PR gas/11973
[binutils.git] / gas / config / tc-mn10300.c
blobbf77aa9527d792f0e1f62e9544a4b1f2decf5c93
1 /* tc-mn10300.c -- Assembler code for the Matsushita 10300
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GAS, the GNU Assembler.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "subsegs.h"
25 #include "opcode/mn10300.h"
26 #include "dwarf2dbg.h"
27 #include "libiberty.h"
29 /* Structure to hold information about predefined registers. */
30 struct reg_name
32 const char *name;
33 int value;
36 /* Generic assembler global variables which must be defined by all
37 targets. */
39 /* Characters which always start a comment. */
40 const char comment_chars[] = "#";
42 /* Characters which start a comment at the beginning of a line. */
43 const char line_comment_chars[] = ";#";
45 /* Characters which may be used to separate multiple commands on a
46 single line. */
47 const char line_separator_chars[] = ";";
49 /* Characters which are used to indicate an exponent in a floating
50 point number. */
51 const char EXP_CHARS[] = "eE";
53 /* Characters which mean that a number is a floating point constant,
54 as in 0d1.0. */
55 const char FLT_CHARS[] = "dD";
57 const relax_typeS md_relax_table[] =
59 /* The plus values for the bCC and fBCC instructions in the table below
60 are because the branch instruction is translated into a jump
61 instruction that is now +2 or +3 bytes further on in memory, and the
62 correct size of jump instruction must be selected. */
63 /* bCC relaxing. */
64 {0x7f, -0x80, 2, 1},
65 {0x7fff + 2, -0x8000 + 2, 5, 2},
66 {0x7fffffff, -0x80000000, 7, 0},
68 /* bCC relaxing (uncommon cases for 3byte length instructions) */
69 {0x7f, -0x80, 3, 4},
70 {0x7fff + 3, -0x8000 + 3, 6, 5},
71 {0x7fffffff, -0x80000000, 8, 0},
73 /* call relaxing. */
74 {0x7fff, -0x8000, 5, 7},
75 {0x7fffffff, -0x80000000, 7, 0},
77 /* calls relaxing. */
78 {0x7fff, -0x8000, 4, 9},
79 {0x7fffffff, -0x80000000, 6, 0},
81 /* jmp relaxing. */
82 {0x7f, -0x80, 2, 11},
83 {0x7fff, -0x8000, 3, 12},
84 {0x7fffffff, -0x80000000, 5, 0},
86 /* fbCC relaxing. */
87 {0x7f, -0x80, 3, 14},
88 {0x7fff + 3, -0x8000 + 3, 6, 15},
89 {0x7fffffff, -0x80000000, 8, 0},
93 /* Set linkrelax here to avoid fixups in most sections. */
94 int linkrelax = 1;
96 static int current_machine;
98 /* Fixups. */
99 #define MAX_INSN_FIXUPS 5
101 struct mn10300_fixup
103 expressionS exp;
104 int opindex;
105 bfd_reloc_code_real_type reloc;
107 struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
108 static int fc;
110 /* We must store the value of each register operand so that we can
111 verify that certain registers do not match. */
112 int mn10300_reg_operands[MN10300_MAX_OPERANDS];
114 const char *md_shortopts = "";
116 struct option md_longopts[] =
118 {NULL, no_argument, NULL, 0}
121 size_t md_longopts_size = sizeof (md_longopts);
123 #define HAVE_AM33_2 (current_machine == AM33_2)
124 #define HAVE_AM33 (current_machine == AM33 || HAVE_AM33_2)
125 #define HAVE_AM30 (current_machine == AM30)
127 /* Opcode hash table. */
128 static struct hash_control *mn10300_hash;
130 /* This table is sorted. Suitable for searching by a binary search. */
131 static const struct reg_name data_registers[] =
133 { "d0", 0 },
134 { "d1", 1 },
135 { "d2", 2 },
136 { "d3", 3 },
139 static const struct reg_name address_registers[] =
141 { "a0", 0 },
142 { "a1", 1 },
143 { "a2", 2 },
144 { "a3", 3 },
147 static const struct reg_name r_registers[] =
149 { "a0", 8 },
150 { "a1", 9 },
151 { "a2", 10 },
152 { "a3", 11 },
153 { "d0", 12 },
154 { "d1", 13 },
155 { "d2", 14 },
156 { "d3", 15 },
157 { "e0", 0 },
158 { "e1", 1 },
159 { "e10", 10 },
160 { "e11", 11 },
161 { "e12", 12 },
162 { "e13", 13 },
163 { "e14", 14 },
164 { "e15", 15 },
165 { "e2", 2 },
166 { "e3", 3 },
167 { "e4", 4 },
168 { "e5", 5 },
169 { "e6", 6 },
170 { "e7", 7 },
171 { "e8", 8 },
172 { "e9", 9 },
173 { "r0", 0 },
174 { "r1", 1 },
175 { "r10", 10 },
176 { "r11", 11 },
177 { "r12", 12 },
178 { "r13", 13 },
179 { "r14", 14 },
180 { "r15", 15 },
181 { "r2", 2 },
182 { "r3", 3 },
183 { "r4", 4 },
184 { "r5", 5 },
185 { "r6", 6 },
186 { "r7", 7 },
187 { "r8", 8 },
188 { "r9", 9 },
191 static const struct reg_name xr_registers[] =
193 { "mcrh", 2 },
194 { "mcrl", 3 },
195 { "mcvf", 4 },
196 { "mdrq", 1 },
197 { "sp", 0 },
198 { "xr0", 0 },
199 { "xr1", 1 },
200 { "xr10", 10 },
201 { "xr11", 11 },
202 { "xr12", 12 },
203 { "xr13", 13 },
204 { "xr14", 14 },
205 { "xr15", 15 },
206 { "xr2", 2 },
207 { "xr3", 3 },
208 { "xr4", 4 },
209 { "xr5", 5 },
210 { "xr6", 6 },
211 { "xr7", 7 },
212 { "xr8", 8 },
213 { "xr9", 9 },
216 static const struct reg_name float_registers[] =
218 { "fs0", 0 },
219 { "fs1", 1 },
220 { "fs10", 10 },
221 { "fs11", 11 },
222 { "fs12", 12 },
223 { "fs13", 13 },
224 { "fs14", 14 },
225 { "fs15", 15 },
226 { "fs16", 16 },
227 { "fs17", 17 },
228 { "fs18", 18 },
229 { "fs19", 19 },
230 { "fs2", 2 },
231 { "fs20", 20 },
232 { "fs21", 21 },
233 { "fs22", 22 },
234 { "fs23", 23 },
235 { "fs24", 24 },
236 { "fs25", 25 },
237 { "fs26", 26 },
238 { "fs27", 27 },
239 { "fs28", 28 },
240 { "fs29", 29 },
241 { "fs3", 3 },
242 { "fs30", 30 },
243 { "fs31", 31 },
244 { "fs4", 4 },
245 { "fs5", 5 },
246 { "fs6", 6 },
247 { "fs7", 7 },
248 { "fs8", 8 },
249 { "fs9", 9 },
252 static const struct reg_name double_registers[] =
254 { "fd0", 0 },
255 { "fd10", 10 },
256 { "fd12", 12 },
257 { "fd14", 14 },
258 { "fd16", 16 },
259 { "fd18", 18 },
260 { "fd2", 2 },
261 { "fd20", 20 },
262 { "fd22", 22 },
263 { "fd24", 24 },
264 { "fd26", 26 },
265 { "fd28", 28 },
266 { "fd30", 30 },
267 { "fd4", 4 },
268 { "fd6", 6 },
269 { "fd8", 8 },
272 /* We abuse the `value' field, that would be otherwise unused, to
273 encode the architecture on which (access to) the register was
274 introduced. FIXME: we should probably warn when we encounter a
275 register name when assembling for an architecture that doesn't
276 support it, before parsing it as a symbol name. */
277 static const struct reg_name other_registers[] =
279 { "epsw", AM33 },
280 { "mdr", 0 },
281 { "pc", AM33 },
282 { "psw", 0 },
283 { "sp", 0 },
286 #define OTHER_REG_NAME_CNT ARRAY_SIZE (other_registers)
288 /* Perform a binary search of the given register table REGS to see
289 if NAME is a valid regiter name. Returns the register number from
290 the array on success, or -1 on failure. */
292 static int
293 reg_name_search (const struct reg_name *regs,
294 int regcount,
295 const char *name)
297 int low, high;
299 low = 0;
300 high = regcount - 1;
304 int cmp, middle;
306 middle = (low + high) / 2;
307 cmp = strcasecmp (name, regs[middle].name);
308 if (cmp < 0)
309 high = middle - 1;
310 else if (cmp > 0)
311 low = middle + 1;
312 else
313 return regs[middle].value;
315 while (low <= high);
317 return -1;
320 /* Looks at the current position in the input line to see if it is
321 the name of a register in TABLE. If it is, then the name is
322 converted into an expression returned in EXPRESSIONP (with X_op
323 set to O_register and X_add_number set to the register number), the
324 input pointer is left pointing at the first non-blank character after
325 the name and the function returns TRUE. Otherwise the input pointer
326 is left alone and the function returns FALSE. */
328 static bfd_boolean
329 get_register_name (expressionS * expressionP,
330 const struct reg_name * table,
331 size_t table_length)
333 int reg_number;
334 char *name;
335 char *start;
336 char c;
338 /* Find the spelling of the operand. */
339 start = name = input_line_pointer;
341 c = get_symbol_end ();
342 reg_number = reg_name_search (table, table_length, name);
344 /* Put back the delimiting char. */
345 *input_line_pointer = c;
347 /* Look to see if it's in the register table. */
348 if (reg_number >= 0)
350 expressionP->X_op = O_register;
351 expressionP->X_add_number = reg_number;
353 /* Make the rest nice. */
354 expressionP->X_add_symbol = NULL;
355 expressionP->X_op_symbol = NULL;
357 return TRUE;
360 /* Reset the line as if we had not done anything. */
361 input_line_pointer = start;
362 return FALSE;
365 static bfd_boolean
366 r_register_name (expressionS *expressionP)
368 return get_register_name (expressionP, r_registers, ARRAY_SIZE (r_registers));
372 static bfd_boolean
373 xr_register_name (expressionS *expressionP)
375 return get_register_name (expressionP, xr_registers, ARRAY_SIZE (xr_registers));
378 static bfd_boolean
379 data_register_name (expressionS *expressionP)
381 return get_register_name (expressionP, data_registers, ARRAY_SIZE (data_registers));
384 static bfd_boolean
385 address_register_name (expressionS *expressionP)
387 return get_register_name (expressionP, address_registers, ARRAY_SIZE (address_registers));
390 static bfd_boolean
391 float_register_name (expressionS *expressionP)
393 return get_register_name (expressionP, float_registers, ARRAY_SIZE (float_registers));
396 static bfd_boolean
397 double_register_name (expressionS *expressionP)
399 return get_register_name (expressionP, double_registers, ARRAY_SIZE (double_registers));
402 static bfd_boolean
403 other_register_name (expressionS *expressionP)
405 int reg_number;
406 char *name;
407 char *start;
408 char c;
410 /* Find the spelling of the operand. */
411 start = name = input_line_pointer;
413 c = get_symbol_end ();
414 reg_number = reg_name_search (other_registers, ARRAY_SIZE (other_registers), name);
416 /* Put back the delimiting char. */
417 *input_line_pointer = c;
419 /* Look to see if it's in the register table. */
420 if (reg_number == 0
421 || (reg_number == AM33 && HAVE_AM33))
423 expressionP->X_op = O_register;
424 expressionP->X_add_number = 0;
426 /* Make the rest nice. */
427 expressionP->X_add_symbol = NULL;
428 expressionP->X_op_symbol = NULL;
430 return TRUE;
433 /* Reset the line as if we had not done anything. */
434 input_line_pointer = start;
435 return FALSE;
438 void
439 md_show_usage (FILE *stream)
441 fprintf (stream, _("MN10300 assembler options:\n\
442 none yet\n"));
446 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
448 return 0;
451 symbolS *
452 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
454 return 0;
457 char *
458 md_atof (int type, char *litp, int *sizep)
460 return ieee_md_atof (type, litp, sizep, FALSE);
463 void
464 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
465 asection *sec,
466 fragS *fragP)
468 static unsigned long label_count = 0;
469 char buf[40];
471 subseg_change (sec, 0);
472 if (fragP->fr_subtype == 0)
474 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
475 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
476 fragP->fr_var = 0;
477 fragP->fr_fix += 2;
479 else if (fragP->fr_subtype == 1)
481 /* Reverse the condition of the first branch. */
482 int offset = fragP->fr_fix;
483 int opcode = fragP->fr_literal[offset] & 0xff;
485 switch (opcode)
487 case 0xc8:
488 opcode = 0xc9;
489 break;
490 case 0xc9:
491 opcode = 0xc8;
492 break;
493 case 0xc0:
494 opcode = 0xc2;
495 break;
496 case 0xc2:
497 opcode = 0xc0;
498 break;
499 case 0xc3:
500 opcode = 0xc1;
501 break;
502 case 0xc1:
503 opcode = 0xc3;
504 break;
505 case 0xc4:
506 opcode = 0xc6;
507 break;
508 case 0xc6:
509 opcode = 0xc4;
510 break;
511 case 0xc7:
512 opcode = 0xc5;
513 break;
514 case 0xc5:
515 opcode = 0xc7;
516 break;
517 default:
518 abort ();
520 fragP->fr_literal[offset] = opcode;
522 /* Create a fixup for the reversed conditional branch. */
523 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
524 fix_new (fragP, fragP->fr_fix + 1, 1,
525 symbol_new (buf, sec, 0, fragP->fr_next),
526 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
528 /* Now create the unconditional branch + fixup to the
529 final target. */
530 fragP->fr_literal[offset + 2] = 0xcc;
531 fix_new (fragP, fragP->fr_fix + 3, 2, fragP->fr_symbol,
532 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
533 fragP->fr_var = 0;
534 fragP->fr_fix += 5;
536 else if (fragP->fr_subtype == 2)
538 /* Reverse the condition of the first branch. */
539 int offset = fragP->fr_fix;
540 int opcode = fragP->fr_literal[offset] & 0xff;
542 switch (opcode)
544 case 0xc8:
545 opcode = 0xc9;
546 break;
547 case 0xc9:
548 opcode = 0xc8;
549 break;
550 case 0xc0:
551 opcode = 0xc2;
552 break;
553 case 0xc2:
554 opcode = 0xc0;
555 break;
556 case 0xc3:
557 opcode = 0xc1;
558 break;
559 case 0xc1:
560 opcode = 0xc3;
561 break;
562 case 0xc4:
563 opcode = 0xc6;
564 break;
565 case 0xc6:
566 opcode = 0xc4;
567 break;
568 case 0xc7:
569 opcode = 0xc5;
570 break;
571 case 0xc5:
572 opcode = 0xc7;
573 break;
574 default:
575 abort ();
577 fragP->fr_literal[offset] = opcode;
579 /* Create a fixup for the reversed conditional branch. */
580 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
581 fix_new (fragP, fragP->fr_fix + 1, 1,
582 symbol_new (buf, sec, 0, fragP->fr_next),
583 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
585 /* Now create the unconditional branch + fixup to the
586 final target. */
587 fragP->fr_literal[offset + 2] = 0xdc;
588 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
589 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
590 fragP->fr_var = 0;
591 fragP->fr_fix += 7;
593 else if (fragP->fr_subtype == 3)
595 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
596 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
597 fragP->fr_var = 0;
598 fragP->fr_fix += 3;
600 else if (fragP->fr_subtype == 4)
602 /* Reverse the condition of the first branch. */
603 int offset = fragP->fr_fix;
604 int opcode = fragP->fr_literal[offset + 1] & 0xff;
606 switch (opcode)
608 case 0xe8:
609 opcode = 0xe9;
610 break;
611 case 0xe9:
612 opcode = 0xe8;
613 break;
614 case 0xea:
615 opcode = 0xeb;
616 break;
617 case 0xeb:
618 opcode = 0xea;
619 break;
620 default:
621 abort ();
623 fragP->fr_literal[offset + 1] = opcode;
625 /* Create a fixup for the reversed conditional branch. */
626 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
627 fix_new (fragP, fragP->fr_fix + 2, 1,
628 symbol_new (buf, sec, 0, fragP->fr_next),
629 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
631 /* Now create the unconditional branch + fixup to the
632 final target. */
633 fragP->fr_literal[offset + 3] = 0xcc;
634 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
635 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
636 fragP->fr_var = 0;
637 fragP->fr_fix += 6;
639 else if (fragP->fr_subtype == 5)
641 /* Reverse the condition of the first branch. */
642 int offset = fragP->fr_fix;
643 int opcode = fragP->fr_literal[offset + 1] & 0xff;
645 switch (opcode)
647 case 0xe8:
648 opcode = 0xe9;
649 break;
650 case 0xea:
651 opcode = 0xeb;
652 break;
653 case 0xeb:
654 opcode = 0xea;
655 break;
656 default:
657 abort ();
659 fragP->fr_literal[offset + 1] = opcode;
661 /* Create a fixup for the reversed conditional branch. */
662 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
663 fix_new (fragP, fragP->fr_fix + 2, 1,
664 symbol_new (buf, sec, 0, fragP->fr_next),
665 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
667 /* Now create the unconditional branch + fixup to the
668 final target. */
669 fragP->fr_literal[offset + 3] = 0xdc;
670 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
671 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
672 fragP->fr_var = 0;
673 fragP->fr_fix += 8;
675 else if (fragP->fr_subtype == 6)
677 int offset = fragP->fr_fix;
679 fragP->fr_literal[offset] = 0xcd;
680 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
681 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
682 fragP->fr_var = 0;
683 fragP->fr_fix += 5;
685 else if (fragP->fr_subtype == 7)
687 int offset = fragP->fr_fix;
689 fragP->fr_literal[offset] = 0xdd;
690 fragP->fr_literal[offset + 5] = fragP->fr_literal[offset + 3];
691 fragP->fr_literal[offset + 6] = fragP->fr_literal[offset + 4];
692 fragP->fr_literal[offset + 3] = 0;
693 fragP->fr_literal[offset + 4] = 0;
695 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
696 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
697 fragP->fr_var = 0;
698 fragP->fr_fix += 7;
700 else if (fragP->fr_subtype == 8)
702 int offset = fragP->fr_fix;
704 fragP->fr_literal[offset] = 0xfa;
705 fragP->fr_literal[offset + 1] = 0xff;
706 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
707 fragP->fr_offset + 2, 1, BFD_RELOC_16_PCREL);
708 fragP->fr_var = 0;
709 fragP->fr_fix += 4;
711 else if (fragP->fr_subtype == 9)
713 int offset = fragP->fr_fix;
715 fragP->fr_literal[offset] = 0xfc;
716 fragP->fr_literal[offset + 1] = 0xff;
718 fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
719 fragP->fr_offset + 2, 1, BFD_RELOC_32_PCREL);
720 fragP->fr_var = 0;
721 fragP->fr_fix += 6;
723 else if (fragP->fr_subtype == 10)
725 fragP->fr_literal[fragP->fr_fix] = 0xca;
726 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
727 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
728 fragP->fr_var = 0;
729 fragP->fr_fix += 2;
731 else if (fragP->fr_subtype == 11)
733 int offset = fragP->fr_fix;
735 fragP->fr_literal[offset] = 0xcc;
737 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
738 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
739 fragP->fr_var = 0;
740 fragP->fr_fix += 3;
742 else if (fragP->fr_subtype == 12)
744 int offset = fragP->fr_fix;
746 fragP->fr_literal[offset] = 0xdc;
748 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
749 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
750 fragP->fr_var = 0;
751 fragP->fr_fix += 5;
753 else if (fragP->fr_subtype == 13)
755 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
756 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
757 fragP->fr_var = 0;
758 fragP->fr_fix += 3;
760 else if (fragP->fr_subtype == 14)
762 /* Reverse the condition of the first branch. */
763 int offset = fragP->fr_fix;
764 int opcode = fragP->fr_literal[offset + 1] & 0xff;
766 switch (opcode)
768 case 0xd0:
769 opcode = 0xd1;
770 break;
771 case 0xd1:
772 opcode = 0xd0;
773 break;
774 case 0xd2:
775 opcode = 0xdc;
776 break;
777 case 0xd3:
778 opcode = 0xdb;
779 break;
780 case 0xd4:
781 opcode = 0xda;
782 break;
783 case 0xd5:
784 opcode = 0xd9;
785 break;
786 case 0xd6:
787 opcode = 0xd8;
788 break;
789 case 0xd7:
790 opcode = 0xdd;
791 break;
792 case 0xd8:
793 opcode = 0xd6;
794 break;
795 case 0xd9:
796 opcode = 0xd5;
797 break;
798 case 0xda:
799 opcode = 0xd4;
800 break;
801 case 0xdb:
802 opcode = 0xd3;
803 break;
804 case 0xdc:
805 opcode = 0xd2;
806 break;
807 case 0xdd:
808 opcode = 0xd7;
809 break;
810 default:
811 abort ();
813 fragP->fr_literal[offset + 1] = opcode;
815 /* Create a fixup for the reversed conditional branch. */
816 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
817 fix_new (fragP, fragP->fr_fix + 2, 1,
818 symbol_new (buf, sec, 0, fragP->fr_next),
819 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
821 /* Now create the unconditional branch + fixup to the
822 final target. */
823 fragP->fr_literal[offset + 3] = 0xcc;
824 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
825 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
826 fragP->fr_var = 0;
827 fragP->fr_fix += 6;
829 else if (fragP->fr_subtype == 15)
831 /* Reverse the condition of the first branch. */
832 int offset = fragP->fr_fix;
833 int opcode = fragP->fr_literal[offset + 1] & 0xff;
835 switch (opcode)
837 case 0xd0:
838 opcode = 0xd1;
839 break;
840 case 0xd1:
841 opcode = 0xd0;
842 break;
843 case 0xd2:
844 opcode = 0xdc;
845 break;
846 case 0xd3:
847 opcode = 0xdb;
848 break;
849 case 0xd4:
850 opcode = 0xda;
851 break;
852 case 0xd5:
853 opcode = 0xd9;
854 break;
855 case 0xd6:
856 opcode = 0xd8;
857 break;
858 case 0xd7:
859 opcode = 0xdd;
860 break;
861 case 0xd8:
862 opcode = 0xd6;
863 break;
864 case 0xd9:
865 opcode = 0xd5;
866 break;
867 case 0xda:
868 opcode = 0xd4;
869 break;
870 case 0xdb:
871 opcode = 0xd3;
872 break;
873 case 0xdc:
874 opcode = 0xd2;
875 break;
876 case 0xdd:
877 opcode = 0xd7;
878 break;
879 default:
880 abort ();
882 fragP->fr_literal[offset + 1] = opcode;
884 /* Create a fixup for the reversed conditional branch. */
885 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
886 fix_new (fragP, fragP->fr_fix + 2, 1,
887 symbol_new (buf, sec, 0, fragP->fr_next),
888 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
890 /* Now create the unconditional branch + fixup to the
891 final target. */
892 fragP->fr_literal[offset + 3] = 0xdc;
893 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
894 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
895 fragP->fr_var = 0;
896 fragP->fr_fix += 8;
898 else
899 abort ();
902 valueT
903 md_section_align (asection *seg, valueT addr)
905 int align = bfd_get_section_alignment (stdoutput, seg);
907 return ((addr + (1 << align) - 1) & (-1 << align));
910 void
911 md_begin (void)
913 char *prev_name = "";
914 const struct mn10300_opcode *op;
916 mn10300_hash = hash_new ();
918 /* Insert unique names into hash table. The MN10300 instruction set
919 has many identical opcode names that have different opcodes based
920 on the operands. This hash table then provides a quick index to
921 the first opcode with a particular name in the opcode table. */
923 op = mn10300_opcodes;
924 while (op->name)
926 if (strcmp (prev_name, op->name))
928 prev_name = (char *) op->name;
929 hash_insert (mn10300_hash, op->name, (char *) op);
931 op++;
934 /* Set the default machine type. */
935 #ifdef TE_LINUX
936 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, AM33_2))
937 as_warn (_("could not set architecture and machine"));
939 current_machine = AM33_2;
940 #else
941 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, MN103))
942 as_warn (_("could not set architecture and machine"));
944 current_machine = MN103;
945 #endif
948 static symbolS *GOT_symbol;
950 static inline int
951 mn10300_PIC_related_p (symbolS *sym)
953 expressionS *exp;
955 if (! sym)
956 return 0;
958 if (sym == GOT_symbol)
959 return 1;
961 exp = symbol_get_value_expression (sym);
963 return (exp->X_op == O_PIC_reloc
964 || mn10300_PIC_related_p (exp->X_add_symbol)
965 || mn10300_PIC_related_p (exp->X_op_symbol));
968 static inline int
969 mn10300_check_fixup (struct mn10300_fixup *fixup)
971 expressionS *exp = &fixup->exp;
973 repeat:
974 switch (exp->X_op)
976 case O_add:
977 case O_subtract: /* If we're sufficiently unlucky that the label
978 and the expression that references it happen
979 to end up in different frags, the subtract
980 won't be simplified within expression(). */
981 /* The PIC-related operand must be the first operand of a sum. */
982 if (exp != &fixup->exp || mn10300_PIC_related_p (exp->X_op_symbol))
983 return 1;
985 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
986 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
988 exp = symbol_get_value_expression (exp->X_add_symbol);
989 goto repeat;
991 case O_symbol:
992 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
993 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
994 break;
996 case O_PIC_reloc:
997 fixup->reloc = exp->X_md;
998 exp->X_op = O_symbol;
999 if (fixup->reloc == BFD_RELOC_32_PLT_PCREL
1000 && fixup->opindex >= 0
1001 && (mn10300_operands[fixup->opindex].flags
1002 & MN10300_OPERAND_RELAX))
1003 return 1;
1004 break;
1006 default:
1007 return (mn10300_PIC_related_p (exp->X_add_symbol)
1008 || mn10300_PIC_related_p (exp->X_op_symbol));
1011 return 0;
1014 void
1015 mn10300_cons_fix_new (fragS *frag, int off, int size, expressionS *exp)
1017 struct mn10300_fixup fixup;
1019 fixup.opindex = -1;
1020 fixup.exp = *exp;
1021 fixup.reloc = BFD_RELOC_UNUSED;
1023 mn10300_check_fixup (&fixup);
1025 if (fixup.reloc == BFD_RELOC_MN10300_GOT32)
1026 switch (size)
1028 case 2:
1029 fixup.reloc = BFD_RELOC_MN10300_GOT16;
1030 break;
1032 case 3:
1033 fixup.reloc = BFD_RELOC_MN10300_GOT24;
1034 break;
1036 case 4:
1037 break;
1039 default:
1040 goto error;
1042 else if (fixup.reloc == BFD_RELOC_UNUSED)
1043 switch (size)
1045 case 1:
1046 fixup.reloc = BFD_RELOC_8;
1047 break;
1049 case 2:
1050 fixup.reloc = BFD_RELOC_16;
1051 break;
1053 case 3:
1054 fixup.reloc = BFD_RELOC_24;
1055 break;
1057 case 4:
1058 fixup.reloc = BFD_RELOC_32;
1059 break;
1061 default:
1062 goto error;
1064 else if (size != 4)
1066 error:
1067 as_bad (_("unsupported BFD relocation size %u"), size);
1068 fixup.reloc = BFD_RELOC_UNUSED;
1071 fix_new_exp (frag, off, size, &fixup.exp, 0, fixup.reloc);
1074 static bfd_boolean
1075 check_operand (const struct mn10300_operand *operand,
1076 offsetT val)
1078 /* No need to check 32bit operands for a bit. Note that
1079 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
1080 if (operand->bits != 32
1081 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
1083 long min, max;
1084 offsetT test;
1085 int bits;
1087 bits = operand->bits;
1088 if (operand->flags & MN10300_OPERAND_24BIT)
1089 bits = 24;
1091 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
1093 max = (1 << (bits - 1)) - 1;
1094 min = - (1 << (bits - 1));
1096 else
1098 max = (1 << bits) - 1;
1099 min = 0;
1102 test = val;
1104 if (test < (offsetT) min || test > (offsetT) max)
1105 return FALSE;
1107 return TRUE;
1110 /* Insert an operand value into an instruction. */
1112 static void
1113 mn10300_insert_operand (unsigned long *insnp,
1114 unsigned long *extensionp,
1115 const struct mn10300_operand *operand,
1116 offsetT val,
1117 char *file,
1118 unsigned int line,
1119 unsigned int shift)
1121 /* No need to check 32bit operands for a bit. Note that
1122 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
1123 if (operand->bits != 32
1124 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
1126 long min, max;
1127 offsetT test;
1128 int bits;
1130 bits = operand->bits;
1131 if (operand->flags & MN10300_OPERAND_24BIT)
1132 bits = 24;
1134 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
1136 max = (1 << (bits - 1)) - 1;
1137 min = - (1 << (bits - 1));
1139 else
1141 max = (1 << bits) - 1;
1142 min = 0;
1145 test = val;
1147 if (test < (offsetT) min || test > (offsetT) max)
1148 as_warn_value_out_of_range (_("operand"), test, (offsetT) min, (offsetT) max, file, line);
1151 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
1153 *insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
1154 *extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
1155 << operand->shift);
1157 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
1159 *insnp |= (val >> (24 - operand->bits)) & ((1 << operand->bits) - 1);
1160 *extensionp |= ((val & ((1 << (24 - operand->bits)) - 1))
1161 << operand->shift);
1163 else if ((operand->flags & (MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG)))
1165 /* See devo/opcodes/m10300-opc.c just before #define FSM0 for an
1166 explanation of these variables. Note that FMT-implied shifts
1167 are not taken into account for FP registers. */
1168 unsigned long mask_low, mask_high;
1169 int shl_low, shr_high, shl_high;
1171 switch (operand->bits)
1173 case 5:
1174 /* Handle regular FP registers. */
1175 if (operand->shift >= 0)
1177 /* This is an `m' register. */
1178 shl_low = operand->shift;
1179 shl_high = 8 + (8 & shl_low) + (shl_low & 4) / 4;
1181 else
1183 /* This is an `n' register. */
1184 shl_low = -operand->shift;
1185 shl_high = shl_low / 4;
1188 mask_low = 0x0f;
1189 mask_high = 0x10;
1190 shr_high = 4;
1191 break;
1193 case 3:
1194 /* Handle accumulators. */
1195 shl_low = -operand->shift;
1196 shl_high = 0;
1197 mask_low = 0x03;
1198 mask_high = 0x04;
1199 shr_high = 2;
1200 break;
1202 default:
1203 abort ();
1205 *insnp |= ((((val & mask_high) >> shr_high) << shl_high)
1206 | ((val & mask_low) << shl_low));
1208 else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
1210 *insnp |= (((long) val & ((1 << operand->bits) - 1))
1211 << (operand->shift + shift));
1213 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
1214 *insnp |= (((long) val & ((1 << operand->bits) - 1))
1215 << (operand->shift + shift + operand->bits));
1217 else
1219 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
1220 << (operand->shift + shift));
1222 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
1223 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
1224 << (operand->shift + shift + operand->bits));
1228 void
1229 md_assemble (char *str)
1231 char *s;
1232 struct mn10300_opcode *opcode;
1233 struct mn10300_opcode *next_opcode;
1234 const unsigned char *opindex_ptr;
1235 int next_opindex, relaxable;
1236 unsigned long insn, extension, size = 0;
1237 char *f;
1238 int i;
1239 int match;
1241 /* Get the opcode. */
1242 for (s = str; *s != '\0' && !ISSPACE (*s); s++)
1244 if (*s != '\0')
1245 *s++ = '\0';
1247 /* Find the first opcode with the proper name. */
1248 opcode = (struct mn10300_opcode *) hash_find (mn10300_hash, str);
1249 if (opcode == NULL)
1251 as_bad (_("Unrecognized opcode: `%s'"), str);
1252 return;
1255 str = s;
1256 while (ISSPACE (*str))
1257 ++str;
1259 input_line_pointer = str;
1261 for (;;)
1263 const char *errmsg;
1264 int op_idx;
1265 char *hold;
1266 int extra_shift = 0;
1268 errmsg = _("Invalid opcode/operands");
1270 /* Reset the array of register operands. */
1271 memset (mn10300_reg_operands, -1, sizeof (mn10300_reg_operands));
1273 relaxable = 0;
1274 fc = 0;
1275 match = 0;
1276 next_opindex = 0;
1277 insn = opcode->opcode;
1278 extension = 0;
1280 /* If the instruction is not available on the current machine
1281 then it can not possibly match. */
1282 if (opcode->machine
1283 && !(opcode->machine == AM33_2 && HAVE_AM33_2)
1284 && !(opcode->machine == AM33 && HAVE_AM33)
1285 && !(opcode->machine == AM30 && HAVE_AM30))
1286 goto error;
1288 for (op_idx = 1, opindex_ptr = opcode->operands;
1289 *opindex_ptr != 0;
1290 opindex_ptr++, op_idx++)
1292 const struct mn10300_operand *operand;
1293 expressionS ex;
1295 if (next_opindex == 0)
1297 operand = &mn10300_operands[*opindex_ptr];
1299 else
1301 operand = &mn10300_operands[next_opindex];
1302 next_opindex = 0;
1305 while (*str == ' ' || *str == ',')
1306 ++str;
1308 if (operand->flags & MN10300_OPERAND_RELAX)
1309 relaxable = 1;
1311 /* Gather the operand. */
1312 hold = input_line_pointer;
1313 input_line_pointer = str;
1315 if (operand->flags & MN10300_OPERAND_PAREN)
1317 if (*input_line_pointer != ')' && *input_line_pointer != '(')
1319 input_line_pointer = hold;
1320 str = hold;
1321 goto error;
1323 input_line_pointer++;
1324 goto keep_going;
1326 /* See if we can match the operands. */
1327 else if (operand->flags & MN10300_OPERAND_DREG)
1329 if (!data_register_name (&ex))
1331 input_line_pointer = hold;
1332 str = hold;
1333 goto error;
1336 else if (operand->flags & MN10300_OPERAND_AREG)
1338 if (!address_register_name (&ex))
1340 input_line_pointer = hold;
1341 str = hold;
1342 goto error;
1345 else if (operand->flags & MN10300_OPERAND_SP)
1347 char *start = input_line_pointer;
1348 char c = get_symbol_end ();
1350 if (strcasecmp (start, "sp") != 0)
1352 *input_line_pointer = c;
1353 input_line_pointer = hold;
1354 str = hold;
1355 goto error;
1357 *input_line_pointer = c;
1358 goto keep_going;
1360 else if (operand->flags & MN10300_OPERAND_RREG)
1362 if (!r_register_name (&ex))
1364 input_line_pointer = hold;
1365 str = hold;
1366 goto error;
1369 else if (operand->flags & MN10300_OPERAND_XRREG)
1371 if (!xr_register_name (&ex))
1373 input_line_pointer = hold;
1374 str = hold;
1375 goto error;
1378 else if (operand->flags & MN10300_OPERAND_FSREG)
1380 if (!float_register_name (&ex))
1382 input_line_pointer = hold;
1383 str = hold;
1384 goto error;
1387 else if (operand->flags & MN10300_OPERAND_FDREG)
1389 if (!double_register_name (&ex))
1391 input_line_pointer = hold;
1392 str = hold;
1393 goto error;
1396 else if (operand->flags & MN10300_OPERAND_FPCR)
1398 char *start = input_line_pointer;
1399 char c = get_symbol_end ();
1401 if (strcasecmp (start, "fpcr") != 0)
1403 *input_line_pointer = c;
1404 input_line_pointer = hold;
1405 str = hold;
1406 goto error;
1408 *input_line_pointer = c;
1409 goto keep_going;
1411 else if (operand->flags & MN10300_OPERAND_USP)
1413 char *start = input_line_pointer;
1414 char c = get_symbol_end ();
1416 if (strcasecmp (start, "usp") != 0)
1418 *input_line_pointer = c;
1419 input_line_pointer = hold;
1420 str = hold;
1421 goto error;
1423 *input_line_pointer = c;
1424 goto keep_going;
1426 else if (operand->flags & MN10300_OPERAND_SSP)
1428 char *start = input_line_pointer;
1429 char c = get_symbol_end ();
1431 if (strcasecmp (start, "ssp") != 0)
1433 *input_line_pointer = c;
1434 input_line_pointer = hold;
1435 str = hold;
1436 goto error;
1438 *input_line_pointer = c;
1439 goto keep_going;
1441 else if (operand->flags & MN10300_OPERAND_MSP)
1443 char *start = input_line_pointer;
1444 char c = get_symbol_end ();
1446 if (strcasecmp (start, "msp") != 0)
1448 *input_line_pointer = c;
1449 input_line_pointer = hold;
1450 str = hold;
1451 goto error;
1453 *input_line_pointer = c;
1454 goto keep_going;
1456 else if (operand->flags & MN10300_OPERAND_PC)
1458 char *start = input_line_pointer;
1459 char c = get_symbol_end ();
1461 if (strcasecmp (start, "pc") != 0)
1463 *input_line_pointer = c;
1464 input_line_pointer = hold;
1465 str = hold;
1466 goto error;
1468 *input_line_pointer = c;
1469 goto keep_going;
1471 else if (operand->flags & MN10300_OPERAND_EPSW)
1473 char *start = input_line_pointer;
1474 char c = get_symbol_end ();
1476 if (strcasecmp (start, "epsw") != 0)
1478 *input_line_pointer = c;
1479 input_line_pointer = hold;
1480 str = hold;
1481 goto error;
1483 *input_line_pointer = c;
1484 goto keep_going;
1486 else if (operand->flags & MN10300_OPERAND_PLUS)
1488 if (*input_line_pointer != '+')
1490 input_line_pointer = hold;
1491 str = hold;
1492 goto error;
1494 input_line_pointer++;
1495 goto keep_going;
1497 else if (operand->flags & MN10300_OPERAND_PSW)
1499 char *start = input_line_pointer;
1500 char c = get_symbol_end ();
1502 if (strcasecmp (start, "psw") != 0)
1504 *input_line_pointer = c;
1505 input_line_pointer = hold;
1506 str = hold;
1507 goto error;
1509 *input_line_pointer = c;
1510 goto keep_going;
1512 else if (operand->flags & MN10300_OPERAND_MDR)
1514 char *start = input_line_pointer;
1515 char c = get_symbol_end ();
1517 if (strcasecmp (start, "mdr") != 0)
1519 *input_line_pointer = c;
1520 input_line_pointer = hold;
1521 str = hold;
1522 goto error;
1524 *input_line_pointer = c;
1525 goto keep_going;
1527 else if (operand->flags & MN10300_OPERAND_REG_LIST)
1529 unsigned int value = 0;
1530 if (*input_line_pointer != '[')
1532 input_line_pointer = hold;
1533 str = hold;
1534 goto error;
1537 /* Eat the '['. */
1538 input_line_pointer++;
1540 /* We used to reject a null register list here; however,
1541 we accept it now so the compiler can emit "call"
1542 instructions for all calls to named functions.
1544 The linker can then fill in the appropriate bits for the
1545 register list and stack size or change the instruction
1546 into a "calls" if using "call" is not profitable. */
1547 while (*input_line_pointer != ']')
1549 char *start;
1550 char c;
1552 if (*input_line_pointer == ',')
1553 input_line_pointer++;
1555 start = input_line_pointer;
1556 c = get_symbol_end ();
1558 if (strcasecmp (start, "d2") == 0)
1560 value |= 0x80;
1561 *input_line_pointer = c;
1563 else if (strcasecmp (start, "d3") == 0)
1565 value |= 0x40;
1566 *input_line_pointer = c;
1568 else if (strcasecmp (start, "a2") == 0)
1570 value |= 0x20;
1571 *input_line_pointer = c;
1573 else if (strcasecmp (start, "a3") == 0)
1575 value |= 0x10;
1576 *input_line_pointer = c;
1578 else if (strcasecmp (start, "other") == 0)
1580 value |= 0x08;
1581 *input_line_pointer = c;
1583 else if (HAVE_AM33
1584 && strcasecmp (start, "exreg0") == 0)
1586 value |= 0x04;
1587 *input_line_pointer = c;
1589 else if (HAVE_AM33
1590 && strcasecmp (start, "exreg1") == 0)
1592 value |= 0x02;
1593 *input_line_pointer = c;
1595 else if (HAVE_AM33
1596 && strcasecmp (start, "exother") == 0)
1598 value |= 0x01;
1599 *input_line_pointer = c;
1601 else if (HAVE_AM33
1602 && strcasecmp (start, "all") == 0)
1604 value |= 0xff;
1605 *input_line_pointer = c;
1607 else
1609 input_line_pointer = hold;
1610 str = hold;
1611 goto error;
1614 input_line_pointer++;
1615 mn10300_insert_operand (& insn, & extension, operand,
1616 value, NULL, 0, 0);
1617 goto keep_going;
1620 else if (data_register_name (&ex))
1622 input_line_pointer = hold;
1623 str = hold;
1624 goto error;
1626 else if (address_register_name (&ex))
1628 input_line_pointer = hold;
1629 str = hold;
1630 goto error;
1632 else if (other_register_name (&ex))
1634 input_line_pointer = hold;
1635 str = hold;
1636 goto error;
1638 else if (HAVE_AM33 && r_register_name (&ex))
1640 input_line_pointer = hold;
1641 str = hold;
1642 goto error;
1644 else if (HAVE_AM33 && xr_register_name (&ex))
1646 input_line_pointer = hold;
1647 str = hold;
1648 goto error;
1650 else if (HAVE_AM33_2 && float_register_name (&ex))
1652 input_line_pointer = hold;
1653 str = hold;
1654 goto error;
1656 else if (HAVE_AM33_2 && double_register_name (&ex))
1658 input_line_pointer = hold;
1659 str = hold;
1660 goto error;
1662 else if (*str == ')' || *str == '(')
1664 input_line_pointer = hold;
1665 str = hold;
1666 goto error;
1668 else
1670 expression (&ex);
1673 switch (ex.X_op)
1675 case O_illegal:
1676 errmsg = _("illegal operand");
1677 goto error;
1678 case O_absent:
1679 errmsg = _("missing operand");
1680 goto error;
1681 case O_register:
1683 int mask;
1685 mask = MN10300_OPERAND_DREG | MN10300_OPERAND_AREG;
1686 if (HAVE_AM33)
1687 mask |= MN10300_OPERAND_RREG | MN10300_OPERAND_XRREG;
1688 if (HAVE_AM33_2)
1689 mask |= MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG;
1690 if ((operand->flags & mask) == 0)
1692 input_line_pointer = hold;
1693 str = hold;
1694 goto error;
1697 if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
1698 extra_shift = 8;
1699 else if (opcode->format == FMT_D2
1700 || opcode->format == FMT_D4
1701 || opcode->format == FMT_S2
1702 || opcode->format == FMT_S4
1703 || opcode->format == FMT_S6
1704 || opcode->format == FMT_D5)
1705 extra_shift = 16;
1706 else if (opcode->format == FMT_D7)
1707 extra_shift = 8;
1708 else if (opcode->format == FMT_D8 || opcode->format == FMT_D9)
1709 extra_shift = 8;
1710 else
1711 extra_shift = 0;
1713 mn10300_insert_operand (& insn, & extension, operand,
1714 ex.X_add_number, NULL,
1715 0, extra_shift);
1717 /* And note the register number in the register array. */
1718 mn10300_reg_operands[op_idx - 1] = ex.X_add_number;
1719 break;
1722 case O_constant:
1723 /* If this operand can be promoted, and it doesn't
1724 fit into the allocated bitfield for this insn,
1725 then promote it (ie this opcode does not match). */
1726 if (operand->flags
1727 & (MN10300_OPERAND_PROMOTE | MN10300_OPERAND_RELAX)
1728 && !check_operand (operand, ex.X_add_number))
1730 input_line_pointer = hold;
1731 str = hold;
1732 goto error;
1735 mn10300_insert_operand (& insn, & extension, operand,
1736 ex.X_add_number, NULL, 0, 0);
1737 break;
1739 default:
1740 /* If this operand can be promoted, then this opcode didn't
1741 match since we can't know if it needed promotion! */
1742 if (operand->flags & MN10300_OPERAND_PROMOTE)
1744 input_line_pointer = hold;
1745 str = hold;
1746 goto error;
1749 /* We need to generate a fixup for this expression. */
1750 if (fc >= MAX_INSN_FIXUPS)
1751 as_fatal (_("too many fixups"));
1752 fixups[fc].exp = ex;
1753 fixups[fc].opindex = *opindex_ptr;
1754 fixups[fc].reloc = BFD_RELOC_UNUSED;
1755 if (mn10300_check_fixup (& fixups[fc]))
1756 goto error;
1757 ++fc;
1758 break;
1761 keep_going:
1762 str = input_line_pointer;
1763 input_line_pointer = hold;
1765 while (*str == ' ' || *str == ',')
1766 ++str;
1769 /* Make sure we used all the operands! */
1770 if (*str != ',')
1771 match = 1;
1773 /* If this instruction has registers that must not match, verify
1774 that they do indeed not match. */
1775 if (opcode->no_match_operands)
1777 /* Look at each operand to see if it's marked. */
1778 for (i = 0; i < MN10300_MAX_OPERANDS; i++)
1780 if ((1 << i) & opcode->no_match_operands)
1782 int j;
1784 /* operand I is marked. Check that it does not match any
1785 operands > I which are marked. */
1786 for (j = i + 1; j < MN10300_MAX_OPERANDS; j++)
1788 if (((1 << j) & opcode->no_match_operands)
1789 && mn10300_reg_operands[i] == mn10300_reg_operands[j])
1791 errmsg = _("Invalid register specification.");
1792 match = 0;
1793 goto error;
1800 error:
1801 if (match == 0)
1803 next_opcode = opcode + 1;
1804 if (!strcmp (next_opcode->name, opcode->name))
1806 opcode = next_opcode;
1807 continue;
1810 as_bad ("%s", errmsg);
1811 return;
1813 break;
1816 while (ISSPACE (*str))
1817 ++str;
1819 if (*str != '\0')
1820 as_bad (_("junk at end of line: `%s'"), str);
1822 input_line_pointer = str;
1824 /* Determine the size of the instruction. */
1825 if (opcode->format == FMT_S0)
1826 size = 1;
1828 if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
1829 size = 2;
1831 if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
1832 size = 3;
1834 if (opcode->format == FMT_D6)
1835 size = 3;
1837 if (opcode->format == FMT_D7 || opcode->format == FMT_D10)
1838 size = 4;
1840 if (opcode->format == FMT_D8)
1841 size = 6;
1843 if (opcode->format == FMT_D9)
1844 size = 7;
1846 if (opcode->format == FMT_S4)
1847 size = 5;
1849 if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
1850 size = 7;
1852 if (opcode->format == FMT_D2)
1853 size = 4;
1855 if (opcode->format == FMT_D3)
1856 size = 5;
1858 if (opcode->format == FMT_D4)
1859 size = 6;
1861 if (relaxable && fc > 0)
1863 /* On a 64-bit host the size of an 'int' is not the same
1864 as the size of a pointer, so we need a union to convert
1865 the opindex field of the fr_cgen structure into a char *
1866 so that it can be stored in the frag. We do not have
1867 to worry about loosing accuracy as we are not going to
1868 be even close to the 32bit limit of the int. */
1869 union
1871 int opindex;
1872 char * ptr;
1874 opindex_converter;
1875 int type;
1877 /* We want to anchor the line info to the previous frag (if
1878 there isn't one, create it), so that, when the insn is
1879 resized, we still get the right address for the beginning of
1880 the region. */
1881 f = frag_more (0);
1882 dwarf2_emit_insn (0);
1884 /* bCC */
1885 if (size == 2)
1887 /* Handle bra specially. Basically treat it like jmp so
1888 that we automatically handle 8, 16 and 32 bit offsets
1889 correctly as well as jumps to an undefined address.
1891 It is also important to not treat it like other bCC
1892 instructions since the long forms of bra is different
1893 from other bCC instructions. */
1894 if (opcode->opcode == 0xca00)
1895 type = 10;
1896 else
1897 type = 0;
1899 /* call */
1900 else if (size == 5)
1901 type = 6;
1902 /* calls */
1903 else if (size == 4)
1904 type = 8;
1905 /* jmp */
1906 else if (size == 3 && opcode->opcode == 0xcc0000)
1907 type = 10;
1908 else if (size == 3 && (opcode->opcode & 0xfff000) == 0xf8d000)
1909 type = 13;
1910 /* bCC (uncommon cases) */
1911 else
1912 type = 3;
1914 opindex_converter.opindex = fixups[0].opindex;
1915 f = frag_var (rs_machine_dependent, 8, 8 - size, type,
1916 fixups[0].exp.X_add_symbol,
1917 fixups[0].exp.X_add_number,
1918 opindex_converter.ptr);
1920 /* This is pretty hokey. We basically just care about the
1921 opcode, so we have to write out the first word big endian.
1923 The exception is "call", which has two operands that we
1924 care about.
1926 The first operand (the register list) happens to be in the
1927 first instruction word, and will be in the right place if
1928 we output the first word in big endian mode.
1930 The second operand (stack size) is in the extension word,
1931 and we want it to appear as the first character in the extension
1932 word (as it appears in memory). Luckily, writing the extension
1933 word in big endian format will do what we want. */
1934 number_to_chars_bigendian (f, insn, size > 4 ? 4 : size);
1935 if (size > 8)
1937 number_to_chars_bigendian (f + 4, extension, 4);
1938 number_to_chars_bigendian (f + 8, 0, size - 8);
1940 else if (size > 4)
1941 number_to_chars_bigendian (f + 4, extension, size - 4);
1943 else
1945 /* Allocate space for the instruction. */
1946 f = frag_more (size);
1948 /* Fill in bytes for the instruction. Note that opcode fields
1949 are written big-endian, 16 & 32bit immediates are written
1950 little endian. Egad. */
1951 if (opcode->format == FMT_S0
1952 || opcode->format == FMT_S1
1953 || opcode->format == FMT_D0
1954 || opcode->format == FMT_D6
1955 || opcode->format == FMT_D7
1956 || opcode->format == FMT_D10
1957 || opcode->format == FMT_D1)
1959 number_to_chars_bigendian (f, insn, size);
1961 else if (opcode->format == FMT_S2
1962 && opcode->opcode != 0xdf0000
1963 && opcode->opcode != 0xde0000)
1965 /* A format S2 instruction that is _not_ "ret" and "retf". */
1966 number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
1967 number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
1969 else if (opcode->format == FMT_S2)
1971 /* This must be a ret or retf, which is written entirely in
1972 big-endian format. */
1973 number_to_chars_bigendian (f, insn, 3);
1975 else if (opcode->format == FMT_S4
1976 && opcode->opcode != 0xdc000000)
1978 /* This must be a format S4 "call" instruction. What a pain. */
1979 unsigned long temp = (insn >> 8) & 0xffff;
1980 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1981 number_to_chars_littleendian (f + 1, temp, 2);
1982 number_to_chars_bigendian (f + 3, insn & 0xff, 1);
1983 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
1985 else if (opcode->format == FMT_S4)
1987 /* This must be a format S4 "jmp" instruction. */
1988 unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
1989 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1990 number_to_chars_littleendian (f + 1, temp, 4);
1992 else if (opcode->format == FMT_S6)
1994 unsigned long temp = ((insn & 0xffffff) << 8)
1995 | ((extension >> 16) & 0xff);
1996 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1997 number_to_chars_littleendian (f + 1, temp, 4);
1998 number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
1999 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2001 else if (opcode->format == FMT_D2
2002 && opcode->opcode != 0xfaf80000
2003 && opcode->opcode != 0xfaf00000
2004 && opcode->opcode != 0xfaf40000)
2006 /* A format D2 instruction where the 16bit immediate is
2007 really a single 16bit value, not two 8bit values. */
2008 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2009 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2011 else if (opcode->format == FMT_D2)
2013 /* A format D2 instruction where the 16bit immediate
2014 is really two 8bit immediates. */
2015 number_to_chars_bigendian (f, insn, 4);
2017 else if (opcode->format == FMT_D3)
2019 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2020 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2021 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
2023 else if (opcode->format == FMT_D4)
2025 unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
2027 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2028 number_to_chars_littleendian (f + 2, temp, 4);
2030 else if (opcode->format == FMT_D5)
2032 unsigned long temp = (((insn & 0xffff) << 16)
2033 | ((extension >> 8) & 0xffff));
2035 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2036 number_to_chars_littleendian (f + 2, temp, 4);
2037 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2039 else if (opcode->format == FMT_D8)
2041 unsigned long temp = ((insn & 0xff) << 16) | (extension & 0xffff);
2043 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2044 number_to_chars_bigendian (f + 3, (temp & 0xff), 1);
2045 number_to_chars_littleendian (f + 4, temp >> 8, 2);
2047 else if (opcode->format == FMT_D9)
2049 unsigned long temp = ((insn & 0xff) << 24) | (extension & 0xffffff);
2051 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2052 number_to_chars_littleendian (f + 3, temp, 4);
2055 /* Create any fixups. */
2056 for (i = 0; i < fc; i++)
2058 const struct mn10300_operand *operand;
2059 int reloc_size;
2061 operand = &mn10300_operands[fixups[i].opindex];
2062 if (fixups[i].reloc != BFD_RELOC_UNUSED
2063 && fixups[i].reloc != BFD_RELOC_32_GOT_PCREL
2064 && fixups[i].reloc != BFD_RELOC_32_GOTOFF
2065 && fixups[i].reloc != BFD_RELOC_32_PLT_PCREL
2066 && fixups[i].reloc != BFD_RELOC_MN10300_GOT32)
2068 reloc_howto_type *reloc_howto;
2069 int offset;
2071 reloc_howto = bfd_reloc_type_lookup (stdoutput,
2072 fixups[i].reloc);
2074 if (!reloc_howto)
2075 abort ();
2077 reloc_size = bfd_get_reloc_size (reloc_howto);
2079 if (reloc_size < 1 || reloc_size > 4)
2080 abort ();
2082 offset = 4 - size;
2083 fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2084 reloc_size, &fixups[i].exp,
2085 reloc_howto->pc_relative,
2086 fixups[i].reloc);
2088 else
2090 int reloc, pcrel, offset;
2091 fixS *fixP;
2093 reloc = BFD_RELOC_NONE;
2094 if (fixups[i].reloc != BFD_RELOC_UNUSED)
2095 reloc = fixups[i].reloc;
2096 /* How big is the reloc? Remember SPLIT relocs are
2097 implicitly 32bits. */
2098 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2099 reloc_size = 32;
2100 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2101 reloc_size = 24;
2102 else
2103 reloc_size = operand->bits;
2105 /* Is the reloc pc-relative? */
2106 pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
2107 if (reloc != BFD_RELOC_NONE)
2108 pcrel = bfd_reloc_type_lookup (stdoutput, reloc)->pc_relative;
2110 offset = size - (reloc_size + operand->shift) / 8;
2112 /* Choose a proper BFD relocation type. */
2113 if (reloc != BFD_RELOC_NONE)
2115 else if (pcrel)
2117 if (reloc_size == 32)
2118 reloc = BFD_RELOC_32_PCREL;
2119 else if (reloc_size == 16)
2120 reloc = BFD_RELOC_16_PCREL;
2121 else if (reloc_size == 8)
2122 reloc = BFD_RELOC_8_PCREL;
2123 else
2124 abort ();
2126 else
2128 if (reloc_size == 32)
2129 reloc = BFD_RELOC_32;
2130 else if (reloc_size == 16)
2131 reloc = BFD_RELOC_16;
2132 else if (reloc_size == 8)
2133 reloc = BFD_RELOC_8;
2134 else
2135 abort ();
2138 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2139 reloc_size / 8, &fixups[i].exp, pcrel,
2140 ((bfd_reloc_code_real_type) reloc));
2142 if (pcrel)
2143 fixP->fx_offset += offset;
2147 dwarf2_emit_insn (size);
2150 /* Label this frag as one that contains instructions. */
2151 frag_now->tc_frag_data = TRUE;
2154 /* If while processing a fixup, a reloc really needs to be created
2155 then it is done here. */
2157 arelent **
2158 tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
2160 static arelent * no_relocs = NULL;
2161 static arelent * relocs[MAX_RELOC_EXPANSION + 1];
2162 arelent *reloc;
2164 reloc = xmalloc (sizeof (arelent));
2166 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2167 if (reloc->howto == NULL)
2169 as_bad_where (fixp->fx_file, fixp->fx_line,
2170 _("reloc %d not supported by object file format"),
2171 (int) fixp->fx_r_type);
2172 free (reloc);
2173 return & no_relocs;
2176 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2177 relocs[0] = reloc;
2178 relocs[1] = NULL;
2180 if (fixp->fx_subsy
2181 && S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
2183 fixp->fx_offset -= S_GET_VALUE (fixp->fx_subsy);
2184 fixp->fx_subsy = NULL;
2187 if (fixp->fx_addsy && fixp->fx_subsy)
2189 asection *asec, *ssec;
2191 asec = S_GET_SEGMENT (fixp->fx_addsy);
2192 ssec = S_GET_SEGMENT (fixp->fx_subsy);
2194 reloc->sym_ptr_ptr = NULL;
2196 /* If we have a difference between two (non-absolute) symbols we must
2197 generate two relocs (one for each symbol) and allow the linker to
2198 resolve them - relaxation may change the distances between symbols,
2199 even local symbols defined in the same section. */
2200 if (ssec != absolute_section || asec != absolute_section)
2202 arelent * reloc2 = xmalloc (sizeof * reloc);
2204 relocs[0] = reloc2;
2205 relocs[1] = reloc;
2207 reloc2->address = reloc->address;
2208 reloc2->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_MN10300_SYM_DIFF);
2209 reloc2->addend = - S_GET_VALUE (fixp->fx_subsy);
2210 reloc2->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2211 *reloc2->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_subsy);
2213 reloc->addend = fixp->fx_offset;
2214 if (asec == absolute_section)
2215 reloc->addend += S_GET_VALUE (fixp->fx_addsy);
2217 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2218 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2220 fixp->fx_pcrel = 0;
2221 fixp->fx_done = 1;
2222 return relocs;
2224 else
2226 char *fixpos = fixp->fx_where + fixp->fx_frag->fr_literal;
2228 reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
2229 - S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
2231 switch (fixp->fx_r_type)
2233 case BFD_RELOC_8:
2234 md_number_to_chars (fixpos, reloc->addend, 1);
2235 break;
2237 case BFD_RELOC_16:
2238 md_number_to_chars (fixpos, reloc->addend, 2);
2239 break;
2241 case BFD_RELOC_24:
2242 md_number_to_chars (fixpos, reloc->addend, 3);
2243 break;
2245 case BFD_RELOC_32:
2246 md_number_to_chars (fixpos, reloc->addend, 4);
2247 break;
2249 default:
2250 reloc->sym_ptr_ptr
2251 = (asymbol **) bfd_abs_section_ptr->symbol_ptr_ptr;
2252 return relocs;
2255 if (reloc->sym_ptr_ptr)
2256 free (reloc->sym_ptr_ptr);
2257 free (reloc);
2258 return & no_relocs;
2261 else
2263 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2264 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2265 reloc->addend = fixp->fx_offset;
2267 return relocs;
2270 /* Returns true iff the symbol attached to the frag is at a known location
2271 in the given section, (and hence the relocation to it can be relaxed by
2272 the assembler). */
2273 static inline bfd_boolean
2274 has_known_symbol_location (fragS * fragp, asection * sec)
2276 symbolS * sym = fragp->fr_symbol;
2278 return sym != NULL
2279 && S_IS_DEFINED (sym)
2280 && ! S_IS_WEAK (sym)
2281 && S_GET_SEGMENT (sym) == sec;
2285 md_estimate_size_before_relax (fragS *fragp, asection *seg)
2287 if (fragp->fr_subtype == 6
2288 && ! has_known_symbol_location (fragp, seg))
2289 fragp->fr_subtype = 7;
2290 else if (fragp->fr_subtype == 8
2291 && ! has_known_symbol_location (fragp, seg))
2292 fragp->fr_subtype = 9;
2293 else if (fragp->fr_subtype == 10
2294 && ! has_known_symbol_location (fragp, seg))
2295 fragp->fr_subtype = 12;
2297 if (fragp->fr_subtype == 13)
2298 return 3;
2300 if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2301 abort ();
2303 return md_relax_table[fragp->fr_subtype].rlx_length;
2306 long
2307 md_pcrel_from (fixS *fixp)
2309 if (fixp->fx_addsy != (symbolS *) NULL
2310 && (!S_IS_DEFINED (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
2311 /* The symbol is undefined or weak. Let the linker figure it out. */
2312 return 0;
2314 return fixp->fx_frag->fr_address + fixp->fx_where;
2317 void
2318 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
2320 char * fixpos = fixP->fx_where + fixP->fx_frag->fr_literal;
2321 int size = 0;
2322 int value = (int) * valP;
2324 gas_assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
2326 /* This should never happen. */
2327 if (seg->flags & SEC_ALLOC)
2328 abort ();
2330 /* The value we are passed in *valuep includes the symbol values.
2331 If we are doing this relocation the code in write.c is going to
2332 call bfd_install_relocation, which is also going to use the symbol
2333 value. That means that if the reloc is fully resolved we want to
2334 use *valuep since bfd_install_relocation is not being used.
2336 However, if the reloc is not fully resolved we do not want to use
2337 *valuep, and must use fx_offset instead. However, if the reloc
2338 is PC relative, we do want to use *valuep since it includes the
2339 result of md_pcrel_from. */
2340 if (fixP->fx_addsy != NULL && ! fixP->fx_pcrel)
2341 value = fixP->fx_offset;
2343 /* If the fix is relative to a symbol which is not defined, or not
2344 in the same segment as the fix, we cannot resolve it here. */
2345 if (fixP->fx_addsy != NULL
2346 && (! S_IS_DEFINED (fixP->fx_addsy)
2347 || (S_GET_SEGMENT (fixP->fx_addsy) != seg)))
2349 fixP->fx_done = 0;
2350 return;
2353 switch (fixP->fx_r_type)
2355 case BFD_RELOC_8:
2356 case BFD_RELOC_8_PCREL:
2357 size = 1;
2358 break;
2360 case BFD_RELOC_16:
2361 case BFD_RELOC_16_PCREL:
2362 size = 2;
2363 break;
2365 case BFD_RELOC_32:
2366 case BFD_RELOC_32_PCREL:
2367 size = 4;
2368 break;
2370 case BFD_RELOC_VTABLE_INHERIT:
2371 case BFD_RELOC_VTABLE_ENTRY:
2372 fixP->fx_done = 0;
2373 return;
2375 case BFD_RELOC_MN10300_ALIGN:
2376 fixP->fx_done = 1;
2377 return;
2379 case BFD_RELOC_NONE:
2380 default:
2381 as_bad_where (fixP->fx_file, fixP->fx_line,
2382 _("Bad relocation fixup type (%d)"), fixP->fx_r_type);
2385 md_number_to_chars (fixpos, value, size);
2387 /* If a symbol remains, pass the fixup, as a reloc, onto the linker. */
2388 if (fixP->fx_addsy == NULL)
2389 fixP->fx_done = 1;
2392 /* Return zero if the fixup in fixp should be left alone and not
2393 adjusted. */
2395 bfd_boolean
2396 mn10300_fix_adjustable (struct fix *fixp)
2398 if (fixp->fx_pcrel)
2400 if (TC_FORCE_RELOCATION_LOCAL (fixp))
2401 return FALSE;
2403 /* Non-relative relocs can (and must) be adjusted if they do
2404 not meet the criteria below, or the generic criteria. */
2405 else if (TC_FORCE_RELOCATION (fixp))
2406 return FALSE;
2408 /* Do not adjust relocations involving symbols in code sections,
2409 because it breaks linker relaxations. This could be fixed in the
2410 linker, but this fix is simpler, and it pretty much only affects
2411 object size a little bit. */
2412 if (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
2413 return FALSE;
2415 /* Likewise, do not adjust symbols that won't be merged, or debug
2416 symbols, because they too break relaxation. We do want to adjust
2417 other mergable symbols, like .rodata, because code relaxations
2418 need section-relative symbols to properly relax them. */
2419 if (! (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE))
2420 return FALSE;
2422 if (strncmp (S_GET_SEGMENT (fixp->fx_addsy)->name, ".debug", 6) == 0)
2423 return FALSE;
2425 return TRUE;
2428 static void
2429 set_arch_mach (int mach)
2431 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, mach))
2432 as_warn (_("could not set architecture and machine"));
2434 current_machine = mach;
2437 static inline char *
2438 mn10300_end_of_match (char *cont, char *what)
2440 int len = strlen (what);
2442 if (strncmp (cont, what, strlen (what)) == 0
2443 && ! is_part_of_name (cont[len]))
2444 return cont + len;
2446 return NULL;
2450 mn10300_parse_name (char const *name,
2451 expressionS *exprP,
2452 enum expr_mode mode,
2453 char *nextcharP)
2455 char *next = input_line_pointer;
2456 char *next_end;
2457 int reloc_type;
2458 segT segment;
2460 exprP->X_op_symbol = NULL;
2462 if (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2464 if (! GOT_symbol)
2465 GOT_symbol = symbol_find_or_make (name);
2467 exprP->X_add_symbol = GOT_symbol;
2468 no_suffix:
2469 /* If we have an absolute symbol or a reg,
2470 then we know its value now. */
2471 segment = S_GET_SEGMENT (exprP->X_add_symbol);
2472 if (mode != expr_defer && segment == absolute_section)
2474 exprP->X_op = O_constant;
2475 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2476 exprP->X_add_symbol = NULL;
2478 else if (mode != expr_defer && segment == reg_section)
2480 exprP->X_op = O_register;
2481 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2482 exprP->X_add_symbol = NULL;
2484 else
2486 exprP->X_op = O_symbol;
2487 exprP->X_add_number = 0;
2490 return 1;
2493 exprP->X_add_symbol = symbol_find_or_make (name);
2495 if (*nextcharP != '@')
2496 goto no_suffix;
2497 else if ((next_end = mn10300_end_of_match (next + 1, "GOTOFF")))
2498 reloc_type = BFD_RELOC_32_GOTOFF;
2499 else if ((next_end = mn10300_end_of_match (next + 1, "GOT")))
2500 reloc_type = BFD_RELOC_MN10300_GOT32;
2501 else if ((next_end = mn10300_end_of_match (next + 1, "PLT")))
2502 reloc_type = BFD_RELOC_32_PLT_PCREL;
2503 else
2504 goto no_suffix;
2506 *input_line_pointer = *nextcharP;
2507 input_line_pointer = next_end;
2508 *nextcharP = *input_line_pointer;
2509 *input_line_pointer = '\0';
2511 exprP->X_op = O_PIC_reloc;
2512 exprP->X_add_number = 0;
2513 exprP->X_md = reloc_type;
2515 return 1;
2518 /* The target specific pseudo-ops which we support. */
2519 const pseudo_typeS md_pseudo_table[] =
2521 { "am30", set_arch_mach, AM30 },
2522 { "am33", set_arch_mach, AM33 },
2523 { "am33_2", set_arch_mach, AM33_2 },
2524 { "mn10300", set_arch_mach, MN103 },
2525 {NULL, 0, 0}
2528 /* Returns FALSE if there is some mn10300 specific reason why the
2529 subtraction of two same-section symbols cannot be computed by
2530 the assembler. */
2532 bfd_boolean
2533 mn10300_allow_local_subtract (expressionS * left, expressionS * right, segT section)
2535 bfd_boolean result;
2536 fragS * left_frag;
2537 fragS * right_frag;
2538 fragS * frag;
2540 /* If we are not performing linker relaxation then we have nothing
2541 to worry about. */
2542 if (linkrelax == 0)
2543 return TRUE;
2545 /* If the symbols are not in a code section then they are OK. */
2546 if ((section->flags & SEC_CODE) == 0)
2547 return TRUE;
2549 /* Otherwise we have to scan the fragments between the two symbols.
2550 If any instructions are found then we have to assume that linker
2551 relaxation may change their size and so we must delay resolving
2552 the subtraction until the final link. */
2553 left_frag = symbol_get_frag (left->X_add_symbol);
2554 right_frag = symbol_get_frag (right->X_add_symbol);
2556 if (left_frag == right_frag)
2557 return ! left_frag->tc_frag_data;
2559 result = TRUE;
2560 for (frag = left_frag; frag != NULL; frag = frag->fr_next)
2562 if (frag->tc_frag_data)
2563 result = FALSE;
2564 if (frag == right_frag)
2565 break;
2568 if (frag == NULL)
2569 for (frag = right_frag; frag != NULL; frag = frag->fr_next)
2571 if (frag->tc_frag_data)
2572 result = FALSE;
2573 if (frag == left_frag)
2574 break;
2577 if (frag == NULL)
2578 /* The two symbols are on disjoint fragment chains
2579 - we cannot possibly compute their difference. */
2580 return FALSE;
2582 return result;
2585 /* When relaxing, we need to output a reloc for any .align directive
2586 that requests alignment to a two byte boundary or larger. */
2588 void
2589 mn10300_handle_align (fragS *frag)
2591 if (linkrelax
2592 && (frag->fr_type == rs_align
2593 || frag->fr_type == rs_align_code)
2594 && frag->fr_address + frag->fr_fix > 0
2595 && frag->fr_offset > 1
2596 && now_seg != bss_section
2597 /* Do not create relocs for the merging sections - such
2598 relocs will prevent the contents from being merged. */
2599 && (bfd_get_section_flags (now_seg->owner, now_seg) & SEC_MERGE) == 0)
2600 /* Create a new fixup to record the alignment request. The symbol is
2601 irrelevent but must be present so we use the absolute section symbol.
2602 The offset from the symbol is used to record the power-of-two alignment
2603 value. The size is set to 0 because the frag may already be aligned,
2604 thus causing cvt_frag_to_fill to reduce the size of the frag to zero. */
2605 fix_new (frag, frag->fr_fix, 0, & abs_symbol, frag->fr_offset, FALSE,
2606 BFD_RELOC_MN10300_ALIGN);
2609 bfd_boolean
2610 mn10300_force_relocation (struct fix * fixp)
2612 if (linkrelax
2613 && (fixp->fx_pcrel
2614 || fixp->fx_r_type == BFD_RELOC_MN10300_ALIGN))
2615 return TRUE;
2617 return generic_force_reloc (fixp);