Index: bfd/ChangeLog
[binutils.git] / bfd / reloc.c
blobc7c1c378f7157fd6de3326b871ff8f08fab0e712
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 SECTION
25 Relocations
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
59 SUBSECTION
60 typedef arelent
62 This is the structure of a relocation entry:
64 CODE_FRAGMENT
66 .typedef enum bfd_reloc_status
68 . {* No errors detected *}
69 . bfd_reloc_ok,
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
77 . {* Used by special functions *}
78 . bfd_reloc_continue,
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
83 . {* Unused *}
84 . bfd_reloc_other,
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
98 .typedef struct reloc_cache_entry
100 . {* A pointer into the canonical table of pointers *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
103 . {* offset in section *}
104 . bfd_size_type address;
106 . {* addend for relocation value *}
107 . bfd_vma addend;
109 . {* Pointer to how to perform the required relocation *}
110 . reloc_howto_type *howto;
112 .} arelent;
117 DESCRIPTION
119 Here is a description of each of the fields within an <<arelent>>:
121 o <<sym_ptr_ptr>>
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
134 o <<address>>
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
144 o <<addend>>
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
150 | char foo[];
151 | main()
153 | return foo[0x12345678];
156 Could be compiled into:
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
167 |RELOCATION RECORDS FOR [.text]:
168 |offset type value
169 |00000006 32 _foo
171 |00000000 4e56 fffc ; linkw fp,#-4
172 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
173 |0000000a 49c0 ; extbl d0
174 |0000000c 4e5e ; unlk fp
175 |0000000e 4e75 ; rts
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
181 | or.u r13,r0,hi16(_foo+0x12345678)
182 | ld.b r2,r13,lo16(_foo+0x12345678)
183 | jmp r1
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
210 | save %sp,-112,%sp
211 | sethi %hi(_foo+0x12345678),%g2
212 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
213 | ret
214 | restore
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
219 |RELOCATION RECORDS FOR [.text]:
220 |offset type value
221 |00000004 HI22 _foo+0x12345678
222 |00000008 LO10 _foo+0x12345678
224 |00000000 9de3bf90 ; save %sp,-112,%sp
225 |00000004 05000000 ; sethi %hi(_foo+0),%g2
226 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227 |0000000c 81c7e008 ; ret
228 |00000010 81e80000 ; restore
230 o <<howto>>
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
243 SUBSUBSECTION
244 <<enum complain_overflow>>
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
249 CODE_FRAGMENT
251 .enum complain_overflow
253 . {* Do not complain on overflow. *}
254 . complain_overflow_dont,
256 . {* Complain if the bitfield overflows, whether it is considered
257 . as signed or unsigned. *}
258 . complain_overflow_bitfield,
260 . {* Complain if the value overflows when considered as signed
261 . number. *}
262 . complain_overflow_signed,
264 . {* Complain if the value overflows when considered as an
265 . unsigned number. *}
266 . complain_overflow_unsigned
272 SUBSUBSECTION
273 <<reloc_howto_type>>
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
278 CODE_FRAGMENT
279 .struct symbol_cache_entry; {* Forward declaration *}
281 .struct reloc_howto_struct
283 . {* The type field has mainly a documentary use - the back end can
284 . do what it wants with it, though normally the back end's
285 . external idea of what a reloc number is stored
286 . in this field. For example, a PC relative word relocation
287 . in a coff environment has the type 023 - because that's
288 . what the outside world calls a R_PCRWORD reloc. *}
289 . unsigned int type;
291 . {* The value the final relocation is shifted right by. This drops
292 . unwanted data from the relocation. *}
293 . unsigned int rightshift;
295 . {* The size of the item to be relocated. This is *not* a
296 . power-of-two measure. To get the number of bytes operated
297 . on by a type of relocation, use bfd_get_reloc_size. *}
298 . int size;
300 . {* The number of bits in the item to be relocated. This is used
301 . when doing overflow checking. *}
302 . unsigned int bitsize;
304 . {* Notes that the relocation is relative to the location in the
305 . data section of the addend. The relocation function will
306 . subtract from the relocation value the address of the location
307 . being relocated. *}
308 . boolean pc_relative;
310 . {* The bit position of the reloc value in the destination.
311 . The relocated value is left shifted by this amount. *}
312 . unsigned int bitpos;
314 . {* What type of overflow error should be checked for when
315 . relocating. *}
316 . enum complain_overflow complain_on_overflow;
318 . {* If this field is non null, then the supplied function is
319 . called rather than the normal function. This allows really
320 . strange relocation methods to be accomodated (e.g., i960 callj
321 . instructions). *}
322 . bfd_reloc_status_type (*special_function)
323 . PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
324 . bfd *, char **));
326 . {* The textual name of the relocation type. *}
327 . char *name;
329 . {* Some formats record a relocation addend in the section contents
330 . rather than with the relocation. For ELF formats this is the
331 . distinction between USE_REL and USE_RELA (though the code checks
332 . for USE_REL == 1/0). The value of this field is TRUE if the
333 . addend is recorded with the section contents; when performing a
334 . partial link (ld -r) the section contents (the data) will be
335 . modified. The value of this field is FALSE if addends are
336 . recorded with the relocation (in arelent.addend); when performing
337 . a partial link the relocation will be modified.
338 . All relocations for all ELF USE_RELA targets should set this field
339 . to FALSE (values of TRUE should be looked on with suspicion).
340 . However, the converse is not true: not all relocations of all ELF
341 . USE_REL targets set this field to TRUE. Why this is so is peculiar
342 . to each particular target. For relocs that aren't used in partial
343 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
344 . boolean partial_inplace;
346 . {* The src_mask selects which parts of the read in data
347 . are to be used in the relocation sum. E.g., if this was an 8 bit
348 . byte of data which we read and relocated, this would be
349 . 0x000000ff. When we have relocs which have an addend, such as
350 . sun4 extended relocs, the value in the offset part of a
351 . relocating field is garbage so we never use it. In this case
352 . the mask would be 0x00000000. *}
353 . bfd_vma src_mask;
355 . {* The dst_mask selects which parts of the instruction are replaced
356 . into the instruction. In most cases src_mask == dst_mask,
357 . except in the above special case, where dst_mask would be
358 . 0x000000ff, and src_mask would be 0x00000000. *}
359 . bfd_vma dst_mask;
361 . {* When some formats create PC relative instructions, they leave
362 . the value of the pc of the place being relocated in the offset
363 . slot of the instruction, so that a PC relative relocation can
364 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
365 . Some formats leave the displacement part of an instruction
366 . empty (e.g., m88k bcs); this flag signals the fact. *}
367 . boolean pcrel_offset;
373 FUNCTION
374 The HOWTO Macro
376 DESCRIPTION
377 The HOWTO define is horrible and will go away.
379 .#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380 . { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
382 DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
386 .#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387 . HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
388 . NAME, false, 0, 0, IN)
391 DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
394 .#define EMPTY_HOWTO(C) \
395 . HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
396 . NULL, false, 0, 0, false)
399 DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
402 .#define HOWTO_PREPARE(relocation, symbol) \
403 . { \
404 . if (symbol != (asymbol *) NULL) \
405 . { \
406 . if (bfd_is_com_section (symbol->section)) \
407 . { \
408 . relocation = 0; \
409 . } \
410 . else \
411 . { \
412 . relocation = symbol->value; \
413 . } \
414 . } \
420 FUNCTION
421 bfd_get_reloc_size
423 SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426 DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
431 unsigned int
432 bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
435 switch (howto->size)
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
449 TYPEDEF
450 arelent_chain
452 DESCRIPTION
454 How relocs are tied together in an <<asection>>:
456 .typedef struct relent_chain
458 . arelent relent;
459 . struct relent_chain *next;
460 .} arelent_chain;
464 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
465 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468 FUNCTION
469 bfd_check_overflow
471 SYNOPSIS
472 bfd_reloc_status_type
473 bfd_check_overflow
474 (enum complain_overflow how,
475 unsigned int bitsize,
476 unsigned int rightshift,
477 unsigned int addrsize,
478 bfd_vma relocation);
480 DESCRIPTION
481 Perform overflow checking on @var{relocation} which has
482 @var{bitsize} significant bits and will be shifted right by
483 @var{rightshift} bits, on a machine with addresses containing
484 @var{addrsize} significant bits. The result is either of
485 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
489 bfd_reloc_status_type
490 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
491 enum complain_overflow how;
492 unsigned int bitsize;
493 unsigned int rightshift;
494 unsigned int addrsize;
495 bfd_vma relocation;
497 bfd_vma fieldmask, addrmask, signmask, ss, a;
498 bfd_reloc_status_type flag = bfd_reloc_ok;
500 a = relocation;
502 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
503 we'll be permissive: extra bits in the field mask will
504 automatically extend the address mask for purposes of the
505 overflow check. */
506 fieldmask = N_ONES (bitsize);
507 addrmask = N_ONES (addrsize) | fieldmask;
509 switch (how)
511 case complain_overflow_dont:
512 break;
514 case complain_overflow_signed:
515 /* If any sign bits are set, all sign bits must be set. That
516 is, A must be a valid negative address after shifting. */
517 a = (a & addrmask) >> rightshift;
518 signmask = ~ (fieldmask >> 1);
519 ss = a & signmask;
520 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
521 flag = bfd_reloc_overflow;
522 break;
524 case complain_overflow_unsigned:
525 /* We have an overflow if the address does not fit in the field. */
526 a = (a & addrmask) >> rightshift;
527 if ((a & ~ fieldmask) != 0)
528 flag = bfd_reloc_overflow;
529 break;
531 case complain_overflow_bitfield:
532 /* Bitfields are sometimes signed, sometimes unsigned. We
533 explicitly allow an address wrap too, which means a bitfield
534 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
535 if the value has some, but not all, bits set outside the
536 field. */
537 a >>= rightshift;
538 ss = a & ~ fieldmask;
539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
540 flag = bfd_reloc_overflow;
541 break;
543 default:
544 abort ();
547 return flag;
551 FUNCTION
552 bfd_perform_relocation
554 SYNOPSIS
555 bfd_reloc_status_type
556 bfd_perform_relocation
557 (bfd *abfd,
558 arelent *reloc_entry,
559 PTR data,
560 asection *input_section,
561 bfd *output_bfd,
562 char **error_message);
564 DESCRIPTION
565 If @var{output_bfd} is supplied to this function, the
566 generated image will be relocatable; the relocations are
567 copied to the output file after they have been changed to
568 reflect the new state of the world. There are two ways of
569 reflecting the results of partial linkage in an output file:
570 by modifying the output data in place, and by modifying the
571 relocation record. Some native formats (e.g., basic a.out and
572 basic coff) have no way of specifying an addend in the
573 relocation type, so the addend has to go in the output data.
574 This is no big deal since in these formats the output data
575 slot will always be big enough for the addend. Complex reloc
576 types with addends were invented to solve just this problem.
577 The @var{error_message} argument is set to an error message if
578 this return @code{bfd_reloc_dangerous}.
582 bfd_reloc_status_type
583 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
584 error_message)
585 bfd *abfd;
586 arelent *reloc_entry;
587 PTR data;
588 asection *input_section;
589 bfd *output_bfd;
590 char **error_message;
592 bfd_vma relocation;
593 bfd_reloc_status_type flag = bfd_reloc_ok;
594 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
595 bfd_vma output_base = 0;
596 reloc_howto_type *howto = reloc_entry->howto;
597 asection *reloc_target_output_section;
598 asymbol *symbol;
600 symbol = *(reloc_entry->sym_ptr_ptr);
601 if (bfd_is_abs_section (symbol->section)
602 && output_bfd != (bfd *) NULL)
604 reloc_entry->address += input_section->output_offset;
605 return bfd_reloc_ok;
608 /* If we are not producing relocateable output, return an error if
609 the symbol is not defined. An undefined weak symbol is
610 considered to have a value of zero (SVR4 ABI, p. 4-27). */
611 if (bfd_is_und_section (symbol->section)
612 && (symbol->flags & BSF_WEAK) == 0
613 && output_bfd == (bfd *) NULL)
614 flag = bfd_reloc_undefined;
616 /* If there is a function supplied to handle this relocation type,
617 call it. It'll return `bfd_reloc_continue' if further processing
618 can be done. */
619 if (howto->special_function)
621 bfd_reloc_status_type cont;
622 cont = howto->special_function (abfd, reloc_entry, symbol, data,
623 input_section, output_bfd,
624 error_message);
625 if (cont != bfd_reloc_continue)
626 return cont;
629 /* Is the address of the relocation really within the section? */
630 if (reloc_entry->address > (input_section->_cooked_size
631 / bfd_octets_per_byte (abfd)))
632 return bfd_reloc_outofrange;
634 /* Work out which section the relocation is targetted at and the
635 initial relocation command value. */
637 /* Get symbol value. (Common symbols are special.) */
638 if (bfd_is_com_section (symbol->section))
639 relocation = 0;
640 else
641 relocation = symbol->value;
643 reloc_target_output_section = symbol->section->output_section;
645 /* Convert input-section-relative symbol value to absolute. */
646 if (output_bfd && howto->partial_inplace == false)
647 output_base = 0;
648 else
649 output_base = reloc_target_output_section->vma;
651 relocation += output_base + symbol->section->output_offset;
653 /* Add in supplied addend. */
654 relocation += reloc_entry->addend;
656 /* Here the variable relocation holds the final address of the
657 symbol we are relocating against, plus any addend. */
659 if (howto->pc_relative == true)
661 /* This is a PC relative relocation. We want to set RELOCATION
662 to the distance between the address of the symbol and the
663 location. RELOCATION is already the address of the symbol.
665 We start by subtracting the address of the section containing
666 the location.
668 If pcrel_offset is set, we must further subtract the position
669 of the location within the section. Some targets arrange for
670 the addend to be the negative of the position of the location
671 within the section; for example, i386-aout does this. For
672 i386-aout, pcrel_offset is false. Some other targets do not
673 include the position of the location; for example, m88kbcs,
674 or ELF. For those targets, pcrel_offset is true.
676 If we are producing relocateable output, then we must ensure
677 that this reloc will be correctly computed when the final
678 relocation is done. If pcrel_offset is false we want to wind
679 up with the negative of the location within the section,
680 which means we must adjust the existing addend by the change
681 in the location within the section. If pcrel_offset is true
682 we do not want to adjust the existing addend at all.
684 FIXME: This seems logical to me, but for the case of
685 producing relocateable output it is not what the code
686 actually does. I don't want to change it, because it seems
687 far too likely that something will break. */
689 relocation -=
690 input_section->output_section->vma + input_section->output_offset;
692 if (howto->pcrel_offset == true)
693 relocation -= reloc_entry->address;
696 if (output_bfd != (bfd *) NULL)
698 if (howto->partial_inplace == false)
700 /* This is a partial relocation, and we want to apply the relocation
701 to the reloc entry rather than the raw data. Modify the reloc
702 inplace to reflect what we now know. */
703 reloc_entry->addend = relocation;
704 reloc_entry->address += input_section->output_offset;
705 return flag;
707 else
709 /* This is a partial relocation, but inplace, so modify the
710 reloc record a bit.
712 If we've relocated with a symbol with a section, change
713 into a ref to the section belonging to the symbol. */
715 reloc_entry->address += input_section->output_offset;
717 /* WTF?? */
718 if (abfd->xvec->flavour == bfd_target_coff_flavour
719 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
720 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
722 #if 1
723 /* For m68k-coff, the addend was being subtracted twice during
724 relocation with -r. Removing the line below this comment
725 fixes that problem; see PR 2953.
727 However, Ian wrote the following, regarding removing the line below,
728 which explains why it is still enabled: --djm
730 If you put a patch like that into BFD you need to check all the COFF
731 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
732 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
733 problem in a different way. There may very well be a reason that the
734 code works as it does.
736 Hmmm. The first obvious point is that bfd_perform_relocation should
737 not have any tests that depend upon the flavour. It's seem like
738 entirely the wrong place for such a thing. The second obvious point
739 is that the current code ignores the reloc addend when producing
740 relocateable output for COFF. That's peculiar. In fact, I really
741 have no idea what the point of the line you want to remove is.
743 A typical COFF reloc subtracts the old value of the symbol and adds in
744 the new value to the location in the object file (if it's a pc
745 relative reloc it adds the difference between the symbol value and the
746 location). When relocating we need to preserve that property.
748 BFD handles this by setting the addend to the negative of the old
749 value of the symbol. Unfortunately it handles common symbols in a
750 non-standard way (it doesn't subtract the old value) but that's a
751 different story (we can't change it without losing backward
752 compatibility with old object files) (coff-i386 does subtract the old
753 value, to be compatible with existing coff-i386 targets, like SCO).
755 So everything works fine when not producing relocateable output. When
756 we are producing relocateable output, logically we should do exactly
757 what we do when not producing relocateable output. Therefore, your
758 patch is correct. In fact, it should probably always just set
759 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
760 add the value into the object file. This won't hurt the COFF code,
761 which doesn't use the addend; I'm not sure what it will do to other
762 formats (the thing to check for would be whether any formats both use
763 the addend and set partial_inplace).
765 When I wanted to make coff-i386 produce relocateable output, I ran
766 into the problem that you are running into: I wanted to remove that
767 line. Rather than risk it, I made the coff-i386 relocs use a special
768 function; it's coff_i386_reloc in coff-i386.c. The function
769 specifically adds the addend field into the object file, knowing that
770 bfd_perform_relocation is not going to. If you remove that line, then
771 coff-i386.c will wind up adding the addend field in twice. It's
772 trivial to fix; it just needs to be done.
774 The problem with removing the line is just that it may break some
775 working code. With BFD it's hard to be sure of anything. The right
776 way to deal with this is simply to build and test at least all the
777 supported COFF targets. It should be straightforward if time and disk
778 space consuming. For each target:
779 1) build the linker
780 2) generate some executable, and link it using -r (I would
781 probably use paranoia.o and link against newlib/libc.a, which
782 for all the supported targets would be available in
783 /usr/cygnus/progressive/H-host/target/lib/libc.a).
784 3) make the change to reloc.c
785 4) rebuild the linker
786 5) repeat step 2
787 6) if the resulting object files are the same, you have at least
788 made it no worse
789 7) if they are different you have to figure out which version is
790 right
792 relocation -= reloc_entry->addend;
793 #endif
794 reloc_entry->addend = 0;
796 else
798 reloc_entry->addend = relocation;
802 else
804 reloc_entry->addend = 0;
807 /* FIXME: This overflow checking is incomplete, because the value
808 might have overflowed before we get here. For a correct check we
809 need to compute the value in a size larger than bitsize, but we
810 can't reasonably do that for a reloc the same size as a host
811 machine word.
812 FIXME: We should also do overflow checking on the result after
813 adding in the value contained in the object file. */
814 if (howto->complain_on_overflow != complain_overflow_dont
815 && flag == bfd_reloc_ok)
816 flag = bfd_check_overflow (howto->complain_on_overflow,
817 howto->bitsize,
818 howto->rightshift,
819 bfd_arch_bits_per_address (abfd),
820 relocation);
823 Either we are relocating all the way, or we don't want to apply
824 the relocation to the reloc entry (probably because there isn't
825 any room in the output format to describe addends to relocs)
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
832 struct str
834 unsigned int i0;
835 } s = { 0 };
838 main ()
840 unsigned long x;
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
851 relocation >>= (bfd_vma) howto->rightshift;
853 /* Shift everything up to where it's going to be used */
855 relocation <<= (bfd_vma) howto->bitpos;
857 /* Wait for the day when all have the mask in them */
859 /* What we do:
860 i instruction to be left alone
861 o offset within instruction
862 r relocation offset to apply
863 S src mask
864 D dst mask
865 N ~dst mask
866 A part 1
867 B part 2
868 R result
870 Do this:
871 (( i i i i i o o o o o from bfd_get<size>
872 and S S S S S) to get the size offset we want
873 + r r r r r r r r r r) to get the final value to place
874 and D D D D D to chop to right size
875 -----------------------
876 = A A A A A
877 And this:
878 ( i i i i i o o o o o from bfd_get<size>
879 and N N N N N ) get instruction
880 -----------------------
881 = B B B B B
883 And then:
884 ( B B B B B
885 or A A A A A)
886 -----------------------
887 = R R R R R R R R R R put into bfd_put<size>
890 #define DOIT(x) \
891 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
893 switch (howto->size)
895 case 0:
897 char x = bfd_get_8 (abfd, (char *) data + octets);
898 DOIT (x);
899 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
901 break;
903 case 1:
905 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
906 DOIT (x);
907 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
909 break;
910 case 2:
912 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
913 DOIT (x);
914 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
916 break;
917 case -2:
919 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
920 relocation = -relocation;
921 DOIT (x);
922 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
924 break;
926 case -1:
928 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
929 relocation = -relocation;
930 DOIT (x);
931 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
933 break;
935 case 3:
936 /* Do nothing */
937 break;
939 case 4:
940 #ifdef BFD64
942 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
943 DOIT (x);
944 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
946 #else
947 abort ();
948 #endif
949 break;
950 default:
951 return bfd_reloc_other;
954 return flag;
958 FUNCTION
959 bfd_install_relocation
961 SYNOPSIS
962 bfd_reloc_status_type
963 bfd_install_relocation
964 (bfd *abfd,
965 arelent *reloc_entry,
966 PTR data, bfd_vma data_start,
967 asection *input_section,
968 char **error_message);
970 DESCRIPTION
971 This looks remarkably like <<bfd_perform_relocation>>, except it
972 does not expect that the section contents have been filled in.
973 I.e., it's suitable for use when creating, rather than applying
974 a relocation.
976 For now, this function should be considered reserved for the
977 assembler.
981 bfd_reloc_status_type
982 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
983 input_section, error_message)
984 bfd *abfd;
985 arelent *reloc_entry;
986 PTR data_start;
987 bfd_vma data_start_offset;
988 asection *input_section;
989 char **error_message;
991 bfd_vma relocation;
992 bfd_reloc_status_type flag = bfd_reloc_ok;
993 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
994 bfd_vma output_base = 0;
995 reloc_howto_type *howto = reloc_entry->howto;
996 asection *reloc_target_output_section;
997 asymbol *symbol;
998 bfd_byte *data;
1000 symbol = *(reloc_entry->sym_ptr_ptr);
1001 if (bfd_is_abs_section (symbol->section))
1003 reloc_entry->address += input_section->output_offset;
1004 return bfd_reloc_ok;
1007 /* If there is a function supplied to handle this relocation type,
1008 call it. It'll return `bfd_reloc_continue' if further processing
1009 can be done. */
1010 if (howto->special_function)
1012 bfd_reloc_status_type cont;
1014 /* XXX - The special_function calls haven't been fixed up to deal
1015 with creating new relocations and section contents. */
1016 cont = howto->special_function (abfd, reloc_entry, symbol,
1017 /* XXX - Non-portable! */
1018 ((bfd_byte *) data_start
1019 - data_start_offset),
1020 input_section, abfd, error_message);
1021 if (cont != bfd_reloc_continue)
1022 return cont;
1025 /* Is the address of the relocation really within the section? */
1026 if (reloc_entry->address > (input_section->_cooked_size
1027 / bfd_octets_per_byte (abfd)))
1028 return bfd_reloc_outofrange;
1030 /* Work out which section the relocation is targetted at and the
1031 initial relocation command value. */
1033 /* Get symbol value. (Common symbols are special.) */
1034 if (bfd_is_com_section (symbol->section))
1035 relocation = 0;
1036 else
1037 relocation = symbol->value;
1039 reloc_target_output_section = symbol->section->output_section;
1041 /* Convert input-section-relative symbol value to absolute. */
1042 if (howto->partial_inplace == false)
1043 output_base = 0;
1044 else
1045 output_base = reloc_target_output_section->vma;
1047 relocation += output_base + symbol->section->output_offset;
1049 /* Add in supplied addend. */
1050 relocation += reloc_entry->addend;
1052 /* Here the variable relocation holds the final address of the
1053 symbol we are relocating against, plus any addend. */
1055 if (howto->pc_relative == true)
1057 /* This is a PC relative relocation. We want to set RELOCATION
1058 to the distance between the address of the symbol and the
1059 location. RELOCATION is already the address of the symbol.
1061 We start by subtracting the address of the section containing
1062 the location.
1064 If pcrel_offset is set, we must further subtract the position
1065 of the location within the section. Some targets arrange for
1066 the addend to be the negative of the position of the location
1067 within the section; for example, i386-aout does this. For
1068 i386-aout, pcrel_offset is false. Some other targets do not
1069 include the position of the location; for example, m88kbcs,
1070 or ELF. For those targets, pcrel_offset is true.
1072 If we are producing relocateable output, then we must ensure
1073 that this reloc will be correctly computed when the final
1074 relocation is done. If pcrel_offset is false we want to wind
1075 up with the negative of the location within the section,
1076 which means we must adjust the existing addend by the change
1077 in the location within the section. If pcrel_offset is true
1078 we do not want to adjust the existing addend at all.
1080 FIXME: This seems logical to me, but for the case of
1081 producing relocateable output it is not what the code
1082 actually does. I don't want to change it, because it seems
1083 far too likely that something will break. */
1085 relocation -=
1086 input_section->output_section->vma + input_section->output_offset;
1088 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1089 relocation -= reloc_entry->address;
1092 if (howto->partial_inplace == false)
1094 /* This is a partial relocation, and we want to apply the relocation
1095 to the reloc entry rather than the raw data. Modify the reloc
1096 inplace to reflect what we now know. */
1097 reloc_entry->addend = relocation;
1098 reloc_entry->address += input_section->output_offset;
1099 return flag;
1101 else
1103 /* This is a partial relocation, but inplace, so modify the
1104 reloc record a bit.
1106 If we've relocated with a symbol with a section, change
1107 into a ref to the section belonging to the symbol. */
1109 reloc_entry->address += input_section->output_offset;
1111 /* WTF?? */
1112 if (abfd->xvec->flavour == bfd_target_coff_flavour
1113 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1114 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1116 #if 1
1117 /* For m68k-coff, the addend was being subtracted twice during
1118 relocation with -r. Removing the line below this comment
1119 fixes that problem; see PR 2953.
1121 However, Ian wrote the following, regarding removing the line below,
1122 which explains why it is still enabled: --djm
1124 If you put a patch like that into BFD you need to check all the COFF
1125 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1126 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1127 problem in a different way. There may very well be a reason that the
1128 code works as it does.
1130 Hmmm. The first obvious point is that bfd_install_relocation should
1131 not have any tests that depend upon the flavour. It's seem like
1132 entirely the wrong place for such a thing. The second obvious point
1133 is that the current code ignores the reloc addend when producing
1134 relocateable output for COFF. That's peculiar. In fact, I really
1135 have no idea what the point of the line you want to remove is.
1137 A typical COFF reloc subtracts the old value of the symbol and adds in
1138 the new value to the location in the object file (if it's a pc
1139 relative reloc it adds the difference between the symbol value and the
1140 location). When relocating we need to preserve that property.
1142 BFD handles this by setting the addend to the negative of the old
1143 value of the symbol. Unfortunately it handles common symbols in a
1144 non-standard way (it doesn't subtract the old value) but that's a
1145 different story (we can't change it without losing backward
1146 compatibility with old object files) (coff-i386 does subtract the old
1147 value, to be compatible with existing coff-i386 targets, like SCO).
1149 So everything works fine when not producing relocateable output. When
1150 we are producing relocateable output, logically we should do exactly
1151 what we do when not producing relocateable output. Therefore, your
1152 patch is correct. In fact, it should probably always just set
1153 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1154 add the value into the object file. This won't hurt the COFF code,
1155 which doesn't use the addend; I'm not sure what it will do to other
1156 formats (the thing to check for would be whether any formats both use
1157 the addend and set partial_inplace).
1159 When I wanted to make coff-i386 produce relocateable output, I ran
1160 into the problem that you are running into: I wanted to remove that
1161 line. Rather than risk it, I made the coff-i386 relocs use a special
1162 function; it's coff_i386_reloc in coff-i386.c. The function
1163 specifically adds the addend field into the object file, knowing that
1164 bfd_install_relocation is not going to. If you remove that line, then
1165 coff-i386.c will wind up adding the addend field in twice. It's
1166 trivial to fix; it just needs to be done.
1168 The problem with removing the line is just that it may break some
1169 working code. With BFD it's hard to be sure of anything. The right
1170 way to deal with this is simply to build and test at least all the
1171 supported COFF targets. It should be straightforward if time and disk
1172 space consuming. For each target:
1173 1) build the linker
1174 2) generate some executable, and link it using -r (I would
1175 probably use paranoia.o and link against newlib/libc.a, which
1176 for all the supported targets would be available in
1177 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1178 3) make the change to reloc.c
1179 4) rebuild the linker
1180 5) repeat step 2
1181 6) if the resulting object files are the same, you have at least
1182 made it no worse
1183 7) if they are different you have to figure out which version is
1184 right
1186 relocation -= reloc_entry->addend;
1187 #endif
1188 reloc_entry->addend = 0;
1190 else
1192 reloc_entry->addend = relocation;
1196 /* FIXME: This overflow checking is incomplete, because the value
1197 might have overflowed before we get here. For a correct check we
1198 need to compute the value in a size larger than bitsize, but we
1199 can't reasonably do that for a reloc the same size as a host
1200 machine word.
1201 FIXME: We should also do overflow checking on the result after
1202 adding in the value contained in the object file. */
1203 if (howto->complain_on_overflow != complain_overflow_dont)
1204 flag = bfd_check_overflow (howto->complain_on_overflow,
1205 howto->bitsize,
1206 howto->rightshift,
1207 bfd_arch_bits_per_address (abfd),
1208 relocation);
1211 Either we are relocating all the way, or we don't want to apply
1212 the relocation to the reloc entry (probably because there isn't
1213 any room in the output format to describe addends to relocs)
1216 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1217 (OSF version 1.3, compiler version 3.11). It miscompiles the
1218 following program:
1220 struct str
1222 unsigned int i0;
1223 } s = { 0 };
1226 main ()
1228 unsigned long x;
1230 x = 0x100000000;
1231 x <<= (unsigned long) s.i0;
1232 if (x == 0)
1233 printf ("failed\n");
1234 else
1235 printf ("succeeded (%lx)\n", x);
1239 relocation >>= (bfd_vma) howto->rightshift;
1241 /* Shift everything up to where it's going to be used */
1243 relocation <<= (bfd_vma) howto->bitpos;
1245 /* Wait for the day when all have the mask in them */
1247 /* What we do:
1248 i instruction to be left alone
1249 o offset within instruction
1250 r relocation offset to apply
1251 S src mask
1252 D dst mask
1253 N ~dst mask
1254 A part 1
1255 B part 2
1256 R result
1258 Do this:
1259 (( i i i i i o o o o o from bfd_get<size>
1260 and S S S S S) to get the size offset we want
1261 + r r r r r r r r r r) to get the final value to place
1262 and D D D D D to chop to right size
1263 -----------------------
1264 = A A A A A
1265 And this:
1266 ( i i i i i o o o o o from bfd_get<size>
1267 and N N N N N ) get instruction
1268 -----------------------
1269 = B B B B B
1271 And then:
1272 ( B B B B B
1273 or A A A A A)
1274 -----------------------
1275 = R R R R R R R R R R put into bfd_put<size>
1278 #define DOIT(x) \
1279 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1281 data = (bfd_byte *) data_start + (octets - data_start_offset);
1283 switch (howto->size)
1285 case 0:
1287 char x = bfd_get_8 (abfd, (char *) data);
1288 DOIT (x);
1289 bfd_put_8 (abfd, x, (unsigned char *) data);
1291 break;
1293 case 1:
1295 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1296 DOIT (x);
1297 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
1299 break;
1300 case 2:
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 DOIT (x);
1304 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1306 break;
1307 case -2:
1309 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1310 relocation = -relocation;
1311 DOIT (x);
1312 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1314 break;
1316 case 3:
1317 /* Do nothing */
1318 break;
1320 case 4:
1322 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1323 DOIT (x);
1324 bfd_put_64 (abfd, x, (bfd_byte *) data);
1326 break;
1327 default:
1328 return bfd_reloc_other;
1331 return flag;
1334 /* This relocation routine is used by some of the backend linkers.
1335 They do not construct asymbol or arelent structures, so there is no
1336 reason for them to use bfd_perform_relocation. Also,
1337 bfd_perform_relocation is so hacked up it is easier to write a new
1338 function than to try to deal with it.
1340 This routine does a final relocation. Whether it is useful for a
1341 relocateable link depends upon how the object format defines
1342 relocations.
1344 FIXME: This routine ignores any special_function in the HOWTO,
1345 since the existing special_function values have been written for
1346 bfd_perform_relocation.
1348 HOWTO is the reloc howto information.
1349 INPUT_BFD is the BFD which the reloc applies to.
1350 INPUT_SECTION is the section which the reloc applies to.
1351 CONTENTS is the contents of the section.
1352 ADDRESS is the address of the reloc within INPUT_SECTION.
1353 VALUE is the value of the symbol the reloc refers to.
1354 ADDEND is the addend of the reloc. */
1356 bfd_reloc_status_type
1357 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1358 value, addend)
1359 reloc_howto_type *howto;
1360 bfd *input_bfd;
1361 asection *input_section;
1362 bfd_byte *contents;
1363 bfd_vma address;
1364 bfd_vma value;
1365 bfd_vma addend;
1367 bfd_vma relocation;
1369 /* Sanity check the address. */
1370 if (address > input_section->_raw_size)
1371 return bfd_reloc_outofrange;
1373 /* This function assumes that we are dealing with a basic relocation
1374 against a symbol. We want to compute the value of the symbol to
1375 relocate to. This is just VALUE, the value of the symbol, plus
1376 ADDEND, any addend associated with the reloc. */
1377 relocation = value + addend;
1379 /* If the relocation is PC relative, we want to set RELOCATION to
1380 the distance between the symbol (currently in RELOCATION) and the
1381 location we are relocating. Some targets (e.g., i386-aout)
1382 arrange for the contents of the section to be the negative of the
1383 offset of the location within the section; for such targets
1384 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1385 simply leave the contents of the section as zero; for such
1386 targets pcrel_offset is true. If pcrel_offset is false we do not
1387 need to subtract out the offset of the location within the
1388 section (which is just ADDRESS). */
1389 if (howto->pc_relative)
1391 relocation -= (input_section->output_section->vma
1392 + input_section->output_offset);
1393 if (howto->pcrel_offset)
1394 relocation -= address;
1397 return _bfd_relocate_contents (howto, input_bfd, relocation,
1398 contents + address);
1401 /* Relocate a given location using a given value and howto. */
1403 bfd_reloc_status_type
1404 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1405 reloc_howto_type *howto;
1406 bfd *input_bfd;
1407 bfd_vma relocation;
1408 bfd_byte *location;
1410 int size;
1411 bfd_vma x = 0;
1412 bfd_reloc_status_type flag;
1413 unsigned int rightshift = howto->rightshift;
1414 unsigned int bitpos = howto->bitpos;
1416 /* If the size is negative, negate RELOCATION. This isn't very
1417 general. */
1418 if (howto->size < 0)
1419 relocation = -relocation;
1421 /* Get the value we are going to relocate. */
1422 size = bfd_get_reloc_size (howto);
1423 switch (size)
1425 default:
1426 case 0:
1427 abort ();
1428 case 1:
1429 x = bfd_get_8 (input_bfd, location);
1430 break;
1431 case 2:
1432 x = bfd_get_16 (input_bfd, location);
1433 break;
1434 case 4:
1435 x = bfd_get_32 (input_bfd, location);
1436 break;
1437 case 8:
1438 #ifdef BFD64
1439 x = bfd_get_64 (input_bfd, location);
1440 #else
1441 abort ();
1442 #endif
1443 break;
1446 /* Check for overflow. FIXME: We may drop bits during the addition
1447 which we don't check for. We must either check at every single
1448 operation, which would be tedious, or we must do the computations
1449 in a type larger than bfd_vma, which would be inefficient. */
1450 flag = bfd_reloc_ok;
1451 if (howto->complain_on_overflow != complain_overflow_dont)
1453 bfd_vma addrmask, fieldmask, signmask, ss;
1454 bfd_vma a, b, sum;
1456 /* Get the values to be added together. For signed and unsigned
1457 relocations, we assume that all values should be truncated to
1458 the size of an address. For bitfields, all the bits matter.
1459 See also bfd_check_overflow. */
1460 fieldmask = N_ONES (howto->bitsize);
1461 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1462 a = relocation;
1463 b = x & howto->src_mask;
1465 switch (howto->complain_on_overflow)
1467 case complain_overflow_signed:
1468 a = (a & addrmask) >> rightshift;
1470 /* If any sign bits are set, all sign bits must be set.
1471 That is, A must be a valid negative address after
1472 shifting. */
1473 signmask = ~ (fieldmask >> 1);
1474 ss = a & signmask;
1475 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1476 flag = bfd_reloc_overflow;
1478 /* We only need this next bit of code if the sign bit of B
1479 is below the sign bit of A. This would only happen if
1480 SRC_MASK had fewer bits than BITSIZE. Note that if
1481 SRC_MASK has more bits than BITSIZE, we can get into
1482 trouble; we would need to verify that B is in range, as
1483 we do for A above. */
1484 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1486 /* Set all the bits above the sign bit. */
1487 b = (b ^ signmask) - signmask;
1489 b = (b & addrmask) >> bitpos;
1491 /* Now we can do the addition. */
1492 sum = a + b;
1494 /* See if the result has the correct sign. Bits above the
1495 sign bit are junk now; ignore them. If the sum is
1496 positive, make sure we did not have all negative inputs;
1497 if the sum is negative, make sure we did not have all
1498 positive inputs. The test below looks only at the sign
1499 bits, and it really just
1500 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1502 signmask = (fieldmask >> 1) + 1;
1503 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1504 flag = bfd_reloc_overflow;
1506 break;
1508 case complain_overflow_unsigned:
1509 /* Checking for an unsigned overflow is relatively easy:
1510 trim the addresses and add, and trim the result as well.
1511 Overflow is normally indicated when the result does not
1512 fit in the field. However, we also need to consider the
1513 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1514 input is 0x80000000, and bfd_vma is only 32 bits; then we
1515 will get sum == 0, but there is an overflow, since the
1516 inputs did not fit in the field. Instead of doing a
1517 separate test, we can check for this by or-ing in the
1518 operands when testing for the sum overflowing its final
1519 field. */
1520 a = (a & addrmask) >> rightshift;
1521 b = (b & addrmask) >> bitpos;
1522 sum = (a + b) & addrmask;
1523 if ((a | b | sum) & ~ fieldmask)
1524 flag = bfd_reloc_overflow;
1526 break;
1528 case complain_overflow_bitfield:
1529 /* Much like the signed check, but for a field one bit
1530 wider, and no trimming inputs with addrmask. We allow a
1531 bitfield to represent numbers in the range -2**n to
1532 2**n-1, where n is the number of bits in the field.
1533 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1534 overflow, which is exactly what we want. */
1535 a >>= rightshift;
1537 signmask = ~ fieldmask;
1538 ss = a & signmask;
1539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1540 flag = bfd_reloc_overflow;
1542 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1543 b = (b ^ signmask) - signmask;
1545 b >>= bitpos;
1547 sum = a + b;
1549 /* We mask with addrmask here to explicitly allow an address
1550 wrap-around. The Linux kernel relies on it, and it is
1551 the only way to write assembler code which can run when
1552 loaded at a location 0x80000000 away from the location at
1553 which it is linked. */
1554 signmask = fieldmask + 1;
1555 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1556 flag = bfd_reloc_overflow;
1558 break;
1560 default:
1561 abort ();
1565 /* Put RELOCATION in the right bits. */
1566 relocation >>= (bfd_vma) rightshift;
1567 relocation <<= (bfd_vma) bitpos;
1569 /* Add RELOCATION to the right bits of X. */
1570 x = ((x & ~howto->dst_mask)
1571 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1573 /* Put the relocated value back in the object file. */
1574 switch (size)
1576 default:
1577 case 0:
1578 abort ();
1579 case 1:
1580 bfd_put_8 (input_bfd, x, location);
1581 break;
1582 case 2:
1583 bfd_put_16 (input_bfd, x, location);
1584 break;
1585 case 4:
1586 bfd_put_32 (input_bfd, x, location);
1587 break;
1588 case 8:
1589 #ifdef BFD64
1590 bfd_put_64 (input_bfd, x, location);
1591 #else
1592 abort ();
1593 #endif
1594 break;
1597 return flag;
1601 DOCDD
1602 INODE
1603 howto manager, , typedef arelent, Relocations
1605 SECTION
1606 The howto manager
1608 When an application wants to create a relocation, but doesn't
1609 know what the target machine might call it, it can find out by
1610 using this bit of code.
1615 TYPEDEF
1616 bfd_reloc_code_type
1618 DESCRIPTION
1619 The insides of a reloc code. The idea is that, eventually, there
1620 will be one enumerator for every type of relocation we ever do.
1621 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1622 return a howto pointer.
1624 This does mean that the application must determine the correct
1625 enumerator value; you can't get a howto pointer from a random set
1626 of attributes.
1628 SENUM
1629 bfd_reloc_code_real
1631 ENUM
1632 BFD_RELOC_64
1633 ENUMX
1634 BFD_RELOC_32
1635 ENUMX
1636 BFD_RELOC_26
1637 ENUMX
1638 BFD_RELOC_24
1639 ENUMX
1640 BFD_RELOC_16
1641 ENUMX
1642 BFD_RELOC_14
1643 ENUMX
1644 BFD_RELOC_8
1645 ENUMDOC
1646 Basic absolute relocations of N bits.
1648 ENUM
1649 BFD_RELOC_64_PCREL
1650 ENUMX
1651 BFD_RELOC_32_PCREL
1652 ENUMX
1653 BFD_RELOC_24_PCREL
1654 ENUMX
1655 BFD_RELOC_16_PCREL
1656 ENUMX
1657 BFD_RELOC_12_PCREL
1658 ENUMX
1659 BFD_RELOC_8_PCREL
1660 ENUMDOC
1661 PC-relative relocations. Sometimes these are relative to the address
1662 of the relocation itself; sometimes they are relative to the start of
1663 the section containing the relocation. It depends on the specific target.
1665 The 24-bit relocation is used in some Intel 960 configurations.
1667 ENUM
1668 BFD_RELOC_32_GOT_PCREL
1669 ENUMX
1670 BFD_RELOC_16_GOT_PCREL
1671 ENUMX
1672 BFD_RELOC_8_GOT_PCREL
1673 ENUMX
1674 BFD_RELOC_32_GOTOFF
1675 ENUMX
1676 BFD_RELOC_16_GOTOFF
1677 ENUMX
1678 BFD_RELOC_LO16_GOTOFF
1679 ENUMX
1680 BFD_RELOC_HI16_GOTOFF
1681 ENUMX
1682 BFD_RELOC_HI16_S_GOTOFF
1683 ENUMX
1684 BFD_RELOC_8_GOTOFF
1685 ENUMX
1686 BFD_RELOC_64_PLT_PCREL
1687 ENUMX
1688 BFD_RELOC_32_PLT_PCREL
1689 ENUMX
1690 BFD_RELOC_24_PLT_PCREL
1691 ENUMX
1692 BFD_RELOC_16_PLT_PCREL
1693 ENUMX
1694 BFD_RELOC_8_PLT_PCREL
1695 ENUMX
1696 BFD_RELOC_64_PLTOFF
1697 ENUMX
1698 BFD_RELOC_32_PLTOFF
1699 ENUMX
1700 BFD_RELOC_16_PLTOFF
1701 ENUMX
1702 BFD_RELOC_LO16_PLTOFF
1703 ENUMX
1704 BFD_RELOC_HI16_PLTOFF
1705 ENUMX
1706 BFD_RELOC_HI16_S_PLTOFF
1707 ENUMX
1708 BFD_RELOC_8_PLTOFF
1709 ENUMDOC
1710 For ELF.
1712 ENUM
1713 BFD_RELOC_68K_GLOB_DAT
1714 ENUMX
1715 BFD_RELOC_68K_JMP_SLOT
1716 ENUMX
1717 BFD_RELOC_68K_RELATIVE
1718 ENUMDOC
1719 Relocations used by 68K ELF.
1721 ENUM
1722 BFD_RELOC_32_BASEREL
1723 ENUMX
1724 BFD_RELOC_16_BASEREL
1725 ENUMX
1726 BFD_RELOC_LO16_BASEREL
1727 ENUMX
1728 BFD_RELOC_HI16_BASEREL
1729 ENUMX
1730 BFD_RELOC_HI16_S_BASEREL
1731 ENUMX
1732 BFD_RELOC_8_BASEREL
1733 ENUMX
1734 BFD_RELOC_RVA
1735 ENUMDOC
1736 Linkage-table relative.
1738 ENUM
1739 BFD_RELOC_8_FFnn
1740 ENUMDOC
1741 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1743 ENUM
1744 BFD_RELOC_32_PCREL_S2
1745 ENUMX
1746 BFD_RELOC_16_PCREL_S2
1747 ENUMX
1748 BFD_RELOC_23_PCREL_S2
1749 ENUMDOC
1750 These PC-relative relocations are stored as word displacements --
1751 i.e., byte displacements shifted right two bits. The 30-bit word
1752 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1753 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1754 signed 16-bit displacement is used on the MIPS, and the 23-bit
1755 displacement is used on the Alpha.
1757 ENUM
1758 BFD_RELOC_HI22
1759 ENUMX
1760 BFD_RELOC_LO10
1761 ENUMDOC
1762 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1763 the target word. These are used on the SPARC.
1765 ENUM
1766 BFD_RELOC_GPREL16
1767 ENUMX
1768 BFD_RELOC_GPREL32
1769 ENUMDOC
1770 For systems that allocate a Global Pointer register, these are
1771 displacements off that register. These relocation types are
1772 handled specially, because the value the register will have is
1773 decided relatively late.
1775 ENUM
1776 BFD_RELOC_I960_CALLJ
1777 ENUMDOC
1778 Reloc types used for i960/b.out.
1780 ENUM
1781 BFD_RELOC_NONE
1782 ENUMX
1783 BFD_RELOC_SPARC_WDISP22
1784 ENUMX
1785 BFD_RELOC_SPARC22
1786 ENUMX
1787 BFD_RELOC_SPARC13
1788 ENUMX
1789 BFD_RELOC_SPARC_GOT10
1790 ENUMX
1791 BFD_RELOC_SPARC_GOT13
1792 ENUMX
1793 BFD_RELOC_SPARC_GOT22
1794 ENUMX
1795 BFD_RELOC_SPARC_PC10
1796 ENUMX
1797 BFD_RELOC_SPARC_PC22
1798 ENUMX
1799 BFD_RELOC_SPARC_WPLT30
1800 ENUMX
1801 BFD_RELOC_SPARC_COPY
1802 ENUMX
1803 BFD_RELOC_SPARC_GLOB_DAT
1804 ENUMX
1805 BFD_RELOC_SPARC_JMP_SLOT
1806 ENUMX
1807 BFD_RELOC_SPARC_RELATIVE
1808 ENUMX
1809 BFD_RELOC_SPARC_UA16
1810 ENUMX
1811 BFD_RELOC_SPARC_UA32
1812 ENUMX
1813 BFD_RELOC_SPARC_UA64
1814 ENUMDOC
1815 SPARC ELF relocations. There is probably some overlap with other
1816 relocation types already defined.
1818 ENUM
1819 BFD_RELOC_SPARC_BASE13
1820 ENUMX
1821 BFD_RELOC_SPARC_BASE22
1822 ENUMDOC
1823 I think these are specific to SPARC a.out (e.g., Sun 4).
1825 ENUMEQ
1826 BFD_RELOC_SPARC_64
1827 BFD_RELOC_64
1828 ENUMX
1829 BFD_RELOC_SPARC_10
1830 ENUMX
1831 BFD_RELOC_SPARC_11
1832 ENUMX
1833 BFD_RELOC_SPARC_OLO10
1834 ENUMX
1835 BFD_RELOC_SPARC_HH22
1836 ENUMX
1837 BFD_RELOC_SPARC_HM10
1838 ENUMX
1839 BFD_RELOC_SPARC_LM22
1840 ENUMX
1841 BFD_RELOC_SPARC_PC_HH22
1842 ENUMX
1843 BFD_RELOC_SPARC_PC_HM10
1844 ENUMX
1845 BFD_RELOC_SPARC_PC_LM22
1846 ENUMX
1847 BFD_RELOC_SPARC_WDISP16
1848 ENUMX
1849 BFD_RELOC_SPARC_WDISP19
1850 ENUMX
1851 BFD_RELOC_SPARC_7
1852 ENUMX
1853 BFD_RELOC_SPARC_6
1854 ENUMX
1855 BFD_RELOC_SPARC_5
1856 ENUMEQX
1857 BFD_RELOC_SPARC_DISP64
1858 BFD_RELOC_64_PCREL
1859 ENUMX
1860 BFD_RELOC_SPARC_PLT64
1861 ENUMX
1862 BFD_RELOC_SPARC_HIX22
1863 ENUMX
1864 BFD_RELOC_SPARC_LOX10
1865 ENUMX
1866 BFD_RELOC_SPARC_H44
1867 ENUMX
1868 BFD_RELOC_SPARC_M44
1869 ENUMX
1870 BFD_RELOC_SPARC_L44
1871 ENUMX
1872 BFD_RELOC_SPARC_REGISTER
1873 ENUMDOC
1874 SPARC64 relocations
1876 ENUM
1877 BFD_RELOC_SPARC_REV32
1878 ENUMDOC
1879 SPARC little endian relocation
1881 ENUM
1882 BFD_RELOC_ALPHA_GPDISP_HI16
1883 ENUMDOC
1884 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1885 "addend" in some special way.
1886 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1887 writing; when reading, it will be the absolute section symbol. The
1888 addend is the displacement in bytes of the "lda" instruction from
1889 the "ldah" instruction (which is at the address of this reloc).
1890 ENUM
1891 BFD_RELOC_ALPHA_GPDISP_LO16
1892 ENUMDOC
1893 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1894 with GPDISP_HI16 relocs. The addend is ignored when writing the
1895 relocations out, and is filled in with the file's GP value on
1896 reading, for convenience.
1898 ENUM
1899 BFD_RELOC_ALPHA_GPDISP
1900 ENUMDOC
1901 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1902 relocation except that there is no accompanying GPDISP_LO16
1903 relocation.
1905 ENUM
1906 BFD_RELOC_ALPHA_LITERAL
1907 ENUMX
1908 BFD_RELOC_ALPHA_ELF_LITERAL
1909 ENUMX
1910 BFD_RELOC_ALPHA_LITUSE
1911 ENUMDOC
1912 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1913 the assembler turns it into a LDQ instruction to load the address of
1914 the symbol, and then fills in a register in the real instruction.
1916 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1917 section symbol. The addend is ignored when writing, but is filled
1918 in with the file's GP value on reading, for convenience, as with the
1919 GPDISP_LO16 reloc.
1921 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1922 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1923 but it generates output not based on the position within the .got
1924 section, but relative to the GP value chosen for the file during the
1925 final link stage.
1927 The LITUSE reloc, on the instruction using the loaded address, gives
1928 information to the linker that it might be able to use to optimize
1929 away some literal section references. The symbol is ignored (read
1930 as the absolute section symbol), and the "addend" indicates the type
1931 of instruction using the register:
1932 1 - "memory" fmt insn
1933 2 - byte-manipulation (byte offset reg)
1934 3 - jsr (target of branch)
1936 ENUM
1937 BFD_RELOC_ALPHA_HINT
1938 ENUMDOC
1939 The HINT relocation indicates a value that should be filled into the
1940 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1941 prediction logic which may be provided on some processors.
1943 ENUM
1944 BFD_RELOC_ALPHA_LINKAGE
1945 ENUMDOC
1946 The LINKAGE relocation outputs a linkage pair in the object file,
1947 which is filled by the linker.
1949 ENUM
1950 BFD_RELOC_ALPHA_CODEADDR
1951 ENUMDOC
1952 The CODEADDR relocation outputs a STO_CA in the object file,
1953 which is filled by the linker.
1955 ENUM
1956 BFD_RELOC_ALPHA_GPREL_HI16
1957 ENUMX
1958 BFD_RELOC_ALPHA_GPREL_LO16
1959 ENUMDOC
1960 The GPREL_HI/LO relocations together form a 32-bit offset from the
1961 GP register.
1963 ENUM
1964 BFD_RELOC_MIPS_JMP
1965 ENUMDOC
1966 Bits 27..2 of the relocation address shifted right 2 bits;
1967 simple reloc otherwise.
1969 ENUM
1970 BFD_RELOC_MIPS16_JMP
1971 ENUMDOC
1972 The MIPS16 jump instruction.
1974 ENUM
1975 BFD_RELOC_MIPS16_GPREL
1976 ENUMDOC
1977 MIPS16 GP relative reloc.
1979 ENUM
1980 BFD_RELOC_HI16
1981 ENUMDOC
1982 High 16 bits of 32-bit value; simple reloc.
1983 ENUM
1984 BFD_RELOC_HI16_S
1985 ENUMDOC
1986 High 16 bits of 32-bit value but the low 16 bits will be sign
1987 extended and added to form the final result. If the low 16
1988 bits form a negative number, we need to add one to the high value
1989 to compensate for the borrow when the low bits are added.
1990 ENUM
1991 BFD_RELOC_LO16
1992 ENUMDOC
1993 Low 16 bits.
1994 ENUM
1995 BFD_RELOC_PCREL_HI16_S
1996 ENUMDOC
1997 Like BFD_RELOC_HI16_S, but PC relative.
1998 ENUM
1999 BFD_RELOC_PCREL_LO16
2000 ENUMDOC
2001 Like BFD_RELOC_LO16, but PC relative.
2003 ENUM
2004 BFD_RELOC_MIPS_LITERAL
2005 ENUMDOC
2006 Relocation against a MIPS literal section.
2008 ENUM
2009 BFD_RELOC_MIPS_GOT16
2010 ENUMX
2011 BFD_RELOC_MIPS_CALL16
2012 ENUMX
2013 BFD_RELOC_MIPS_GOT_HI16
2014 ENUMX
2015 BFD_RELOC_MIPS_GOT_LO16
2016 ENUMX
2017 BFD_RELOC_MIPS_CALL_HI16
2018 ENUMX
2019 BFD_RELOC_MIPS_CALL_LO16
2020 ENUMX
2021 BFD_RELOC_MIPS_SUB
2022 ENUMX
2023 BFD_RELOC_MIPS_GOT_PAGE
2024 ENUMX
2025 BFD_RELOC_MIPS_GOT_OFST
2026 ENUMX
2027 BFD_RELOC_MIPS_GOT_DISP
2028 ENUMX
2029 BFD_RELOC_MIPS_SHIFT5
2030 ENUMX
2031 BFD_RELOC_MIPS_SHIFT6
2032 ENUMX
2033 BFD_RELOC_MIPS_INSERT_A
2034 ENUMX
2035 BFD_RELOC_MIPS_INSERT_B
2036 ENUMX
2037 BFD_RELOC_MIPS_DELETE
2038 ENUMX
2039 BFD_RELOC_MIPS_HIGHEST
2040 ENUMX
2041 BFD_RELOC_MIPS_HIGHER
2042 ENUMX
2043 BFD_RELOC_MIPS_SCN_DISP
2044 ENUMX
2045 BFD_RELOC_MIPS_REL16
2046 ENUMX
2047 BFD_RELOC_MIPS_RELGOT
2048 ENUMX
2049 BFD_RELOC_MIPS_JALR
2050 COMMENT
2051 ENUMDOC
2052 MIPS ELF relocations.
2054 COMMENT
2056 ENUM
2057 BFD_RELOC_386_GOT32
2058 ENUMX
2059 BFD_RELOC_386_PLT32
2060 ENUMX
2061 BFD_RELOC_386_COPY
2062 ENUMX
2063 BFD_RELOC_386_GLOB_DAT
2064 ENUMX
2065 BFD_RELOC_386_JUMP_SLOT
2066 ENUMX
2067 BFD_RELOC_386_RELATIVE
2068 ENUMX
2069 BFD_RELOC_386_GOTOFF
2070 ENUMX
2071 BFD_RELOC_386_GOTPC
2072 ENUMDOC
2073 i386/elf relocations
2075 ENUM
2076 BFD_RELOC_X86_64_GOT32
2077 ENUMX
2078 BFD_RELOC_X86_64_PLT32
2079 ENUMX
2080 BFD_RELOC_X86_64_COPY
2081 ENUMX
2082 BFD_RELOC_X86_64_GLOB_DAT
2083 ENUMX
2084 BFD_RELOC_X86_64_JUMP_SLOT
2085 ENUMX
2086 BFD_RELOC_X86_64_RELATIVE
2087 ENUMX
2088 BFD_RELOC_X86_64_GOTPCREL
2089 ENUMX
2090 BFD_RELOC_X86_64_32S
2091 ENUMDOC
2092 x86-64/elf relocations
2094 ENUM
2095 BFD_RELOC_NS32K_IMM_8
2096 ENUMX
2097 BFD_RELOC_NS32K_IMM_16
2098 ENUMX
2099 BFD_RELOC_NS32K_IMM_32
2100 ENUMX
2101 BFD_RELOC_NS32K_IMM_8_PCREL
2102 ENUMX
2103 BFD_RELOC_NS32K_IMM_16_PCREL
2104 ENUMX
2105 BFD_RELOC_NS32K_IMM_32_PCREL
2106 ENUMX
2107 BFD_RELOC_NS32K_DISP_8
2108 ENUMX
2109 BFD_RELOC_NS32K_DISP_16
2110 ENUMX
2111 BFD_RELOC_NS32K_DISP_32
2112 ENUMX
2113 BFD_RELOC_NS32K_DISP_8_PCREL
2114 ENUMX
2115 BFD_RELOC_NS32K_DISP_16_PCREL
2116 ENUMX
2117 BFD_RELOC_NS32K_DISP_32_PCREL
2118 ENUMDOC
2119 ns32k relocations
2121 ENUM
2122 BFD_RELOC_PDP11_DISP_8_PCREL
2123 ENUMX
2124 BFD_RELOC_PDP11_DISP_6_PCREL
2125 ENUMDOC
2126 PDP11 relocations
2128 ENUM
2129 BFD_RELOC_PJ_CODE_HI16
2130 ENUMX
2131 BFD_RELOC_PJ_CODE_LO16
2132 ENUMX
2133 BFD_RELOC_PJ_CODE_DIR16
2134 ENUMX
2135 BFD_RELOC_PJ_CODE_DIR32
2136 ENUMX
2137 BFD_RELOC_PJ_CODE_REL16
2138 ENUMX
2139 BFD_RELOC_PJ_CODE_REL32
2140 ENUMDOC
2141 Picojava relocs. Not all of these appear in object files.
2143 ENUM
2144 BFD_RELOC_PPC_B26
2145 ENUMX
2146 BFD_RELOC_PPC_BA26
2147 ENUMX
2148 BFD_RELOC_PPC_TOC16
2149 ENUMX
2150 BFD_RELOC_PPC_B16
2151 ENUMX
2152 BFD_RELOC_PPC_B16_BRTAKEN
2153 ENUMX
2154 BFD_RELOC_PPC_B16_BRNTAKEN
2155 ENUMX
2156 BFD_RELOC_PPC_BA16
2157 ENUMX
2158 BFD_RELOC_PPC_BA16_BRTAKEN
2159 ENUMX
2160 BFD_RELOC_PPC_BA16_BRNTAKEN
2161 ENUMX
2162 BFD_RELOC_PPC_COPY
2163 ENUMX
2164 BFD_RELOC_PPC_GLOB_DAT
2165 ENUMX
2166 BFD_RELOC_PPC_JMP_SLOT
2167 ENUMX
2168 BFD_RELOC_PPC_RELATIVE
2169 ENUMX
2170 BFD_RELOC_PPC_LOCAL24PC
2171 ENUMX
2172 BFD_RELOC_PPC_EMB_NADDR32
2173 ENUMX
2174 BFD_RELOC_PPC_EMB_NADDR16
2175 ENUMX
2176 BFD_RELOC_PPC_EMB_NADDR16_LO
2177 ENUMX
2178 BFD_RELOC_PPC_EMB_NADDR16_HI
2179 ENUMX
2180 BFD_RELOC_PPC_EMB_NADDR16_HA
2181 ENUMX
2182 BFD_RELOC_PPC_EMB_SDAI16
2183 ENUMX
2184 BFD_RELOC_PPC_EMB_SDA2I16
2185 ENUMX
2186 BFD_RELOC_PPC_EMB_SDA2REL
2187 ENUMX
2188 BFD_RELOC_PPC_EMB_SDA21
2189 ENUMX
2190 BFD_RELOC_PPC_EMB_MRKREF
2191 ENUMX
2192 BFD_RELOC_PPC_EMB_RELSEC16
2193 ENUMX
2194 BFD_RELOC_PPC_EMB_RELST_LO
2195 ENUMX
2196 BFD_RELOC_PPC_EMB_RELST_HI
2197 ENUMX
2198 BFD_RELOC_PPC_EMB_RELST_HA
2199 ENUMX
2200 BFD_RELOC_PPC_EMB_BIT_FLD
2201 ENUMX
2202 BFD_RELOC_PPC_EMB_RELSDA
2203 ENUMX
2204 BFD_RELOC_PPC64_HIGHER
2205 ENUMX
2206 BFD_RELOC_PPC64_HIGHER_S
2207 ENUMX
2208 BFD_RELOC_PPC64_HIGHEST
2209 ENUMX
2210 BFD_RELOC_PPC64_HIGHEST_S
2211 ENUMX
2212 BFD_RELOC_PPC64_TOC16_LO
2213 ENUMX
2214 BFD_RELOC_PPC64_TOC16_HI
2215 ENUMX
2216 BFD_RELOC_PPC64_TOC16_HA
2217 ENUMX
2218 BFD_RELOC_PPC64_TOC
2219 ENUMX
2220 BFD_RELOC_PPC64_PLTGOT16
2221 ENUMX
2222 BFD_RELOC_PPC64_PLTGOT16_LO
2223 ENUMX
2224 BFD_RELOC_PPC64_PLTGOT16_HI
2225 ENUMX
2226 BFD_RELOC_PPC64_PLTGOT16_HA
2227 ENUMX
2228 BFD_RELOC_PPC64_ADDR16_DS
2229 ENUMX
2230 BFD_RELOC_PPC64_ADDR16_LO_DS
2231 ENUMX
2232 BFD_RELOC_PPC64_GOT16_DS
2233 ENUMX
2234 BFD_RELOC_PPC64_GOT16_LO_DS
2235 ENUMX
2236 BFD_RELOC_PPC64_PLT16_LO_DS
2237 ENUMX
2238 BFD_RELOC_PPC64_SECTOFF_DS
2239 ENUMX
2240 BFD_RELOC_PPC64_SECTOFF_LO_DS
2241 ENUMX
2242 BFD_RELOC_PPC64_TOC16_DS
2243 ENUMX
2244 BFD_RELOC_PPC64_TOC16_LO_DS
2245 ENUMX
2246 BFD_RELOC_PPC64_PLTGOT16_DS
2247 ENUMX
2248 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2249 ENUMDOC
2250 Power(rs6000) and PowerPC relocations.
2252 ENUM
2253 BFD_RELOC_I370_D12
2254 ENUMDOC
2255 IBM 370/390 relocations
2257 ENUM
2258 BFD_RELOC_CTOR
2259 ENUMDOC
2260 The type of reloc used to build a contructor table - at the moment
2261 probably a 32 bit wide absolute relocation, but the target can choose.
2262 It generally does map to one of the other relocation types.
2264 ENUM
2265 BFD_RELOC_ARM_PCREL_BRANCH
2266 ENUMDOC
2267 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2268 not stored in the instruction.
2269 ENUM
2270 BFD_RELOC_ARM_PCREL_BLX
2271 ENUMDOC
2272 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2273 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2274 field in the instruction.
2275 ENUM
2276 BFD_RELOC_THUMB_PCREL_BLX
2277 ENUMDOC
2278 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2279 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2280 field in the instruction.
2281 ENUM
2282 BFD_RELOC_ARM_IMMEDIATE
2283 ENUMX
2284 BFD_RELOC_ARM_ADRL_IMMEDIATE
2285 ENUMX
2286 BFD_RELOC_ARM_OFFSET_IMM
2287 ENUMX
2288 BFD_RELOC_ARM_SHIFT_IMM
2289 ENUMX
2290 BFD_RELOC_ARM_SWI
2291 ENUMX
2292 BFD_RELOC_ARM_MULTI
2293 ENUMX
2294 BFD_RELOC_ARM_CP_OFF_IMM
2295 ENUMX
2296 BFD_RELOC_ARM_ADR_IMM
2297 ENUMX
2298 BFD_RELOC_ARM_LDR_IMM
2299 ENUMX
2300 BFD_RELOC_ARM_LITERAL
2301 ENUMX
2302 BFD_RELOC_ARM_IN_POOL
2303 ENUMX
2304 BFD_RELOC_ARM_OFFSET_IMM8
2305 ENUMX
2306 BFD_RELOC_ARM_HWLITERAL
2307 ENUMX
2308 BFD_RELOC_ARM_THUMB_ADD
2309 ENUMX
2310 BFD_RELOC_ARM_THUMB_IMM
2311 ENUMX
2312 BFD_RELOC_ARM_THUMB_SHIFT
2313 ENUMX
2314 BFD_RELOC_ARM_THUMB_OFFSET
2315 ENUMX
2316 BFD_RELOC_ARM_GOT12
2317 ENUMX
2318 BFD_RELOC_ARM_GOT32
2319 ENUMX
2320 BFD_RELOC_ARM_JUMP_SLOT
2321 ENUMX
2322 BFD_RELOC_ARM_COPY
2323 ENUMX
2324 BFD_RELOC_ARM_GLOB_DAT
2325 ENUMX
2326 BFD_RELOC_ARM_PLT32
2327 ENUMX
2328 BFD_RELOC_ARM_RELATIVE
2329 ENUMX
2330 BFD_RELOC_ARM_GOTOFF
2331 ENUMX
2332 BFD_RELOC_ARM_GOTPC
2333 ENUMDOC
2334 These relocs are only used within the ARM assembler. They are not
2335 (at present) written to any object files.
2337 ENUM
2338 BFD_RELOC_SH_PCDISP8BY2
2339 ENUMX
2340 BFD_RELOC_SH_PCDISP12BY2
2341 ENUMX
2342 BFD_RELOC_SH_IMM4
2343 ENUMX
2344 BFD_RELOC_SH_IMM4BY2
2345 ENUMX
2346 BFD_RELOC_SH_IMM4BY4
2347 ENUMX
2348 BFD_RELOC_SH_IMM8
2349 ENUMX
2350 BFD_RELOC_SH_IMM8BY2
2351 ENUMX
2352 BFD_RELOC_SH_IMM8BY4
2353 ENUMX
2354 BFD_RELOC_SH_PCRELIMM8BY2
2355 ENUMX
2356 BFD_RELOC_SH_PCRELIMM8BY4
2357 ENUMX
2358 BFD_RELOC_SH_SWITCH16
2359 ENUMX
2360 BFD_RELOC_SH_SWITCH32
2361 ENUMX
2362 BFD_RELOC_SH_USES
2363 ENUMX
2364 BFD_RELOC_SH_COUNT
2365 ENUMX
2366 BFD_RELOC_SH_ALIGN
2367 ENUMX
2368 BFD_RELOC_SH_CODE
2369 ENUMX
2370 BFD_RELOC_SH_DATA
2371 ENUMX
2372 BFD_RELOC_SH_LABEL
2373 ENUMX
2374 BFD_RELOC_SH_LOOP_START
2375 ENUMX
2376 BFD_RELOC_SH_LOOP_END
2377 ENUMX
2378 BFD_RELOC_SH_COPY
2379 ENUMX
2380 BFD_RELOC_SH_GLOB_DAT
2381 ENUMX
2382 BFD_RELOC_SH_JMP_SLOT
2383 ENUMX
2384 BFD_RELOC_SH_RELATIVE
2385 ENUMX
2386 BFD_RELOC_SH_GOTPC
2387 ENUMDOC
2388 Hitachi SH relocs. Not all of these appear in object files.
2390 ENUM
2391 BFD_RELOC_THUMB_PCREL_BRANCH9
2392 ENUMX
2393 BFD_RELOC_THUMB_PCREL_BRANCH12
2394 ENUMX
2395 BFD_RELOC_THUMB_PCREL_BRANCH23
2396 ENUMDOC
2397 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2398 be zero and is not stored in the instruction.
2400 ENUM
2401 BFD_RELOC_ARC_B22_PCREL
2402 ENUMDOC
2403 ARC Cores relocs.
2404 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2405 not stored in the instruction. The high 20 bits are installed in bits 26
2406 through 7 of the instruction.
2407 ENUM
2408 BFD_RELOC_ARC_B26
2409 ENUMDOC
2410 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2411 stored in the instruction. The high 24 bits are installed in bits 23
2412 through 0.
2414 ENUM
2415 BFD_RELOC_D10V_10_PCREL_R
2416 ENUMDOC
2417 Mitsubishi D10V relocs.
2418 This is a 10-bit reloc with the right 2 bits
2419 assumed to be 0.
2420 ENUM
2421 BFD_RELOC_D10V_10_PCREL_L
2422 ENUMDOC
2423 Mitsubishi D10V relocs.
2424 This is a 10-bit reloc with the right 2 bits
2425 assumed to be 0. This is the same as the previous reloc
2426 except it is in the left container, i.e.,
2427 shifted left 15 bits.
2428 ENUM
2429 BFD_RELOC_D10V_18
2430 ENUMDOC
2431 This is an 18-bit reloc with the right 2 bits
2432 assumed to be 0.
2433 ENUM
2434 BFD_RELOC_D10V_18_PCREL
2435 ENUMDOC
2436 This is an 18-bit reloc with the right 2 bits
2437 assumed to be 0.
2439 ENUM
2440 BFD_RELOC_D30V_6
2441 ENUMDOC
2442 Mitsubishi D30V relocs.
2443 This is a 6-bit absolute reloc.
2444 ENUM
2445 BFD_RELOC_D30V_9_PCREL
2446 ENUMDOC
2447 This is a 6-bit pc-relative reloc with
2448 the right 3 bits assumed to be 0.
2449 ENUM
2450 BFD_RELOC_D30V_9_PCREL_R
2451 ENUMDOC
2452 This is a 6-bit pc-relative reloc with
2453 the right 3 bits assumed to be 0. Same
2454 as the previous reloc but on the right side
2455 of the container.
2456 ENUM
2457 BFD_RELOC_D30V_15
2458 ENUMDOC
2459 This is a 12-bit absolute reloc with the
2460 right 3 bitsassumed to be 0.
2461 ENUM
2462 BFD_RELOC_D30V_15_PCREL
2463 ENUMDOC
2464 This is a 12-bit pc-relative reloc with
2465 the right 3 bits assumed to be 0.
2466 ENUM
2467 BFD_RELOC_D30V_15_PCREL_R
2468 ENUMDOC
2469 This is a 12-bit pc-relative reloc with
2470 the right 3 bits assumed to be 0. Same
2471 as the previous reloc but on the right side
2472 of the container.
2473 ENUM
2474 BFD_RELOC_D30V_21
2475 ENUMDOC
2476 This is an 18-bit absolute reloc with
2477 the right 3 bits assumed to be 0.
2478 ENUM
2479 BFD_RELOC_D30V_21_PCREL
2480 ENUMDOC
2481 This is an 18-bit pc-relative reloc with
2482 the right 3 bits assumed to be 0.
2483 ENUM
2484 BFD_RELOC_D30V_21_PCREL_R
2485 ENUMDOC
2486 This is an 18-bit pc-relative reloc with
2487 the right 3 bits assumed to be 0. Same
2488 as the previous reloc but on the right side
2489 of the container.
2490 ENUM
2491 BFD_RELOC_D30V_32
2492 ENUMDOC
2493 This is a 32-bit absolute reloc.
2494 ENUM
2495 BFD_RELOC_D30V_32_PCREL
2496 ENUMDOC
2497 This is a 32-bit pc-relative reloc.
2499 ENUM
2500 BFD_RELOC_M32R_24
2501 ENUMDOC
2502 Mitsubishi M32R relocs.
2503 This is a 24 bit absolute address.
2504 ENUM
2505 BFD_RELOC_M32R_10_PCREL
2506 ENUMDOC
2507 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2508 ENUM
2509 BFD_RELOC_M32R_18_PCREL
2510 ENUMDOC
2511 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2512 ENUM
2513 BFD_RELOC_M32R_26_PCREL
2514 ENUMDOC
2515 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2516 ENUM
2517 BFD_RELOC_M32R_HI16_ULO
2518 ENUMDOC
2519 This is a 16-bit reloc containing the high 16 bits of an address
2520 used when the lower 16 bits are treated as unsigned.
2521 ENUM
2522 BFD_RELOC_M32R_HI16_SLO
2523 ENUMDOC
2524 This is a 16-bit reloc containing the high 16 bits of an address
2525 used when the lower 16 bits are treated as signed.
2526 ENUM
2527 BFD_RELOC_M32R_LO16
2528 ENUMDOC
2529 This is a 16-bit reloc containing the lower 16 bits of an address.
2530 ENUM
2531 BFD_RELOC_M32R_SDA16
2532 ENUMDOC
2533 This is a 16-bit reloc containing the small data area offset for use in
2534 add3, load, and store instructions.
2536 ENUM
2537 BFD_RELOC_V850_9_PCREL
2538 ENUMDOC
2539 This is a 9-bit reloc
2540 ENUM
2541 BFD_RELOC_V850_22_PCREL
2542 ENUMDOC
2543 This is a 22-bit reloc
2545 ENUM
2546 BFD_RELOC_V850_SDA_16_16_OFFSET
2547 ENUMDOC
2548 This is a 16 bit offset from the short data area pointer.
2549 ENUM
2550 BFD_RELOC_V850_SDA_15_16_OFFSET
2551 ENUMDOC
2552 This is a 16 bit offset (of which only 15 bits are used) from the
2553 short data area pointer.
2554 ENUM
2555 BFD_RELOC_V850_ZDA_16_16_OFFSET
2556 ENUMDOC
2557 This is a 16 bit offset from the zero data area pointer.
2558 ENUM
2559 BFD_RELOC_V850_ZDA_15_16_OFFSET
2560 ENUMDOC
2561 This is a 16 bit offset (of which only 15 bits are used) from the
2562 zero data area pointer.
2563 ENUM
2564 BFD_RELOC_V850_TDA_6_8_OFFSET
2565 ENUMDOC
2566 This is an 8 bit offset (of which only 6 bits are used) from the
2567 tiny data area pointer.
2568 ENUM
2569 BFD_RELOC_V850_TDA_7_8_OFFSET
2570 ENUMDOC
2571 This is an 8bit offset (of which only 7 bits are used) from the tiny
2572 data area pointer.
2573 ENUM
2574 BFD_RELOC_V850_TDA_7_7_OFFSET
2575 ENUMDOC
2576 This is a 7 bit offset from the tiny data area pointer.
2577 ENUM
2578 BFD_RELOC_V850_TDA_16_16_OFFSET
2579 ENUMDOC
2580 This is a 16 bit offset from the tiny data area pointer.
2581 COMMENT
2582 ENUM
2583 BFD_RELOC_V850_TDA_4_5_OFFSET
2584 ENUMDOC
2585 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2586 data area pointer.
2587 ENUM
2588 BFD_RELOC_V850_TDA_4_4_OFFSET
2589 ENUMDOC
2590 This is a 4 bit offset from the tiny data area pointer.
2591 ENUM
2592 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2593 ENUMDOC
2594 This is a 16 bit offset from the short data area pointer, with the
2595 bits placed non-contigously in the instruction.
2596 ENUM
2597 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2598 ENUMDOC
2599 This is a 16 bit offset from the zero data area pointer, with the
2600 bits placed non-contigously in the instruction.
2601 ENUM
2602 BFD_RELOC_V850_CALLT_6_7_OFFSET
2603 ENUMDOC
2604 This is a 6 bit offset from the call table base pointer.
2605 ENUM
2606 BFD_RELOC_V850_CALLT_16_16_OFFSET
2607 ENUMDOC
2608 This is a 16 bit offset from the call table base pointer.
2609 COMMENT
2611 ENUM
2612 BFD_RELOC_MN10300_32_PCREL
2613 ENUMDOC
2614 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2615 instruction.
2616 ENUM
2617 BFD_RELOC_MN10300_16_PCREL
2618 ENUMDOC
2619 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2620 instruction.
2622 ENUM
2623 BFD_RELOC_TIC30_LDP
2624 ENUMDOC
2625 This is a 8bit DP reloc for the tms320c30, where the most
2626 significant 8 bits of a 24 bit word are placed into the least
2627 significant 8 bits of the opcode.
2629 ENUM
2630 BFD_RELOC_TIC54X_PARTLS7
2631 ENUMDOC
2632 This is a 7bit reloc for the tms320c54x, where the least
2633 significant 7 bits of a 16 bit word are placed into the least
2634 significant 7 bits of the opcode.
2636 ENUM
2637 BFD_RELOC_TIC54X_PARTMS9
2638 ENUMDOC
2639 This is a 9bit DP reloc for the tms320c54x, where the most
2640 significant 9 bits of a 16 bit word are placed into the least
2641 significant 9 bits of the opcode.
2643 ENUM
2644 BFD_RELOC_TIC54X_23
2645 ENUMDOC
2646 This is an extended address 23-bit reloc for the tms320c54x.
2648 ENUM
2649 BFD_RELOC_TIC54X_16_OF_23
2650 ENUMDOC
2651 This is a 16-bit reloc for the tms320c54x, where the least
2652 significant 16 bits of a 23-bit extended address are placed into
2653 the opcode.
2655 ENUM
2656 BFD_RELOC_TIC54X_MS7_OF_23
2657 ENUMDOC
2658 This is a reloc for the tms320c54x, where the most
2659 significant 7 bits of a 23-bit extended address are placed into
2660 the opcode.
2662 ENUM
2663 BFD_RELOC_FR30_48
2664 ENUMDOC
2665 This is a 48 bit reloc for the FR30 that stores 32 bits.
2666 ENUM
2667 BFD_RELOC_FR30_20
2668 ENUMDOC
2669 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2670 two sections.
2671 ENUM
2672 BFD_RELOC_FR30_6_IN_4
2673 ENUMDOC
2674 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2675 4 bits.
2676 ENUM
2677 BFD_RELOC_FR30_8_IN_8
2678 ENUMDOC
2679 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2680 into 8 bits.
2681 ENUM
2682 BFD_RELOC_FR30_9_IN_8
2683 ENUMDOC
2684 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2685 into 8 bits.
2686 ENUM
2687 BFD_RELOC_FR30_10_IN_8
2688 ENUMDOC
2689 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2690 into 8 bits.
2691 ENUM
2692 BFD_RELOC_FR30_9_PCREL
2693 ENUMDOC
2694 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2695 short offset into 8 bits.
2696 ENUM
2697 BFD_RELOC_FR30_12_PCREL
2698 ENUMDOC
2699 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2700 short offset into 11 bits.
2702 ENUM
2703 BFD_RELOC_MCORE_PCREL_IMM8BY4
2704 ENUMX
2705 BFD_RELOC_MCORE_PCREL_IMM11BY2
2706 ENUMX
2707 BFD_RELOC_MCORE_PCREL_IMM4BY2
2708 ENUMX
2709 BFD_RELOC_MCORE_PCREL_32
2710 ENUMX
2711 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2712 ENUMX
2713 BFD_RELOC_MCORE_RVA
2714 ENUMDOC
2715 Motorola Mcore relocations.
2717 ENUM
2718 BFD_RELOC_MMIX_GETA
2719 ENUMX
2720 BFD_RELOC_MMIX_GETA_1
2721 ENUMX
2722 BFD_RELOC_MMIX_GETA_2
2723 ENUMX
2724 BFD_RELOC_MMIX_GETA_3
2725 ENUMDOC
2726 These are relocations for the GETA instruction.
2727 ENUM
2728 BFD_RELOC_MMIX_CBRANCH
2729 ENUMX
2730 BFD_RELOC_MMIX_CBRANCH_J
2731 ENUMX
2732 BFD_RELOC_MMIX_CBRANCH_1
2733 ENUMX
2734 BFD_RELOC_MMIX_CBRANCH_2
2735 ENUMX
2736 BFD_RELOC_MMIX_CBRANCH_3
2737 ENUMDOC
2738 These are relocations for a conditional branch instruction.
2739 ENUM
2740 BFD_RELOC_MMIX_PUSHJ
2741 ENUMX
2742 BFD_RELOC_MMIX_PUSHJ_1
2743 ENUMX
2744 BFD_RELOC_MMIX_PUSHJ_2
2745 ENUMX
2746 BFD_RELOC_MMIX_PUSHJ_3
2747 ENUMDOC
2748 These are relocations for the PUSHJ instruction.
2749 ENUM
2750 BFD_RELOC_MMIX_JMP
2751 ENUMX
2752 BFD_RELOC_MMIX_JMP_1
2753 ENUMX
2754 BFD_RELOC_MMIX_JMP_2
2755 ENUMX
2756 BFD_RELOC_MMIX_JMP_3
2757 ENUMDOC
2758 These are relocations for the JMP instruction.
2759 ENUM
2760 BFD_RELOC_MMIX_ADDR19
2761 ENUMDOC
2762 This is a relocation for a relative address as in a GETA instruction or
2763 a branch.
2764 ENUM
2765 BFD_RELOC_MMIX_ADDR27
2766 ENUMDOC
2767 This is a relocation for a relative address as in a JMP instruction.
2768 ENUM
2769 BFD_RELOC_MMIX_REG_OR_BYTE
2770 ENUMDOC
2771 This is a relocation for an instruction field that may be a general
2772 register or a value 0..255.
2773 ENUM
2774 BFD_RELOC_MMIX_REG
2775 ENUMDOC
2776 This is a relocation for an instruction field that may be a general
2777 register.
2778 ENUM
2779 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2780 ENUMDOC
2781 This is a relocation for two instruction fields holding a register and
2782 an offset, the equivalent of the relocation.
2783 ENUM
2784 BFD_RELOC_MMIX_LOCAL
2785 ENUMDOC
2786 This relocation is an assertion that the expression is not allocated as
2787 a global register. It does not modify contents.
2789 ENUM
2790 BFD_RELOC_AVR_7_PCREL
2791 ENUMDOC
2792 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2793 short offset into 7 bits.
2794 ENUM
2795 BFD_RELOC_AVR_13_PCREL
2796 ENUMDOC
2797 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2798 short offset into 12 bits.
2799 ENUM
2800 BFD_RELOC_AVR_16_PM
2801 ENUMDOC
2802 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2803 program memory address) into 16 bits.
2804 ENUM
2805 BFD_RELOC_AVR_LO8_LDI
2806 ENUMDOC
2807 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2808 data memory address) into 8 bit immediate value of LDI insn.
2809 ENUM
2810 BFD_RELOC_AVR_HI8_LDI
2811 ENUMDOC
2812 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2813 of data memory address) into 8 bit immediate value of LDI insn.
2814 ENUM
2815 BFD_RELOC_AVR_HH8_LDI
2816 ENUMDOC
2817 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2818 of program memory address) into 8 bit immediate value of LDI insn.
2819 ENUM
2820 BFD_RELOC_AVR_LO8_LDI_NEG
2821 ENUMDOC
2822 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2823 (usually data memory address) into 8 bit immediate value of SUBI insn.
2824 ENUM
2825 BFD_RELOC_AVR_HI8_LDI_NEG
2826 ENUMDOC
2827 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2828 (high 8 bit of data memory address) into 8 bit immediate value of
2829 SUBI insn.
2830 ENUM
2831 BFD_RELOC_AVR_HH8_LDI_NEG
2832 ENUMDOC
2833 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2834 (most high 8 bit of program memory address) into 8 bit immediate value
2835 of LDI or SUBI insn.
2836 ENUM
2837 BFD_RELOC_AVR_LO8_LDI_PM
2838 ENUMDOC
2839 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2840 command address) into 8 bit immediate value of LDI insn.
2841 ENUM
2842 BFD_RELOC_AVR_HI8_LDI_PM
2843 ENUMDOC
2844 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2845 of command address) into 8 bit immediate value of LDI insn.
2846 ENUM
2847 BFD_RELOC_AVR_HH8_LDI_PM
2848 ENUMDOC
2849 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2850 of command address) into 8 bit immediate value of LDI insn.
2851 ENUM
2852 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2853 ENUMDOC
2854 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2855 (usually command address) into 8 bit immediate value of SUBI insn.
2856 ENUM
2857 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2858 ENUMDOC
2859 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2860 (high 8 bit of 16 bit command address) into 8 bit immediate value
2861 of SUBI insn.
2862 ENUM
2863 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2864 ENUMDOC
2865 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2866 (high 6 bit of 22 bit command address) into 8 bit immediate
2867 value of SUBI insn.
2868 ENUM
2869 BFD_RELOC_AVR_CALL
2870 ENUMDOC
2871 This is a 32 bit reloc for the AVR that stores 23 bit value
2872 into 22 bits.
2874 ENUM
2875 BFD_RELOC_390_12
2876 ENUMDOC
2877 Direct 12 bit.
2878 ENUM
2879 BFD_RELOC_390_GOT12
2880 ENUMDOC
2881 12 bit GOT offset.
2882 ENUM
2883 BFD_RELOC_390_PLT32
2884 ENUMDOC
2885 32 bit PC relative PLT address.
2886 ENUM
2887 BFD_RELOC_390_COPY
2888 ENUMDOC
2889 Copy symbol at runtime.
2890 ENUM
2891 BFD_RELOC_390_GLOB_DAT
2892 ENUMDOC
2893 Create GOT entry.
2894 ENUM
2895 BFD_RELOC_390_JMP_SLOT
2896 ENUMDOC
2897 Create PLT entry.
2898 ENUM
2899 BFD_RELOC_390_RELATIVE
2900 ENUMDOC
2901 Adjust by program base.
2902 ENUM
2903 BFD_RELOC_390_GOTPC
2904 ENUMDOC
2905 32 bit PC relative offset to GOT.
2906 ENUM
2907 BFD_RELOC_390_GOT16
2908 ENUMDOC
2909 16 bit GOT offset.
2910 ENUM
2911 BFD_RELOC_390_PC16DBL
2912 ENUMDOC
2913 PC relative 16 bit shifted by 1.
2914 ENUM
2915 BFD_RELOC_390_PLT16DBL
2916 ENUMDOC
2917 16 bit PC rel. PLT shifted by 1.
2918 ENUM
2919 BFD_RELOC_390_PC32DBL
2920 ENUMDOC
2921 PC relative 32 bit shifted by 1.
2922 ENUM
2923 BFD_RELOC_390_PLT32DBL
2924 ENUMDOC
2925 32 bit PC rel. PLT shifted by 1.
2926 ENUM
2927 BFD_RELOC_390_GOTPCDBL
2928 ENUMDOC
2929 32 bit PC rel. GOT shifted by 1.
2930 ENUM
2931 BFD_RELOC_390_GOT64
2932 ENUMDOC
2933 64 bit GOT offset.
2934 ENUM
2935 BFD_RELOC_390_PLT64
2936 ENUMDOC
2937 64 bit PC relative PLT address.
2938 ENUM
2939 BFD_RELOC_390_GOTENT
2940 ENUMDOC
2941 32 bit rel. offset to GOT entry.
2943 ENUM
2944 BFD_RELOC_VTABLE_INHERIT
2945 ENUMX
2946 BFD_RELOC_VTABLE_ENTRY
2947 ENUMDOC
2948 These two relocations are used by the linker to determine which of
2949 the entries in a C++ virtual function table are actually used. When
2950 the --gc-sections option is given, the linker will zero out the entries
2951 that are not used, so that the code for those functions need not be
2952 included in the output.
2954 VTABLE_INHERIT is a zero-space relocation used to describe to the
2955 linker the inheritence tree of a C++ virtual function table. The
2956 relocation's symbol should be the parent class' vtable, and the
2957 relocation should be located at the child vtable.
2959 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2960 virtual function table entry. The reloc's symbol should refer to the
2961 table of the class mentioned in the code. Off of that base, an offset
2962 describes the entry that is being used. For Rela hosts, this offset
2963 is stored in the reloc's addend. For Rel hosts, we are forced to put
2964 this offset in the reloc's section offset.
2966 ENUM
2967 BFD_RELOC_IA64_IMM14
2968 ENUMX
2969 BFD_RELOC_IA64_IMM22
2970 ENUMX
2971 BFD_RELOC_IA64_IMM64
2972 ENUMX
2973 BFD_RELOC_IA64_DIR32MSB
2974 ENUMX
2975 BFD_RELOC_IA64_DIR32LSB
2976 ENUMX
2977 BFD_RELOC_IA64_DIR64MSB
2978 ENUMX
2979 BFD_RELOC_IA64_DIR64LSB
2980 ENUMX
2981 BFD_RELOC_IA64_GPREL22
2982 ENUMX
2983 BFD_RELOC_IA64_GPREL64I
2984 ENUMX
2985 BFD_RELOC_IA64_GPREL32MSB
2986 ENUMX
2987 BFD_RELOC_IA64_GPREL32LSB
2988 ENUMX
2989 BFD_RELOC_IA64_GPREL64MSB
2990 ENUMX
2991 BFD_RELOC_IA64_GPREL64LSB
2992 ENUMX
2993 BFD_RELOC_IA64_LTOFF22
2994 ENUMX
2995 BFD_RELOC_IA64_LTOFF64I
2996 ENUMX
2997 BFD_RELOC_IA64_PLTOFF22
2998 ENUMX
2999 BFD_RELOC_IA64_PLTOFF64I
3000 ENUMX
3001 BFD_RELOC_IA64_PLTOFF64MSB
3002 ENUMX
3003 BFD_RELOC_IA64_PLTOFF64LSB
3004 ENUMX
3005 BFD_RELOC_IA64_FPTR64I
3006 ENUMX
3007 BFD_RELOC_IA64_FPTR32MSB
3008 ENUMX
3009 BFD_RELOC_IA64_FPTR32LSB
3010 ENUMX
3011 BFD_RELOC_IA64_FPTR64MSB
3012 ENUMX
3013 BFD_RELOC_IA64_FPTR64LSB
3014 ENUMX
3015 BFD_RELOC_IA64_PCREL21B
3016 ENUMX
3017 BFD_RELOC_IA64_PCREL21BI
3018 ENUMX
3019 BFD_RELOC_IA64_PCREL21M
3020 ENUMX
3021 BFD_RELOC_IA64_PCREL21F
3022 ENUMX
3023 BFD_RELOC_IA64_PCREL22
3024 ENUMX
3025 BFD_RELOC_IA64_PCREL60B
3026 ENUMX
3027 BFD_RELOC_IA64_PCREL64I
3028 ENUMX
3029 BFD_RELOC_IA64_PCREL32MSB
3030 ENUMX
3031 BFD_RELOC_IA64_PCREL32LSB
3032 ENUMX
3033 BFD_RELOC_IA64_PCREL64MSB
3034 ENUMX
3035 BFD_RELOC_IA64_PCREL64LSB
3036 ENUMX
3037 BFD_RELOC_IA64_LTOFF_FPTR22
3038 ENUMX
3039 BFD_RELOC_IA64_LTOFF_FPTR64I
3040 ENUMX
3041 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3042 ENUMX
3043 BFD_RELOC_IA64_LTOFF_FPTR32LSB
3044 ENUMX
3045 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3046 ENUMX
3047 BFD_RELOC_IA64_LTOFF_FPTR64LSB
3048 ENUMX
3049 BFD_RELOC_IA64_SEGREL32MSB
3050 ENUMX
3051 BFD_RELOC_IA64_SEGREL32LSB
3052 ENUMX
3053 BFD_RELOC_IA64_SEGREL64MSB
3054 ENUMX
3055 BFD_RELOC_IA64_SEGREL64LSB
3056 ENUMX
3057 BFD_RELOC_IA64_SECREL32MSB
3058 ENUMX
3059 BFD_RELOC_IA64_SECREL32LSB
3060 ENUMX
3061 BFD_RELOC_IA64_SECREL64MSB
3062 ENUMX
3063 BFD_RELOC_IA64_SECREL64LSB
3064 ENUMX
3065 BFD_RELOC_IA64_REL32MSB
3066 ENUMX
3067 BFD_RELOC_IA64_REL32LSB
3068 ENUMX
3069 BFD_RELOC_IA64_REL64MSB
3070 ENUMX
3071 BFD_RELOC_IA64_REL64LSB
3072 ENUMX
3073 BFD_RELOC_IA64_LTV32MSB
3074 ENUMX
3075 BFD_RELOC_IA64_LTV32LSB
3076 ENUMX
3077 BFD_RELOC_IA64_LTV64MSB
3078 ENUMX
3079 BFD_RELOC_IA64_LTV64LSB
3080 ENUMX
3081 BFD_RELOC_IA64_IPLTMSB
3082 ENUMX
3083 BFD_RELOC_IA64_IPLTLSB
3084 ENUMX
3085 BFD_RELOC_IA64_COPY
3086 ENUMX
3087 BFD_RELOC_IA64_TPREL22
3088 ENUMX
3089 BFD_RELOC_IA64_TPREL64MSB
3090 ENUMX
3091 BFD_RELOC_IA64_TPREL64LSB
3092 ENUMX
3093 BFD_RELOC_IA64_LTOFF_TP22
3094 ENUMX
3095 BFD_RELOC_IA64_LTOFF22X
3096 ENUMX
3097 BFD_RELOC_IA64_LDXMOV
3098 ENUMDOC
3099 Intel IA64 Relocations.
3101 ENUM
3102 BFD_RELOC_M68HC11_HI8
3103 ENUMDOC
3104 Motorola 68HC11 reloc.
3105 This is the 8 bits high part of an absolute address.
3106 ENUM
3107 BFD_RELOC_M68HC11_LO8
3108 ENUMDOC
3109 Motorola 68HC11 reloc.
3110 This is the 8 bits low part of an absolute address.
3111 ENUM
3112 BFD_RELOC_M68HC11_3B
3113 ENUMDOC
3114 Motorola 68HC11 reloc.
3115 This is the 3 bits of a value.
3117 ENUM
3118 BFD_RELOC_CRIS_BDISP8
3119 ENUMX
3120 BFD_RELOC_CRIS_UNSIGNED_5
3121 ENUMX
3122 BFD_RELOC_CRIS_SIGNED_6
3123 ENUMX
3124 BFD_RELOC_CRIS_UNSIGNED_6
3125 ENUMX
3126 BFD_RELOC_CRIS_UNSIGNED_4
3127 ENUMDOC
3128 These relocs are only used within the CRIS assembler. They are not
3129 (at present) written to any object files.
3130 ENUM
3131 BFD_RELOC_CRIS_COPY
3132 ENUMX
3133 BFD_RELOC_CRIS_GLOB_DAT
3134 ENUMX
3135 BFD_RELOC_CRIS_JUMP_SLOT
3136 ENUMX
3137 BFD_RELOC_CRIS_RELATIVE
3138 ENUMDOC
3139 Relocs used in ELF shared libraries for CRIS.
3140 ENUM
3141 BFD_RELOC_CRIS_32_GOT
3142 ENUMDOC
3143 32-bit offset to symbol-entry within GOT.
3144 ENUM
3145 BFD_RELOC_CRIS_16_GOT
3146 ENUMDOC
3147 16-bit offset to symbol-entry within GOT.
3148 ENUM
3149 BFD_RELOC_CRIS_32_GOTPLT
3150 ENUMDOC
3151 32-bit offset to symbol-entry within GOT, with PLT handling.
3152 ENUM
3153 BFD_RELOC_CRIS_16_GOTPLT
3154 ENUMDOC
3155 16-bit offset to symbol-entry within GOT, with PLT handling.
3156 ENUM
3157 BFD_RELOC_CRIS_32_GOTREL
3158 ENUMDOC
3159 32-bit offset to symbol, relative to GOT.
3160 ENUM
3161 BFD_RELOC_CRIS_32_PLT_GOTREL
3162 ENUMDOC
3163 32-bit offset to symbol with PLT entry, relative to GOT.
3164 ENUM
3165 BFD_RELOC_CRIS_32_PLT_PCREL
3166 ENUMDOC
3167 32-bit offset to symbol with PLT entry, relative to this relocation.
3169 ENUM
3170 BFD_RELOC_860_COPY
3171 ENUMX
3172 BFD_RELOC_860_GLOB_DAT
3173 ENUMX
3174 BFD_RELOC_860_JUMP_SLOT
3175 ENUMX
3176 BFD_RELOC_860_RELATIVE
3177 ENUMX
3178 BFD_RELOC_860_PC26
3179 ENUMX
3180 BFD_RELOC_860_PLT26
3181 ENUMX
3182 BFD_RELOC_860_PC16
3183 ENUMX
3184 BFD_RELOC_860_LOW0
3185 ENUMX
3186 BFD_RELOC_860_SPLIT0
3187 ENUMX
3188 BFD_RELOC_860_LOW1
3189 ENUMX
3190 BFD_RELOC_860_SPLIT1
3191 ENUMX
3192 BFD_RELOC_860_LOW2
3193 ENUMX
3194 BFD_RELOC_860_SPLIT2
3195 ENUMX
3196 BFD_RELOC_860_LOW3
3197 ENUMX
3198 BFD_RELOC_860_LOGOT0
3199 ENUMX
3200 BFD_RELOC_860_SPGOT0
3201 ENUMX
3202 BFD_RELOC_860_LOGOT1
3203 ENUMX
3204 BFD_RELOC_860_SPGOT1
3205 ENUMX
3206 BFD_RELOC_860_LOGOTOFF0
3207 ENUMX
3208 BFD_RELOC_860_SPGOTOFF0
3209 ENUMX
3210 BFD_RELOC_860_LOGOTOFF1
3211 ENUMX
3212 BFD_RELOC_860_SPGOTOFF1
3213 ENUMX
3214 BFD_RELOC_860_LOGOTOFF2
3215 ENUMX
3216 BFD_RELOC_860_LOGOTOFF3
3217 ENUMX
3218 BFD_RELOC_860_LOPC
3219 ENUMX
3220 BFD_RELOC_860_HIGHADJ
3221 ENUMX
3222 BFD_RELOC_860_HAGOT
3223 ENUMX
3224 BFD_RELOC_860_HAGOTOFF
3225 ENUMX
3226 BFD_RELOC_860_HAPC
3227 ENUMX
3228 BFD_RELOC_860_HIGH
3229 ENUMX
3230 BFD_RELOC_860_HIGOT
3231 ENUMX
3232 BFD_RELOC_860_HIGOTOFF
3233 ENUMDOC
3234 Intel i860 Relocations.
3236 ENUM
3237 BFD_RELOC_OPENRISC_ABS_26
3238 ENUMX
3239 BFD_RELOC_OPENRISC_REL_26
3240 ENUMDOC
3241 OpenRISC Relocations.
3243 ENUM
3244 BFD_RELOC_H8_DIR16A8
3245 ENUMX
3246 BFD_RELOC_H8_DIR16R8
3247 ENUMX
3248 BFD_RELOC_H8_DIR24A8
3249 ENUMX
3250 BFD_RELOC_H8_DIR24R8
3251 ENUMX
3252 BFD_RELOC_H8_DIR32A16
3253 ENUMDOC
3254 H8 elf Relocations.
3256 ENUM
3257 BFD_RELOC_XSTORMY16_REL_12
3258 ENUMX
3259 BFD_RELOC_XSTORMY16_24
3260 ENUMX
3261 BFD_RELOC_XSTORMY16_FPTR16
3262 ENUMDOC
3263 Sony Xstormy16 Relocations.
3265 ENDSENUM
3266 BFD_RELOC_UNUSED
3267 CODE_FRAGMENT
3269 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3273 FUNCTION
3274 bfd_reloc_type_lookup
3276 SYNOPSIS
3277 reloc_howto_type *
3278 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3280 DESCRIPTION
3281 Return a pointer to a howto structure which, when
3282 invoked, will perform the relocation @var{code} on data from the
3283 architecture noted.
3287 reloc_howto_type *
3288 bfd_reloc_type_lookup (abfd, code)
3289 bfd *abfd;
3290 bfd_reloc_code_real_type code;
3292 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3295 static reloc_howto_type bfd_howto_32 =
3296 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3299 INTERNAL_FUNCTION
3300 bfd_default_reloc_type_lookup
3302 SYNOPSIS
3303 reloc_howto_type *bfd_default_reloc_type_lookup
3304 (bfd *abfd, bfd_reloc_code_real_type code);
3306 DESCRIPTION
3307 Provides a default relocation lookup routine for any architecture.
3311 reloc_howto_type *
3312 bfd_default_reloc_type_lookup (abfd, code)
3313 bfd *abfd;
3314 bfd_reloc_code_real_type code;
3316 switch (code)
3318 case BFD_RELOC_CTOR:
3319 /* The type of reloc used in a ctor, which will be as wide as the
3320 address - so either a 64, 32, or 16 bitter. */
3321 switch (bfd_get_arch_info (abfd)->bits_per_address)
3323 case 64:
3324 BFD_FAIL ();
3325 case 32:
3326 return &bfd_howto_32;
3327 case 16:
3328 BFD_FAIL ();
3329 default:
3330 BFD_FAIL ();
3332 default:
3333 BFD_FAIL ();
3335 return (reloc_howto_type *) NULL;
3339 FUNCTION
3340 bfd_get_reloc_code_name
3342 SYNOPSIS
3343 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3345 DESCRIPTION
3346 Provides a printable name for the supplied relocation code.
3347 Useful mainly for printing error messages.
3350 const char *
3351 bfd_get_reloc_code_name (code)
3352 bfd_reloc_code_real_type code;
3354 if (code > BFD_RELOC_UNUSED)
3355 return 0;
3356 return bfd_reloc_code_real_names[(int)code];
3360 INTERNAL_FUNCTION
3361 bfd_generic_relax_section
3363 SYNOPSIS
3364 boolean bfd_generic_relax_section
3365 (bfd *abfd,
3366 asection *section,
3367 struct bfd_link_info *,
3368 boolean *);
3370 DESCRIPTION
3371 Provides default handling for relaxing for back ends which
3372 don't do relaxing -- i.e., does nothing.
3375 /*ARGSUSED*/
3376 boolean
3377 bfd_generic_relax_section (abfd, section, link_info, again)
3378 bfd *abfd ATTRIBUTE_UNUSED;
3379 asection *section ATTRIBUTE_UNUSED;
3380 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3381 boolean *again;
3383 *again = false;
3384 return true;
3388 INTERNAL_FUNCTION
3389 bfd_generic_gc_sections
3391 SYNOPSIS
3392 boolean bfd_generic_gc_sections
3393 (bfd *, struct bfd_link_info *);
3395 DESCRIPTION
3396 Provides default handling for relaxing for back ends which
3397 don't do section gc -- i.e., does nothing.
3400 /*ARGSUSED*/
3401 boolean
3402 bfd_generic_gc_sections (abfd, link_info)
3403 bfd *abfd ATTRIBUTE_UNUSED;
3404 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3406 return true;
3410 INTERNAL_FUNCTION
3411 bfd_generic_merge_sections
3413 SYNOPSIS
3414 boolean bfd_generic_merge_sections
3415 (bfd *, struct bfd_link_info *);
3417 DESCRIPTION
3418 Provides default handling for SEC_MERGE section merging for back ends
3419 which don't have SEC_MERGE support -- i.e., does nothing.
3422 /*ARGSUSED*/
3423 boolean
3424 bfd_generic_merge_sections (abfd, link_info)
3425 bfd *abfd ATTRIBUTE_UNUSED;
3426 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3428 return true;
3432 INTERNAL_FUNCTION
3433 bfd_generic_get_relocated_section_contents
3435 SYNOPSIS
3436 bfd_byte *
3437 bfd_generic_get_relocated_section_contents (bfd *abfd,
3438 struct bfd_link_info *link_info,
3439 struct bfd_link_order *link_order,
3440 bfd_byte *data,
3441 boolean relocateable,
3442 asymbol **symbols);
3444 DESCRIPTION
3445 Provides default handling of relocation effort for back ends
3446 which can't be bothered to do it efficiently.
3450 bfd_byte *
3451 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3452 relocateable, symbols)
3453 bfd *abfd;
3454 struct bfd_link_info *link_info;
3455 struct bfd_link_order *link_order;
3456 bfd_byte *data;
3457 boolean relocateable;
3458 asymbol **symbols;
3460 /* Get enough memory to hold the stuff */
3461 bfd *input_bfd = link_order->u.indirect.section->owner;
3462 asection *input_section = link_order->u.indirect.section;
3464 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3465 arelent **reloc_vector = NULL;
3466 long reloc_count;
3468 if (reloc_size < 0)
3469 goto error_return;
3471 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
3472 if (reloc_vector == NULL && reloc_size != 0)
3473 goto error_return;
3475 /* read in the section */
3476 if (!bfd_get_section_contents (input_bfd,
3477 input_section,
3478 (PTR) data,
3479 (bfd_vma) 0,
3480 input_section->_raw_size))
3481 goto error_return;
3483 /* We're not relaxing the section, so just copy the size info */
3484 input_section->_cooked_size = input_section->_raw_size;
3485 input_section->reloc_done = true;
3487 reloc_count = bfd_canonicalize_reloc (input_bfd,
3488 input_section,
3489 reloc_vector,
3490 symbols);
3491 if (reloc_count < 0)
3492 goto error_return;
3494 if (reloc_count > 0)
3496 arelent **parent;
3497 for (parent = reloc_vector; *parent != (arelent *) NULL;
3498 parent++)
3500 char *error_message = (char *) NULL;
3501 bfd_reloc_status_type r =
3502 bfd_perform_relocation (input_bfd,
3503 *parent,
3504 (PTR) data,
3505 input_section,
3506 relocateable ? abfd : (bfd *) NULL,
3507 &error_message);
3509 if (relocateable)
3511 asection *os = input_section->output_section;
3513 /* A partial link, so keep the relocs */
3514 os->orelocation[os->reloc_count] = *parent;
3515 os->reloc_count++;
3518 if (r != bfd_reloc_ok)
3520 switch (r)
3522 case bfd_reloc_undefined:
3523 if (!((*link_info->callbacks->undefined_symbol)
3524 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3525 input_bfd, input_section, (*parent)->address,
3526 true)))
3527 goto error_return;
3528 break;
3529 case bfd_reloc_dangerous:
3530 BFD_ASSERT (error_message != (char *) NULL);
3531 if (!((*link_info->callbacks->reloc_dangerous)
3532 (link_info, error_message, input_bfd, input_section,
3533 (*parent)->address)))
3534 goto error_return;
3535 break;
3536 case bfd_reloc_overflow:
3537 if (!((*link_info->callbacks->reloc_overflow)
3538 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3539 (*parent)->howto->name, (*parent)->addend,
3540 input_bfd, input_section, (*parent)->address)))
3541 goto error_return;
3542 break;
3543 case bfd_reloc_outofrange:
3544 default:
3545 abort ();
3546 break;
3552 if (reloc_vector != NULL)
3553 free (reloc_vector);
3554 return data;
3556 error_return:
3557 if (reloc_vector != NULL)
3558 free (reloc_vector);
3559 return NULL;