Merge #12062: Increment MIT Licence copyright header year on files modified in 2017
[bitcoinplatinum.git] / src / merkleblock.cpp
blobde3519c1da91eba1eda78b734ee384d98a8944a6
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2017 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include <merkleblock.h>
8 #include <hash.h>
9 #include <consensus/consensus.h>
10 #include <utilstrencodings.h>
13 CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<uint256>* txids)
15 header = block.GetBlockHeader();
17 std::vector<bool> vMatch;
18 std::vector<uint256> vHashes;
20 vMatch.reserve(block.vtx.size());
21 vHashes.reserve(block.vtx.size());
23 for (unsigned int i = 0; i < block.vtx.size(); i++)
25 const uint256& hash = block.vtx[i]->GetHash();
26 if (txids && txids->count(hash)) {
27 vMatch.push_back(true);
28 } else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) {
29 vMatch.push_back(true);
30 vMatchedTxn.emplace_back(i, hash);
31 } else {
32 vMatch.push_back(false);
34 vHashes.push_back(hash);
37 txn = CPartialMerkleTree(vHashes, vMatch);
40 uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
41 //we can never have zero txs in a merkle block, we always need the coinbase tx
42 //if we do not have this assert, we can hit a memory access violation when indexing into vTxid
43 assert(vTxid.size() != 0);
44 if (height == 0) {
45 // hash at height 0 is the txids themself
46 return vTxid[pos];
47 } else {
48 // calculate left hash
49 uint256 left = CalcHash(height-1, pos*2, vTxid), right;
50 // calculate right hash if not beyond the end of the array - copy left hash otherwise
51 if (pos*2+1 < CalcTreeWidth(height-1))
52 right = CalcHash(height-1, pos*2+1, vTxid);
53 else
54 right = left;
55 // combine subhashes
56 return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
60 void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
61 // determine whether this node is the parent of at least one matched txid
62 bool fParentOfMatch = false;
63 for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
64 fParentOfMatch |= vMatch[p];
65 // store as flag bit
66 vBits.push_back(fParentOfMatch);
67 if (height==0 || !fParentOfMatch) {
68 // if at height 0, or nothing interesting below, store hash and stop
69 vHash.push_back(CalcHash(height, pos, vTxid));
70 } else {
71 // otherwise, don't store any hash, but descend into the subtrees
72 TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
73 if (pos*2+1 < CalcTreeWidth(height-1))
74 TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
78 uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
79 if (nBitsUsed >= vBits.size()) {
80 // overflowed the bits array - failure
81 fBad = true;
82 return uint256();
84 bool fParentOfMatch = vBits[nBitsUsed++];
85 if (height==0 || !fParentOfMatch) {
86 // if at height 0, or nothing interesting below, use stored hash and do not descend
87 if (nHashUsed >= vHash.size()) {
88 // overflowed the hash array - failure
89 fBad = true;
90 return uint256();
92 const uint256 &hash = vHash[nHashUsed++];
93 if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
94 vMatch.push_back(hash);
95 vnIndex.push_back(pos);
97 return hash;
98 } else {
99 // otherwise, descend into the subtrees to extract matched txids and hashes
100 uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
101 if (pos*2+1 < CalcTreeWidth(height-1)) {
102 right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
103 if (right == left) {
104 // The left and right branches should never be identical, as the transaction
105 // hashes covered by them must each be unique.
106 fBad = true;
108 } else {
109 right = left;
111 // and combine them before returning
112 return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
116 CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
117 // reset state
118 vBits.clear();
119 vHash.clear();
121 // calculate height of tree
122 int nHeight = 0;
123 while (CalcTreeWidth(nHeight) > 1)
124 nHeight++;
126 // traverse the partial tree
127 TraverseAndBuild(nHeight, 0, vTxid, vMatch);
130 CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
132 uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
133 vMatch.clear();
134 // An empty set will not work
135 if (nTransactions == 0)
136 return uint256();
137 // check for excessively high numbers of transactions
138 if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT)
139 return uint256();
140 // there can never be more hashes provided than one for every txid
141 if (vHash.size() > nTransactions)
142 return uint256();
143 // there must be at least one bit per node in the partial tree, and at least one node per hash
144 if (vBits.size() < vHash.size())
145 return uint256();
146 // calculate height of tree
147 int nHeight = 0;
148 while (CalcTreeWidth(nHeight) > 1)
149 nHeight++;
150 // traverse the partial tree
151 unsigned int nBitsUsed = 0, nHashUsed = 0;
152 uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
153 // verify that no problems occurred during the tree traversal
154 if (fBad)
155 return uint256();
156 // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
157 if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
158 return uint256();
159 // verify that all hashes were consumed
160 if (nHashUsed != vHash.size())
161 return uint256();
162 return hashMerkleRoot;