PR gas/11507
[binutils.git] / bfd / elf32-arm.c
blob2ebbb791bae36acec427b8a2ad1d818dbd4825b5
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include <limits.h>
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
73 static reloc_howto_type elf32_arm_howto_table_1[] =
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 24, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
264 HOWTO (R_ARM_SWI24, /* type */
265 0, /* rightshift */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
267 0, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_signed,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1355 EMPTY_HOWTO (90), /* Unallocated. */
1356 EMPTY_HOWTO (91),
1357 EMPTY_HOWTO (92),
1358 EMPTY_HOWTO (93),
1360 HOWTO (R_ARM_PLT32_ABS, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont,/* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1374 HOWTO (R_ARM_GOT_ABS, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 32, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1388 HOWTO (R_ARM_GOT_PREL, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 32, /* bitsize */
1392 TRUE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE), /* pcrel_offset */
1402 HOWTO (R_ARM_GOT_BREL12, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 12, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_bitfield,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1416 HOWTO (R_ARM_GOTOFF12, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 12, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_bitfield,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1430 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1434 0, /* rightshift */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
1436 0, /* bitsize */
1437 FALSE, /* pc_relative */
1438 0, /* bitpos */
1439 complain_overflow_dont, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE, /* partial_inplace */
1443 0, /* src_mask */
1444 0, /* dst_mask */
1445 FALSE), /* pcrel_offset */
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449 0, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1451 0, /* bitsize */
1452 FALSE, /* pc_relative */
1453 0, /* bitpos */
1454 complain_overflow_dont, /* complain_on_overflow */
1455 NULL, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE, /* partial_inplace */
1458 0, /* src_mask */
1459 0, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1462 HOWTO (R_ARM_THM_JUMP11, /* type */
1463 1, /* rightshift */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1465 11, /* bitsize */
1466 TRUE, /* pc_relative */
1467 0, /* bitpos */
1468 complain_overflow_signed, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE), /* pcrel_offset */
1476 HOWTO (R_ARM_THM_JUMP8, /* type */
1477 1, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 8, /* bitsize */
1480 TRUE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_signed, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE), /* pcrel_offset */
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32, /* type */
1492 0, /* rightshift */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 32, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_bitfield,/* complain_on_overflow */
1498 NULL, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
1500 TRUE, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
1503 FALSE), /* pcrel_offset */
1505 HOWTO (R_ARM_TLS_LDM32, /* type */
1506 0, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 32, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_bitfield,/* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1519 HOWTO (R_ARM_TLS_LDO32, /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 32, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_bitfield,/* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 "R_ARM_TLS_LDO32", /* name */
1528 TRUE, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1533 HOWTO (R_ARM_TLS_IE32, /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 32, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_bitfield,/* complain_on_overflow */
1540 NULL, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1547 HOWTO (R_ARM_TLS_LE32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDO12, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 12, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDO12", /* name */
1570 FALSE, /* partial_inplace */
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LE12, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LE12", /* name */
1584 FALSE, /* partial_inplace */
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE12GP, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 "R_ARM_TLS_IE12GP", /* name */
1598 FALSE, /* partial_inplace */
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1604 /* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
1608 249-255 extended, currently unused, relocations: */
1610 static reloc_howto_type elf32_arm_howto_table_2[4] =
1612 HOWTO (R_ARM_RREL32, /* type */
1613 0, /* rightshift */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1615 0, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1626 HOWTO (R_ARM_RABS32, /* type */
1627 0, /* rightshift */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1640 HOWTO (R_ARM_RPC24, /* type */
1641 0, /* rightshift */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1643 0, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1654 HOWTO (R_ARM_RBASE, /* type */
1655 0, /* rightshift */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1657 0, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_dont,/* complain_on_overflow */
1661 bfd_elf_generic_reloc, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0, /* dst_mask */
1666 FALSE) /* pcrel_offset */
1669 static reloc_howto_type *
1670 elf32_arm_howto_from_type (unsigned int r_type)
1672 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1673 return &elf32_arm_howto_table_1[r_type];
1675 if (r_type >= R_ARM_RREL32
1676 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1677 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1679 return NULL;
1682 static void
1683 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684 Elf_Internal_Rela * elf_reloc)
1686 unsigned int r_type;
1688 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1692 struct elf32_arm_reloc_map
1694 bfd_reloc_code_real_type bfd_reloc_val;
1695 unsigned char elf_reloc_val;
1698 /* All entries in this list must also be present in elf32_arm_howto_table. */
1699 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1701 {BFD_RELOC_NONE, R_ARM_NONE},
1702 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1703 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1704 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1705 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1706 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1707 {BFD_RELOC_32, R_ARM_ABS32},
1708 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1709 {BFD_RELOC_8, R_ARM_ABS8},
1710 {BFD_RELOC_16, R_ARM_ABS16},
1711 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1712 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1719 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1720 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1721 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1722 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1723 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1724 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1725 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1728 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1729 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1730 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1731 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1732 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1733 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1734 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1735 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1736 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1737 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1738 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1739 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1740 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1741 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1742 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1743 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1744 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1745 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1746 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1747 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1749 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1750 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1751 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1753 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1754 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1755 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1756 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1757 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1758 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1759 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1760 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1761 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1762 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1763 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1764 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1765 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1767 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1768 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1769 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1770 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1771 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1772 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1773 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1774 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1775 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1776 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1777 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1778 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1779 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1782 static reloc_howto_type *
1783 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1784 bfd_reloc_code_real_type code)
1786 unsigned int i;
1788 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1789 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1790 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1792 return NULL;
1795 static reloc_howto_type *
1796 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1797 const char *r_name)
1799 unsigned int i;
1801 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1802 if (elf32_arm_howto_table_1[i].name != NULL
1803 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804 return &elf32_arm_howto_table_1[i];
1806 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1807 if (elf32_arm_howto_table_2[i].name != NULL
1808 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1809 return &elf32_arm_howto_table_2[i];
1811 return NULL;
1814 /* Support for core dump NOTE sections. */
1816 static bfd_boolean
1817 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1819 int offset;
1820 size_t size;
1822 switch (note->descsz)
1824 default:
1825 return FALSE;
1827 case 148: /* Linux/ARM 32-bit. */
1828 /* pr_cursig */
1829 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831 /* pr_pid */
1832 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834 /* pr_reg */
1835 offset = 72;
1836 size = 72;
1838 break;
1841 /* Make a ".reg/999" section. */
1842 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843 size, note->descpos + offset);
1846 static bfd_boolean
1847 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1849 switch (note->descsz)
1851 default:
1852 return FALSE;
1854 case 124: /* Linux/ARM elf_prpsinfo. */
1855 elf_tdata (abfd)->core_program
1856 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857 elf_tdata (abfd)->core_command
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1861 /* Note that for some reason, a spurious space is tacked
1862 onto the end of the args in some (at least one anyway)
1863 implementations, so strip it off if it exists. */
1865 char *command = elf_tdata (abfd)->core_command;
1866 int n = strlen (command);
1868 if (0 < n && command[n - 1] == ' ')
1869 command[n - 1] = '\0';
1872 return TRUE;
1875 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1876 #define TARGET_LITTLE_NAME "elf32-littlearm"
1877 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1878 #define TARGET_BIG_NAME "elf32-bigarm"
1880 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1881 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883 typedef unsigned long int insn32;
1884 typedef unsigned short int insn16;
1886 /* In lieu of proper flags, assume all EABIv4 or later objects are
1887 interworkable. */
1888 #define INTERWORK_FLAG(abfd) \
1889 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1890 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1891 || ((abfd)->flags & BFD_LINKER_CREATED))
1893 /* The linker script knows the section names for placement.
1894 The entry_names are used to do simple name mangling on the stubs.
1895 Given a function name, and its type, the stub can be found. The
1896 name can be changed. The only requirement is the %s be present. */
1897 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1907 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1909 #define STUB_ENTRY_NAME "__%s_veneer"
1911 /* The name of the dynamic interpreter. This is put in the .interp
1912 section. */
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1915 #ifdef FOUR_WORD_PLT
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1920 linker first. */
1921 static const bfd_vma elf32_arm_plt0_entry [] =
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1929 /* Subsequent entries in a procedure linkage table look like
1930 this. */
1931 static const bfd_vma elf32_arm_plt_entry [] =
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1939 #else
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1944 linker first. */
1945 static const bfd_vma elf32_arm_plt0_entry [] =
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1954 /* Subsequent entries in a procedure linkage table look like
1955 this. */
1956 static const bfd_vma elf32_arm_plt_entry [] =
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1963 #endif
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2001 0x4778, /* bx pc */
2002 0x46c0 /* nop */
2005 /* The entries in a PLT when using a DLL-based target with multiple
2006 address spaces. */
2007 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2013 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2014 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2015 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2016 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2017 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2018 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2020 enum stub_insn_type
2022 THUMB16_TYPE = 1,
2023 THUMB32_TYPE,
2024 ARM_TYPE,
2025 DATA_TYPE
2028 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2030 is inserted in arm_build_one_stub(). */
2031 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2032 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2033 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2034 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2035 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2036 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2038 typedef struct
2040 bfd_vma data;
2041 enum stub_insn_type type;
2042 unsigned int r_type;
2043 int reloc_addend;
2044 } insn_sequence;
2046 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2047 to reach the stub if necessary. */
2048 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2050 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2051 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2054 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2055 available. */
2056 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2058 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2059 ARM_INSN(0xe12fff1c), /* bx ip */
2060 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2063 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2064 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2066 THUMB16_INSN(0xb401), /* push {r0} */
2067 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2068 THUMB16_INSN(0x4684), /* mov ip, r0 */
2069 THUMB16_INSN(0xbc01), /* pop {r0} */
2070 THUMB16_INSN(0x4760), /* bx ip */
2071 THUMB16_INSN(0xbf00), /* nop */
2072 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2075 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2076 allowed. */
2077 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2079 THUMB16_INSN(0x4778), /* bx pc */
2080 THUMB16_INSN(0x46c0), /* nop */
2081 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2082 ARM_INSN(0xe12fff1c), /* bx ip */
2083 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2086 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2087 available. */
2088 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2090 THUMB16_INSN(0x4778), /* bx pc */
2091 THUMB16_INSN(0x46c0), /* nop */
2092 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2093 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2096 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2097 one, when the destination is close enough. */
2098 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2100 THUMB16_INSN(0x4778), /* bx pc */
2101 THUMB16_INSN(0x46c0), /* nop */
2102 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2105 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2106 blx to reach the stub if necessary. */
2107 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2109 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2110 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2111 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2114 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2115 blx to reach the stub if necessary. We can not add into pc;
2116 it is not guaranteed to mode switch (different in ARMv6 and
2117 ARMv7). */
2118 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2120 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2121 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2122 ARM_INSN(0xe12fff1c), /* bx ip */
2123 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2126 /* V4T ARM -> ARM long branch stub, PIC. */
2127 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2129 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2130 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2131 ARM_INSN(0xe12fff1c), /* bx ip */
2132 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2135 /* V4T Thumb -> ARM long branch stub, PIC. */
2136 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2138 THUMB16_INSN(0x4778), /* bx pc */
2139 THUMB16_INSN(0x46c0), /* nop */
2140 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2141 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2142 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2145 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2146 architectures. */
2147 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2149 THUMB16_INSN(0xb401), /* push {r0} */
2150 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2151 THUMB16_INSN(0x46fc), /* mov ip, pc */
2152 THUMB16_INSN(0x4484), /* add ip, r0 */
2153 THUMB16_INSN(0xbc01), /* pop {r0} */
2154 THUMB16_INSN(0x4760), /* bx ip */
2155 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2158 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2159 allowed. */
2160 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2162 THUMB16_INSN(0x4778), /* bx pc */
2163 THUMB16_INSN(0x46c0), /* nop */
2164 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2165 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2166 ARM_INSN(0xe12fff1c), /* bx ip */
2167 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2170 /* Cortex-A8 erratum-workaround stubs. */
2172 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2173 can't use a conditional branch to reach this stub). */
2175 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2177 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2178 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2179 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2182 /* Stub used for b.w and bl.w instructions. */
2184 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2186 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2189 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2191 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2194 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2195 instruction (which switches to ARM mode) to point to this stub. Jump to the
2196 real destination using an ARM-mode branch. */
2198 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2200 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2203 /* Section name for stubs is the associated section name plus this
2204 string. */
2205 #define STUB_SUFFIX ".stub"
2207 /* One entry per long/short branch stub defined above. */
2208 #define DEF_STUBS \
2209 DEF_STUB(long_branch_any_any) \
2210 DEF_STUB(long_branch_v4t_arm_thumb) \
2211 DEF_STUB(long_branch_thumb_only) \
2212 DEF_STUB(long_branch_v4t_thumb_thumb) \
2213 DEF_STUB(long_branch_v4t_thumb_arm) \
2214 DEF_STUB(short_branch_v4t_thumb_arm) \
2215 DEF_STUB(long_branch_any_arm_pic) \
2216 DEF_STUB(long_branch_any_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2220 DEF_STUB(long_branch_thumb_only_pic) \
2221 DEF_STUB(a8_veneer_b_cond) \
2222 DEF_STUB(a8_veneer_b) \
2223 DEF_STUB(a8_veneer_bl) \
2224 DEF_STUB(a8_veneer_blx)
2226 #define DEF_STUB(x) arm_stub_##x,
2227 enum elf32_arm_stub_type {
2228 arm_stub_none,
2229 DEF_STUBS
2230 /* Note the first a8_veneer type */
2231 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2233 #undef DEF_STUB
2235 typedef struct
2237 const insn_sequence* template_sequence;
2238 int template_size;
2239 } stub_def;
2241 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2242 static const stub_def stub_definitions[] = {
2243 {NULL, 0},
2244 DEF_STUBS
2247 struct elf32_arm_stub_hash_entry
2249 /* Base hash table entry structure. */
2250 struct bfd_hash_entry root;
2252 /* The stub section. */
2253 asection *stub_sec;
2255 /* Offset within stub_sec of the beginning of this stub. */
2256 bfd_vma stub_offset;
2258 /* Given the symbol's value and its section we can determine its final
2259 value when building the stubs (so the stub knows where to jump). */
2260 bfd_vma target_value;
2261 asection *target_section;
2263 /* Offset to apply to relocation referencing target_value. */
2264 bfd_vma target_addend;
2266 /* The instruction which caused this stub to be generated (only valid for
2267 Cortex-A8 erratum workaround stubs at present). */
2268 unsigned long orig_insn;
2270 /* The stub type. */
2271 enum elf32_arm_stub_type stub_type;
2272 /* Its encoding size in bytes. */
2273 int stub_size;
2274 /* Its template. */
2275 const insn_sequence *stub_template;
2276 /* The size of the template (number of entries). */
2277 int stub_template_size;
2279 /* The symbol table entry, if any, that this was derived from. */
2280 struct elf32_arm_link_hash_entry *h;
2282 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2283 unsigned char st_type;
2285 /* Where this stub is being called from, or, in the case of combined
2286 stub sections, the first input section in the group. */
2287 asection *id_sec;
2289 /* The name for the local symbol at the start of this stub. The
2290 stub name in the hash table has to be unique; this does not, so
2291 it can be friendlier. */
2292 char *output_name;
2295 /* Used to build a map of a section. This is required for mixed-endian
2296 code/data. */
2298 typedef struct elf32_elf_section_map
2300 bfd_vma vma;
2301 char type;
2303 elf32_arm_section_map;
2305 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2307 typedef enum
2309 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2310 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2311 VFP11_ERRATUM_ARM_VENEER,
2312 VFP11_ERRATUM_THUMB_VENEER
2314 elf32_vfp11_erratum_type;
2316 typedef struct elf32_vfp11_erratum_list
2318 struct elf32_vfp11_erratum_list *next;
2319 bfd_vma vma;
2320 union
2322 struct
2324 struct elf32_vfp11_erratum_list *veneer;
2325 unsigned int vfp_insn;
2326 } b;
2327 struct
2329 struct elf32_vfp11_erratum_list *branch;
2330 unsigned int id;
2331 } v;
2332 } u;
2333 elf32_vfp11_erratum_type type;
2335 elf32_vfp11_erratum_list;
2337 typedef enum
2339 DELETE_EXIDX_ENTRY,
2340 INSERT_EXIDX_CANTUNWIND_AT_END
2342 arm_unwind_edit_type;
2344 /* A (sorted) list of edits to apply to an unwind table. */
2345 typedef struct arm_unwind_table_edit
2347 arm_unwind_edit_type type;
2348 /* Note: we sometimes want to insert an unwind entry corresponding to a
2349 section different from the one we're currently writing out, so record the
2350 (text) section this edit relates to here. */
2351 asection *linked_section;
2352 unsigned int index;
2353 struct arm_unwind_table_edit *next;
2355 arm_unwind_table_edit;
2357 typedef struct _arm_elf_section_data
2359 /* Information about mapping symbols. */
2360 struct bfd_elf_section_data elf;
2361 unsigned int mapcount;
2362 unsigned int mapsize;
2363 elf32_arm_section_map *map;
2364 /* Information about CPU errata. */
2365 unsigned int erratumcount;
2366 elf32_vfp11_erratum_list *erratumlist;
2367 /* Information about unwind tables. */
2368 union
2370 /* Unwind info attached to a text section. */
2371 struct
2373 asection *arm_exidx_sec;
2374 } text;
2376 /* Unwind info attached to an .ARM.exidx section. */
2377 struct
2379 arm_unwind_table_edit *unwind_edit_list;
2380 arm_unwind_table_edit *unwind_edit_tail;
2381 } exidx;
2382 } u;
2384 _arm_elf_section_data;
2386 #define elf32_arm_section_data(sec) \
2387 ((_arm_elf_section_data *) elf_section_data (sec))
2389 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2390 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2391 so may be created multiple times: we use an array of these entries whilst
2392 relaxing which we can refresh easily, then create stubs for each potentially
2393 erratum-triggering instruction once we've settled on a solution. */
2395 struct a8_erratum_fix {
2396 bfd *input_bfd;
2397 asection *section;
2398 bfd_vma offset;
2399 bfd_vma addend;
2400 unsigned long orig_insn;
2401 char *stub_name;
2402 enum elf32_arm_stub_type stub_type;
2403 int st_type;
2406 /* A table of relocs applied to branches which might trigger Cortex-A8
2407 erratum. */
2409 struct a8_erratum_reloc {
2410 bfd_vma from;
2411 bfd_vma destination;
2412 unsigned int r_type;
2413 unsigned char st_type;
2414 const char *sym_name;
2415 bfd_boolean non_a8_stub;
2418 /* The size of the thread control block. */
2419 #define TCB_SIZE 8
2421 struct elf_arm_obj_tdata
2423 struct elf_obj_tdata root;
2425 /* tls_type for each local got entry. */
2426 char *local_got_tls_type;
2428 /* Zero to warn when linking objects with incompatible enum sizes. */
2429 int no_enum_size_warning;
2431 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2432 int no_wchar_size_warning;
2435 #define elf_arm_tdata(bfd) \
2436 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2438 #define elf32_arm_local_got_tls_type(bfd) \
2439 (elf_arm_tdata (bfd)->local_got_tls_type)
2441 #define is_arm_elf(bfd) \
2442 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2443 && elf_tdata (bfd) != NULL \
2444 && elf_object_id (bfd) == ARM_ELF_DATA)
2446 static bfd_boolean
2447 elf32_arm_mkobject (bfd *abfd)
2449 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2450 ARM_ELF_DATA);
2453 /* The ARM linker needs to keep track of the number of relocs that it
2454 decides to copy in check_relocs for each symbol. This is so that
2455 it can discard PC relative relocs if it doesn't need them when
2456 linking with -Bsymbolic. We store the information in a field
2457 extending the regular ELF linker hash table. */
2459 /* This structure keeps track of the number of relocs we have copied
2460 for a given symbol. */
2461 struct elf32_arm_relocs_copied
2463 /* Next section. */
2464 struct elf32_arm_relocs_copied * next;
2465 /* A section in dynobj. */
2466 asection * section;
2467 /* Number of relocs copied in this section. */
2468 bfd_size_type count;
2469 /* Number of PC-relative relocs copied in this section. */
2470 bfd_size_type pc_count;
2473 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2475 /* Arm ELF linker hash entry. */
2476 struct elf32_arm_link_hash_entry
2478 struct elf_link_hash_entry root;
2480 /* Number of PC relative relocs copied for this symbol. */
2481 struct elf32_arm_relocs_copied * relocs_copied;
2483 /* We reference count Thumb references to a PLT entry separately,
2484 so that we can emit the Thumb trampoline only if needed. */
2485 bfd_signed_vma plt_thumb_refcount;
2487 /* Some references from Thumb code may be eliminated by BL->BLX
2488 conversion, so record them separately. */
2489 bfd_signed_vma plt_maybe_thumb_refcount;
2491 /* Since PLT entries have variable size if the Thumb prologue is
2492 used, we need to record the index into .got.plt instead of
2493 recomputing it from the PLT offset. */
2494 bfd_signed_vma plt_got_offset;
2496 #define GOT_UNKNOWN 0
2497 #define GOT_NORMAL 1
2498 #define GOT_TLS_GD 2
2499 #define GOT_TLS_IE 4
2500 unsigned char tls_type;
2502 /* The symbol marking the real symbol location for exported thumb
2503 symbols with Arm stubs. */
2504 struct elf_link_hash_entry *export_glue;
2506 /* A pointer to the most recently used stub hash entry against this
2507 symbol. */
2508 struct elf32_arm_stub_hash_entry *stub_cache;
2511 /* Traverse an arm ELF linker hash table. */
2512 #define elf32_arm_link_hash_traverse(table, func, info) \
2513 (elf_link_hash_traverse \
2514 (&(table)->root, \
2515 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2516 (info)))
2518 /* Get the ARM elf linker hash table from a link_info structure. */
2519 #define elf32_arm_hash_table(info) \
2520 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2521 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2523 #define arm_stub_hash_lookup(table, string, create, copy) \
2524 ((struct elf32_arm_stub_hash_entry *) \
2525 bfd_hash_lookup ((table), (string), (create), (copy)))
2527 /* Array to keep track of which stub sections have been created, and
2528 information on stub grouping. */
2529 struct map_stub
2531 /* This is the section to which stubs in the group will be
2532 attached. */
2533 asection *link_sec;
2534 /* The stub section. */
2535 asection *stub_sec;
2538 /* ARM ELF linker hash table. */
2539 struct elf32_arm_link_hash_table
2541 /* The main hash table. */
2542 struct elf_link_hash_table root;
2544 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2545 bfd_size_type thumb_glue_size;
2547 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2548 bfd_size_type arm_glue_size;
2550 /* The size in bytes of section containing the ARMv4 BX veneers. */
2551 bfd_size_type bx_glue_size;
2553 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2554 veneer has been populated. */
2555 bfd_vma bx_glue_offset[15];
2557 /* The size in bytes of the section containing glue for VFP11 erratum
2558 veneers. */
2559 bfd_size_type vfp11_erratum_glue_size;
2561 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2562 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2563 elf32_arm_write_section(). */
2564 struct a8_erratum_fix *a8_erratum_fixes;
2565 unsigned int num_a8_erratum_fixes;
2567 /* An arbitrary input BFD chosen to hold the glue sections. */
2568 bfd * bfd_of_glue_owner;
2570 /* Nonzero to output a BE8 image. */
2571 int byteswap_code;
2573 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2574 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2575 int target1_is_rel;
2577 /* The relocation to use for R_ARM_TARGET2 relocations. */
2578 int target2_reloc;
2580 /* 0 = Ignore R_ARM_V4BX.
2581 1 = Convert BX to MOV PC.
2582 2 = Generate v4 interworing stubs. */
2583 int fix_v4bx;
2585 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2586 int fix_cortex_a8;
2588 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2589 int use_blx;
2591 /* What sort of code sequences we should look for which may trigger the
2592 VFP11 denorm erratum. */
2593 bfd_arm_vfp11_fix vfp11_fix;
2595 /* Global counter for the number of fixes we have emitted. */
2596 int num_vfp11_fixes;
2598 /* Nonzero to force PIC branch veneers. */
2599 int pic_veneer;
2601 /* The number of bytes in the initial entry in the PLT. */
2602 bfd_size_type plt_header_size;
2604 /* The number of bytes in the subsequent PLT etries. */
2605 bfd_size_type plt_entry_size;
2607 /* True if the target system is VxWorks. */
2608 int vxworks_p;
2610 /* True if the target system is Symbian OS. */
2611 int symbian_p;
2613 /* True if the target uses REL relocations. */
2614 int use_rel;
2616 /* Short-cuts to get to dynamic linker sections. */
2617 asection *sgot;
2618 asection *sgotplt;
2619 asection *srelgot;
2620 asection *splt;
2621 asection *srelplt;
2622 asection *sdynbss;
2623 asection *srelbss;
2625 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2626 asection *srelplt2;
2628 /* Data for R_ARM_TLS_LDM32 relocations. */
2629 union
2631 bfd_signed_vma refcount;
2632 bfd_vma offset;
2633 } tls_ldm_got;
2635 /* Small local sym cache. */
2636 struct sym_cache sym_cache;
2638 /* For convenience in allocate_dynrelocs. */
2639 bfd * obfd;
2641 /* The stub hash table. */
2642 struct bfd_hash_table stub_hash_table;
2644 /* Linker stub bfd. */
2645 bfd *stub_bfd;
2647 /* Linker call-backs. */
2648 asection * (*add_stub_section) (const char *, asection *);
2649 void (*layout_sections_again) (void);
2651 /* Array to keep track of which stub sections have been created, and
2652 information on stub grouping. */
2653 struct map_stub *stub_group;
2655 /* Number of elements in stub_group. */
2656 int top_id;
2658 /* Assorted information used by elf32_arm_size_stubs. */
2659 unsigned int bfd_count;
2660 int top_index;
2661 asection **input_list;
2664 /* Create an entry in an ARM ELF linker hash table. */
2666 static struct bfd_hash_entry *
2667 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2668 struct bfd_hash_table * table,
2669 const char * string)
2671 struct elf32_arm_link_hash_entry * ret =
2672 (struct elf32_arm_link_hash_entry *) entry;
2674 /* Allocate the structure if it has not already been allocated by a
2675 subclass. */
2676 if (ret == NULL)
2677 ret = (struct elf32_arm_link_hash_entry *)
2678 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2679 if (ret == NULL)
2680 return (struct bfd_hash_entry *) ret;
2682 /* Call the allocation method of the superclass. */
2683 ret = ((struct elf32_arm_link_hash_entry *)
2684 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2685 table, string));
2686 if (ret != NULL)
2688 ret->relocs_copied = NULL;
2689 ret->tls_type = GOT_UNKNOWN;
2690 ret->plt_thumb_refcount = 0;
2691 ret->plt_maybe_thumb_refcount = 0;
2692 ret->plt_got_offset = -1;
2693 ret->export_glue = NULL;
2695 ret->stub_cache = NULL;
2698 return (struct bfd_hash_entry *) ret;
2701 /* Initialize an entry in the stub hash table. */
2703 static struct bfd_hash_entry *
2704 stub_hash_newfunc (struct bfd_hash_entry *entry,
2705 struct bfd_hash_table *table,
2706 const char *string)
2708 /* Allocate the structure if it has not already been allocated by a
2709 subclass. */
2710 if (entry == NULL)
2712 entry = (struct bfd_hash_entry *)
2713 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
2714 if (entry == NULL)
2715 return entry;
2718 /* Call the allocation method of the superclass. */
2719 entry = bfd_hash_newfunc (entry, table, string);
2720 if (entry != NULL)
2722 struct elf32_arm_stub_hash_entry *eh;
2724 /* Initialize the local fields. */
2725 eh = (struct elf32_arm_stub_hash_entry *) entry;
2726 eh->stub_sec = NULL;
2727 eh->stub_offset = 0;
2728 eh->target_value = 0;
2729 eh->target_section = NULL;
2730 eh->target_addend = 0;
2731 eh->orig_insn = 0;
2732 eh->stub_type = arm_stub_none;
2733 eh->stub_size = 0;
2734 eh->stub_template = NULL;
2735 eh->stub_template_size = 0;
2736 eh->h = NULL;
2737 eh->id_sec = NULL;
2738 eh->output_name = NULL;
2741 return entry;
2744 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2745 shortcuts to them in our hash table. */
2747 static bfd_boolean
2748 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2750 struct elf32_arm_link_hash_table *htab;
2752 htab = elf32_arm_hash_table (info);
2753 if (htab == NULL)
2754 return FALSE;
2756 /* BPABI objects never have a GOT, or associated sections. */
2757 if (htab->symbian_p)
2758 return TRUE;
2760 if (! _bfd_elf_create_got_section (dynobj, info))
2761 return FALSE;
2763 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2764 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2765 if (!htab->sgot || !htab->sgotplt)
2766 abort ();
2768 htab->srelgot = bfd_get_section_by_name (dynobj,
2769 RELOC_SECTION (htab, ".got"));
2770 if (htab->srelgot == NULL)
2771 return FALSE;
2772 return TRUE;
2775 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2776 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2777 hash table. */
2779 static bfd_boolean
2780 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2782 struct elf32_arm_link_hash_table *htab;
2784 htab = elf32_arm_hash_table (info);
2785 if (htab == NULL)
2786 return FALSE;
2788 if (!htab->sgot && !create_got_section (dynobj, info))
2789 return FALSE;
2791 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2792 return FALSE;
2794 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2795 htab->srelplt = bfd_get_section_by_name (dynobj,
2796 RELOC_SECTION (htab, ".plt"));
2797 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2798 if (!info->shared)
2799 htab->srelbss = bfd_get_section_by_name (dynobj,
2800 RELOC_SECTION (htab, ".bss"));
2802 if (htab->vxworks_p)
2804 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2805 return FALSE;
2807 if (info->shared)
2809 htab->plt_header_size = 0;
2810 htab->plt_entry_size
2811 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2813 else
2815 htab->plt_header_size
2816 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2817 htab->plt_entry_size
2818 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2822 if (!htab->splt
2823 || !htab->srelplt
2824 || !htab->sdynbss
2825 || (!info->shared && !htab->srelbss))
2826 abort ();
2828 return TRUE;
2831 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2833 static void
2834 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2835 struct elf_link_hash_entry *dir,
2836 struct elf_link_hash_entry *ind)
2838 struct elf32_arm_link_hash_entry *edir, *eind;
2840 edir = (struct elf32_arm_link_hash_entry *) dir;
2841 eind = (struct elf32_arm_link_hash_entry *) ind;
2843 if (eind->relocs_copied != NULL)
2845 if (edir->relocs_copied != NULL)
2847 struct elf32_arm_relocs_copied **pp;
2848 struct elf32_arm_relocs_copied *p;
2850 /* Add reloc counts against the indirect sym to the direct sym
2851 list. Merge any entries against the same section. */
2852 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2854 struct elf32_arm_relocs_copied *q;
2856 for (q = edir->relocs_copied; q != NULL; q = q->next)
2857 if (q->section == p->section)
2859 q->pc_count += p->pc_count;
2860 q->count += p->count;
2861 *pp = p->next;
2862 break;
2864 if (q == NULL)
2865 pp = &p->next;
2867 *pp = edir->relocs_copied;
2870 edir->relocs_copied = eind->relocs_copied;
2871 eind->relocs_copied = NULL;
2874 if (ind->root.type == bfd_link_hash_indirect)
2876 /* Copy over PLT info. */
2877 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2878 eind->plt_thumb_refcount = 0;
2879 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2880 eind->plt_maybe_thumb_refcount = 0;
2882 if (dir->got.refcount <= 0)
2884 edir->tls_type = eind->tls_type;
2885 eind->tls_type = GOT_UNKNOWN;
2889 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2892 /* Create an ARM elf linker hash table. */
2894 static struct bfd_link_hash_table *
2895 elf32_arm_link_hash_table_create (bfd *abfd)
2897 struct elf32_arm_link_hash_table *ret;
2898 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2900 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
2901 if (ret == NULL)
2902 return NULL;
2904 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2905 elf32_arm_link_hash_newfunc,
2906 sizeof (struct elf32_arm_link_hash_entry),
2907 ARM_ELF_DATA))
2909 free (ret);
2910 return NULL;
2913 ret->sgot = NULL;
2914 ret->sgotplt = NULL;
2915 ret->srelgot = NULL;
2916 ret->splt = NULL;
2917 ret->srelplt = NULL;
2918 ret->sdynbss = NULL;
2919 ret->srelbss = NULL;
2920 ret->srelplt2 = NULL;
2921 ret->thumb_glue_size = 0;
2922 ret->arm_glue_size = 0;
2923 ret->bx_glue_size = 0;
2924 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2925 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2926 ret->vfp11_erratum_glue_size = 0;
2927 ret->num_vfp11_fixes = 0;
2928 ret->fix_cortex_a8 = 0;
2929 ret->bfd_of_glue_owner = NULL;
2930 ret->byteswap_code = 0;
2931 ret->target1_is_rel = 0;
2932 ret->target2_reloc = R_ARM_NONE;
2933 #ifdef FOUR_WORD_PLT
2934 ret->plt_header_size = 16;
2935 ret->plt_entry_size = 16;
2936 #else
2937 ret->plt_header_size = 20;
2938 ret->plt_entry_size = 12;
2939 #endif
2940 ret->fix_v4bx = 0;
2941 ret->use_blx = 0;
2942 ret->vxworks_p = 0;
2943 ret->symbian_p = 0;
2944 ret->use_rel = 1;
2945 ret->sym_cache.abfd = NULL;
2946 ret->obfd = abfd;
2947 ret->tls_ldm_got.refcount = 0;
2948 ret->stub_bfd = NULL;
2949 ret->add_stub_section = NULL;
2950 ret->layout_sections_again = NULL;
2951 ret->stub_group = NULL;
2952 ret->top_id = 0;
2953 ret->bfd_count = 0;
2954 ret->top_index = 0;
2955 ret->input_list = NULL;
2957 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2958 sizeof (struct elf32_arm_stub_hash_entry)))
2960 free (ret);
2961 return NULL;
2964 return &ret->root.root;
2967 /* Free the derived linker hash table. */
2969 static void
2970 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2972 struct elf32_arm_link_hash_table *ret
2973 = (struct elf32_arm_link_hash_table *) hash;
2975 bfd_hash_table_free (&ret->stub_hash_table);
2976 _bfd_generic_link_hash_table_free (hash);
2979 /* Determine if we're dealing with a Thumb only architecture. */
2981 static bfd_boolean
2982 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2984 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2985 Tag_CPU_arch);
2986 int profile;
2988 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
2989 return TRUE;
2991 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
2992 return FALSE;
2994 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2995 Tag_CPU_arch_profile);
2997 return profile == 'M';
3000 /* Determine if we're dealing with a Thumb-2 object. */
3002 static bfd_boolean
3003 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3005 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3006 Tag_CPU_arch);
3007 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3010 /* Determine what kind of NOPs are available. */
3012 static bfd_boolean
3013 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3015 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3016 Tag_CPU_arch);
3017 return arch == TAG_CPU_ARCH_V6T2
3018 || arch == TAG_CPU_ARCH_V6K
3019 || arch == TAG_CPU_ARCH_V7
3020 || arch == TAG_CPU_ARCH_V7E_M;
3023 static bfd_boolean
3024 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3026 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3027 Tag_CPU_arch);
3028 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3029 || arch == TAG_CPU_ARCH_V7E_M);
3032 static bfd_boolean
3033 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3035 switch (stub_type)
3037 case arm_stub_long_branch_thumb_only:
3038 case arm_stub_long_branch_v4t_thumb_arm:
3039 case arm_stub_short_branch_v4t_thumb_arm:
3040 case arm_stub_long_branch_v4t_thumb_arm_pic:
3041 case arm_stub_long_branch_thumb_only_pic:
3042 return TRUE;
3043 case arm_stub_none:
3044 BFD_FAIL ();
3045 return FALSE;
3046 break;
3047 default:
3048 return FALSE;
3052 /* Determine the type of stub needed, if any, for a call. */
3054 static enum elf32_arm_stub_type
3055 arm_type_of_stub (struct bfd_link_info *info,
3056 asection *input_sec,
3057 const Elf_Internal_Rela *rel,
3058 int *actual_st_type,
3059 struct elf32_arm_link_hash_entry *hash,
3060 bfd_vma destination,
3061 asection *sym_sec,
3062 bfd *input_bfd,
3063 const char *name)
3065 bfd_vma location;
3066 bfd_signed_vma branch_offset;
3067 unsigned int r_type;
3068 struct elf32_arm_link_hash_table * globals;
3069 int thumb2;
3070 int thumb_only;
3071 enum elf32_arm_stub_type stub_type = arm_stub_none;
3072 int use_plt = 0;
3073 int st_type = *actual_st_type;
3075 /* We don't know the actual type of destination in case it is of
3076 type STT_SECTION: give up. */
3077 if (st_type == STT_SECTION)
3078 return stub_type;
3080 globals = elf32_arm_hash_table (info);
3081 if (globals == NULL)
3082 return stub_type;
3084 thumb_only = using_thumb_only (globals);
3086 thumb2 = using_thumb2 (globals);
3088 /* Determine where the call point is. */
3089 location = (input_sec->output_offset
3090 + input_sec->output_section->vma
3091 + rel->r_offset);
3093 r_type = ELF32_R_TYPE (rel->r_info);
3095 /* Keep a simpler condition, for the sake of clarity. */
3096 if (globals->splt != NULL
3097 && hash != NULL
3098 && hash->root.plt.offset != (bfd_vma) -1)
3100 use_plt = 1;
3102 /* Note when dealing with PLT entries: the main PLT stub is in
3103 ARM mode, so if the branch is in Thumb mode, another
3104 Thumb->ARM stub will be inserted later just before the ARM
3105 PLT stub. We don't take this extra distance into account
3106 here, because if a long branch stub is needed, we'll add a
3107 Thumb->Arm one and branch directly to the ARM PLT entry
3108 because it avoids spreading offset corrections in several
3109 places. */
3111 destination = (globals->splt->output_section->vma
3112 + globals->splt->output_offset
3113 + hash->root.plt.offset);
3114 st_type = STT_FUNC;
3117 branch_offset = (bfd_signed_vma)(destination - location);
3119 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3121 /* Handle cases where:
3122 - this call goes too far (different Thumb/Thumb2 max
3123 distance)
3124 - it's a Thumb->Arm call and blx is not available, or it's a
3125 Thumb->Arm branch (not bl). A stub is needed in this case,
3126 but only if this call is not through a PLT entry. Indeed,
3127 PLT stubs handle mode switching already.
3129 if ((!thumb2
3130 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3131 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3132 || (thumb2
3133 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3134 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3135 || ((st_type != STT_ARM_TFUNC)
3136 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3137 || (r_type == R_ARM_THM_JUMP24))
3138 && !use_plt))
3140 if (st_type == STT_ARM_TFUNC)
3142 /* Thumb to thumb. */
3143 if (!thumb_only)
3145 stub_type = (info->shared | globals->pic_veneer)
3146 /* PIC stubs. */
3147 ? ((globals->use_blx
3148 && (r_type ==R_ARM_THM_CALL))
3149 /* V5T and above. Stub starts with ARM code, so
3150 we must be able to switch mode before
3151 reaching it, which is only possible for 'bl'
3152 (ie R_ARM_THM_CALL relocation). */
3153 ? arm_stub_long_branch_any_thumb_pic
3154 /* On V4T, use Thumb code only. */
3155 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3157 /* non-PIC stubs. */
3158 : ((globals->use_blx
3159 && (r_type ==R_ARM_THM_CALL))
3160 /* V5T and above. */
3161 ? arm_stub_long_branch_any_any
3162 /* V4T. */
3163 : arm_stub_long_branch_v4t_thumb_thumb);
3165 else
3167 stub_type = (info->shared | globals->pic_veneer)
3168 /* PIC stub. */
3169 ? arm_stub_long_branch_thumb_only_pic
3170 /* non-PIC stub. */
3171 : arm_stub_long_branch_thumb_only;
3174 else
3176 /* Thumb to arm. */
3177 if (sym_sec != NULL
3178 && sym_sec->owner != NULL
3179 && !INTERWORK_FLAG (sym_sec->owner))
3181 (*_bfd_error_handler)
3182 (_("%B(%s): warning: interworking not enabled.\n"
3183 " first occurrence: %B: Thumb call to ARM"),
3184 sym_sec->owner, input_bfd, name);
3187 stub_type = (info->shared | globals->pic_veneer)
3188 /* PIC stubs. */
3189 ? ((globals->use_blx
3190 && (r_type ==R_ARM_THM_CALL))
3191 /* V5T and above. */
3192 ? arm_stub_long_branch_any_arm_pic
3193 /* V4T PIC stub. */
3194 : arm_stub_long_branch_v4t_thumb_arm_pic)
3196 /* non-PIC stubs. */
3197 : ((globals->use_blx
3198 && (r_type ==R_ARM_THM_CALL))
3199 /* V5T and above. */
3200 ? arm_stub_long_branch_any_any
3201 /* V4T. */
3202 : arm_stub_long_branch_v4t_thumb_arm);
3204 /* Handle v4t short branches. */
3205 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3206 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3207 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3208 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3212 else if (r_type == R_ARM_CALL
3213 || r_type == R_ARM_JUMP24
3214 || r_type == R_ARM_PLT32)
3216 if (st_type == STT_ARM_TFUNC)
3218 /* Arm to thumb. */
3220 if (sym_sec != NULL
3221 && sym_sec->owner != NULL
3222 && !INTERWORK_FLAG (sym_sec->owner))
3224 (*_bfd_error_handler)
3225 (_("%B(%s): warning: interworking not enabled.\n"
3226 " first occurrence: %B: ARM call to Thumb"),
3227 sym_sec->owner, input_bfd, name);
3230 /* We have an extra 2-bytes reach because of
3231 the mode change (bit 24 (H) of BLX encoding). */
3232 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3233 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3234 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3235 || (r_type == R_ARM_JUMP24)
3236 || (r_type == R_ARM_PLT32))
3238 stub_type = (info->shared | globals->pic_veneer)
3239 /* PIC stubs. */
3240 ? ((globals->use_blx)
3241 /* V5T and above. */
3242 ? arm_stub_long_branch_any_thumb_pic
3243 /* V4T stub. */
3244 : arm_stub_long_branch_v4t_arm_thumb_pic)
3246 /* non-PIC stubs. */
3247 : ((globals->use_blx)
3248 /* V5T and above. */
3249 ? arm_stub_long_branch_any_any
3250 /* V4T. */
3251 : arm_stub_long_branch_v4t_arm_thumb);
3254 else
3256 /* Arm to arm. */
3257 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3258 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3260 stub_type = (info->shared | globals->pic_veneer)
3261 /* PIC stubs. */
3262 ? arm_stub_long_branch_any_arm_pic
3263 /* non-PIC stubs. */
3264 : arm_stub_long_branch_any_any;
3269 /* If a stub is needed, record the actual destination type. */
3270 if (stub_type != arm_stub_none)
3272 *actual_st_type = st_type;
3275 return stub_type;
3278 /* Build a name for an entry in the stub hash table. */
3280 static char *
3281 elf32_arm_stub_name (const asection *input_section,
3282 const asection *sym_sec,
3283 const struct elf32_arm_link_hash_entry *hash,
3284 const Elf_Internal_Rela *rel,
3285 enum elf32_arm_stub_type stub_type)
3287 char *stub_name;
3288 bfd_size_type len;
3290 if (hash)
3292 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3293 stub_name = (char *) bfd_malloc (len);
3294 if (stub_name != NULL)
3295 sprintf (stub_name, "%08x_%s+%x_%d",
3296 input_section->id & 0xffffffff,
3297 hash->root.root.root.string,
3298 (int) rel->r_addend & 0xffffffff,
3299 (int) stub_type);
3301 else
3303 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3304 stub_name = (char *) bfd_malloc (len);
3305 if (stub_name != NULL)
3306 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3307 input_section->id & 0xffffffff,
3308 sym_sec->id & 0xffffffff,
3309 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3310 (int) rel->r_addend & 0xffffffff,
3311 (int) stub_type);
3314 return stub_name;
3317 /* Look up an entry in the stub hash. Stub entries are cached because
3318 creating the stub name takes a bit of time. */
3320 static struct elf32_arm_stub_hash_entry *
3321 elf32_arm_get_stub_entry (const asection *input_section,
3322 const asection *sym_sec,
3323 struct elf_link_hash_entry *hash,
3324 const Elf_Internal_Rela *rel,
3325 struct elf32_arm_link_hash_table *htab,
3326 enum elf32_arm_stub_type stub_type)
3328 struct elf32_arm_stub_hash_entry *stub_entry;
3329 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3330 const asection *id_sec;
3332 if ((input_section->flags & SEC_CODE) == 0)
3333 return NULL;
3335 /* If this input section is part of a group of sections sharing one
3336 stub section, then use the id of the first section in the group.
3337 Stub names need to include a section id, as there may well be
3338 more than one stub used to reach say, printf, and we need to
3339 distinguish between them. */
3340 id_sec = htab->stub_group[input_section->id].link_sec;
3342 if (h != NULL && h->stub_cache != NULL
3343 && h->stub_cache->h == h
3344 && h->stub_cache->id_sec == id_sec
3345 && h->stub_cache->stub_type == stub_type)
3347 stub_entry = h->stub_cache;
3349 else
3351 char *stub_name;
3353 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3354 if (stub_name == NULL)
3355 return NULL;
3357 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3358 stub_name, FALSE, FALSE);
3359 if (h != NULL)
3360 h->stub_cache = stub_entry;
3362 free (stub_name);
3365 return stub_entry;
3368 /* Find or create a stub section. Returns a pointer to the stub section, and
3369 the section to which the stub section will be attached (in *LINK_SEC_P).
3370 LINK_SEC_P may be NULL. */
3372 static asection *
3373 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3374 struct elf32_arm_link_hash_table *htab)
3376 asection *link_sec;
3377 asection *stub_sec;
3379 link_sec = htab->stub_group[section->id].link_sec;
3380 stub_sec = htab->stub_group[section->id].stub_sec;
3381 if (stub_sec == NULL)
3383 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3384 if (stub_sec == NULL)
3386 size_t namelen;
3387 bfd_size_type len;
3388 char *s_name;
3390 namelen = strlen (link_sec->name);
3391 len = namelen + sizeof (STUB_SUFFIX);
3392 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3393 if (s_name == NULL)
3394 return NULL;
3396 memcpy (s_name, link_sec->name, namelen);
3397 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3398 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3399 if (stub_sec == NULL)
3400 return NULL;
3401 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3403 htab->stub_group[section->id].stub_sec = stub_sec;
3406 if (link_sec_p)
3407 *link_sec_p = link_sec;
3409 return stub_sec;
3412 /* Add a new stub entry to the stub hash. Not all fields of the new
3413 stub entry are initialised. */
3415 static struct elf32_arm_stub_hash_entry *
3416 elf32_arm_add_stub (const char *stub_name,
3417 asection *section,
3418 struct elf32_arm_link_hash_table *htab)
3420 asection *link_sec;
3421 asection *stub_sec;
3422 struct elf32_arm_stub_hash_entry *stub_entry;
3424 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3425 if (stub_sec == NULL)
3426 return NULL;
3428 /* Enter this entry into the linker stub hash table. */
3429 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3430 TRUE, FALSE);
3431 if (stub_entry == NULL)
3433 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3434 section->owner,
3435 stub_name);
3436 return NULL;
3439 stub_entry->stub_sec = stub_sec;
3440 stub_entry->stub_offset = 0;
3441 stub_entry->id_sec = link_sec;
3443 return stub_entry;
3446 /* Store an Arm insn into an output section not processed by
3447 elf32_arm_write_section. */
3449 static void
3450 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3451 bfd * output_bfd, bfd_vma val, void * ptr)
3453 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3454 bfd_putl32 (val, ptr);
3455 else
3456 bfd_putb32 (val, ptr);
3459 /* Store a 16-bit Thumb insn into an output section not processed by
3460 elf32_arm_write_section. */
3462 static void
3463 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3464 bfd * output_bfd, bfd_vma val, void * ptr)
3466 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3467 bfd_putl16 (val, ptr);
3468 else
3469 bfd_putb16 (val, ptr);
3472 static bfd_reloc_status_type elf32_arm_final_link_relocate
3473 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3474 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3475 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3477 static bfd_boolean
3478 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3479 void * in_arg)
3481 #define MAXRELOCS 2
3482 struct elf32_arm_stub_hash_entry *stub_entry;
3483 struct elf32_arm_link_hash_table *globals;
3484 struct bfd_link_info *info;
3485 asection *stub_sec;
3486 bfd *stub_bfd;
3487 bfd_vma stub_addr;
3488 bfd_byte *loc;
3489 bfd_vma sym_value;
3490 int template_size;
3491 int size;
3492 const insn_sequence *template_sequence;
3493 int i;
3494 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3495 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3496 int nrelocs = 0;
3498 /* Massage our args to the form they really have. */
3499 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3500 info = (struct bfd_link_info *) in_arg;
3502 globals = elf32_arm_hash_table (info);
3503 if (globals == NULL)
3504 return FALSE;
3506 stub_sec = stub_entry->stub_sec;
3508 if ((globals->fix_cortex_a8 < 0)
3509 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3510 /* We have to do the a8 fixes last, as they are less aligned than
3511 the other veneers. */
3512 return TRUE;
3514 /* Make a note of the offset within the stubs for this entry. */
3515 stub_entry->stub_offset = stub_sec->size;
3516 loc = stub_sec->contents + stub_entry->stub_offset;
3518 stub_bfd = stub_sec->owner;
3520 /* This is the address of the start of the stub. */
3521 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3522 + stub_entry->stub_offset;
3524 /* This is the address of the stub destination. */
3525 sym_value = (stub_entry->target_value
3526 + stub_entry->target_section->output_offset
3527 + stub_entry->target_section->output_section->vma);
3529 template_sequence = stub_entry->stub_template;
3530 template_size = stub_entry->stub_template_size;
3532 size = 0;
3533 for (i = 0; i < template_size; i++)
3535 switch (template_sequence[i].type)
3537 case THUMB16_TYPE:
3539 bfd_vma data = (bfd_vma) template_sequence[i].data;
3540 if (template_sequence[i].reloc_addend != 0)
3542 /* We've borrowed the reloc_addend field to mean we should
3543 insert a condition code into this (Thumb-1 branch)
3544 instruction. See THUMB16_BCOND_INSN. */
3545 BFD_ASSERT ((data & 0xff00) == 0xd000);
3546 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3548 bfd_put_16 (stub_bfd, data, loc + size);
3549 size += 2;
3551 break;
3553 case THUMB32_TYPE:
3554 bfd_put_16 (stub_bfd,
3555 (template_sequence[i].data >> 16) & 0xffff,
3556 loc + size);
3557 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
3558 loc + size + 2);
3559 if (template_sequence[i].r_type != R_ARM_NONE)
3561 stub_reloc_idx[nrelocs] = i;
3562 stub_reloc_offset[nrelocs++] = size;
3564 size += 4;
3565 break;
3567 case ARM_TYPE:
3568 bfd_put_32 (stub_bfd, template_sequence[i].data,
3569 loc + size);
3570 /* Handle cases where the target is encoded within the
3571 instruction. */
3572 if (template_sequence[i].r_type == R_ARM_JUMP24)
3574 stub_reloc_idx[nrelocs] = i;
3575 stub_reloc_offset[nrelocs++] = size;
3577 size += 4;
3578 break;
3580 case DATA_TYPE:
3581 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3582 stub_reloc_idx[nrelocs] = i;
3583 stub_reloc_offset[nrelocs++] = size;
3584 size += 4;
3585 break;
3587 default:
3588 BFD_FAIL ();
3589 return FALSE;
3593 stub_sec->size += size;
3595 /* Stub size has already been computed in arm_size_one_stub. Check
3596 consistency. */
3597 BFD_ASSERT (size == stub_entry->stub_size);
3599 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3600 if (stub_entry->st_type == STT_ARM_TFUNC)
3601 sym_value |= 1;
3603 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3604 in each stub. */
3605 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3607 for (i = 0; i < nrelocs; i++)
3608 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3609 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3610 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3611 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3613 Elf_Internal_Rela rel;
3614 bfd_boolean unresolved_reloc;
3615 char *error_message;
3616 int sym_flags
3617 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3618 ? STT_ARM_TFUNC : 0;
3619 bfd_vma points_to = sym_value + stub_entry->target_addend;
3621 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3622 rel.r_info = ELF32_R_INFO (0,
3623 template_sequence[stub_reloc_idx[i]].r_type);
3624 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3626 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3627 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3628 template should refer back to the instruction after the original
3629 branch. */
3630 points_to = sym_value;
3632 /* There may be unintended consequences if this is not true. */
3633 BFD_ASSERT (stub_entry->h == NULL);
3635 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3636 properly. We should probably use this function unconditionally,
3637 rather than only for certain relocations listed in the enclosing
3638 conditional, for the sake of consistency. */
3639 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3640 (template_sequence[stub_reloc_idx[i]].r_type),
3641 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3642 points_to, info, stub_entry->target_section, "", sym_flags,
3643 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3644 &error_message);
3646 else
3648 Elf_Internal_Rela rel;
3649 bfd_boolean unresolved_reloc;
3650 char *error_message;
3651 bfd_vma points_to = sym_value + stub_entry->target_addend
3652 + template_sequence[stub_reloc_idx[i]].reloc_addend;
3654 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3655 rel.r_info = ELF32_R_INFO (0,
3656 template_sequence[stub_reloc_idx[i]].r_type);
3657 rel.r_addend = 0;
3659 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3660 (template_sequence[stub_reloc_idx[i]].r_type),
3661 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3662 points_to, info, stub_entry->target_section, "", stub_entry->st_type,
3663 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3664 &error_message);
3667 return TRUE;
3668 #undef MAXRELOCS
3671 /* Calculate the template, template size and instruction size for a stub.
3672 Return value is the instruction size. */
3674 static unsigned int
3675 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3676 const insn_sequence **stub_template,
3677 int *stub_template_size)
3679 const insn_sequence *template_sequence = NULL;
3680 int template_size = 0, i;
3681 unsigned int size;
3683 template_sequence = stub_definitions[stub_type].template_sequence;
3684 template_size = stub_definitions[stub_type].template_size;
3686 size = 0;
3687 for (i = 0; i < template_size; i++)
3689 switch (template_sequence[i].type)
3691 case THUMB16_TYPE:
3692 size += 2;
3693 break;
3695 case ARM_TYPE:
3696 case THUMB32_TYPE:
3697 case DATA_TYPE:
3698 size += 4;
3699 break;
3701 default:
3702 BFD_FAIL ();
3703 return FALSE;
3707 if (stub_template)
3708 *stub_template = template_sequence;
3710 if (stub_template_size)
3711 *stub_template_size = template_size;
3713 return size;
3716 /* As above, but don't actually build the stub. Just bump offset so
3717 we know stub section sizes. */
3719 static bfd_boolean
3720 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3721 void * in_arg)
3723 struct elf32_arm_stub_hash_entry *stub_entry;
3724 struct elf32_arm_link_hash_table *htab;
3725 const insn_sequence *template_sequence;
3726 int template_size, size;
3728 /* Massage our args to the form they really have. */
3729 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3730 htab = (struct elf32_arm_link_hash_table *) in_arg;
3732 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3733 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3735 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3736 &template_size);
3738 stub_entry->stub_size = size;
3739 stub_entry->stub_template = template_sequence;
3740 stub_entry->stub_template_size = template_size;
3742 size = (size + 7) & ~7;
3743 stub_entry->stub_sec->size += size;
3745 return TRUE;
3748 /* External entry points for sizing and building linker stubs. */
3750 /* Set up various things so that we can make a list of input sections
3751 for each output section included in the link. Returns -1 on error,
3752 0 when no stubs will be needed, and 1 on success. */
3755 elf32_arm_setup_section_lists (bfd *output_bfd,
3756 struct bfd_link_info *info)
3758 bfd *input_bfd;
3759 unsigned int bfd_count;
3760 int top_id, top_index;
3761 asection *section;
3762 asection **input_list, **list;
3763 bfd_size_type amt;
3764 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3766 if (htab == NULL)
3767 return 0;
3768 if (! is_elf_hash_table (htab))
3769 return 0;
3771 /* Count the number of input BFDs and find the top input section id. */
3772 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3773 input_bfd != NULL;
3774 input_bfd = input_bfd->link_next)
3776 bfd_count += 1;
3777 for (section = input_bfd->sections;
3778 section != NULL;
3779 section = section->next)
3781 if (top_id < section->id)
3782 top_id = section->id;
3785 htab->bfd_count = bfd_count;
3787 amt = sizeof (struct map_stub) * (top_id + 1);
3788 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
3789 if (htab->stub_group == NULL)
3790 return -1;
3791 htab->top_id = top_id;
3793 /* We can't use output_bfd->section_count here to find the top output
3794 section index as some sections may have been removed, and
3795 _bfd_strip_section_from_output doesn't renumber the indices. */
3796 for (section = output_bfd->sections, top_index = 0;
3797 section != NULL;
3798 section = section->next)
3800 if (top_index < section->index)
3801 top_index = section->index;
3804 htab->top_index = top_index;
3805 amt = sizeof (asection *) * (top_index + 1);
3806 input_list = (asection **) bfd_malloc (amt);
3807 htab->input_list = input_list;
3808 if (input_list == NULL)
3809 return -1;
3811 /* For sections we aren't interested in, mark their entries with a
3812 value we can check later. */
3813 list = input_list + top_index;
3815 *list = bfd_abs_section_ptr;
3816 while (list-- != input_list);
3818 for (section = output_bfd->sections;
3819 section != NULL;
3820 section = section->next)
3822 if ((section->flags & SEC_CODE) != 0)
3823 input_list[section->index] = NULL;
3826 return 1;
3829 /* The linker repeatedly calls this function for each input section,
3830 in the order that input sections are linked into output sections.
3831 Build lists of input sections to determine groupings between which
3832 we may insert linker stubs. */
3834 void
3835 elf32_arm_next_input_section (struct bfd_link_info *info,
3836 asection *isec)
3838 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3840 if (htab == NULL)
3841 return;
3843 if (isec->output_section->index <= htab->top_index)
3845 asection **list = htab->input_list + isec->output_section->index;
3847 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3849 /* Steal the link_sec pointer for our list. */
3850 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3851 /* This happens to make the list in reverse order,
3852 which we reverse later. */
3853 PREV_SEC (isec) = *list;
3854 *list = isec;
3859 /* See whether we can group stub sections together. Grouping stub
3860 sections may result in fewer stubs. More importantly, we need to
3861 put all .init* and .fini* stubs at the end of the .init or
3862 .fini output sections respectively, because glibc splits the
3863 _init and _fini functions into multiple parts. Putting a stub in
3864 the middle of a function is not a good idea. */
3866 static void
3867 group_sections (struct elf32_arm_link_hash_table *htab,
3868 bfd_size_type stub_group_size,
3869 bfd_boolean stubs_always_after_branch)
3871 asection **list = htab->input_list;
3875 asection *tail = *list;
3876 asection *head;
3878 if (tail == bfd_abs_section_ptr)
3879 continue;
3881 /* Reverse the list: we must avoid placing stubs at the
3882 beginning of the section because the beginning of the text
3883 section may be required for an interrupt vector in bare metal
3884 code. */
3885 #define NEXT_SEC PREV_SEC
3886 head = NULL;
3887 while (tail != NULL)
3889 /* Pop from tail. */
3890 asection *item = tail;
3891 tail = PREV_SEC (item);
3893 /* Push on head. */
3894 NEXT_SEC (item) = head;
3895 head = item;
3898 while (head != NULL)
3900 asection *curr;
3901 asection *next;
3902 bfd_vma stub_group_start = head->output_offset;
3903 bfd_vma end_of_next;
3905 curr = head;
3906 while (NEXT_SEC (curr) != NULL)
3908 next = NEXT_SEC (curr);
3909 end_of_next = next->output_offset + next->size;
3910 if (end_of_next - stub_group_start >= stub_group_size)
3911 /* End of NEXT is too far from start, so stop. */
3912 break;
3913 /* Add NEXT to the group. */
3914 curr = next;
3917 /* OK, the size from the start to the start of CURR is less
3918 than stub_group_size and thus can be handled by one stub
3919 section. (Or the head section is itself larger than
3920 stub_group_size, in which case we may be toast.)
3921 We should really be keeping track of the total size of
3922 stubs added here, as stubs contribute to the final output
3923 section size. */
3926 next = NEXT_SEC (head);
3927 /* Set up this stub group. */
3928 htab->stub_group[head->id].link_sec = curr;
3930 while (head != curr && (head = next) != NULL);
3932 /* But wait, there's more! Input sections up to stub_group_size
3933 bytes after the stub section can be handled by it too. */
3934 if (!stubs_always_after_branch)
3936 stub_group_start = curr->output_offset + curr->size;
3938 while (next != NULL)
3940 end_of_next = next->output_offset + next->size;
3941 if (end_of_next - stub_group_start >= stub_group_size)
3942 /* End of NEXT is too far from stubs, so stop. */
3943 break;
3944 /* Add NEXT to the stub group. */
3945 head = next;
3946 next = NEXT_SEC (head);
3947 htab->stub_group[head->id].link_sec = curr;
3950 head = next;
3953 while (list++ != htab->input_list + htab->top_index);
3955 free (htab->input_list);
3956 #undef PREV_SEC
3957 #undef NEXT_SEC
3960 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3961 erratum fix. */
3963 static int
3964 a8_reloc_compare (const void *a, const void *b)
3966 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3967 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
3969 if (ra->from < rb->from)
3970 return -1;
3971 else if (ra->from > rb->from)
3972 return 1;
3973 else
3974 return 0;
3977 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3978 const char *, char **);
3980 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3981 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3982 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3983 otherwise. */
3985 static bfd_boolean
3986 cortex_a8_erratum_scan (bfd *input_bfd,
3987 struct bfd_link_info *info,
3988 struct a8_erratum_fix **a8_fixes_p,
3989 unsigned int *num_a8_fixes_p,
3990 unsigned int *a8_fix_table_size_p,
3991 struct a8_erratum_reloc *a8_relocs,
3992 unsigned int num_a8_relocs,
3993 unsigned prev_num_a8_fixes,
3994 bfd_boolean *stub_changed_p)
3996 asection *section;
3997 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3998 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3999 unsigned int num_a8_fixes = *num_a8_fixes_p;
4000 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4002 if (htab == NULL)
4003 return FALSE;
4005 for (section = input_bfd->sections;
4006 section != NULL;
4007 section = section->next)
4009 bfd_byte *contents = NULL;
4010 struct _arm_elf_section_data *sec_data;
4011 unsigned int span;
4012 bfd_vma base_vma;
4014 if (elf_section_type (section) != SHT_PROGBITS
4015 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4016 || (section->flags & SEC_EXCLUDE) != 0
4017 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4018 || (section->output_section == bfd_abs_section_ptr))
4019 continue;
4021 base_vma = section->output_section->vma + section->output_offset;
4023 if (elf_section_data (section)->this_hdr.contents != NULL)
4024 contents = elf_section_data (section)->this_hdr.contents;
4025 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4026 return TRUE;
4028 sec_data = elf32_arm_section_data (section);
4030 for (span = 0; span < sec_data->mapcount; span++)
4032 unsigned int span_start = sec_data->map[span].vma;
4033 unsigned int span_end = (span == sec_data->mapcount - 1)
4034 ? section->size : sec_data->map[span + 1].vma;
4035 unsigned int i;
4036 char span_type = sec_data->map[span].type;
4037 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4039 if (span_type != 't')
4040 continue;
4042 /* Span is entirely within a single 4KB region: skip scanning. */
4043 if (((base_vma + span_start) & ~0xfff)
4044 == ((base_vma + span_end) & ~0xfff))
4045 continue;
4047 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4049 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4050 * The branch target is in the same 4KB region as the
4051 first half of the branch.
4052 * The instruction before the branch is a 32-bit
4053 length non-branch instruction. */
4054 for (i = span_start; i < span_end;)
4056 unsigned int insn = bfd_getl16 (&contents[i]);
4057 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4058 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4060 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4061 insn_32bit = TRUE;
4063 if (insn_32bit)
4065 /* Load the rest of the insn (in manual-friendly order). */
4066 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4068 /* Encoding T4: B<c>.W. */
4069 is_b = (insn & 0xf800d000) == 0xf0009000;
4070 /* Encoding T1: BL<c>.W. */
4071 is_bl = (insn & 0xf800d000) == 0xf000d000;
4072 /* Encoding T2: BLX<c>.W. */
4073 is_blx = (insn & 0xf800d000) == 0xf000c000;
4074 /* Encoding T3: B<c>.W (not permitted in IT block). */
4075 is_bcc = (insn & 0xf800d000) == 0xf0008000
4076 && (insn & 0x07f00000) != 0x03800000;
4079 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4081 if (((base_vma + i) & 0xfff) == 0xffe
4082 && insn_32bit
4083 && is_32bit_branch
4084 && last_was_32bit
4085 && ! last_was_branch)
4087 bfd_signed_vma offset = 0;
4088 bfd_boolean force_target_arm = FALSE;
4089 bfd_boolean force_target_thumb = FALSE;
4090 bfd_vma target;
4091 enum elf32_arm_stub_type stub_type = arm_stub_none;
4092 struct a8_erratum_reloc key, *found;
4094 key.from = base_vma + i;
4095 found = (struct a8_erratum_reloc *)
4096 bsearch (&key, a8_relocs, num_a8_relocs,
4097 sizeof (struct a8_erratum_reloc),
4098 &a8_reloc_compare);
4100 if (found)
4102 char *error_message = NULL;
4103 struct elf_link_hash_entry *entry;
4105 /* We don't care about the error returned from this
4106 function, only if there is glue or not. */
4107 entry = find_thumb_glue (info, found->sym_name,
4108 &error_message);
4110 if (entry)
4111 found->non_a8_stub = TRUE;
4113 if (found->r_type == R_ARM_THM_CALL
4114 && found->st_type != STT_ARM_TFUNC)
4115 force_target_arm = TRUE;
4116 else if (found->r_type == R_ARM_THM_CALL
4117 && found->st_type == STT_ARM_TFUNC)
4118 force_target_thumb = TRUE;
4121 /* Check if we have an offending branch instruction. */
4123 if (found && found->non_a8_stub)
4124 /* We've already made a stub for this instruction, e.g.
4125 it's a long branch or a Thumb->ARM stub. Assume that
4126 stub will suffice to work around the A8 erratum (see
4127 setting of always_after_branch above). */
4129 else if (is_bcc)
4131 offset = (insn & 0x7ff) << 1;
4132 offset |= (insn & 0x3f0000) >> 4;
4133 offset |= (insn & 0x2000) ? 0x40000 : 0;
4134 offset |= (insn & 0x800) ? 0x80000 : 0;
4135 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4136 if (offset & 0x100000)
4137 offset |= ~ ((bfd_signed_vma) 0xfffff);
4138 stub_type = arm_stub_a8_veneer_b_cond;
4140 else if (is_b || is_bl || is_blx)
4142 int s = (insn & 0x4000000) != 0;
4143 int j1 = (insn & 0x2000) != 0;
4144 int j2 = (insn & 0x800) != 0;
4145 int i1 = !(j1 ^ s);
4146 int i2 = !(j2 ^ s);
4148 offset = (insn & 0x7ff) << 1;
4149 offset |= (insn & 0x3ff0000) >> 4;
4150 offset |= i2 << 22;
4151 offset |= i1 << 23;
4152 offset |= s << 24;
4153 if (offset & 0x1000000)
4154 offset |= ~ ((bfd_signed_vma) 0xffffff);
4156 if (is_blx)
4157 offset &= ~ ((bfd_signed_vma) 3);
4159 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4160 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4163 if (stub_type != arm_stub_none)
4165 bfd_vma pc_for_insn = base_vma + i + 4;
4167 /* The original instruction is a BL, but the target is
4168 an ARM instruction. If we were not making a stub,
4169 the BL would have been converted to a BLX. Use the
4170 BLX stub instead in that case. */
4171 if (htab->use_blx && force_target_arm
4172 && stub_type == arm_stub_a8_veneer_bl)
4174 stub_type = arm_stub_a8_veneer_blx;
4175 is_blx = TRUE;
4176 is_bl = FALSE;
4178 /* Conversely, if the original instruction was
4179 BLX but the target is Thumb mode, use the BL
4180 stub. */
4181 else if (force_target_thumb
4182 && stub_type == arm_stub_a8_veneer_blx)
4184 stub_type = arm_stub_a8_veneer_bl;
4185 is_blx = FALSE;
4186 is_bl = TRUE;
4189 if (is_blx)
4190 pc_for_insn &= ~ ((bfd_vma) 3);
4192 /* If we found a relocation, use the proper destination,
4193 not the offset in the (unrelocated) instruction.
4194 Note this is always done if we switched the stub type
4195 above. */
4196 if (found)
4197 offset =
4198 (bfd_signed_vma) (found->destination - pc_for_insn);
4200 target = pc_for_insn + offset;
4202 /* The BLX stub is ARM-mode code. Adjust the offset to
4203 take the different PC value (+8 instead of +4) into
4204 account. */
4205 if (stub_type == arm_stub_a8_veneer_blx)
4206 offset += 4;
4208 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4210 char *stub_name = NULL;
4212 if (num_a8_fixes == a8_fix_table_size)
4214 a8_fix_table_size *= 2;
4215 a8_fixes = (struct a8_erratum_fix *)
4216 bfd_realloc (a8_fixes,
4217 sizeof (struct a8_erratum_fix)
4218 * a8_fix_table_size);
4221 if (num_a8_fixes < prev_num_a8_fixes)
4223 /* If we're doing a subsequent scan,
4224 check if we've found the same fix as
4225 before, and try and reuse the stub
4226 name. */
4227 stub_name = a8_fixes[num_a8_fixes].stub_name;
4228 if ((a8_fixes[num_a8_fixes].section != section)
4229 || (a8_fixes[num_a8_fixes].offset != i))
4231 free (stub_name);
4232 stub_name = NULL;
4233 *stub_changed_p = TRUE;
4237 if (!stub_name)
4239 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4240 if (stub_name != NULL)
4241 sprintf (stub_name, "%x:%x", section->id, i);
4244 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4245 a8_fixes[num_a8_fixes].section = section;
4246 a8_fixes[num_a8_fixes].offset = i;
4247 a8_fixes[num_a8_fixes].addend = offset;
4248 a8_fixes[num_a8_fixes].orig_insn = insn;
4249 a8_fixes[num_a8_fixes].stub_name = stub_name;
4250 a8_fixes[num_a8_fixes].stub_type = stub_type;
4251 a8_fixes[num_a8_fixes].st_type =
4252 is_blx ? STT_FUNC : STT_ARM_TFUNC;
4254 num_a8_fixes++;
4259 i += insn_32bit ? 4 : 2;
4260 last_was_32bit = insn_32bit;
4261 last_was_branch = is_32bit_branch;
4265 if (elf_section_data (section)->this_hdr.contents == NULL)
4266 free (contents);
4269 *a8_fixes_p = a8_fixes;
4270 *num_a8_fixes_p = num_a8_fixes;
4271 *a8_fix_table_size_p = a8_fix_table_size;
4273 return FALSE;
4276 /* Determine and set the size of the stub section for a final link.
4278 The basic idea here is to examine all the relocations looking for
4279 PC-relative calls to a target that is unreachable with a "bl"
4280 instruction. */
4282 bfd_boolean
4283 elf32_arm_size_stubs (bfd *output_bfd,
4284 bfd *stub_bfd,
4285 struct bfd_link_info *info,
4286 bfd_signed_vma group_size,
4287 asection * (*add_stub_section) (const char *, asection *),
4288 void (*layout_sections_again) (void))
4290 bfd_size_type stub_group_size;
4291 bfd_boolean stubs_always_after_branch;
4292 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4293 struct a8_erratum_fix *a8_fixes = NULL;
4294 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4295 struct a8_erratum_reloc *a8_relocs = NULL;
4296 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4298 if (htab == NULL)
4299 return FALSE;
4301 if (htab->fix_cortex_a8)
4303 a8_fixes = (struct a8_erratum_fix *)
4304 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4305 a8_relocs = (struct a8_erratum_reloc *)
4306 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4309 /* Propagate mach to stub bfd, because it may not have been
4310 finalized when we created stub_bfd. */
4311 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4312 bfd_get_mach (output_bfd));
4314 /* Stash our params away. */
4315 htab->stub_bfd = stub_bfd;
4316 htab->add_stub_section = add_stub_section;
4317 htab->layout_sections_again = layout_sections_again;
4318 stubs_always_after_branch = group_size < 0;
4320 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4321 as the first half of a 32-bit branch straddling two 4K pages. This is a
4322 crude way of enforcing that. */
4323 if (htab->fix_cortex_a8)
4324 stubs_always_after_branch = 1;
4326 if (group_size < 0)
4327 stub_group_size = -group_size;
4328 else
4329 stub_group_size = group_size;
4331 if (stub_group_size == 1)
4333 /* Default values. */
4334 /* Thumb branch range is +-4MB has to be used as the default
4335 maximum size (a given section can contain both ARM and Thumb
4336 code, so the worst case has to be taken into account).
4338 This value is 24K less than that, which allows for 2025
4339 12-byte stubs. If we exceed that, then we will fail to link.
4340 The user will have to relink with an explicit group size
4341 option. */
4342 stub_group_size = 4170000;
4345 group_sections (htab, stub_group_size, stubs_always_after_branch);
4347 /* If we're applying the cortex A8 fix, we need to determine the
4348 program header size now, because we cannot change it later --
4349 that could alter section placements. Notice the A8 erratum fix
4350 ends up requiring the section addresses to remain unchanged
4351 modulo the page size. That's something we cannot represent
4352 inside BFD, and we don't want to force the section alignment to
4353 be the page size. */
4354 if (htab->fix_cortex_a8)
4355 (*htab->layout_sections_again) ();
4357 while (1)
4359 bfd *input_bfd;
4360 unsigned int bfd_indx;
4361 asection *stub_sec;
4362 bfd_boolean stub_changed = FALSE;
4363 unsigned prev_num_a8_fixes = num_a8_fixes;
4365 num_a8_fixes = 0;
4366 for (input_bfd = info->input_bfds, bfd_indx = 0;
4367 input_bfd != NULL;
4368 input_bfd = input_bfd->link_next, bfd_indx++)
4370 Elf_Internal_Shdr *symtab_hdr;
4371 asection *section;
4372 Elf_Internal_Sym *local_syms = NULL;
4374 num_a8_relocs = 0;
4376 /* We'll need the symbol table in a second. */
4377 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4378 if (symtab_hdr->sh_info == 0)
4379 continue;
4381 /* Walk over each section attached to the input bfd. */
4382 for (section = input_bfd->sections;
4383 section != NULL;
4384 section = section->next)
4386 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4388 /* If there aren't any relocs, then there's nothing more
4389 to do. */
4390 if ((section->flags & SEC_RELOC) == 0
4391 || section->reloc_count == 0
4392 || (section->flags & SEC_CODE) == 0)
4393 continue;
4395 /* If this section is a link-once section that will be
4396 discarded, then don't create any stubs. */
4397 if (section->output_section == NULL
4398 || section->output_section->owner != output_bfd)
4399 continue;
4401 /* Get the relocs. */
4402 internal_relocs
4403 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4404 NULL, info->keep_memory);
4405 if (internal_relocs == NULL)
4406 goto error_ret_free_local;
4408 /* Now examine each relocation. */
4409 irela = internal_relocs;
4410 irelaend = irela + section->reloc_count;
4411 for (; irela < irelaend; irela++)
4413 unsigned int r_type, r_indx;
4414 enum elf32_arm_stub_type stub_type;
4415 struct elf32_arm_stub_hash_entry *stub_entry;
4416 asection *sym_sec;
4417 bfd_vma sym_value;
4418 bfd_vma destination;
4419 struct elf32_arm_link_hash_entry *hash;
4420 const char *sym_name;
4421 char *stub_name;
4422 const asection *id_sec;
4423 int st_type;
4424 bfd_boolean created_stub = FALSE;
4426 r_type = ELF32_R_TYPE (irela->r_info);
4427 r_indx = ELF32_R_SYM (irela->r_info);
4429 if (r_type >= (unsigned int) R_ARM_max)
4431 bfd_set_error (bfd_error_bad_value);
4432 error_ret_free_internal:
4433 if (elf_section_data (section)->relocs == NULL)
4434 free (internal_relocs);
4435 goto error_ret_free_local;
4438 /* Only look for stubs on branch instructions. */
4439 if ((r_type != (unsigned int) R_ARM_CALL)
4440 && (r_type != (unsigned int) R_ARM_THM_CALL)
4441 && (r_type != (unsigned int) R_ARM_JUMP24)
4442 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4443 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4444 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4445 && (r_type != (unsigned int) R_ARM_PLT32))
4446 continue;
4448 /* Now determine the call target, its name, value,
4449 section. */
4450 sym_sec = NULL;
4451 sym_value = 0;
4452 destination = 0;
4453 hash = NULL;
4454 sym_name = NULL;
4455 if (r_indx < symtab_hdr->sh_info)
4457 /* It's a local symbol. */
4458 Elf_Internal_Sym *sym;
4459 Elf_Internal_Shdr *hdr;
4461 if (local_syms == NULL)
4463 local_syms
4464 = (Elf_Internal_Sym *) symtab_hdr->contents;
4465 if (local_syms == NULL)
4466 local_syms
4467 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4468 symtab_hdr->sh_info, 0,
4469 NULL, NULL, NULL);
4470 if (local_syms == NULL)
4471 goto error_ret_free_internal;
4474 sym = local_syms + r_indx;
4475 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4476 sym_sec = hdr->bfd_section;
4477 if (!sym_sec)
4478 /* This is an undefined symbol. It can never
4479 be resolved. */
4480 continue;
4482 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4483 sym_value = sym->st_value;
4484 destination = (sym_value + irela->r_addend
4485 + sym_sec->output_offset
4486 + sym_sec->output_section->vma);
4487 st_type = ELF_ST_TYPE (sym->st_info);
4488 sym_name
4489 = bfd_elf_string_from_elf_section (input_bfd,
4490 symtab_hdr->sh_link,
4491 sym->st_name);
4493 else
4495 /* It's an external symbol. */
4496 int e_indx;
4498 e_indx = r_indx - symtab_hdr->sh_info;
4499 hash = ((struct elf32_arm_link_hash_entry *)
4500 elf_sym_hashes (input_bfd)[e_indx]);
4502 while (hash->root.root.type == bfd_link_hash_indirect
4503 || hash->root.root.type == bfd_link_hash_warning)
4504 hash = ((struct elf32_arm_link_hash_entry *)
4505 hash->root.root.u.i.link);
4507 if (hash->root.root.type == bfd_link_hash_defined
4508 || hash->root.root.type == bfd_link_hash_defweak)
4510 sym_sec = hash->root.root.u.def.section;
4511 sym_value = hash->root.root.u.def.value;
4513 struct elf32_arm_link_hash_table *globals =
4514 elf32_arm_hash_table (info);
4516 /* For a destination in a shared library,
4517 use the PLT stub as target address to
4518 decide whether a branch stub is
4519 needed. */
4520 if (globals != NULL
4521 && globals->splt != NULL
4522 && hash != NULL
4523 && hash->root.plt.offset != (bfd_vma) -1)
4525 sym_sec = globals->splt;
4526 sym_value = hash->root.plt.offset;
4527 if (sym_sec->output_section != NULL)
4528 destination = (sym_value
4529 + sym_sec->output_offset
4530 + sym_sec->output_section->vma);
4532 else if (sym_sec->output_section != NULL)
4533 destination = (sym_value + irela->r_addend
4534 + sym_sec->output_offset
4535 + sym_sec->output_section->vma);
4537 else if ((hash->root.root.type == bfd_link_hash_undefined)
4538 || (hash->root.root.type == bfd_link_hash_undefweak))
4540 /* For a shared library, use the PLT stub as
4541 target address to decide whether a long
4542 branch stub is needed.
4543 For absolute code, they cannot be handled. */
4544 struct elf32_arm_link_hash_table *globals =
4545 elf32_arm_hash_table (info);
4547 if (globals != NULL
4548 && globals->splt != NULL
4549 && hash != NULL
4550 && hash->root.plt.offset != (bfd_vma) -1)
4552 sym_sec = globals->splt;
4553 sym_value = hash->root.plt.offset;
4554 if (sym_sec->output_section != NULL)
4555 destination = (sym_value
4556 + sym_sec->output_offset
4557 + sym_sec->output_section->vma);
4559 else
4560 continue;
4562 else
4564 bfd_set_error (bfd_error_bad_value);
4565 goto error_ret_free_internal;
4567 st_type = ELF_ST_TYPE (hash->root.type);
4568 sym_name = hash->root.root.root.string;
4573 /* Determine what (if any) linker stub is needed. */
4574 stub_type = arm_type_of_stub (info, section, irela,
4575 &st_type, hash,
4576 destination, sym_sec,
4577 input_bfd, sym_name);
4578 if (stub_type == arm_stub_none)
4579 break;
4581 /* Support for grouping stub sections. */
4582 id_sec = htab->stub_group[section->id].link_sec;
4584 /* Get the name of this stub. */
4585 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4586 irela, stub_type);
4587 if (!stub_name)
4588 goto error_ret_free_internal;
4590 /* We've either created a stub for this reloc already,
4591 or we are about to. */
4592 created_stub = TRUE;
4594 stub_entry = arm_stub_hash_lookup
4595 (&htab->stub_hash_table, stub_name,
4596 FALSE, FALSE);
4597 if (stub_entry != NULL)
4599 /* The proper stub has already been created. */
4600 free (stub_name);
4601 stub_entry->target_value = sym_value;
4602 break;
4605 stub_entry = elf32_arm_add_stub (stub_name, section,
4606 htab);
4607 if (stub_entry == NULL)
4609 free (stub_name);
4610 goto error_ret_free_internal;
4613 stub_entry->target_value = sym_value;
4614 stub_entry->target_section = sym_sec;
4615 stub_entry->stub_type = stub_type;
4616 stub_entry->h = hash;
4617 stub_entry->st_type = st_type;
4619 if (sym_name == NULL)
4620 sym_name = "unnamed";
4621 stub_entry->output_name = (char *)
4622 bfd_alloc (htab->stub_bfd,
4623 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4624 + strlen (sym_name));
4625 if (stub_entry->output_name == NULL)
4627 free (stub_name);
4628 goto error_ret_free_internal;
4631 /* For historical reasons, use the existing names for
4632 ARM-to-Thumb and Thumb-to-ARM stubs. */
4633 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4634 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4635 && st_type != STT_ARM_TFUNC)
4636 sprintf (stub_entry->output_name,
4637 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4638 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4639 || (r_type == (unsigned int) R_ARM_JUMP24))
4640 && st_type == STT_ARM_TFUNC)
4641 sprintf (stub_entry->output_name,
4642 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4643 else
4644 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4645 sym_name);
4647 stub_changed = TRUE;
4649 while (0);
4651 /* Look for relocations which might trigger Cortex-A8
4652 erratum. */
4653 if (htab->fix_cortex_a8
4654 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4655 || r_type == (unsigned int) R_ARM_THM_JUMP19
4656 || r_type == (unsigned int) R_ARM_THM_CALL
4657 || r_type == (unsigned int) R_ARM_THM_XPC22))
4659 bfd_vma from = section->output_section->vma
4660 + section->output_offset
4661 + irela->r_offset;
4663 if ((from & 0xfff) == 0xffe)
4665 /* Found a candidate. Note we haven't checked the
4666 destination is within 4K here: if we do so (and
4667 don't create an entry in a8_relocs) we can't tell
4668 that a branch should have been relocated when
4669 scanning later. */
4670 if (num_a8_relocs == a8_reloc_table_size)
4672 a8_reloc_table_size *= 2;
4673 a8_relocs = (struct a8_erratum_reloc *)
4674 bfd_realloc (a8_relocs,
4675 sizeof (struct a8_erratum_reloc)
4676 * a8_reloc_table_size);
4679 a8_relocs[num_a8_relocs].from = from;
4680 a8_relocs[num_a8_relocs].destination = destination;
4681 a8_relocs[num_a8_relocs].r_type = r_type;
4682 a8_relocs[num_a8_relocs].st_type = st_type;
4683 a8_relocs[num_a8_relocs].sym_name = sym_name;
4684 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4686 num_a8_relocs++;
4691 /* We're done with the internal relocs, free them. */
4692 if (elf_section_data (section)->relocs == NULL)
4693 free (internal_relocs);
4696 if (htab->fix_cortex_a8)
4698 /* Sort relocs which might apply to Cortex-A8 erratum. */
4699 qsort (a8_relocs, num_a8_relocs,
4700 sizeof (struct a8_erratum_reloc),
4701 &a8_reloc_compare);
4703 /* Scan for branches which might trigger Cortex-A8 erratum. */
4704 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4705 &num_a8_fixes, &a8_fix_table_size,
4706 a8_relocs, num_a8_relocs,
4707 prev_num_a8_fixes, &stub_changed)
4708 != 0)
4709 goto error_ret_free_local;
4713 if (prev_num_a8_fixes != num_a8_fixes)
4714 stub_changed = TRUE;
4716 if (!stub_changed)
4717 break;
4719 /* OK, we've added some stubs. Find out the new size of the
4720 stub sections. */
4721 for (stub_sec = htab->stub_bfd->sections;
4722 stub_sec != NULL;
4723 stub_sec = stub_sec->next)
4725 /* Ignore non-stub sections. */
4726 if (!strstr (stub_sec->name, STUB_SUFFIX))
4727 continue;
4729 stub_sec->size = 0;
4732 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4734 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4735 if (htab->fix_cortex_a8)
4736 for (i = 0; i < num_a8_fixes; i++)
4738 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4739 a8_fixes[i].section, htab);
4741 if (stub_sec == NULL)
4742 goto error_ret_free_local;
4744 stub_sec->size
4745 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4746 NULL);
4750 /* Ask the linker to do its stuff. */
4751 (*htab->layout_sections_again) ();
4754 /* Add stubs for Cortex-A8 erratum fixes now. */
4755 if (htab->fix_cortex_a8)
4757 for (i = 0; i < num_a8_fixes; i++)
4759 struct elf32_arm_stub_hash_entry *stub_entry;
4760 char *stub_name = a8_fixes[i].stub_name;
4761 asection *section = a8_fixes[i].section;
4762 unsigned int section_id = a8_fixes[i].section->id;
4763 asection *link_sec = htab->stub_group[section_id].link_sec;
4764 asection *stub_sec = htab->stub_group[section_id].stub_sec;
4765 const insn_sequence *template_sequence;
4766 int template_size, size = 0;
4768 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4769 TRUE, FALSE);
4770 if (stub_entry == NULL)
4772 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4773 section->owner,
4774 stub_name);
4775 return FALSE;
4778 stub_entry->stub_sec = stub_sec;
4779 stub_entry->stub_offset = 0;
4780 stub_entry->id_sec = link_sec;
4781 stub_entry->stub_type = a8_fixes[i].stub_type;
4782 stub_entry->target_section = a8_fixes[i].section;
4783 stub_entry->target_value = a8_fixes[i].offset;
4784 stub_entry->target_addend = a8_fixes[i].addend;
4785 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4786 stub_entry->st_type = a8_fixes[i].st_type;
4788 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4789 &template_sequence,
4790 &template_size);
4792 stub_entry->stub_size = size;
4793 stub_entry->stub_template = template_sequence;
4794 stub_entry->stub_template_size = template_size;
4797 /* Stash the Cortex-A8 erratum fix array for use later in
4798 elf32_arm_write_section(). */
4799 htab->a8_erratum_fixes = a8_fixes;
4800 htab->num_a8_erratum_fixes = num_a8_fixes;
4802 else
4804 htab->a8_erratum_fixes = NULL;
4805 htab->num_a8_erratum_fixes = 0;
4807 return TRUE;
4809 error_ret_free_local:
4810 return FALSE;
4813 /* Build all the stubs associated with the current output file. The
4814 stubs are kept in a hash table attached to the main linker hash
4815 table. We also set up the .plt entries for statically linked PIC
4816 functions here. This function is called via arm_elf_finish in the
4817 linker. */
4819 bfd_boolean
4820 elf32_arm_build_stubs (struct bfd_link_info *info)
4822 asection *stub_sec;
4823 struct bfd_hash_table *table;
4824 struct elf32_arm_link_hash_table *htab;
4826 htab = elf32_arm_hash_table (info);
4827 if (htab == NULL)
4828 return FALSE;
4830 for (stub_sec = htab->stub_bfd->sections;
4831 stub_sec != NULL;
4832 stub_sec = stub_sec->next)
4834 bfd_size_type size;
4836 /* Ignore non-stub sections. */
4837 if (!strstr (stub_sec->name, STUB_SUFFIX))
4838 continue;
4840 /* Allocate memory to hold the linker stubs. */
4841 size = stub_sec->size;
4842 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
4843 if (stub_sec->contents == NULL && size != 0)
4844 return FALSE;
4845 stub_sec->size = 0;
4848 /* Build the stubs as directed by the stub hash table. */
4849 table = &htab->stub_hash_table;
4850 bfd_hash_traverse (table, arm_build_one_stub, info);
4851 if (htab->fix_cortex_a8)
4853 /* Place the cortex a8 stubs last. */
4854 htab->fix_cortex_a8 = -1;
4855 bfd_hash_traverse (table, arm_build_one_stub, info);
4858 return TRUE;
4861 /* Locate the Thumb encoded calling stub for NAME. */
4863 static struct elf_link_hash_entry *
4864 find_thumb_glue (struct bfd_link_info *link_info,
4865 const char *name,
4866 char **error_message)
4868 char *tmp_name;
4869 struct elf_link_hash_entry *hash;
4870 struct elf32_arm_link_hash_table *hash_table;
4872 /* We need a pointer to the armelf specific hash table. */
4873 hash_table = elf32_arm_hash_table (link_info);
4874 if (hash_table == NULL)
4875 return NULL;
4877 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4878 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4880 BFD_ASSERT (tmp_name);
4882 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4884 hash = elf_link_hash_lookup
4885 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4887 if (hash == NULL
4888 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4889 tmp_name, name) == -1)
4890 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4892 free (tmp_name);
4894 return hash;
4897 /* Locate the ARM encoded calling stub for NAME. */
4899 static struct elf_link_hash_entry *
4900 find_arm_glue (struct bfd_link_info *link_info,
4901 const char *name,
4902 char **error_message)
4904 char *tmp_name;
4905 struct elf_link_hash_entry *myh;
4906 struct elf32_arm_link_hash_table *hash_table;
4908 /* We need a pointer to the elfarm specific hash table. */
4909 hash_table = elf32_arm_hash_table (link_info);
4910 if (hash_table == NULL)
4911 return NULL;
4913 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4914 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4916 BFD_ASSERT (tmp_name);
4918 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4920 myh = elf_link_hash_lookup
4921 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4923 if (myh == NULL
4924 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4925 tmp_name, name) == -1)
4926 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4928 free (tmp_name);
4930 return myh;
4933 /* ARM->Thumb glue (static images):
4935 .arm
4936 __func_from_arm:
4937 ldr r12, __func_addr
4938 bx r12
4939 __func_addr:
4940 .word func @ behave as if you saw a ARM_32 reloc.
4942 (v5t static images)
4943 .arm
4944 __func_from_arm:
4945 ldr pc, __func_addr
4946 __func_addr:
4947 .word func @ behave as if you saw a ARM_32 reloc.
4949 (relocatable images)
4950 .arm
4951 __func_from_arm:
4952 ldr r12, __func_offset
4953 add r12, r12, pc
4954 bx r12
4955 __func_offset:
4956 .word func - . */
4958 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4959 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4960 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4961 static const insn32 a2t3_func_addr_insn = 0x00000001;
4963 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4964 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4965 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4967 #define ARM2THUMB_PIC_GLUE_SIZE 16
4968 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4969 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4970 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4972 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4974 .thumb .thumb
4975 .align 2 .align 2
4976 __func_from_thumb: __func_from_thumb:
4977 bx pc push {r6, lr}
4978 nop ldr r6, __func_addr
4979 .arm mov lr, pc
4980 b func bx r6
4981 .arm
4982 ;; back_to_thumb
4983 ldmia r13! {r6, lr}
4984 bx lr
4985 __func_addr:
4986 .word func */
4988 #define THUMB2ARM_GLUE_SIZE 8
4989 static const insn16 t2a1_bx_pc_insn = 0x4778;
4990 static const insn16 t2a2_noop_insn = 0x46c0;
4991 static const insn32 t2a3_b_insn = 0xea000000;
4993 #define VFP11_ERRATUM_VENEER_SIZE 8
4995 #define ARM_BX_VENEER_SIZE 12
4996 static const insn32 armbx1_tst_insn = 0xe3100001;
4997 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4998 static const insn32 armbx3_bx_insn = 0xe12fff10;
5000 #ifndef ELFARM_NABI_C_INCLUDED
5001 static void
5002 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5004 asection * s;
5005 bfd_byte * contents;
5007 if (size == 0)
5009 /* Do not include empty glue sections in the output. */
5010 if (abfd != NULL)
5012 s = bfd_get_section_by_name (abfd, name);
5013 if (s != NULL)
5014 s->flags |= SEC_EXCLUDE;
5016 return;
5019 BFD_ASSERT (abfd != NULL);
5021 s = bfd_get_section_by_name (abfd, name);
5022 BFD_ASSERT (s != NULL);
5024 contents = (bfd_byte *) bfd_alloc (abfd, size);
5026 BFD_ASSERT (s->size == size);
5027 s->contents = contents;
5030 bfd_boolean
5031 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5033 struct elf32_arm_link_hash_table * globals;
5035 globals = elf32_arm_hash_table (info);
5036 BFD_ASSERT (globals != NULL);
5038 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5039 globals->arm_glue_size,
5040 ARM2THUMB_GLUE_SECTION_NAME);
5042 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5043 globals->thumb_glue_size,
5044 THUMB2ARM_GLUE_SECTION_NAME);
5046 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5047 globals->vfp11_erratum_glue_size,
5048 VFP11_ERRATUM_VENEER_SECTION_NAME);
5050 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5051 globals->bx_glue_size,
5052 ARM_BX_GLUE_SECTION_NAME);
5054 return TRUE;
5057 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5058 returns the symbol identifying the stub. */
5060 static struct elf_link_hash_entry *
5061 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5062 struct elf_link_hash_entry * h)
5064 const char * name = h->root.root.string;
5065 asection * s;
5066 char * tmp_name;
5067 struct elf_link_hash_entry * myh;
5068 struct bfd_link_hash_entry * bh;
5069 struct elf32_arm_link_hash_table * globals;
5070 bfd_vma val;
5071 bfd_size_type size;
5073 globals = elf32_arm_hash_table (link_info);
5074 BFD_ASSERT (globals != NULL);
5075 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5077 s = bfd_get_section_by_name
5078 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5080 BFD_ASSERT (s != NULL);
5082 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5083 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5085 BFD_ASSERT (tmp_name);
5087 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5089 myh = elf_link_hash_lookup
5090 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5092 if (myh != NULL)
5094 /* We've already seen this guy. */
5095 free (tmp_name);
5096 return myh;
5099 /* The only trick here is using hash_table->arm_glue_size as the value.
5100 Even though the section isn't allocated yet, this is where we will be
5101 putting it. The +1 on the value marks that the stub has not been
5102 output yet - not that it is a Thumb function. */
5103 bh = NULL;
5104 val = globals->arm_glue_size + 1;
5105 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5106 tmp_name, BSF_GLOBAL, s, val,
5107 NULL, TRUE, FALSE, &bh);
5109 myh = (struct elf_link_hash_entry *) bh;
5110 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5111 myh->forced_local = 1;
5113 free (tmp_name);
5115 if (link_info->shared || globals->root.is_relocatable_executable
5116 || globals->pic_veneer)
5117 size = ARM2THUMB_PIC_GLUE_SIZE;
5118 else if (globals->use_blx)
5119 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5120 else
5121 size = ARM2THUMB_STATIC_GLUE_SIZE;
5123 s->size += size;
5124 globals->arm_glue_size += size;
5126 return myh;
5129 /* Allocate space for ARMv4 BX veneers. */
5131 static void
5132 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5134 asection * s;
5135 struct elf32_arm_link_hash_table *globals;
5136 char *tmp_name;
5137 struct elf_link_hash_entry *myh;
5138 struct bfd_link_hash_entry *bh;
5139 bfd_vma val;
5141 /* BX PC does not need a veneer. */
5142 if (reg == 15)
5143 return;
5145 globals = elf32_arm_hash_table (link_info);
5146 BFD_ASSERT (globals != NULL);
5147 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5149 /* Check if this veneer has already been allocated. */
5150 if (globals->bx_glue_offset[reg])
5151 return;
5153 s = bfd_get_section_by_name
5154 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5156 BFD_ASSERT (s != NULL);
5158 /* Add symbol for veneer. */
5159 tmp_name = (char *)
5160 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5162 BFD_ASSERT (tmp_name);
5164 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5166 myh = elf_link_hash_lookup
5167 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5169 BFD_ASSERT (myh == NULL);
5171 bh = NULL;
5172 val = globals->bx_glue_size;
5173 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5174 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5175 NULL, TRUE, FALSE, &bh);
5177 myh = (struct elf_link_hash_entry *) bh;
5178 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5179 myh->forced_local = 1;
5181 s->size += ARM_BX_VENEER_SIZE;
5182 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5183 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5187 /* Add an entry to the code/data map for section SEC. */
5189 static void
5190 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5192 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5193 unsigned int newidx;
5195 if (sec_data->map == NULL)
5197 sec_data->map = (elf32_arm_section_map *)
5198 bfd_malloc (sizeof (elf32_arm_section_map));
5199 sec_data->mapcount = 0;
5200 sec_data->mapsize = 1;
5203 newidx = sec_data->mapcount++;
5205 if (sec_data->mapcount > sec_data->mapsize)
5207 sec_data->mapsize *= 2;
5208 sec_data->map = (elf32_arm_section_map *)
5209 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5210 * sizeof (elf32_arm_section_map));
5213 if (sec_data->map)
5215 sec_data->map[newidx].vma = vma;
5216 sec_data->map[newidx].type = type;
5221 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5222 veneers are handled for now. */
5224 static bfd_vma
5225 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5226 elf32_vfp11_erratum_list *branch,
5227 bfd *branch_bfd,
5228 asection *branch_sec,
5229 unsigned int offset)
5231 asection *s;
5232 struct elf32_arm_link_hash_table *hash_table;
5233 char *tmp_name;
5234 struct elf_link_hash_entry *myh;
5235 struct bfd_link_hash_entry *bh;
5236 bfd_vma val;
5237 struct _arm_elf_section_data *sec_data;
5238 int errcount;
5239 elf32_vfp11_erratum_list *newerr;
5241 hash_table = elf32_arm_hash_table (link_info);
5242 BFD_ASSERT (hash_table != NULL);
5243 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5245 s = bfd_get_section_by_name
5246 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5248 sec_data = elf32_arm_section_data (s);
5250 BFD_ASSERT (s != NULL);
5252 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5253 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5255 BFD_ASSERT (tmp_name);
5257 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5258 hash_table->num_vfp11_fixes);
5260 myh = elf_link_hash_lookup
5261 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5263 BFD_ASSERT (myh == NULL);
5265 bh = NULL;
5266 val = hash_table->vfp11_erratum_glue_size;
5267 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5268 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5269 NULL, TRUE, FALSE, &bh);
5271 myh = (struct elf_link_hash_entry *) bh;
5272 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5273 myh->forced_local = 1;
5275 /* Link veneer back to calling location. */
5276 errcount = ++(sec_data->erratumcount);
5277 newerr = (elf32_vfp11_erratum_list *)
5278 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5280 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5281 newerr->vma = -1;
5282 newerr->u.v.branch = branch;
5283 newerr->u.v.id = hash_table->num_vfp11_fixes;
5284 branch->u.b.veneer = newerr;
5286 newerr->next = sec_data->erratumlist;
5287 sec_data->erratumlist = newerr;
5289 /* A symbol for the return from the veneer. */
5290 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5291 hash_table->num_vfp11_fixes);
5293 myh = elf_link_hash_lookup
5294 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5296 if (myh != NULL)
5297 abort ();
5299 bh = NULL;
5300 val = offset + 4;
5301 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5302 branch_sec, val, NULL, TRUE, FALSE, &bh);
5304 myh = (struct elf_link_hash_entry *) bh;
5305 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5306 myh->forced_local = 1;
5308 free (tmp_name);
5310 /* Generate a mapping symbol for the veneer section, and explicitly add an
5311 entry for that symbol to the code/data map for the section. */
5312 if (hash_table->vfp11_erratum_glue_size == 0)
5314 bh = NULL;
5315 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5316 ever requires this erratum fix. */
5317 _bfd_generic_link_add_one_symbol (link_info,
5318 hash_table->bfd_of_glue_owner, "$a",
5319 BSF_LOCAL, s, 0, NULL,
5320 TRUE, FALSE, &bh);
5322 myh = (struct elf_link_hash_entry *) bh;
5323 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5324 myh->forced_local = 1;
5326 /* The elf32_arm_init_maps function only cares about symbols from input
5327 BFDs. We must make a note of this generated mapping symbol
5328 ourselves so that code byteswapping works properly in
5329 elf32_arm_write_section. */
5330 elf32_arm_section_map_add (s, 'a', 0);
5333 s->size += VFP11_ERRATUM_VENEER_SIZE;
5334 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5335 hash_table->num_vfp11_fixes++;
5337 /* The offset of the veneer. */
5338 return val;
5341 #define ARM_GLUE_SECTION_FLAGS \
5342 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5343 | SEC_READONLY | SEC_LINKER_CREATED)
5345 /* Create a fake section for use by the ARM backend of the linker. */
5347 static bfd_boolean
5348 arm_make_glue_section (bfd * abfd, const char * name)
5350 asection * sec;
5352 sec = bfd_get_section_by_name (abfd, name);
5353 if (sec != NULL)
5354 /* Already made. */
5355 return TRUE;
5357 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5359 if (sec == NULL
5360 || !bfd_set_section_alignment (abfd, sec, 2))
5361 return FALSE;
5363 /* Set the gc mark to prevent the section from being removed by garbage
5364 collection, despite the fact that no relocs refer to this section. */
5365 sec->gc_mark = 1;
5367 return TRUE;
5370 /* Add the glue sections to ABFD. This function is called from the
5371 linker scripts in ld/emultempl/{armelf}.em. */
5373 bfd_boolean
5374 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5375 struct bfd_link_info *info)
5377 /* If we are only performing a partial
5378 link do not bother adding the glue. */
5379 if (info->relocatable)
5380 return TRUE;
5382 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5383 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5384 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5385 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5388 /* Select a BFD to be used to hold the sections used by the glue code.
5389 This function is called from the linker scripts in ld/emultempl/
5390 {armelf/pe}.em. */
5392 bfd_boolean
5393 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5395 struct elf32_arm_link_hash_table *globals;
5397 /* If we are only performing a partial link
5398 do not bother getting a bfd to hold the glue. */
5399 if (info->relocatable)
5400 return TRUE;
5402 /* Make sure we don't attach the glue sections to a dynamic object. */
5403 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5405 globals = elf32_arm_hash_table (info);
5406 BFD_ASSERT (globals != NULL);
5408 if (globals->bfd_of_glue_owner != NULL)
5409 return TRUE;
5411 /* Save the bfd for later use. */
5412 globals->bfd_of_glue_owner = abfd;
5414 return TRUE;
5417 static void
5418 check_use_blx (struct elf32_arm_link_hash_table *globals)
5420 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5421 Tag_CPU_arch) > 2)
5422 globals->use_blx = 1;
5425 bfd_boolean
5426 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5427 struct bfd_link_info *link_info)
5429 Elf_Internal_Shdr *symtab_hdr;
5430 Elf_Internal_Rela *internal_relocs = NULL;
5431 Elf_Internal_Rela *irel, *irelend;
5432 bfd_byte *contents = NULL;
5434 asection *sec;
5435 struct elf32_arm_link_hash_table *globals;
5437 /* If we are only performing a partial link do not bother
5438 to construct any glue. */
5439 if (link_info->relocatable)
5440 return TRUE;
5442 /* Here we have a bfd that is to be included on the link. We have a
5443 hook to do reloc rummaging, before section sizes are nailed down. */
5444 globals = elf32_arm_hash_table (link_info);
5445 BFD_ASSERT (globals != NULL);
5447 check_use_blx (globals);
5449 if (globals->byteswap_code && !bfd_big_endian (abfd))
5451 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5452 abfd);
5453 return FALSE;
5456 /* PR 5398: If we have not decided to include any loadable sections in
5457 the output then we will not have a glue owner bfd. This is OK, it
5458 just means that there is nothing else for us to do here. */
5459 if (globals->bfd_of_glue_owner == NULL)
5460 return TRUE;
5462 /* Rummage around all the relocs and map the glue vectors. */
5463 sec = abfd->sections;
5465 if (sec == NULL)
5466 return TRUE;
5468 for (; sec != NULL; sec = sec->next)
5470 if (sec->reloc_count == 0)
5471 continue;
5473 if ((sec->flags & SEC_EXCLUDE) != 0)
5474 continue;
5476 symtab_hdr = & elf_symtab_hdr (abfd);
5478 /* Load the relocs. */
5479 internal_relocs
5480 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5482 if (internal_relocs == NULL)
5483 goto error_return;
5485 irelend = internal_relocs + sec->reloc_count;
5486 for (irel = internal_relocs; irel < irelend; irel++)
5488 long r_type;
5489 unsigned long r_index;
5491 struct elf_link_hash_entry *h;
5493 r_type = ELF32_R_TYPE (irel->r_info);
5494 r_index = ELF32_R_SYM (irel->r_info);
5496 /* These are the only relocation types we care about. */
5497 if ( r_type != R_ARM_PC24
5498 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5499 continue;
5501 /* Get the section contents if we haven't done so already. */
5502 if (contents == NULL)
5504 /* Get cached copy if it exists. */
5505 if (elf_section_data (sec)->this_hdr.contents != NULL)
5506 contents = elf_section_data (sec)->this_hdr.contents;
5507 else
5509 /* Go get them off disk. */
5510 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5511 goto error_return;
5515 if (r_type == R_ARM_V4BX)
5517 int reg;
5519 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5520 record_arm_bx_glue (link_info, reg);
5521 continue;
5524 /* If the relocation is not against a symbol it cannot concern us. */
5525 h = NULL;
5527 /* We don't care about local symbols. */
5528 if (r_index < symtab_hdr->sh_info)
5529 continue;
5531 /* This is an external symbol. */
5532 r_index -= symtab_hdr->sh_info;
5533 h = (struct elf_link_hash_entry *)
5534 elf_sym_hashes (abfd)[r_index];
5536 /* If the relocation is against a static symbol it must be within
5537 the current section and so cannot be a cross ARM/Thumb relocation. */
5538 if (h == NULL)
5539 continue;
5541 /* If the call will go through a PLT entry then we do not need
5542 glue. */
5543 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5544 continue;
5546 switch (r_type)
5548 case R_ARM_PC24:
5549 /* This one is a call from arm code. We need to look up
5550 the target of the call. If it is a thumb target, we
5551 insert glue. */
5552 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5553 record_arm_to_thumb_glue (link_info, h);
5554 break;
5556 default:
5557 abort ();
5561 if (contents != NULL
5562 && elf_section_data (sec)->this_hdr.contents != contents)
5563 free (contents);
5564 contents = NULL;
5566 if (internal_relocs != NULL
5567 && elf_section_data (sec)->relocs != internal_relocs)
5568 free (internal_relocs);
5569 internal_relocs = NULL;
5572 return TRUE;
5574 error_return:
5575 if (contents != NULL
5576 && elf_section_data (sec)->this_hdr.contents != contents)
5577 free (contents);
5578 if (internal_relocs != NULL
5579 && elf_section_data (sec)->relocs != internal_relocs)
5580 free (internal_relocs);
5582 return FALSE;
5584 #endif
5587 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5589 void
5590 bfd_elf32_arm_init_maps (bfd *abfd)
5592 Elf_Internal_Sym *isymbuf;
5593 Elf_Internal_Shdr *hdr;
5594 unsigned int i, localsyms;
5596 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5597 if (! is_arm_elf (abfd))
5598 return;
5600 if ((abfd->flags & DYNAMIC) != 0)
5601 return;
5603 hdr = & elf_symtab_hdr (abfd);
5604 localsyms = hdr->sh_info;
5606 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5607 should contain the number of local symbols, which should come before any
5608 global symbols. Mapping symbols are always local. */
5609 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5610 NULL);
5612 /* No internal symbols read? Skip this BFD. */
5613 if (isymbuf == NULL)
5614 return;
5616 for (i = 0; i < localsyms; i++)
5618 Elf_Internal_Sym *isym = &isymbuf[i];
5619 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5620 const char *name;
5622 if (sec != NULL
5623 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5625 name = bfd_elf_string_from_elf_section (abfd,
5626 hdr->sh_link, isym->st_name);
5628 if (bfd_is_arm_special_symbol_name (name,
5629 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5630 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5636 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5637 say what they wanted. */
5639 void
5640 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5642 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5643 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5645 if (globals == NULL)
5646 return;
5648 if (globals->fix_cortex_a8 == -1)
5650 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5651 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5652 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5653 || out_attr[Tag_CPU_arch_profile].i == 0))
5654 globals->fix_cortex_a8 = 1;
5655 else
5656 globals->fix_cortex_a8 = 0;
5661 void
5662 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5664 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5665 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5667 if (globals == NULL)
5668 return;
5669 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5670 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5672 switch (globals->vfp11_fix)
5674 case BFD_ARM_VFP11_FIX_DEFAULT:
5675 case BFD_ARM_VFP11_FIX_NONE:
5676 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5677 break;
5679 default:
5680 /* Give a warning, but do as the user requests anyway. */
5681 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5682 "workaround is not necessary for target architecture"), obfd);
5685 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5686 /* For earlier architectures, we might need the workaround, but do not
5687 enable it by default. If users is running with broken hardware, they
5688 must enable the erratum fix explicitly. */
5689 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5693 enum bfd_arm_vfp11_pipe
5695 VFP11_FMAC,
5696 VFP11_LS,
5697 VFP11_DS,
5698 VFP11_BAD
5701 /* Return a VFP register number. This is encoded as RX:X for single-precision
5702 registers, or X:RX for double-precision registers, where RX is the group of
5703 four bits in the instruction encoding and X is the single extension bit.
5704 RX and X fields are specified using their lowest (starting) bit. The return
5705 value is:
5707 0...31: single-precision registers s0...s31
5708 32...63: double-precision registers d0...d31.
5710 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5711 encounter VFP3 instructions, so we allow the full range for DP registers. */
5713 static unsigned int
5714 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5715 unsigned int x)
5717 if (is_double)
5718 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5719 else
5720 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5723 /* Set bits in *WMASK according to a register number REG as encoded by
5724 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5726 static void
5727 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5729 if (reg < 32)
5730 *wmask |= 1 << reg;
5731 else if (reg < 48)
5732 *wmask |= 3 << ((reg - 32) * 2);
5735 /* Return TRUE if WMASK overwrites anything in REGS. */
5737 static bfd_boolean
5738 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5740 int i;
5742 for (i = 0; i < numregs; i++)
5744 unsigned int reg = regs[i];
5746 if (reg < 32 && (wmask & (1 << reg)) != 0)
5747 return TRUE;
5749 reg -= 32;
5751 if (reg >= 16)
5752 continue;
5754 if ((wmask & (3 << (reg * 2))) != 0)
5755 return TRUE;
5758 return FALSE;
5761 /* In this function, we're interested in two things: finding input registers
5762 for VFP data-processing instructions, and finding the set of registers which
5763 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5764 hold the written set, so FLDM etc. are easy to deal with (we're only
5765 interested in 32 SP registers or 16 dp registers, due to the VFP version
5766 implemented by the chip in question). DP registers are marked by setting
5767 both SP registers in the write mask). */
5769 static enum bfd_arm_vfp11_pipe
5770 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5771 int *numregs)
5773 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
5774 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5776 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5778 unsigned int pqrs;
5779 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5780 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5782 pqrs = ((insn & 0x00800000) >> 20)
5783 | ((insn & 0x00300000) >> 19)
5784 | ((insn & 0x00000040) >> 6);
5786 switch (pqrs)
5788 case 0: /* fmac[sd]. */
5789 case 1: /* fnmac[sd]. */
5790 case 2: /* fmsc[sd]. */
5791 case 3: /* fnmsc[sd]. */
5792 vpipe = VFP11_FMAC;
5793 bfd_arm_vfp11_write_mask (destmask, fd);
5794 regs[0] = fd;
5795 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5796 regs[2] = fm;
5797 *numregs = 3;
5798 break;
5800 case 4: /* fmul[sd]. */
5801 case 5: /* fnmul[sd]. */
5802 case 6: /* fadd[sd]. */
5803 case 7: /* fsub[sd]. */
5804 vpipe = VFP11_FMAC;
5805 goto vfp_binop;
5807 case 8: /* fdiv[sd]. */
5808 vpipe = VFP11_DS;
5809 vfp_binop:
5810 bfd_arm_vfp11_write_mask (destmask, fd);
5811 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5812 regs[1] = fm;
5813 *numregs = 2;
5814 break;
5816 case 15: /* extended opcode. */
5818 unsigned int extn = ((insn >> 15) & 0x1e)
5819 | ((insn >> 7) & 1);
5821 switch (extn)
5823 case 0: /* fcpy[sd]. */
5824 case 1: /* fabs[sd]. */
5825 case 2: /* fneg[sd]. */
5826 case 8: /* fcmp[sd]. */
5827 case 9: /* fcmpe[sd]. */
5828 case 10: /* fcmpz[sd]. */
5829 case 11: /* fcmpez[sd]. */
5830 case 16: /* fuito[sd]. */
5831 case 17: /* fsito[sd]. */
5832 case 24: /* ftoui[sd]. */
5833 case 25: /* ftouiz[sd]. */
5834 case 26: /* ftosi[sd]. */
5835 case 27: /* ftosiz[sd]. */
5836 /* These instructions will not bounce due to underflow. */
5837 *numregs = 0;
5838 vpipe = VFP11_FMAC;
5839 break;
5841 case 3: /* fsqrt[sd]. */
5842 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5843 registers to cause the erratum in previous instructions. */
5844 bfd_arm_vfp11_write_mask (destmask, fd);
5845 vpipe = VFP11_DS;
5846 break;
5848 case 15: /* fcvt{ds,sd}. */
5850 int rnum = 0;
5852 bfd_arm_vfp11_write_mask (destmask, fd);
5854 /* Only FCVTSD can underflow. */
5855 if ((insn & 0x100) != 0)
5856 regs[rnum++] = fm;
5858 *numregs = rnum;
5860 vpipe = VFP11_FMAC;
5862 break;
5864 default:
5865 return VFP11_BAD;
5868 break;
5870 default:
5871 return VFP11_BAD;
5874 /* Two-register transfer. */
5875 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5877 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5879 if ((insn & 0x100000) == 0)
5881 if (is_double)
5882 bfd_arm_vfp11_write_mask (destmask, fm);
5883 else
5885 bfd_arm_vfp11_write_mask (destmask, fm);
5886 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5890 vpipe = VFP11_LS;
5892 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5894 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5895 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5897 switch (puw)
5899 case 0: /* Two-reg transfer. We should catch these above. */
5900 abort ();
5902 case 2: /* fldm[sdx]. */
5903 case 3:
5904 case 5:
5906 unsigned int i, offset = insn & 0xff;
5908 if (is_double)
5909 offset >>= 1;
5911 for (i = fd; i < fd + offset; i++)
5912 bfd_arm_vfp11_write_mask (destmask, i);
5914 break;
5916 case 4: /* fld[sd]. */
5917 case 6:
5918 bfd_arm_vfp11_write_mask (destmask, fd);
5919 break;
5921 default:
5922 return VFP11_BAD;
5925 vpipe = VFP11_LS;
5927 /* Single-register transfer. Note L==0. */
5928 else if ((insn & 0x0f100e10) == 0x0e000a10)
5930 unsigned int opcode = (insn >> 21) & 7;
5931 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5933 switch (opcode)
5935 case 0: /* fmsr/fmdlr. */
5936 case 1: /* fmdhr. */
5937 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5938 destination register. I don't know if this is exactly right,
5939 but it is the conservative choice. */
5940 bfd_arm_vfp11_write_mask (destmask, fn);
5941 break;
5943 case 7: /* fmxr. */
5944 break;
5947 vpipe = VFP11_LS;
5950 return vpipe;
5954 static int elf32_arm_compare_mapping (const void * a, const void * b);
5957 /* Look for potentially-troublesome code sequences which might trigger the
5958 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5959 (available from ARM) for details of the erratum. A short version is
5960 described in ld.texinfo. */
5962 bfd_boolean
5963 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5965 asection *sec;
5966 bfd_byte *contents = NULL;
5967 int state = 0;
5968 int regs[3], numregs = 0;
5969 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5970 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5972 if (globals == NULL)
5973 return FALSE;
5975 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5976 The states transition as follows:
5978 0 -> 1 (vector) or 0 -> 2 (scalar)
5979 A VFP FMAC-pipeline instruction has been seen. Fill
5980 regs[0]..regs[numregs-1] with its input operands. Remember this
5981 instruction in 'first_fmac'.
5983 1 -> 2
5984 Any instruction, except for a VFP instruction which overwrites
5985 regs[*].
5987 1 -> 3 [ -> 0 ] or
5988 2 -> 3 [ -> 0 ]
5989 A VFP instruction has been seen which overwrites any of regs[*].
5990 We must make a veneer! Reset state to 0 before examining next
5991 instruction.
5993 2 -> 0
5994 If we fail to match anything in state 2, reset to state 0 and reset
5995 the instruction pointer to the instruction after 'first_fmac'.
5997 If the VFP11 vector mode is in use, there must be at least two unrelated
5998 instructions between anti-dependent VFP11 instructions to properly avoid
5999 triggering the erratum, hence the use of the extra state 1. */
6001 /* If we are only performing a partial link do not bother
6002 to construct any glue. */
6003 if (link_info->relocatable)
6004 return TRUE;
6006 /* Skip if this bfd does not correspond to an ELF image. */
6007 if (! is_arm_elf (abfd))
6008 return TRUE;
6010 /* We should have chosen a fix type by the time we get here. */
6011 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6013 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6014 return TRUE;
6016 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6017 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6018 return TRUE;
6020 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6022 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6023 struct _arm_elf_section_data *sec_data;
6025 /* If we don't have executable progbits, we're not interested in this
6026 section. Also skip if section is to be excluded. */
6027 if (elf_section_type (sec) != SHT_PROGBITS
6028 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6029 || (sec->flags & SEC_EXCLUDE) != 0
6030 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6031 || sec->output_section == bfd_abs_section_ptr
6032 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6033 continue;
6035 sec_data = elf32_arm_section_data (sec);
6037 if (sec_data->mapcount == 0)
6038 continue;
6040 if (elf_section_data (sec)->this_hdr.contents != NULL)
6041 contents = elf_section_data (sec)->this_hdr.contents;
6042 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6043 goto error_return;
6045 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6046 elf32_arm_compare_mapping);
6048 for (span = 0; span < sec_data->mapcount; span++)
6050 unsigned int span_start = sec_data->map[span].vma;
6051 unsigned int span_end = (span == sec_data->mapcount - 1)
6052 ? sec->size : sec_data->map[span + 1].vma;
6053 char span_type = sec_data->map[span].type;
6055 /* FIXME: Only ARM mode is supported at present. We may need to
6056 support Thumb-2 mode also at some point. */
6057 if (span_type != 'a')
6058 continue;
6060 for (i = span_start; i < span_end;)
6062 unsigned int next_i = i + 4;
6063 unsigned int insn = bfd_big_endian (abfd)
6064 ? (contents[i] << 24)
6065 | (contents[i + 1] << 16)
6066 | (contents[i + 2] << 8)
6067 | contents[i + 3]
6068 : (contents[i + 3] << 24)
6069 | (contents[i + 2] << 16)
6070 | (contents[i + 1] << 8)
6071 | contents[i];
6072 unsigned int writemask = 0;
6073 enum bfd_arm_vfp11_pipe vpipe;
6075 switch (state)
6077 case 0:
6078 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6079 &numregs);
6080 /* I'm assuming the VFP11 erratum can trigger with denorm
6081 operands on either the FMAC or the DS pipeline. This might
6082 lead to slightly overenthusiastic veneer insertion. */
6083 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6085 state = use_vector ? 1 : 2;
6086 first_fmac = i;
6087 veneer_of_insn = insn;
6089 break;
6091 case 1:
6093 int other_regs[3], other_numregs;
6094 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6095 other_regs,
6096 &other_numregs);
6097 if (vpipe != VFP11_BAD
6098 && bfd_arm_vfp11_antidependency (writemask, regs,
6099 numregs))
6100 state = 3;
6101 else
6102 state = 2;
6104 break;
6106 case 2:
6108 int other_regs[3], other_numregs;
6109 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6110 other_regs,
6111 &other_numregs);
6112 if (vpipe != VFP11_BAD
6113 && bfd_arm_vfp11_antidependency (writemask, regs,
6114 numregs))
6115 state = 3;
6116 else
6118 state = 0;
6119 next_i = first_fmac + 4;
6122 break;
6124 case 3:
6125 abort (); /* Should be unreachable. */
6128 if (state == 3)
6130 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6131 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6132 int errcount;
6134 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6136 newerr->u.b.vfp_insn = veneer_of_insn;
6138 switch (span_type)
6140 case 'a':
6141 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6142 break;
6144 default:
6145 abort ();
6148 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6149 first_fmac);
6151 newerr->vma = -1;
6153 newerr->next = sec_data->erratumlist;
6154 sec_data->erratumlist = newerr;
6156 state = 0;
6159 i = next_i;
6163 if (contents != NULL
6164 && elf_section_data (sec)->this_hdr.contents != contents)
6165 free (contents);
6166 contents = NULL;
6169 return TRUE;
6171 error_return:
6172 if (contents != NULL
6173 && elf_section_data (sec)->this_hdr.contents != contents)
6174 free (contents);
6176 return FALSE;
6179 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6180 after sections have been laid out, using specially-named symbols. */
6182 void
6183 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6184 struct bfd_link_info *link_info)
6186 asection *sec;
6187 struct elf32_arm_link_hash_table *globals;
6188 char *tmp_name;
6190 if (link_info->relocatable)
6191 return;
6193 /* Skip if this bfd does not correspond to an ELF image. */
6194 if (! is_arm_elf (abfd))
6195 return;
6197 globals = elf32_arm_hash_table (link_info);
6198 if (globals == NULL)
6199 return;
6201 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6202 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6204 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6206 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6207 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6209 for (; errnode != NULL; errnode = errnode->next)
6211 struct elf_link_hash_entry *myh;
6212 bfd_vma vma;
6214 switch (errnode->type)
6216 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6217 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6218 /* Find veneer symbol. */
6219 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6220 errnode->u.b.veneer->u.v.id);
6222 myh = elf_link_hash_lookup
6223 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6225 if (myh == NULL)
6226 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6227 "`%s'"), abfd, tmp_name);
6229 vma = myh->root.u.def.section->output_section->vma
6230 + myh->root.u.def.section->output_offset
6231 + myh->root.u.def.value;
6233 errnode->u.b.veneer->vma = vma;
6234 break;
6236 case VFP11_ERRATUM_ARM_VENEER:
6237 case VFP11_ERRATUM_THUMB_VENEER:
6238 /* Find return location. */
6239 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6240 errnode->u.v.id);
6242 myh = elf_link_hash_lookup
6243 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6245 if (myh == NULL)
6246 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6247 "`%s'"), abfd, tmp_name);
6249 vma = myh->root.u.def.section->output_section->vma
6250 + myh->root.u.def.section->output_offset
6251 + myh->root.u.def.value;
6253 errnode->u.v.branch->vma = vma;
6254 break;
6256 default:
6257 abort ();
6262 free (tmp_name);
6266 /* Set target relocation values needed during linking. */
6268 void
6269 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6270 struct bfd_link_info *link_info,
6271 int target1_is_rel,
6272 char * target2_type,
6273 int fix_v4bx,
6274 int use_blx,
6275 bfd_arm_vfp11_fix vfp11_fix,
6276 int no_enum_warn, int no_wchar_warn,
6277 int pic_veneer, int fix_cortex_a8)
6279 struct elf32_arm_link_hash_table *globals;
6281 globals = elf32_arm_hash_table (link_info);
6282 if (globals == NULL)
6283 return;
6285 globals->target1_is_rel = target1_is_rel;
6286 if (strcmp (target2_type, "rel") == 0)
6287 globals->target2_reloc = R_ARM_REL32;
6288 else if (strcmp (target2_type, "abs") == 0)
6289 globals->target2_reloc = R_ARM_ABS32;
6290 else if (strcmp (target2_type, "got-rel") == 0)
6291 globals->target2_reloc = R_ARM_GOT_PREL;
6292 else
6294 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6295 target2_type);
6297 globals->fix_v4bx = fix_v4bx;
6298 globals->use_blx |= use_blx;
6299 globals->vfp11_fix = vfp11_fix;
6300 globals->pic_veneer = pic_veneer;
6301 globals->fix_cortex_a8 = fix_cortex_a8;
6303 BFD_ASSERT (is_arm_elf (output_bfd));
6304 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6305 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6308 /* Replace the target offset of a Thumb bl or b.w instruction. */
6310 static void
6311 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6313 bfd_vma upper;
6314 bfd_vma lower;
6315 int reloc_sign;
6317 BFD_ASSERT ((offset & 1) == 0);
6319 upper = bfd_get_16 (abfd, insn);
6320 lower = bfd_get_16 (abfd, insn + 2);
6321 reloc_sign = (offset < 0) ? 1 : 0;
6322 upper = (upper & ~(bfd_vma) 0x7ff)
6323 | ((offset >> 12) & 0x3ff)
6324 | (reloc_sign << 10);
6325 lower = (lower & ~(bfd_vma) 0x2fff)
6326 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6327 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6328 | ((offset >> 1) & 0x7ff);
6329 bfd_put_16 (abfd, upper, insn);
6330 bfd_put_16 (abfd, lower, insn + 2);
6333 /* Thumb code calling an ARM function. */
6335 static int
6336 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6337 const char * name,
6338 bfd * input_bfd,
6339 bfd * output_bfd,
6340 asection * input_section,
6341 bfd_byte * hit_data,
6342 asection * sym_sec,
6343 bfd_vma offset,
6344 bfd_signed_vma addend,
6345 bfd_vma val,
6346 char **error_message)
6348 asection * s = 0;
6349 bfd_vma my_offset;
6350 long int ret_offset;
6351 struct elf_link_hash_entry * myh;
6352 struct elf32_arm_link_hash_table * globals;
6354 myh = find_thumb_glue (info, name, error_message);
6355 if (myh == NULL)
6356 return FALSE;
6358 globals = elf32_arm_hash_table (info);
6359 BFD_ASSERT (globals != NULL);
6360 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6362 my_offset = myh->root.u.def.value;
6364 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6365 THUMB2ARM_GLUE_SECTION_NAME);
6367 BFD_ASSERT (s != NULL);
6368 BFD_ASSERT (s->contents != NULL);
6369 BFD_ASSERT (s->output_section != NULL);
6371 if ((my_offset & 0x01) == 0x01)
6373 if (sym_sec != NULL
6374 && sym_sec->owner != NULL
6375 && !INTERWORK_FLAG (sym_sec->owner))
6377 (*_bfd_error_handler)
6378 (_("%B(%s): warning: interworking not enabled.\n"
6379 " first occurrence: %B: thumb call to arm"),
6380 sym_sec->owner, input_bfd, name);
6382 return FALSE;
6385 --my_offset;
6386 myh->root.u.def.value = my_offset;
6388 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6389 s->contents + my_offset);
6391 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6392 s->contents + my_offset + 2);
6394 ret_offset =
6395 /* Address of destination of the stub. */
6396 ((bfd_signed_vma) val)
6397 - ((bfd_signed_vma)
6398 /* Offset from the start of the current section
6399 to the start of the stubs. */
6400 (s->output_offset
6401 /* Offset of the start of this stub from the start of the stubs. */
6402 + my_offset
6403 /* Address of the start of the current section. */
6404 + s->output_section->vma)
6405 /* The branch instruction is 4 bytes into the stub. */
6407 /* ARM branches work from the pc of the instruction + 8. */
6408 + 8);
6410 put_arm_insn (globals, output_bfd,
6411 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6412 s->contents + my_offset + 4);
6415 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6417 /* Now go back and fix up the original BL insn to point to here. */
6418 ret_offset =
6419 /* Address of where the stub is located. */
6420 (s->output_section->vma + s->output_offset + my_offset)
6421 /* Address of where the BL is located. */
6422 - (input_section->output_section->vma + input_section->output_offset
6423 + offset)
6424 /* Addend in the relocation. */
6425 - addend
6426 /* Biassing for PC-relative addressing. */
6427 - 8;
6429 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6431 return TRUE;
6434 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6436 static struct elf_link_hash_entry *
6437 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6438 const char * name,
6439 bfd * input_bfd,
6440 bfd * output_bfd,
6441 asection * sym_sec,
6442 bfd_vma val,
6443 asection * s,
6444 char ** error_message)
6446 bfd_vma my_offset;
6447 long int ret_offset;
6448 struct elf_link_hash_entry * myh;
6449 struct elf32_arm_link_hash_table * globals;
6451 myh = find_arm_glue (info, name, error_message);
6452 if (myh == NULL)
6453 return NULL;
6455 globals = elf32_arm_hash_table (info);
6456 BFD_ASSERT (globals != NULL);
6457 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6459 my_offset = myh->root.u.def.value;
6461 if ((my_offset & 0x01) == 0x01)
6463 if (sym_sec != NULL
6464 && sym_sec->owner != NULL
6465 && !INTERWORK_FLAG (sym_sec->owner))
6467 (*_bfd_error_handler)
6468 (_("%B(%s): warning: interworking not enabled.\n"
6469 " first occurrence: %B: arm call to thumb"),
6470 sym_sec->owner, input_bfd, name);
6473 --my_offset;
6474 myh->root.u.def.value = my_offset;
6476 if (info->shared || globals->root.is_relocatable_executable
6477 || globals->pic_veneer)
6479 /* For relocatable objects we can't use absolute addresses,
6480 so construct the address from a relative offset. */
6481 /* TODO: If the offset is small it's probably worth
6482 constructing the address with adds. */
6483 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6484 s->contents + my_offset);
6485 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6486 s->contents + my_offset + 4);
6487 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6488 s->contents + my_offset + 8);
6489 /* Adjust the offset by 4 for the position of the add,
6490 and 8 for the pipeline offset. */
6491 ret_offset = (val - (s->output_offset
6492 + s->output_section->vma
6493 + my_offset + 12))
6494 | 1;
6495 bfd_put_32 (output_bfd, ret_offset,
6496 s->contents + my_offset + 12);
6498 else if (globals->use_blx)
6500 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6501 s->contents + my_offset);
6503 /* It's a thumb address. Add the low order bit. */
6504 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6505 s->contents + my_offset + 4);
6507 else
6509 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6510 s->contents + my_offset);
6512 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6513 s->contents + my_offset + 4);
6515 /* It's a thumb address. Add the low order bit. */
6516 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6517 s->contents + my_offset + 8);
6519 my_offset += 12;
6523 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6525 return myh;
6528 /* Arm code calling a Thumb function. */
6530 static int
6531 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6532 const char * name,
6533 bfd * input_bfd,
6534 bfd * output_bfd,
6535 asection * input_section,
6536 bfd_byte * hit_data,
6537 asection * sym_sec,
6538 bfd_vma offset,
6539 bfd_signed_vma addend,
6540 bfd_vma val,
6541 char **error_message)
6543 unsigned long int tmp;
6544 bfd_vma my_offset;
6545 asection * s;
6546 long int ret_offset;
6547 struct elf_link_hash_entry * myh;
6548 struct elf32_arm_link_hash_table * globals;
6550 globals = elf32_arm_hash_table (info);
6551 BFD_ASSERT (globals != NULL);
6552 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6554 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6555 ARM2THUMB_GLUE_SECTION_NAME);
6556 BFD_ASSERT (s != NULL);
6557 BFD_ASSERT (s->contents != NULL);
6558 BFD_ASSERT (s->output_section != NULL);
6560 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6561 sym_sec, val, s, error_message);
6562 if (!myh)
6563 return FALSE;
6565 my_offset = myh->root.u.def.value;
6566 tmp = bfd_get_32 (input_bfd, hit_data);
6567 tmp = tmp & 0xFF000000;
6569 /* Somehow these are both 4 too far, so subtract 8. */
6570 ret_offset = (s->output_offset
6571 + my_offset
6572 + s->output_section->vma
6573 - (input_section->output_offset
6574 + input_section->output_section->vma
6575 + offset + addend)
6576 - 8);
6578 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6580 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6582 return TRUE;
6585 /* Populate Arm stub for an exported Thumb function. */
6587 static bfd_boolean
6588 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6590 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6591 asection * s;
6592 struct elf_link_hash_entry * myh;
6593 struct elf32_arm_link_hash_entry *eh;
6594 struct elf32_arm_link_hash_table * globals;
6595 asection *sec;
6596 bfd_vma val;
6597 char *error_message;
6599 eh = elf32_arm_hash_entry (h);
6600 /* Allocate stubs for exported Thumb functions on v4t. */
6601 if (eh->export_glue == NULL)
6602 return TRUE;
6604 globals = elf32_arm_hash_table (info);
6605 BFD_ASSERT (globals != NULL);
6606 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6608 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6609 ARM2THUMB_GLUE_SECTION_NAME);
6610 BFD_ASSERT (s != NULL);
6611 BFD_ASSERT (s->contents != NULL);
6612 BFD_ASSERT (s->output_section != NULL);
6614 sec = eh->export_glue->root.u.def.section;
6616 BFD_ASSERT (sec->output_section != NULL);
6618 val = eh->export_glue->root.u.def.value + sec->output_offset
6619 + sec->output_section->vma;
6621 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6622 h->root.u.def.section->owner,
6623 globals->obfd, sec, val, s,
6624 &error_message);
6625 BFD_ASSERT (myh);
6626 return TRUE;
6629 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6631 static bfd_vma
6632 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6634 bfd_byte *p;
6635 bfd_vma glue_addr;
6636 asection *s;
6637 struct elf32_arm_link_hash_table *globals;
6639 globals = elf32_arm_hash_table (info);
6640 BFD_ASSERT (globals != NULL);
6641 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6643 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6644 ARM_BX_GLUE_SECTION_NAME);
6645 BFD_ASSERT (s != NULL);
6646 BFD_ASSERT (s->contents != NULL);
6647 BFD_ASSERT (s->output_section != NULL);
6649 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6651 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6653 if ((globals->bx_glue_offset[reg] & 1) == 0)
6655 p = s->contents + glue_addr;
6656 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6657 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6658 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6659 globals->bx_glue_offset[reg] |= 1;
6662 return glue_addr + s->output_section->vma + s->output_offset;
6665 /* Generate Arm stubs for exported Thumb symbols. */
6666 static void
6667 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6668 struct bfd_link_info *link_info)
6670 struct elf32_arm_link_hash_table * globals;
6672 if (link_info == NULL)
6673 /* Ignore this if we are not called by the ELF backend linker. */
6674 return;
6676 globals = elf32_arm_hash_table (link_info);
6677 if (globals == NULL)
6678 return;
6680 /* If blx is available then exported Thumb symbols are OK and there is
6681 nothing to do. */
6682 if (globals->use_blx)
6683 return;
6685 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6686 link_info);
6689 /* Some relocations map to different relocations depending on the
6690 target. Return the real relocation. */
6692 static int
6693 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6694 int r_type)
6696 switch (r_type)
6698 case R_ARM_TARGET1:
6699 if (globals->target1_is_rel)
6700 return R_ARM_REL32;
6701 else
6702 return R_ARM_ABS32;
6704 case R_ARM_TARGET2:
6705 return globals->target2_reloc;
6707 default:
6708 return r_type;
6712 /* Return the base VMA address which should be subtracted from real addresses
6713 when resolving @dtpoff relocation.
6714 This is PT_TLS segment p_vaddr. */
6716 static bfd_vma
6717 dtpoff_base (struct bfd_link_info *info)
6719 /* If tls_sec is NULL, we should have signalled an error already. */
6720 if (elf_hash_table (info)->tls_sec == NULL)
6721 return 0;
6722 return elf_hash_table (info)->tls_sec->vma;
6725 /* Return the relocation value for @tpoff relocation
6726 if STT_TLS virtual address is ADDRESS. */
6728 static bfd_vma
6729 tpoff (struct bfd_link_info *info, bfd_vma address)
6731 struct elf_link_hash_table *htab = elf_hash_table (info);
6732 bfd_vma base;
6734 /* If tls_sec is NULL, we should have signalled an error already. */
6735 if (htab->tls_sec == NULL)
6736 return 0;
6737 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6738 return address - htab->tls_sec->vma + base;
6741 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6742 VALUE is the relocation value. */
6744 static bfd_reloc_status_type
6745 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6747 if (value > 0xfff)
6748 return bfd_reloc_overflow;
6750 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6751 bfd_put_32 (abfd, value, data);
6752 return bfd_reloc_ok;
6755 /* For a given value of n, calculate the value of G_n as required to
6756 deal with group relocations. We return it in the form of an
6757 encoded constant-and-rotation, together with the final residual. If n is
6758 specified as less than zero, then final_residual is filled with the
6759 input value and no further action is performed. */
6761 static bfd_vma
6762 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6764 int current_n;
6765 bfd_vma g_n;
6766 bfd_vma encoded_g_n = 0;
6767 bfd_vma residual = value; /* Also known as Y_n. */
6769 for (current_n = 0; current_n <= n; current_n++)
6771 int shift;
6773 /* Calculate which part of the value to mask. */
6774 if (residual == 0)
6775 shift = 0;
6776 else
6778 int msb;
6780 /* Determine the most significant bit in the residual and
6781 align the resulting value to a 2-bit boundary. */
6782 for (msb = 30; msb >= 0; msb -= 2)
6783 if (residual & (3 << msb))
6784 break;
6786 /* The desired shift is now (msb - 6), or zero, whichever
6787 is the greater. */
6788 shift = msb - 6;
6789 if (shift < 0)
6790 shift = 0;
6793 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6794 g_n = residual & (0xff << shift);
6795 encoded_g_n = (g_n >> shift)
6796 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6798 /* Calculate the residual for the next time around. */
6799 residual &= ~g_n;
6802 *final_residual = residual;
6804 return encoded_g_n;
6807 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6808 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6810 static int
6811 identify_add_or_sub (bfd_vma insn)
6813 int opcode = insn & 0x1e00000;
6815 if (opcode == 1 << 23) /* ADD */
6816 return 1;
6818 if (opcode == 1 << 22) /* SUB */
6819 return -1;
6821 return 0;
6824 /* Perform a relocation as part of a final link. */
6826 static bfd_reloc_status_type
6827 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6828 bfd * input_bfd,
6829 bfd * output_bfd,
6830 asection * input_section,
6831 bfd_byte * contents,
6832 Elf_Internal_Rela * rel,
6833 bfd_vma value,
6834 struct bfd_link_info * info,
6835 asection * sym_sec,
6836 const char * sym_name,
6837 int sym_flags,
6838 struct elf_link_hash_entry * h,
6839 bfd_boolean * unresolved_reloc_p,
6840 char ** error_message)
6842 unsigned long r_type = howto->type;
6843 unsigned long r_symndx;
6844 bfd_byte * hit_data = contents + rel->r_offset;
6845 bfd * dynobj = NULL;
6846 Elf_Internal_Shdr * symtab_hdr;
6847 struct elf_link_hash_entry ** sym_hashes;
6848 bfd_vma * local_got_offsets;
6849 asection * sgot = NULL;
6850 asection * splt = NULL;
6851 asection * sreloc = NULL;
6852 bfd_vma addend;
6853 bfd_signed_vma signed_addend;
6854 struct elf32_arm_link_hash_table * globals;
6856 globals = elf32_arm_hash_table (info);
6857 if (globals == NULL)
6858 return bfd_reloc_notsupported;
6860 BFD_ASSERT (is_arm_elf (input_bfd));
6862 /* Some relocation types map to different relocations depending on the
6863 target. We pick the right one here. */
6864 r_type = arm_real_reloc_type (globals, r_type);
6865 if (r_type != howto->type)
6866 howto = elf32_arm_howto_from_type (r_type);
6868 /* If the start address has been set, then set the EF_ARM_HASENTRY
6869 flag. Setting this more than once is redundant, but the cost is
6870 not too high, and it keeps the code simple.
6872 The test is done here, rather than somewhere else, because the
6873 start address is only set just before the final link commences.
6875 Note - if the user deliberately sets a start address of 0, the
6876 flag will not be set. */
6877 if (bfd_get_start_address (output_bfd) != 0)
6878 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6880 dynobj = elf_hash_table (info)->dynobj;
6881 if (dynobj)
6883 sgot = bfd_get_section_by_name (dynobj, ".got");
6884 splt = bfd_get_section_by_name (dynobj, ".plt");
6886 symtab_hdr = & elf_symtab_hdr (input_bfd);
6887 sym_hashes = elf_sym_hashes (input_bfd);
6888 local_got_offsets = elf_local_got_offsets (input_bfd);
6889 r_symndx = ELF32_R_SYM (rel->r_info);
6891 if (globals->use_rel)
6893 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6895 if (addend & ((howto->src_mask + 1) >> 1))
6897 signed_addend = -1;
6898 signed_addend &= ~ howto->src_mask;
6899 signed_addend |= addend;
6901 else
6902 signed_addend = addend;
6904 else
6905 addend = signed_addend = rel->r_addend;
6907 switch (r_type)
6909 case R_ARM_NONE:
6910 /* We don't need to find a value for this symbol. It's just a
6911 marker. */
6912 *unresolved_reloc_p = FALSE;
6913 return bfd_reloc_ok;
6915 case R_ARM_ABS12:
6916 if (!globals->vxworks_p)
6917 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6919 case R_ARM_PC24:
6920 case R_ARM_ABS32:
6921 case R_ARM_ABS32_NOI:
6922 case R_ARM_REL32:
6923 case R_ARM_REL32_NOI:
6924 case R_ARM_CALL:
6925 case R_ARM_JUMP24:
6926 case R_ARM_XPC25:
6927 case R_ARM_PREL31:
6928 case R_ARM_PLT32:
6929 /* Handle relocations which should use the PLT entry. ABS32/REL32
6930 will use the symbol's value, which may point to a PLT entry, but we
6931 don't need to handle that here. If we created a PLT entry, all
6932 branches in this object should go to it, except if the PLT is too
6933 far away, in which case a long branch stub should be inserted. */
6934 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6935 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6936 && r_type != R_ARM_CALL
6937 && r_type != R_ARM_JUMP24
6938 && r_type != R_ARM_PLT32)
6939 && h != NULL
6940 && splt != NULL
6941 && h->plt.offset != (bfd_vma) -1)
6943 /* If we've created a .plt section, and assigned a PLT entry to
6944 this function, it should not be known to bind locally. If
6945 it were, we would have cleared the PLT entry. */
6946 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6948 value = (splt->output_section->vma
6949 + splt->output_offset
6950 + h->plt.offset);
6951 *unresolved_reloc_p = FALSE;
6952 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6953 contents, rel->r_offset, value,
6954 rel->r_addend);
6957 /* When generating a shared object or relocatable executable, these
6958 relocations are copied into the output file to be resolved at
6959 run time. */
6960 if ((info->shared || globals->root.is_relocatable_executable)
6961 && (input_section->flags & SEC_ALLOC)
6962 && !(globals->vxworks_p
6963 && strcmp (input_section->output_section->name,
6964 ".tls_vars") == 0)
6965 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6966 || !SYMBOL_CALLS_LOCAL (info, h))
6967 && (!strstr (input_section->name, STUB_SUFFIX))
6968 && (h == NULL
6969 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6970 || h->root.type != bfd_link_hash_undefweak)
6971 && r_type != R_ARM_PC24
6972 && r_type != R_ARM_CALL
6973 && r_type != R_ARM_JUMP24
6974 && r_type != R_ARM_PREL31
6975 && r_type != R_ARM_PLT32)
6977 Elf_Internal_Rela outrel;
6978 bfd_byte *loc;
6979 bfd_boolean skip, relocate;
6981 *unresolved_reloc_p = FALSE;
6983 if (sreloc == NULL)
6985 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6986 ! globals->use_rel);
6988 if (sreloc == NULL)
6989 return bfd_reloc_notsupported;
6992 skip = FALSE;
6993 relocate = FALSE;
6995 outrel.r_addend = addend;
6996 outrel.r_offset =
6997 _bfd_elf_section_offset (output_bfd, info, input_section,
6998 rel->r_offset);
6999 if (outrel.r_offset == (bfd_vma) -1)
7000 skip = TRUE;
7001 else if (outrel.r_offset == (bfd_vma) -2)
7002 skip = TRUE, relocate = TRUE;
7003 outrel.r_offset += (input_section->output_section->vma
7004 + input_section->output_offset);
7006 if (skip)
7007 memset (&outrel, 0, sizeof outrel);
7008 else if (h != NULL
7009 && h->dynindx != -1
7010 && (!info->shared
7011 || !info->symbolic
7012 || !h->def_regular))
7013 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
7014 else
7016 int symbol;
7018 /* This symbol is local, or marked to become local. */
7019 if (sym_flags == STT_ARM_TFUNC)
7020 value |= 1;
7021 if (globals->symbian_p)
7023 asection *osec;
7025 /* On Symbian OS, the data segment and text segement
7026 can be relocated independently. Therefore, we
7027 must indicate the segment to which this
7028 relocation is relative. The BPABI allows us to
7029 use any symbol in the right segment; we just use
7030 the section symbol as it is convenient. (We
7031 cannot use the symbol given by "h" directly as it
7032 will not appear in the dynamic symbol table.)
7034 Note that the dynamic linker ignores the section
7035 symbol value, so we don't subtract osec->vma
7036 from the emitted reloc addend. */
7037 if (sym_sec)
7038 osec = sym_sec->output_section;
7039 else
7040 osec = input_section->output_section;
7041 symbol = elf_section_data (osec)->dynindx;
7042 if (symbol == 0)
7044 struct elf_link_hash_table *htab = elf_hash_table (info);
7046 if ((osec->flags & SEC_READONLY) == 0
7047 && htab->data_index_section != NULL)
7048 osec = htab->data_index_section;
7049 else
7050 osec = htab->text_index_section;
7051 symbol = elf_section_data (osec)->dynindx;
7053 BFD_ASSERT (symbol != 0);
7055 else
7056 /* On SVR4-ish systems, the dynamic loader cannot
7057 relocate the text and data segments independently,
7058 so the symbol does not matter. */
7059 symbol = 0;
7060 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
7061 if (globals->use_rel)
7062 relocate = TRUE;
7063 else
7064 outrel.r_addend += value;
7067 loc = sreloc->contents;
7068 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7069 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7071 /* If this reloc is against an external symbol, we do not want to
7072 fiddle with the addend. Otherwise, we need to include the symbol
7073 value so that it becomes an addend for the dynamic reloc. */
7074 if (! relocate)
7075 return bfd_reloc_ok;
7077 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7078 contents, rel->r_offset, value,
7079 (bfd_vma) 0);
7081 else switch (r_type)
7083 case R_ARM_ABS12:
7084 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7086 case R_ARM_XPC25: /* Arm BLX instruction. */
7087 case R_ARM_CALL:
7088 case R_ARM_JUMP24:
7089 case R_ARM_PC24: /* Arm B/BL instruction. */
7090 case R_ARM_PLT32:
7092 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7094 if (r_type == R_ARM_XPC25)
7096 /* Check for Arm calling Arm function. */
7097 /* FIXME: Should we translate the instruction into a BL
7098 instruction instead ? */
7099 if (sym_flags != STT_ARM_TFUNC)
7100 (*_bfd_error_handler)
7101 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7102 input_bfd,
7103 h ? h->root.root.string : "(local)");
7105 else if (r_type == R_ARM_PC24)
7107 /* Check for Arm calling Thumb function. */
7108 if (sym_flags == STT_ARM_TFUNC)
7110 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7111 output_bfd, input_section,
7112 hit_data, sym_sec, rel->r_offset,
7113 signed_addend, value,
7114 error_message))
7115 return bfd_reloc_ok;
7116 else
7117 return bfd_reloc_dangerous;
7121 /* Check if a stub has to be inserted because the
7122 destination is too far or we are changing mode. */
7123 if ( r_type == R_ARM_CALL
7124 || r_type == R_ARM_JUMP24
7125 || r_type == R_ARM_PLT32)
7127 enum elf32_arm_stub_type stub_type = arm_stub_none;
7128 struct elf32_arm_link_hash_entry *hash;
7130 hash = (struct elf32_arm_link_hash_entry *) h;
7131 stub_type = arm_type_of_stub (info, input_section, rel,
7132 &sym_flags, hash,
7133 value, sym_sec,
7134 input_bfd, sym_name);
7136 if (stub_type != arm_stub_none)
7138 /* The target is out of reach, so redirect the
7139 branch to the local stub for this function. */
7141 stub_entry = elf32_arm_get_stub_entry (input_section,
7142 sym_sec, h,
7143 rel, globals,
7144 stub_type);
7145 if (stub_entry != NULL)
7146 value = (stub_entry->stub_offset
7147 + stub_entry->stub_sec->output_offset
7148 + stub_entry->stub_sec->output_section->vma);
7150 else
7152 /* If the call goes through a PLT entry, make sure to
7153 check distance to the right destination address. */
7154 if (h != NULL
7155 && splt != NULL
7156 && h->plt.offset != (bfd_vma) -1)
7158 value = (splt->output_section->vma
7159 + splt->output_offset
7160 + h->plt.offset);
7161 *unresolved_reloc_p = FALSE;
7162 /* The PLT entry is in ARM mode, regardless of the
7163 target function. */
7164 sym_flags = STT_FUNC;
7169 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7170 where:
7171 S is the address of the symbol in the relocation.
7172 P is address of the instruction being relocated.
7173 A is the addend (extracted from the instruction) in bytes.
7175 S is held in 'value'.
7176 P is the base address of the section containing the
7177 instruction plus the offset of the reloc into that
7178 section, ie:
7179 (input_section->output_section->vma +
7180 input_section->output_offset +
7181 rel->r_offset).
7182 A is the addend, converted into bytes, ie:
7183 (signed_addend * 4)
7185 Note: None of these operations have knowledge of the pipeline
7186 size of the processor, thus it is up to the assembler to
7187 encode this information into the addend. */
7188 value -= (input_section->output_section->vma
7189 + input_section->output_offset);
7190 value -= rel->r_offset;
7191 if (globals->use_rel)
7192 value += (signed_addend << howto->size);
7193 else
7194 /* RELA addends do not have to be adjusted by howto->size. */
7195 value += signed_addend;
7197 signed_addend = value;
7198 signed_addend >>= howto->rightshift;
7200 /* A branch to an undefined weak symbol is turned into a jump to
7201 the next instruction unless a PLT entry will be created.
7202 Do the same for local undefined symbols.
7203 The jump to the next instruction is optimized as a NOP depending
7204 on the architecture. */
7205 if (h ? (h->root.type == bfd_link_hash_undefweak
7206 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7207 : bfd_is_und_section (sym_sec))
7209 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7211 if (arch_has_arm_nop (globals))
7212 value |= 0x0320f000;
7213 else
7214 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7216 else
7218 /* Perform a signed range check. */
7219 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
7220 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7221 return bfd_reloc_overflow;
7223 addend = (value & 2);
7225 value = (signed_addend & howto->dst_mask)
7226 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7228 if (r_type == R_ARM_CALL)
7230 /* Set the H bit in the BLX instruction. */
7231 if (sym_flags == STT_ARM_TFUNC)
7233 if (addend)
7234 value |= (1 << 24);
7235 else
7236 value &= ~(bfd_vma)(1 << 24);
7239 /* Select the correct instruction (BL or BLX). */
7240 /* Only if we are not handling a BL to a stub. In this
7241 case, mode switching is performed by the stub. */
7242 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7243 value |= (1 << 28);
7244 else
7246 value &= ~(bfd_vma)(1 << 28);
7247 value |= (1 << 24);
7252 break;
7254 case R_ARM_ABS32:
7255 value += addend;
7256 if (sym_flags == STT_ARM_TFUNC)
7257 value |= 1;
7258 break;
7260 case R_ARM_ABS32_NOI:
7261 value += addend;
7262 break;
7264 case R_ARM_REL32:
7265 value += addend;
7266 if (sym_flags == STT_ARM_TFUNC)
7267 value |= 1;
7268 value -= (input_section->output_section->vma
7269 + input_section->output_offset + rel->r_offset);
7270 break;
7272 case R_ARM_REL32_NOI:
7273 value += addend;
7274 value -= (input_section->output_section->vma
7275 + input_section->output_offset + rel->r_offset);
7276 break;
7278 case R_ARM_PREL31:
7279 value -= (input_section->output_section->vma
7280 + input_section->output_offset + rel->r_offset);
7281 value += signed_addend;
7282 if (! h || h->root.type != bfd_link_hash_undefweak)
7284 /* Check for overflow. */
7285 if ((value ^ (value >> 1)) & (1 << 30))
7286 return bfd_reloc_overflow;
7288 value &= 0x7fffffff;
7289 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7290 if (sym_flags == STT_ARM_TFUNC)
7291 value |= 1;
7292 break;
7295 bfd_put_32 (input_bfd, value, hit_data);
7296 return bfd_reloc_ok;
7298 case R_ARM_ABS8:
7299 value += addend;
7301 /* There is no way to tell whether the user intended to use a signed or
7302 unsigned addend. When checking for overflow we accept either,
7303 as specified by the AAELF. */
7304 if ((long) value > 0xff || (long) value < -0x80)
7305 return bfd_reloc_overflow;
7307 bfd_put_8 (input_bfd, value, hit_data);
7308 return bfd_reloc_ok;
7310 case R_ARM_ABS16:
7311 value += addend;
7313 /* See comment for R_ARM_ABS8. */
7314 if ((long) value > 0xffff || (long) value < -0x8000)
7315 return bfd_reloc_overflow;
7317 bfd_put_16 (input_bfd, value, hit_data);
7318 return bfd_reloc_ok;
7320 case R_ARM_THM_ABS5:
7321 /* Support ldr and str instructions for the thumb. */
7322 if (globals->use_rel)
7324 /* Need to refetch addend. */
7325 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7326 /* ??? Need to determine shift amount from operand size. */
7327 addend >>= howto->rightshift;
7329 value += addend;
7331 /* ??? Isn't value unsigned? */
7332 if ((long) value > 0x1f || (long) value < -0x10)
7333 return bfd_reloc_overflow;
7335 /* ??? Value needs to be properly shifted into place first. */
7336 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7337 bfd_put_16 (input_bfd, value, hit_data);
7338 return bfd_reloc_ok;
7340 case R_ARM_THM_ALU_PREL_11_0:
7341 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7343 bfd_vma insn;
7344 bfd_signed_vma relocation;
7346 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7347 | bfd_get_16 (input_bfd, hit_data + 2);
7349 if (globals->use_rel)
7351 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7352 | ((insn & (1 << 26)) >> 15);
7353 if (insn & 0xf00000)
7354 signed_addend = -signed_addend;
7357 relocation = value + signed_addend;
7358 relocation -= (input_section->output_section->vma
7359 + input_section->output_offset
7360 + rel->r_offset);
7362 value = abs (relocation);
7364 if (value >= 0x1000)
7365 return bfd_reloc_overflow;
7367 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7368 | ((value & 0x700) << 4)
7369 | ((value & 0x800) << 15);
7370 if (relocation < 0)
7371 insn |= 0xa00000;
7373 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7374 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7376 return bfd_reloc_ok;
7379 case R_ARM_THM_PC8:
7380 /* PR 10073: This reloc is not generated by the GNU toolchain,
7381 but it is supported for compatibility with third party libraries
7382 generated by other compilers, specifically the ARM/IAR. */
7384 bfd_vma insn;
7385 bfd_signed_vma relocation;
7387 insn = bfd_get_16 (input_bfd, hit_data);
7389 if (globals->use_rel)
7390 addend = (insn & 0x00ff) << 2;
7392 relocation = value + addend;
7393 relocation -= (input_section->output_section->vma
7394 + input_section->output_offset
7395 + rel->r_offset);
7397 value = abs (relocation);
7399 /* We do not check for overflow of this reloc. Although strictly
7400 speaking this is incorrect, it appears to be necessary in order
7401 to work with IAR generated relocs. Since GCC and GAS do not
7402 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7403 a problem for them. */
7404 value &= 0x3fc;
7406 insn = (insn & 0xff00) | (value >> 2);
7408 bfd_put_16 (input_bfd, insn, hit_data);
7410 return bfd_reloc_ok;
7413 case R_ARM_THM_PC12:
7414 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7416 bfd_vma insn;
7417 bfd_signed_vma relocation;
7419 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7420 | bfd_get_16 (input_bfd, hit_data + 2);
7422 if (globals->use_rel)
7424 signed_addend = insn & 0xfff;
7425 if (!(insn & (1 << 23)))
7426 signed_addend = -signed_addend;
7429 relocation = value + signed_addend;
7430 relocation -= (input_section->output_section->vma
7431 + input_section->output_offset
7432 + rel->r_offset);
7434 value = abs (relocation);
7436 if (value >= 0x1000)
7437 return bfd_reloc_overflow;
7439 insn = (insn & 0xff7ff000) | value;
7440 if (relocation >= 0)
7441 insn |= (1 << 23);
7443 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7444 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7446 return bfd_reloc_ok;
7449 case R_ARM_THM_XPC22:
7450 case R_ARM_THM_CALL:
7451 case R_ARM_THM_JUMP24:
7452 /* Thumb BL (branch long instruction). */
7454 bfd_vma relocation;
7455 bfd_vma reloc_sign;
7456 bfd_boolean overflow = FALSE;
7457 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7458 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7459 bfd_signed_vma reloc_signed_max;
7460 bfd_signed_vma reloc_signed_min;
7461 bfd_vma check;
7462 bfd_signed_vma signed_check;
7463 int bitsize;
7464 const int thumb2 = using_thumb2 (globals);
7466 /* A branch to an undefined weak symbol is turned into a jump to
7467 the next instruction unless a PLT entry will be created.
7468 The jump to the next instruction is optimized as a NOP.W for
7469 Thumb-2 enabled architectures. */
7470 if (h && h->root.type == bfd_link_hash_undefweak
7471 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7473 if (arch_has_thumb2_nop (globals))
7475 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7476 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7478 else
7480 bfd_put_16 (input_bfd, 0xe000, hit_data);
7481 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7483 return bfd_reloc_ok;
7486 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7487 with Thumb-1) involving the J1 and J2 bits. */
7488 if (globals->use_rel)
7490 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7491 bfd_vma upper = upper_insn & 0x3ff;
7492 bfd_vma lower = lower_insn & 0x7ff;
7493 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7494 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7495 bfd_vma i1 = j1 ^ s ? 0 : 1;
7496 bfd_vma i2 = j2 ^ s ? 0 : 1;
7498 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7499 /* Sign extend. */
7500 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7502 signed_addend = addend;
7505 if (r_type == R_ARM_THM_XPC22)
7507 /* Check for Thumb to Thumb call. */
7508 /* FIXME: Should we translate the instruction into a BL
7509 instruction instead ? */
7510 if (sym_flags == STT_ARM_TFUNC)
7511 (*_bfd_error_handler)
7512 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7513 input_bfd,
7514 h ? h->root.root.string : "(local)");
7516 else
7518 /* If it is not a call to Thumb, assume call to Arm.
7519 If it is a call relative to a section name, then it is not a
7520 function call at all, but rather a long jump. Calls through
7521 the PLT do not require stubs. */
7522 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7523 && (h == NULL || splt == NULL
7524 || h->plt.offset == (bfd_vma) -1))
7526 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7528 /* Convert BL to BLX. */
7529 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7531 else if (( r_type != R_ARM_THM_CALL)
7532 && (r_type != R_ARM_THM_JUMP24))
7534 if (elf32_thumb_to_arm_stub
7535 (info, sym_name, input_bfd, output_bfd, input_section,
7536 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7537 error_message))
7538 return bfd_reloc_ok;
7539 else
7540 return bfd_reloc_dangerous;
7543 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7544 && r_type == R_ARM_THM_CALL)
7546 /* Make sure this is a BL. */
7547 lower_insn |= 0x1800;
7551 enum elf32_arm_stub_type stub_type = arm_stub_none;
7552 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7554 /* Check if a stub has to be inserted because the destination
7555 is too far. */
7556 struct elf32_arm_stub_hash_entry *stub_entry;
7557 struct elf32_arm_link_hash_entry *hash;
7559 hash = (struct elf32_arm_link_hash_entry *) h;
7561 stub_type = arm_type_of_stub (info, input_section, rel,
7562 &sym_flags, hash, value, sym_sec,
7563 input_bfd, sym_name);
7565 if (stub_type != arm_stub_none)
7567 /* The target is out of reach or we are changing modes, so
7568 redirect the branch to the local stub for this
7569 function. */
7570 stub_entry = elf32_arm_get_stub_entry (input_section,
7571 sym_sec, h,
7572 rel, globals,
7573 stub_type);
7574 if (stub_entry != NULL)
7575 value = (stub_entry->stub_offset
7576 + stub_entry->stub_sec->output_offset
7577 + stub_entry->stub_sec->output_section->vma);
7579 /* If this call becomes a call to Arm, force BLX. */
7580 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7582 if ((stub_entry
7583 && !arm_stub_is_thumb (stub_entry->stub_type))
7584 || (sym_flags != STT_ARM_TFUNC))
7585 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7590 /* Handle calls via the PLT. */
7591 if (stub_type == arm_stub_none
7592 && h != NULL
7593 && splt != NULL
7594 && h->plt.offset != (bfd_vma) -1)
7596 value = (splt->output_section->vma
7597 + splt->output_offset
7598 + h->plt.offset);
7600 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7602 /* If the Thumb BLX instruction is available, convert
7603 the BL to a BLX instruction to call the ARM-mode
7604 PLT entry. */
7605 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7606 sym_flags = STT_FUNC;
7608 else
7610 /* Target the Thumb stub before the ARM PLT entry. */
7611 value -= PLT_THUMB_STUB_SIZE;
7612 sym_flags = STT_ARM_TFUNC;
7614 *unresolved_reloc_p = FALSE;
7617 relocation = value + signed_addend;
7619 relocation -= (input_section->output_section->vma
7620 + input_section->output_offset
7621 + rel->r_offset);
7623 check = relocation >> howto->rightshift;
7625 /* If this is a signed value, the rightshift just dropped
7626 leading 1 bits (assuming twos complement). */
7627 if ((bfd_signed_vma) relocation >= 0)
7628 signed_check = check;
7629 else
7630 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7632 /* Calculate the permissable maximum and minimum values for
7633 this relocation according to whether we're relocating for
7634 Thumb-2 or not. */
7635 bitsize = howto->bitsize;
7636 if (!thumb2)
7637 bitsize -= 2;
7638 reloc_signed_max = (1 << (bitsize - 1)) - 1;
7639 reloc_signed_min = ~reloc_signed_max;
7641 /* Assumes two's complement. */
7642 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7643 overflow = TRUE;
7645 if ((lower_insn & 0x5000) == 0x4000)
7646 /* For a BLX instruction, make sure that the relocation is rounded up
7647 to a word boundary. This follows the semantics of the instruction
7648 which specifies that bit 1 of the target address will come from bit
7649 1 of the base address. */
7650 relocation = (relocation + 2) & ~ 3;
7652 /* Put RELOCATION back into the insn. Assumes two's complement.
7653 We use the Thumb-2 encoding, which is safe even if dealing with
7654 a Thumb-1 instruction by virtue of our overflow check above. */
7655 reloc_sign = (signed_check < 0) ? 1 : 0;
7656 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7657 | ((relocation >> 12) & 0x3ff)
7658 | (reloc_sign << 10);
7659 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7660 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7661 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7662 | ((relocation >> 1) & 0x7ff);
7664 /* Put the relocated value back in the object file: */
7665 bfd_put_16 (input_bfd, upper_insn, hit_data);
7666 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7668 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7670 break;
7672 case R_ARM_THM_JUMP19:
7673 /* Thumb32 conditional branch instruction. */
7675 bfd_vma relocation;
7676 bfd_boolean overflow = FALSE;
7677 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7678 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7679 bfd_signed_vma reloc_signed_max = 0xffffe;
7680 bfd_signed_vma reloc_signed_min = -0x100000;
7681 bfd_signed_vma signed_check;
7683 /* Need to refetch the addend, reconstruct the top three bits,
7684 and squish the two 11 bit pieces together. */
7685 if (globals->use_rel)
7687 bfd_vma S = (upper_insn & 0x0400) >> 10;
7688 bfd_vma upper = (upper_insn & 0x003f);
7689 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7690 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7691 bfd_vma lower = (lower_insn & 0x07ff);
7693 upper |= J1 << 6;
7694 upper |= J2 << 7;
7695 upper |= (!S) << 8;
7696 upper -= 0x0100; /* Sign extend. */
7698 addend = (upper << 12) | (lower << 1);
7699 signed_addend = addend;
7702 /* Handle calls via the PLT. */
7703 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7705 value = (splt->output_section->vma
7706 + splt->output_offset
7707 + h->plt.offset);
7708 /* Target the Thumb stub before the ARM PLT entry. */
7709 value -= PLT_THUMB_STUB_SIZE;
7710 *unresolved_reloc_p = FALSE;
7713 /* ??? Should handle interworking? GCC might someday try to
7714 use this for tail calls. */
7716 relocation = value + signed_addend;
7717 relocation -= (input_section->output_section->vma
7718 + input_section->output_offset
7719 + rel->r_offset);
7720 signed_check = (bfd_signed_vma) relocation;
7722 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7723 overflow = TRUE;
7725 /* Put RELOCATION back into the insn. */
7727 bfd_vma S = (relocation & 0x00100000) >> 20;
7728 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7729 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7730 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7731 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7733 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7734 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7737 /* Put the relocated value back in the object file: */
7738 bfd_put_16 (input_bfd, upper_insn, hit_data);
7739 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7741 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7744 case R_ARM_THM_JUMP11:
7745 case R_ARM_THM_JUMP8:
7746 case R_ARM_THM_JUMP6:
7747 /* Thumb B (branch) instruction). */
7749 bfd_signed_vma relocation;
7750 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7751 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7752 bfd_signed_vma signed_check;
7754 /* CZB cannot jump backward. */
7755 if (r_type == R_ARM_THM_JUMP6)
7756 reloc_signed_min = 0;
7758 if (globals->use_rel)
7760 /* Need to refetch addend. */
7761 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7762 if (addend & ((howto->src_mask + 1) >> 1))
7764 signed_addend = -1;
7765 signed_addend &= ~ howto->src_mask;
7766 signed_addend |= addend;
7768 else
7769 signed_addend = addend;
7770 /* The value in the insn has been right shifted. We need to
7771 undo this, so that we can perform the address calculation
7772 in terms of bytes. */
7773 signed_addend <<= howto->rightshift;
7775 relocation = value + signed_addend;
7777 relocation -= (input_section->output_section->vma
7778 + input_section->output_offset
7779 + rel->r_offset);
7781 relocation >>= howto->rightshift;
7782 signed_check = relocation;
7784 if (r_type == R_ARM_THM_JUMP6)
7785 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7786 else
7787 relocation &= howto->dst_mask;
7788 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7790 bfd_put_16 (input_bfd, relocation, hit_data);
7792 /* Assumes two's complement. */
7793 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7794 return bfd_reloc_overflow;
7796 return bfd_reloc_ok;
7799 case R_ARM_ALU_PCREL7_0:
7800 case R_ARM_ALU_PCREL15_8:
7801 case R_ARM_ALU_PCREL23_15:
7803 bfd_vma insn;
7804 bfd_vma relocation;
7806 insn = bfd_get_32 (input_bfd, hit_data);
7807 if (globals->use_rel)
7809 /* Extract the addend. */
7810 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7811 signed_addend = addend;
7813 relocation = value + signed_addend;
7815 relocation -= (input_section->output_section->vma
7816 + input_section->output_offset
7817 + rel->r_offset);
7818 insn = (insn & ~0xfff)
7819 | ((howto->bitpos << 7) & 0xf00)
7820 | ((relocation >> howto->bitpos) & 0xff);
7821 bfd_put_32 (input_bfd, value, hit_data);
7823 return bfd_reloc_ok;
7825 case R_ARM_GNU_VTINHERIT:
7826 case R_ARM_GNU_VTENTRY:
7827 return bfd_reloc_ok;
7829 case R_ARM_GOTOFF32:
7830 /* Relocation is relative to the start of the
7831 global offset table. */
7833 BFD_ASSERT (sgot != NULL);
7834 if (sgot == NULL)
7835 return bfd_reloc_notsupported;
7837 /* If we are addressing a Thumb function, we need to adjust the
7838 address by one, so that attempts to call the function pointer will
7839 correctly interpret it as Thumb code. */
7840 if (sym_flags == STT_ARM_TFUNC)
7841 value += 1;
7843 /* Note that sgot->output_offset is not involved in this
7844 calculation. We always want the start of .got. If we
7845 define _GLOBAL_OFFSET_TABLE in a different way, as is
7846 permitted by the ABI, we might have to change this
7847 calculation. */
7848 value -= sgot->output_section->vma;
7849 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7850 contents, rel->r_offset, value,
7851 rel->r_addend);
7853 case R_ARM_GOTPC:
7854 /* Use global offset table as symbol value. */
7855 BFD_ASSERT (sgot != NULL);
7857 if (sgot == NULL)
7858 return bfd_reloc_notsupported;
7860 *unresolved_reloc_p = FALSE;
7861 value = sgot->output_section->vma;
7862 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7863 contents, rel->r_offset, value,
7864 rel->r_addend);
7866 case R_ARM_GOT32:
7867 case R_ARM_GOT_PREL:
7868 /* Relocation is to the entry for this symbol in the
7869 global offset table. */
7870 if (sgot == NULL)
7871 return bfd_reloc_notsupported;
7873 if (h != NULL)
7875 bfd_vma off;
7876 bfd_boolean dyn;
7878 off = h->got.offset;
7879 BFD_ASSERT (off != (bfd_vma) -1);
7880 dyn = globals->root.dynamic_sections_created;
7882 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7883 || (info->shared
7884 && SYMBOL_REFERENCES_LOCAL (info, h))
7885 || (ELF_ST_VISIBILITY (h->other)
7886 && h->root.type == bfd_link_hash_undefweak))
7888 /* This is actually a static link, or it is a -Bsymbolic link
7889 and the symbol is defined locally. We must initialize this
7890 entry in the global offset table. Since the offset must
7891 always be a multiple of 4, we use the least significant bit
7892 to record whether we have initialized it already.
7894 When doing a dynamic link, we create a .rel(a).got relocation
7895 entry to initialize the value. This is done in the
7896 finish_dynamic_symbol routine. */
7897 if ((off & 1) != 0)
7898 off &= ~1;
7899 else
7901 /* If we are addressing a Thumb function, we need to
7902 adjust the address by one, so that attempts to
7903 call the function pointer will correctly
7904 interpret it as Thumb code. */
7905 if (sym_flags == STT_ARM_TFUNC)
7906 value |= 1;
7908 bfd_put_32 (output_bfd, value, sgot->contents + off);
7909 h->got.offset |= 1;
7912 else
7913 *unresolved_reloc_p = FALSE;
7915 value = sgot->output_offset + off;
7917 else
7919 bfd_vma off;
7921 BFD_ASSERT (local_got_offsets != NULL &&
7922 local_got_offsets[r_symndx] != (bfd_vma) -1);
7924 off = local_got_offsets[r_symndx];
7926 /* The offset must always be a multiple of 4. We use the
7927 least significant bit to record whether we have already
7928 generated the necessary reloc. */
7929 if ((off & 1) != 0)
7930 off &= ~1;
7931 else
7933 /* If we are addressing a Thumb function, we need to
7934 adjust the address by one, so that attempts to
7935 call the function pointer will correctly
7936 interpret it as Thumb code. */
7937 if (sym_flags == STT_ARM_TFUNC)
7938 value |= 1;
7940 if (globals->use_rel)
7941 bfd_put_32 (output_bfd, value, sgot->contents + off);
7943 if (info->shared)
7945 asection * srelgot;
7946 Elf_Internal_Rela outrel;
7947 bfd_byte *loc;
7949 srelgot = (bfd_get_section_by_name
7950 (dynobj, RELOC_SECTION (globals, ".got")));
7951 BFD_ASSERT (srelgot != NULL);
7953 outrel.r_addend = addend + value;
7954 outrel.r_offset = (sgot->output_section->vma
7955 + sgot->output_offset
7956 + off);
7957 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7958 loc = srelgot->contents;
7959 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7960 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7963 local_got_offsets[r_symndx] |= 1;
7966 value = sgot->output_offset + off;
7968 if (r_type != R_ARM_GOT32)
7969 value += sgot->output_section->vma;
7971 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7972 contents, rel->r_offset, value,
7973 rel->r_addend);
7975 case R_ARM_TLS_LDO32:
7976 value = value - dtpoff_base (info);
7978 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7979 contents, rel->r_offset, value,
7980 rel->r_addend);
7982 case R_ARM_TLS_LDM32:
7984 bfd_vma off;
7986 if (globals->sgot == NULL)
7987 abort ();
7989 off = globals->tls_ldm_got.offset;
7991 if ((off & 1) != 0)
7992 off &= ~1;
7993 else
7995 /* If we don't know the module number, create a relocation
7996 for it. */
7997 if (info->shared)
7999 Elf_Internal_Rela outrel;
8000 bfd_byte *loc;
8002 if (globals->srelgot == NULL)
8003 abort ();
8005 outrel.r_addend = 0;
8006 outrel.r_offset = (globals->sgot->output_section->vma
8007 + globals->sgot->output_offset + off);
8008 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
8010 if (globals->use_rel)
8011 bfd_put_32 (output_bfd, outrel.r_addend,
8012 globals->sgot->contents + off);
8014 loc = globals->srelgot->contents;
8015 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
8016 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8018 else
8019 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
8021 globals->tls_ldm_got.offset |= 1;
8024 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8025 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8027 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8028 contents, rel->r_offset, value,
8029 rel->r_addend);
8032 case R_ARM_TLS_GD32:
8033 case R_ARM_TLS_IE32:
8035 bfd_vma off;
8036 int indx;
8037 char tls_type;
8039 if (globals->sgot == NULL)
8040 abort ();
8042 indx = 0;
8043 if (h != NULL)
8045 bfd_boolean dyn;
8046 dyn = globals->root.dynamic_sections_created;
8047 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8048 && (!info->shared
8049 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8051 *unresolved_reloc_p = FALSE;
8052 indx = h->dynindx;
8054 off = h->got.offset;
8055 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8057 else
8059 if (local_got_offsets == NULL)
8060 abort ();
8061 off = local_got_offsets[r_symndx];
8062 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8065 if (tls_type == GOT_UNKNOWN)
8066 abort ();
8068 if ((off & 1) != 0)
8069 off &= ~1;
8070 else
8072 bfd_boolean need_relocs = FALSE;
8073 Elf_Internal_Rela outrel;
8074 bfd_byte *loc = NULL;
8075 int cur_off = off;
8077 /* The GOT entries have not been initialized yet. Do it
8078 now, and emit any relocations. If both an IE GOT and a
8079 GD GOT are necessary, we emit the GD first. */
8081 if ((info->shared || indx != 0)
8082 && (h == NULL
8083 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8084 || h->root.type != bfd_link_hash_undefweak))
8086 need_relocs = TRUE;
8087 if (globals->srelgot == NULL)
8088 abort ();
8089 loc = globals->srelgot->contents;
8090 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
8093 if (tls_type & GOT_TLS_GD)
8095 if (need_relocs)
8097 outrel.r_addend = 0;
8098 outrel.r_offset = (globals->sgot->output_section->vma
8099 + globals->sgot->output_offset
8100 + cur_off);
8101 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8103 if (globals->use_rel)
8104 bfd_put_32 (output_bfd, outrel.r_addend,
8105 globals->sgot->contents + cur_off);
8107 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8108 globals->srelgot->reloc_count++;
8109 loc += RELOC_SIZE (globals);
8111 if (indx == 0)
8112 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8113 globals->sgot->contents + cur_off + 4);
8114 else
8116 outrel.r_addend = 0;
8117 outrel.r_info = ELF32_R_INFO (indx,
8118 R_ARM_TLS_DTPOFF32);
8119 outrel.r_offset += 4;
8121 if (globals->use_rel)
8122 bfd_put_32 (output_bfd, outrel.r_addend,
8123 globals->sgot->contents + cur_off + 4);
8126 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8127 globals->srelgot->reloc_count++;
8128 loc += RELOC_SIZE (globals);
8131 else
8133 /* If we are not emitting relocations for a
8134 general dynamic reference, then we must be in a
8135 static link or an executable link with the
8136 symbol binding locally. Mark it as belonging
8137 to module 1, the executable. */
8138 bfd_put_32 (output_bfd, 1,
8139 globals->sgot->contents + cur_off);
8140 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8141 globals->sgot->contents + cur_off + 4);
8144 cur_off += 8;
8147 if (tls_type & GOT_TLS_IE)
8149 if (need_relocs)
8151 if (indx == 0)
8152 outrel.r_addend = value - dtpoff_base (info);
8153 else
8154 outrel.r_addend = 0;
8155 outrel.r_offset = (globals->sgot->output_section->vma
8156 + globals->sgot->output_offset
8157 + cur_off);
8158 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8160 if (globals->use_rel)
8161 bfd_put_32 (output_bfd, outrel.r_addend,
8162 globals->sgot->contents + cur_off);
8164 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8165 globals->srelgot->reloc_count++;
8166 loc += RELOC_SIZE (globals);
8168 else
8169 bfd_put_32 (output_bfd, tpoff (info, value),
8170 globals->sgot->contents + cur_off);
8171 cur_off += 4;
8174 if (h != NULL)
8175 h->got.offset |= 1;
8176 else
8177 local_got_offsets[r_symndx] |= 1;
8180 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8181 off += 8;
8182 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8183 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8185 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8186 contents, rel->r_offset, value,
8187 rel->r_addend);
8190 case R_ARM_TLS_LE32:
8191 if (info->shared)
8193 (*_bfd_error_handler)
8194 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8195 input_bfd, input_section,
8196 (long) rel->r_offset, howto->name);
8197 return (bfd_reloc_status_type) FALSE;
8199 else
8200 value = tpoff (info, value);
8202 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8203 contents, rel->r_offset, value,
8204 rel->r_addend);
8206 case R_ARM_V4BX:
8207 if (globals->fix_v4bx)
8209 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8211 /* Ensure that we have a BX instruction. */
8212 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8214 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8216 /* Branch to veneer. */
8217 bfd_vma glue_addr;
8218 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8219 glue_addr -= input_section->output_section->vma
8220 + input_section->output_offset
8221 + rel->r_offset + 8;
8222 insn = (insn & 0xf0000000) | 0x0a000000
8223 | ((glue_addr >> 2) & 0x00ffffff);
8225 else
8227 /* Preserve Rm (lowest four bits) and the condition code
8228 (highest four bits). Other bits encode MOV PC,Rm. */
8229 insn = (insn & 0xf000000f) | 0x01a0f000;
8232 bfd_put_32 (input_bfd, insn, hit_data);
8234 return bfd_reloc_ok;
8236 case R_ARM_MOVW_ABS_NC:
8237 case R_ARM_MOVT_ABS:
8238 case R_ARM_MOVW_PREL_NC:
8239 case R_ARM_MOVT_PREL:
8240 /* Until we properly support segment-base-relative addressing then
8241 we assume the segment base to be zero, as for the group relocations.
8242 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8243 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8244 case R_ARM_MOVW_BREL_NC:
8245 case R_ARM_MOVW_BREL:
8246 case R_ARM_MOVT_BREL:
8248 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8250 if (globals->use_rel)
8252 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8253 signed_addend = (addend ^ 0x8000) - 0x8000;
8256 value += signed_addend;
8258 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8259 value -= (input_section->output_section->vma
8260 + input_section->output_offset + rel->r_offset);
8262 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8263 return bfd_reloc_overflow;
8265 if (sym_flags == STT_ARM_TFUNC)
8266 value |= 1;
8268 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8269 || r_type == R_ARM_MOVT_BREL)
8270 value >>= 16;
8272 insn &= 0xfff0f000;
8273 insn |= value & 0xfff;
8274 insn |= (value & 0xf000) << 4;
8275 bfd_put_32 (input_bfd, insn, hit_data);
8277 return bfd_reloc_ok;
8279 case R_ARM_THM_MOVW_ABS_NC:
8280 case R_ARM_THM_MOVT_ABS:
8281 case R_ARM_THM_MOVW_PREL_NC:
8282 case R_ARM_THM_MOVT_PREL:
8283 /* Until we properly support segment-base-relative addressing then
8284 we assume the segment base to be zero, as for the above relocations.
8285 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8286 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8287 as R_ARM_THM_MOVT_ABS. */
8288 case R_ARM_THM_MOVW_BREL_NC:
8289 case R_ARM_THM_MOVW_BREL:
8290 case R_ARM_THM_MOVT_BREL:
8292 bfd_vma insn;
8294 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8295 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8297 if (globals->use_rel)
8299 addend = ((insn >> 4) & 0xf000)
8300 | ((insn >> 15) & 0x0800)
8301 | ((insn >> 4) & 0x0700)
8302 | (insn & 0x00ff);
8303 signed_addend = (addend ^ 0x8000) - 0x8000;
8306 value += signed_addend;
8308 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8309 value -= (input_section->output_section->vma
8310 + input_section->output_offset + rel->r_offset);
8312 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8313 return bfd_reloc_overflow;
8315 if (sym_flags == STT_ARM_TFUNC)
8316 value |= 1;
8318 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8319 || r_type == R_ARM_THM_MOVT_BREL)
8320 value >>= 16;
8322 insn &= 0xfbf08f00;
8323 insn |= (value & 0xf000) << 4;
8324 insn |= (value & 0x0800) << 15;
8325 insn |= (value & 0x0700) << 4;
8326 insn |= (value & 0x00ff);
8328 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8329 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8331 return bfd_reloc_ok;
8333 case R_ARM_ALU_PC_G0_NC:
8334 case R_ARM_ALU_PC_G1_NC:
8335 case R_ARM_ALU_PC_G0:
8336 case R_ARM_ALU_PC_G1:
8337 case R_ARM_ALU_PC_G2:
8338 case R_ARM_ALU_SB_G0_NC:
8339 case R_ARM_ALU_SB_G1_NC:
8340 case R_ARM_ALU_SB_G0:
8341 case R_ARM_ALU_SB_G1:
8342 case R_ARM_ALU_SB_G2:
8344 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8345 bfd_vma pc = input_section->output_section->vma
8346 + input_section->output_offset + rel->r_offset;
8347 /* sb should be the origin of the *segment* containing the symbol.
8348 It is not clear how to obtain this OS-dependent value, so we
8349 make an arbitrary choice of zero. */
8350 bfd_vma sb = 0;
8351 bfd_vma residual;
8352 bfd_vma g_n;
8353 bfd_signed_vma signed_value;
8354 int group = 0;
8356 /* Determine which group of bits to select. */
8357 switch (r_type)
8359 case R_ARM_ALU_PC_G0_NC:
8360 case R_ARM_ALU_PC_G0:
8361 case R_ARM_ALU_SB_G0_NC:
8362 case R_ARM_ALU_SB_G0:
8363 group = 0;
8364 break;
8366 case R_ARM_ALU_PC_G1_NC:
8367 case R_ARM_ALU_PC_G1:
8368 case R_ARM_ALU_SB_G1_NC:
8369 case R_ARM_ALU_SB_G1:
8370 group = 1;
8371 break;
8373 case R_ARM_ALU_PC_G2:
8374 case R_ARM_ALU_SB_G2:
8375 group = 2;
8376 break;
8378 default:
8379 abort ();
8382 /* If REL, extract the addend from the insn. If RELA, it will
8383 have already been fetched for us. */
8384 if (globals->use_rel)
8386 int negative;
8387 bfd_vma constant = insn & 0xff;
8388 bfd_vma rotation = (insn & 0xf00) >> 8;
8390 if (rotation == 0)
8391 signed_addend = constant;
8392 else
8394 /* Compensate for the fact that in the instruction, the
8395 rotation is stored in multiples of 2 bits. */
8396 rotation *= 2;
8398 /* Rotate "constant" right by "rotation" bits. */
8399 signed_addend = (constant >> rotation) |
8400 (constant << (8 * sizeof (bfd_vma) - rotation));
8403 /* Determine if the instruction is an ADD or a SUB.
8404 (For REL, this determines the sign of the addend.) */
8405 negative = identify_add_or_sub (insn);
8406 if (negative == 0)
8408 (*_bfd_error_handler)
8409 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8410 input_bfd, input_section,
8411 (long) rel->r_offset, howto->name);
8412 return bfd_reloc_overflow;
8415 signed_addend *= negative;
8418 /* Compute the value (X) to go in the place. */
8419 if (r_type == R_ARM_ALU_PC_G0_NC
8420 || r_type == R_ARM_ALU_PC_G1_NC
8421 || r_type == R_ARM_ALU_PC_G0
8422 || r_type == R_ARM_ALU_PC_G1
8423 || r_type == R_ARM_ALU_PC_G2)
8424 /* PC relative. */
8425 signed_value = value - pc + signed_addend;
8426 else
8427 /* Section base relative. */
8428 signed_value = value - sb + signed_addend;
8430 /* If the target symbol is a Thumb function, then set the
8431 Thumb bit in the address. */
8432 if (sym_flags == STT_ARM_TFUNC)
8433 signed_value |= 1;
8435 /* Calculate the value of the relevant G_n, in encoded
8436 constant-with-rotation format. */
8437 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8438 &residual);
8440 /* Check for overflow if required. */
8441 if ((r_type == R_ARM_ALU_PC_G0
8442 || r_type == R_ARM_ALU_PC_G1
8443 || r_type == R_ARM_ALU_PC_G2
8444 || r_type == R_ARM_ALU_SB_G0
8445 || r_type == R_ARM_ALU_SB_G1
8446 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8448 (*_bfd_error_handler)
8449 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8450 input_bfd, input_section,
8451 (long) rel->r_offset, abs (signed_value), howto->name);
8452 return bfd_reloc_overflow;
8455 /* Mask out the value and the ADD/SUB part of the opcode; take care
8456 not to destroy the S bit. */
8457 insn &= 0xff1ff000;
8459 /* Set the opcode according to whether the value to go in the
8460 place is negative. */
8461 if (signed_value < 0)
8462 insn |= 1 << 22;
8463 else
8464 insn |= 1 << 23;
8466 /* Encode the offset. */
8467 insn |= g_n;
8469 bfd_put_32 (input_bfd, insn, hit_data);
8471 return bfd_reloc_ok;
8473 case R_ARM_LDR_PC_G0:
8474 case R_ARM_LDR_PC_G1:
8475 case R_ARM_LDR_PC_G2:
8476 case R_ARM_LDR_SB_G0:
8477 case R_ARM_LDR_SB_G1:
8478 case R_ARM_LDR_SB_G2:
8480 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8481 bfd_vma pc = input_section->output_section->vma
8482 + input_section->output_offset + rel->r_offset;
8483 bfd_vma sb = 0; /* See note above. */
8484 bfd_vma residual;
8485 bfd_signed_vma signed_value;
8486 int group = 0;
8488 /* Determine which groups of bits to calculate. */
8489 switch (r_type)
8491 case R_ARM_LDR_PC_G0:
8492 case R_ARM_LDR_SB_G0:
8493 group = 0;
8494 break;
8496 case R_ARM_LDR_PC_G1:
8497 case R_ARM_LDR_SB_G1:
8498 group = 1;
8499 break;
8501 case R_ARM_LDR_PC_G2:
8502 case R_ARM_LDR_SB_G2:
8503 group = 2;
8504 break;
8506 default:
8507 abort ();
8510 /* If REL, extract the addend from the insn. If RELA, it will
8511 have already been fetched for us. */
8512 if (globals->use_rel)
8514 int negative = (insn & (1 << 23)) ? 1 : -1;
8515 signed_addend = negative * (insn & 0xfff);
8518 /* Compute the value (X) to go in the place. */
8519 if (r_type == R_ARM_LDR_PC_G0
8520 || r_type == R_ARM_LDR_PC_G1
8521 || r_type == R_ARM_LDR_PC_G2)
8522 /* PC relative. */
8523 signed_value = value - pc + signed_addend;
8524 else
8525 /* Section base relative. */
8526 signed_value = value - sb + signed_addend;
8528 /* Calculate the value of the relevant G_{n-1} to obtain
8529 the residual at that stage. */
8530 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8532 /* Check for overflow. */
8533 if (residual >= 0x1000)
8535 (*_bfd_error_handler)
8536 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8537 input_bfd, input_section,
8538 (long) rel->r_offset, abs (signed_value), howto->name);
8539 return bfd_reloc_overflow;
8542 /* Mask out the value and U bit. */
8543 insn &= 0xff7ff000;
8545 /* Set the U bit if the value to go in the place is non-negative. */
8546 if (signed_value >= 0)
8547 insn |= 1 << 23;
8549 /* Encode the offset. */
8550 insn |= residual;
8552 bfd_put_32 (input_bfd, insn, hit_data);
8554 return bfd_reloc_ok;
8556 case R_ARM_LDRS_PC_G0:
8557 case R_ARM_LDRS_PC_G1:
8558 case R_ARM_LDRS_PC_G2:
8559 case R_ARM_LDRS_SB_G0:
8560 case R_ARM_LDRS_SB_G1:
8561 case R_ARM_LDRS_SB_G2:
8563 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8564 bfd_vma pc = input_section->output_section->vma
8565 + input_section->output_offset + rel->r_offset;
8566 bfd_vma sb = 0; /* See note above. */
8567 bfd_vma residual;
8568 bfd_signed_vma signed_value;
8569 int group = 0;
8571 /* Determine which groups of bits to calculate. */
8572 switch (r_type)
8574 case R_ARM_LDRS_PC_G0:
8575 case R_ARM_LDRS_SB_G0:
8576 group = 0;
8577 break;
8579 case R_ARM_LDRS_PC_G1:
8580 case R_ARM_LDRS_SB_G1:
8581 group = 1;
8582 break;
8584 case R_ARM_LDRS_PC_G2:
8585 case R_ARM_LDRS_SB_G2:
8586 group = 2;
8587 break;
8589 default:
8590 abort ();
8593 /* If REL, extract the addend from the insn. If RELA, it will
8594 have already been fetched for us. */
8595 if (globals->use_rel)
8597 int negative = (insn & (1 << 23)) ? 1 : -1;
8598 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8601 /* Compute the value (X) to go in the place. */
8602 if (r_type == R_ARM_LDRS_PC_G0
8603 || r_type == R_ARM_LDRS_PC_G1
8604 || r_type == R_ARM_LDRS_PC_G2)
8605 /* PC relative. */
8606 signed_value = value - pc + signed_addend;
8607 else
8608 /* Section base relative. */
8609 signed_value = value - sb + signed_addend;
8611 /* Calculate the value of the relevant G_{n-1} to obtain
8612 the residual at that stage. */
8613 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8615 /* Check for overflow. */
8616 if (residual >= 0x100)
8618 (*_bfd_error_handler)
8619 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8620 input_bfd, input_section,
8621 (long) rel->r_offset, abs (signed_value), howto->name);
8622 return bfd_reloc_overflow;
8625 /* Mask out the value and U bit. */
8626 insn &= 0xff7ff0f0;
8628 /* Set the U bit if the value to go in the place is non-negative. */
8629 if (signed_value >= 0)
8630 insn |= 1 << 23;
8632 /* Encode the offset. */
8633 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8635 bfd_put_32 (input_bfd, insn, hit_data);
8637 return bfd_reloc_ok;
8639 case R_ARM_LDC_PC_G0:
8640 case R_ARM_LDC_PC_G1:
8641 case R_ARM_LDC_PC_G2:
8642 case R_ARM_LDC_SB_G0:
8643 case R_ARM_LDC_SB_G1:
8644 case R_ARM_LDC_SB_G2:
8646 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8647 bfd_vma pc = input_section->output_section->vma
8648 + input_section->output_offset + rel->r_offset;
8649 bfd_vma sb = 0; /* See note above. */
8650 bfd_vma residual;
8651 bfd_signed_vma signed_value;
8652 int group = 0;
8654 /* Determine which groups of bits to calculate. */
8655 switch (r_type)
8657 case R_ARM_LDC_PC_G0:
8658 case R_ARM_LDC_SB_G0:
8659 group = 0;
8660 break;
8662 case R_ARM_LDC_PC_G1:
8663 case R_ARM_LDC_SB_G1:
8664 group = 1;
8665 break;
8667 case R_ARM_LDC_PC_G2:
8668 case R_ARM_LDC_SB_G2:
8669 group = 2;
8670 break;
8672 default:
8673 abort ();
8676 /* If REL, extract the addend from the insn. If RELA, it will
8677 have already been fetched for us. */
8678 if (globals->use_rel)
8680 int negative = (insn & (1 << 23)) ? 1 : -1;
8681 signed_addend = negative * ((insn & 0xff) << 2);
8684 /* Compute the value (X) to go in the place. */
8685 if (r_type == R_ARM_LDC_PC_G0
8686 || r_type == R_ARM_LDC_PC_G1
8687 || r_type == R_ARM_LDC_PC_G2)
8688 /* PC relative. */
8689 signed_value = value - pc + signed_addend;
8690 else
8691 /* Section base relative. */
8692 signed_value = value - sb + signed_addend;
8694 /* Calculate the value of the relevant G_{n-1} to obtain
8695 the residual at that stage. */
8696 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8698 /* Check for overflow. (The absolute value to go in the place must be
8699 divisible by four and, after having been divided by four, must
8700 fit in eight bits.) */
8701 if ((residual & 0x3) != 0 || residual >= 0x400)
8703 (*_bfd_error_handler)
8704 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8705 input_bfd, input_section,
8706 (long) rel->r_offset, abs (signed_value), howto->name);
8707 return bfd_reloc_overflow;
8710 /* Mask out the value and U bit. */
8711 insn &= 0xff7fff00;
8713 /* Set the U bit if the value to go in the place is non-negative. */
8714 if (signed_value >= 0)
8715 insn |= 1 << 23;
8717 /* Encode the offset. */
8718 insn |= residual >> 2;
8720 bfd_put_32 (input_bfd, insn, hit_data);
8722 return bfd_reloc_ok;
8724 default:
8725 return bfd_reloc_notsupported;
8729 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8730 static void
8731 arm_add_to_rel (bfd * abfd,
8732 bfd_byte * address,
8733 reloc_howto_type * howto,
8734 bfd_signed_vma increment)
8736 bfd_signed_vma addend;
8738 if (howto->type == R_ARM_THM_CALL
8739 || howto->type == R_ARM_THM_JUMP24)
8741 int upper_insn, lower_insn;
8742 int upper, lower;
8744 upper_insn = bfd_get_16 (abfd, address);
8745 lower_insn = bfd_get_16 (abfd, address + 2);
8746 upper = upper_insn & 0x7ff;
8747 lower = lower_insn & 0x7ff;
8749 addend = (upper << 12) | (lower << 1);
8750 addend += increment;
8751 addend >>= 1;
8753 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8754 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8756 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8757 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8759 else
8761 bfd_vma contents;
8763 contents = bfd_get_32 (abfd, address);
8765 /* Get the (signed) value from the instruction. */
8766 addend = contents & howto->src_mask;
8767 if (addend & ((howto->src_mask + 1) >> 1))
8769 bfd_signed_vma mask;
8771 mask = -1;
8772 mask &= ~ howto->src_mask;
8773 addend |= mask;
8776 /* Add in the increment, (which is a byte value). */
8777 switch (howto->type)
8779 default:
8780 addend += increment;
8781 break;
8783 case R_ARM_PC24:
8784 case R_ARM_PLT32:
8785 case R_ARM_CALL:
8786 case R_ARM_JUMP24:
8787 addend <<= howto->size;
8788 addend += increment;
8790 /* Should we check for overflow here ? */
8792 /* Drop any undesired bits. */
8793 addend >>= howto->rightshift;
8794 break;
8797 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8799 bfd_put_32 (abfd, contents, address);
8803 #define IS_ARM_TLS_RELOC(R_TYPE) \
8804 ((R_TYPE) == R_ARM_TLS_GD32 \
8805 || (R_TYPE) == R_ARM_TLS_LDO32 \
8806 || (R_TYPE) == R_ARM_TLS_LDM32 \
8807 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8808 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8809 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8810 || (R_TYPE) == R_ARM_TLS_LE32 \
8811 || (R_TYPE) == R_ARM_TLS_IE32)
8813 /* Relocate an ARM ELF section. */
8815 static bfd_boolean
8816 elf32_arm_relocate_section (bfd * output_bfd,
8817 struct bfd_link_info * info,
8818 bfd * input_bfd,
8819 asection * input_section,
8820 bfd_byte * contents,
8821 Elf_Internal_Rela * relocs,
8822 Elf_Internal_Sym * local_syms,
8823 asection ** local_sections)
8825 Elf_Internal_Shdr *symtab_hdr;
8826 struct elf_link_hash_entry **sym_hashes;
8827 Elf_Internal_Rela *rel;
8828 Elf_Internal_Rela *relend;
8829 const char *name;
8830 struct elf32_arm_link_hash_table * globals;
8832 globals = elf32_arm_hash_table (info);
8833 if (globals == NULL)
8834 return FALSE;
8836 symtab_hdr = & elf_symtab_hdr (input_bfd);
8837 sym_hashes = elf_sym_hashes (input_bfd);
8839 rel = relocs;
8840 relend = relocs + input_section->reloc_count;
8841 for (; rel < relend; rel++)
8843 int r_type;
8844 reloc_howto_type * howto;
8845 unsigned long r_symndx;
8846 Elf_Internal_Sym * sym;
8847 asection * sec;
8848 struct elf_link_hash_entry * h;
8849 bfd_vma relocation;
8850 bfd_reloc_status_type r;
8851 arelent bfd_reloc;
8852 char sym_type;
8853 bfd_boolean unresolved_reloc = FALSE;
8854 char *error_message = NULL;
8856 r_symndx = ELF32_R_SYM (rel->r_info);
8857 r_type = ELF32_R_TYPE (rel->r_info);
8858 r_type = arm_real_reloc_type (globals, r_type);
8860 if ( r_type == R_ARM_GNU_VTENTRY
8861 || r_type == R_ARM_GNU_VTINHERIT)
8862 continue;
8864 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8865 howto = bfd_reloc.howto;
8867 h = NULL;
8868 sym = NULL;
8869 sec = NULL;
8871 if (r_symndx < symtab_hdr->sh_info)
8873 sym = local_syms + r_symndx;
8874 sym_type = ELF32_ST_TYPE (sym->st_info);
8875 sec = local_sections[r_symndx];
8877 /* An object file might have a reference to a local
8878 undefined symbol. This is a daft object file, but we
8879 should at least do something about it. V4BX & NONE
8880 relocations do not use the symbol and are explicitly
8881 allowed to use the undefined symbol, so allow those. */
8882 if (r_type != R_ARM_V4BX
8883 && r_type != R_ARM_NONE
8884 && bfd_is_und_section (sec)
8885 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8887 if (!info->callbacks->undefined_symbol
8888 (info, bfd_elf_string_from_elf_section
8889 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8890 input_bfd, input_section,
8891 rel->r_offset, TRUE))
8892 return FALSE;
8895 if (globals->use_rel)
8897 relocation = (sec->output_section->vma
8898 + sec->output_offset
8899 + sym->st_value);
8900 if (!info->relocatable
8901 && (sec->flags & SEC_MERGE)
8902 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8904 asection *msec;
8905 bfd_vma addend, value;
8907 switch (r_type)
8909 case R_ARM_MOVW_ABS_NC:
8910 case R_ARM_MOVT_ABS:
8911 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8912 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8913 addend = (addend ^ 0x8000) - 0x8000;
8914 break;
8916 case R_ARM_THM_MOVW_ABS_NC:
8917 case R_ARM_THM_MOVT_ABS:
8918 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8919 << 16;
8920 value |= bfd_get_16 (input_bfd,
8921 contents + rel->r_offset + 2);
8922 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8923 | ((value & 0x04000000) >> 15);
8924 addend = (addend ^ 0x8000) - 0x8000;
8925 break;
8927 default:
8928 if (howto->rightshift
8929 || (howto->src_mask & (howto->src_mask + 1)))
8931 (*_bfd_error_handler)
8932 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8933 input_bfd, input_section,
8934 (long) rel->r_offset, howto->name);
8935 return FALSE;
8938 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8940 /* Get the (signed) value from the instruction. */
8941 addend = value & howto->src_mask;
8942 if (addend & ((howto->src_mask + 1) >> 1))
8944 bfd_signed_vma mask;
8946 mask = -1;
8947 mask &= ~ howto->src_mask;
8948 addend |= mask;
8950 break;
8953 msec = sec;
8954 addend =
8955 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8956 - relocation;
8957 addend += msec->output_section->vma + msec->output_offset;
8959 /* Cases here must match those in the preceeding
8960 switch statement. */
8961 switch (r_type)
8963 case R_ARM_MOVW_ABS_NC:
8964 case R_ARM_MOVT_ABS:
8965 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8966 | (addend & 0xfff);
8967 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8968 break;
8970 case R_ARM_THM_MOVW_ABS_NC:
8971 case R_ARM_THM_MOVT_ABS:
8972 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8973 | (addend & 0xff) | ((addend & 0x0800) << 15);
8974 bfd_put_16 (input_bfd, value >> 16,
8975 contents + rel->r_offset);
8976 bfd_put_16 (input_bfd, value,
8977 contents + rel->r_offset + 2);
8978 break;
8980 default:
8981 value = (value & ~ howto->dst_mask)
8982 | (addend & howto->dst_mask);
8983 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8984 break;
8988 else
8989 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8991 else
8993 bfd_boolean warned;
8995 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8996 r_symndx, symtab_hdr, sym_hashes,
8997 h, sec, relocation,
8998 unresolved_reloc, warned);
9000 sym_type = h->type;
9003 if (sec != NULL && elf_discarded_section (sec))
9005 /* For relocs against symbols from removed linkonce sections,
9006 or sections discarded by a linker script, we just want the
9007 section contents zeroed. Avoid any special processing. */
9008 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9009 rel->r_info = 0;
9010 rel->r_addend = 0;
9011 continue;
9014 if (info->relocatable)
9016 /* This is a relocatable link. We don't have to change
9017 anything, unless the reloc is against a section symbol,
9018 in which case we have to adjust according to where the
9019 section symbol winds up in the output section. */
9020 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9022 if (globals->use_rel)
9023 arm_add_to_rel (input_bfd, contents + rel->r_offset,
9024 howto, (bfd_signed_vma) sec->output_offset);
9025 else
9026 rel->r_addend += sec->output_offset;
9028 continue;
9031 if (h != NULL)
9032 name = h->root.root.string;
9033 else
9035 name = (bfd_elf_string_from_elf_section
9036 (input_bfd, symtab_hdr->sh_link, sym->st_name));
9037 if (name == NULL || *name == '\0')
9038 name = bfd_section_name (input_bfd, sec);
9041 if (r_symndx != 0
9042 && r_type != R_ARM_NONE
9043 && (h == NULL
9044 || h->root.type == bfd_link_hash_defined
9045 || h->root.type == bfd_link_hash_defweak)
9046 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9048 (*_bfd_error_handler)
9049 ((sym_type == STT_TLS
9050 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9051 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9052 input_bfd,
9053 input_section,
9054 (long) rel->r_offset,
9055 howto->name,
9056 name);
9059 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9060 input_section, contents, rel,
9061 relocation, info, sec, name,
9062 (h ? ELF_ST_TYPE (h->type) :
9063 ELF_ST_TYPE (sym->st_info)), h,
9064 &unresolved_reloc, &error_message);
9066 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9067 because such sections are not SEC_ALLOC and thus ld.so will
9068 not process them. */
9069 if (unresolved_reloc
9070 && !((input_section->flags & SEC_DEBUGGING) != 0
9071 && h->def_dynamic))
9073 (*_bfd_error_handler)
9074 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9075 input_bfd,
9076 input_section,
9077 (long) rel->r_offset,
9078 howto->name,
9079 h->root.root.string);
9080 return FALSE;
9083 if (r != bfd_reloc_ok)
9085 switch (r)
9087 case bfd_reloc_overflow:
9088 /* If the overflowing reloc was to an undefined symbol,
9089 we have already printed one error message and there
9090 is no point complaining again. */
9091 if ((! h ||
9092 h->root.type != bfd_link_hash_undefined)
9093 && (!((*info->callbacks->reloc_overflow)
9094 (info, (h ? &h->root : NULL), name, howto->name,
9095 (bfd_vma) 0, input_bfd, input_section,
9096 rel->r_offset))))
9097 return FALSE;
9098 break;
9100 case bfd_reloc_undefined:
9101 if (!((*info->callbacks->undefined_symbol)
9102 (info, name, input_bfd, input_section,
9103 rel->r_offset, TRUE)))
9104 return FALSE;
9105 break;
9107 case bfd_reloc_outofrange:
9108 error_message = _("out of range");
9109 goto common_error;
9111 case bfd_reloc_notsupported:
9112 error_message = _("unsupported relocation");
9113 goto common_error;
9115 case bfd_reloc_dangerous:
9116 /* error_message should already be set. */
9117 goto common_error;
9119 default:
9120 error_message = _("unknown error");
9121 /* Fall through. */
9123 common_error:
9124 BFD_ASSERT (error_message != NULL);
9125 if (!((*info->callbacks->reloc_dangerous)
9126 (info, error_message, input_bfd, input_section,
9127 rel->r_offset)))
9128 return FALSE;
9129 break;
9134 return TRUE;
9137 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
9138 adds the edit to the start of the list. (The list must be built in order of
9139 ascending TINDEX: the function's callers are primarily responsible for
9140 maintaining that condition). */
9142 static void
9143 add_unwind_table_edit (arm_unwind_table_edit **head,
9144 arm_unwind_table_edit **tail,
9145 arm_unwind_edit_type type,
9146 asection *linked_section,
9147 unsigned int tindex)
9149 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9150 xmalloc (sizeof (arm_unwind_table_edit));
9152 new_edit->type = type;
9153 new_edit->linked_section = linked_section;
9154 new_edit->index = tindex;
9156 if (tindex > 0)
9158 new_edit->next = NULL;
9160 if (*tail)
9161 (*tail)->next = new_edit;
9163 (*tail) = new_edit;
9165 if (!*head)
9166 (*head) = new_edit;
9168 else
9170 new_edit->next = *head;
9172 if (!*tail)
9173 *tail = new_edit;
9175 *head = new_edit;
9179 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9181 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9182 static void
9183 adjust_exidx_size(asection *exidx_sec, int adjust)
9185 asection *out_sec;
9187 if (!exidx_sec->rawsize)
9188 exidx_sec->rawsize = exidx_sec->size;
9190 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9191 out_sec = exidx_sec->output_section;
9192 /* Adjust size of output section. */
9193 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9196 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9197 static void
9198 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9200 struct _arm_elf_section_data *exidx_arm_data;
9202 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9203 add_unwind_table_edit (
9204 &exidx_arm_data->u.exidx.unwind_edit_list,
9205 &exidx_arm_data->u.exidx.unwind_edit_tail,
9206 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9208 adjust_exidx_size(exidx_sec, 8);
9211 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9212 made to those tables, such that:
9214 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9215 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9216 codes which have been inlined into the index).
9218 The edits are applied when the tables are written
9219 (in elf32_arm_write_section).
9222 bfd_boolean
9223 elf32_arm_fix_exidx_coverage (asection **text_section_order,
9224 unsigned int num_text_sections,
9225 struct bfd_link_info *info)
9227 bfd *inp;
9228 unsigned int last_second_word = 0, i;
9229 asection *last_exidx_sec = NULL;
9230 asection *last_text_sec = NULL;
9231 int last_unwind_type = -1;
9233 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9234 text sections. */
9235 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9237 asection *sec;
9239 for (sec = inp->sections; sec != NULL; sec = sec->next)
9241 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9242 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9244 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9245 continue;
9247 if (elf_sec->linked_to)
9249 Elf_Internal_Shdr *linked_hdr
9250 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9251 struct _arm_elf_section_data *linked_sec_arm_data
9252 = get_arm_elf_section_data (linked_hdr->bfd_section);
9254 if (linked_sec_arm_data == NULL)
9255 continue;
9257 /* Link this .ARM.exidx section back from the text section it
9258 describes. */
9259 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9264 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9265 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9266 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
9268 for (i = 0; i < num_text_sections; i++)
9270 asection *sec = text_section_order[i];
9271 asection *exidx_sec;
9272 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9273 struct _arm_elf_section_data *exidx_arm_data;
9274 bfd_byte *contents = NULL;
9275 int deleted_exidx_bytes = 0;
9276 bfd_vma j;
9277 arm_unwind_table_edit *unwind_edit_head = NULL;
9278 arm_unwind_table_edit *unwind_edit_tail = NULL;
9279 Elf_Internal_Shdr *hdr;
9280 bfd *ibfd;
9282 if (arm_data == NULL)
9283 continue;
9285 exidx_sec = arm_data->u.text.arm_exidx_sec;
9286 if (exidx_sec == NULL)
9288 /* Section has no unwind data. */
9289 if (last_unwind_type == 0 || !last_exidx_sec)
9290 continue;
9292 /* Ignore zero sized sections. */
9293 if (sec->size == 0)
9294 continue;
9296 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9297 last_unwind_type = 0;
9298 continue;
9301 /* Skip /DISCARD/ sections. */
9302 if (bfd_is_abs_section (exidx_sec->output_section))
9303 continue;
9305 hdr = &elf_section_data (exidx_sec)->this_hdr;
9306 if (hdr->sh_type != SHT_ARM_EXIDX)
9307 continue;
9309 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9310 if (exidx_arm_data == NULL)
9311 continue;
9313 ibfd = exidx_sec->owner;
9315 if (hdr->contents != NULL)
9316 contents = hdr->contents;
9317 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9318 /* An error? */
9319 continue;
9321 for (j = 0; j < hdr->sh_size; j += 8)
9323 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9324 int unwind_type;
9325 int elide = 0;
9327 /* An EXIDX_CANTUNWIND entry. */
9328 if (second_word == 1)
9330 if (last_unwind_type == 0)
9331 elide = 1;
9332 unwind_type = 0;
9334 /* Inlined unwinding data. Merge if equal to previous. */
9335 else if ((second_word & 0x80000000) != 0)
9337 if (last_second_word == second_word && last_unwind_type == 1)
9338 elide = 1;
9339 unwind_type = 1;
9340 last_second_word = second_word;
9342 /* Normal table entry. In theory we could merge these too,
9343 but duplicate entries are likely to be much less common. */
9344 else
9345 unwind_type = 2;
9347 if (elide)
9349 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9350 DELETE_EXIDX_ENTRY, NULL, j / 8);
9352 deleted_exidx_bytes += 8;
9355 last_unwind_type = unwind_type;
9358 /* Free contents if we allocated it ourselves. */
9359 if (contents != hdr->contents)
9360 free (contents);
9362 /* Record edits to be applied later (in elf32_arm_write_section). */
9363 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9364 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9366 if (deleted_exidx_bytes > 0)
9367 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9369 last_exidx_sec = exidx_sec;
9370 last_text_sec = sec;
9373 /* Add terminating CANTUNWIND entry. */
9374 if (last_exidx_sec && last_unwind_type != 0)
9375 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9377 return TRUE;
9380 static bfd_boolean
9381 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9382 bfd *ibfd, const char *name)
9384 asection *sec, *osec;
9386 sec = bfd_get_section_by_name (ibfd, name);
9387 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9388 return TRUE;
9390 osec = sec->output_section;
9391 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9392 return TRUE;
9394 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9395 sec->output_offset, sec->size))
9396 return FALSE;
9398 return TRUE;
9401 static bfd_boolean
9402 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9404 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9405 asection *sec, *osec;
9407 if (globals == NULL)
9408 return FALSE;
9410 /* Invoke the regular ELF backend linker to do all the work. */
9411 if (!bfd_elf_final_link (abfd, info))
9412 return FALSE;
9414 /* Process stub sections (eg BE8 encoding, ...). */
9415 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
9416 int i;
9417 for(i=0; i<htab->top_id; i++) {
9418 sec = htab->stub_group[i].stub_sec;
9419 if (sec) {
9420 osec = sec->output_section;
9421 elf32_arm_write_section (abfd, info, sec, sec->contents);
9422 if (! bfd_set_section_contents (abfd, osec, sec->contents,
9423 sec->output_offset, sec->size))
9424 return FALSE;
9428 /* Write out any glue sections now that we have created all the
9429 stubs. */
9430 if (globals->bfd_of_glue_owner != NULL)
9432 if (! elf32_arm_output_glue_section (info, abfd,
9433 globals->bfd_of_glue_owner,
9434 ARM2THUMB_GLUE_SECTION_NAME))
9435 return FALSE;
9437 if (! elf32_arm_output_glue_section (info, abfd,
9438 globals->bfd_of_glue_owner,
9439 THUMB2ARM_GLUE_SECTION_NAME))
9440 return FALSE;
9442 if (! elf32_arm_output_glue_section (info, abfd,
9443 globals->bfd_of_glue_owner,
9444 VFP11_ERRATUM_VENEER_SECTION_NAME))
9445 return FALSE;
9447 if (! elf32_arm_output_glue_section (info, abfd,
9448 globals->bfd_of_glue_owner,
9449 ARM_BX_GLUE_SECTION_NAME))
9450 return FALSE;
9453 return TRUE;
9456 /* Set the right machine number. */
9458 static bfd_boolean
9459 elf32_arm_object_p (bfd *abfd)
9461 unsigned int mach;
9463 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9465 if (mach != bfd_mach_arm_unknown)
9466 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9468 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9469 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9471 else
9472 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9474 return TRUE;
9477 /* Function to keep ARM specific flags in the ELF header. */
9479 static bfd_boolean
9480 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9482 if (elf_flags_init (abfd)
9483 && elf_elfheader (abfd)->e_flags != flags)
9485 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9487 if (flags & EF_ARM_INTERWORK)
9488 (*_bfd_error_handler)
9489 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9490 abfd);
9491 else
9492 _bfd_error_handler
9493 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9494 abfd);
9497 else
9499 elf_elfheader (abfd)->e_flags = flags;
9500 elf_flags_init (abfd) = TRUE;
9503 return TRUE;
9506 /* Copy backend specific data from one object module to another. */
9508 static bfd_boolean
9509 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9511 flagword in_flags;
9512 flagword out_flags;
9514 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9515 return TRUE;
9517 in_flags = elf_elfheader (ibfd)->e_flags;
9518 out_flags = elf_elfheader (obfd)->e_flags;
9520 if (elf_flags_init (obfd)
9521 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9522 && in_flags != out_flags)
9524 /* Cannot mix APCS26 and APCS32 code. */
9525 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9526 return FALSE;
9528 /* Cannot mix float APCS and non-float APCS code. */
9529 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9530 return FALSE;
9532 /* If the src and dest have different interworking flags
9533 then turn off the interworking bit. */
9534 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9536 if (out_flags & EF_ARM_INTERWORK)
9537 _bfd_error_handler
9538 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9539 obfd, ibfd);
9541 in_flags &= ~EF_ARM_INTERWORK;
9544 /* Likewise for PIC, though don't warn for this case. */
9545 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9546 in_flags &= ~EF_ARM_PIC;
9549 elf_elfheader (obfd)->e_flags = in_flags;
9550 elf_flags_init (obfd) = TRUE;
9552 /* Also copy the EI_OSABI field. */
9553 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9554 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9556 /* Copy object attributes. */
9557 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9559 return TRUE;
9562 /* Values for Tag_ABI_PCS_R9_use. */
9563 enum
9565 AEABI_R9_V6,
9566 AEABI_R9_SB,
9567 AEABI_R9_TLS,
9568 AEABI_R9_unused
9571 /* Values for Tag_ABI_PCS_RW_data. */
9572 enum
9574 AEABI_PCS_RW_data_absolute,
9575 AEABI_PCS_RW_data_PCrel,
9576 AEABI_PCS_RW_data_SBrel,
9577 AEABI_PCS_RW_data_unused
9580 /* Values for Tag_ABI_enum_size. */
9581 enum
9583 AEABI_enum_unused,
9584 AEABI_enum_short,
9585 AEABI_enum_wide,
9586 AEABI_enum_forced_wide
9589 /* Determine whether an object attribute tag takes an integer, a
9590 string or both. */
9592 static int
9593 elf32_arm_obj_attrs_arg_type (int tag)
9595 if (tag == Tag_compatibility)
9596 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9597 else if (tag == Tag_nodefaults)
9598 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9599 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9600 return ATTR_TYPE_FLAG_STR_VAL;
9601 else if (tag < 32)
9602 return ATTR_TYPE_FLAG_INT_VAL;
9603 else
9604 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9607 /* The ABI defines that Tag_conformance should be emitted first, and that
9608 Tag_nodefaults should be second (if either is defined). This sets those
9609 two positions, and bumps up the position of all the remaining tags to
9610 compensate. */
9611 static int
9612 elf32_arm_obj_attrs_order (int num)
9614 if (num == 4)
9615 return Tag_conformance;
9616 if (num == 5)
9617 return Tag_nodefaults;
9618 if ((num - 2) < Tag_nodefaults)
9619 return num - 2;
9620 if ((num - 1) < Tag_conformance)
9621 return num - 1;
9622 return num;
9625 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9626 Returns -1 if no architecture could be read. */
9628 static int
9629 get_secondary_compatible_arch (bfd *abfd)
9631 obj_attribute *attr =
9632 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9634 /* Note: the tag and its argument below are uleb128 values, though
9635 currently-defined values fit in one byte for each. */
9636 if (attr->s
9637 && attr->s[0] == Tag_CPU_arch
9638 && (attr->s[1] & 128) != 128
9639 && attr->s[2] == 0)
9640 return attr->s[1];
9642 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9643 return -1;
9646 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9647 The tag is removed if ARCH is -1. */
9649 static void
9650 set_secondary_compatible_arch (bfd *abfd, int arch)
9652 obj_attribute *attr =
9653 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9655 if (arch == -1)
9657 attr->s = NULL;
9658 return;
9661 /* Note: the tag and its argument below are uleb128 values, though
9662 currently-defined values fit in one byte for each. */
9663 if (!attr->s)
9664 attr->s = (char *) bfd_alloc (abfd, 3);
9665 attr->s[0] = Tag_CPU_arch;
9666 attr->s[1] = arch;
9667 attr->s[2] = '\0';
9670 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9671 into account. */
9673 static int
9674 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9675 int newtag, int secondary_compat)
9677 #define T(X) TAG_CPU_ARCH_##X
9678 int tagl, tagh, result;
9679 const int v6t2[] =
9681 T(V6T2), /* PRE_V4. */
9682 T(V6T2), /* V4. */
9683 T(V6T2), /* V4T. */
9684 T(V6T2), /* V5T. */
9685 T(V6T2), /* V5TE. */
9686 T(V6T2), /* V5TEJ. */
9687 T(V6T2), /* V6. */
9688 T(V7), /* V6KZ. */
9689 T(V6T2) /* V6T2. */
9691 const int v6k[] =
9693 T(V6K), /* PRE_V4. */
9694 T(V6K), /* V4. */
9695 T(V6K), /* V4T. */
9696 T(V6K), /* V5T. */
9697 T(V6K), /* V5TE. */
9698 T(V6K), /* V5TEJ. */
9699 T(V6K), /* V6. */
9700 T(V6KZ), /* V6KZ. */
9701 T(V7), /* V6T2. */
9702 T(V6K) /* V6K. */
9704 const int v7[] =
9706 T(V7), /* PRE_V4. */
9707 T(V7), /* V4. */
9708 T(V7), /* V4T. */
9709 T(V7), /* V5T. */
9710 T(V7), /* V5TE. */
9711 T(V7), /* V5TEJ. */
9712 T(V7), /* V6. */
9713 T(V7), /* V6KZ. */
9714 T(V7), /* V6T2. */
9715 T(V7), /* V6K. */
9716 T(V7) /* V7. */
9718 const int v6_m[] =
9720 -1, /* PRE_V4. */
9721 -1, /* V4. */
9722 T(V6K), /* V4T. */
9723 T(V6K), /* V5T. */
9724 T(V6K), /* V5TE. */
9725 T(V6K), /* V5TEJ. */
9726 T(V6K), /* V6. */
9727 T(V6KZ), /* V6KZ. */
9728 T(V7), /* V6T2. */
9729 T(V6K), /* V6K. */
9730 T(V7), /* V7. */
9731 T(V6_M) /* V6_M. */
9733 const int v6s_m[] =
9735 -1, /* PRE_V4. */
9736 -1, /* V4. */
9737 T(V6K), /* V4T. */
9738 T(V6K), /* V5T. */
9739 T(V6K), /* V5TE. */
9740 T(V6K), /* V5TEJ. */
9741 T(V6K), /* V6. */
9742 T(V6KZ), /* V6KZ. */
9743 T(V7), /* V6T2. */
9744 T(V6K), /* V6K. */
9745 T(V7), /* V7. */
9746 T(V6S_M), /* V6_M. */
9747 T(V6S_M) /* V6S_M. */
9749 const int v7e_m[] =
9751 -1, /* PRE_V4. */
9752 -1, /* V4. */
9753 T(V7E_M), /* V4T. */
9754 T(V7E_M), /* V5T. */
9755 T(V7E_M), /* V5TE. */
9756 T(V7E_M), /* V5TEJ. */
9757 T(V7E_M), /* V6. */
9758 T(V7E_M), /* V6KZ. */
9759 T(V7E_M), /* V6T2. */
9760 T(V7E_M), /* V6K. */
9761 T(V7E_M), /* V7. */
9762 T(V7E_M), /* V6_M. */
9763 T(V7E_M), /* V6S_M. */
9764 T(V7E_M) /* V7E_M. */
9766 const int v4t_plus_v6_m[] =
9768 -1, /* PRE_V4. */
9769 -1, /* V4. */
9770 T(V4T), /* V4T. */
9771 T(V5T), /* V5T. */
9772 T(V5TE), /* V5TE. */
9773 T(V5TEJ), /* V5TEJ. */
9774 T(V6), /* V6. */
9775 T(V6KZ), /* V6KZ. */
9776 T(V6T2), /* V6T2. */
9777 T(V6K), /* V6K. */
9778 T(V7), /* V7. */
9779 T(V6_M), /* V6_M. */
9780 T(V6S_M), /* V6S_M. */
9781 T(V7E_M), /* V7E_M. */
9782 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9784 const int *comb[] =
9786 v6t2,
9787 v6k,
9789 v6_m,
9790 v6s_m,
9791 v7e_m,
9792 /* Pseudo-architecture. */
9793 v4t_plus_v6_m
9796 /* Check we've not got a higher architecture than we know about. */
9798 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
9800 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9801 return -1;
9804 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9806 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9807 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9808 oldtag = T(V4T_PLUS_V6_M);
9810 /* And override the new tag if we have a Tag_also_compatible_with on the
9811 input. */
9813 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9814 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9815 newtag = T(V4T_PLUS_V6_M);
9817 tagl = (oldtag < newtag) ? oldtag : newtag;
9818 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9820 /* Architectures before V6KZ add features monotonically. */
9821 if (tagh <= TAG_CPU_ARCH_V6KZ)
9822 return result;
9824 result = comb[tagh - T(V6T2)][tagl];
9826 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9827 as the canonical version. */
9828 if (result == T(V4T_PLUS_V6_M))
9830 result = T(V4T);
9831 *secondary_compat_out = T(V6_M);
9833 else
9834 *secondary_compat_out = -1;
9836 if (result == -1)
9838 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9839 ibfd, oldtag, newtag);
9840 return -1;
9843 return result;
9844 #undef T
9847 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9848 are conflicting attributes. */
9850 static bfd_boolean
9851 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9853 obj_attribute *in_attr;
9854 obj_attribute *out_attr;
9855 obj_attribute_list *in_list;
9856 obj_attribute_list *out_list;
9857 obj_attribute_list **out_listp;
9858 /* Some tags have 0 = don't care, 1 = strong requirement,
9859 2 = weak requirement. */
9860 static const int order_021[3] = {0, 2, 1};
9861 int i;
9862 bfd_boolean result = TRUE;
9864 /* Skip the linker stubs file. This preserves previous behavior
9865 of accepting unknown attributes in the first input file - but
9866 is that a bug? */
9867 if (ibfd->flags & BFD_LINKER_CREATED)
9868 return TRUE;
9870 if (!elf_known_obj_attributes_proc (obfd)[0].i)
9872 /* This is the first object. Copy the attributes. */
9873 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9875 out_attr = elf_known_obj_attributes_proc (obfd);
9877 /* Use the Tag_null value to indicate the attributes have been
9878 initialized. */
9879 out_attr[0].i = 1;
9881 /* We do not output objects with Tag_MPextension_use_legacy - we move
9882 the attribute's value to Tag_MPextension_use. */
9883 if (out_attr[Tag_MPextension_use_legacy].i != 0)
9885 if (out_attr[Tag_MPextension_use].i != 0
9886 && out_attr[Tag_MPextension_use_legacy].i
9887 != out_attr[Tag_MPextension_use].i)
9889 _bfd_error_handler
9890 (_("Error: %B has both the current and legacy "
9891 "Tag_MPextension_use attributes"), ibfd);
9892 result = FALSE;
9895 out_attr[Tag_MPextension_use] =
9896 out_attr[Tag_MPextension_use_legacy];
9897 out_attr[Tag_MPextension_use_legacy].type = 0;
9898 out_attr[Tag_MPextension_use_legacy].i = 0;
9901 return result;
9904 in_attr = elf_known_obj_attributes_proc (ibfd);
9905 out_attr = elf_known_obj_attributes_proc (obfd);
9906 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9907 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9909 /* Ignore mismatches if the object doesn't use floating point. */
9910 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9911 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9912 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9914 _bfd_error_handler
9915 (_("error: %B uses VFP register arguments, %B does not"),
9916 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
9917 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
9918 result = FALSE;
9922 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9924 /* Merge this attribute with existing attributes. */
9925 switch (i)
9927 case Tag_CPU_raw_name:
9928 case Tag_CPU_name:
9929 /* These are merged after Tag_CPU_arch. */
9930 break;
9932 case Tag_ABI_optimization_goals:
9933 case Tag_ABI_FP_optimization_goals:
9934 /* Use the first value seen. */
9935 break;
9937 case Tag_CPU_arch:
9939 int secondary_compat = -1, secondary_compat_out = -1;
9940 unsigned int saved_out_attr = out_attr[i].i;
9941 static const char *name_table[] = {
9942 /* These aren't real CPU names, but we can't guess
9943 that from the architecture version alone. */
9944 "Pre v4",
9945 "ARM v4",
9946 "ARM v4T",
9947 "ARM v5T",
9948 "ARM v5TE",
9949 "ARM v5TEJ",
9950 "ARM v6",
9951 "ARM v6KZ",
9952 "ARM v6T2",
9953 "ARM v6K",
9954 "ARM v7",
9955 "ARM v6-M",
9956 "ARM v6S-M"
9959 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9960 secondary_compat = get_secondary_compatible_arch (ibfd);
9961 secondary_compat_out = get_secondary_compatible_arch (obfd);
9962 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9963 &secondary_compat_out,
9964 in_attr[i].i,
9965 secondary_compat);
9966 set_secondary_compatible_arch (obfd, secondary_compat_out);
9968 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9969 if (out_attr[i].i == saved_out_attr)
9970 ; /* Leave the names alone. */
9971 else if (out_attr[i].i == in_attr[i].i)
9973 /* The output architecture has been changed to match the
9974 input architecture. Use the input names. */
9975 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9976 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9977 : NULL;
9978 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9979 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9980 : NULL;
9982 else
9984 out_attr[Tag_CPU_name].s = NULL;
9985 out_attr[Tag_CPU_raw_name].s = NULL;
9988 /* If we still don't have a value for Tag_CPU_name,
9989 make one up now. Tag_CPU_raw_name remains blank. */
9990 if (out_attr[Tag_CPU_name].s == NULL
9991 && out_attr[i].i < ARRAY_SIZE (name_table))
9992 out_attr[Tag_CPU_name].s =
9993 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9995 break;
9997 case Tag_ARM_ISA_use:
9998 case Tag_THUMB_ISA_use:
9999 case Tag_WMMX_arch:
10000 case Tag_Advanced_SIMD_arch:
10001 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
10002 case Tag_ABI_FP_rounding:
10003 case Tag_ABI_FP_exceptions:
10004 case Tag_ABI_FP_user_exceptions:
10005 case Tag_ABI_FP_number_model:
10006 case Tag_FP_HP_extension:
10007 case Tag_CPU_unaligned_access:
10008 case Tag_T2EE_use:
10009 case Tag_MPextension_use:
10010 /* Use the largest value specified. */
10011 if (in_attr[i].i > out_attr[i].i)
10012 out_attr[i].i = in_attr[i].i;
10013 break;
10015 case Tag_ABI_align_preserved:
10016 case Tag_ABI_PCS_RO_data:
10017 /* Use the smallest value specified. */
10018 if (in_attr[i].i < out_attr[i].i)
10019 out_attr[i].i = in_attr[i].i;
10020 break;
10022 case Tag_ABI_align_needed:
10023 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
10024 && (in_attr[Tag_ABI_align_preserved].i == 0
10025 || out_attr[Tag_ABI_align_preserved].i == 0))
10027 /* This error message should be enabled once all non-conformant
10028 binaries in the toolchain have had the attributes set
10029 properly.
10030 _bfd_error_handler
10031 (_("error: %B: 8-byte data alignment conflicts with %B"),
10032 obfd, ibfd);
10033 result = FALSE; */
10035 /* Fall through. */
10036 case Tag_ABI_FP_denormal:
10037 case Tag_ABI_PCS_GOT_use:
10038 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10039 value if greater than 2 (for future-proofing). */
10040 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
10041 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
10042 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
10043 out_attr[i].i = in_attr[i].i;
10044 break;
10046 case Tag_Virtualization_use:
10047 /* The virtualization tag effectively stores two bits of
10048 information: the intended use of TrustZone (in bit 0), and the
10049 intended use of Virtualization (in bit 1). */
10050 if (out_attr[i].i == 0)
10051 out_attr[i].i = in_attr[i].i;
10052 else if (in_attr[i].i != 0
10053 && in_attr[i].i != out_attr[i].i)
10055 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
10056 out_attr[i].i = 3;
10057 else
10059 _bfd_error_handler
10060 (_("error: %B: unable to merge virtualization attributes "
10061 "with %B"),
10062 obfd, ibfd);
10063 result = FALSE;
10066 break;
10068 case Tag_CPU_arch_profile:
10069 if (out_attr[i].i != in_attr[i].i)
10071 /* 0 will merge with anything.
10072 'A' and 'S' merge to 'A'.
10073 'R' and 'S' merge to 'R'.
10074 'M' and 'A|R|S' is an error. */
10075 if (out_attr[i].i == 0
10076 || (out_attr[i].i == 'S'
10077 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
10078 out_attr[i].i = in_attr[i].i;
10079 else if (in_attr[i].i == 0
10080 || (in_attr[i].i == 'S'
10081 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
10082 ; /* Do nothing. */
10083 else
10085 _bfd_error_handler
10086 (_("error: %B: Conflicting architecture profiles %c/%c"),
10087 ibfd,
10088 in_attr[i].i ? in_attr[i].i : '0',
10089 out_attr[i].i ? out_attr[i].i : '0');
10090 result = FALSE;
10093 break;
10094 case Tag_FP_arch:
10096 static const struct
10098 int ver;
10099 int regs;
10100 } vfp_versions[7] =
10102 {0, 0},
10103 {1, 16},
10104 {2, 16},
10105 {3, 32},
10106 {3, 16},
10107 {4, 32},
10108 {4, 16}
10110 int ver;
10111 int regs;
10112 int newval;
10114 /* Values greater than 6 aren't defined, so just pick the
10115 biggest */
10116 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10118 out_attr[i] = in_attr[i];
10119 break;
10121 /* The output uses the superset of input features
10122 (ISA version) and registers. */
10123 ver = vfp_versions[in_attr[i].i].ver;
10124 if (ver < vfp_versions[out_attr[i].i].ver)
10125 ver = vfp_versions[out_attr[i].i].ver;
10126 regs = vfp_versions[in_attr[i].i].regs;
10127 if (regs < vfp_versions[out_attr[i].i].regs)
10128 regs = vfp_versions[out_attr[i].i].regs;
10129 /* This assumes all possible supersets are also a valid
10130 options. */
10131 for (newval = 6; newval > 0; newval--)
10133 if (regs == vfp_versions[newval].regs
10134 && ver == vfp_versions[newval].ver)
10135 break;
10137 out_attr[i].i = newval;
10139 break;
10140 case Tag_PCS_config:
10141 if (out_attr[i].i == 0)
10142 out_attr[i].i = in_attr[i].i;
10143 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10145 /* It's sometimes ok to mix different configs, so this is only
10146 a warning. */
10147 _bfd_error_handler
10148 (_("Warning: %B: Conflicting platform configuration"), ibfd);
10150 break;
10151 case Tag_ABI_PCS_R9_use:
10152 if (in_attr[i].i != out_attr[i].i
10153 && out_attr[i].i != AEABI_R9_unused
10154 && in_attr[i].i != AEABI_R9_unused)
10156 _bfd_error_handler
10157 (_("error: %B: Conflicting use of R9"), ibfd);
10158 result = FALSE;
10160 if (out_attr[i].i == AEABI_R9_unused)
10161 out_attr[i].i = in_attr[i].i;
10162 break;
10163 case Tag_ABI_PCS_RW_data:
10164 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10165 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10166 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10168 _bfd_error_handler
10169 (_("error: %B: SB relative addressing conflicts with use of R9"),
10170 ibfd);
10171 result = FALSE;
10173 /* Use the smallest value specified. */
10174 if (in_attr[i].i < out_attr[i].i)
10175 out_attr[i].i = in_attr[i].i;
10176 break;
10177 case Tag_ABI_PCS_wchar_t:
10178 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10179 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
10181 _bfd_error_handler
10182 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10183 ibfd, in_attr[i].i, out_attr[i].i);
10185 else if (in_attr[i].i && !out_attr[i].i)
10186 out_attr[i].i = in_attr[i].i;
10187 break;
10188 case Tag_ABI_enum_size:
10189 if (in_attr[i].i != AEABI_enum_unused)
10191 if (out_attr[i].i == AEABI_enum_unused
10192 || out_attr[i].i == AEABI_enum_forced_wide)
10194 /* The existing object is compatible with anything.
10195 Use whatever requirements the new object has. */
10196 out_attr[i].i = in_attr[i].i;
10198 else if (in_attr[i].i != AEABI_enum_forced_wide
10199 && out_attr[i].i != in_attr[i].i
10200 && !elf_arm_tdata (obfd)->no_enum_size_warning)
10202 static const char *aeabi_enum_names[] =
10203 { "", "variable-size", "32-bit", "" };
10204 const char *in_name =
10205 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10206 ? aeabi_enum_names[in_attr[i].i]
10207 : "<unknown>";
10208 const char *out_name =
10209 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10210 ? aeabi_enum_names[out_attr[i].i]
10211 : "<unknown>";
10212 _bfd_error_handler
10213 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10214 ibfd, in_name, out_name);
10217 break;
10218 case Tag_ABI_VFP_args:
10219 /* Aready done. */
10220 break;
10221 case Tag_ABI_WMMX_args:
10222 if (in_attr[i].i != out_attr[i].i)
10224 _bfd_error_handler
10225 (_("error: %B uses iWMMXt register arguments, %B does not"),
10226 ibfd, obfd);
10227 result = FALSE;
10229 break;
10230 case Tag_compatibility:
10231 /* Merged in target-independent code. */
10232 break;
10233 case Tag_ABI_HardFP_use:
10234 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10235 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10236 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10237 out_attr[i].i = 3;
10238 else if (in_attr[i].i > out_attr[i].i)
10239 out_attr[i].i = in_attr[i].i;
10240 break;
10241 case Tag_ABI_FP_16bit_format:
10242 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10244 if (in_attr[i].i != out_attr[i].i)
10246 _bfd_error_handler
10247 (_("error: fp16 format mismatch between %B and %B"),
10248 ibfd, obfd);
10249 result = FALSE;
10252 if (in_attr[i].i != 0)
10253 out_attr[i].i = in_attr[i].i;
10254 break;
10256 case Tag_DIV_use:
10257 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10258 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10259 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10260 CPU. We will merge as follows: If the input attribute's value
10261 is one then the output attribute's value remains unchanged. If
10262 the input attribute's value is zero or two then if the output
10263 attribute's value is one the output value is set to the input
10264 value, otherwise the output value must be the same as the
10265 inputs. */
10266 if (in_attr[i].i != 1 && out_attr[i].i != 1)
10268 if (in_attr[i].i != out_attr[i].i)
10270 _bfd_error_handler
10271 (_("DIV usage mismatch between %B and %B"),
10272 ibfd, obfd);
10273 result = FALSE;
10277 if (in_attr[i].i != 1)
10278 out_attr[i].i = in_attr[i].i;
10280 break;
10282 case Tag_MPextension_use_legacy:
10283 /* We don't output objects with Tag_MPextension_use_legacy - we
10284 move the value to Tag_MPextension_use. */
10285 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
10287 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
10289 _bfd_error_handler
10290 (_("%B has has both the current and legacy "
10291 "Tag_MPextension_use attributes"),
10292 ibfd);
10293 result = FALSE;
10297 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
10298 out_attr[Tag_MPextension_use] = in_attr[i];
10300 break;
10302 case Tag_nodefaults:
10303 /* This tag is set if it exists, but the value is unused (and is
10304 typically zero). We don't actually need to do anything here -
10305 the merge happens automatically when the type flags are merged
10306 below. */
10307 break;
10308 case Tag_also_compatible_with:
10309 /* Already done in Tag_CPU_arch. */
10310 break;
10311 case Tag_conformance:
10312 /* Keep the attribute if it matches. Throw it away otherwise.
10313 No attribute means no claim to conform. */
10314 if (!in_attr[i].s || !out_attr[i].s
10315 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10316 out_attr[i].s = NULL;
10317 break;
10319 default:
10321 bfd *err_bfd = NULL;
10323 /* The "known_obj_attributes" table does contain some undefined
10324 attributes. Ensure that there are unused. */
10325 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10326 err_bfd = obfd;
10327 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10328 err_bfd = ibfd;
10330 if (err_bfd != NULL)
10332 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10333 if ((i & 127) < 64)
10335 _bfd_error_handler
10336 (_("%B: Unknown mandatory EABI object attribute %d"),
10337 err_bfd, i);
10338 bfd_set_error (bfd_error_bad_value);
10339 result = FALSE;
10341 else
10343 _bfd_error_handler
10344 (_("Warning: %B: Unknown EABI object attribute %d"),
10345 err_bfd, i);
10349 /* Only pass on attributes that match in both inputs. */
10350 if (in_attr[i].i != out_attr[i].i
10351 || in_attr[i].s != out_attr[i].s
10352 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10353 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10355 out_attr[i].i = 0;
10356 out_attr[i].s = NULL;
10361 /* If out_attr was copied from in_attr then it won't have a type yet. */
10362 if (in_attr[i].type && !out_attr[i].type)
10363 out_attr[i].type = in_attr[i].type;
10366 /* Merge Tag_compatibility attributes and any common GNU ones. */
10367 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
10368 return FALSE;
10370 /* Check for any attributes not known on ARM. */
10371 in_list = elf_other_obj_attributes_proc (ibfd);
10372 out_listp = &elf_other_obj_attributes_proc (obfd);
10373 out_list = *out_listp;
10375 for (; in_list || out_list; )
10377 bfd *err_bfd = NULL;
10378 int err_tag = 0;
10380 /* The tags for each list are in numerical order. */
10381 /* If the tags are equal, then merge. */
10382 if (out_list && (!in_list || in_list->tag > out_list->tag))
10384 /* This attribute only exists in obfd. We can't merge, and we don't
10385 know what the tag means, so delete it. */
10386 err_bfd = obfd;
10387 err_tag = out_list->tag;
10388 *out_listp = out_list->next;
10389 out_list = *out_listp;
10391 else if (in_list && (!out_list || in_list->tag < out_list->tag))
10393 /* This attribute only exists in ibfd. We can't merge, and we don't
10394 know what the tag means, so ignore it. */
10395 err_bfd = ibfd;
10396 err_tag = in_list->tag;
10397 in_list = in_list->next;
10399 else /* The tags are equal. */
10401 /* As present, all attributes in the list are unknown, and
10402 therefore can't be merged meaningfully. */
10403 err_bfd = obfd;
10404 err_tag = out_list->tag;
10406 /* Only pass on attributes that match in both inputs. */
10407 if (in_list->attr.i != out_list->attr.i
10408 || in_list->attr.s != out_list->attr.s
10409 || (in_list->attr.s && out_list->attr.s
10410 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10412 /* No match. Delete the attribute. */
10413 *out_listp = out_list->next;
10414 out_list = *out_listp;
10416 else
10418 /* Matched. Keep the attribute and move to the next. */
10419 out_list = out_list->next;
10420 in_list = in_list->next;
10424 if (err_bfd)
10426 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10427 if ((err_tag & 127) < 64)
10429 _bfd_error_handler
10430 (_("%B: Unknown mandatory EABI object attribute %d"),
10431 err_bfd, err_tag);
10432 bfd_set_error (bfd_error_bad_value);
10433 result = FALSE;
10435 else
10437 _bfd_error_handler
10438 (_("Warning: %B: Unknown EABI object attribute %d"),
10439 err_bfd, err_tag);
10443 return result;
10447 /* Return TRUE if the two EABI versions are incompatible. */
10449 static bfd_boolean
10450 elf32_arm_versions_compatible (unsigned iver, unsigned over)
10452 /* v4 and v5 are the same spec before and after it was released,
10453 so allow mixing them. */
10454 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10455 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10456 return TRUE;
10458 return (iver == over);
10461 /* Merge backend specific data from an object file to the output
10462 object file when linking. */
10464 static bfd_boolean
10465 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
10467 /* Display the flags field. */
10469 static bfd_boolean
10470 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10472 FILE * file = (FILE *) ptr;
10473 unsigned long flags;
10475 BFD_ASSERT (abfd != NULL && ptr != NULL);
10477 /* Print normal ELF private data. */
10478 _bfd_elf_print_private_bfd_data (abfd, ptr);
10480 flags = elf_elfheader (abfd)->e_flags;
10481 /* Ignore init flag - it may not be set, despite the flags field
10482 containing valid data. */
10484 /* xgettext:c-format */
10485 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10487 switch (EF_ARM_EABI_VERSION (flags))
10489 case EF_ARM_EABI_UNKNOWN:
10490 /* The following flag bits are GNU extensions and not part of the
10491 official ARM ELF extended ABI. Hence they are only decoded if
10492 the EABI version is not set. */
10493 if (flags & EF_ARM_INTERWORK)
10494 fprintf (file, _(" [interworking enabled]"));
10496 if (flags & EF_ARM_APCS_26)
10497 fprintf (file, " [APCS-26]");
10498 else
10499 fprintf (file, " [APCS-32]");
10501 if (flags & EF_ARM_VFP_FLOAT)
10502 fprintf (file, _(" [VFP float format]"));
10503 else if (flags & EF_ARM_MAVERICK_FLOAT)
10504 fprintf (file, _(" [Maverick float format]"));
10505 else
10506 fprintf (file, _(" [FPA float format]"));
10508 if (flags & EF_ARM_APCS_FLOAT)
10509 fprintf (file, _(" [floats passed in float registers]"));
10511 if (flags & EF_ARM_PIC)
10512 fprintf (file, _(" [position independent]"));
10514 if (flags & EF_ARM_NEW_ABI)
10515 fprintf (file, _(" [new ABI]"));
10517 if (flags & EF_ARM_OLD_ABI)
10518 fprintf (file, _(" [old ABI]"));
10520 if (flags & EF_ARM_SOFT_FLOAT)
10521 fprintf (file, _(" [software FP]"));
10523 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10524 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10525 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10526 | EF_ARM_MAVERICK_FLOAT);
10527 break;
10529 case EF_ARM_EABI_VER1:
10530 fprintf (file, _(" [Version1 EABI]"));
10532 if (flags & EF_ARM_SYMSARESORTED)
10533 fprintf (file, _(" [sorted symbol table]"));
10534 else
10535 fprintf (file, _(" [unsorted symbol table]"));
10537 flags &= ~ EF_ARM_SYMSARESORTED;
10538 break;
10540 case EF_ARM_EABI_VER2:
10541 fprintf (file, _(" [Version2 EABI]"));
10543 if (flags & EF_ARM_SYMSARESORTED)
10544 fprintf (file, _(" [sorted symbol table]"));
10545 else
10546 fprintf (file, _(" [unsorted symbol table]"));
10548 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10549 fprintf (file, _(" [dynamic symbols use segment index]"));
10551 if (flags & EF_ARM_MAPSYMSFIRST)
10552 fprintf (file, _(" [mapping symbols precede others]"));
10554 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10555 | EF_ARM_MAPSYMSFIRST);
10556 break;
10558 case EF_ARM_EABI_VER3:
10559 fprintf (file, _(" [Version3 EABI]"));
10560 break;
10562 case EF_ARM_EABI_VER4:
10563 fprintf (file, _(" [Version4 EABI]"));
10564 goto eabi;
10566 case EF_ARM_EABI_VER5:
10567 fprintf (file, _(" [Version5 EABI]"));
10568 eabi:
10569 if (flags & EF_ARM_BE8)
10570 fprintf (file, _(" [BE8]"));
10572 if (flags & EF_ARM_LE8)
10573 fprintf (file, _(" [LE8]"));
10575 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10576 break;
10578 default:
10579 fprintf (file, _(" <EABI version unrecognised>"));
10580 break;
10583 flags &= ~ EF_ARM_EABIMASK;
10585 if (flags & EF_ARM_RELEXEC)
10586 fprintf (file, _(" [relocatable executable]"));
10588 if (flags & EF_ARM_HASENTRY)
10589 fprintf (file, _(" [has entry point]"));
10591 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10593 if (flags)
10594 fprintf (file, _("<Unrecognised flag bits set>"));
10596 fputc ('\n', file);
10598 return TRUE;
10601 static int
10602 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10604 switch (ELF_ST_TYPE (elf_sym->st_info))
10606 case STT_ARM_TFUNC:
10607 return ELF_ST_TYPE (elf_sym->st_info);
10609 case STT_ARM_16BIT:
10610 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10611 This allows us to distinguish between data used by Thumb instructions
10612 and non-data (which is probably code) inside Thumb regions of an
10613 executable. */
10614 if (type != STT_OBJECT && type != STT_TLS)
10615 return ELF_ST_TYPE (elf_sym->st_info);
10616 break;
10618 default:
10619 break;
10622 return type;
10625 static asection *
10626 elf32_arm_gc_mark_hook (asection *sec,
10627 struct bfd_link_info *info,
10628 Elf_Internal_Rela *rel,
10629 struct elf_link_hash_entry *h,
10630 Elf_Internal_Sym *sym)
10632 if (h != NULL)
10633 switch (ELF32_R_TYPE (rel->r_info))
10635 case R_ARM_GNU_VTINHERIT:
10636 case R_ARM_GNU_VTENTRY:
10637 return NULL;
10640 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10643 /* Update the got entry reference counts for the section being removed. */
10645 static bfd_boolean
10646 elf32_arm_gc_sweep_hook (bfd * abfd,
10647 struct bfd_link_info * info,
10648 asection * sec,
10649 const Elf_Internal_Rela * relocs)
10651 Elf_Internal_Shdr *symtab_hdr;
10652 struct elf_link_hash_entry **sym_hashes;
10653 bfd_signed_vma *local_got_refcounts;
10654 const Elf_Internal_Rela *rel, *relend;
10655 struct elf32_arm_link_hash_table * globals;
10657 if (info->relocatable)
10658 return TRUE;
10660 globals = elf32_arm_hash_table (info);
10661 if (globals == NULL)
10662 return FALSE;
10664 elf_section_data (sec)->local_dynrel = NULL;
10666 symtab_hdr = & elf_symtab_hdr (abfd);
10667 sym_hashes = elf_sym_hashes (abfd);
10668 local_got_refcounts = elf_local_got_refcounts (abfd);
10670 check_use_blx (globals);
10672 relend = relocs + sec->reloc_count;
10673 for (rel = relocs; rel < relend; rel++)
10675 unsigned long r_symndx;
10676 struct elf_link_hash_entry *h = NULL;
10677 int r_type;
10679 r_symndx = ELF32_R_SYM (rel->r_info);
10680 if (r_symndx >= symtab_hdr->sh_info)
10682 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10683 while (h->root.type == bfd_link_hash_indirect
10684 || h->root.type == bfd_link_hash_warning)
10685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10688 r_type = ELF32_R_TYPE (rel->r_info);
10689 r_type = arm_real_reloc_type (globals, r_type);
10690 switch (r_type)
10692 case R_ARM_GOT32:
10693 case R_ARM_GOT_PREL:
10694 case R_ARM_TLS_GD32:
10695 case R_ARM_TLS_IE32:
10696 if (h != NULL)
10698 if (h->got.refcount > 0)
10699 h->got.refcount -= 1;
10701 else if (local_got_refcounts != NULL)
10703 if (local_got_refcounts[r_symndx] > 0)
10704 local_got_refcounts[r_symndx] -= 1;
10706 break;
10708 case R_ARM_TLS_LDM32:
10709 globals->tls_ldm_got.refcount -= 1;
10710 break;
10712 case R_ARM_ABS32:
10713 case R_ARM_ABS32_NOI:
10714 case R_ARM_REL32:
10715 case R_ARM_REL32_NOI:
10716 case R_ARM_PC24:
10717 case R_ARM_PLT32:
10718 case R_ARM_CALL:
10719 case R_ARM_JUMP24:
10720 case R_ARM_PREL31:
10721 case R_ARM_THM_CALL:
10722 case R_ARM_THM_JUMP24:
10723 case R_ARM_THM_JUMP19:
10724 case R_ARM_MOVW_ABS_NC:
10725 case R_ARM_MOVT_ABS:
10726 case R_ARM_MOVW_PREL_NC:
10727 case R_ARM_MOVT_PREL:
10728 case R_ARM_THM_MOVW_ABS_NC:
10729 case R_ARM_THM_MOVT_ABS:
10730 case R_ARM_THM_MOVW_PREL_NC:
10731 case R_ARM_THM_MOVT_PREL:
10732 /* Should the interworking branches be here also? */
10734 if (h != NULL)
10736 struct elf32_arm_link_hash_entry *eh;
10737 struct elf32_arm_relocs_copied **pp;
10738 struct elf32_arm_relocs_copied *p;
10740 eh = (struct elf32_arm_link_hash_entry *) h;
10742 if (h->plt.refcount > 0)
10744 h->plt.refcount -= 1;
10745 if (r_type == R_ARM_THM_CALL)
10746 eh->plt_maybe_thumb_refcount--;
10748 if (r_type == R_ARM_THM_JUMP24
10749 || r_type == R_ARM_THM_JUMP19)
10750 eh->plt_thumb_refcount--;
10753 if (r_type == R_ARM_ABS32
10754 || r_type == R_ARM_REL32
10755 || r_type == R_ARM_ABS32_NOI
10756 || r_type == R_ARM_REL32_NOI)
10758 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10759 pp = &p->next)
10760 if (p->section == sec)
10762 p->count -= 1;
10763 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10764 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10765 p->pc_count -= 1;
10766 if (p->count == 0)
10767 *pp = p->next;
10768 break;
10772 break;
10774 default:
10775 break;
10779 return TRUE;
10782 /* Look through the relocs for a section during the first phase. */
10784 static bfd_boolean
10785 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10786 asection *sec, const Elf_Internal_Rela *relocs)
10788 Elf_Internal_Shdr *symtab_hdr;
10789 struct elf_link_hash_entry **sym_hashes;
10790 const Elf_Internal_Rela *rel;
10791 const Elf_Internal_Rela *rel_end;
10792 bfd *dynobj;
10793 asection *sreloc;
10794 bfd_vma *local_got_offsets;
10795 struct elf32_arm_link_hash_table *htab;
10796 bfd_boolean needs_plt;
10797 unsigned long nsyms;
10799 if (info->relocatable)
10800 return TRUE;
10802 BFD_ASSERT (is_arm_elf (abfd));
10804 htab = elf32_arm_hash_table (info);
10805 if (htab == NULL)
10806 return FALSE;
10808 sreloc = NULL;
10810 /* Create dynamic sections for relocatable executables so that we can
10811 copy relocations. */
10812 if (htab->root.is_relocatable_executable
10813 && ! htab->root.dynamic_sections_created)
10815 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10816 return FALSE;
10819 dynobj = elf_hash_table (info)->dynobj;
10820 local_got_offsets = elf_local_got_offsets (abfd);
10822 symtab_hdr = & elf_symtab_hdr (abfd);
10823 sym_hashes = elf_sym_hashes (abfd);
10824 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10826 rel_end = relocs + sec->reloc_count;
10827 for (rel = relocs; rel < rel_end; rel++)
10829 struct elf_link_hash_entry *h;
10830 struct elf32_arm_link_hash_entry *eh;
10831 unsigned long r_symndx;
10832 int r_type;
10834 r_symndx = ELF32_R_SYM (rel->r_info);
10835 r_type = ELF32_R_TYPE (rel->r_info);
10836 r_type = arm_real_reloc_type (htab, r_type);
10838 if (r_symndx >= nsyms
10839 /* PR 9934: It is possible to have relocations that do not
10840 refer to symbols, thus it is also possible to have an
10841 object file containing relocations but no symbol table. */
10842 && (r_symndx > 0 || nsyms > 0))
10844 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10845 r_symndx);
10846 return FALSE;
10849 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10850 h = NULL;
10851 else
10853 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10854 while (h->root.type == bfd_link_hash_indirect
10855 || h->root.type == bfd_link_hash_warning)
10856 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10859 eh = (struct elf32_arm_link_hash_entry *) h;
10861 switch (r_type)
10863 case R_ARM_GOT32:
10864 case R_ARM_GOT_PREL:
10865 case R_ARM_TLS_GD32:
10866 case R_ARM_TLS_IE32:
10867 /* This symbol requires a global offset table entry. */
10869 int tls_type, old_tls_type;
10871 switch (r_type)
10873 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10874 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10875 default: tls_type = GOT_NORMAL; break;
10878 if (h != NULL)
10880 h->got.refcount++;
10881 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10883 else
10885 bfd_signed_vma *local_got_refcounts;
10887 /* This is a global offset table entry for a local symbol. */
10888 local_got_refcounts = elf_local_got_refcounts (abfd);
10889 if (local_got_refcounts == NULL)
10891 bfd_size_type size;
10893 size = symtab_hdr->sh_info;
10894 size *= (sizeof (bfd_signed_vma) + sizeof (char));
10895 local_got_refcounts = (bfd_signed_vma *)
10896 bfd_zalloc (abfd, size);
10897 if (local_got_refcounts == NULL)
10898 return FALSE;
10899 elf_local_got_refcounts (abfd) = local_got_refcounts;
10900 elf32_arm_local_got_tls_type (abfd)
10901 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10903 local_got_refcounts[r_symndx] += 1;
10904 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10907 /* We will already have issued an error message if there is a
10908 TLS / non-TLS mismatch, based on the symbol type. We don't
10909 support any linker relaxations. So just combine any TLS
10910 types needed. */
10911 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10912 && tls_type != GOT_NORMAL)
10913 tls_type |= old_tls_type;
10915 if (old_tls_type != tls_type)
10917 if (h != NULL)
10918 elf32_arm_hash_entry (h)->tls_type = tls_type;
10919 else
10920 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10923 /* Fall through. */
10925 case R_ARM_TLS_LDM32:
10926 if (r_type == R_ARM_TLS_LDM32)
10927 htab->tls_ldm_got.refcount++;
10928 /* Fall through. */
10930 case R_ARM_GOTOFF32:
10931 case R_ARM_GOTPC:
10932 if (htab->sgot == NULL)
10934 if (htab->root.dynobj == NULL)
10935 htab->root.dynobj = abfd;
10936 if (!create_got_section (htab->root.dynobj, info))
10937 return FALSE;
10939 break;
10941 case R_ARM_ABS12:
10942 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10943 ldr __GOTT_INDEX__ offsets. */
10944 if (!htab->vxworks_p)
10945 break;
10946 /* Fall through. */
10948 case R_ARM_PC24:
10949 case R_ARM_PLT32:
10950 case R_ARM_CALL:
10951 case R_ARM_JUMP24:
10952 case R_ARM_PREL31:
10953 case R_ARM_THM_CALL:
10954 case R_ARM_THM_JUMP24:
10955 case R_ARM_THM_JUMP19:
10956 needs_plt = 1;
10957 goto normal_reloc;
10959 case R_ARM_MOVW_ABS_NC:
10960 case R_ARM_MOVT_ABS:
10961 case R_ARM_THM_MOVW_ABS_NC:
10962 case R_ARM_THM_MOVT_ABS:
10963 if (info->shared)
10965 (*_bfd_error_handler)
10966 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10967 abfd, elf32_arm_howto_table_1[r_type].name,
10968 (h) ? h->root.root.string : "a local symbol");
10969 bfd_set_error (bfd_error_bad_value);
10970 return FALSE;
10973 /* Fall through. */
10974 case R_ARM_ABS32:
10975 case R_ARM_ABS32_NOI:
10976 case R_ARM_REL32:
10977 case R_ARM_REL32_NOI:
10978 case R_ARM_MOVW_PREL_NC:
10979 case R_ARM_MOVT_PREL:
10980 case R_ARM_THM_MOVW_PREL_NC:
10981 case R_ARM_THM_MOVT_PREL:
10982 needs_plt = 0;
10983 normal_reloc:
10985 /* Should the interworking branches be listed here? */
10986 if (h != NULL)
10988 /* If this reloc is in a read-only section, we might
10989 need a copy reloc. We can't check reliably at this
10990 stage whether the section is read-only, as input
10991 sections have not yet been mapped to output sections.
10992 Tentatively set the flag for now, and correct in
10993 adjust_dynamic_symbol. */
10994 if (!info->shared)
10995 h->non_got_ref = 1;
10997 /* We may need a .plt entry if the function this reloc
10998 refers to is in a different object. We can't tell for
10999 sure yet, because something later might force the
11000 symbol local. */
11001 if (needs_plt)
11002 h->needs_plt = 1;
11004 /* If we create a PLT entry, this relocation will reference
11005 it, even if it's an ABS32 relocation. */
11006 h->plt.refcount += 1;
11008 /* It's too early to use htab->use_blx here, so we have to
11009 record possible blx references separately from
11010 relocs that definitely need a thumb stub. */
11012 if (r_type == R_ARM_THM_CALL)
11013 eh->plt_maybe_thumb_refcount += 1;
11015 if (r_type == R_ARM_THM_JUMP24
11016 || r_type == R_ARM_THM_JUMP19)
11017 eh->plt_thumb_refcount += 1;
11020 /* If we are creating a shared library or relocatable executable,
11021 and this is a reloc against a global symbol, or a non PC
11022 relative reloc against a local symbol, then we need to copy
11023 the reloc into the shared library. However, if we are linking
11024 with -Bsymbolic, we do not need to copy a reloc against a
11025 global symbol which is defined in an object we are
11026 including in the link (i.e., DEF_REGULAR is set). At
11027 this point we have not seen all the input files, so it is
11028 possible that DEF_REGULAR is not set now but will be set
11029 later (it is never cleared). We account for that
11030 possibility below by storing information in the
11031 relocs_copied field of the hash table entry. */
11032 if ((info->shared || htab->root.is_relocatable_executable)
11033 && (sec->flags & SEC_ALLOC) != 0
11034 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
11035 || (h != NULL && ! h->needs_plt
11036 && (! info->symbolic || ! h->def_regular))))
11038 struct elf32_arm_relocs_copied *p, **head;
11040 /* When creating a shared object, we must copy these
11041 reloc types into the output file. We create a reloc
11042 section in dynobj and make room for this reloc. */
11043 if (sreloc == NULL)
11045 sreloc = _bfd_elf_make_dynamic_reloc_section
11046 (sec, dynobj, 2, abfd, ! htab->use_rel);
11048 if (sreloc == NULL)
11049 return FALSE;
11051 /* BPABI objects never have dynamic relocations mapped. */
11052 if (htab->symbian_p)
11054 flagword flags;
11056 flags = bfd_get_section_flags (dynobj, sreloc);
11057 flags &= ~(SEC_LOAD | SEC_ALLOC);
11058 bfd_set_section_flags (dynobj, sreloc, flags);
11062 /* If this is a global symbol, we count the number of
11063 relocations we need for this symbol. */
11064 if (h != NULL)
11066 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11068 else
11070 /* Track dynamic relocs needed for local syms too.
11071 We really need local syms available to do this
11072 easily. Oh well. */
11073 asection *s;
11074 void *vpp;
11075 Elf_Internal_Sym *isym;
11077 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11078 abfd, r_symndx);
11079 if (isym == NULL)
11080 return FALSE;
11082 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11083 if (s == NULL)
11084 s = sec;
11086 vpp = &elf_section_data (s)->local_dynrel;
11087 head = (struct elf32_arm_relocs_copied **) vpp;
11090 p = *head;
11091 if (p == NULL || p->section != sec)
11093 bfd_size_type amt = sizeof *p;
11095 p = (struct elf32_arm_relocs_copied *)
11096 bfd_alloc (htab->root.dynobj, amt);
11097 if (p == NULL)
11098 return FALSE;
11099 p->next = *head;
11100 *head = p;
11101 p->section = sec;
11102 p->count = 0;
11103 p->pc_count = 0;
11106 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11107 p->pc_count += 1;
11108 p->count += 1;
11110 break;
11112 /* This relocation describes the C++ object vtable hierarchy.
11113 Reconstruct it for later use during GC. */
11114 case R_ARM_GNU_VTINHERIT:
11115 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11116 return FALSE;
11117 break;
11119 /* This relocation describes which C++ vtable entries are actually
11120 used. Record for later use during GC. */
11121 case R_ARM_GNU_VTENTRY:
11122 BFD_ASSERT (h != NULL);
11123 if (h != NULL
11124 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11125 return FALSE;
11126 break;
11130 return TRUE;
11133 /* Unwinding tables are not referenced directly. This pass marks them as
11134 required if the corresponding code section is marked. */
11136 static bfd_boolean
11137 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11138 elf_gc_mark_hook_fn gc_mark_hook)
11140 bfd *sub;
11141 Elf_Internal_Shdr **elf_shdrp;
11142 bfd_boolean again;
11144 /* Marking EH data may cause additional code sections to be marked,
11145 requiring multiple passes. */
11146 again = TRUE;
11147 while (again)
11149 again = FALSE;
11150 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11152 asection *o;
11154 if (! is_arm_elf (sub))
11155 continue;
11157 elf_shdrp = elf_elfsections (sub);
11158 for (o = sub->sections; o != NULL; o = o->next)
11160 Elf_Internal_Shdr *hdr;
11162 hdr = &elf_section_data (o)->this_hdr;
11163 if (hdr->sh_type == SHT_ARM_EXIDX
11164 && hdr->sh_link
11165 && hdr->sh_link < elf_numsections (sub)
11166 && !o->gc_mark
11167 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11169 again = TRUE;
11170 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11171 return FALSE;
11177 return TRUE;
11180 /* Treat mapping symbols as special target symbols. */
11182 static bfd_boolean
11183 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11185 return bfd_is_arm_special_symbol_name (sym->name,
11186 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11189 /* This is a copy of elf_find_function() from elf.c except that
11190 ARM mapping symbols are ignored when looking for function names
11191 and STT_ARM_TFUNC is considered to a function type. */
11193 static bfd_boolean
11194 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11195 asection * section,
11196 asymbol ** symbols,
11197 bfd_vma offset,
11198 const char ** filename_ptr,
11199 const char ** functionname_ptr)
11201 const char * filename = NULL;
11202 asymbol * func = NULL;
11203 bfd_vma low_func = 0;
11204 asymbol ** p;
11206 for (p = symbols; *p != NULL; p++)
11208 elf_symbol_type *q;
11210 q = (elf_symbol_type *) *p;
11212 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11214 default:
11215 break;
11216 case STT_FILE:
11217 filename = bfd_asymbol_name (&q->symbol);
11218 break;
11219 case STT_FUNC:
11220 case STT_ARM_TFUNC:
11221 case STT_NOTYPE:
11222 /* Skip mapping symbols. */
11223 if ((q->symbol.flags & BSF_LOCAL)
11224 && bfd_is_arm_special_symbol_name (q->symbol.name,
11225 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11226 continue;
11227 /* Fall through. */
11228 if (bfd_get_section (&q->symbol) == section
11229 && q->symbol.value >= low_func
11230 && q->symbol.value <= offset)
11232 func = (asymbol *) q;
11233 low_func = q->symbol.value;
11235 break;
11239 if (func == NULL)
11240 return FALSE;
11242 if (filename_ptr)
11243 *filename_ptr = filename;
11244 if (functionname_ptr)
11245 *functionname_ptr = bfd_asymbol_name (func);
11247 return TRUE;
11251 /* Find the nearest line to a particular section and offset, for error
11252 reporting. This code is a duplicate of the code in elf.c, except
11253 that it uses arm_elf_find_function. */
11255 static bfd_boolean
11256 elf32_arm_find_nearest_line (bfd * abfd,
11257 asection * section,
11258 asymbol ** symbols,
11259 bfd_vma offset,
11260 const char ** filename_ptr,
11261 const char ** functionname_ptr,
11262 unsigned int * line_ptr)
11264 bfd_boolean found = FALSE;
11266 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11268 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11269 filename_ptr, functionname_ptr,
11270 line_ptr, 0,
11271 & elf_tdata (abfd)->dwarf2_find_line_info))
11273 if (!*functionname_ptr)
11274 arm_elf_find_function (abfd, section, symbols, offset,
11275 *filename_ptr ? NULL : filename_ptr,
11276 functionname_ptr);
11278 return TRUE;
11281 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11282 & found, filename_ptr,
11283 functionname_ptr, line_ptr,
11284 & elf_tdata (abfd)->line_info))
11285 return FALSE;
11287 if (found && (*functionname_ptr || *line_ptr))
11288 return TRUE;
11290 if (symbols == NULL)
11291 return FALSE;
11293 if (! arm_elf_find_function (abfd, section, symbols, offset,
11294 filename_ptr, functionname_ptr))
11295 return FALSE;
11297 *line_ptr = 0;
11298 return TRUE;
11301 static bfd_boolean
11302 elf32_arm_find_inliner_info (bfd * abfd,
11303 const char ** filename_ptr,
11304 const char ** functionname_ptr,
11305 unsigned int * line_ptr)
11307 bfd_boolean found;
11308 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11309 functionname_ptr, line_ptr,
11310 & elf_tdata (abfd)->dwarf2_find_line_info);
11311 return found;
11314 /* Adjust a symbol defined by a dynamic object and referenced by a
11315 regular object. The current definition is in some section of the
11316 dynamic object, but we're not including those sections. We have to
11317 change the definition to something the rest of the link can
11318 understand. */
11320 static bfd_boolean
11321 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11322 struct elf_link_hash_entry * h)
11324 bfd * dynobj;
11325 asection * s;
11326 struct elf32_arm_link_hash_entry * eh;
11327 struct elf32_arm_link_hash_table *globals;
11329 globals = elf32_arm_hash_table (info);
11330 if (globals == NULL)
11331 return FALSE;
11333 dynobj = elf_hash_table (info)->dynobj;
11335 /* Make sure we know what is going on here. */
11336 BFD_ASSERT (dynobj != NULL
11337 && (h->needs_plt
11338 || h->u.weakdef != NULL
11339 || (h->def_dynamic
11340 && h->ref_regular
11341 && !h->def_regular)));
11343 eh = (struct elf32_arm_link_hash_entry *) h;
11345 /* If this is a function, put it in the procedure linkage table. We
11346 will fill in the contents of the procedure linkage table later,
11347 when we know the address of the .got section. */
11348 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11349 || h->needs_plt)
11351 if (h->plt.refcount <= 0
11352 || SYMBOL_CALLS_LOCAL (info, h)
11353 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11354 && h->root.type == bfd_link_hash_undefweak))
11356 /* This case can occur if we saw a PLT32 reloc in an input
11357 file, but the symbol was never referred to by a dynamic
11358 object, or if all references were garbage collected. In
11359 such a case, we don't actually need to build a procedure
11360 linkage table, and we can just do a PC24 reloc instead. */
11361 h->plt.offset = (bfd_vma) -1;
11362 eh->plt_thumb_refcount = 0;
11363 eh->plt_maybe_thumb_refcount = 0;
11364 h->needs_plt = 0;
11367 return TRUE;
11369 else
11371 /* It's possible that we incorrectly decided a .plt reloc was
11372 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11373 in check_relocs. We can't decide accurately between function
11374 and non-function syms in check-relocs; Objects loaded later in
11375 the link may change h->type. So fix it now. */
11376 h->plt.offset = (bfd_vma) -1;
11377 eh->plt_thumb_refcount = 0;
11378 eh->plt_maybe_thumb_refcount = 0;
11381 /* If this is a weak symbol, and there is a real definition, the
11382 processor independent code will have arranged for us to see the
11383 real definition first, and we can just use the same value. */
11384 if (h->u.weakdef != NULL)
11386 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11387 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11388 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11389 h->root.u.def.value = h->u.weakdef->root.u.def.value;
11390 return TRUE;
11393 /* If there are no non-GOT references, we do not need a copy
11394 relocation. */
11395 if (!h->non_got_ref)
11396 return TRUE;
11398 /* This is a reference to a symbol defined by a dynamic object which
11399 is not a function. */
11401 /* If we are creating a shared library, we must presume that the
11402 only references to the symbol are via the global offset table.
11403 For such cases we need not do anything here; the relocations will
11404 be handled correctly by relocate_section. Relocatable executables
11405 can reference data in shared objects directly, so we don't need to
11406 do anything here. */
11407 if (info->shared || globals->root.is_relocatable_executable)
11408 return TRUE;
11410 if (h->size == 0)
11412 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11413 h->root.root.string);
11414 return TRUE;
11417 /* We must allocate the symbol in our .dynbss section, which will
11418 become part of the .bss section of the executable. There will be
11419 an entry for this symbol in the .dynsym section. The dynamic
11420 object will contain position independent code, so all references
11421 from the dynamic object to this symbol will go through the global
11422 offset table. The dynamic linker will use the .dynsym entry to
11423 determine the address it must put in the global offset table, so
11424 both the dynamic object and the regular object will refer to the
11425 same memory location for the variable. */
11426 s = bfd_get_section_by_name (dynobj, ".dynbss");
11427 BFD_ASSERT (s != NULL);
11429 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11430 copy the initial value out of the dynamic object and into the
11431 runtime process image. We need to remember the offset into the
11432 .rel(a).bss section we are going to use. */
11433 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11435 asection *srel;
11437 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11438 BFD_ASSERT (srel != NULL);
11439 srel->size += RELOC_SIZE (globals);
11440 h->needs_copy = 1;
11443 return _bfd_elf_adjust_dynamic_copy (h, s);
11446 /* Allocate space in .plt, .got and associated reloc sections for
11447 dynamic relocs. */
11449 static bfd_boolean
11450 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11452 struct bfd_link_info *info;
11453 struct elf32_arm_link_hash_table *htab;
11454 struct elf32_arm_link_hash_entry *eh;
11455 struct elf32_arm_relocs_copied *p;
11456 bfd_signed_vma thumb_refs;
11458 eh = (struct elf32_arm_link_hash_entry *) h;
11460 if (h->root.type == bfd_link_hash_indirect)
11461 return TRUE;
11463 if (h->root.type == bfd_link_hash_warning)
11464 /* When warning symbols are created, they **replace** the "real"
11465 entry in the hash table, thus we never get to see the real
11466 symbol in a hash traversal. So look at it now. */
11467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11469 info = (struct bfd_link_info *) inf;
11470 htab = elf32_arm_hash_table (info);
11471 if (htab == NULL)
11472 return FALSE;
11474 if (htab->root.dynamic_sections_created
11475 && h->plt.refcount > 0)
11477 /* Make sure this symbol is output as a dynamic symbol.
11478 Undefined weak syms won't yet be marked as dynamic. */
11479 if (h->dynindx == -1
11480 && !h->forced_local)
11482 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11483 return FALSE;
11486 if (info->shared
11487 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11489 asection *s = htab->splt;
11491 /* If this is the first .plt entry, make room for the special
11492 first entry. */
11493 if (s->size == 0)
11494 s->size += htab->plt_header_size;
11496 h->plt.offset = s->size;
11498 /* If we will insert a Thumb trampoline before this PLT, leave room
11499 for it. */
11500 thumb_refs = eh->plt_thumb_refcount;
11501 if (!htab->use_blx)
11502 thumb_refs += eh->plt_maybe_thumb_refcount;
11504 if (thumb_refs > 0)
11506 h->plt.offset += PLT_THUMB_STUB_SIZE;
11507 s->size += PLT_THUMB_STUB_SIZE;
11510 /* If this symbol is not defined in a regular file, and we are
11511 not generating a shared library, then set the symbol to this
11512 location in the .plt. This is required to make function
11513 pointers compare as equal between the normal executable and
11514 the shared library. */
11515 if (! info->shared
11516 && !h->def_regular)
11518 h->root.u.def.section = s;
11519 h->root.u.def.value = h->plt.offset;
11521 /* Make sure the function is not marked as Thumb, in case
11522 it is the target of an ABS32 relocation, which will
11523 point to the PLT entry. */
11524 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11525 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11528 /* Make room for this entry. */
11529 s->size += htab->plt_entry_size;
11531 if (!htab->symbian_p)
11533 /* We also need to make an entry in the .got.plt section, which
11534 will be placed in the .got section by the linker script. */
11535 eh->plt_got_offset = htab->sgotplt->size;
11536 htab->sgotplt->size += 4;
11539 /* We also need to make an entry in the .rel(a).plt section. */
11540 htab->srelplt->size += RELOC_SIZE (htab);
11542 /* VxWorks executables have a second set of relocations for
11543 each PLT entry. They go in a separate relocation section,
11544 which is processed by the kernel loader. */
11545 if (htab->vxworks_p && !info->shared)
11547 /* There is a relocation for the initial PLT entry:
11548 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11549 if (h->plt.offset == htab->plt_header_size)
11550 htab->srelplt2->size += RELOC_SIZE (htab);
11552 /* There are two extra relocations for each subsequent
11553 PLT entry: an R_ARM_32 relocation for the GOT entry,
11554 and an R_ARM_32 relocation for the PLT entry. */
11555 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11558 else
11560 h->plt.offset = (bfd_vma) -1;
11561 h->needs_plt = 0;
11564 else
11566 h->plt.offset = (bfd_vma) -1;
11567 h->needs_plt = 0;
11570 if (h->got.refcount > 0)
11572 asection *s;
11573 bfd_boolean dyn;
11574 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11575 int indx;
11577 /* Make sure this symbol is output as a dynamic symbol.
11578 Undefined weak syms won't yet be marked as dynamic. */
11579 if (h->dynindx == -1
11580 && !h->forced_local)
11582 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11583 return FALSE;
11586 if (!htab->symbian_p)
11588 s = htab->sgot;
11589 h->got.offset = s->size;
11591 if (tls_type == GOT_UNKNOWN)
11592 abort ();
11594 if (tls_type == GOT_NORMAL)
11595 /* Non-TLS symbols need one GOT slot. */
11596 s->size += 4;
11597 else
11599 if (tls_type & GOT_TLS_GD)
11600 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11601 s->size += 8;
11602 if (tls_type & GOT_TLS_IE)
11603 /* R_ARM_TLS_IE32 needs one GOT slot. */
11604 s->size += 4;
11607 dyn = htab->root.dynamic_sections_created;
11609 indx = 0;
11610 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11611 && (!info->shared
11612 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11613 indx = h->dynindx;
11615 if (tls_type != GOT_NORMAL
11616 && (info->shared || indx != 0)
11617 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11618 || h->root.type != bfd_link_hash_undefweak))
11620 if (tls_type & GOT_TLS_IE)
11621 htab->srelgot->size += RELOC_SIZE (htab);
11623 if (tls_type & GOT_TLS_GD)
11624 htab->srelgot->size += RELOC_SIZE (htab);
11626 if ((tls_type & GOT_TLS_GD) && indx != 0)
11627 htab->srelgot->size += RELOC_SIZE (htab);
11629 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11630 || h->root.type != bfd_link_hash_undefweak)
11631 && (info->shared
11632 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11633 htab->srelgot->size += RELOC_SIZE (htab);
11636 else
11637 h->got.offset = (bfd_vma) -1;
11639 /* Allocate stubs for exported Thumb functions on v4t. */
11640 if (!htab->use_blx && h->dynindx != -1
11641 && h->def_regular
11642 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11643 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11645 struct elf_link_hash_entry * th;
11646 struct bfd_link_hash_entry * bh;
11647 struct elf_link_hash_entry * myh;
11648 char name[1024];
11649 asection *s;
11650 bh = NULL;
11651 /* Create a new symbol to regist the real location of the function. */
11652 s = h->root.u.def.section;
11653 sprintf (name, "__real_%s", h->root.root.string);
11654 _bfd_generic_link_add_one_symbol (info, s->owner,
11655 name, BSF_GLOBAL, s,
11656 h->root.u.def.value,
11657 NULL, TRUE, FALSE, &bh);
11659 myh = (struct elf_link_hash_entry *) bh;
11660 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11661 myh->forced_local = 1;
11662 eh->export_glue = myh;
11663 th = record_arm_to_thumb_glue (info, h);
11664 /* Point the symbol at the stub. */
11665 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11666 h->root.u.def.section = th->root.u.def.section;
11667 h->root.u.def.value = th->root.u.def.value & ~1;
11670 if (eh->relocs_copied == NULL)
11671 return TRUE;
11673 /* In the shared -Bsymbolic case, discard space allocated for
11674 dynamic pc-relative relocs against symbols which turn out to be
11675 defined in regular objects. For the normal shared case, discard
11676 space for pc-relative relocs that have become local due to symbol
11677 visibility changes. */
11679 if (info->shared || htab->root.is_relocatable_executable)
11681 /* The only relocs that use pc_count are R_ARM_REL32 and
11682 R_ARM_REL32_NOI, which will appear on something like
11683 ".long foo - .". We want calls to protected symbols to resolve
11684 directly to the function rather than going via the plt. If people
11685 want function pointer comparisons to work as expected then they
11686 should avoid writing assembly like ".long foo - .". */
11687 if (SYMBOL_CALLS_LOCAL (info, h))
11689 struct elf32_arm_relocs_copied **pp;
11691 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11693 p->count -= p->pc_count;
11694 p->pc_count = 0;
11695 if (p->count == 0)
11696 *pp = p->next;
11697 else
11698 pp = &p->next;
11702 if (htab->vxworks_p)
11704 struct elf32_arm_relocs_copied **pp;
11706 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11708 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11709 *pp = p->next;
11710 else
11711 pp = &p->next;
11715 /* Also discard relocs on undefined weak syms with non-default
11716 visibility. */
11717 if (eh->relocs_copied != NULL
11718 && h->root.type == bfd_link_hash_undefweak)
11720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11721 eh->relocs_copied = NULL;
11723 /* Make sure undefined weak symbols are output as a dynamic
11724 symbol in PIEs. */
11725 else if (h->dynindx == -1
11726 && !h->forced_local)
11728 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11729 return FALSE;
11733 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11734 && h->root.type == bfd_link_hash_new)
11736 /* Output absolute symbols so that we can create relocations
11737 against them. For normal symbols we output a relocation
11738 against the section that contains them. */
11739 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11740 return FALSE;
11744 else
11746 /* For the non-shared case, discard space for relocs against
11747 symbols which turn out to need copy relocs or are not
11748 dynamic. */
11750 if (!h->non_got_ref
11751 && ((h->def_dynamic
11752 && !h->def_regular)
11753 || (htab->root.dynamic_sections_created
11754 && (h->root.type == bfd_link_hash_undefweak
11755 || h->root.type == bfd_link_hash_undefined))))
11757 /* Make sure this symbol is output as a dynamic symbol.
11758 Undefined weak syms won't yet be marked as dynamic. */
11759 if (h->dynindx == -1
11760 && !h->forced_local)
11762 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11763 return FALSE;
11766 /* If that succeeded, we know we'll be keeping all the
11767 relocs. */
11768 if (h->dynindx != -1)
11769 goto keep;
11772 eh->relocs_copied = NULL;
11774 keep: ;
11777 /* Finally, allocate space. */
11778 for (p = eh->relocs_copied; p != NULL; p = p->next)
11780 asection *sreloc = elf_section_data (p->section)->sreloc;
11781 sreloc->size += p->count * RELOC_SIZE (htab);
11784 return TRUE;
11787 /* Find any dynamic relocs that apply to read-only sections. */
11789 static bfd_boolean
11790 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11792 struct elf32_arm_link_hash_entry * eh;
11793 struct elf32_arm_relocs_copied * p;
11795 if (h->root.type == bfd_link_hash_warning)
11796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11798 eh = (struct elf32_arm_link_hash_entry *) h;
11799 for (p = eh->relocs_copied; p != NULL; p = p->next)
11801 asection *s = p->section;
11803 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11805 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11807 info->flags |= DF_TEXTREL;
11809 /* Not an error, just cut short the traversal. */
11810 return FALSE;
11813 return TRUE;
11816 void
11817 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11818 int byteswap_code)
11820 struct elf32_arm_link_hash_table *globals;
11822 globals = elf32_arm_hash_table (info);
11823 if (globals == NULL)
11824 return;
11826 globals->byteswap_code = byteswap_code;
11829 /* Set the sizes of the dynamic sections. */
11831 static bfd_boolean
11832 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11833 struct bfd_link_info * info)
11835 bfd * dynobj;
11836 asection * s;
11837 bfd_boolean plt;
11838 bfd_boolean relocs;
11839 bfd *ibfd;
11840 struct elf32_arm_link_hash_table *htab;
11842 htab = elf32_arm_hash_table (info);
11843 if (htab == NULL)
11844 return FALSE;
11846 dynobj = elf_hash_table (info)->dynobj;
11847 BFD_ASSERT (dynobj != NULL);
11848 check_use_blx (htab);
11850 if (elf_hash_table (info)->dynamic_sections_created)
11852 /* Set the contents of the .interp section to the interpreter. */
11853 if (info->executable)
11855 s = bfd_get_section_by_name (dynobj, ".interp");
11856 BFD_ASSERT (s != NULL);
11857 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11858 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11862 /* Set up .got offsets for local syms, and space for local dynamic
11863 relocs. */
11864 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11866 bfd_signed_vma *local_got;
11867 bfd_signed_vma *end_local_got;
11868 char *local_tls_type;
11869 bfd_size_type locsymcount;
11870 Elf_Internal_Shdr *symtab_hdr;
11871 asection *srel;
11872 bfd_boolean is_vxworks = htab->vxworks_p;
11874 if (! is_arm_elf (ibfd))
11875 continue;
11877 for (s = ibfd->sections; s != NULL; s = s->next)
11879 struct elf32_arm_relocs_copied *p;
11881 for (p = (struct elf32_arm_relocs_copied *)
11882 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11884 if (!bfd_is_abs_section (p->section)
11885 && bfd_is_abs_section (p->section->output_section))
11887 /* Input section has been discarded, either because
11888 it is a copy of a linkonce section or due to
11889 linker script /DISCARD/, so we'll be discarding
11890 the relocs too. */
11892 else if (is_vxworks
11893 && strcmp (p->section->output_section->name,
11894 ".tls_vars") == 0)
11896 /* Relocations in vxworks .tls_vars sections are
11897 handled specially by the loader. */
11899 else if (p->count != 0)
11901 srel = elf_section_data (p->section)->sreloc;
11902 srel->size += p->count * RELOC_SIZE (htab);
11903 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11904 info->flags |= DF_TEXTREL;
11909 local_got = elf_local_got_refcounts (ibfd);
11910 if (!local_got)
11911 continue;
11913 symtab_hdr = & elf_symtab_hdr (ibfd);
11914 locsymcount = symtab_hdr->sh_info;
11915 end_local_got = local_got + locsymcount;
11916 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11917 s = htab->sgot;
11918 srel = htab->srelgot;
11919 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11921 if (*local_got > 0)
11923 *local_got = s->size;
11924 if (*local_tls_type & GOT_TLS_GD)
11925 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11926 s->size += 8;
11927 if (*local_tls_type & GOT_TLS_IE)
11928 s->size += 4;
11929 if (*local_tls_type == GOT_NORMAL)
11930 s->size += 4;
11932 if (info->shared || *local_tls_type == GOT_TLS_GD)
11933 srel->size += RELOC_SIZE (htab);
11935 else
11936 *local_got = (bfd_vma) -1;
11940 if (htab->tls_ldm_got.refcount > 0)
11942 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11943 for R_ARM_TLS_LDM32 relocations. */
11944 htab->tls_ldm_got.offset = htab->sgot->size;
11945 htab->sgot->size += 8;
11946 if (info->shared)
11947 htab->srelgot->size += RELOC_SIZE (htab);
11949 else
11950 htab->tls_ldm_got.offset = -1;
11952 /* Allocate global sym .plt and .got entries, and space for global
11953 sym dynamic relocs. */
11954 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11956 /* Here we rummage through the found bfds to collect glue information. */
11957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11959 if (! is_arm_elf (ibfd))
11960 continue;
11962 /* Initialise mapping tables for code/data. */
11963 bfd_elf32_arm_init_maps (ibfd);
11965 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11966 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11967 /* xgettext:c-format */
11968 _bfd_error_handler (_("Errors encountered processing file %s"),
11969 ibfd->filename);
11972 /* Allocate space for the glue sections now that we've sized them. */
11973 bfd_elf32_arm_allocate_interworking_sections (info);
11975 /* The check_relocs and adjust_dynamic_symbol entry points have
11976 determined the sizes of the various dynamic sections. Allocate
11977 memory for them. */
11978 plt = FALSE;
11979 relocs = FALSE;
11980 for (s = dynobj->sections; s != NULL; s = s->next)
11982 const char * name;
11984 if ((s->flags & SEC_LINKER_CREATED) == 0)
11985 continue;
11987 /* It's OK to base decisions on the section name, because none
11988 of the dynobj section names depend upon the input files. */
11989 name = bfd_get_section_name (dynobj, s);
11991 if (strcmp (name, ".plt") == 0)
11993 /* Remember whether there is a PLT. */
11994 plt = s->size != 0;
11996 else if (CONST_STRNEQ (name, ".rel"))
11998 if (s->size != 0)
12000 /* Remember whether there are any reloc sections other
12001 than .rel(a).plt and .rela.plt.unloaded. */
12002 if (s != htab->srelplt && s != htab->srelplt2)
12003 relocs = TRUE;
12005 /* We use the reloc_count field as a counter if we need
12006 to copy relocs into the output file. */
12007 s->reloc_count = 0;
12010 else if (! CONST_STRNEQ (name, ".got")
12011 && strcmp (name, ".dynbss") != 0)
12013 /* It's not one of our sections, so don't allocate space. */
12014 continue;
12017 if (s->size == 0)
12019 /* If we don't need this section, strip it from the
12020 output file. This is mostly to handle .rel(a).bss and
12021 .rel(a).plt. We must create both sections in
12022 create_dynamic_sections, because they must be created
12023 before the linker maps input sections to output
12024 sections. The linker does that before
12025 adjust_dynamic_symbol is called, and it is that
12026 function which decides whether anything needs to go
12027 into these sections. */
12028 s->flags |= SEC_EXCLUDE;
12029 continue;
12032 if ((s->flags & SEC_HAS_CONTENTS) == 0)
12033 continue;
12035 /* Allocate memory for the section contents. */
12036 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
12037 if (s->contents == NULL)
12038 return FALSE;
12041 if (elf_hash_table (info)->dynamic_sections_created)
12043 /* Add some entries to the .dynamic section. We fill in the
12044 values later, in elf32_arm_finish_dynamic_sections, but we
12045 must add the entries now so that we get the correct size for
12046 the .dynamic section. The DT_DEBUG entry is filled in by the
12047 dynamic linker and used by the debugger. */
12048 #define add_dynamic_entry(TAG, VAL) \
12049 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12051 if (info->executable)
12053 if (!add_dynamic_entry (DT_DEBUG, 0))
12054 return FALSE;
12057 if (plt)
12059 if ( !add_dynamic_entry (DT_PLTGOT, 0)
12060 || !add_dynamic_entry (DT_PLTRELSZ, 0)
12061 || !add_dynamic_entry (DT_PLTREL,
12062 htab->use_rel ? DT_REL : DT_RELA)
12063 || !add_dynamic_entry (DT_JMPREL, 0))
12064 return FALSE;
12067 if (relocs)
12069 if (htab->use_rel)
12071 if (!add_dynamic_entry (DT_REL, 0)
12072 || !add_dynamic_entry (DT_RELSZ, 0)
12073 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12074 return FALSE;
12076 else
12078 if (!add_dynamic_entry (DT_RELA, 0)
12079 || !add_dynamic_entry (DT_RELASZ, 0)
12080 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12081 return FALSE;
12085 /* If any dynamic relocs apply to a read-only section,
12086 then we need a DT_TEXTREL entry. */
12087 if ((info->flags & DF_TEXTREL) == 0)
12088 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12089 info);
12091 if ((info->flags & DF_TEXTREL) != 0)
12093 if (!add_dynamic_entry (DT_TEXTREL, 0))
12094 return FALSE;
12096 if (htab->vxworks_p
12097 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12098 return FALSE;
12100 #undef add_dynamic_entry
12102 return TRUE;
12105 /* Finish up dynamic symbol handling. We set the contents of various
12106 dynamic sections here. */
12108 static bfd_boolean
12109 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12110 struct bfd_link_info * info,
12111 struct elf_link_hash_entry * h,
12112 Elf_Internal_Sym * sym)
12114 bfd * dynobj;
12115 struct elf32_arm_link_hash_table *htab;
12116 struct elf32_arm_link_hash_entry *eh;
12118 dynobj = elf_hash_table (info)->dynobj;
12119 htab = elf32_arm_hash_table (info);
12120 if (htab == NULL)
12121 return FALSE;
12123 eh = (struct elf32_arm_link_hash_entry *) h;
12125 if (h->plt.offset != (bfd_vma) -1)
12127 asection * splt;
12128 asection * srel;
12129 bfd_byte *loc;
12130 bfd_vma plt_index;
12131 Elf_Internal_Rela rel;
12133 /* This symbol has an entry in the procedure linkage table. Set
12134 it up. */
12136 BFD_ASSERT (h->dynindx != -1);
12138 splt = bfd_get_section_by_name (dynobj, ".plt");
12139 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12140 BFD_ASSERT (splt != NULL && srel != NULL);
12142 /* Fill in the entry in the procedure linkage table. */
12143 if (htab->symbian_p)
12145 put_arm_insn (htab, output_bfd,
12146 elf32_arm_symbian_plt_entry[0],
12147 splt->contents + h->plt.offset);
12148 bfd_put_32 (output_bfd,
12149 elf32_arm_symbian_plt_entry[1],
12150 splt->contents + h->plt.offset + 4);
12152 /* Fill in the entry in the .rel.plt section. */
12153 rel.r_offset = (splt->output_section->vma
12154 + splt->output_offset
12155 + h->plt.offset + 4);
12156 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12158 /* Get the index in the procedure linkage table which
12159 corresponds to this symbol. This is the index of this symbol
12160 in all the symbols for which we are making plt entries. The
12161 first entry in the procedure linkage table is reserved. */
12162 plt_index = ((h->plt.offset - htab->plt_header_size)
12163 / htab->plt_entry_size);
12165 else
12167 bfd_vma got_offset, got_address, plt_address;
12168 bfd_vma got_displacement;
12169 asection * sgot;
12170 bfd_byte * ptr;
12172 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12173 BFD_ASSERT (sgot != NULL);
12175 /* Get the offset into the .got.plt table of the entry that
12176 corresponds to this function. */
12177 got_offset = eh->plt_got_offset;
12179 /* Get the index in the procedure linkage table which
12180 corresponds to this symbol. This is the index of this symbol
12181 in all the symbols for which we are making plt entries. The
12182 first three entries in .got.plt are reserved; after that
12183 symbols appear in the same order as in .plt. */
12184 plt_index = (got_offset - 12) / 4;
12186 /* Calculate the address of the GOT entry. */
12187 got_address = (sgot->output_section->vma
12188 + sgot->output_offset
12189 + got_offset);
12191 /* ...and the address of the PLT entry. */
12192 plt_address = (splt->output_section->vma
12193 + splt->output_offset
12194 + h->plt.offset);
12196 ptr = htab->splt->contents + h->plt.offset;
12197 if (htab->vxworks_p && info->shared)
12199 unsigned int i;
12200 bfd_vma val;
12202 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12204 val = elf32_arm_vxworks_shared_plt_entry[i];
12205 if (i == 2)
12206 val |= got_address - sgot->output_section->vma;
12207 if (i == 5)
12208 val |= plt_index * RELOC_SIZE (htab);
12209 if (i == 2 || i == 5)
12210 bfd_put_32 (output_bfd, val, ptr);
12211 else
12212 put_arm_insn (htab, output_bfd, val, ptr);
12215 else if (htab->vxworks_p)
12217 unsigned int i;
12218 bfd_vma val;
12220 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12222 val = elf32_arm_vxworks_exec_plt_entry[i];
12223 if (i == 2)
12224 val |= got_address;
12225 if (i == 4)
12226 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12227 if (i == 5)
12228 val |= plt_index * RELOC_SIZE (htab);
12229 if (i == 2 || i == 5)
12230 bfd_put_32 (output_bfd, val, ptr);
12231 else
12232 put_arm_insn (htab, output_bfd, val, ptr);
12235 loc = (htab->srelplt2->contents
12236 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12238 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12239 referencing the GOT for this PLT entry. */
12240 rel.r_offset = plt_address + 8;
12241 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12242 rel.r_addend = got_offset;
12243 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12244 loc += RELOC_SIZE (htab);
12246 /* Create the R_ARM_ABS32 relocation referencing the
12247 beginning of the PLT for this GOT entry. */
12248 rel.r_offset = got_address;
12249 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12250 rel.r_addend = 0;
12251 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12253 else
12255 bfd_signed_vma thumb_refs;
12256 /* Calculate the displacement between the PLT slot and the
12257 entry in the GOT. The eight-byte offset accounts for the
12258 value produced by adding to pc in the first instruction
12259 of the PLT stub. */
12260 got_displacement = got_address - (plt_address + 8);
12262 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12264 thumb_refs = eh->plt_thumb_refcount;
12265 if (!htab->use_blx)
12266 thumb_refs += eh->plt_maybe_thumb_refcount;
12268 if (thumb_refs > 0)
12270 put_thumb_insn (htab, output_bfd,
12271 elf32_arm_plt_thumb_stub[0], ptr - 4);
12272 put_thumb_insn (htab, output_bfd,
12273 elf32_arm_plt_thumb_stub[1], ptr - 2);
12276 put_arm_insn (htab, output_bfd,
12277 elf32_arm_plt_entry[0]
12278 | ((got_displacement & 0x0ff00000) >> 20),
12279 ptr + 0);
12280 put_arm_insn (htab, output_bfd,
12281 elf32_arm_plt_entry[1]
12282 | ((got_displacement & 0x000ff000) >> 12),
12283 ptr+ 4);
12284 put_arm_insn (htab, output_bfd,
12285 elf32_arm_plt_entry[2]
12286 | (got_displacement & 0x00000fff),
12287 ptr + 8);
12288 #ifdef FOUR_WORD_PLT
12289 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12290 #endif
12293 /* Fill in the entry in the global offset table. */
12294 bfd_put_32 (output_bfd,
12295 (splt->output_section->vma
12296 + splt->output_offset),
12297 sgot->contents + got_offset);
12299 /* Fill in the entry in the .rel(a).plt section. */
12300 rel.r_addend = 0;
12301 rel.r_offset = got_address;
12302 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12305 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12306 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12308 if (!h->def_regular)
12310 /* Mark the symbol as undefined, rather than as defined in
12311 the .plt section. Leave the value alone. */
12312 sym->st_shndx = SHN_UNDEF;
12313 /* If the symbol is weak, we do need to clear the value.
12314 Otherwise, the PLT entry would provide a definition for
12315 the symbol even if the symbol wasn't defined anywhere,
12316 and so the symbol would never be NULL. */
12317 if (!h->ref_regular_nonweak)
12318 sym->st_value = 0;
12322 if (h->got.offset != (bfd_vma) -1
12323 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12324 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12326 asection * sgot;
12327 asection * srel;
12328 Elf_Internal_Rela rel;
12329 bfd_byte *loc;
12330 bfd_vma offset;
12332 /* This symbol has an entry in the global offset table. Set it
12333 up. */
12334 sgot = bfd_get_section_by_name (dynobj, ".got");
12335 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12336 BFD_ASSERT (sgot != NULL && srel != NULL);
12338 offset = (h->got.offset & ~(bfd_vma) 1);
12339 rel.r_addend = 0;
12340 rel.r_offset = (sgot->output_section->vma
12341 + sgot->output_offset
12342 + offset);
12344 /* If this is a static link, or it is a -Bsymbolic link and the
12345 symbol is defined locally or was forced to be local because
12346 of a version file, we just want to emit a RELATIVE reloc.
12347 The entry in the global offset table will already have been
12348 initialized in the relocate_section function. */
12349 if (info->shared
12350 && SYMBOL_REFERENCES_LOCAL (info, h))
12352 BFD_ASSERT ((h->got.offset & 1) != 0);
12353 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12354 if (!htab->use_rel)
12356 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12357 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12360 else
12362 BFD_ASSERT ((h->got.offset & 1) == 0);
12363 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12364 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12367 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12368 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12371 if (h->needs_copy)
12373 asection * s;
12374 Elf_Internal_Rela rel;
12375 bfd_byte *loc;
12377 /* This symbol needs a copy reloc. Set it up. */
12378 BFD_ASSERT (h->dynindx != -1
12379 && (h->root.type == bfd_link_hash_defined
12380 || h->root.type == bfd_link_hash_defweak));
12382 s = bfd_get_section_by_name (h->root.u.def.section->owner,
12383 RELOC_SECTION (htab, ".bss"));
12384 BFD_ASSERT (s != NULL);
12386 rel.r_addend = 0;
12387 rel.r_offset = (h->root.u.def.value
12388 + h->root.u.def.section->output_section->vma
12389 + h->root.u.def.section->output_offset);
12390 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12391 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12392 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12395 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12396 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12397 to the ".got" section. */
12398 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12399 || (!htab->vxworks_p && h == htab->root.hgot))
12400 sym->st_shndx = SHN_ABS;
12402 return TRUE;
12405 /* Finish up the dynamic sections. */
12407 static bfd_boolean
12408 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12410 bfd * dynobj;
12411 asection * sgot;
12412 asection * sdyn;
12413 struct elf32_arm_link_hash_table *htab;
12415 htab = elf32_arm_hash_table (info);
12416 if (htab == NULL)
12417 return FALSE;
12419 dynobj = elf_hash_table (info)->dynobj;
12421 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12422 BFD_ASSERT (htab->symbian_p || sgot != NULL);
12423 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12425 if (elf_hash_table (info)->dynamic_sections_created)
12427 asection *splt;
12428 Elf32_External_Dyn *dyncon, *dynconend;
12430 splt = bfd_get_section_by_name (dynobj, ".plt");
12431 BFD_ASSERT (splt != NULL && sdyn != NULL);
12433 dyncon = (Elf32_External_Dyn *) sdyn->contents;
12434 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12436 for (; dyncon < dynconend; dyncon++)
12438 Elf_Internal_Dyn dyn;
12439 const char * name;
12440 asection * s;
12442 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12444 switch (dyn.d_tag)
12446 unsigned int type;
12448 default:
12449 if (htab->vxworks_p
12450 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12451 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12452 break;
12454 case DT_HASH:
12455 name = ".hash";
12456 goto get_vma_if_bpabi;
12457 case DT_STRTAB:
12458 name = ".dynstr";
12459 goto get_vma_if_bpabi;
12460 case DT_SYMTAB:
12461 name = ".dynsym";
12462 goto get_vma_if_bpabi;
12463 case DT_VERSYM:
12464 name = ".gnu.version";
12465 goto get_vma_if_bpabi;
12466 case DT_VERDEF:
12467 name = ".gnu.version_d";
12468 goto get_vma_if_bpabi;
12469 case DT_VERNEED:
12470 name = ".gnu.version_r";
12471 goto get_vma_if_bpabi;
12473 case DT_PLTGOT:
12474 name = ".got";
12475 goto get_vma;
12476 case DT_JMPREL:
12477 name = RELOC_SECTION (htab, ".plt");
12478 get_vma:
12479 s = bfd_get_section_by_name (output_bfd, name);
12480 BFD_ASSERT (s != NULL);
12481 if (!htab->symbian_p)
12482 dyn.d_un.d_ptr = s->vma;
12483 else
12484 /* In the BPABI, tags in the PT_DYNAMIC section point
12485 at the file offset, not the memory address, for the
12486 convenience of the post linker. */
12487 dyn.d_un.d_ptr = s->filepos;
12488 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12489 break;
12491 get_vma_if_bpabi:
12492 if (htab->symbian_p)
12493 goto get_vma;
12494 break;
12496 case DT_PLTRELSZ:
12497 s = bfd_get_section_by_name (output_bfd,
12498 RELOC_SECTION (htab, ".plt"));
12499 BFD_ASSERT (s != NULL);
12500 dyn.d_un.d_val = s->size;
12501 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12502 break;
12504 case DT_RELSZ:
12505 case DT_RELASZ:
12506 if (!htab->symbian_p)
12508 /* My reading of the SVR4 ABI indicates that the
12509 procedure linkage table relocs (DT_JMPREL) should be
12510 included in the overall relocs (DT_REL). This is
12511 what Solaris does. However, UnixWare can not handle
12512 that case. Therefore, we override the DT_RELSZ entry
12513 here to make it not include the JMPREL relocs. Since
12514 the linker script arranges for .rel(a).plt to follow all
12515 other relocation sections, we don't have to worry
12516 about changing the DT_REL entry. */
12517 s = bfd_get_section_by_name (output_bfd,
12518 RELOC_SECTION (htab, ".plt"));
12519 if (s != NULL)
12520 dyn.d_un.d_val -= s->size;
12521 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12522 break;
12524 /* Fall through. */
12526 case DT_REL:
12527 case DT_RELA:
12528 /* In the BPABI, the DT_REL tag must point at the file
12529 offset, not the VMA, of the first relocation
12530 section. So, we use code similar to that in
12531 elflink.c, but do not check for SHF_ALLOC on the
12532 relcoation section, since relocations sections are
12533 never allocated under the BPABI. The comments above
12534 about Unixware notwithstanding, we include all of the
12535 relocations here. */
12536 if (htab->symbian_p)
12538 unsigned int i;
12539 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12540 ? SHT_REL : SHT_RELA);
12541 dyn.d_un.d_val = 0;
12542 for (i = 1; i < elf_numsections (output_bfd); i++)
12544 Elf_Internal_Shdr *hdr
12545 = elf_elfsections (output_bfd)[i];
12546 if (hdr->sh_type == type)
12548 if (dyn.d_tag == DT_RELSZ
12549 || dyn.d_tag == DT_RELASZ)
12550 dyn.d_un.d_val += hdr->sh_size;
12551 else if ((ufile_ptr) hdr->sh_offset
12552 <= dyn.d_un.d_val - 1)
12553 dyn.d_un.d_val = hdr->sh_offset;
12556 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12558 break;
12560 /* Set the bottom bit of DT_INIT/FINI if the
12561 corresponding function is Thumb. */
12562 case DT_INIT:
12563 name = info->init_function;
12564 goto get_sym;
12565 case DT_FINI:
12566 name = info->fini_function;
12567 get_sym:
12568 /* If it wasn't set by elf_bfd_final_link
12569 then there is nothing to adjust. */
12570 if (dyn.d_un.d_val != 0)
12572 struct elf_link_hash_entry * eh;
12574 eh = elf_link_hash_lookup (elf_hash_table (info), name,
12575 FALSE, FALSE, TRUE);
12576 if (eh != NULL
12577 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12579 dyn.d_un.d_val |= 1;
12580 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12583 break;
12587 /* Fill in the first entry in the procedure linkage table. */
12588 if (splt->size > 0 && htab->plt_header_size)
12590 const bfd_vma *plt0_entry;
12591 bfd_vma got_address, plt_address, got_displacement;
12593 /* Calculate the addresses of the GOT and PLT. */
12594 got_address = sgot->output_section->vma + sgot->output_offset;
12595 plt_address = splt->output_section->vma + splt->output_offset;
12597 if (htab->vxworks_p)
12599 /* The VxWorks GOT is relocated by the dynamic linker.
12600 Therefore, we must emit relocations rather than simply
12601 computing the values now. */
12602 Elf_Internal_Rela rel;
12604 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12605 put_arm_insn (htab, output_bfd, plt0_entry[0],
12606 splt->contents + 0);
12607 put_arm_insn (htab, output_bfd, plt0_entry[1],
12608 splt->contents + 4);
12609 put_arm_insn (htab, output_bfd, plt0_entry[2],
12610 splt->contents + 8);
12611 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12613 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12614 rel.r_offset = plt_address + 12;
12615 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12616 rel.r_addend = 0;
12617 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12618 htab->srelplt2->contents);
12620 else
12622 got_displacement = got_address - (plt_address + 16);
12624 plt0_entry = elf32_arm_plt0_entry;
12625 put_arm_insn (htab, output_bfd, plt0_entry[0],
12626 splt->contents + 0);
12627 put_arm_insn (htab, output_bfd, plt0_entry[1],
12628 splt->contents + 4);
12629 put_arm_insn (htab, output_bfd, plt0_entry[2],
12630 splt->contents + 8);
12631 put_arm_insn (htab, output_bfd, plt0_entry[3],
12632 splt->contents + 12);
12634 #ifdef FOUR_WORD_PLT
12635 /* The displacement value goes in the otherwise-unused
12636 last word of the second entry. */
12637 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12638 #else
12639 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12640 #endif
12644 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12645 really seem like the right value. */
12646 if (splt->output_section->owner == output_bfd)
12647 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12649 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12651 /* Correct the .rel(a).plt.unloaded relocations. They will have
12652 incorrect symbol indexes. */
12653 int num_plts;
12654 unsigned char *p;
12656 num_plts = ((htab->splt->size - htab->plt_header_size)
12657 / htab->plt_entry_size);
12658 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12660 for (; num_plts; num_plts--)
12662 Elf_Internal_Rela rel;
12664 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12665 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12666 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12667 p += RELOC_SIZE (htab);
12669 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12670 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12671 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12672 p += RELOC_SIZE (htab);
12677 /* Fill in the first three entries in the global offset table. */
12678 if (sgot)
12680 if (sgot->size > 0)
12682 if (sdyn == NULL)
12683 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12684 else
12685 bfd_put_32 (output_bfd,
12686 sdyn->output_section->vma + sdyn->output_offset,
12687 sgot->contents);
12688 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12689 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12692 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12695 return TRUE;
12698 static void
12699 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12701 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12702 struct elf32_arm_link_hash_table *globals;
12704 i_ehdrp = elf_elfheader (abfd);
12706 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12707 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12708 else
12709 i_ehdrp->e_ident[EI_OSABI] = 0;
12710 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12712 if (link_info)
12714 globals = elf32_arm_hash_table (link_info);
12715 if (globals != NULL && globals->byteswap_code)
12716 i_ehdrp->e_flags |= EF_ARM_BE8;
12720 static enum elf_reloc_type_class
12721 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12723 switch ((int) ELF32_R_TYPE (rela->r_info))
12725 case R_ARM_RELATIVE:
12726 return reloc_class_relative;
12727 case R_ARM_JUMP_SLOT:
12728 return reloc_class_plt;
12729 case R_ARM_COPY:
12730 return reloc_class_copy;
12731 default:
12732 return reloc_class_normal;
12736 /* Set the right machine number for an Arm ELF file. */
12738 static bfd_boolean
12739 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12741 if (hdr->sh_type == SHT_NOTE)
12742 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12744 return TRUE;
12747 static void
12748 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12750 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12753 /* Return TRUE if this is an unwinding table entry. */
12755 static bfd_boolean
12756 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12758 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12759 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12763 /* Set the type and flags for an ARM section. We do this by
12764 the section name, which is a hack, but ought to work. */
12766 static bfd_boolean
12767 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12769 const char * name;
12771 name = bfd_get_section_name (abfd, sec);
12773 if (is_arm_elf_unwind_section_name (abfd, name))
12775 hdr->sh_type = SHT_ARM_EXIDX;
12776 hdr->sh_flags |= SHF_LINK_ORDER;
12778 return TRUE;
12781 /* Handle an ARM specific section when reading an object file. This is
12782 called when bfd_section_from_shdr finds a section with an unknown
12783 type. */
12785 static bfd_boolean
12786 elf32_arm_section_from_shdr (bfd *abfd,
12787 Elf_Internal_Shdr * hdr,
12788 const char *name,
12789 int shindex)
12791 /* There ought to be a place to keep ELF backend specific flags, but
12792 at the moment there isn't one. We just keep track of the
12793 sections by their name, instead. Fortunately, the ABI gives
12794 names for all the ARM specific sections, so we will probably get
12795 away with this. */
12796 switch (hdr->sh_type)
12798 case SHT_ARM_EXIDX:
12799 case SHT_ARM_PREEMPTMAP:
12800 case SHT_ARM_ATTRIBUTES:
12801 break;
12803 default:
12804 return FALSE;
12807 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12808 return FALSE;
12810 return TRUE;
12813 static _arm_elf_section_data *
12814 get_arm_elf_section_data (asection * sec)
12816 if (sec && sec->owner && is_arm_elf (sec->owner))
12817 return elf32_arm_section_data (sec);
12818 else
12819 return NULL;
12822 typedef struct
12824 void *finfo;
12825 struct bfd_link_info *info;
12826 asection *sec;
12827 int sec_shndx;
12828 int (*func) (void *, const char *, Elf_Internal_Sym *,
12829 asection *, struct elf_link_hash_entry *);
12830 } output_arch_syminfo;
12832 enum map_symbol_type
12834 ARM_MAP_ARM,
12835 ARM_MAP_THUMB,
12836 ARM_MAP_DATA
12840 /* Output a single mapping symbol. */
12842 static bfd_boolean
12843 elf32_arm_output_map_sym (output_arch_syminfo *osi,
12844 enum map_symbol_type type,
12845 bfd_vma offset)
12847 static const char *names[3] = {"$a", "$t", "$d"};
12848 Elf_Internal_Sym sym;
12850 sym.st_value = osi->sec->output_section->vma
12851 + osi->sec->output_offset
12852 + offset;
12853 sym.st_size = 0;
12854 sym.st_other = 0;
12855 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12856 sym.st_shndx = osi->sec_shndx;
12857 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
12858 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12862 /* Output mapping symbols for PLT entries associated with H. */
12864 static bfd_boolean
12865 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12867 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12868 struct elf32_arm_link_hash_table *htab;
12869 struct elf32_arm_link_hash_entry *eh;
12870 bfd_vma addr;
12872 if (h->root.type == bfd_link_hash_indirect)
12873 return TRUE;
12875 if (h->root.type == bfd_link_hash_warning)
12876 /* When warning symbols are created, they **replace** the "real"
12877 entry in the hash table, thus we never get to see the real
12878 symbol in a hash traversal. So look at it now. */
12879 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12881 if (h->plt.offset == (bfd_vma) -1)
12882 return TRUE;
12884 htab = elf32_arm_hash_table (osi->info);
12885 if (htab == NULL)
12886 return FALSE;
12888 eh = (struct elf32_arm_link_hash_entry *) h;
12889 addr = h->plt.offset;
12890 if (htab->symbian_p)
12892 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12893 return FALSE;
12894 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12895 return FALSE;
12897 else if (htab->vxworks_p)
12899 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12900 return FALSE;
12901 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12902 return FALSE;
12903 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12904 return FALSE;
12905 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12906 return FALSE;
12908 else
12910 bfd_signed_vma thumb_refs;
12912 thumb_refs = eh->plt_thumb_refcount;
12913 if (!htab->use_blx)
12914 thumb_refs += eh->plt_maybe_thumb_refcount;
12916 if (thumb_refs > 0)
12918 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12919 return FALSE;
12921 #ifdef FOUR_WORD_PLT
12922 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12923 return FALSE;
12924 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12925 return FALSE;
12926 #else
12927 /* A three-word PLT with no Thumb thunk contains only Arm code,
12928 so only need to output a mapping symbol for the first PLT entry and
12929 entries with thumb thunks. */
12930 if (thumb_refs > 0 || addr == 20)
12932 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12933 return FALSE;
12935 #endif
12938 return TRUE;
12941 /* Output a single local symbol for a generated stub. */
12943 static bfd_boolean
12944 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12945 bfd_vma offset, bfd_vma size)
12947 Elf_Internal_Sym sym;
12949 sym.st_value = osi->sec->output_section->vma
12950 + osi->sec->output_offset
12951 + offset;
12952 sym.st_size = size;
12953 sym.st_other = 0;
12954 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12955 sym.st_shndx = osi->sec_shndx;
12956 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12959 static bfd_boolean
12960 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12961 void * in_arg)
12963 struct elf32_arm_stub_hash_entry *stub_entry;
12964 struct bfd_link_info *info;
12965 asection *stub_sec;
12966 bfd_vma addr;
12967 char *stub_name;
12968 output_arch_syminfo *osi;
12969 const insn_sequence *template_sequence;
12970 enum stub_insn_type prev_type;
12971 int size;
12972 int i;
12973 enum map_symbol_type sym_type;
12975 /* Massage our args to the form they really have. */
12976 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
12977 osi = (output_arch_syminfo *) in_arg;
12979 info = osi->info;
12981 stub_sec = stub_entry->stub_sec;
12983 /* Ensure this stub is attached to the current section being
12984 processed. */
12985 if (stub_sec != osi->sec)
12986 return TRUE;
12988 addr = (bfd_vma) stub_entry->stub_offset;
12989 stub_name = stub_entry->output_name;
12991 template_sequence = stub_entry->stub_template;
12992 switch (template_sequence[0].type)
12994 case ARM_TYPE:
12995 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
12996 return FALSE;
12997 break;
12998 case THUMB16_TYPE:
12999 case THUMB32_TYPE:
13000 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13001 stub_entry->stub_size))
13002 return FALSE;
13003 break;
13004 default:
13005 BFD_FAIL ();
13006 return 0;
13009 prev_type = DATA_TYPE;
13010 size = 0;
13011 for (i = 0; i < stub_entry->stub_template_size; i++)
13013 switch (template_sequence[i].type)
13015 case ARM_TYPE:
13016 sym_type = ARM_MAP_ARM;
13017 break;
13019 case THUMB16_TYPE:
13020 case THUMB32_TYPE:
13021 sym_type = ARM_MAP_THUMB;
13022 break;
13024 case DATA_TYPE:
13025 sym_type = ARM_MAP_DATA;
13026 break;
13028 default:
13029 BFD_FAIL ();
13030 return FALSE;
13033 if (template_sequence[i].type != prev_type)
13035 prev_type = template_sequence[i].type;
13036 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13037 return FALSE;
13040 switch (template_sequence[i].type)
13042 case ARM_TYPE:
13043 case THUMB32_TYPE:
13044 size += 4;
13045 break;
13047 case THUMB16_TYPE:
13048 size += 2;
13049 break;
13051 case DATA_TYPE:
13052 size += 4;
13053 break;
13055 default:
13056 BFD_FAIL ();
13057 return FALSE;
13061 return TRUE;
13064 /* Output mapping symbols for linker generated sections,
13065 and for those data-only sections that do not have a
13066 $d. */
13068 static bfd_boolean
13069 elf32_arm_output_arch_local_syms (bfd *output_bfd,
13070 struct bfd_link_info *info,
13071 void *finfo,
13072 int (*func) (void *, const char *,
13073 Elf_Internal_Sym *,
13074 asection *,
13075 struct elf_link_hash_entry *))
13077 output_arch_syminfo osi;
13078 struct elf32_arm_link_hash_table *htab;
13079 bfd_vma offset;
13080 bfd_size_type size;
13081 bfd *input_bfd;
13083 htab = elf32_arm_hash_table (info);
13084 if (htab == NULL)
13085 return FALSE;
13087 check_use_blx (htab);
13089 osi.finfo = finfo;
13090 osi.info = info;
13091 osi.func = func;
13093 /* Add a $d mapping symbol to data-only sections that
13094 don't have any mapping symbol. This may result in (harmless) redundant
13095 mapping symbols. */
13096 for (input_bfd = info->input_bfds;
13097 input_bfd != NULL;
13098 input_bfd = input_bfd->link_next)
13100 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
13101 for (osi.sec = input_bfd->sections;
13102 osi.sec != NULL;
13103 osi.sec = osi.sec->next)
13105 if (osi.sec->output_section != NULL
13106 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
13107 != 0)
13108 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
13109 == SEC_HAS_CONTENTS
13110 && get_arm_elf_section_data (osi.sec) != NULL
13111 && get_arm_elf_section_data (osi.sec)->mapcount == 0
13112 && osi.sec->size > 0)
13114 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13115 (output_bfd, osi.sec->output_section);
13116 if (osi.sec_shndx != (int)SHN_BAD)
13117 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
13122 /* ARM->Thumb glue. */
13123 if (htab->arm_glue_size > 0)
13125 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13126 ARM2THUMB_GLUE_SECTION_NAME);
13128 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13129 (output_bfd, osi.sec->output_section);
13130 if (info->shared || htab->root.is_relocatable_executable
13131 || htab->pic_veneer)
13132 size = ARM2THUMB_PIC_GLUE_SIZE;
13133 else if (htab->use_blx)
13134 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13135 else
13136 size = ARM2THUMB_STATIC_GLUE_SIZE;
13138 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13140 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13141 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13145 /* Thumb->ARM glue. */
13146 if (htab->thumb_glue_size > 0)
13148 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13149 THUMB2ARM_GLUE_SECTION_NAME);
13151 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13152 (output_bfd, osi.sec->output_section);
13153 size = THUMB2ARM_GLUE_SIZE;
13155 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13157 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13158 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13162 /* ARMv4 BX veneers. */
13163 if (htab->bx_glue_size > 0)
13165 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13166 ARM_BX_GLUE_SECTION_NAME);
13168 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13169 (output_bfd, osi.sec->output_section);
13171 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13174 /* Long calls stubs. */
13175 if (htab->stub_bfd && htab->stub_bfd->sections)
13177 asection* stub_sec;
13179 for (stub_sec = htab->stub_bfd->sections;
13180 stub_sec != NULL;
13181 stub_sec = stub_sec->next)
13183 /* Ignore non-stub sections. */
13184 if (!strstr (stub_sec->name, STUB_SUFFIX))
13185 continue;
13187 osi.sec = stub_sec;
13189 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13190 (output_bfd, osi.sec->output_section);
13192 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13196 /* Finally, output mapping symbols for the PLT. */
13197 if (!htab->splt || htab->splt->size == 0)
13198 return TRUE;
13200 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13201 htab->splt->output_section);
13202 osi.sec = htab->splt;
13203 /* Output mapping symbols for the plt header. SymbianOS does not have a
13204 plt header. */
13205 if (htab->vxworks_p)
13207 /* VxWorks shared libraries have no PLT header. */
13208 if (!info->shared)
13210 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13211 return FALSE;
13212 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13213 return FALSE;
13216 else if (!htab->symbian_p)
13218 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13219 return FALSE;
13220 #ifndef FOUR_WORD_PLT
13221 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13222 return FALSE;
13223 #endif
13226 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13227 return TRUE;
13230 /* Allocate target specific section data. */
13232 static bfd_boolean
13233 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13235 if (!sec->used_by_bfd)
13237 _arm_elf_section_data *sdata;
13238 bfd_size_type amt = sizeof (*sdata);
13240 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
13241 if (sdata == NULL)
13242 return FALSE;
13243 sec->used_by_bfd = sdata;
13246 return _bfd_elf_new_section_hook (abfd, sec);
13250 /* Used to order a list of mapping symbols by address. */
13252 static int
13253 elf32_arm_compare_mapping (const void * a, const void * b)
13255 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13256 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13258 if (amap->vma > bmap->vma)
13259 return 1;
13260 else if (amap->vma < bmap->vma)
13261 return -1;
13262 else if (amap->type > bmap->type)
13263 /* Ensure results do not depend on the host qsort for objects with
13264 multiple mapping symbols at the same address by sorting on type
13265 after vma. */
13266 return 1;
13267 else if (amap->type < bmap->type)
13268 return -1;
13269 else
13270 return 0;
13273 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13275 static unsigned long
13276 offset_prel31 (unsigned long addr, bfd_vma offset)
13278 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13281 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13282 relocations. */
13284 static void
13285 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13287 unsigned long first_word = bfd_get_32 (output_bfd, from);
13288 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13290 /* High bit of first word is supposed to be zero. */
13291 if ((first_word & 0x80000000ul) == 0)
13292 first_word = offset_prel31 (first_word, offset);
13294 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13295 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13296 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13297 second_word = offset_prel31 (second_word, offset);
13299 bfd_put_32 (output_bfd, first_word, to);
13300 bfd_put_32 (output_bfd, second_word, to + 4);
13303 /* Data for make_branch_to_a8_stub(). */
13305 struct a8_branch_to_stub_data {
13306 asection *writing_section;
13307 bfd_byte *contents;
13311 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13312 places for a particular section. */
13314 static bfd_boolean
13315 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13316 void *in_arg)
13318 struct elf32_arm_stub_hash_entry *stub_entry;
13319 struct a8_branch_to_stub_data *data;
13320 bfd_byte *contents;
13321 unsigned long branch_insn;
13322 bfd_vma veneered_insn_loc, veneer_entry_loc;
13323 bfd_signed_vma branch_offset;
13324 bfd *abfd;
13325 unsigned int target;
13327 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13328 data = (struct a8_branch_to_stub_data *) in_arg;
13330 if (stub_entry->target_section != data->writing_section
13331 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13332 return TRUE;
13334 contents = data->contents;
13336 veneered_insn_loc = stub_entry->target_section->output_section->vma
13337 + stub_entry->target_section->output_offset
13338 + stub_entry->target_value;
13340 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13341 + stub_entry->stub_sec->output_offset
13342 + stub_entry->stub_offset;
13344 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13345 veneered_insn_loc &= ~3u;
13347 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13349 abfd = stub_entry->target_section->owner;
13350 target = stub_entry->target_value;
13352 /* We attempt to avoid this condition by setting stubs_always_after_branch
13353 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13354 This check is just to be on the safe side... */
13355 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13357 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13358 "allocated in unsafe location"), abfd);
13359 return FALSE;
13362 switch (stub_entry->stub_type)
13364 case arm_stub_a8_veneer_b:
13365 case arm_stub_a8_veneer_b_cond:
13366 branch_insn = 0xf0009000;
13367 goto jump24;
13369 case arm_stub_a8_veneer_blx:
13370 branch_insn = 0xf000e800;
13371 goto jump24;
13373 case arm_stub_a8_veneer_bl:
13375 unsigned int i1, j1, i2, j2, s;
13377 branch_insn = 0xf000d000;
13379 jump24:
13380 if (branch_offset < -16777216 || branch_offset > 16777214)
13382 /* There's not much we can do apart from complain if this
13383 happens. */
13384 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13385 "of range (input file too large)"), abfd);
13386 return FALSE;
13389 /* i1 = not(j1 eor s), so:
13390 not i1 = j1 eor s
13391 j1 = (not i1) eor s. */
13393 branch_insn |= (branch_offset >> 1) & 0x7ff;
13394 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13395 i2 = (branch_offset >> 22) & 1;
13396 i1 = (branch_offset >> 23) & 1;
13397 s = (branch_offset >> 24) & 1;
13398 j1 = (!i1) ^ s;
13399 j2 = (!i2) ^ s;
13400 branch_insn |= j2 << 11;
13401 branch_insn |= j1 << 13;
13402 branch_insn |= s << 26;
13404 break;
13406 default:
13407 BFD_FAIL ();
13408 return FALSE;
13411 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
13412 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
13414 return TRUE;
13417 /* Do code byteswapping. Return FALSE afterwards so that the section is
13418 written out as normal. */
13420 static bfd_boolean
13421 elf32_arm_write_section (bfd *output_bfd,
13422 struct bfd_link_info *link_info,
13423 asection *sec,
13424 bfd_byte *contents)
13426 unsigned int mapcount, errcount;
13427 _arm_elf_section_data *arm_data;
13428 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13429 elf32_arm_section_map *map;
13430 elf32_vfp11_erratum_list *errnode;
13431 bfd_vma ptr;
13432 bfd_vma end;
13433 bfd_vma offset = sec->output_section->vma + sec->output_offset;
13434 bfd_byte tmp;
13435 unsigned int i;
13437 if (globals == NULL)
13438 return FALSE;
13440 /* If this section has not been allocated an _arm_elf_section_data
13441 structure then we cannot record anything. */
13442 arm_data = get_arm_elf_section_data (sec);
13443 if (arm_data == NULL)
13444 return FALSE;
13446 mapcount = arm_data->mapcount;
13447 map = arm_data->map;
13448 errcount = arm_data->erratumcount;
13450 if (errcount != 0)
13452 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13454 for (errnode = arm_data->erratumlist; errnode != 0;
13455 errnode = errnode->next)
13457 bfd_vma target = errnode->vma - offset;
13459 switch (errnode->type)
13461 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13463 bfd_vma branch_to_veneer;
13464 /* Original condition code of instruction, plus bit mask for
13465 ARM B instruction. */
13466 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13467 | 0x0a000000;
13469 /* The instruction is before the label. */
13470 target -= 4;
13472 /* Above offset included in -4 below. */
13473 branch_to_veneer = errnode->u.b.veneer->vma
13474 - errnode->vma - 4;
13476 if ((signed) branch_to_veneer < -(1 << 25)
13477 || (signed) branch_to_veneer >= (1 << 25))
13478 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13479 "range"), output_bfd);
13481 insn |= (branch_to_veneer >> 2) & 0xffffff;
13482 contents[endianflip ^ target] = insn & 0xff;
13483 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13484 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13485 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13487 break;
13489 case VFP11_ERRATUM_ARM_VENEER:
13491 bfd_vma branch_from_veneer;
13492 unsigned int insn;
13494 /* Take size of veneer into account. */
13495 branch_from_veneer = errnode->u.v.branch->vma
13496 - errnode->vma - 12;
13498 if ((signed) branch_from_veneer < -(1 << 25)
13499 || (signed) branch_from_veneer >= (1 << 25))
13500 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13501 "range"), output_bfd);
13503 /* Original instruction. */
13504 insn = errnode->u.v.branch->u.b.vfp_insn;
13505 contents[endianflip ^ target] = insn & 0xff;
13506 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13507 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13508 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13510 /* Branch back to insn after original insn. */
13511 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13512 contents[endianflip ^ (target + 4)] = insn & 0xff;
13513 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
13514 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
13515 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
13517 break;
13519 default:
13520 abort ();
13525 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13527 arm_unwind_table_edit *edit_node
13528 = arm_data->u.exidx.unwind_edit_list;
13529 /* Now, sec->size is the size of the section we will write. The original
13530 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13531 markers) was sec->rawsize. (This isn't the case if we perform no
13532 edits, then rawsize will be zero and we should use size). */
13533 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
13534 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13535 unsigned int in_index, out_index;
13536 bfd_vma add_to_offsets = 0;
13538 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13540 if (edit_node)
13542 unsigned int edit_index = edit_node->index;
13544 if (in_index < edit_index && in_index * 8 < input_size)
13546 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13547 contents + in_index * 8, add_to_offsets);
13548 out_index++;
13549 in_index++;
13551 else if (in_index == edit_index
13552 || (in_index * 8 >= input_size
13553 && edit_index == UINT_MAX))
13555 switch (edit_node->type)
13557 case DELETE_EXIDX_ENTRY:
13558 in_index++;
13559 add_to_offsets += 8;
13560 break;
13562 case INSERT_EXIDX_CANTUNWIND_AT_END:
13564 asection *text_sec = edit_node->linked_section;
13565 bfd_vma text_offset = text_sec->output_section->vma
13566 + text_sec->output_offset
13567 + text_sec->size;
13568 bfd_vma exidx_offset = offset + out_index * 8;
13569 unsigned long prel31_offset;
13571 /* Note: this is meant to be equivalent to an
13572 R_ARM_PREL31 relocation. These synthetic
13573 EXIDX_CANTUNWIND markers are not relocated by the
13574 usual BFD method. */
13575 prel31_offset = (text_offset - exidx_offset)
13576 & 0x7ffffffful;
13578 /* First address we can't unwind. */
13579 bfd_put_32 (output_bfd, prel31_offset,
13580 &edited_contents[out_index * 8]);
13582 /* Code for EXIDX_CANTUNWIND. */
13583 bfd_put_32 (output_bfd, 0x1,
13584 &edited_contents[out_index * 8 + 4]);
13586 out_index++;
13587 add_to_offsets -= 8;
13589 break;
13592 edit_node = edit_node->next;
13595 else
13597 /* No more edits, copy remaining entries verbatim. */
13598 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13599 contents + in_index * 8, add_to_offsets);
13600 out_index++;
13601 in_index++;
13605 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13606 bfd_set_section_contents (output_bfd, sec->output_section,
13607 edited_contents,
13608 (file_ptr) sec->output_offset, sec->size);
13610 return TRUE;
13613 /* Fix code to point to Cortex-A8 erratum stubs. */
13614 if (globals->fix_cortex_a8)
13616 struct a8_branch_to_stub_data data;
13618 data.writing_section = sec;
13619 data.contents = contents;
13621 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13622 &data);
13625 if (mapcount == 0)
13626 return FALSE;
13628 if (globals->byteswap_code)
13630 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13632 ptr = map[0].vma;
13633 for (i = 0; i < mapcount; i++)
13635 if (i == mapcount - 1)
13636 end = sec->size;
13637 else
13638 end = map[i + 1].vma;
13640 switch (map[i].type)
13642 case 'a':
13643 /* Byte swap code words. */
13644 while (ptr + 3 < end)
13646 tmp = contents[ptr];
13647 contents[ptr] = contents[ptr + 3];
13648 contents[ptr + 3] = tmp;
13649 tmp = contents[ptr + 1];
13650 contents[ptr + 1] = contents[ptr + 2];
13651 contents[ptr + 2] = tmp;
13652 ptr += 4;
13654 break;
13656 case 't':
13657 /* Byte swap code halfwords. */
13658 while (ptr + 1 < end)
13660 tmp = contents[ptr];
13661 contents[ptr] = contents[ptr + 1];
13662 contents[ptr + 1] = tmp;
13663 ptr += 2;
13665 break;
13667 case 'd':
13668 /* Leave data alone. */
13669 break;
13671 ptr = end;
13675 free (map);
13676 arm_data->mapcount = -1;
13677 arm_data->mapsize = 0;
13678 arm_data->map = NULL;
13680 return FALSE;
13683 /* Display STT_ARM_TFUNC symbols as functions. */
13685 static void
13686 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13687 asymbol *asym)
13689 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13691 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13692 elfsym->symbol.flags |= BSF_FUNCTION;
13696 /* Mangle thumb function symbols as we read them in. */
13698 static bfd_boolean
13699 elf32_arm_swap_symbol_in (bfd * abfd,
13700 const void *psrc,
13701 const void *pshn,
13702 Elf_Internal_Sym *dst)
13704 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13705 return FALSE;
13707 /* New EABI objects mark thumb function symbols by setting the low bit of
13708 the address. Turn these into STT_ARM_TFUNC. */
13709 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13710 && (dst->st_value & 1))
13712 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13713 dst->st_value &= ~(bfd_vma) 1;
13715 return TRUE;
13719 /* Mangle thumb function symbols as we write them out. */
13721 static void
13722 elf32_arm_swap_symbol_out (bfd *abfd,
13723 const Elf_Internal_Sym *src,
13724 void *cdst,
13725 void *shndx)
13727 Elf_Internal_Sym newsym;
13729 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13730 of the address set, as per the new EABI. We do this unconditionally
13731 because objcopy does not set the elf header flags until after
13732 it writes out the symbol table. */
13733 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13735 newsym = *src;
13736 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13737 if (newsym.st_shndx != SHN_UNDEF)
13739 /* Do this only for defined symbols. At link type, the static
13740 linker will simulate the work of dynamic linker of resolving
13741 symbols and will carry over the thumbness of found symbols to
13742 the output symbol table. It's not clear how it happens, but
13743 the thumbness of undefined symbols can well be different at
13744 runtime, and writing '1' for them will be confusing for users
13745 and possibly for dynamic linker itself.
13747 newsym.st_value |= 1;
13750 src = &newsym;
13752 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13755 /* Add the PT_ARM_EXIDX program header. */
13757 static bfd_boolean
13758 elf32_arm_modify_segment_map (bfd *abfd,
13759 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13761 struct elf_segment_map *m;
13762 asection *sec;
13764 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13765 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13767 /* If there is already a PT_ARM_EXIDX header, then we do not
13768 want to add another one. This situation arises when running
13769 "strip"; the input binary already has the header. */
13770 m = elf_tdata (abfd)->segment_map;
13771 while (m && m->p_type != PT_ARM_EXIDX)
13772 m = m->next;
13773 if (!m)
13775 m = (struct elf_segment_map *)
13776 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13777 if (m == NULL)
13778 return FALSE;
13779 m->p_type = PT_ARM_EXIDX;
13780 m->count = 1;
13781 m->sections[0] = sec;
13783 m->next = elf_tdata (abfd)->segment_map;
13784 elf_tdata (abfd)->segment_map = m;
13788 return TRUE;
13791 /* We may add a PT_ARM_EXIDX program header. */
13793 static int
13794 elf32_arm_additional_program_headers (bfd *abfd,
13795 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13797 asection *sec;
13799 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13800 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13801 return 1;
13802 else
13803 return 0;
13806 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13808 static bfd_boolean
13809 elf32_arm_is_function_type (unsigned int type)
13811 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13814 /* We use this to override swap_symbol_in and swap_symbol_out. */
13815 const struct elf_size_info elf32_arm_size_info =
13817 sizeof (Elf32_External_Ehdr),
13818 sizeof (Elf32_External_Phdr),
13819 sizeof (Elf32_External_Shdr),
13820 sizeof (Elf32_External_Rel),
13821 sizeof (Elf32_External_Rela),
13822 sizeof (Elf32_External_Sym),
13823 sizeof (Elf32_External_Dyn),
13824 sizeof (Elf_External_Note),
13827 32, 2,
13828 ELFCLASS32, EV_CURRENT,
13829 bfd_elf32_write_out_phdrs,
13830 bfd_elf32_write_shdrs_and_ehdr,
13831 bfd_elf32_checksum_contents,
13832 bfd_elf32_write_relocs,
13833 elf32_arm_swap_symbol_in,
13834 elf32_arm_swap_symbol_out,
13835 bfd_elf32_slurp_reloc_table,
13836 bfd_elf32_slurp_symbol_table,
13837 bfd_elf32_swap_dyn_in,
13838 bfd_elf32_swap_dyn_out,
13839 bfd_elf32_swap_reloc_in,
13840 bfd_elf32_swap_reloc_out,
13841 bfd_elf32_swap_reloca_in,
13842 bfd_elf32_swap_reloca_out
13845 #define ELF_ARCH bfd_arch_arm
13846 #define ELF_MACHINE_CODE EM_ARM
13847 #ifdef __QNXTARGET__
13848 #define ELF_MAXPAGESIZE 0x1000
13849 #else
13850 #define ELF_MAXPAGESIZE 0x8000
13851 #endif
13852 #define ELF_MINPAGESIZE 0x1000
13853 #define ELF_COMMONPAGESIZE 0x1000
13855 #define bfd_elf32_mkobject elf32_arm_mkobject
13857 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13858 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13859 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13860 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13861 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13862 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13863 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13864 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13865 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13866 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13867 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13868 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13869 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13871 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13872 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13873 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13874 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13875 #define elf_backend_check_relocs elf32_arm_check_relocs
13876 #define elf_backend_relocate_section elf32_arm_relocate_section
13877 #define elf_backend_write_section elf32_arm_write_section
13878 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13879 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13880 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13881 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13882 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13883 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13884 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13885 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13886 #define elf_backend_object_p elf32_arm_object_p
13887 #define elf_backend_section_flags elf32_arm_section_flags
13888 #define elf_backend_fake_sections elf32_arm_fake_sections
13889 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13890 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13891 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13892 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13893 #define elf_backend_size_info elf32_arm_size_info
13894 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13895 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13896 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13897 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13898 #define elf_backend_is_function_type elf32_arm_is_function_type
13900 #define elf_backend_can_refcount 1
13901 #define elf_backend_can_gc_sections 1
13902 #define elf_backend_plt_readonly 1
13903 #define elf_backend_want_got_plt 1
13904 #define elf_backend_want_plt_sym 0
13905 #define elf_backend_may_use_rel_p 1
13906 #define elf_backend_may_use_rela_p 0
13907 #define elf_backend_default_use_rela_p 0
13909 #define elf_backend_got_header_size 12
13911 #undef elf_backend_obj_attrs_vendor
13912 #define elf_backend_obj_attrs_vendor "aeabi"
13913 #undef elf_backend_obj_attrs_section
13914 #define elf_backend_obj_attrs_section ".ARM.attributes"
13915 #undef elf_backend_obj_attrs_arg_type
13916 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13917 #undef elf_backend_obj_attrs_section_type
13918 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13919 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13921 #include "elf32-target.h"
13923 /* VxWorks Targets. */
13925 #undef TARGET_LITTLE_SYM
13926 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13927 #undef TARGET_LITTLE_NAME
13928 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13929 #undef TARGET_BIG_SYM
13930 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13931 #undef TARGET_BIG_NAME
13932 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13934 /* Like elf32_arm_link_hash_table_create -- but overrides
13935 appropriately for VxWorks. */
13937 static struct bfd_link_hash_table *
13938 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13940 struct bfd_link_hash_table *ret;
13942 ret = elf32_arm_link_hash_table_create (abfd);
13943 if (ret)
13945 struct elf32_arm_link_hash_table *htab
13946 = (struct elf32_arm_link_hash_table *) ret;
13947 htab->use_rel = 0;
13948 htab->vxworks_p = 1;
13950 return ret;
13953 static void
13954 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13956 elf32_arm_final_write_processing (abfd, linker);
13957 elf_vxworks_final_write_processing (abfd, linker);
13960 #undef elf32_bed
13961 #define elf32_bed elf32_arm_vxworks_bed
13963 #undef bfd_elf32_bfd_link_hash_table_create
13964 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13965 #undef elf_backend_add_symbol_hook
13966 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13967 #undef elf_backend_final_write_processing
13968 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13969 #undef elf_backend_emit_relocs
13970 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13972 #undef elf_backend_may_use_rel_p
13973 #define elf_backend_may_use_rel_p 0
13974 #undef elf_backend_may_use_rela_p
13975 #define elf_backend_may_use_rela_p 1
13976 #undef elf_backend_default_use_rela_p
13977 #define elf_backend_default_use_rela_p 1
13978 #undef elf_backend_want_plt_sym
13979 #define elf_backend_want_plt_sym 1
13980 #undef ELF_MAXPAGESIZE
13981 #define ELF_MAXPAGESIZE 0x1000
13983 #include "elf32-target.h"
13986 /* Merge backend specific data from an object file to the output
13987 object file when linking. */
13989 static bfd_boolean
13990 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
13992 flagword out_flags;
13993 flagword in_flags;
13994 bfd_boolean flags_compatible = TRUE;
13995 asection *sec;
13997 /* Check if we have the same endianess. */
13998 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13999 return FALSE;
14001 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14002 return TRUE;
14004 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
14005 return FALSE;
14007 /* The input BFD must have had its flags initialised. */
14008 /* The following seems bogus to me -- The flags are initialized in
14009 the assembler but I don't think an elf_flags_init field is
14010 written into the object. */
14011 /* BFD_ASSERT (elf_flags_init (ibfd)); */
14013 in_flags = elf_elfheader (ibfd)->e_flags;
14014 out_flags = elf_elfheader (obfd)->e_flags;
14016 /* In theory there is no reason why we couldn't handle this. However
14017 in practice it isn't even close to working and there is no real
14018 reason to want it. */
14019 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
14020 && !(ibfd->flags & DYNAMIC)
14021 && (in_flags & EF_ARM_BE8))
14023 _bfd_error_handler (_("error: %B is already in final BE8 format"),
14024 ibfd);
14025 return FALSE;
14028 if (!elf_flags_init (obfd))
14030 /* If the input is the default architecture and had the default
14031 flags then do not bother setting the flags for the output
14032 architecture, instead allow future merges to do this. If no
14033 future merges ever set these flags then they will retain their
14034 uninitialised values, which surprise surprise, correspond
14035 to the default values. */
14036 if (bfd_get_arch_info (ibfd)->the_default
14037 && elf_elfheader (ibfd)->e_flags == 0)
14038 return TRUE;
14040 elf_flags_init (obfd) = TRUE;
14041 elf_elfheader (obfd)->e_flags = in_flags;
14043 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14044 && bfd_get_arch_info (obfd)->the_default)
14045 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
14047 return TRUE;
14050 /* Determine what should happen if the input ARM architecture
14051 does not match the output ARM architecture. */
14052 if (! bfd_arm_merge_machines (ibfd, obfd))
14053 return FALSE;
14055 /* Identical flags must be compatible. */
14056 if (in_flags == out_flags)
14057 return TRUE;
14059 /* Check to see if the input BFD actually contains any sections. If
14060 not, its flags may not have been initialised either, but it
14061 cannot actually cause any incompatiblity. Do not short-circuit
14062 dynamic objects; their section list may be emptied by
14063 elf_link_add_object_symbols.
14065 Also check to see if there are no code sections in the input.
14066 In this case there is no need to check for code specific flags.
14067 XXX - do we need to worry about floating-point format compatability
14068 in data sections ? */
14069 if (!(ibfd->flags & DYNAMIC))
14071 bfd_boolean null_input_bfd = TRUE;
14072 bfd_boolean only_data_sections = TRUE;
14074 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14076 /* Ignore synthetic glue sections. */
14077 if (strcmp (sec->name, ".glue_7")
14078 && strcmp (sec->name, ".glue_7t"))
14080 if ((bfd_get_section_flags (ibfd, sec)
14081 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14082 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14083 only_data_sections = FALSE;
14085 null_input_bfd = FALSE;
14086 break;
14090 if (null_input_bfd || only_data_sections)
14091 return TRUE;
14094 /* Complain about various flag mismatches. */
14095 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14096 EF_ARM_EABI_VERSION (out_flags)))
14098 _bfd_error_handler
14099 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14100 ibfd, obfd,
14101 (in_flags & EF_ARM_EABIMASK) >> 24,
14102 (out_flags & EF_ARM_EABIMASK) >> 24);
14103 return FALSE;
14106 /* Not sure what needs to be checked for EABI versions >= 1. */
14107 /* VxWorks libraries do not use these flags. */
14108 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14109 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14110 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14112 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14114 _bfd_error_handler
14115 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14116 ibfd, obfd,
14117 in_flags & EF_ARM_APCS_26 ? 26 : 32,
14118 out_flags & EF_ARM_APCS_26 ? 26 : 32);
14119 flags_compatible = FALSE;
14122 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14124 if (in_flags & EF_ARM_APCS_FLOAT)
14125 _bfd_error_handler
14126 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14127 ibfd, obfd);
14128 else
14129 _bfd_error_handler
14130 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14131 ibfd, obfd);
14133 flags_compatible = FALSE;
14136 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14138 if (in_flags & EF_ARM_VFP_FLOAT)
14139 _bfd_error_handler
14140 (_("error: %B uses VFP instructions, whereas %B does not"),
14141 ibfd, obfd);
14142 else
14143 _bfd_error_handler
14144 (_("error: %B uses FPA instructions, whereas %B does not"),
14145 ibfd, obfd);
14147 flags_compatible = FALSE;
14150 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14152 if (in_flags & EF_ARM_MAVERICK_FLOAT)
14153 _bfd_error_handler
14154 (_("error: %B uses Maverick instructions, whereas %B does not"),
14155 ibfd, obfd);
14156 else
14157 _bfd_error_handler
14158 (_("error: %B does not use Maverick instructions, whereas %B does"),
14159 ibfd, obfd);
14161 flags_compatible = FALSE;
14164 #ifdef EF_ARM_SOFT_FLOAT
14165 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14167 /* We can allow interworking between code that is VFP format
14168 layout, and uses either soft float or integer regs for
14169 passing floating point arguments and results. We already
14170 know that the APCS_FLOAT flags match; similarly for VFP
14171 flags. */
14172 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14173 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14175 if (in_flags & EF_ARM_SOFT_FLOAT)
14176 _bfd_error_handler
14177 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14178 ibfd, obfd);
14179 else
14180 _bfd_error_handler
14181 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14182 ibfd, obfd);
14184 flags_compatible = FALSE;
14187 #endif
14189 /* Interworking mismatch is only a warning. */
14190 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14192 if (in_flags & EF_ARM_INTERWORK)
14194 _bfd_error_handler
14195 (_("Warning: %B supports interworking, whereas %B does not"),
14196 ibfd, obfd);
14198 else
14200 _bfd_error_handler
14201 (_("Warning: %B does not support interworking, whereas %B does"),
14202 ibfd, obfd);
14207 return flags_compatible;
14211 /* Symbian OS Targets. */
14213 #undef TARGET_LITTLE_SYM
14214 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14215 #undef TARGET_LITTLE_NAME
14216 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14217 #undef TARGET_BIG_SYM
14218 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14219 #undef TARGET_BIG_NAME
14220 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14222 /* Like elf32_arm_link_hash_table_create -- but overrides
14223 appropriately for Symbian OS. */
14225 static struct bfd_link_hash_table *
14226 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14228 struct bfd_link_hash_table *ret;
14230 ret = elf32_arm_link_hash_table_create (abfd);
14231 if (ret)
14233 struct elf32_arm_link_hash_table *htab
14234 = (struct elf32_arm_link_hash_table *)ret;
14235 /* There is no PLT header for Symbian OS. */
14236 htab->plt_header_size = 0;
14237 /* The PLT entries are each one instruction and one word. */
14238 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14239 htab->symbian_p = 1;
14240 /* Symbian uses armv5t or above, so use_blx is always true. */
14241 htab->use_blx = 1;
14242 htab->root.is_relocatable_executable = 1;
14244 return ret;
14247 static const struct bfd_elf_special_section
14248 elf32_arm_symbian_special_sections[] =
14250 /* In a BPABI executable, the dynamic linking sections do not go in
14251 the loadable read-only segment. The post-linker may wish to
14252 refer to these sections, but they are not part of the final
14253 program image. */
14254 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14255 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14256 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14257 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14258 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
14259 /* These sections do not need to be writable as the SymbianOS
14260 postlinker will arrange things so that no dynamic relocation is
14261 required. */
14262 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14263 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14264 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14265 { NULL, 0, 0, 0, 0 }
14268 static void
14269 elf32_arm_symbian_begin_write_processing (bfd *abfd,
14270 struct bfd_link_info *link_info)
14272 /* BPABI objects are never loaded directly by an OS kernel; they are
14273 processed by a postlinker first, into an OS-specific format. If
14274 the D_PAGED bit is set on the file, BFD will align segments on
14275 page boundaries, so that an OS can directly map the file. With
14276 BPABI objects, that just results in wasted space. In addition,
14277 because we clear the D_PAGED bit, map_sections_to_segments will
14278 recognize that the program headers should not be mapped into any
14279 loadable segment. */
14280 abfd->flags &= ~D_PAGED;
14281 elf32_arm_begin_write_processing (abfd, link_info);
14284 static bfd_boolean
14285 elf32_arm_symbian_modify_segment_map (bfd *abfd,
14286 struct bfd_link_info *info)
14288 struct elf_segment_map *m;
14289 asection *dynsec;
14291 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14292 segment. However, because the .dynamic section is not marked
14293 with SEC_LOAD, the generic ELF code will not create such a
14294 segment. */
14295 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14296 if (dynsec)
14298 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14299 if (m->p_type == PT_DYNAMIC)
14300 break;
14302 if (m == NULL)
14304 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14305 m->next = elf_tdata (abfd)->segment_map;
14306 elf_tdata (abfd)->segment_map = m;
14310 /* Also call the generic arm routine. */
14311 return elf32_arm_modify_segment_map (abfd, info);
14314 /* Return address for Ith PLT stub in section PLT, for relocation REL
14315 or (bfd_vma) -1 if it should not be included. */
14317 static bfd_vma
14318 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14319 const arelent *rel ATTRIBUTE_UNUSED)
14321 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14325 #undef elf32_bed
14326 #define elf32_bed elf32_arm_symbian_bed
14328 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14329 will process them and then discard them. */
14330 #undef ELF_DYNAMIC_SEC_FLAGS
14331 #define ELF_DYNAMIC_SEC_FLAGS \
14332 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14334 #undef elf_backend_add_symbol_hook
14335 #undef elf_backend_emit_relocs
14337 #undef bfd_elf32_bfd_link_hash_table_create
14338 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14339 #undef elf_backend_special_sections
14340 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14341 #undef elf_backend_begin_write_processing
14342 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14343 #undef elf_backend_final_write_processing
14344 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14346 #undef elf_backend_modify_segment_map
14347 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14349 /* There is no .got section for BPABI objects, and hence no header. */
14350 #undef elf_backend_got_header_size
14351 #define elf_backend_got_header_size 0
14353 /* Similarly, there is no .got.plt section. */
14354 #undef elf_backend_want_got_plt
14355 #define elf_backend_want_got_plt 0
14357 #undef elf_backend_plt_sym_val
14358 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14360 #undef elf_backend_may_use_rel_p
14361 #define elf_backend_may_use_rel_p 1
14362 #undef elf_backend_may_use_rela_p
14363 #define elf_backend_may_use_rela_p 0
14364 #undef elf_backend_default_use_rela_p
14365 #define elf_backend_default_use_rela_p 0
14366 #undef elf_backend_want_plt_sym
14367 #define elf_backend_want_plt_sym 0
14368 #undef ELF_MAXPAGESIZE
14369 #define ELF_MAXPAGESIZE 0x8000
14371 #include "elf32-target.h"