern const struct btrfs_convert_operations ext2_convert_ops;
107 extern const struct btrfs_convert_operations reiserfs_convert_ops;
109 static const struct btrfs_convert_operations *convert_operations[] = {
110 #if BTRFSCONVERT_EXT2
111 &ext2_convert_ops,
112 #endif
113 #if BTRFSCONVERT_REISERFS
114 &reiserfs_convert_ops,
115 #endif
118 static void *print_copied_inodes(void *p)
120 struct task_ctx *priv = p;
121 const char work_indicator[] = { '.', 'o', 'O', 'o' };
122 u64 count = 0;
124 task_period_start(priv->info, 1000 /* 1s */);
125 while (1) {
126 count++;
127 pthread_mutex_lock(&priv->mutex);
128 printf("copy inodes [%c] [%10llu/%10llu]\r",
129 work_indicator[count % 4],
130 (unsigned long long)priv->cur_copy_inodes,
131 (unsigned long long)priv->max_copy_inodes);
132 pthread_mutex_unlock(&priv->mutex);
133 fflush(stdout);
134 task_period_wait(priv->info);
137 return NULL;
140 static int after_copied_inodes(void *p)
142 printf("\n");
143 fflush(stdout);
145 return 0;
148 static inline int copy_inodes(struct btrfs_convert_context *cctx,
149 struct btrfs_root *root, u32 convert_flags,
150 struct task_ctx *p)
152 return cctx->convert_ops->copy_inodes(cctx, root, convert_flags, p);
155 static inline void convert_close_fs(struct btrfs_convert_context *cctx)
157 cctx->convert_ops->close_fs(cctx);
160 static inline int convert_check_state(struct btrfs_convert_context *cctx)
162 return cctx->convert_ops->check_state(cctx);
165 static int csum_disk_extent(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 u64 disk_bytenr, u64 num_bytes)
169 u32 blocksize = root->fs_info->sectorsize;
170 u64 offset;
171 char *buffer;
172 int ret = 0;
174 buffer = malloc(blocksize);
175 if (!buffer)
176 return -ENOMEM;
177 for (offset = 0; offset < num_bytes; offset += blocksize) {
178 ret = read_disk_extent(root, disk_bytenr + offset,
179 blocksize, buffer);
180 if (ret)
181 break;
182 ret = btrfs_csum_file_block(trans,
183 root->fs_info->csum_root,
184 disk_bytenr + num_bytes,
185 disk_bytenr + offset,
186 buffer, blocksize);
187 if (ret)
188 break;
190 free(buffer);
191 return ret;
194 static int create_image_file_range(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root,
196 struct cache_tree *used,
197 struct btrfs_inode_item *inode,
198 u64 ino, u64 bytenr, u64 *ret_len,
199 u32 convert_flags)
201 struct cache_extent *cache;
202 struct btrfs_block_group_cache *bg_cache;
203 u64 len = *ret_len;
204 u64 disk_bytenr;
205 int i;
206 int ret;
207 u32 datacsum = convert_flags & CONVERT_FLAG_DATACSUM;
209 if (bytenr != round_down(bytenr, root->fs_info->sectorsize)) {
210 error("bytenr not sectorsize aligned: %llu",
211 (unsigned long long)bytenr);
212 return -EINVAL;
214 if (len != round_down(len, root->fs_info->sectorsize)) {
215 error("length not sectorsize aligned: %llu",
216 (unsigned long long)len);
217 return -EINVAL;
219 len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
222 * Skip reserved ranges first
224 * Or we will insert a hole into current image file, and later
225 * migrate block will fail as there is already a file extent.
227 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
228 const struct simple_range *reserved = &btrfs_reserved_ranges[i];
231 * |-- reserved --|
232 * |--range---|
233 * or
234 * |---- reserved ----|
235 * |-- range --|
236 * Skip to reserved range end
238 if (bytenr >= reserved->start && bytenr < range_end(reserved)) {
239 *ret_len = range_end(reserved) - bytenr;
240 return 0;
244 * |---reserved---|
245 * |----range-------|
246 * Leading part may still create a file extent
248 if (bytenr < reserved->start &&
249 bytenr + len >= range_end(reserved)) {
250 len = min_t(u64, len, reserved->start - bytenr);
251 break;
255 /* Check if we are going to insert regular file extent, or hole */
256 cache = search_cache_extent(used, bytenr);
257 if (cache) {
258 if (cache->start <= bytenr) {
260 * |///////Used///////|
261 * |<--insert--->|
262 * bytenr
263 * Insert one real file extent
265 len = min_t(u64, len, cache->start + cache->size -
266 bytenr);
267 disk_bytenr = bytenr;
268 } else {
270 * |//Used//|
271 * |<-insert-->|
272 * bytenr
273 * Insert one hole
275 len = min(len, cache->start - bytenr);
276 disk_bytenr = 0;
277 datacsum = 0;
279 } else {
281 * |//Used//| |EOF
282 * |<-insert-->|
283 * bytenr
284 * Insert one hole
286 disk_bytenr = 0;
287 datacsum = 0;
290 if (disk_bytenr) {
291 /* Check if the range is in a data block group */
292 bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
293 if (!bg_cache)
294 return -ENOENT;
295 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
296 return -EINVAL;
298 /* The extent should never cross block group boundary */
299 len = min_t(u64, len, bg_cache->key.objectid +
300 bg_cache->key.offset - bytenr);
303 if (len != round_down(len, root->fs_info->sectorsize)) {
304 error("remaining length not sectorsize aligned: %llu",
305 (unsigned long long)len);
306 return -EINVAL;
308 ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
309 disk_bytenr, len);
310 if (ret < 0)
311 return ret;
313 if (datacsum)
314 ret = csum_disk_extent(trans, root, bytenr, len);
315 *ret_len = len;
316 return ret;
320 * Relocate old fs data in one reserved ranges
322 * Since all old fs data in reserved range is not covered by any chunk nor
323 * data extent, we don't need to handle any reference but add new
324 * extent/reference, which makes codes more clear
326 static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
327 struct btrfs_root *root,
328 struct cache_tree *used,
329 struct btrfs_inode_item *inode, int fd,
330 u64 ino, const struct simple_range *range,
331 u32 convert_flags)
333 u64 cur_off = range->start;
334 u64 cur_len = range->len;
335 u64 hole_start = range->start;
336 u64 hole_len;
337 struct cache_extent *cache;
338 struct btrfs_key key;
339 struct extent_buffer *eb;
340 int ret = 0;
343 * It's possible that there are holes in reserved range:
344 * |<---------------- Reserved range ---------------------->|
345 * |<- Old fs data ->| |<- Old fs data ->|
346 * So here we need to iterate through old fs used space and only
347 * migrate ranges that covered by old fs data.
349 while (cur_off < range_end(range)) {
350 cache = search_cache_extent(used, cur_off);
351 if (!cache)
352 break;
353 cur_off = max(cache->start, cur_off);
354 if (cur_off >= range_end(range))
355 break;
356 cur_len = min(cache->start + cache->size, range_end(range)) -
357 cur_off;
358 BUG_ON(cur_len < root->fs_info->sectorsize);
360 /* reserve extent for the data */
361 ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
362 &key, 1);
363 if (ret < 0)
364 break;
366 eb = malloc(sizeof(*eb) + cur_len);
367 if (!eb) {
368 ret = -ENOMEM;
369 break;
372 ret = pread(fd, eb->data, cur_len, cur_off);
373 if (ret < cur_len) {
374 ret = (ret < 0 ? ret : -EIO);
375 free(eb);
376 break;
378 eb->start = key.objectid;
379 eb->len = key.offset;
381 /* Write the data */
382 ret = write_and_map_eb(root->fs_info, eb);
383 free(eb);
384 if (ret < 0)
385 break;
387 /* Now handle extent item and file extent things */
388 ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
389 key.objectid, key.offset);
390 if (ret < 0)
391 break;
392 /* Finally, insert csum items */
393 if (convert_flags & CONVERT_FLAG_DATACSUM)
394 ret = csum_disk_extent(trans, root, key.objectid,
395 key.offset);
397 /* Don't forget to insert hole */
398 hole_len = cur_off - hole_start;
399 if (hole_len) {
400 ret = btrfs_record_file_extent(trans, root, ino, inode,
401 hole_start, 0, hole_len);
402 if (ret < 0)
403 break;
406 cur_off += key.offset;
407 hole_start = cur_off;
408 cur_len = range_end(range) - cur_off;
411 * Last hole
412 * |<---- reserved -------->|
413 * |<- Old fs data ->| |
414 * | Hole |
416 if (range_end(range) - hole_start > 0)
417 ret = btrfs_record_file_extent(trans, root, ino, inode,
418 hole_start, 0, range_end(range) - hole_start);
419 return ret;
423 * Relocate the used source fs data in reserved ranges
425 static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
426 struct btrfs_root *root,
427 struct cache_tree *used,
428 struct btrfs_inode_item *inode, int fd,
429 u64 ino, u64 total_bytes, u32 convert_flags)
431 int i;
432 int ret = 0;
434 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
435 const struct simple_range *range = &btrfs_reserved_ranges[i];
437 if (range->start > total_bytes)
438 return ret;
439 ret = migrate_one_reserved_range(trans, root, used, inode, fd,
440 ino, range, convert_flags);
441 if (ret < 0)
442 return ret;
445 return ret;
449 * Helper for expand and merge extent_cache for wipe_one_reserved_range() to
450 * handle wiping a range that exists in cache.
452 static int _expand_extent_cache(struct cache_tree *tree,
453 struct cache_extent *entry,
454 u64 min_stripe_size, int backward)
456 struct cache_extent *ce;
457 int diff;
459 if (entry->size >= min_stripe_size)
460 return 0;
461 diff = min_stripe_size - entry->size;
463 if (backward) {
464 ce = prev_cache_extent(entry);
465 if (!ce)
466 goto expand_back;
467 if (ce->start + ce->size >= entry->start - diff) {
468 /* Directly merge with previous extent */
469 ce->size = entry->start + entry->size - ce->start;
470 remove_cache_extent(tree, entry);
471 free(entry);
472 return 0;
474 expand_back:
475 /* No overlap, normal extent */
476 if (entry->start < diff) {
477 error("cannot find space for data chunk layout");
478 return -ENOSPC;
480 entry->start -= diff;
481 entry->size += diff;
482 return 0;
484 ce = next_cache_extent(entry);
485 if (!ce)
486 goto expand_after;
487 if (entry->start + entry->size + diff >= ce->start) {
488 /* Directly merge with next extent */
489 entry->size = ce->start + ce->size - entry->start;
490 remove_cache_extent(tree, ce);
491 free(ce);
492 return 0;
494 expand_after:
495 entry->size += diff;
496 return 0;
500 * Remove one reserve range from given cache tree
501 * if min_stripe_size is non-zero, it will ensure for split case,
502 * all its split cache extent is no smaller than @min_strip_size / 2.
504 static int wipe_one_reserved_range(struct cache_tree *tree,
505 u64 start, u64 len, u64 min_stripe_size,
506 int ensure_size)
508 struct cache_extent *cache;
509 int ret;
511 BUG_ON(ensure_size && min_stripe_size == 0);
513 * The logical here is simplified to handle special cases only
514 * So we don't need to consider merge case for ensure_size
516 BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
517 min_stripe_size / 2 < BTRFS_STRIPE_LEN));
519 /* Also, wipe range should already be aligned */
520 BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
521 start + len != round_up(start + len, BTRFS_STRIPE_LEN));
523 min_stripe_size /= 2;
525 cache = lookup_cache_extent(tree, start, len);
526 if (!cache)
527 return 0;
529 if (start <= cache->start) {
531 * |--------cache---------|
532 * |-wipe-|
534 BUG_ON(start + len <= cache->start);
537 * The wipe size is smaller than min_stripe_size / 2,
538 * so the result length should still meet min_stripe_size
539 * And no need to do alignment
541 cache->size -= (start + len - cache->start);
542 if (cache->size == 0) {
543 remove_cache_extent(tree, cache);
544 free(cache);
545 return 0;
548 BUG_ON(ensure_size && cache->size < min_stripe_size);
550 cache->start = start + len;
551 return 0;
552 } else if (start > cache->start && start + len < cache->start +
553 cache->size) {
555 * |-------cache-----|
556 * |-wipe-|
558 u64 old_start = cache->start;
559 u64 old_len = cache->size;
560 u64 insert_start = start + len;
561 u64 insert_len;
563 cache->size = start - cache->start;
564 /* Expand the leading half part if needed */
565 if (ensure_size && cache->size < min_stripe_size) {
566 ret = _expand_extent_cache(tree, cache,
567 min_stripe_size, 1);
568 if (ret < 0)
569 return ret;
572 /* And insert the new one */
573 insert_len = old_start + old_len - start - len;
574 ret = add_merge_cache_extent(tree, insert_start, insert_len);
575 if (ret < 0)
576 return ret;
578 /* Expand the last half part if needed */
579 if (ensure_size && insert_len < min_stripe_size) {
580 cache = lookup_cache_extent(tree, insert_start,
581 insert_len);
582 if (!cache || cache->start != insert_start ||
583 cache->size != insert_len)
584 return -ENOENT;
585 ret = _expand_extent_cache(tree, cache,
586 min_stripe_size, 0);
589 return ret;
592 * |----cache-----|
593 * |--wipe-|
594 * Wipe len should be small enough and no need to expand the
595 * remaining extent
597 cache->size = start - cache->start;
598 BUG_ON(ensure_size && cache->size < min_stripe_size);
599 return 0;
603 * Remove reserved ranges from given cache_tree
605 * It will remove the following ranges
606 * 1) 0~1M
607 * 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
608 * 3) 3rd superblock, +64K
610 * @min_stripe must be given for safety check
611 * and if @ensure_size is given, it will ensure affected cache_extent will be
612 * larger than min_stripe_size
614 static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
615 int ensure_size)
617 int i;
618 int ret;
620 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
621 const struct simple_range *range = &btrfs_reserved_ranges[i];
623 ret = wipe_one_reserved_range(tree, range->start, range->len,
624 min_stripe_size, ensure_size);
625 if (ret < 0)
626 return ret;
628 return ret;
631 static int calculate_available_space(struct btrfs_convert_context *cctx)
633 struct cache_tree *used = &cctx->used_space;
634 struct cache_tree *data_chunks = &cctx->data_chunks;
635 struct cache_tree *free = &cctx->free_space;
636 struct cache_extent *cache;
637 u64 cur_off = 0;
639 * Twice the minimal chunk size, to allow later wipe_reserved_ranges()
640 * works without need to consider overlap
642 u64 min_stripe_size = SZ_32M;
643 int ret;
645 /* Calculate data_chunks */
646 for (cache = first_cache_extent(used); cache;
647 cache = next_cache_extent(cache)) {
648 u64 cur_len;
650 if (cache->start + cache->size < cur_off)
651 continue;
652 if (cache->start > cur_off + min_stripe_size)
653 cur_off = cache->start;
654 cur_len = max(cache->start + cache->size - cur_off,
655 min_stripe_size);
656 ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
657 if (ret < 0)
658 goto out;
659 cur_off += cur_len;
662 * remove reserved ranges, so we won't ever bother relocating an old
663 * filesystem extent to other place.
665 ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
666 if (ret < 0)
667 goto out;
669 cur_off = 0;
671 * Calculate free space
672 * Always round up the start bytenr, to avoid metadata extent corss
673 * stripe boundary, as later mkfs_convert() won't have all the extent
674 * allocation check
676 for (cache = first_cache_extent(data_chunks); cache;
677 cache = next_cache_extent(cache)) {
678 if (cache->start < cur_off)
679 continue;
680 if (cache->start > cur_off) {
681 u64 insert_start;
682 u64 len;
684 len = cache->start - round_up(cur_off,
685 BTRFS_STRIPE_LEN);
686 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
688 ret = add_merge_cache_extent(free, insert_start, len);
689 if (ret < 0)
690 goto out;
692 cur_off = cache->start + cache->size;
694 /* Don't forget the last range */
695 if (cctx->total_bytes > cur_off) {
696 u64 len = cctx->total_bytes - cur_off;
697 u64 insert_start;
699 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
701 ret = add_merge_cache_extent(free, insert_start, len);
702 if (ret < 0)
703 goto out;
706 /* Remove reserved bytes */
707 ret = wipe_reserved_ranges(free, min_stripe_size, 0);
708 out:
709 return ret;
713 * Read used space, and since we have the used space,
714 * calcuate data_chunks and free for later mkfs
716 static int convert_read_used_space(struct btrfs_convert_context *cctx)
718 int ret;
720 ret = cctx->convert_ops->read_used_space(cctx);
721 if (ret)
722 return ret;
724 ret = calculate_available_space(cctx);
725 return ret;
729 * Create the fs image file of old filesystem.
731 * This is completely fs independent as we have cctx->used, only
732 * need to create file extents pointing to all the positions.
734 static int create_image(struct btrfs_root *root,
735 struct btrfs_mkfs_config *cfg,
736 struct btrfs_convert_context *cctx, int fd,
737 u64 size, char *name, u32 convert_flags)
739 struct btrfs_inode_item buf;
740 struct btrfs_trans_handle *trans;
741 struct btrfs_path path;
742 struct btrfs_key key;
743 struct cache_extent *cache;
744 struct cache_tree used_tmp;
745 u64 cur;
746 u64 ino;
747 u64 flags = BTRFS_INODE_READONLY;
748 int ret;
750 if (!(convert_flags & CONVERT_FLAG_DATACSUM))
751 flags |= BTRFS_INODE_NODATASUM;
753 trans = btrfs_start_transaction(root, 1);
754 if (IS_ERR(trans))
755 return PTR_ERR(trans);
757 cache_tree_init(&used_tmp);
758 btrfs_init_path(&path);
760 ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
761 &ino);
762 if (ret < 0)
763 goto out;
764 ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
765 if (ret < 0)
766 goto out;
767 ret = btrfs_change_inode_flags(trans, root, ino, flags);
768 if (ret < 0)
769 goto out;
770 ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
771 strlen(name), BTRFS_FT_REG_FILE, NULL, 1, 0);
772 if (ret < 0)
773 goto out;
775 key.objectid = ino;
776 key.type = BTRFS_INODE_ITEM_KEY;
777 key.offset = 0;
779 ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
780 if (ret) {
781 ret = (ret > 0 ? -ENOENT : ret);
782 goto out;
784 read_extent_buffer(path.nodes[0], &buf,
785 btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
786 sizeof(buf));
787 btrfs_release_path(&path);
790 * Create a new used space cache, which doesn't contain the reserved
791 * range
793 for (cache = first_cache_extent(&cctx->used_space); cache;
794 cache = next_cache_extent(cache)) {
795 ret = add_cache_extent(&used_tmp, cache->start, cache->size);
796 if (ret < 0)
797 goto out;
799 ret = wipe_reserved_ranges(&used_tmp, 0, 0);
800 if (ret < 0)
801 goto out;
804 * Start from 1M, as 0~1M is reserved, and create_image_file_range()
805 * can't handle bytenr 0(will consider it as a hole)
807 cur = SZ_1M;
808 while (cur < size) {
809 u64 len = size - cur;
811 ret = create_image_file_range(trans, root, &used_tmp,
812 &buf, ino, cur, &len,
813 convert_flags);
814 if (ret < 0)
815 goto out;
816 cur += len;
818 /* Handle the reserved ranges */
819 ret = migrate_reserved_ranges(trans, root, &cctx->used_space, &buf, fd,
820 ino, cfg->num_bytes, convert_flags);
822 key.objectid = ino;
823 key.type = BTRFS_INODE_ITEM_KEY;
824 key.offset = 0;
825 ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
826 if (ret) {
827 ret = (ret > 0 ? -ENOENT : ret);
828 goto out;
830 btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
831 write_extent_buffer(path.nodes[0], &buf,
832 btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
833 sizeof(buf));
834 out:
835 free_extent_cache_tree(&used_tmp);
836 btrfs_release_path(&path);
837 btrfs_commit_transaction(trans, root);
838 return ret;
841 static int create_subvol(struct btrfs_trans_handle *trans,
842 struct btrfs_root *root, u64 root_objectid)
844 struct extent_buffer *tmp;
845 struct btrfs_root *new_root;
846 struct btrfs_key key;
847 struct btrfs_root_item root_item;
848 int ret;
850 ret = btrfs_copy_root(trans, root, root->node, &tmp,
851 root_objectid);
852 if (ret)
853 return ret;
855 memcpy(&root_item, &root->root_item, sizeof(root_item));
856 btrfs_set_root_bytenr(&root_item, tmp->start);
857 btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
858 btrfs_set_root_generation(&root_item, trans->transid);
859 free_extent_buffer(tmp);
861 key.objectid = root_objectid;
862 key.type = BTRFS_ROOT_ITEM_KEY;
863 key.offset = trans->transid;
864 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
865 &key, &root_item);
867 key.offset = (u64)-1;
868 new_root = btrfs_read_fs_root(root->fs_info, &key);
869 if (!new_root || IS_ERR(new_root)) {
870 error("unable to fs read root: %lu", PTR_ERR(new_root));
871 return PTR_ERR(new_root);
874 ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
876 return ret;
880 * New make_btrfs() has handle system and meta chunks quite well.
881 * So only need to add remaining data chunks.
883 static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
884 struct btrfs_fs_info *fs_info,
885 struct btrfs_mkfs_config *cfg,
886 struct btrfs_convert_context *cctx)
888 struct btrfs_root *extent_root = fs_info->extent_root;
889 struct cache_tree *data_chunks = &cctx->data_chunks;
890 struct cache_extent *cache;
891 u64 max_chunk_size;
892 int ret = 0;
895 * Don't create data chunk over 10% of the convert device
896 * And for single chunk, don't create chunk larger than 1G.
898 max_chunk_size = cfg->num_bytes / 10;
899 max_chunk_size = min((u64)(SZ_1G), max_chunk_size);
900 max_chunk_size = round_down(max_chunk_size,
901 extent_root->fs_info->sectorsize);
903 for (cache = first_cache_extent(data_chunks); cache;
904 cache = next_cache_extent(cache)) {
905 u64 cur = cache->start;
907 while (cur < cache->start + cache->size) {
908 u64 len;
909 u64 cur_backup = cur;
911 len = min(max_chunk_size,
912 cache->start + cache->size - cur);
913 ret = btrfs_alloc_data_chunk(trans, fs_info,
914 &cur_backup, len,
915 BTRFS_BLOCK_GROUP_DATA, 1);
916 if (ret < 0)
917 break;
918 ret = btrfs_make_block_group(trans, fs_info, 0,
919 BTRFS_BLOCK_GROUP_DATA, cur, len);
920 if (ret < 0)
921 break;
922 cur += len;
925 return ret;
929 * Init the temp btrfs to a operational status.
931 * It will fix the extent usage accounting(XXX: Do we really need?) and
932 * insert needed data chunks, to ensure all old fs data extents are covered
933 * by DATA chunks, preventing wrong chunks are allocated.
935 * And also create convert image subvolume and relocation tree.
936 * (XXX: Not need again?)
937 * But the convert image subvolume is *NOT* linked to fs tree yet.
939 static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
940 struct btrfs_convert_context *cctx, u32 convert_flags)
942 struct btrfs_key location;
943 struct btrfs_trans_handle *trans;
944 struct btrfs_fs_info *fs_info = root->fs_info;
945 int ret;
948 * Don't alloc any metadata/system chunk, as we don't want
949 * any meta/sys chunk allcated before all data chunks are inserted.
950 * Or we screw up the chunk layout just like the old implement.
952 fs_info->avoid_sys_chunk_alloc = 1;
953 fs_info->avoid_meta_chunk_alloc = 1;
954 trans = btrfs_start_transaction(root, 1);
955 if (IS_ERR(trans)) {
956 error("unable to start transaction");
957 ret = PTR_ERR(trans);
958 goto err;
960 ret = btrfs_fix_block_accounting(trans);
961 if (ret)
962 goto err;
963 ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
964 if (ret)
965 goto err;
966 ret = btrfs_make_root_dir(trans, fs_info->tree_root,
967 BTRFS_ROOT_TREE_DIR_OBJECTID);
968 if (ret)
969 goto err;
970 memcpy(&location, &root->root_key, sizeof(location));
971 location.offset = (u64)-1;
972 ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
973 btrfs_super_root_dir(fs_info->super_copy),
974 &location, BTRFS_FT_DIR, 0);
975 if (ret)
976 goto err;
977 ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
978 location.objectid,
979 btrfs_super_root_dir(fs_info->super_copy), 0);
980 if (ret)
981 goto err;
982 btrfs_set_root_dirid(&fs_info->fs_root->root_item,
983 BTRFS_FIRST_FREE_OBJECTID);
985 /* subvol for fs image file */
986 ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
987 if (ret < 0) {
988 error("failed to create subvolume image root: %d", ret);
989 goto err;
991 /* subvol for data relocation tree */
992 ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
993 if (ret < 0) {
994 error("failed to create DATA_RELOC root: %d", ret);
995 goto err;
998 ret = btrfs_commit_transaction(trans, root);
999 fs_info->avoid_sys_chunk_alloc = 0;
1000 fs_info->avoid_meta_chunk_alloc = 0;
1001 err:
1002 return ret;
1006 * Migrate super block to its default position and zero 0 ~ 16k
1008 static int migrate_super_block(int fd, u64 old_bytenr)
1010 int ret;
1011 struct extent_buffer *buf;
1012 struct btrfs_super_block *super;
1013 u32 len;
1014 u32 bytenr;
1016 buf = malloc(sizeof(*buf) + BTRFS_SUPER_INFO_SIZE);
1017 if (!buf)
1018 return -ENOMEM;
1020 buf->len = BTRFS_SUPER_INFO_SIZE;
1021 ret = pread(fd, buf->data, BTRFS_SUPER_INFO_SIZE, old_bytenr);
1022 if (ret != BTRFS_SUPER_INFO_SIZE)
1023 goto fail;
1025 super = (struct btrfs_super_block *)buf->data;
1026 BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
1027 btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
1029 csum_tree_block_size(buf, btrfs_csum_sizes[BTRFS_CSUM_TYPE_CRC32], 0);
1030 ret = pwrite(fd, buf->data, BTRFS_SUPER_INFO_SIZE,
1031 BTRFS_SUPER_INFO_OFFSET);
1032 if (ret != BTRFS_SUPER_INFO_SIZE)
1033 goto fail;
1035 ret = fsync(fd);
1036 if (ret)
1037 goto fail;
1039 memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
1040 for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
1041 len = BTRFS_SUPER_INFO_OFFSET - bytenr;
1042 if (len > BTRFS_SUPER_INFO_SIZE)
1043 len = BTRFS_SUPER_INFO_SIZE;
1044 ret = pwrite(fd, buf->data, len, bytenr);
1045 if (ret != len) {
1046 fprintf(stderr, "unable to zero fill device\n");
1047 break;
1049 bytenr += len;
1051 ret = 0;
1052 fsync(fd);
1053 fail:
1054 free(buf);
1055 if (ret > 0)
1056 ret = -1;
1057 return ret;
1060 static int convert_open_fs(const char *devname,
1061 struct btrfs_convert_context *cctx)
1063 int i;
1065 for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
1066 int ret = convert_operations[i]->open_fs(cctx, devname);
1068 if (ret == 0) {
1069 cctx->convert_ops = convert_operations[i];
1070 return ret;
1074 error("no file system found to convert");
1075 return -1;
1078 static int do_convert(const char *devname, u32 convert_flags, u32 nodesize,
1079 const char *fslabel, int progress, u64 features)
1081 int ret;
1082 int fd = -1;
1083 u32 blocksize;
1084 u64 total_bytes;
1085 struct btrfs_root *root;
1086 struct btrfs_root *image_root;
1087 struct btrfs_convert_context cctx;
1088 struct btrfs_key key;
1089 char subvol_name[SOURCE_FS_NAME_LEN + 8];
1090 struct task_ctx ctx;
1091 char features_buf[64];
1092 struct btrfs_mkfs_config mkfs_cfg;
1094 init_convert_context(&cctx);
1095 ret = convert_open_fs(devname, &cctx);
1096 if (ret)
1097 goto fail;
1098 ret = convert_check_state(&cctx);
1099 if (ret)
1100 warning(
1101 "source filesystem is not clean, running filesystem check is recommended");
1102 ret = convert_read_used_space(&cctx);
1103 if (ret)
1104 goto fail;
1106 blocksize = cctx.blocksize;
1107 total_bytes = (u64)blocksize * (u64)cctx.block_count;
1108 if (blocksize < 4096) {
1109 error("block size is too small: %u < 4096", blocksize);
1110 goto fail;
1112 if (btrfs_check_nodesize(nodesize, blocksize, features))
1113 goto fail;
1114 fd = open(devname, O_RDWR);
1115 if (fd < 0) {
1116 error("unable to open %s: %m", devname);
1117 goto fail;
1119 btrfs_parse_features_to_string(features_buf, features);
1120 if (features == BTRFS_MKFS_DEFAULT_FEATURES)
1121 strcat(features_buf, " (default)");
1123 printf("create btrfs filesystem:\n");
1124 printf("\tblocksize: %u\n", blocksize);
1125 printf("\tnodesize: %u\n", nodesize);
1126 printf("\tfeatures: %s\n", features_buf);
1128 memset(&mkfs_cfg, 0, sizeof(mkfs_cfg));
1129 mkfs_cfg.label = cctx.volume_name;
1130 mkfs_cfg.num_bytes = total_bytes;
1131 mkfs_cfg.nodesize = nodesize;
1132 mkfs_cfg.sectorsize = blocksize;
1133 mkfs_cfg.stripesize = blocksize;
1134 mkfs_cfg.features = features;
1136 ret = make_convert_btrfs(fd, &mkfs_cfg, &cctx);
1137 if (ret) {
1138 error("unable to create initial ctree: %s", strerror(-ret));
1139 goto fail;
1142 root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
1143 OPEN_CTREE_WRITES | OPEN_CTREE_TEMPORARY_SUPER);
1144 if (!root) {
1145 error("unable to open ctree");
1146 goto fail;
1148 ret = init_btrfs(&mkfs_cfg, root, &cctx, convert_flags);
1149 if (ret) {
1150 error("unable to setup the root tree: %d", ret);
1151 goto fail;
1154 printf("creating %s image file\n", cctx.convert_ops->name);
1155 snprintf(subvol_name, sizeof(subvol_name), "%s_saved",
1156 cctx.convert_ops->name);
1157 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
1158 key.offset = (u64)-1;
1159 key.type = BTRFS_ROOT_ITEM_KEY;
1160 image_root = btrfs_read_fs_root(root->fs_info, &key);
1161 if (!image_root) {
1162 error("unable to create image subvolume");
1163 goto fail;
1165 ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
1166 mkfs_cfg.num_bytes, "image",
1167 convert_flags);
1168 if (ret) {
1169 error("failed to create %s/image: %d", subvol_name, ret);
1170 goto fail;
1173 printf("creating btrfs metadata\n");
1174 ret = pthread_mutex_init(&ctx.mutex, NULL);
1175 if (ret) {
1176 error("failed to initialize mutex: %d", ret);
1177 goto fail;
1179 ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
1180 ctx.cur_copy_inodes = 0;
1182 if (progress) {
1183 ctx.info = task_init(print_copied_inodes, after_copied_inodes,
1184 &ctx);
1185 task_start(ctx.info, NULL, NULL);
1187 ret = copy_inodes(&cctx, root, convert_flags, &ctx);
1188 if (ret) {
1189 error("error during copy_inodes %d", ret);
1190 goto fail;
1192 if (progress) {
1193 task_stop(ctx.info);
1194 task_deinit(ctx.info);
1197 image_root = btrfs_mksubvol(root, subvol_name,
1198 CONV_IMAGE_SUBVOL_OBJECTID, true);
1199 if (!image_root) {
1200 error("unable to link subvolume %s", subvol_name);
1201 goto fail;
1204 memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
1205 if (convert_flags & CONVERT_FLAG_COPY_LABEL) {
1206 __strncpy_null(root->fs_info->super_copy->label,
1207 cctx.volume_name, BTRFS_LABEL_SIZE - 1);
1208 printf("copy label '%s'\n", root->fs_info->super_copy->label);
1209 } else if (convert_flags & CONVERT_FLAG_SET_LABEL) {
1210 strcpy(root->fs_info->super_copy->label, fslabel);
1211 printf("set label to '%s'\n", fslabel);
1214 ret = close_ctree(root);
1215 if (ret) {
1216 error("close_ctree failed: %d", ret);
1217 goto fail;
1219 convert_close_fs(&cctx);
1220 clean_convert_context(&cctx);
1223 * If this step succeed, we get a mountable btrfs. Otherwise
1224 * the source fs is left unchanged.
1226 ret = migrate_super_block(fd, mkfs_cfg.super_bytenr);
1227 if (ret) {
1228 error("unable to migrate super block: %d", ret);
1229 goto fail;
1232 root = open_ctree_fd(fd, devname, 0,
1233 OPEN_CTREE_WRITES | OPEN_CTREE_TEMPORARY_SUPER);
1234 if (!root) {
1235 error("unable to open ctree for finalization");
1236 goto fail;
1238 root->fs_info->finalize_on_close = 1;
1239 close_ctree(root);
1240 close(fd);
1242 printf("conversion complete\n");
1243 return 0;
1244 fail:
1245 clean_convert_context(&cctx);
1246 if (fd != -1)
1247 close(fd);
1248 warning(
1249 "an error occurred during conversion, filesystem is partially created but not finalized and not mountable");
1250 return -1;
1254 * Read out data of convert image which is in btrfs reserved ranges so we can
1255 * use them to overwrite the ranges during rollback.
1257 static int read_reserved_ranges(struct btrfs_root *root, u64 ino,
1258 u64 total_bytes, char *reserved_ranges[])
1260 int i;
1261 int ret = 0;
1263 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
1264 const struct simple_range *range = &btrfs_reserved_ranges[i];
1266 if (range->start + range->len >= total_bytes)
1267 break;
1268 ret = btrfs_read_file(root, ino, range->start, range->len,
1269 reserved_ranges[i]);
1270 if (ret < range->len) {
1271 error(
1272 "failed to read data of convert image, offset=%llu len=%llu ret=%d",
1273 range->start, range->len, ret);
1274 if (ret >= 0)
1275 ret = -EIO;
1276 break;
1278 ret = 0;
1280 return ret;
1283 static bool is_subset_of_reserved_ranges(u64 start, u64 len)
1285 int i;
1286 bool ret = false;
1288 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
1289 const struct simple_range *range = &btrfs_reserved_ranges[i];
1291 if (start >= range->start && start + len <= range_end(range)) {
1292 ret = true;
1293 break;
1296 return ret;
1299 static bool is_chunk_direct_mapped(struct btrfs_fs_info *fs_info, u64 start)
1301 struct cache_extent *ce;
1302 struct map_lookup *map;
1303 bool ret = false;
1305 ce = search_cache_extent(&fs_info->mapping_tree.cache_tree, start);
1306 if (!ce)
1307 goto out;
1308 if (ce->start > start || ce->start + ce->size < start)
1309 goto out;
1311 map = container_of(ce, struct map_lookup, ce);
1313 /* Not SINGLE chunk */
1314 if (map->num_stripes != 1)
1315 goto out;
1317 /* Chunk's logical doesn't match with phisical, not 1:1 mapped */
1318 if (map->ce.start != map->stripes[0].physical)
1319 goto out;
1320 ret = true;
1321 out:
1322 return ret;
1326 * Iterate all file extents of the convert image.
1328 * All file extents except ones in btrfs_reserved_ranges must be mapped 1:1
1329 * on disk. (Means thier file_offset must match their on disk bytenr)
1331 * File extents in reserved ranges can be relocated to other place, and in
1332 * that case we will read them out for later use.
1334 static int check_convert_image(struct btrfs_root *image_root, u64 ino,
1335 u64 total_size, char *reserved_ranges[])
1337 struct btrfs_key key;
1338 struct btrfs_path path;
1339 struct btrfs_fs_info *fs_info = image_root->fs_info;
1340 u64 checked_bytes = 0;
1341 int ret;
1343 key.objectid = ino;
1344 key.offset = 0;
1345 key.type = BTRFS_EXTENT_DATA_KEY;
1347 btrfs_init_path(&path);
1348 ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
1350 * It's possible that some fs doesn't store any (including sb)
1351 * data into 0~1M range, and NO_HOLES is enabled.
1353 * So we only need to check if ret < 0
1355 if (ret < 0) {
1356 error("failed to iterate file extents at offset 0: %s",
1357 strerror(-ret));
1358 btrfs_release_path(&path);
1359 return ret;
1362 /* Loop from the first file extents */
1363 while (1) {
1364 struct btrfs_file_extent_item *fi;
1365 struct extent_buffer *leaf = path.nodes[0];
1366 u64 disk_bytenr;
1367 u64 file_offset;
1368 u64 ram_bytes;
1369 int slot = path.slots[0];
1371 if (slot >= btrfs_header_nritems(leaf))
1372 goto next;
1373 btrfs_item_key_to_cpu(leaf, &key, slot);
1376 * Iteration is done, exit normally, we have extra check out of
1377 * the loop
1379 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
1380 ret = 0;
1381 break;
1383 file_offset = key.offset;
1384 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1385 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) {
1386 ret = -EINVAL;
1387 error(
1388 "ino %llu offset %llu doesn't have a regular file extent",
1389 ino, file_offset);
1390 break;
1392 if (btrfs_file_extent_compression(leaf, fi) ||
1393 btrfs_file_extent_encryption(leaf, fi) ||
1394 btrfs_file_extent_other_encoding(leaf, fi)) {
1395 ret = -EINVAL;
1396 error(
1397 "ino %llu offset %llu doesn't have a plain file extent",
1398 ino, file_offset);
1399 break;
1402 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1403 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1405 checked_bytes += ram_bytes;
1406 /* Skip hole */
1407 if (disk_bytenr == 0)
1408 goto next;
1411 * Most file extents must be 1:1 mapped, which means 2 things:
1412 * 1) File extent file offset == disk_bytenr
1413 * 2) That data chunk's logical == chunk's physical
1415 * So file extent's file offset == physical position on disk.
1417 * And after rolling back btrfs reserved range, other part
1418 * remains what old fs used to be.
1420 if (file_offset != disk_bytenr ||
1421 !is_chunk_direct_mapped(fs_info, disk_bytenr)) {
1423 * Only file extent in btrfs reserved ranges are
1424 * allowed to be non-1:1 mapped
1426 if (!is_subset_of_reserved_ranges(file_offset,
1427 ram_bytes)) {
1428 ret = -EINVAL;
1429 error(
1430 "ino %llu offset %llu file extent should not be relocated",
1431 ino, file_offset);
1432 break;
1435 next:
1436 ret = btrfs_next_item(image_root, &path);
1437 if (ret) {
1438 if (ret > 0)
1439 ret = 0;
1440 break;
1443 btrfs_release_path(&path);
1444 if (ret)
1445 return ret;
1447 * For HOLES mode (without NO_HOLES), we must ensure file extents
1448 * cover the whole range of the image
1450 if (!ret && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
1451 if (checked_bytes != total_size) {
1452 ret = -EINVAL;
1453 error("inode %llu has some file extents not checked",
1454 ino);
1455 return ret;
1459 /* So far so good, read old data located in btrfs reserved ranges */
1460 ret = read_reserved_ranges(image_root, ino, total_size,
1461 reserved_ranges);
1462 return ret;
1466 * btrfs rollback is just reverted convert:
1467 * |<---------------Btrfs fs------------------------------>|
1468 * |<- Old data chunk ->|< new chunk (D/M/S)>|<- ODC ->|
1469 * |<-Old-FE->| |<-Old-FE->|<- Btrfs extents ->|<-Old-FE->|
1470 * ||
1471 * \/
1472 * |<------------------Old fs----------------------------->|
1473 * |<- used ->| |<- used ->| |<- used ->|
1475 * However things are much easier than convert, we don't really need to
1476 * do the complex space calculation, but only to handle btrfs reserved space
1478 * |<---------------------------Btrfs fs----------------------------->|
1479 * | RSV 1 | | Old | | RSV 2 | | Old | | RSV 3 |
1480 * | 0~1M | | Fs | | SB2 + 64K | | Fs | | SB3 + 64K |
1482 * On the other hand, the converted fs image in btrfs is a completely
1483 * valid old fs.
1485 * |<-----------------Converted fs image in btrfs-------------------->|
1486 * | RSV 1 | | Old | | RSV 2 | | Old | | RSV 3 |
1487 * | Relocated | | Fs | | Relocated | | Fs | | Relocated |
1489 * Used space in fs image should be at the same physical position on disk.
1490 * We only need to recover the data in reserved ranges, so the whole
1491 * old fs is back.
1493 * The idea to rollback is also straightforward, we just "read" out the data
1494 * of reserved ranges, and write them back to there they should be.
1495 * Then the old fs is back.
1497 static int do_rollback(const char *devname)
1499 struct btrfs_root *root;
1500 struct btrfs_root *image_root;
1501 struct btrfs_fs_info *fs_info;
1502 struct btrfs_key key;
1503 struct btrfs_path path;
1504 struct btrfs_dir_item *dir;
1505 struct btrfs_inode_item *inode_item;
1506 char *image_name = "image";
1507 char *reserved_ranges[ARRAY_SIZE(btrfs_reserved_ranges)] = { NULL };
1508 u64 total_bytes;
1509 u64 fsize;
1510 u64 root_dir;
1511 u64 ino;
1512 int fd = -1;
1513 int ret;
1514 int i;
1516 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++) {
1517 const struct simple_range *range = &btrfs_reserved_ranges[i];
1519 reserved_ranges[i] = calloc(1, range->len);
1520 if (!reserved_ranges[i]) {
1521 ret = -ENOMEM;
1522 goto free_mem;
1525 fd = open(devname, O_RDWR);
1526 if (fd < 0) {
1527 error("unable to open %s: %m", devname);
1528 ret = -EIO;
1529 goto free_mem;
1531 fsize = lseek(fd, 0, SEEK_END);
1534 * For rollback, we don't really need to write anything so open it
1535 * read-only. The write part will happen after we close the
1536 * filesystem.
1538 root = open_ctree_fd(fd, devname, 0, 0);
1539 if (!root) {
1540 error("unable to open ctree");
1541 ret = -EIO;
1542 goto free_mem;
1544 fs_info = root->fs_info;
1547 * Search root backref first, or after subvolume deletion (orphan),
1548 * we can still rollback the image.
1550 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
1551 key.type = BTRFS_ROOT_BACKREF_KEY;
1552 key.offset = BTRFS_FS_TREE_OBJECTID;
1553 btrfs_init_path(&path);
1554 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, &path, 0, 0);
1555 btrfs_release_path(&path);
1556 if (ret > 0) {
1557 error("unable to find source fs image subvolume, is it deleted?");
1558 ret = -ENOENT;
1559 goto close_fs;
1560 } else if (ret < 0) {
1561 error("failed to find source fs image subvolume: %s",
1562 strerror(-ret));
1563 goto close_fs;
1566 /* Search convert subvolume */
1567 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
1568 key.type = BTRFS_ROOT_ITEM_KEY;
1569 key.offset = (u64)-1;
1570 image_root = btrfs_read_fs_root(fs_info, &key);
1571 if (IS_ERR(image_root)) {
1572 ret = PTR_ERR(image_root);
1573 error("failed to open convert image subvolume: %s",
1574 strerror(-ret));
1575 goto close_fs;
1578 /* Search the image file */
1579 root_dir = btrfs_root_dirid(&image_root->root_item);
1580 dir = btrfs_lookup_dir_item(NULL, image_root, &path, root_dir,
1581 image_name, strlen(image_name), 0);
1583 if (!dir || IS_ERR(dir)) {
1584 btrfs_release_path(&path);
1585 if (dir)
1586 ret = PTR_ERR(dir);
1587 else
1588 ret = -ENOENT;
1589 error("failed to locate file %s: %s", image_name,
1590 strerror(-ret));
1591 goto close_fs;
1593 btrfs_dir_item_key_to_cpu(path.nodes[0], dir, &key);
1594 btrfs_release_path(&path);
1596 /* Get total size of the original image */
1597 ino = key.objectid;
1599 ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
1601 if (ret < 0) {
1602 btrfs_release_path(&path);
1603 error("unable to find inode %llu: %s", ino, strerror(-ret));
1604 goto close_fs;
1606 inode_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
1607 struct btrfs_inode_item);
1608 total_bytes = btrfs_inode_size(path.nodes[0], inode_item);
1609 btrfs_release_path(&path);
1611 /* Check if we can rollback the image */
1612 ret = check_convert_image(image_root, ino, total_bytes, reserved_ranges);
1613 if (ret < 0) {
1614 error("old fs image can't be rolled back");
1615 goto close_fs;
1617 close_fs:
1618 btrfs_release_path(&path);
1619 close_ctree_fs_info(fs_info);
1620 if (ret)
1621 goto free_mem;
1624 * Everything is OK, just write back old fs data into btrfs reserved
1625 * ranges
1627 * Here, we starts from the backup blocks first, so if something goes
1628 * wrong, the fs is still mountable
1631 for (i = ARRAY_SIZE(btrfs_reserved_ranges) - 1; i >= 0; i--) {
1632 u64 real_size;
1633 const struct simple_range *range = &btrfs_reserved_ranges[i];
1635 if (range_end(range) >= fsize)
1636 continue;
1638 real_size = min(range_end(range), fsize) - range->start;
1639 ret = pwrite(fd, reserved_ranges[i], real_size, range->start);
1640 if (ret < real_size) {
1641 if (ret < 0)
1642 ret = -errno;
1643 else
1644 ret = -EIO;
1645 error("failed to recover range [%llu, %llu): %s",
1646 range->start, real_size, strerror(-ret));
1647 goto free_mem;
1649 ret = 0;
1652 free_mem:
1653 for (i = 0; i < ARRAY_SIZE(btrfs_reserved_ranges); i++)
1654 free(reserved_ranges[i]);
1655 if (ret)
1656 error("rollback failed");
1657 else
1658 printf("rollback succeeded\n");
1659 return ret;
1662 static void print_usage(void)
1664 printf("usage: btrfs-convert [options] device\n");
1665 printf("options:\n");
1666 printf("\t-d|--no-datasum disable data checksum, sets NODATASUM\n");
1667 printf("\t-i|--no-xattr ignore xattrs and ACLs\n");
1668 printf("\t-n|--no-inline disable inlining of small files to metadata\n");
1669 printf("\t-N|--nodesize SIZE set filesystem metadata nodesize\n");
1670 printf("\t-r|--rollback roll back to the original filesystem\n");
1671 printf("\t-l|--label LABEL set filesystem label\n");
1672 printf("\t-L|--copy-label use label from converted filesystem\n");
1673 printf("\t-p|--progress show converting progress (default)\n");
1674 printf("\t-O|--features LIST comma separated list of filesystem features\n");
1675 printf("\t--no-progress show only overview, not the detailed progress\n");
1676 printf("\n");
1677 printf("Supported filesystems:\n");
1678 printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
1679 printf("\treiserfs: %s\n", BTRFSCONVERT_REISERFS ? "yes" : "no");
1682 int main(int argc, char *argv[])
1684 int ret;
1685 int packing = 1;
1686 int noxattr = 0;
1687 int datacsum = 1;
1688 u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
1689 BTRFS_MKFS_DEFAULT_NODE_SIZE);
1690 int rollback = 0;
1691 int copylabel = 0;
1692 int usage_error = 0;
1693 int progress = 1;
1694 char *file;
1695 char fslabel[BTRFS_LABEL_SIZE];
1696 u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
1698 while(1) {
1699 enum { GETOPT_VAL_NO_PROGRESS = 256 };
1700 static const struct option long_options[] = {
1701 { "no-progress", no_argument, NULL,
1702 GETOPT_VAL_NO_PROGRESS },
1703 { "no-datasum", no_argument, NULL, 'd' },
1704 { "no-inline", no_argument, NULL, 'n' },
1705 { "no-xattr", no_argument, NULL, 'i' },
1706 { "rollback", no_argument, NULL, 'r' },
1707 { "features", required_argument, NULL, 'O' },
1708 { "progress", no_argument, NULL, 'p' },
1709 { "label", required_argument, NULL, 'l' },
1710 { "copy-label", no_argument, NULL, 'L' },
1711 { "nodesize", required_argument, NULL, 'N' },
1712 { "help", no_argument, NULL, GETOPT_VAL_HELP},
1713 { NULL, 0, NULL, 0 }
1715 int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
1717 if (c < 0)
1718 break;
1719 switch(c) {
1720 case 'd':
1721 datacsum = 0;
1722 break;
1723 case 'i':
1724 noxattr = 1;
1725 break;
1726 case 'n':
1727 packing = 0;
1728 break;
1729 case 'N':
1730 nodesize = parse_size(optarg);
1731 break;
1732 case 'r':
1733 rollback = 1;
1734 break;
1735 case 'l':
1736 copylabel = CONVERT_FLAG_SET_LABEL;
1737 if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
1738 warning(
1739 "label too long, trimmed to %d bytes",
1740 BTRFS_LABEL_SIZE - 1);
1742 __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
1743 break;
1744 case 'L':
1745 copylabel = CONVERT_FLAG_COPY_LABEL;
1746 break;
1747 case 'p':
1748 progress = 1;
1749 break;
1750 case 'O': {
1751 char *orig = strdup(optarg);
1752 char *tmp = orig;
1754 tmp = btrfs_parse_fs_features(tmp, &features);
1755 if (tmp) {
1756 error("unrecognized filesystem feature: %s",
1757 tmp);
1758 free(orig);
1759 exit(1);
1761 free(orig);
1762 if (features & BTRFS_FEATURE_LIST_ALL) {
1763 btrfs_list_all_fs_features(
1764 ~BTRFS_CONVERT_ALLOWED_FEATURES);
1765 exit(0);
1767 if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
1768 char buf[64];
1770 btrfs_parse_features_to_string(buf,
1771 features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
1772 error("features not allowed for convert: %s",
1773 buf);
1774 exit(1);
1777 break;
1779 case GETOPT_VAL_NO_PROGRESS:
1780 progress = 0;
1781 break;
1782 case GETOPT_VAL_HELP:
1783 default:
1784 print_usage();
1785 return c != GETOPT_VAL_HELP;
1788 set_argv0(argv);
1789 if (check_argc_exact(argc - optind, 1)) {
1790 print_usage();
1791 return 1;
1794 if (rollback && (!datacsum || noxattr || !packing)) {
1795 fprintf(stderr,
1796 "Usage error: -d, -i, -n options do not apply to rollback\n");
1797 usage_error++;
1800 if (usage_error) {
1801 print_usage();
1802 return 1;
1805 file = argv[optind];
1806 ret = check_mounted(file);
1807 if (ret < 0) {
1808 error("could not check mount status: %s", strerror(-ret));
1809 return 1;
1810 } else if (ret) {
1811 error("%s is mounted", file);
1812 return 1;
1815 if (rollback) {
1816 ret = do_rollback(file);
1817 } else {
1818 u32 cf = 0;
1820 cf |= datacsum ? CONVERT_FLAG_DATACSUM : 0;
1821 cf |= packing ? CONVERT_FLAG_INLINE_DATA : 0;
1822 cf |= noxattr ? 0 : CONVERT_FLAG_XATTR;
1823 cf |= copylabel;
1824 ret = do_convert(file, cf, nodesize, fslabel, progress, features);
1826 if (ret)
1827 return 1;
1828 return 0;