Add support for the Z80 processor family
[binutils.git] / bfd / elf.c
blob0e72d4ef93f3bac01468cdae88590fb0161c5cd2
1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23 SECTION
24 ELF backends
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
70 /* Swap out a Verdef structure. */
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
86 /* Swap in a Verdaux structure. */
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
97 /* Swap out a Verdaux structure. */
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
108 /* Swap in a Verneed structure. */
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
122 /* Swap out a Verneed structure. */
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
136 /* Swap in a Vernaux structure. */
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
150 /* Swap out a Vernaux structure. */
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
164 /* Swap in a Versym structure. */
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
174 /* Swap out a Versym structure. */
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
187 unsigned long
188 bfd_elf_hash (const char *namearg)
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
195 while ((ch = *name++) != '\0')
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
206 return h & 0xffffffff;
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
220 return TRUE;
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
265 return (char *) shstrtab;
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
273 Elf_Internal_Shdr *hdr;
275 if (strindex == 0)
276 return "";
278 hdr = elf_elfsections (abfd)[shindex];
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
284 if (strindex >= hdr->sh_size)
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
296 return ((char *) hdr->contents) + strindex;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
326 if (symcount == 0)
327 return intsym_buf;
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
350 intsym_buf = NULL;
351 goto out;
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
370 intsym_buf = NULL;
371 goto out;
375 if (intsym_buf == NULL)
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
395 return intsym_buf;
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
424 return name;
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
468 unsigned int num_group = elf_tdata (abfd)->num_group;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
474 unsigned int i, shnum;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
487 if (num_group == 0)
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
492 else
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
510 unsigned char *src;
511 Elf_Internal_Group *dest;
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
536 unsigned int idx;
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
549 if (idx >= shnum)
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
555 dest->shdr = elf_elfsections (abfd)[idx];
562 if (num_group != (unsigned) -1)
564 unsigned int i;
566 for (i = 0; i < num_group; i++)
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
577 asection *s = NULL;
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
596 else
598 const char *gname;
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
614 i = num_group - 1;
615 break;
620 if (elf_group_name (newsect) == NULL)
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
625 return TRUE;
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
655 else
657 this_hdr = elf_elfsections (abfd)[elfsec];
658 elf_linked_to_section (s) = this_hdr->bfd_section;
663 /* Process section groups. */
664 if (num_group == (unsigned) -1)
665 return result;
667 for (i = 0; i < num_group; i++)
669 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
670 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
671 unsigned int n_elt = shdr->sh_size / 4;
673 while (--n_elt != 0)
674 if ((++idx)->shdr->bfd_section)
675 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
676 else if (idx->shdr->sh_type == SHT_RELA
677 || idx->shdr->sh_type == SHT_REL)
678 /* We won't include relocation sections in section groups in
679 output object files. We adjust the group section size here
680 so that relocatable link will work correctly when
681 relocation sections are in section group in input object
682 files. */
683 shdr->bfd_section->size -= 4;
684 else
686 /* There are some unknown sections in the group. */
687 (*_bfd_error_handler)
688 (_("%B: unknown [%d] section `%s' in group [%s]"),
689 abfd,
690 (unsigned int) idx->shdr->sh_type,
691 bfd_elf_string_from_elf_section (abfd,
692 (elf_elfheader (abfd)
693 ->e_shstrndx),
694 idx->shdr->sh_name),
695 shdr->bfd_section->name);
696 result = FALSE;
699 return result;
702 bfd_boolean
703 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
705 return elf_next_in_group (sec) != NULL;
708 /* Make a BFD section from an ELF section. We store a pointer to the
709 BFD section in the bfd_section field of the header. */
711 bfd_boolean
712 _bfd_elf_make_section_from_shdr (bfd *abfd,
713 Elf_Internal_Shdr *hdr,
714 const char *name,
715 int shindex)
717 asection *newsect;
718 flagword flags;
719 const struct elf_backend_data *bed;
721 if (hdr->bfd_section != NULL)
723 BFD_ASSERT (strcmp (name,
724 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
725 return TRUE;
728 newsect = bfd_make_section_anyway (abfd, name);
729 if (newsect == NULL)
730 return FALSE;
732 hdr->bfd_section = newsect;
733 elf_section_data (newsect)->this_hdr = *hdr;
734 elf_section_data (newsect)->this_idx = shindex;
736 /* Always use the real type/flags. */
737 elf_section_type (newsect) = hdr->sh_type;
738 elf_section_flags (newsect) = hdr->sh_flags;
740 newsect->filepos = hdr->sh_offset;
742 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
743 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
744 || ! bfd_set_section_alignment (abfd, newsect,
745 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
746 return FALSE;
748 flags = SEC_NO_FLAGS;
749 if (hdr->sh_type != SHT_NOBITS)
750 flags |= SEC_HAS_CONTENTS;
751 if (hdr->sh_type == SHT_GROUP)
752 flags |= SEC_GROUP | SEC_EXCLUDE;
753 if ((hdr->sh_flags & SHF_ALLOC) != 0)
755 flags |= SEC_ALLOC;
756 if (hdr->sh_type != SHT_NOBITS)
757 flags |= SEC_LOAD;
759 if ((hdr->sh_flags & SHF_WRITE) == 0)
760 flags |= SEC_READONLY;
761 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
762 flags |= SEC_CODE;
763 else if ((flags & SEC_LOAD) != 0)
764 flags |= SEC_DATA;
765 if ((hdr->sh_flags & SHF_MERGE) != 0)
767 flags |= SEC_MERGE;
768 newsect->entsize = hdr->sh_entsize;
769 if ((hdr->sh_flags & SHF_STRINGS) != 0)
770 flags |= SEC_STRINGS;
772 if (hdr->sh_flags & SHF_GROUP)
773 if (!setup_group (abfd, hdr, newsect))
774 return FALSE;
775 if ((hdr->sh_flags & SHF_TLS) != 0)
776 flags |= SEC_THREAD_LOCAL;
778 if ((flags & SEC_ALLOC) == 0)
780 /* The debugging sections appear to be recognized only by name,
781 not any sort of flag. Their SEC_ALLOC bits are cleared. */
782 static const struct
784 const char *name;
785 int len;
786 } debug_sections [] =
788 { "debug", 5 }, /* 'd' */
789 { NULL, 0 }, /* 'e' */
790 { NULL, 0 }, /* 'f' */
791 { "gnu.linkonce.wi.", 17 }, /* 'g' */
792 { NULL, 0 }, /* 'h' */
793 { NULL, 0 }, /* 'i' */
794 { NULL, 0 }, /* 'j' */
795 { NULL, 0 }, /* 'k' */
796 { "line", 4 }, /* 'l' */
797 { NULL, 0 }, /* 'm' */
798 { NULL, 0 }, /* 'n' */
799 { NULL, 0 }, /* 'o' */
800 { NULL, 0 }, /* 'p' */
801 { NULL, 0 }, /* 'q' */
802 { NULL, 0 }, /* 'r' */
803 { "stab", 4 } /* 's' */
806 if (name [0] == '.')
808 int i = name [1] - 'd';
809 if (i >= 0
810 && i < (int) ARRAY_SIZE (debug_sections)
811 && debug_sections [i].name != NULL
812 && strncmp (&name [1], debug_sections [i].name,
813 debug_sections [i].len) == 0)
814 flags |= SEC_DEBUGGING;
818 /* As a GNU extension, if the name begins with .gnu.linkonce, we
819 only link a single copy of the section. This is used to support
820 g++. g++ will emit each template expansion in its own section.
821 The symbols will be defined as weak, so that multiple definitions
822 are permitted. The GNU linker extension is to actually discard
823 all but one of the sections. */
824 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
825 && elf_next_in_group (newsect) == NULL)
826 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
828 bed = get_elf_backend_data (abfd);
829 if (bed->elf_backend_section_flags)
830 if (! bed->elf_backend_section_flags (&flags, hdr))
831 return FALSE;
833 if (! bfd_set_section_flags (abfd, newsect, flags))
834 return FALSE;
836 if ((flags & SEC_ALLOC) != 0)
838 Elf_Internal_Phdr *phdr;
839 unsigned int i;
841 /* Look through the phdrs to see if we need to adjust the lma.
842 If all the p_paddr fields are zero, we ignore them, since
843 some ELF linkers produce such output. */
844 phdr = elf_tdata (abfd)->phdr;
845 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
847 if (phdr->p_paddr != 0)
848 break;
850 if (i < elf_elfheader (abfd)->e_phnum)
852 phdr = elf_tdata (abfd)->phdr;
853 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
855 /* This section is part of this segment if its file
856 offset plus size lies within the segment's memory
857 span and, if the section is loaded, the extent of the
858 loaded data lies within the extent of the segment.
860 Note - we used to check the p_paddr field as well, and
861 refuse to set the LMA if it was 0. This is wrong
862 though, as a perfectly valid initialised segment can
863 have a p_paddr of zero. Some architectures, eg ARM,
864 place special significance on the address 0 and
865 executables need to be able to have a segment which
866 covers this address. */
867 if (phdr->p_type == PT_LOAD
868 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
869 && (hdr->sh_offset + hdr->sh_size
870 <= phdr->p_offset + phdr->p_memsz)
871 && ((flags & SEC_LOAD) == 0
872 || (hdr->sh_offset + hdr->sh_size
873 <= phdr->p_offset + phdr->p_filesz)))
875 if ((flags & SEC_LOAD) == 0)
876 newsect->lma = (phdr->p_paddr
877 + hdr->sh_addr - phdr->p_vaddr);
878 else
879 /* We used to use the same adjustment for SEC_LOAD
880 sections, but that doesn't work if the segment
881 is packed with code from multiple VMAs.
882 Instead we calculate the section LMA based on
883 the segment LMA. It is assumed that the
884 segment will contain sections with contiguous
885 LMAs, even if the VMAs are not. */
886 newsect->lma = (phdr->p_paddr
887 + hdr->sh_offset - phdr->p_offset);
889 /* With contiguous segments, we can't tell from file
890 offsets whether a section with zero size should
891 be placed at the end of one segment or the
892 beginning of the next. Decide based on vaddr. */
893 if (hdr->sh_addr >= phdr->p_vaddr
894 && (hdr->sh_addr + hdr->sh_size
895 <= phdr->p_vaddr + phdr->p_memsz))
896 break;
902 return TRUE;
906 INTERNAL_FUNCTION
907 bfd_elf_find_section
909 SYNOPSIS
910 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
912 DESCRIPTION
913 Helper functions for GDB to locate the string tables.
914 Since BFD hides string tables from callers, GDB needs to use an
915 internal hook to find them. Sun's .stabstr, in particular,
916 isn't even pointed to by the .stab section, so ordinary
917 mechanisms wouldn't work to find it, even if we had some.
920 struct elf_internal_shdr *
921 bfd_elf_find_section (bfd *abfd, char *name)
923 Elf_Internal_Shdr **i_shdrp;
924 char *shstrtab;
925 unsigned int max;
926 unsigned int i;
928 i_shdrp = elf_elfsections (abfd);
929 if (i_shdrp != NULL)
931 shstrtab = bfd_elf_get_str_section (abfd,
932 elf_elfheader (abfd)->e_shstrndx);
933 if (shstrtab != NULL)
935 max = elf_numsections (abfd);
936 for (i = 1; i < max; i++)
937 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
938 return i_shdrp[i];
941 return 0;
944 const char *const bfd_elf_section_type_names[] = {
945 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
946 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
947 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
950 /* ELF relocs are against symbols. If we are producing relocatable
951 output, and the reloc is against an external symbol, and nothing
952 has given us any additional addend, the resulting reloc will also
953 be against the same symbol. In such a case, we don't want to
954 change anything about the way the reloc is handled, since it will
955 all be done at final link time. Rather than put special case code
956 into bfd_perform_relocation, all the reloc types use this howto
957 function. It just short circuits the reloc if producing
958 relocatable output against an external symbol. */
960 bfd_reloc_status_type
961 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
962 arelent *reloc_entry,
963 asymbol *symbol,
964 void *data ATTRIBUTE_UNUSED,
965 asection *input_section,
966 bfd *output_bfd,
967 char **error_message ATTRIBUTE_UNUSED)
969 if (output_bfd != NULL
970 && (symbol->flags & BSF_SECTION_SYM) == 0
971 && (! reloc_entry->howto->partial_inplace
972 || reloc_entry->addend == 0))
974 reloc_entry->address += input_section->output_offset;
975 return bfd_reloc_ok;
978 return bfd_reloc_continue;
981 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
983 static void
984 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
985 asection *sec)
987 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
988 sec->sec_info_type = ELF_INFO_TYPE_NONE;
991 /* Finish SHF_MERGE section merging. */
993 bfd_boolean
994 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
996 bfd *ibfd;
997 asection *sec;
999 if (!is_elf_hash_table (info->hash))
1000 return FALSE;
1002 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1003 if ((ibfd->flags & DYNAMIC) == 0)
1004 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1005 if ((sec->flags & SEC_MERGE) != 0
1006 && !bfd_is_abs_section (sec->output_section))
1008 struct bfd_elf_section_data *secdata;
1010 secdata = elf_section_data (sec);
1011 if (! _bfd_add_merge_section (abfd,
1012 &elf_hash_table (info)->merge_info,
1013 sec, &secdata->sec_info))
1014 return FALSE;
1015 else if (secdata->sec_info)
1016 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1019 if (elf_hash_table (info)->merge_info != NULL)
1020 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1021 merge_sections_remove_hook);
1022 return TRUE;
1025 void
1026 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1028 sec->output_section = bfd_abs_section_ptr;
1029 sec->output_offset = sec->vma;
1030 if (!is_elf_hash_table (info->hash))
1031 return;
1033 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1036 /* Copy the program header and other data from one object module to
1037 another. */
1039 bfd_boolean
1040 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1042 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1043 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1044 return TRUE;
1046 BFD_ASSERT (!elf_flags_init (obfd)
1047 || (elf_elfheader (obfd)->e_flags
1048 == elf_elfheader (ibfd)->e_flags));
1050 elf_gp (obfd) = elf_gp (ibfd);
1051 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1052 elf_flags_init (obfd) = TRUE;
1053 return TRUE;
1056 /* Print out the program headers. */
1058 bfd_boolean
1059 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1061 FILE *f = farg;
1062 Elf_Internal_Phdr *p;
1063 asection *s;
1064 bfd_byte *dynbuf = NULL;
1066 p = elf_tdata (abfd)->phdr;
1067 if (p != NULL)
1069 unsigned int i, c;
1071 fprintf (f, _("\nProgram Header:\n"));
1072 c = elf_elfheader (abfd)->e_phnum;
1073 for (i = 0; i < c; i++, p++)
1075 const char *pt;
1076 char buf[20];
1078 switch (p->p_type)
1080 case PT_NULL: pt = "NULL"; break;
1081 case PT_LOAD: pt = "LOAD"; break;
1082 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1083 case PT_INTERP: pt = "INTERP"; break;
1084 case PT_NOTE: pt = "NOTE"; break;
1085 case PT_SHLIB: pt = "SHLIB"; break;
1086 case PT_PHDR: pt = "PHDR"; break;
1087 case PT_TLS: pt = "TLS"; break;
1088 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1089 case PT_GNU_STACK: pt = "STACK"; break;
1090 case PT_GNU_RELRO: pt = "RELRO"; break;
1091 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1093 fprintf (f, "%8s off 0x", pt);
1094 bfd_fprintf_vma (abfd, f, p->p_offset);
1095 fprintf (f, " vaddr 0x");
1096 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1097 fprintf (f, " paddr 0x");
1098 bfd_fprintf_vma (abfd, f, p->p_paddr);
1099 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1100 fprintf (f, " filesz 0x");
1101 bfd_fprintf_vma (abfd, f, p->p_filesz);
1102 fprintf (f, " memsz 0x");
1103 bfd_fprintf_vma (abfd, f, p->p_memsz);
1104 fprintf (f, " flags %c%c%c",
1105 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1106 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1107 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1108 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1109 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1110 fprintf (f, "\n");
1114 s = bfd_get_section_by_name (abfd, ".dynamic");
1115 if (s != NULL)
1117 int elfsec;
1118 unsigned long shlink;
1119 bfd_byte *extdyn, *extdynend;
1120 size_t extdynsize;
1121 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1123 fprintf (f, _("\nDynamic Section:\n"));
1125 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1126 goto error_return;
1128 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1129 if (elfsec == -1)
1130 goto error_return;
1131 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1133 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1134 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1136 extdyn = dynbuf;
1137 extdynend = extdyn + s->size;
1138 for (; extdyn < extdynend; extdyn += extdynsize)
1140 Elf_Internal_Dyn dyn;
1141 const char *name;
1142 char ab[20];
1143 bfd_boolean stringp;
1145 (*swap_dyn_in) (abfd, extdyn, &dyn);
1147 if (dyn.d_tag == DT_NULL)
1148 break;
1150 stringp = FALSE;
1151 switch (dyn.d_tag)
1153 default:
1154 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1155 name = ab;
1156 break;
1158 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1159 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1160 case DT_PLTGOT: name = "PLTGOT"; break;
1161 case DT_HASH: name = "HASH"; break;
1162 case DT_STRTAB: name = "STRTAB"; break;
1163 case DT_SYMTAB: name = "SYMTAB"; break;
1164 case DT_RELA: name = "RELA"; break;
1165 case DT_RELASZ: name = "RELASZ"; break;
1166 case DT_RELAENT: name = "RELAENT"; break;
1167 case DT_STRSZ: name = "STRSZ"; break;
1168 case DT_SYMENT: name = "SYMENT"; break;
1169 case DT_INIT: name = "INIT"; break;
1170 case DT_FINI: name = "FINI"; break;
1171 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1172 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1173 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1174 case DT_REL: name = "REL"; break;
1175 case DT_RELSZ: name = "RELSZ"; break;
1176 case DT_RELENT: name = "RELENT"; break;
1177 case DT_PLTREL: name = "PLTREL"; break;
1178 case DT_DEBUG: name = "DEBUG"; break;
1179 case DT_TEXTREL: name = "TEXTREL"; break;
1180 case DT_JMPREL: name = "JMPREL"; break;
1181 case DT_BIND_NOW: name = "BIND_NOW"; break;
1182 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1183 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1184 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1185 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1186 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1187 case DT_FLAGS: name = "FLAGS"; break;
1188 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1189 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1190 case DT_CHECKSUM: name = "CHECKSUM"; break;
1191 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1192 case DT_MOVEENT: name = "MOVEENT"; break;
1193 case DT_MOVESZ: name = "MOVESZ"; break;
1194 case DT_FEATURE: name = "FEATURE"; break;
1195 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1196 case DT_SYMINSZ: name = "SYMINSZ"; break;
1197 case DT_SYMINENT: name = "SYMINENT"; break;
1198 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1199 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1200 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1201 case DT_PLTPAD: name = "PLTPAD"; break;
1202 case DT_MOVETAB: name = "MOVETAB"; break;
1203 case DT_SYMINFO: name = "SYMINFO"; break;
1204 case DT_RELACOUNT: name = "RELACOUNT"; break;
1205 case DT_RELCOUNT: name = "RELCOUNT"; break;
1206 case DT_FLAGS_1: name = "FLAGS_1"; break;
1207 case DT_VERSYM: name = "VERSYM"; break;
1208 case DT_VERDEF: name = "VERDEF"; break;
1209 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1210 case DT_VERNEED: name = "VERNEED"; break;
1211 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1212 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1213 case DT_USED: name = "USED"; break;
1214 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1217 fprintf (f, " %-11s ", name);
1218 if (! stringp)
1219 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1220 else
1222 const char *string;
1223 unsigned int tagv = dyn.d_un.d_val;
1225 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1226 if (string == NULL)
1227 goto error_return;
1228 fprintf (f, "%s", string);
1230 fprintf (f, "\n");
1233 free (dynbuf);
1234 dynbuf = NULL;
1237 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1238 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1240 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1241 return FALSE;
1244 if (elf_dynverdef (abfd) != 0)
1246 Elf_Internal_Verdef *t;
1248 fprintf (f, _("\nVersion definitions:\n"));
1249 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1251 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1252 t->vd_flags, t->vd_hash,
1253 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1254 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1256 Elf_Internal_Verdaux *a;
1258 fprintf (f, "\t");
1259 for (a = t->vd_auxptr->vda_nextptr;
1260 a != NULL;
1261 a = a->vda_nextptr)
1262 fprintf (f, "%s ",
1263 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1264 fprintf (f, "\n");
1269 if (elf_dynverref (abfd) != 0)
1271 Elf_Internal_Verneed *t;
1273 fprintf (f, _("\nVersion References:\n"));
1274 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1276 Elf_Internal_Vernaux *a;
1278 fprintf (f, _(" required from %s:\n"),
1279 t->vn_filename ? t->vn_filename : "<corrupt>");
1280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1281 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1282 a->vna_flags, a->vna_other,
1283 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1287 return TRUE;
1289 error_return:
1290 if (dynbuf != NULL)
1291 free (dynbuf);
1292 return FALSE;
1295 /* Display ELF-specific fields of a symbol. */
1297 void
1298 bfd_elf_print_symbol (bfd *abfd,
1299 void *filep,
1300 asymbol *symbol,
1301 bfd_print_symbol_type how)
1303 FILE *file = filep;
1304 switch (how)
1306 case bfd_print_symbol_name:
1307 fprintf (file, "%s", symbol->name);
1308 break;
1309 case bfd_print_symbol_more:
1310 fprintf (file, "elf ");
1311 bfd_fprintf_vma (abfd, file, symbol->value);
1312 fprintf (file, " %lx", (long) symbol->flags);
1313 break;
1314 case bfd_print_symbol_all:
1316 const char *section_name;
1317 const char *name = NULL;
1318 const struct elf_backend_data *bed;
1319 unsigned char st_other;
1320 bfd_vma val;
1322 section_name = symbol->section ? symbol->section->name : "(*none*)";
1324 bed = get_elf_backend_data (abfd);
1325 if (bed->elf_backend_print_symbol_all)
1326 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1328 if (name == NULL)
1330 name = symbol->name;
1331 bfd_print_symbol_vandf (abfd, file, symbol);
1334 fprintf (file, " %s\t", section_name);
1335 /* Print the "other" value for a symbol. For common symbols,
1336 we've already printed the size; now print the alignment.
1337 For other symbols, we have no specified alignment, and
1338 we've printed the address; now print the size. */
1339 if (bfd_is_com_section (symbol->section))
1340 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1341 else
1342 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1343 bfd_fprintf_vma (abfd, file, val);
1345 /* If we have version information, print it. */
1346 if (elf_tdata (abfd)->dynversym_section != 0
1347 && (elf_tdata (abfd)->dynverdef_section != 0
1348 || elf_tdata (abfd)->dynverref_section != 0))
1350 unsigned int vernum;
1351 const char *version_string;
1353 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1355 if (vernum == 0)
1356 version_string = "";
1357 else if (vernum == 1)
1358 version_string = "Base";
1359 else if (vernum <= elf_tdata (abfd)->cverdefs)
1360 version_string =
1361 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1362 else
1364 Elf_Internal_Verneed *t;
1366 version_string = "";
1367 for (t = elf_tdata (abfd)->verref;
1368 t != NULL;
1369 t = t->vn_nextref)
1371 Elf_Internal_Vernaux *a;
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1375 if (a->vna_other == vernum)
1377 version_string = a->vna_nodename;
1378 break;
1384 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1385 fprintf (file, " %-11s", version_string);
1386 else
1388 int i;
1390 fprintf (file, " (%s)", version_string);
1391 for (i = 10 - strlen (version_string); i > 0; --i)
1392 putc (' ', file);
1396 /* If the st_other field is not zero, print it. */
1397 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1399 switch (st_other)
1401 case 0: break;
1402 case STV_INTERNAL: fprintf (file, " .internal"); break;
1403 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1404 case STV_PROTECTED: fprintf (file, " .protected"); break;
1405 default:
1406 /* Some other non-defined flags are also present, so print
1407 everything hex. */
1408 fprintf (file, " 0x%02x", (unsigned int) st_other);
1411 fprintf (file, " %s", name);
1413 break;
1417 /* Create an entry in an ELF linker hash table. */
1419 struct bfd_hash_entry *
1420 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1421 struct bfd_hash_table *table,
1422 const char *string)
1424 /* Allocate the structure if it has not already been allocated by a
1425 subclass. */
1426 if (entry == NULL)
1428 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1429 if (entry == NULL)
1430 return entry;
1433 /* Call the allocation method of the superclass. */
1434 entry = _bfd_link_hash_newfunc (entry, table, string);
1435 if (entry != NULL)
1437 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1438 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1440 /* Set local fields. */
1441 ret->indx = -1;
1442 ret->dynindx = -1;
1443 ret->got = htab->init_got_refcount;
1444 ret->plt = htab->init_plt_refcount;
1445 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1446 - offsetof (struct elf_link_hash_entry, size)));
1447 /* Assume that we have been called by a non-ELF symbol reader.
1448 This flag is then reset by the code which reads an ELF input
1449 file. This ensures that a symbol created by a non-ELF symbol
1450 reader will have the flag set correctly. */
1451 ret->non_elf = 1;
1454 return entry;
1457 /* Copy data from an indirect symbol to its direct symbol, hiding the
1458 old indirect symbol. Also used for copying flags to a weakdef. */
1460 void
1461 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1462 struct elf_link_hash_entry *dir,
1463 struct elf_link_hash_entry *ind)
1465 struct elf_link_hash_table *htab;
1467 /* Copy down any references that we may have already seen to the
1468 symbol which just became indirect. */
1470 dir->ref_dynamic |= ind->ref_dynamic;
1471 dir->ref_regular |= ind->ref_regular;
1472 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1473 dir->non_got_ref |= ind->non_got_ref;
1474 dir->needs_plt |= ind->needs_plt;
1475 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1477 if (ind->root.type != bfd_link_hash_indirect)
1478 return;
1480 /* Copy over the global and procedure linkage table refcount entries.
1481 These may have been already set up by a check_relocs routine. */
1482 htab = elf_hash_table (info);
1483 if (ind->got.refcount > htab->init_got_refcount.refcount)
1485 if (dir->got.refcount < 0)
1486 dir->got.refcount = 0;
1487 dir->got.refcount += ind->got.refcount;
1488 ind->got.refcount = htab->init_got_refcount.refcount;
1491 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1493 if (dir->plt.refcount < 0)
1494 dir->plt.refcount = 0;
1495 dir->plt.refcount += ind->plt.refcount;
1496 ind->plt.refcount = htab->init_plt_refcount.refcount;
1499 if (ind->dynindx != -1)
1501 if (dir->dynindx != -1)
1502 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1503 dir->dynindx = ind->dynindx;
1504 dir->dynstr_index = ind->dynstr_index;
1505 ind->dynindx = -1;
1506 ind->dynstr_index = 0;
1510 void
1511 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1512 struct elf_link_hash_entry *h,
1513 bfd_boolean force_local)
1515 h->plt = elf_hash_table (info)->init_plt_offset;
1516 h->needs_plt = 0;
1517 if (force_local)
1519 h->forced_local = 1;
1520 if (h->dynindx != -1)
1522 h->dynindx = -1;
1523 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1524 h->dynstr_index);
1529 /* Initialize an ELF linker hash table. */
1531 bfd_boolean
1532 _bfd_elf_link_hash_table_init
1533 (struct elf_link_hash_table *table,
1534 bfd *abfd,
1535 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1536 struct bfd_hash_table *,
1537 const char *))
1539 bfd_boolean ret;
1540 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1542 table->dynamic_sections_created = FALSE;
1543 table->dynobj = NULL;
1544 table->init_got_refcount.refcount = can_refcount - 1;
1545 table->init_plt_refcount.refcount = can_refcount - 1;
1546 table->init_got_offset.offset = -(bfd_vma) 1;
1547 table->init_plt_offset.offset = -(bfd_vma) 1;
1548 /* The first dynamic symbol is a dummy. */
1549 table->dynsymcount = 1;
1550 table->dynstr = NULL;
1551 table->bucketcount = 0;
1552 table->needed = NULL;
1553 table->hgot = NULL;
1554 table->merge_info = NULL;
1555 memset (&table->stab_info, 0, sizeof (table->stab_info));
1556 memset (&table->eh_info, 0, sizeof (table->eh_info));
1557 table->dynlocal = NULL;
1558 table->runpath = NULL;
1559 table->tls_sec = NULL;
1560 table->tls_size = 0;
1561 table->loaded = NULL;
1562 table->is_relocatable_executable = FALSE;
1564 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1565 table->root.type = bfd_link_elf_hash_table;
1567 return ret;
1570 /* Create an ELF linker hash table. */
1572 struct bfd_link_hash_table *
1573 _bfd_elf_link_hash_table_create (bfd *abfd)
1575 struct elf_link_hash_table *ret;
1576 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1578 ret = bfd_malloc (amt);
1579 if (ret == NULL)
1580 return NULL;
1582 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1584 free (ret);
1585 return NULL;
1588 return &ret->root;
1591 /* This is a hook for the ELF emulation code in the generic linker to
1592 tell the backend linker what file name to use for the DT_NEEDED
1593 entry for a dynamic object. */
1595 void
1596 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1598 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1599 && bfd_get_format (abfd) == bfd_object)
1600 elf_dt_name (abfd) = name;
1604 bfd_elf_get_dyn_lib_class (bfd *abfd)
1606 int lib_class;
1607 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1608 && bfd_get_format (abfd) == bfd_object)
1609 lib_class = elf_dyn_lib_class (abfd);
1610 else
1611 lib_class = 0;
1612 return lib_class;
1615 void
1616 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1618 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1619 && bfd_get_format (abfd) == bfd_object)
1620 elf_dyn_lib_class (abfd) = lib_class;
1623 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1624 the linker ELF emulation code. */
1626 struct bfd_link_needed_list *
1627 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1628 struct bfd_link_info *info)
1630 if (! is_elf_hash_table (info->hash))
1631 return NULL;
1632 return elf_hash_table (info)->needed;
1635 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1636 hook for the linker ELF emulation code. */
1638 struct bfd_link_needed_list *
1639 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1640 struct bfd_link_info *info)
1642 if (! is_elf_hash_table (info->hash))
1643 return NULL;
1644 return elf_hash_table (info)->runpath;
1647 /* Get the name actually used for a dynamic object for a link. This
1648 is the SONAME entry if there is one. Otherwise, it is the string
1649 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1651 const char *
1652 bfd_elf_get_dt_soname (bfd *abfd)
1654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1655 && bfd_get_format (abfd) == bfd_object)
1656 return elf_dt_name (abfd);
1657 return NULL;
1660 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1661 the ELF linker emulation code. */
1663 bfd_boolean
1664 bfd_elf_get_bfd_needed_list (bfd *abfd,
1665 struct bfd_link_needed_list **pneeded)
1667 asection *s;
1668 bfd_byte *dynbuf = NULL;
1669 int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1675 *pneeded = NULL;
1677 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1678 || bfd_get_format (abfd) != bfd_object)
1679 return TRUE;
1681 s = bfd_get_section_by_name (abfd, ".dynamic");
1682 if (s == NULL || s->size == 0)
1683 return TRUE;
1685 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1686 goto error_return;
1688 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1689 if (elfsec == -1)
1690 goto error_return;
1692 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1694 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1695 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1697 extdyn = dynbuf;
1698 extdynend = extdyn + s->size;
1699 for (; extdyn < extdynend; extdyn += extdynsize)
1701 Elf_Internal_Dyn dyn;
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1708 if (dyn.d_tag == DT_NEEDED)
1710 const char *string;
1711 struct bfd_link_needed_list *l;
1712 unsigned int tagv = dyn.d_un.d_val;
1713 bfd_size_type amt;
1715 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1716 if (string == NULL)
1717 goto error_return;
1719 amt = sizeof *l;
1720 l = bfd_alloc (abfd, amt);
1721 if (l == NULL)
1722 goto error_return;
1724 l->by = abfd;
1725 l->name = string;
1726 l->next = *pneeded;
1727 *pneeded = l;
1731 free (dynbuf);
1733 return TRUE;
1735 error_return:
1736 if (dynbuf != NULL)
1737 free (dynbuf);
1738 return FALSE;
1741 /* Allocate an ELF string table--force the first byte to be zero. */
1743 struct bfd_strtab_hash *
1744 _bfd_elf_stringtab_init (void)
1746 struct bfd_strtab_hash *ret;
1748 ret = _bfd_stringtab_init ();
1749 if (ret != NULL)
1751 bfd_size_type loc;
1753 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1754 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1755 if (loc == (bfd_size_type) -1)
1757 _bfd_stringtab_free (ret);
1758 ret = NULL;
1761 return ret;
1764 /* ELF .o/exec file reading */
1766 /* Create a new bfd section from an ELF section header. */
1768 bfd_boolean
1769 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1771 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1772 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1774 const char *name;
1776 name = bfd_elf_string_from_elf_section (abfd,
1777 elf_elfheader (abfd)->e_shstrndx,
1778 hdr->sh_name);
1779 if (name == NULL)
1780 return FALSE;
1782 switch (hdr->sh_type)
1784 case SHT_NULL:
1785 /* Inactive section. Throw it away. */
1786 return TRUE;
1788 case SHT_PROGBITS: /* Normal section with contents. */
1789 case SHT_NOBITS: /* .bss section. */
1790 case SHT_HASH: /* .hash section. */
1791 case SHT_NOTE: /* .note section. */
1792 case SHT_INIT_ARRAY: /* .init_array section. */
1793 case SHT_FINI_ARRAY: /* .fini_array section. */
1794 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1795 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1798 case SHT_DYNAMIC: /* Dynamic linking information. */
1799 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1800 return FALSE;
1801 if (hdr->sh_link > elf_numsections (abfd)
1802 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1803 return FALSE;
1804 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1806 Elf_Internal_Shdr *dynsymhdr;
1808 /* The shared libraries distributed with hpux11 have a bogus
1809 sh_link field for the ".dynamic" section. Find the
1810 string table for the ".dynsym" section instead. */
1811 if (elf_dynsymtab (abfd) != 0)
1813 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1814 hdr->sh_link = dynsymhdr->sh_link;
1816 else
1818 unsigned int i, num_sec;
1820 num_sec = elf_numsections (abfd);
1821 for (i = 1; i < num_sec; i++)
1823 dynsymhdr = elf_elfsections (abfd)[i];
1824 if (dynsymhdr->sh_type == SHT_DYNSYM)
1826 hdr->sh_link = dynsymhdr->sh_link;
1827 break;
1832 break;
1834 case SHT_SYMTAB: /* A symbol table */
1835 if (elf_onesymtab (abfd) == shindex)
1836 return TRUE;
1838 if (hdr->sh_entsize != bed->s->sizeof_sym)
1839 return FALSE;
1840 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1841 elf_onesymtab (abfd) = shindex;
1842 elf_tdata (abfd)->symtab_hdr = *hdr;
1843 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1844 abfd->flags |= HAS_SYMS;
1846 /* Sometimes a shared object will map in the symbol table. If
1847 SHF_ALLOC is set, and this is a shared object, then we also
1848 treat this section as a BFD section. We can not base the
1849 decision purely on SHF_ALLOC, because that flag is sometimes
1850 set in a relocatable object file, which would confuse the
1851 linker. */
1852 if ((hdr->sh_flags & SHF_ALLOC) != 0
1853 && (abfd->flags & DYNAMIC) != 0
1854 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1855 shindex))
1856 return FALSE;
1858 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1859 can't read symbols without that section loaded as well. It
1860 is most likely specified by the next section header. */
1861 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1863 unsigned int i, num_sec;
1865 num_sec = elf_numsections (abfd);
1866 for (i = shindex + 1; i < num_sec; i++)
1868 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1869 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1870 && hdr2->sh_link == shindex)
1871 break;
1873 if (i == num_sec)
1874 for (i = 1; i < shindex; i++)
1876 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1877 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1878 && hdr2->sh_link == shindex)
1879 break;
1881 if (i != shindex)
1882 return bfd_section_from_shdr (abfd, i);
1884 return TRUE;
1886 case SHT_DYNSYM: /* A dynamic symbol table */
1887 if (elf_dynsymtab (abfd) == shindex)
1888 return TRUE;
1890 if (hdr->sh_entsize != bed->s->sizeof_sym)
1891 return FALSE;
1892 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1893 elf_dynsymtab (abfd) = shindex;
1894 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1895 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1896 abfd->flags |= HAS_SYMS;
1898 /* Besides being a symbol table, we also treat this as a regular
1899 section, so that objcopy can handle it. */
1900 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1903 if (elf_symtab_shndx (abfd) == shindex)
1904 return TRUE;
1906 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1907 elf_symtab_shndx (abfd) = shindex;
1908 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1909 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1910 return TRUE;
1912 case SHT_STRTAB: /* A string table */
1913 if (hdr->bfd_section != NULL)
1914 return TRUE;
1915 if (ehdr->e_shstrndx == shindex)
1917 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1918 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1919 return TRUE;
1921 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1923 symtab_strtab:
1924 elf_tdata (abfd)->strtab_hdr = *hdr;
1925 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1926 return TRUE;
1928 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1930 dynsymtab_strtab:
1931 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1932 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1933 elf_elfsections (abfd)[shindex] = hdr;
1934 /* We also treat this as a regular section, so that objcopy
1935 can handle it. */
1936 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1937 shindex);
1940 /* If the string table isn't one of the above, then treat it as a
1941 regular section. We need to scan all the headers to be sure,
1942 just in case this strtab section appeared before the above. */
1943 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1945 unsigned int i, num_sec;
1947 num_sec = elf_numsections (abfd);
1948 for (i = 1; i < num_sec; i++)
1950 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1951 if (hdr2->sh_link == shindex)
1953 /* Prevent endless recursion on broken objects. */
1954 if (i == shindex)
1955 return FALSE;
1956 if (! bfd_section_from_shdr (abfd, i))
1957 return FALSE;
1958 if (elf_onesymtab (abfd) == i)
1959 goto symtab_strtab;
1960 if (elf_dynsymtab (abfd) == i)
1961 goto dynsymtab_strtab;
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1967 case SHT_REL:
1968 case SHT_RELA:
1969 /* *These* do a lot of work -- but build no sections! */
1971 asection *target_sect;
1972 Elf_Internal_Shdr *hdr2;
1973 unsigned int num_sec = elf_numsections (abfd);
1975 if (hdr->sh_entsize
1976 != (bfd_size_type) (hdr->sh_type == SHT_REL
1977 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1978 return FALSE;
1980 /* Check for a bogus link to avoid crashing. */
1981 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1982 || hdr->sh_link >= num_sec)
1984 ((*_bfd_error_handler)
1985 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1986 abfd, hdr->sh_link, name, shindex));
1987 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1988 shindex);
1991 /* For some incomprehensible reason Oracle distributes
1992 libraries for Solaris in which some of the objects have
1993 bogus sh_link fields. It would be nice if we could just
1994 reject them, but, unfortunately, some people need to use
1995 them. We scan through the section headers; if we find only
1996 one suitable symbol table, we clobber the sh_link to point
1997 to it. I hope this doesn't break anything. */
1998 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1999 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2001 unsigned int scan;
2002 int found;
2004 found = 0;
2005 for (scan = 1; scan < num_sec; scan++)
2007 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2008 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2010 if (found != 0)
2012 found = 0;
2013 break;
2015 found = scan;
2018 if (found != 0)
2019 hdr->sh_link = found;
2022 /* Get the symbol table. */
2023 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2024 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2025 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2026 return FALSE;
2028 /* If this reloc section does not use the main symbol table we
2029 don't treat it as a reloc section. BFD can't adequately
2030 represent such a section, so at least for now, we don't
2031 try. We just present it as a normal section. We also
2032 can't use it as a reloc section if it points to the null
2033 section. */
2034 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2035 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2036 shindex);
2038 /* Prevent endless recursion on broken objects. */
2039 if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2040 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2041 return FALSE;
2042 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2043 return FALSE;
2044 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2045 if (target_sect == NULL)
2046 return FALSE;
2048 if ((target_sect->flags & SEC_RELOC) == 0
2049 || target_sect->reloc_count == 0)
2050 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2051 else
2053 bfd_size_type amt;
2054 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2055 amt = sizeof (*hdr2);
2056 hdr2 = bfd_alloc (abfd, amt);
2057 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2059 *hdr2 = *hdr;
2060 elf_elfsections (abfd)[shindex] = hdr2;
2061 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2062 target_sect->flags |= SEC_RELOC;
2063 target_sect->relocation = NULL;
2064 target_sect->rel_filepos = hdr->sh_offset;
2065 /* In the section to which the relocations apply, mark whether
2066 its relocations are of the REL or RELA variety. */
2067 if (hdr->sh_size != 0)
2068 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2069 abfd->flags |= HAS_RELOC;
2070 return TRUE;
2072 break;
2074 case SHT_GNU_verdef:
2075 elf_dynverdef (abfd) = shindex;
2076 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2077 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2078 break;
2080 case SHT_GNU_versym:
2081 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2082 return FALSE;
2083 elf_dynversym (abfd) = shindex;
2084 elf_tdata (abfd)->dynversym_hdr = *hdr;
2085 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2086 break;
2088 case SHT_GNU_verneed:
2089 elf_dynverref (abfd) = shindex;
2090 elf_tdata (abfd)->dynverref_hdr = *hdr;
2091 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2092 break;
2094 case SHT_SHLIB:
2095 return TRUE;
2097 case SHT_GROUP:
2098 /* We need a BFD section for objcopy and relocatable linking,
2099 and it's handy to have the signature available as the section
2100 name. */
2101 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2102 return FALSE;
2103 name = group_signature (abfd, hdr);
2104 if (name == NULL)
2105 return FALSE;
2106 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2107 return FALSE;
2108 if (hdr->contents != NULL)
2110 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2111 unsigned int n_elt = hdr->sh_size / 4;
2112 asection *s;
2114 if (idx->flags & GRP_COMDAT)
2115 hdr->bfd_section->flags
2116 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2118 /* We try to keep the same section order as it comes in. */
2119 idx += n_elt;
2120 while (--n_elt != 0)
2121 if ((s = (--idx)->shdr->bfd_section) != NULL
2122 && elf_next_in_group (s) != NULL)
2124 elf_next_in_group (hdr->bfd_section) = s;
2125 break;
2128 break;
2130 default:
2131 /* Check for any processor-specific section types. */
2132 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2133 shindex);
2136 return TRUE;
2139 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2140 Return SEC for sections that have no elf section, and NULL on error. */
2142 asection *
2143 bfd_section_from_r_symndx (bfd *abfd,
2144 struct sym_sec_cache *cache,
2145 asection *sec,
2146 unsigned long r_symndx)
2148 Elf_Internal_Shdr *symtab_hdr;
2149 unsigned char esym[sizeof (Elf64_External_Sym)];
2150 Elf_External_Sym_Shndx eshndx;
2151 Elf_Internal_Sym isym;
2152 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2154 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2155 return cache->sec[ent];
2157 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2158 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2159 &isym, esym, &eshndx) == NULL)
2160 return NULL;
2162 if (cache->abfd != abfd)
2164 memset (cache->indx, -1, sizeof (cache->indx));
2165 cache->abfd = abfd;
2167 cache->indx[ent] = r_symndx;
2168 cache->sec[ent] = sec;
2169 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2170 || isym.st_shndx > SHN_HIRESERVE)
2172 asection *s;
2173 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2174 if (s != NULL)
2175 cache->sec[ent] = s;
2177 return cache->sec[ent];
2180 /* Given an ELF section number, retrieve the corresponding BFD
2181 section. */
2183 asection *
2184 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2186 if (index >= elf_numsections (abfd))
2187 return NULL;
2188 return elf_elfsections (abfd)[index]->bfd_section;
2191 static const struct bfd_elf_special_section special_sections_b[] =
2193 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2194 { NULL, 0, 0, 0, 0 }
2197 static const struct bfd_elf_special_section special_sections_c[] =
2199 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2200 { NULL, 0, 0, 0, 0 }
2203 static const struct bfd_elf_special_section special_sections_d[] =
2205 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2206 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2207 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2208 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2209 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2210 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2211 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2212 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2213 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2214 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2215 { NULL, 0, 0, 0, 0 }
2218 static const struct bfd_elf_special_section special_sections_f[] =
2220 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2221 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2222 { NULL, 0, 0, 0, 0 }
2225 static const struct bfd_elf_special_section special_sections_g[] =
2227 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2228 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2229 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2230 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2231 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2232 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2233 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2234 { NULL, 0, 0, 0, 0 }
2237 static const struct bfd_elf_special_section special_sections_h[] =
2239 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2240 { NULL, 0, 0, 0, 0 }
2243 static const struct bfd_elf_special_section special_sections_i[] =
2245 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2246 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2247 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2248 { NULL, 0, 0, 0, 0 }
2251 static const struct bfd_elf_special_section special_sections_l[] =
2253 { ".line", 5, 0, SHT_PROGBITS, 0 },
2254 { NULL, 0, 0, 0, 0 }
2257 static const struct bfd_elf_special_section special_sections_n[] =
2259 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2260 { ".note", 5, -1, SHT_NOTE, 0 },
2261 { NULL, 0, 0, 0, 0 }
2264 static const struct bfd_elf_special_section special_sections_p[] =
2266 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2267 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2268 { NULL, 0, 0, 0, 0 }
2271 static const struct bfd_elf_special_section special_sections_r[] =
2273 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2274 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2275 { ".rela", 5, -1, SHT_RELA, 0 },
2276 { ".rel", 4, -1, SHT_REL, 0 },
2277 { NULL, 0, 0, 0, 0 }
2280 static const struct bfd_elf_special_section special_sections_s[] =
2282 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2283 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2284 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2285 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2286 { NULL, 0, 0, 0, 0 }
2289 static const struct bfd_elf_special_section special_sections_t[] =
2291 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2292 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2293 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2294 { NULL, 0, 0, 0, 0 }
2297 static const struct bfd_elf_special_section *special_sections[] =
2299 special_sections_b, /* 'b' */
2300 special_sections_c, /* 'b' */
2301 special_sections_d, /* 'd' */
2302 NULL, /* 'e' */
2303 special_sections_f, /* 'f' */
2304 special_sections_g, /* 'g' */
2305 special_sections_h, /* 'h' */
2306 special_sections_i, /* 'i' */
2307 NULL, /* 'j' */
2308 NULL, /* 'k' */
2309 special_sections_l, /* 'l' */
2310 NULL, /* 'm' */
2311 special_sections_n, /* 'n' */
2312 NULL, /* 'o' */
2313 special_sections_p, /* 'p' */
2314 NULL, /* 'q' */
2315 special_sections_r, /* 'r' */
2316 special_sections_s, /* 's' */
2317 special_sections_t, /* 't' */
2320 const struct bfd_elf_special_section *
2321 _bfd_elf_get_special_section (const char *name,
2322 const struct bfd_elf_special_section *spec,
2323 unsigned int rela)
2325 int i;
2326 int len;
2328 len = strlen (name);
2330 for (i = 0; spec[i].prefix != NULL; i++)
2332 int suffix_len;
2333 int prefix_len = spec[i].prefix_length;
2335 if (len < prefix_len)
2336 continue;
2337 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2338 continue;
2340 suffix_len = spec[i].suffix_length;
2341 if (suffix_len <= 0)
2343 if (name[prefix_len] != 0)
2345 if (suffix_len == 0)
2346 continue;
2347 if (name[prefix_len] != '.'
2348 && (suffix_len == -2
2349 || (rela && spec[i].type == SHT_REL)))
2350 continue;
2353 else
2355 if (len < prefix_len + suffix_len)
2356 continue;
2357 if (memcmp (name + len - suffix_len,
2358 spec[i].prefix + prefix_len,
2359 suffix_len) != 0)
2360 continue;
2362 return &spec[i];
2365 return NULL;
2368 const struct bfd_elf_special_section *
2369 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2371 int i;
2372 const struct bfd_elf_special_section *spec;
2373 const struct elf_backend_data *bed;
2375 /* See if this is one of the special sections. */
2376 if (sec->name == NULL)
2377 return NULL;
2379 bed = get_elf_backend_data (abfd);
2380 spec = bed->special_sections;
2381 if (spec)
2383 spec = _bfd_elf_get_special_section (sec->name,
2384 bed->special_sections,
2385 sec->use_rela_p);
2386 if (spec != NULL)
2387 return spec;
2390 if (sec->name[0] != '.')
2391 return NULL;
2393 i = sec->name[1] - 'b';
2394 if (i < 0 || i > 't' - 'b')
2395 return NULL;
2397 spec = special_sections[i];
2399 if (spec == NULL)
2400 return NULL;
2402 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2405 bfd_boolean
2406 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2408 struct bfd_elf_section_data *sdata;
2409 const struct elf_backend_data *bed;
2410 const struct bfd_elf_special_section *ssect;
2412 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2413 if (sdata == NULL)
2415 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2416 if (sdata == NULL)
2417 return FALSE;
2418 sec->used_by_bfd = sdata;
2421 /* Indicate whether or not this section should use RELA relocations. */
2422 bed = get_elf_backend_data (abfd);
2423 sec->use_rela_p = bed->default_use_rela_p;
2425 /* When we read a file, we don't need section type and flags unless
2426 it is a linker created section. They will be overridden in
2427 _bfd_elf_make_section_from_shdr anyway. */
2428 if (abfd->direction != read_direction
2429 || (sec->flags & SEC_LINKER_CREATED) != 0)
2431 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2432 if (ssect != NULL)
2434 elf_section_type (sec) = ssect->type;
2435 elf_section_flags (sec) = ssect->attr;
2439 return TRUE;
2442 /* Create a new bfd section from an ELF program header.
2444 Since program segments have no names, we generate a synthetic name
2445 of the form segment<NUM>, where NUM is generally the index in the
2446 program header table. For segments that are split (see below) we
2447 generate the names segment<NUM>a and segment<NUM>b.
2449 Note that some program segments may have a file size that is different than
2450 (less than) the memory size. All this means is that at execution the
2451 system must allocate the amount of memory specified by the memory size,
2452 but only initialize it with the first "file size" bytes read from the
2453 file. This would occur for example, with program segments consisting
2454 of combined data+bss.
2456 To handle the above situation, this routine generates TWO bfd sections
2457 for the single program segment. The first has the length specified by
2458 the file size of the segment, and the second has the length specified
2459 by the difference between the two sizes. In effect, the segment is split
2460 into it's initialized and uninitialized parts.
2464 bfd_boolean
2465 _bfd_elf_make_section_from_phdr (bfd *abfd,
2466 Elf_Internal_Phdr *hdr,
2467 int index,
2468 const char *typename)
2470 asection *newsect;
2471 char *name;
2472 char namebuf[64];
2473 size_t len;
2474 int split;
2476 split = ((hdr->p_memsz > 0)
2477 && (hdr->p_filesz > 0)
2478 && (hdr->p_memsz > hdr->p_filesz));
2479 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2480 len = strlen (namebuf) + 1;
2481 name = bfd_alloc (abfd, len);
2482 if (!name)
2483 return FALSE;
2484 memcpy (name, namebuf, len);
2485 newsect = bfd_make_section (abfd, name);
2486 if (newsect == NULL)
2487 return FALSE;
2488 newsect->vma = hdr->p_vaddr;
2489 newsect->lma = hdr->p_paddr;
2490 newsect->size = hdr->p_filesz;
2491 newsect->filepos = hdr->p_offset;
2492 newsect->flags |= SEC_HAS_CONTENTS;
2493 newsect->alignment_power = bfd_log2 (hdr->p_align);
2494 if (hdr->p_type == PT_LOAD)
2496 newsect->flags |= SEC_ALLOC;
2497 newsect->flags |= SEC_LOAD;
2498 if (hdr->p_flags & PF_X)
2500 /* FIXME: all we known is that it has execute PERMISSION,
2501 may be data. */
2502 newsect->flags |= SEC_CODE;
2505 if (!(hdr->p_flags & PF_W))
2507 newsect->flags |= SEC_READONLY;
2510 if (split)
2512 sprintf (namebuf, "%s%db", typename, index);
2513 len = strlen (namebuf) + 1;
2514 name = bfd_alloc (abfd, len);
2515 if (!name)
2516 return FALSE;
2517 memcpy (name, namebuf, len);
2518 newsect = bfd_make_section (abfd, name);
2519 if (newsect == NULL)
2520 return FALSE;
2521 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2522 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2523 newsect->size = hdr->p_memsz - hdr->p_filesz;
2524 if (hdr->p_type == PT_LOAD)
2526 newsect->flags |= SEC_ALLOC;
2527 if (hdr->p_flags & PF_X)
2528 newsect->flags |= SEC_CODE;
2530 if (!(hdr->p_flags & PF_W))
2531 newsect->flags |= SEC_READONLY;
2534 return TRUE;
2537 bfd_boolean
2538 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2540 const struct elf_backend_data *bed;
2542 switch (hdr->p_type)
2544 case PT_NULL:
2545 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2547 case PT_LOAD:
2548 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2550 case PT_DYNAMIC:
2551 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2553 case PT_INTERP:
2554 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2556 case PT_NOTE:
2557 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2558 return FALSE;
2559 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2560 return FALSE;
2561 return TRUE;
2563 case PT_SHLIB:
2564 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2566 case PT_PHDR:
2567 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2569 case PT_GNU_EH_FRAME:
2570 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2571 "eh_frame_hdr");
2573 case PT_GNU_STACK:
2574 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2576 case PT_GNU_RELRO:
2577 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2579 default:
2580 /* Check for any processor-specific program segment types. */
2581 bed = get_elf_backend_data (abfd);
2582 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2586 /* Initialize REL_HDR, the section-header for new section, containing
2587 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2588 relocations; otherwise, we use REL relocations. */
2590 bfd_boolean
2591 _bfd_elf_init_reloc_shdr (bfd *abfd,
2592 Elf_Internal_Shdr *rel_hdr,
2593 asection *asect,
2594 bfd_boolean use_rela_p)
2596 char *name;
2597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2598 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2600 name = bfd_alloc (abfd, amt);
2601 if (name == NULL)
2602 return FALSE;
2603 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2604 rel_hdr->sh_name =
2605 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2606 FALSE);
2607 if (rel_hdr->sh_name == (unsigned int) -1)
2608 return FALSE;
2609 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2610 rel_hdr->sh_entsize = (use_rela_p
2611 ? bed->s->sizeof_rela
2612 : bed->s->sizeof_rel);
2613 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2614 rel_hdr->sh_flags = 0;
2615 rel_hdr->sh_addr = 0;
2616 rel_hdr->sh_size = 0;
2617 rel_hdr->sh_offset = 0;
2619 return TRUE;
2622 /* Set up an ELF internal section header for a section. */
2624 static void
2625 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2628 bfd_boolean *failedptr = failedptrarg;
2629 Elf_Internal_Shdr *this_hdr;
2631 if (*failedptr)
2633 /* We already failed; just get out of the bfd_map_over_sections
2634 loop. */
2635 return;
2638 this_hdr = &elf_section_data (asect)->this_hdr;
2640 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2641 asect->name, FALSE);
2642 if (this_hdr->sh_name == (unsigned int) -1)
2644 *failedptr = TRUE;
2645 return;
2648 /* Don't clear sh_flags. Assembler may set additional bits. */
2650 if ((asect->flags & SEC_ALLOC) != 0
2651 || asect->user_set_vma)
2652 this_hdr->sh_addr = asect->vma;
2653 else
2654 this_hdr->sh_addr = 0;
2656 this_hdr->sh_offset = 0;
2657 this_hdr->sh_size = asect->size;
2658 this_hdr->sh_link = 0;
2659 this_hdr->sh_addralign = 1 << asect->alignment_power;
2660 /* The sh_entsize and sh_info fields may have been set already by
2661 copy_private_section_data. */
2663 this_hdr->bfd_section = asect;
2664 this_hdr->contents = NULL;
2666 /* If the section type is unspecified, we set it based on
2667 asect->flags. */
2668 if (this_hdr->sh_type == SHT_NULL)
2670 if ((asect->flags & SEC_GROUP) != 0)
2671 this_hdr->sh_type = SHT_GROUP;
2672 else if ((asect->flags & SEC_ALLOC) != 0
2673 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2674 || (asect->flags & SEC_NEVER_LOAD) != 0))
2675 this_hdr->sh_type = SHT_NOBITS;
2676 else
2677 this_hdr->sh_type = SHT_PROGBITS;
2680 switch (this_hdr->sh_type)
2682 default:
2683 break;
2685 case SHT_STRTAB:
2686 case SHT_INIT_ARRAY:
2687 case SHT_FINI_ARRAY:
2688 case SHT_PREINIT_ARRAY:
2689 case SHT_NOTE:
2690 case SHT_NOBITS:
2691 case SHT_PROGBITS:
2692 break;
2694 case SHT_HASH:
2695 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2696 break;
2698 case SHT_DYNSYM:
2699 this_hdr->sh_entsize = bed->s->sizeof_sym;
2700 break;
2702 case SHT_DYNAMIC:
2703 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2704 break;
2706 case SHT_RELA:
2707 if (get_elf_backend_data (abfd)->may_use_rela_p)
2708 this_hdr->sh_entsize = bed->s->sizeof_rela;
2709 break;
2711 case SHT_REL:
2712 if (get_elf_backend_data (abfd)->may_use_rel_p)
2713 this_hdr->sh_entsize = bed->s->sizeof_rel;
2714 break;
2716 case SHT_GNU_versym:
2717 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2718 break;
2720 case SHT_GNU_verdef:
2721 this_hdr->sh_entsize = 0;
2722 /* objcopy or strip will copy over sh_info, but may not set
2723 cverdefs. The linker will set cverdefs, but sh_info will be
2724 zero. */
2725 if (this_hdr->sh_info == 0)
2726 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2727 else
2728 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2729 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2730 break;
2732 case SHT_GNU_verneed:
2733 this_hdr->sh_entsize = 0;
2734 /* objcopy or strip will copy over sh_info, but may not set
2735 cverrefs. The linker will set cverrefs, but sh_info will be
2736 zero. */
2737 if (this_hdr->sh_info == 0)
2738 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2739 else
2740 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2741 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2742 break;
2744 case SHT_GROUP:
2745 this_hdr->sh_entsize = 4;
2746 break;
2749 if ((asect->flags & SEC_ALLOC) != 0)
2750 this_hdr->sh_flags |= SHF_ALLOC;
2751 if ((asect->flags & SEC_READONLY) == 0)
2752 this_hdr->sh_flags |= SHF_WRITE;
2753 if ((asect->flags & SEC_CODE) != 0)
2754 this_hdr->sh_flags |= SHF_EXECINSTR;
2755 if ((asect->flags & SEC_MERGE) != 0)
2757 this_hdr->sh_flags |= SHF_MERGE;
2758 this_hdr->sh_entsize = asect->entsize;
2759 if ((asect->flags & SEC_STRINGS) != 0)
2760 this_hdr->sh_flags |= SHF_STRINGS;
2762 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2763 this_hdr->sh_flags |= SHF_GROUP;
2764 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2766 this_hdr->sh_flags |= SHF_TLS;
2767 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2769 struct bfd_link_order *o;
2771 this_hdr->sh_size = 0;
2772 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2773 if (this_hdr->sh_size < o->offset + o->size)
2774 this_hdr->sh_size = o->offset + o->size;
2775 if (this_hdr->sh_size)
2776 this_hdr->sh_type = SHT_NOBITS;
2780 /* Check for processor-specific section types. */
2781 if (bed->elf_backend_fake_sections
2782 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2783 *failedptr = TRUE;
2785 /* If the section has relocs, set up a section header for the
2786 SHT_REL[A] section. If two relocation sections are required for
2787 this section, it is up to the processor-specific back-end to
2788 create the other. */
2789 if ((asect->flags & SEC_RELOC) != 0
2790 && !_bfd_elf_init_reloc_shdr (abfd,
2791 &elf_section_data (asect)->rel_hdr,
2792 asect,
2793 asect->use_rela_p))
2794 *failedptr = TRUE;
2797 /* Fill in the contents of a SHT_GROUP section. */
2799 void
2800 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2802 bfd_boolean *failedptr = failedptrarg;
2803 unsigned long symindx;
2804 asection *elt, *first;
2805 unsigned char *loc;
2806 bfd_boolean gas;
2808 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 elfxx-ia64.c. */
2810 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2811 || *failedptr)
2812 return;
2814 symindx = 0;
2815 if (elf_group_id (sec) != NULL)
2816 symindx = elf_group_id (sec)->udata.i;
2818 if (symindx == 0)
2820 /* If called from the assembler, swap_out_syms will have set up
2821 elf_section_syms; If called for "ld -r", use target_index. */
2822 if (elf_section_syms (abfd) != NULL)
2823 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2824 else
2825 symindx = sec->target_index;
2827 elf_section_data (sec)->this_hdr.sh_info = symindx;
2829 /* The contents won't be allocated for "ld -r" or objcopy. */
2830 gas = TRUE;
2831 if (sec->contents == NULL)
2833 gas = FALSE;
2834 sec->contents = bfd_alloc (abfd, sec->size);
2836 /* Arrange for the section to be written out. */
2837 elf_section_data (sec)->this_hdr.contents = sec->contents;
2838 if (sec->contents == NULL)
2840 *failedptr = TRUE;
2841 return;
2845 loc = sec->contents + sec->size;
2847 /* Get the pointer to the first section in the group that gas
2848 squirreled away here. objcopy arranges for this to be set to the
2849 start of the input section group. */
2850 first = elt = elf_next_in_group (sec);
2852 /* First element is a flag word. Rest of section is elf section
2853 indices for all the sections of the group. Write them backwards
2854 just to keep the group in the same order as given in .section
2855 directives, not that it matters. */
2856 while (elt != NULL)
2858 asection *s;
2859 unsigned int idx;
2861 loc -= 4;
2862 s = elt;
2863 if (!gas)
2864 s = s->output_section;
2865 idx = 0;
2866 if (s != NULL)
2867 idx = elf_section_data (s)->this_idx;
2868 H_PUT_32 (abfd, idx, loc);
2869 elt = elf_next_in_group (elt);
2870 if (elt == first)
2871 break;
2874 if ((loc -= 4) != sec->contents)
2875 abort ();
2877 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2880 /* Assign all ELF section numbers. The dummy first section is handled here
2881 too. The link/info pointers for the standard section types are filled
2882 in here too, while we're at it. */
2884 static bfd_boolean
2885 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2887 struct elf_obj_tdata *t = elf_tdata (abfd);
2888 asection *sec;
2889 unsigned int section_number, secn;
2890 Elf_Internal_Shdr **i_shdrp;
2891 struct bfd_elf_section_data *d;
2893 section_number = 1;
2895 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2897 /* SHT_GROUP sections are in relocatable files only. */
2898 if (link_info == NULL || link_info->relocatable)
2900 /* Put SHT_GROUP sections first. */
2901 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2903 d = elf_section_data (sec);
2905 if (d->this_hdr.sh_type == SHT_GROUP)
2907 if (sec->flags & SEC_LINKER_CREATED)
2909 /* Remove the linker created SHT_GROUP sections. */
2910 bfd_section_list_remove (abfd, sec);
2911 abfd->section_count--;
2913 else
2915 if (section_number == SHN_LORESERVE)
2916 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2917 d->this_idx = section_number++;
2923 for (sec = abfd->sections; sec; sec = sec->next)
2925 d = elf_section_data (sec);
2927 if (d->this_hdr.sh_type != SHT_GROUP)
2929 if (section_number == SHN_LORESERVE)
2930 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2931 d->this_idx = section_number++;
2933 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2934 if ((sec->flags & SEC_RELOC) == 0)
2935 d->rel_idx = 0;
2936 else
2938 if (section_number == SHN_LORESERVE)
2939 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2940 d->rel_idx = section_number++;
2941 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2944 if (d->rel_hdr2)
2946 if (section_number == SHN_LORESERVE)
2947 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2948 d->rel_idx2 = section_number++;
2949 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2951 else
2952 d->rel_idx2 = 0;
2955 if (section_number == SHN_LORESERVE)
2956 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2957 t->shstrtab_section = section_number++;
2958 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2959 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2961 if (bfd_get_symcount (abfd) > 0)
2963 if (section_number == SHN_LORESERVE)
2964 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2965 t->symtab_section = section_number++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2967 if (section_number > SHN_LORESERVE - 2)
2969 if (section_number == SHN_LORESERVE)
2970 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2971 t->symtab_shndx_section = section_number++;
2972 t->symtab_shndx_hdr.sh_name
2973 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2974 ".symtab_shndx", FALSE);
2975 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2976 return FALSE;
2978 if (section_number == SHN_LORESERVE)
2979 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2980 t->strtab_section = section_number++;
2981 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2984 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2985 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2987 elf_numsections (abfd) = section_number;
2988 elf_elfheader (abfd)->e_shnum = section_number;
2989 if (section_number > SHN_LORESERVE)
2990 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2992 /* Set up the list of section header pointers, in agreement with the
2993 indices. */
2994 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2995 if (i_shdrp == NULL)
2996 return FALSE;
2998 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2999 if (i_shdrp[0] == NULL)
3001 bfd_release (abfd, i_shdrp);
3002 return FALSE;
3005 elf_elfsections (abfd) = i_shdrp;
3007 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3008 if (bfd_get_symcount (abfd) > 0)
3010 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3011 if (elf_numsections (abfd) > SHN_LORESERVE)
3013 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3014 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3016 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3017 t->symtab_hdr.sh_link = t->strtab_section;
3020 for (sec = abfd->sections; sec; sec = sec->next)
3022 struct bfd_elf_section_data *d = elf_section_data (sec);
3023 asection *s;
3024 const char *name;
3026 i_shdrp[d->this_idx] = &d->this_hdr;
3027 if (d->rel_idx != 0)
3028 i_shdrp[d->rel_idx] = &d->rel_hdr;
3029 if (d->rel_idx2 != 0)
3030 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3032 /* Fill in the sh_link and sh_info fields while we're at it. */
3034 /* sh_link of a reloc section is the section index of the symbol
3035 table. sh_info is the section index of the section to which
3036 the relocation entries apply. */
3037 if (d->rel_idx != 0)
3039 d->rel_hdr.sh_link = t->symtab_section;
3040 d->rel_hdr.sh_info = d->this_idx;
3042 if (d->rel_idx2 != 0)
3044 d->rel_hdr2->sh_link = t->symtab_section;
3045 d->rel_hdr2->sh_info = d->this_idx;
3048 /* We need to set up sh_link for SHF_LINK_ORDER. */
3049 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3051 s = elf_linked_to_section (sec);
3052 if (s)
3054 if (link_info != NULL)
3056 /* For linker, elf_linked_to_section points to the
3057 input section. */
3058 if (elf_discarded_section (s))
3060 asection *kept;
3061 (*_bfd_error_handler)
3062 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3063 abfd, d->this_hdr.bfd_section,
3064 s, s->owner);
3065 /* Point to the kept section if it has the same
3066 size as the discarded one. */
3067 kept = _bfd_elf_check_kept_section (s);
3068 if (kept == NULL)
3070 bfd_set_error (bfd_error_bad_value);
3071 return FALSE;
3073 s = kept;
3075 s = s->output_section;
3076 BFD_ASSERT (s != NULL);
3078 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3080 else
3082 /* PR 290:
3083 The Intel C compiler generates SHT_IA_64_UNWIND with
3084 SHF_LINK_ORDER. But it doesn't set the sh_link or
3085 sh_info fields. Hence we could get the situation
3086 where s is NULL. */
3087 const struct elf_backend_data *bed
3088 = get_elf_backend_data (abfd);
3089 if (bed->link_order_error_handler)
3090 bed->link_order_error_handler
3091 (_("%B: warning: sh_link not set for section `%A'"),
3092 abfd, sec);
3096 switch (d->this_hdr.sh_type)
3098 case SHT_REL:
3099 case SHT_RELA:
3100 /* A reloc section which we are treating as a normal BFD
3101 section. sh_link is the section index of the symbol
3102 table. sh_info is the section index of the section to
3103 which the relocation entries apply. We assume that an
3104 allocated reloc section uses the dynamic symbol table.
3105 FIXME: How can we be sure? */
3106 s = bfd_get_section_by_name (abfd, ".dynsym");
3107 if (s != NULL)
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3110 /* We look up the section the relocs apply to by name. */
3111 name = sec->name;
3112 if (d->this_hdr.sh_type == SHT_REL)
3113 name += 4;
3114 else
3115 name += 5;
3116 s = bfd_get_section_by_name (abfd, name);
3117 if (s != NULL)
3118 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3119 break;
3121 case SHT_STRTAB:
3122 /* We assume that a section named .stab*str is a stabs
3123 string section. We look for a section with the same name
3124 but without the trailing ``str'', and set its sh_link
3125 field to point to this section. */
3126 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3127 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3129 size_t len;
3130 char *alc;
3132 len = strlen (sec->name);
3133 alc = bfd_malloc (len - 2);
3134 if (alc == NULL)
3135 return FALSE;
3136 memcpy (alc, sec->name, len - 3);
3137 alc[len - 3] = '\0';
3138 s = bfd_get_section_by_name (abfd, alc);
3139 free (alc);
3140 if (s != NULL)
3142 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3144 /* This is a .stab section. */
3145 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3146 elf_section_data (s)->this_hdr.sh_entsize
3147 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3150 break;
3152 case SHT_DYNAMIC:
3153 case SHT_DYNSYM:
3154 case SHT_GNU_verneed:
3155 case SHT_GNU_verdef:
3156 /* sh_link is the section header index of the string table
3157 used for the dynamic entries, or the symbol table, or the
3158 version strings. */
3159 s = bfd_get_section_by_name (abfd, ".dynstr");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162 break;
3164 case SHT_GNU_LIBLIST:
3165 /* sh_link is the section header index of the prelink library
3166 list
3167 used for the dynamic entries, or the symbol table, or the
3168 version strings. */
3169 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3170 ? ".dynstr" : ".gnu.libstr");
3171 if (s != NULL)
3172 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3173 break;
3175 case SHT_HASH:
3176 case SHT_GNU_versym:
3177 /* sh_link is the section header index of the symbol table
3178 this hash table or version table is for. */
3179 s = bfd_get_section_by_name (abfd, ".dynsym");
3180 if (s != NULL)
3181 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3182 break;
3184 case SHT_GROUP:
3185 d->this_hdr.sh_link = t->symtab_section;
3189 for (secn = 1; secn < section_number; ++secn)
3190 if (i_shdrp[secn] == NULL)
3191 i_shdrp[secn] = i_shdrp[0];
3192 else
3193 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3194 i_shdrp[secn]->sh_name);
3195 return TRUE;
3198 /* Map symbol from it's internal number to the external number, moving
3199 all local symbols to be at the head of the list. */
3201 static int
3202 sym_is_global (bfd *abfd, asymbol *sym)
3204 /* If the backend has a special mapping, use it. */
3205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3206 if (bed->elf_backend_sym_is_global)
3207 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3209 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3210 || bfd_is_und_section (bfd_get_section (sym))
3211 || bfd_is_com_section (bfd_get_section (sym)));
3214 static bfd_boolean
3215 elf_map_symbols (bfd *abfd)
3217 unsigned int symcount = bfd_get_symcount (abfd);
3218 asymbol **syms = bfd_get_outsymbols (abfd);
3219 asymbol **sect_syms;
3220 unsigned int num_locals = 0;
3221 unsigned int num_globals = 0;
3222 unsigned int num_locals2 = 0;
3223 unsigned int num_globals2 = 0;
3224 int max_index = 0;
3225 unsigned int idx;
3226 asection *asect;
3227 asymbol **new_syms;
3229 #ifdef DEBUG
3230 fprintf (stderr, "elf_map_symbols\n");
3231 fflush (stderr);
3232 #endif
3234 for (asect = abfd->sections; asect; asect = asect->next)
3236 if (max_index < asect->index)
3237 max_index = asect->index;
3240 max_index++;
3241 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3242 if (sect_syms == NULL)
3243 return FALSE;
3244 elf_section_syms (abfd) = sect_syms;
3245 elf_num_section_syms (abfd) = max_index;
3247 /* Init sect_syms entries for any section symbols we have already
3248 decided to output. */
3249 for (idx = 0; idx < symcount; idx++)
3251 asymbol *sym = syms[idx];
3253 if ((sym->flags & BSF_SECTION_SYM) != 0
3254 && sym->value == 0)
3256 asection *sec;
3258 sec = sym->section;
3260 if (sec->owner != NULL)
3262 if (sec->owner != abfd)
3264 if (sec->output_offset != 0)
3265 continue;
3267 sec = sec->output_section;
3269 /* Empty sections in the input files may have had a
3270 section symbol created for them. (See the comment
3271 near the end of _bfd_generic_link_output_symbols in
3272 linker.c). If the linker script discards such
3273 sections then we will reach this point. Since we know
3274 that we cannot avoid this case, we detect it and skip
3275 the abort and the assignment to the sect_syms array.
3276 To reproduce this particular case try running the
3277 linker testsuite test ld-scripts/weak.exp for an ELF
3278 port that uses the generic linker. */
3279 if (sec->owner == NULL)
3280 continue;
3282 BFD_ASSERT (sec->owner == abfd);
3284 sect_syms[sec->index] = syms[idx];
3289 /* Classify all of the symbols. */
3290 for (idx = 0; idx < symcount; idx++)
3292 if (!sym_is_global (abfd, syms[idx]))
3293 num_locals++;
3294 else
3295 num_globals++;
3298 /* We will be adding a section symbol for each BFD section. Most normal
3299 sections will already have a section symbol in outsymbols, but
3300 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3301 at least in that case. */
3302 for (asect = abfd->sections; asect; asect = asect->next)
3304 if (sect_syms[asect->index] == NULL)
3306 if (!sym_is_global (abfd, asect->symbol))
3307 num_locals++;
3308 else
3309 num_globals++;
3313 /* Now sort the symbols so the local symbols are first. */
3314 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3316 if (new_syms == NULL)
3317 return FALSE;
3319 for (idx = 0; idx < symcount; idx++)
3321 asymbol *sym = syms[idx];
3322 unsigned int i;
3324 if (!sym_is_global (abfd, sym))
3325 i = num_locals2++;
3326 else
3327 i = num_locals + num_globals2++;
3328 new_syms[i] = sym;
3329 sym->udata.i = i + 1;
3331 for (asect = abfd->sections; asect; asect = asect->next)
3333 if (sect_syms[asect->index] == NULL)
3335 asymbol *sym = asect->symbol;
3336 unsigned int i;
3338 sect_syms[asect->index] = sym;
3339 if (!sym_is_global (abfd, sym))
3340 i = num_locals2++;
3341 else
3342 i = num_locals + num_globals2++;
3343 new_syms[i] = sym;
3344 sym->udata.i = i + 1;
3348 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3350 elf_num_locals (abfd) = num_locals;
3351 elf_num_globals (abfd) = num_globals;
3352 return TRUE;
3355 /* Align to the maximum file alignment that could be required for any
3356 ELF data structure. */
3358 static inline file_ptr
3359 align_file_position (file_ptr off, int align)
3361 return (off + align - 1) & ~(align - 1);
3364 /* Assign a file position to a section, optionally aligning to the
3365 required section alignment. */
3367 file_ptr
3368 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3369 file_ptr offset,
3370 bfd_boolean align)
3372 if (align)
3374 unsigned int al;
3376 al = i_shdrp->sh_addralign;
3377 if (al > 1)
3378 offset = BFD_ALIGN (offset, al);
3380 i_shdrp->sh_offset = offset;
3381 if (i_shdrp->bfd_section != NULL)
3382 i_shdrp->bfd_section->filepos = offset;
3383 if (i_shdrp->sh_type != SHT_NOBITS)
3384 offset += i_shdrp->sh_size;
3385 return offset;
3388 /* Compute the file positions we are going to put the sections at, and
3389 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3390 is not NULL, this is being called by the ELF backend linker. */
3392 bfd_boolean
3393 _bfd_elf_compute_section_file_positions (bfd *abfd,
3394 struct bfd_link_info *link_info)
3396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3397 bfd_boolean failed;
3398 struct bfd_strtab_hash *strtab = NULL;
3399 Elf_Internal_Shdr *shstrtab_hdr;
3401 if (abfd->output_has_begun)
3402 return TRUE;
3404 /* Do any elf backend specific processing first. */
3405 if (bed->elf_backend_begin_write_processing)
3406 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3408 if (! prep_headers (abfd))
3409 return FALSE;
3411 /* Post process the headers if necessary. */
3412 if (bed->elf_backend_post_process_headers)
3413 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3415 failed = FALSE;
3416 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3417 if (failed)
3418 return FALSE;
3420 if (!assign_section_numbers (abfd, link_info))
3421 return FALSE;
3423 /* The backend linker builds symbol table information itself. */
3424 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3426 /* Non-zero if doing a relocatable link. */
3427 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3429 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3430 return FALSE;
3433 if (link_info == NULL)
3435 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3436 if (failed)
3437 return FALSE;
3440 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3441 /* sh_name was set in prep_headers. */
3442 shstrtab_hdr->sh_type = SHT_STRTAB;
3443 shstrtab_hdr->sh_flags = 0;
3444 shstrtab_hdr->sh_addr = 0;
3445 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3446 shstrtab_hdr->sh_entsize = 0;
3447 shstrtab_hdr->sh_link = 0;
3448 shstrtab_hdr->sh_info = 0;
3449 /* sh_offset is set in assign_file_positions_except_relocs. */
3450 shstrtab_hdr->sh_addralign = 1;
3452 if (!assign_file_positions_except_relocs (abfd, link_info))
3453 return FALSE;
3455 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3457 file_ptr off;
3458 Elf_Internal_Shdr *hdr;
3460 off = elf_tdata (abfd)->next_file_pos;
3462 hdr = &elf_tdata (abfd)->symtab_hdr;
3463 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3465 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3466 if (hdr->sh_size != 0)
3467 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3469 hdr = &elf_tdata (abfd)->strtab_hdr;
3470 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3472 elf_tdata (abfd)->next_file_pos = off;
3474 /* Now that we know where the .strtab section goes, write it
3475 out. */
3476 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3477 || ! _bfd_stringtab_emit (abfd, strtab))
3478 return FALSE;
3479 _bfd_stringtab_free (strtab);
3482 abfd->output_has_begun = TRUE;
3484 return TRUE;
3487 /* Create a mapping from a set of sections to a program segment. */
3489 static struct elf_segment_map *
3490 make_mapping (bfd *abfd,
3491 asection **sections,
3492 unsigned int from,
3493 unsigned int to,
3494 bfd_boolean phdr)
3496 struct elf_segment_map *m;
3497 unsigned int i;
3498 asection **hdrpp;
3499 bfd_size_type amt;
3501 amt = sizeof (struct elf_segment_map);
3502 amt += (to - from - 1) * sizeof (asection *);
3503 m = bfd_zalloc (abfd, amt);
3504 if (m == NULL)
3505 return NULL;
3506 m->next = NULL;
3507 m->p_type = PT_LOAD;
3508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3509 m->sections[i - from] = *hdrpp;
3510 m->count = to - from;
3512 if (from == 0 && phdr)
3514 /* Include the headers in the first PT_LOAD segment. */
3515 m->includes_filehdr = 1;
3516 m->includes_phdrs = 1;
3519 return m;
3522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3523 on failure. */
3525 struct elf_segment_map *
3526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3528 struct elf_segment_map *m;
3530 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3531 if (m == NULL)
3532 return NULL;
3533 m->next = NULL;
3534 m->p_type = PT_DYNAMIC;
3535 m->count = 1;
3536 m->sections[0] = dynsec;
3538 return m;
3541 /* Set up a mapping from BFD sections to program segments. */
3543 static bfd_boolean
3544 map_sections_to_segments (bfd *abfd)
3546 asection **sections = NULL;
3547 asection *s;
3548 unsigned int i;
3549 unsigned int count;
3550 struct elf_segment_map *mfirst;
3551 struct elf_segment_map **pm;
3552 struct elf_segment_map *m;
3553 asection *last_hdr;
3554 bfd_vma last_size;
3555 unsigned int phdr_index;
3556 bfd_vma maxpagesize;
3557 asection **hdrpp;
3558 bfd_boolean phdr_in_segment = TRUE;
3559 bfd_boolean writable;
3560 int tls_count = 0;
3561 asection *first_tls = NULL;
3562 asection *dynsec, *eh_frame_hdr;
3563 bfd_size_type amt;
3565 if (elf_tdata (abfd)->segment_map != NULL)
3566 return TRUE;
3568 if (bfd_count_sections (abfd) == 0)
3569 return TRUE;
3571 /* Select the allocated sections, and sort them. */
3573 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3574 if (sections == NULL)
3575 goto error_return;
3577 i = 0;
3578 for (s = abfd->sections; s != NULL; s = s->next)
3580 if ((s->flags & SEC_ALLOC) != 0)
3582 sections[i] = s;
3583 ++i;
3586 BFD_ASSERT (i <= bfd_count_sections (abfd));
3587 count = i;
3589 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3591 /* Build the mapping. */
3593 mfirst = NULL;
3594 pm = &mfirst;
3596 /* If we have a .interp section, then create a PT_PHDR segment for
3597 the program headers and a PT_INTERP segment for the .interp
3598 section. */
3599 s = bfd_get_section_by_name (abfd, ".interp");
3600 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3602 amt = sizeof (struct elf_segment_map);
3603 m = bfd_zalloc (abfd, amt);
3604 if (m == NULL)
3605 goto error_return;
3606 m->next = NULL;
3607 m->p_type = PT_PHDR;
3608 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3609 m->p_flags = PF_R | PF_X;
3610 m->p_flags_valid = 1;
3611 m->includes_phdrs = 1;
3613 *pm = m;
3614 pm = &m->next;
3616 amt = sizeof (struct elf_segment_map);
3617 m = bfd_zalloc (abfd, amt);
3618 if (m == NULL)
3619 goto error_return;
3620 m->next = NULL;
3621 m->p_type = PT_INTERP;
3622 m->count = 1;
3623 m->sections[0] = s;
3625 *pm = m;
3626 pm = &m->next;
3629 /* Look through the sections. We put sections in the same program
3630 segment when the start of the second section can be placed within
3631 a few bytes of the end of the first section. */
3632 last_hdr = NULL;
3633 last_size = 0;
3634 phdr_index = 0;
3635 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3636 writable = FALSE;
3637 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3638 if (dynsec != NULL
3639 && (dynsec->flags & SEC_LOAD) == 0)
3640 dynsec = NULL;
3642 /* Deal with -Ttext or something similar such that the first section
3643 is not adjacent to the program headers. This is an
3644 approximation, since at this point we don't know exactly how many
3645 program headers we will need. */
3646 if (count > 0)
3648 bfd_size_type phdr_size;
3650 phdr_size = elf_tdata (abfd)->program_header_size;
3651 if (phdr_size == 0)
3652 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3653 if ((abfd->flags & D_PAGED) == 0
3654 || sections[0]->lma < phdr_size
3655 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3656 phdr_in_segment = FALSE;
3659 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3661 asection *hdr;
3662 bfd_boolean new_segment;
3664 hdr = *hdrpp;
3666 /* See if this section and the last one will fit in the same
3667 segment. */
3669 if (last_hdr == NULL)
3671 /* If we don't have a segment yet, then we don't need a new
3672 one (we build the last one after this loop). */
3673 new_segment = FALSE;
3675 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3677 /* If this section has a different relation between the
3678 virtual address and the load address, then we need a new
3679 segment. */
3680 new_segment = TRUE;
3682 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3683 < BFD_ALIGN (hdr->lma, maxpagesize))
3685 /* If putting this section in this segment would force us to
3686 skip a page in the segment, then we need a new segment. */
3687 new_segment = TRUE;
3689 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3690 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3692 /* We don't want to put a loadable section after a
3693 nonloadable section in the same segment.
3694 Consider .tbss sections as loadable for this purpose. */
3695 new_segment = TRUE;
3697 else if ((abfd->flags & D_PAGED) == 0)
3699 /* If the file is not demand paged, which means that we
3700 don't require the sections to be correctly aligned in the
3701 file, then there is no other reason for a new segment. */
3702 new_segment = FALSE;
3704 else if (! writable
3705 && (hdr->flags & SEC_READONLY) == 0
3706 && (((last_hdr->lma + last_size - 1)
3707 & ~(maxpagesize - 1))
3708 != (hdr->lma & ~(maxpagesize - 1))))
3710 /* We don't want to put a writable section in a read only
3711 segment, unless they are on the same page in memory
3712 anyhow. We already know that the last section does not
3713 bring us past the current section on the page, so the
3714 only case in which the new section is not on the same
3715 page as the previous section is when the previous section
3716 ends precisely on a page boundary. */
3717 new_segment = TRUE;
3719 else
3721 /* Otherwise, we can use the same segment. */
3722 new_segment = FALSE;
3725 if (! new_segment)
3727 if ((hdr->flags & SEC_READONLY) == 0)
3728 writable = TRUE;
3729 last_hdr = hdr;
3730 /* .tbss sections effectively have zero size. */
3731 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3732 last_size = hdr->size;
3733 else
3734 last_size = 0;
3735 continue;
3738 /* We need a new program segment. We must create a new program
3739 header holding all the sections from phdr_index until hdr. */
3741 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3742 if (m == NULL)
3743 goto error_return;
3745 *pm = m;
3746 pm = &m->next;
3748 if ((hdr->flags & SEC_READONLY) == 0)
3749 writable = TRUE;
3750 else
3751 writable = FALSE;
3753 last_hdr = hdr;
3754 /* .tbss sections effectively have zero size. */
3755 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3756 last_size = hdr->size;
3757 else
3758 last_size = 0;
3759 phdr_index = i;
3760 phdr_in_segment = FALSE;
3763 /* Create a final PT_LOAD program segment. */
3764 if (last_hdr != NULL)
3766 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3767 if (m == NULL)
3768 goto error_return;
3770 *pm = m;
3771 pm = &m->next;
3774 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3775 if (dynsec != NULL)
3777 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3778 if (m == NULL)
3779 goto error_return;
3780 *pm = m;
3781 pm = &m->next;
3784 /* For each loadable .note section, add a PT_NOTE segment. We don't
3785 use bfd_get_section_by_name, because if we link together
3786 nonloadable .note sections and loadable .note sections, we will
3787 generate two .note sections in the output file. FIXME: Using
3788 names for section types is bogus anyhow. */
3789 for (s = abfd->sections; s != NULL; s = s->next)
3791 if ((s->flags & SEC_LOAD) != 0
3792 && strncmp (s->name, ".note", 5) == 0)
3794 amt = sizeof (struct elf_segment_map);
3795 m = bfd_zalloc (abfd, amt);
3796 if (m == NULL)
3797 goto error_return;
3798 m->next = NULL;
3799 m->p_type = PT_NOTE;
3800 m->count = 1;
3801 m->sections[0] = s;
3803 *pm = m;
3804 pm = &m->next;
3806 if (s->flags & SEC_THREAD_LOCAL)
3808 if (! tls_count)
3809 first_tls = s;
3810 tls_count++;
3814 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3815 if (tls_count > 0)
3817 int i;
3819 amt = sizeof (struct elf_segment_map);
3820 amt += (tls_count - 1) * sizeof (asection *);
3821 m = bfd_zalloc (abfd, amt);
3822 if (m == NULL)
3823 goto error_return;
3824 m->next = NULL;
3825 m->p_type = PT_TLS;
3826 m->count = tls_count;
3827 /* Mandated PF_R. */
3828 m->p_flags = PF_R;
3829 m->p_flags_valid = 1;
3830 for (i = 0; i < tls_count; ++i)
3832 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3833 m->sections[i] = first_tls;
3834 first_tls = first_tls->next;
3837 *pm = m;
3838 pm = &m->next;
3841 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3842 segment. */
3843 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3844 if (eh_frame_hdr != NULL
3845 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3847 amt = sizeof (struct elf_segment_map);
3848 m = bfd_zalloc (abfd, amt);
3849 if (m == NULL)
3850 goto error_return;
3851 m->next = NULL;
3852 m->p_type = PT_GNU_EH_FRAME;
3853 m->count = 1;
3854 m->sections[0] = eh_frame_hdr->output_section;
3856 *pm = m;
3857 pm = &m->next;
3860 if (elf_tdata (abfd)->stack_flags)
3862 amt = sizeof (struct elf_segment_map);
3863 m = bfd_zalloc (abfd, amt);
3864 if (m == NULL)
3865 goto error_return;
3866 m->next = NULL;
3867 m->p_type = PT_GNU_STACK;
3868 m->p_flags = elf_tdata (abfd)->stack_flags;
3869 m->p_flags_valid = 1;
3871 *pm = m;
3872 pm = &m->next;
3875 if (elf_tdata (abfd)->relro)
3877 amt = sizeof (struct elf_segment_map);
3878 m = bfd_zalloc (abfd, amt);
3879 if (m == NULL)
3880 goto error_return;
3881 m->next = NULL;
3882 m->p_type = PT_GNU_RELRO;
3883 m->p_flags = PF_R;
3884 m->p_flags_valid = 1;
3886 *pm = m;
3887 pm = &m->next;
3890 free (sections);
3891 sections = NULL;
3893 elf_tdata (abfd)->segment_map = mfirst;
3894 return TRUE;
3896 error_return:
3897 if (sections != NULL)
3898 free (sections);
3899 return FALSE;
3902 /* Sort sections by address. */
3904 static int
3905 elf_sort_sections (const void *arg1, const void *arg2)
3907 const asection *sec1 = *(const asection **) arg1;
3908 const asection *sec2 = *(const asection **) arg2;
3909 bfd_size_type size1, size2;
3911 /* Sort by LMA first, since this is the address used to
3912 place the section into a segment. */
3913 if (sec1->lma < sec2->lma)
3914 return -1;
3915 else if (sec1->lma > sec2->lma)
3916 return 1;
3918 /* Then sort by VMA. Normally the LMA and the VMA will be
3919 the same, and this will do nothing. */
3920 if (sec1->vma < sec2->vma)
3921 return -1;
3922 else if (sec1->vma > sec2->vma)
3923 return 1;
3925 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3927 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3929 if (TOEND (sec1))
3931 if (TOEND (sec2))
3933 /* If the indicies are the same, do not return 0
3934 here, but continue to try the next comparison. */
3935 if (sec1->target_index - sec2->target_index != 0)
3936 return sec1->target_index - sec2->target_index;
3938 else
3939 return 1;
3941 else if (TOEND (sec2))
3942 return -1;
3944 #undef TOEND
3946 /* Sort by size, to put zero sized sections
3947 before others at the same address. */
3949 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3950 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3952 if (size1 < size2)
3953 return -1;
3954 if (size1 > size2)
3955 return 1;
3957 return sec1->target_index - sec2->target_index;
3960 /* Ian Lance Taylor writes:
3962 We shouldn't be using % with a negative signed number. That's just
3963 not good. We have to make sure either that the number is not
3964 negative, or that the number has an unsigned type. When the types
3965 are all the same size they wind up as unsigned. When file_ptr is a
3966 larger signed type, the arithmetic winds up as signed long long,
3967 which is wrong.
3969 What we're trying to say here is something like ``increase OFF by
3970 the least amount that will cause it to be equal to the VMA modulo
3971 the page size.'' */
3972 /* In other words, something like:
3974 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3975 off_offset = off % bed->maxpagesize;
3976 if (vma_offset < off_offset)
3977 adjustment = vma_offset + bed->maxpagesize - off_offset;
3978 else
3979 adjustment = vma_offset - off_offset;
3981 which can can be collapsed into the expression below. */
3983 static file_ptr
3984 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3986 return ((vma - off) % maxpagesize);
3989 /* Assign file positions to the sections based on the mapping from
3990 sections to segments. This function also sets up some fields in
3991 the file header, and writes out the program headers. */
3993 static bfd_boolean
3994 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3996 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3997 unsigned int count;
3998 struct elf_segment_map *m;
3999 unsigned int alloc;
4000 Elf_Internal_Phdr *phdrs;
4001 file_ptr off, voff;
4002 bfd_vma filehdr_vaddr, filehdr_paddr;
4003 bfd_vma phdrs_vaddr, phdrs_paddr;
4004 Elf_Internal_Phdr *p;
4006 if (elf_tdata (abfd)->segment_map == NULL)
4008 if (! map_sections_to_segments (abfd))
4009 return FALSE;
4011 else
4013 /* The placement algorithm assumes that non allocated sections are
4014 not in PT_LOAD segments. We ensure this here by removing such
4015 sections from the segment map. We also remove excluded
4016 sections. */
4017 for (m = elf_tdata (abfd)->segment_map;
4018 m != NULL;
4019 m = m->next)
4021 unsigned int new_count;
4022 unsigned int i;
4024 new_count = 0;
4025 for (i = 0; i < m->count; i ++)
4027 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4028 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4029 || m->p_type != PT_LOAD))
4031 if (i != new_count)
4032 m->sections[new_count] = m->sections[i];
4034 new_count ++;
4038 if (new_count != m->count)
4039 m->count = new_count;
4043 if (bed->elf_backend_modify_segment_map)
4045 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4046 return FALSE;
4049 count = 0;
4050 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4051 ++count;
4053 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4054 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4055 elf_elfheader (abfd)->e_phnum = count;
4057 if (count == 0)
4059 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4060 return TRUE;
4063 /* If we already counted the number of program segments, make sure
4064 that we allocated enough space. This happens when SIZEOF_HEADERS
4065 is used in a linker script. */
4066 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4067 if (alloc != 0 && count > alloc)
4069 ((*_bfd_error_handler)
4070 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4071 abfd, alloc, count));
4072 bfd_set_error (bfd_error_bad_value);
4073 return FALSE;
4076 if (alloc == 0)
4077 alloc = count;
4079 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4080 if (phdrs == NULL)
4081 return FALSE;
4083 off = bed->s->sizeof_ehdr;
4084 off += alloc * bed->s->sizeof_phdr;
4086 filehdr_vaddr = 0;
4087 filehdr_paddr = 0;
4088 phdrs_vaddr = 0;
4089 phdrs_paddr = 0;
4091 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4092 m != NULL;
4093 m = m->next, p++)
4095 unsigned int i;
4096 asection **secpp;
4098 /* If elf_segment_map is not from map_sections_to_segments, the
4099 sections may not be correctly ordered. NOTE: sorting should
4100 not be done to the PT_NOTE section of a corefile, which may
4101 contain several pseudo-sections artificially created by bfd.
4102 Sorting these pseudo-sections breaks things badly. */
4103 if (m->count > 1
4104 && !(elf_elfheader (abfd)->e_type == ET_CORE
4105 && m->p_type == PT_NOTE))
4106 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4107 elf_sort_sections);
4109 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4110 number of sections with contents contributing to both p_filesz
4111 and p_memsz, followed by a number of sections with no contents
4112 that just contribute to p_memsz. In this loop, OFF tracks next
4113 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4114 an adjustment we use for segments that have no file contents
4115 but need zero filled memory allocation. */
4116 voff = 0;
4117 p->p_type = m->p_type;
4118 p->p_flags = m->p_flags;
4120 if (p->p_type == PT_LOAD
4121 && m->count > 0)
4123 bfd_size_type align;
4124 bfd_vma adjust;
4125 unsigned int align_power = 0;
4127 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4129 unsigned int secalign;
4131 secalign = bfd_get_section_alignment (abfd, *secpp);
4132 if (secalign > align_power)
4133 align_power = secalign;
4135 align = (bfd_size_type) 1 << align_power;
4137 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4138 align = bed->maxpagesize;
4140 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4141 off += adjust;
4142 if (adjust != 0
4143 && !m->includes_filehdr
4144 && !m->includes_phdrs
4145 && (ufile_ptr) off >= align)
4147 /* If the first section isn't loadable, the same holds for
4148 any other sections. Since the segment won't need file
4149 space, we can make p_offset overlap some prior segment.
4150 However, .tbss is special. If a segment starts with
4151 .tbss, we need to look at the next section to decide
4152 whether the segment has any loadable sections. */
4153 i = 0;
4154 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4156 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4157 || ++i >= m->count)
4159 off -= adjust;
4160 voff = adjust - align;
4161 break;
4166 /* Make sure the .dynamic section is the first section in the
4167 PT_DYNAMIC segment. */
4168 else if (p->p_type == PT_DYNAMIC
4169 && m->count > 1
4170 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4172 _bfd_error_handler
4173 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4174 abfd);
4175 bfd_set_error (bfd_error_bad_value);
4176 return FALSE;
4179 if (m->count == 0)
4180 p->p_vaddr = 0;
4181 else
4182 p->p_vaddr = m->sections[0]->vma;
4184 if (m->p_paddr_valid)
4185 p->p_paddr = m->p_paddr;
4186 else if (m->count == 0)
4187 p->p_paddr = 0;
4188 else
4189 p->p_paddr = m->sections[0]->lma;
4191 if (p->p_type == PT_LOAD
4192 && (abfd->flags & D_PAGED) != 0)
4193 p->p_align = bed->maxpagesize;
4194 else if (m->count == 0)
4195 p->p_align = 1 << bed->s->log_file_align;
4196 else
4197 p->p_align = 0;
4199 p->p_offset = 0;
4200 p->p_filesz = 0;
4201 p->p_memsz = 0;
4203 if (m->includes_filehdr)
4205 if (! m->p_flags_valid)
4206 p->p_flags |= PF_R;
4207 p->p_offset = 0;
4208 p->p_filesz = bed->s->sizeof_ehdr;
4209 p->p_memsz = bed->s->sizeof_ehdr;
4210 if (m->count > 0)
4212 BFD_ASSERT (p->p_type == PT_LOAD);
4214 if (p->p_vaddr < (bfd_vma) off)
4216 (*_bfd_error_handler)
4217 (_("%B: Not enough room for program headers, try linking with -N"),
4218 abfd);
4219 bfd_set_error (bfd_error_bad_value);
4220 return FALSE;
4223 p->p_vaddr -= off;
4224 if (! m->p_paddr_valid)
4225 p->p_paddr -= off;
4227 if (p->p_type == PT_LOAD)
4229 filehdr_vaddr = p->p_vaddr;
4230 filehdr_paddr = p->p_paddr;
4234 if (m->includes_phdrs)
4236 if (! m->p_flags_valid)
4237 p->p_flags |= PF_R;
4239 if (m->includes_filehdr)
4241 if (p->p_type == PT_LOAD)
4243 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4244 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4247 else
4249 p->p_offset = bed->s->sizeof_ehdr;
4251 if (m->count > 0)
4253 BFD_ASSERT (p->p_type == PT_LOAD);
4254 p->p_vaddr -= off - p->p_offset;
4255 if (! m->p_paddr_valid)
4256 p->p_paddr -= off - p->p_offset;
4259 if (p->p_type == PT_LOAD)
4261 phdrs_vaddr = p->p_vaddr;
4262 phdrs_paddr = p->p_paddr;
4264 else
4265 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4268 p->p_filesz += alloc * bed->s->sizeof_phdr;
4269 p->p_memsz += alloc * bed->s->sizeof_phdr;
4272 if (p->p_type == PT_LOAD
4273 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4275 if (! m->includes_filehdr && ! m->includes_phdrs)
4276 p->p_offset = off + voff;
4277 else
4279 file_ptr adjust;
4281 adjust = off - (p->p_offset + p->p_filesz);
4282 p->p_filesz += adjust;
4283 p->p_memsz += adjust;
4287 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4289 asection *sec;
4290 flagword flags;
4291 bfd_size_type align;
4293 sec = *secpp;
4294 flags = sec->flags;
4295 align = 1 << bfd_get_section_alignment (abfd, sec);
4297 if (p->p_type == PT_LOAD
4298 || p->p_type == PT_TLS)
4300 bfd_signed_vma adjust;
4302 if ((flags & SEC_LOAD) != 0)
4304 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4305 if (adjust < 0)
4307 (*_bfd_error_handler)
4308 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4309 abfd, sec, (unsigned long) sec->lma);
4310 adjust = 0;
4312 off += adjust;
4313 p->p_filesz += adjust;
4314 p->p_memsz += adjust;
4316 /* .tbss is special. It doesn't contribute to p_memsz of
4317 normal segments. */
4318 else if ((flags & SEC_THREAD_LOCAL) == 0
4319 || p->p_type == PT_TLS)
4321 /* The section VMA must equal the file position
4322 modulo the page size. */
4323 bfd_size_type page = align;
4324 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4325 page = bed->maxpagesize;
4326 adjust = vma_page_aligned_bias (sec->vma,
4327 p->p_vaddr + p->p_memsz,
4328 page);
4329 p->p_memsz += adjust;
4333 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4335 /* The section at i == 0 is the one that actually contains
4336 everything. */
4337 if (i == 0)
4339 sec->filepos = off;
4340 off += sec->size;
4341 p->p_filesz = sec->size;
4342 p->p_memsz = 0;
4343 p->p_align = 1;
4345 else
4347 /* The rest are fake sections that shouldn't be written. */
4348 sec->filepos = 0;
4349 sec->size = 0;
4350 sec->flags = 0;
4351 continue;
4354 else
4356 if (p->p_type == PT_LOAD)
4358 sec->filepos = off;
4359 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4360 1997, and the exact reason for it isn't clear. One
4361 plausible explanation is that it is to work around
4362 a problem we have with linker scripts using data
4363 statements in NOLOAD sections. I don't think it
4364 makes a great deal of sense to have such a section
4365 assigned to a PT_LOAD segment, but apparently
4366 people do this. The data statement results in a
4367 bfd_data_link_order being built, and these need
4368 section contents to write into. Eventually, we get
4369 to _bfd_elf_write_object_contents which writes any
4370 section with contents to the output. Make room
4371 here for the write, so that following segments are
4372 not trashed. */
4373 if ((flags & SEC_LOAD) != 0
4374 || (flags & SEC_HAS_CONTENTS) != 0)
4375 off += sec->size;
4378 if ((flags & SEC_LOAD) != 0)
4380 p->p_filesz += sec->size;
4381 p->p_memsz += sec->size;
4383 /* PR ld/594: Sections in note segments which are not loaded
4384 contribute to the file size but not the in-memory size. */
4385 else if (p->p_type == PT_NOTE
4386 && (flags & SEC_HAS_CONTENTS) != 0)
4387 p->p_filesz += sec->size;
4389 /* .tbss is special. It doesn't contribute to p_memsz of
4390 normal segments. */
4391 else if ((flags & SEC_THREAD_LOCAL) == 0
4392 || p->p_type == PT_TLS)
4393 p->p_memsz += sec->size;
4395 if (p->p_type == PT_TLS
4396 && sec->size == 0
4397 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4399 struct bfd_link_order *o;
4400 bfd_vma tbss_size = 0;
4402 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4403 if (tbss_size < o->offset + o->size)
4404 tbss_size = o->offset + o->size;
4406 p->p_memsz += tbss_size;
4409 if (align > p->p_align
4410 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4411 p->p_align = align;
4414 if (! m->p_flags_valid)
4416 p->p_flags |= PF_R;
4417 if ((flags & SEC_CODE) != 0)
4418 p->p_flags |= PF_X;
4419 if ((flags & SEC_READONLY) == 0)
4420 p->p_flags |= PF_W;
4425 /* Now that we have set the section file positions, we can set up
4426 the file positions for the non PT_LOAD segments. */
4427 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4428 m != NULL;
4429 m = m->next, p++)
4431 if (p->p_type != PT_LOAD && m->count > 0)
4433 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4434 /* If the section has not yet been assigned a file position,
4435 do so now. The ARM BPABI requires that .dynamic section
4436 not be marked SEC_ALLOC because it is not part of any
4437 PT_LOAD segment, so it will not be processed above. */
4438 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4440 unsigned int i;
4441 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4443 i = 1;
4444 while (i_shdrpp[i]->bfd_section != m->sections[0])
4445 ++i;
4446 off = (_bfd_elf_assign_file_position_for_section
4447 (i_shdrpp[i], off, TRUE));
4448 p->p_filesz = m->sections[0]->size;
4450 p->p_offset = m->sections[0]->filepos;
4452 if (m->count == 0)
4454 if (m->includes_filehdr)
4456 p->p_vaddr = filehdr_vaddr;
4457 if (! m->p_paddr_valid)
4458 p->p_paddr = filehdr_paddr;
4460 else if (m->includes_phdrs)
4462 p->p_vaddr = phdrs_vaddr;
4463 if (! m->p_paddr_valid)
4464 p->p_paddr = phdrs_paddr;
4466 else if (p->p_type == PT_GNU_RELRO)
4468 Elf_Internal_Phdr *lp;
4470 for (lp = phdrs; lp < phdrs + count; ++lp)
4472 if (lp->p_type == PT_LOAD
4473 && lp->p_vaddr <= link_info->relro_end
4474 && lp->p_vaddr >= link_info->relro_start
4475 && lp->p_vaddr + lp->p_filesz
4476 >= link_info->relro_end)
4477 break;
4480 if (lp < phdrs + count
4481 && link_info->relro_end > lp->p_vaddr)
4483 p->p_vaddr = lp->p_vaddr;
4484 p->p_paddr = lp->p_paddr;
4485 p->p_offset = lp->p_offset;
4486 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4487 p->p_memsz = p->p_filesz;
4488 p->p_align = 1;
4489 p->p_flags = (lp->p_flags & ~PF_W);
4491 else
4493 memset (p, 0, sizeof *p);
4494 p->p_type = PT_NULL;
4500 /* Clear out any program headers we allocated but did not use. */
4501 for (; count < alloc; count++, p++)
4503 memset (p, 0, sizeof *p);
4504 p->p_type = PT_NULL;
4507 elf_tdata (abfd)->phdr = phdrs;
4509 elf_tdata (abfd)->next_file_pos = off;
4511 /* Write out the program headers. */
4512 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4513 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4514 return FALSE;
4516 return TRUE;
4519 /* Get the size of the program header.
4521 If this is called by the linker before any of the section VMA's are set, it
4522 can't calculate the correct value for a strange memory layout. This only
4523 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4524 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4525 data segment (exclusive of .interp and .dynamic).
4527 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4528 will be two segments. */
4530 static bfd_size_type
4531 get_program_header_size (bfd *abfd)
4533 size_t segs;
4534 asection *s;
4535 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4537 /* We can't return a different result each time we're called. */
4538 if (elf_tdata (abfd)->program_header_size != 0)
4539 return elf_tdata (abfd)->program_header_size;
4541 if (elf_tdata (abfd)->segment_map != NULL)
4543 struct elf_segment_map *m;
4545 segs = 0;
4546 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4547 ++segs;
4548 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4549 return elf_tdata (abfd)->program_header_size;
4552 /* Assume we will need exactly two PT_LOAD segments: one for text
4553 and one for data. */
4554 segs = 2;
4556 s = bfd_get_section_by_name (abfd, ".interp");
4557 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4559 /* If we have a loadable interpreter section, we need a
4560 PT_INTERP segment. In this case, assume we also need a
4561 PT_PHDR segment, although that may not be true for all
4562 targets. */
4563 segs += 2;
4566 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4568 /* We need a PT_DYNAMIC segment. */
4569 ++segs;
4572 if (elf_tdata (abfd)->eh_frame_hdr)
4574 /* We need a PT_GNU_EH_FRAME segment. */
4575 ++segs;
4578 if (elf_tdata (abfd)->stack_flags)
4580 /* We need a PT_GNU_STACK segment. */
4581 ++segs;
4584 if (elf_tdata (abfd)->relro)
4586 /* We need a PT_GNU_RELRO segment. */
4587 ++segs;
4590 for (s = abfd->sections; s != NULL; s = s->next)
4592 if ((s->flags & SEC_LOAD) != 0
4593 && strncmp (s->name, ".note", 5) == 0)
4595 /* We need a PT_NOTE segment. */
4596 ++segs;
4600 for (s = abfd->sections; s != NULL; s = s->next)
4602 if (s->flags & SEC_THREAD_LOCAL)
4604 /* We need a PT_TLS segment. */
4605 ++segs;
4606 break;
4610 /* Let the backend count up any program headers it might need. */
4611 if (bed->elf_backend_additional_program_headers)
4613 int a;
4615 a = (*bed->elf_backend_additional_program_headers) (abfd);
4616 if (a == -1)
4617 abort ();
4618 segs += a;
4621 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4622 return elf_tdata (abfd)->program_header_size;
4625 /* Work out the file positions of all the sections. This is called by
4626 _bfd_elf_compute_section_file_positions. All the section sizes and
4627 VMAs must be known before this is called.
4629 Reloc sections come in two flavours: Those processed specially as
4630 "side-channel" data attached to a section to which they apply, and
4631 those that bfd doesn't process as relocations. The latter sort are
4632 stored in a normal bfd section by bfd_section_from_shdr. We don't
4633 consider the former sort here, unless they form part of the loadable
4634 image. Reloc sections not assigned here will be handled later by
4635 assign_file_positions_for_relocs.
4637 We also don't set the positions of the .symtab and .strtab here. */
4639 static bfd_boolean
4640 assign_file_positions_except_relocs (bfd *abfd,
4641 struct bfd_link_info *link_info)
4643 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4644 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4645 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4646 unsigned int num_sec = elf_numsections (abfd);
4647 file_ptr off;
4648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4650 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4651 && bfd_get_format (abfd) != bfd_core)
4653 Elf_Internal_Shdr **hdrpp;
4654 unsigned int i;
4656 /* Start after the ELF header. */
4657 off = i_ehdrp->e_ehsize;
4659 /* We are not creating an executable, which means that we are
4660 not creating a program header, and that the actual order of
4661 the sections in the file is unimportant. */
4662 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4664 Elf_Internal_Shdr *hdr;
4666 hdr = *hdrpp;
4667 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4668 && hdr->bfd_section == NULL)
4669 || i == tdata->symtab_section
4670 || i == tdata->symtab_shndx_section
4671 || i == tdata->strtab_section)
4673 hdr->sh_offset = -1;
4675 else
4676 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4678 if (i == SHN_LORESERVE - 1)
4680 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4681 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4685 else
4687 unsigned int i;
4688 Elf_Internal_Shdr **hdrpp;
4690 /* Assign file positions for the loaded sections based on the
4691 assignment of sections to segments. */
4692 if (! assign_file_positions_for_segments (abfd, link_info))
4693 return FALSE;
4695 /* Assign file positions for the other sections. */
4697 off = elf_tdata (abfd)->next_file_pos;
4698 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4700 Elf_Internal_Shdr *hdr;
4702 hdr = *hdrpp;
4703 if (hdr->bfd_section != NULL
4704 && hdr->bfd_section->filepos != 0)
4705 hdr->sh_offset = hdr->bfd_section->filepos;
4706 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4708 ((*_bfd_error_handler)
4709 (_("%B: warning: allocated section `%s' not in segment"),
4710 abfd,
4711 (hdr->bfd_section == NULL
4712 ? "*unknown*"
4713 : hdr->bfd_section->name)));
4714 if ((abfd->flags & D_PAGED) != 0)
4715 off += vma_page_aligned_bias (hdr->sh_addr, off,
4716 bed->maxpagesize);
4717 else
4718 off += vma_page_aligned_bias (hdr->sh_addr, off,
4719 hdr->sh_addralign);
4720 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4721 FALSE);
4723 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4724 && hdr->bfd_section == NULL)
4725 || hdr == i_shdrpp[tdata->symtab_section]
4726 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4727 || hdr == i_shdrpp[tdata->strtab_section])
4728 hdr->sh_offset = -1;
4729 else
4730 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4732 if (i == SHN_LORESERVE - 1)
4734 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4735 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4740 /* Place the section headers. */
4741 off = align_file_position (off, 1 << bed->s->log_file_align);
4742 i_ehdrp->e_shoff = off;
4743 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4745 elf_tdata (abfd)->next_file_pos = off;
4747 return TRUE;
4750 static bfd_boolean
4751 prep_headers (bfd *abfd)
4753 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4754 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4755 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4756 struct elf_strtab_hash *shstrtab;
4757 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4759 i_ehdrp = elf_elfheader (abfd);
4760 i_shdrp = elf_elfsections (abfd);
4762 shstrtab = _bfd_elf_strtab_init ();
4763 if (shstrtab == NULL)
4764 return FALSE;
4766 elf_shstrtab (abfd) = shstrtab;
4768 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4769 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4770 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4771 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4773 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4774 i_ehdrp->e_ident[EI_DATA] =
4775 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4776 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4778 if ((abfd->flags & DYNAMIC) != 0)
4779 i_ehdrp->e_type = ET_DYN;
4780 else if ((abfd->flags & EXEC_P) != 0)
4781 i_ehdrp->e_type = ET_EXEC;
4782 else if (bfd_get_format (abfd) == bfd_core)
4783 i_ehdrp->e_type = ET_CORE;
4784 else
4785 i_ehdrp->e_type = ET_REL;
4787 switch (bfd_get_arch (abfd))
4789 case bfd_arch_unknown:
4790 i_ehdrp->e_machine = EM_NONE;
4791 break;
4793 /* There used to be a long list of cases here, each one setting
4794 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4795 in the corresponding bfd definition. To avoid duplication,
4796 the switch was removed. Machines that need special handling
4797 can generally do it in elf_backend_final_write_processing(),
4798 unless they need the information earlier than the final write.
4799 Such need can generally be supplied by replacing the tests for
4800 e_machine with the conditions used to determine it. */
4801 default:
4802 i_ehdrp->e_machine = bed->elf_machine_code;
4805 i_ehdrp->e_version = bed->s->ev_current;
4806 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4808 /* No program header, for now. */
4809 i_ehdrp->e_phoff = 0;
4810 i_ehdrp->e_phentsize = 0;
4811 i_ehdrp->e_phnum = 0;
4813 /* Each bfd section is section header entry. */
4814 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4815 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4817 /* If we're building an executable, we'll need a program header table. */
4818 if (abfd->flags & EXEC_P)
4819 /* It all happens later. */
4821 else
4823 i_ehdrp->e_phentsize = 0;
4824 i_phdrp = 0;
4825 i_ehdrp->e_phoff = 0;
4828 elf_tdata (abfd)->symtab_hdr.sh_name =
4829 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4830 elf_tdata (abfd)->strtab_hdr.sh_name =
4831 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4832 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4833 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4834 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4835 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4836 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4837 return FALSE;
4839 return TRUE;
4842 /* Assign file positions for all the reloc sections which are not part
4843 of the loadable file image. */
4845 void
4846 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4848 file_ptr off;
4849 unsigned int i, num_sec;
4850 Elf_Internal_Shdr **shdrpp;
4852 off = elf_tdata (abfd)->next_file_pos;
4854 num_sec = elf_numsections (abfd);
4855 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4857 Elf_Internal_Shdr *shdrp;
4859 shdrp = *shdrpp;
4860 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4861 && shdrp->sh_offset == -1)
4862 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4865 elf_tdata (abfd)->next_file_pos = off;
4868 bfd_boolean
4869 _bfd_elf_write_object_contents (bfd *abfd)
4871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4872 Elf_Internal_Ehdr *i_ehdrp;
4873 Elf_Internal_Shdr **i_shdrp;
4874 bfd_boolean failed;
4875 unsigned int count, num_sec;
4877 if (! abfd->output_has_begun
4878 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4879 return FALSE;
4881 i_shdrp = elf_elfsections (abfd);
4882 i_ehdrp = elf_elfheader (abfd);
4884 failed = FALSE;
4885 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4886 if (failed)
4887 return FALSE;
4889 _bfd_elf_assign_file_positions_for_relocs (abfd);
4891 /* After writing the headers, we need to write the sections too... */
4892 num_sec = elf_numsections (abfd);
4893 for (count = 1; count < num_sec; count++)
4895 if (bed->elf_backend_section_processing)
4896 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4897 if (i_shdrp[count]->contents)
4899 bfd_size_type amt = i_shdrp[count]->sh_size;
4901 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4902 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4903 return FALSE;
4905 if (count == SHN_LORESERVE - 1)
4906 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4909 /* Write out the section header names. */
4910 if (elf_shstrtab (abfd) != NULL
4911 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4912 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4913 return FALSE;
4915 if (bed->elf_backend_final_write_processing)
4916 (*bed->elf_backend_final_write_processing) (abfd,
4917 elf_tdata (abfd)->linker);
4919 return bed->s->write_shdrs_and_ehdr (abfd);
4922 bfd_boolean
4923 _bfd_elf_write_corefile_contents (bfd *abfd)
4925 /* Hopefully this can be done just like an object file. */
4926 return _bfd_elf_write_object_contents (abfd);
4929 /* Given a section, search the header to find them. */
4932 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4934 const struct elf_backend_data *bed;
4935 int index;
4937 if (elf_section_data (asect) != NULL
4938 && elf_section_data (asect)->this_idx != 0)
4939 return elf_section_data (asect)->this_idx;
4941 if (bfd_is_abs_section (asect))
4942 index = SHN_ABS;
4943 else if (bfd_is_com_section (asect))
4944 index = SHN_COMMON;
4945 else if (bfd_is_und_section (asect))
4946 index = SHN_UNDEF;
4947 else
4948 index = -1;
4950 bed = get_elf_backend_data (abfd);
4951 if (bed->elf_backend_section_from_bfd_section)
4953 int retval = index;
4955 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4956 return retval;
4959 if (index == -1)
4960 bfd_set_error (bfd_error_nonrepresentable_section);
4962 return index;
4965 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4966 on error. */
4969 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4971 asymbol *asym_ptr = *asym_ptr_ptr;
4972 int idx;
4973 flagword flags = asym_ptr->flags;
4975 /* When gas creates relocations against local labels, it creates its
4976 own symbol for the section, but does put the symbol into the
4977 symbol chain, so udata is 0. When the linker is generating
4978 relocatable output, this section symbol may be for one of the
4979 input sections rather than the output section. */
4980 if (asym_ptr->udata.i == 0
4981 && (flags & BSF_SECTION_SYM)
4982 && asym_ptr->section)
4984 int indx;
4986 if (asym_ptr->section->output_section != NULL)
4987 indx = asym_ptr->section->output_section->index;
4988 else
4989 indx = asym_ptr->section->index;
4990 if (indx < elf_num_section_syms (abfd)
4991 && elf_section_syms (abfd)[indx] != NULL)
4992 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4995 idx = asym_ptr->udata.i;
4997 if (idx == 0)
4999 /* This case can occur when using --strip-symbol on a symbol
5000 which is used in a relocation entry. */
5001 (*_bfd_error_handler)
5002 (_("%B: symbol `%s' required but not present"),
5003 abfd, bfd_asymbol_name (asym_ptr));
5004 bfd_set_error (bfd_error_no_symbols);
5005 return -1;
5008 #if DEBUG & 4
5010 fprintf (stderr,
5011 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5012 (long) asym_ptr, asym_ptr->name, idx, flags,
5013 elf_symbol_flags (flags));
5014 fflush (stderr);
5016 #endif
5018 return idx;
5021 /* Copy private BFD data. This copies any program header information. */
5023 static bfd_boolean
5024 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5026 Elf_Internal_Ehdr *iehdr;
5027 struct elf_segment_map *map;
5028 struct elf_segment_map *map_first;
5029 struct elf_segment_map **pointer_to_map;
5030 Elf_Internal_Phdr *segment;
5031 asection *section;
5032 unsigned int i;
5033 unsigned int num_segments;
5034 bfd_boolean phdr_included = FALSE;
5035 bfd_vma maxpagesize;
5036 struct elf_segment_map *phdr_adjust_seg = NULL;
5037 unsigned int phdr_adjust_num = 0;
5038 const struct elf_backend_data *bed;
5040 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5041 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5042 return TRUE;
5044 if (elf_tdata (ibfd)->phdr == NULL)
5045 return TRUE;
5047 bed = get_elf_backend_data (ibfd);
5048 iehdr = elf_elfheader (ibfd);
5050 map_first = NULL;
5051 pointer_to_map = &map_first;
5053 num_segments = elf_elfheader (ibfd)->e_phnum;
5054 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5056 /* Returns the end address of the segment + 1. */
5057 #define SEGMENT_END(segment, start) \
5058 (start + (segment->p_memsz > segment->p_filesz \
5059 ? segment->p_memsz : segment->p_filesz))
5061 #define SECTION_SIZE(section, segment) \
5062 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5063 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5064 ? section->size : 0)
5066 /* Returns TRUE if the given section is contained within
5067 the given segment. VMA addresses are compared. */
5068 #define IS_CONTAINED_BY_VMA(section, segment) \
5069 (section->vma >= segment->p_vaddr \
5070 && (section->vma + SECTION_SIZE (section, segment) \
5071 <= (SEGMENT_END (segment, segment->p_vaddr))))
5073 /* Returns TRUE if the given section is contained within
5074 the given segment. LMA addresses are compared. */
5075 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5076 (section->lma >= base \
5077 && (section->lma + SECTION_SIZE (section, segment) \
5078 <= SEGMENT_END (segment, base)))
5080 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5081 #define IS_COREFILE_NOTE(p, s) \
5082 (p->p_type == PT_NOTE \
5083 && bfd_get_format (ibfd) == bfd_core \
5084 && s->vma == 0 && s->lma == 0 \
5085 && (bfd_vma) s->filepos >= p->p_offset \
5086 && ((bfd_vma) s->filepos + s->size \
5087 <= p->p_offset + p->p_filesz))
5089 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5090 linker, which generates a PT_INTERP section with p_vaddr and
5091 p_memsz set to 0. */
5092 #define IS_SOLARIS_PT_INTERP(p, s) \
5093 (p->p_vaddr == 0 \
5094 && p->p_paddr == 0 \
5095 && p->p_memsz == 0 \
5096 && p->p_filesz > 0 \
5097 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5098 && s->size > 0 \
5099 && (bfd_vma) s->filepos >= p->p_offset \
5100 && ((bfd_vma) s->filepos + s->size \
5101 <= p->p_offset + p->p_filesz))
5103 /* Decide if the given section should be included in the given segment.
5104 A section will be included if:
5105 1. It is within the address space of the segment -- we use the LMA
5106 if that is set for the segment and the VMA otherwise,
5107 2. It is an allocated segment,
5108 3. There is an output section associated with it,
5109 4. The section has not already been allocated to a previous segment.
5110 5. PT_GNU_STACK segments do not include any sections.
5111 6. PT_TLS segment includes only SHF_TLS sections.
5112 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5113 8. PT_DYNAMIC should not contain empty sections at the beginning
5114 (with the possible exception of .dynamic). */
5115 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5116 ((((segment->p_paddr \
5117 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5118 : IS_CONTAINED_BY_VMA (section, segment)) \
5119 && (section->flags & SEC_ALLOC) != 0) \
5120 || IS_COREFILE_NOTE (segment, section)) \
5121 && section->output_section != NULL \
5122 && segment->p_type != PT_GNU_STACK \
5123 && (segment->p_type != PT_TLS \
5124 || (section->flags & SEC_THREAD_LOCAL)) \
5125 && (segment->p_type == PT_LOAD \
5126 || segment->p_type == PT_TLS \
5127 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5128 && (segment->p_type != PT_DYNAMIC \
5129 || SECTION_SIZE (section, segment) > 0 \
5130 || (segment->p_paddr \
5131 ? segment->p_paddr != section->lma \
5132 : segment->p_vaddr != section->vma) \
5133 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5134 == 0)) \
5135 && ! section->segment_mark)
5137 /* Returns TRUE iff seg1 starts after the end of seg2. */
5138 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5139 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5141 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5142 their VMA address ranges and their LMA address ranges overlap.
5143 It is possible to have overlapping VMA ranges without overlapping LMA
5144 ranges. RedBoot images for example can have both .data and .bss mapped
5145 to the same VMA range, but with the .data section mapped to a different
5146 LMA. */
5147 #define SEGMENT_OVERLAPS(seg1, seg2) \
5148 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5149 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5150 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5151 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5153 /* Initialise the segment mark field. */
5154 for (section = ibfd->sections; section != NULL; section = section->next)
5155 section->segment_mark = FALSE;
5157 /* Scan through the segments specified in the program header
5158 of the input BFD. For this first scan we look for overlaps
5159 in the loadable segments. These can be created by weird
5160 parameters to objcopy. Also, fix some solaris weirdness. */
5161 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5162 i < num_segments;
5163 i++, segment++)
5165 unsigned int j;
5166 Elf_Internal_Phdr *segment2;
5168 if (segment->p_type == PT_INTERP)
5169 for (section = ibfd->sections; section; section = section->next)
5170 if (IS_SOLARIS_PT_INTERP (segment, section))
5172 /* Mininal change so that the normal section to segment
5173 assignment code will work. */
5174 segment->p_vaddr = section->vma;
5175 break;
5178 if (segment->p_type != PT_LOAD)
5179 continue;
5181 /* Determine if this segment overlaps any previous segments. */
5182 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5184 bfd_signed_vma extra_length;
5186 if (segment2->p_type != PT_LOAD
5187 || ! SEGMENT_OVERLAPS (segment, segment2))
5188 continue;
5190 /* Merge the two segments together. */
5191 if (segment2->p_vaddr < segment->p_vaddr)
5193 /* Extend SEGMENT2 to include SEGMENT and then delete
5194 SEGMENT. */
5195 extra_length =
5196 SEGMENT_END (segment, segment->p_vaddr)
5197 - SEGMENT_END (segment2, segment2->p_vaddr);
5199 if (extra_length > 0)
5201 segment2->p_memsz += extra_length;
5202 segment2->p_filesz += extra_length;
5205 segment->p_type = PT_NULL;
5207 /* Since we have deleted P we must restart the outer loop. */
5208 i = 0;
5209 segment = elf_tdata (ibfd)->phdr;
5210 break;
5212 else
5214 /* Extend SEGMENT to include SEGMENT2 and then delete
5215 SEGMENT2. */
5216 extra_length =
5217 SEGMENT_END (segment2, segment2->p_vaddr)
5218 - SEGMENT_END (segment, segment->p_vaddr);
5220 if (extra_length > 0)
5222 segment->p_memsz += extra_length;
5223 segment->p_filesz += extra_length;
5226 segment2->p_type = PT_NULL;
5231 /* The second scan attempts to assign sections to segments. */
5232 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5233 i < num_segments;
5234 i ++, segment ++)
5236 unsigned int section_count;
5237 asection ** sections;
5238 asection * output_section;
5239 unsigned int isec;
5240 bfd_vma matching_lma;
5241 bfd_vma suggested_lma;
5242 unsigned int j;
5243 bfd_size_type amt;
5245 if (segment->p_type == PT_NULL)
5246 continue;
5248 /* Compute how many sections might be placed into this segment. */
5249 for (section = ibfd->sections, section_count = 0;
5250 section != NULL;
5251 section = section->next)
5252 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5253 ++section_count;
5255 /* Allocate a segment map big enough to contain
5256 all of the sections we have selected. */
5257 amt = sizeof (struct elf_segment_map);
5258 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5259 map = bfd_alloc (obfd, amt);
5260 if (map == NULL)
5261 return FALSE;
5263 /* Initialise the fields of the segment map. Default to
5264 using the physical address of the segment in the input BFD. */
5265 map->next = NULL;
5266 map->p_type = segment->p_type;
5267 map->p_flags = segment->p_flags;
5268 map->p_flags_valid = 1;
5269 map->p_paddr = segment->p_paddr;
5270 map->p_paddr_valid = 1;
5272 /* Determine if this segment contains the ELF file header
5273 and if it contains the program headers themselves. */
5274 map->includes_filehdr = (segment->p_offset == 0
5275 && segment->p_filesz >= iehdr->e_ehsize);
5277 map->includes_phdrs = 0;
5279 if (! phdr_included || segment->p_type != PT_LOAD)
5281 map->includes_phdrs =
5282 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5283 && (segment->p_offset + segment->p_filesz
5284 >= ((bfd_vma) iehdr->e_phoff
5285 + iehdr->e_phnum * iehdr->e_phentsize)));
5287 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5288 phdr_included = TRUE;
5291 if (section_count == 0)
5293 /* Special segments, such as the PT_PHDR segment, may contain
5294 no sections, but ordinary, loadable segments should contain
5295 something. They are allowed by the ELF spec however, so only
5296 a warning is produced. */
5297 if (segment->p_type == PT_LOAD)
5298 (*_bfd_error_handler)
5299 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5300 ibfd);
5302 map->count = 0;
5303 *pointer_to_map = map;
5304 pointer_to_map = &map->next;
5306 continue;
5309 /* Now scan the sections in the input BFD again and attempt
5310 to add their corresponding output sections to the segment map.
5311 The problem here is how to handle an output section which has
5312 been moved (ie had its LMA changed). There are four possibilities:
5314 1. None of the sections have been moved.
5315 In this case we can continue to use the segment LMA from the
5316 input BFD.
5318 2. All of the sections have been moved by the same amount.
5319 In this case we can change the segment's LMA to match the LMA
5320 of the first section.
5322 3. Some of the sections have been moved, others have not.
5323 In this case those sections which have not been moved can be
5324 placed in the current segment which will have to have its size,
5325 and possibly its LMA changed, and a new segment or segments will
5326 have to be created to contain the other sections.
5328 4. The sections have been moved, but not by the same amount.
5329 In this case we can change the segment's LMA to match the LMA
5330 of the first section and we will have to create a new segment
5331 or segments to contain the other sections.
5333 In order to save time, we allocate an array to hold the section
5334 pointers that we are interested in. As these sections get assigned
5335 to a segment, they are removed from this array. */
5337 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5338 to work around this long long bug. */
5339 sections = bfd_malloc2 (section_count, sizeof (asection *));
5340 if (sections == NULL)
5341 return FALSE;
5343 /* Step One: Scan for segment vs section LMA conflicts.
5344 Also add the sections to the section array allocated above.
5345 Also add the sections to the current segment. In the common
5346 case, where the sections have not been moved, this means that
5347 we have completely filled the segment, and there is nothing
5348 more to do. */
5349 isec = 0;
5350 matching_lma = 0;
5351 suggested_lma = 0;
5353 for (j = 0, section = ibfd->sections;
5354 section != NULL;
5355 section = section->next)
5357 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5359 output_section = section->output_section;
5361 sections[j ++] = section;
5363 /* The Solaris native linker always sets p_paddr to 0.
5364 We try to catch that case here, and set it to the
5365 correct value. Note - some backends require that
5366 p_paddr be left as zero. */
5367 if (segment->p_paddr == 0
5368 && segment->p_vaddr != 0
5369 && (! bed->want_p_paddr_set_to_zero)
5370 && isec == 0
5371 && output_section->lma != 0
5372 && (output_section->vma == (segment->p_vaddr
5373 + (map->includes_filehdr
5374 ? iehdr->e_ehsize
5375 : 0)
5376 + (map->includes_phdrs
5377 ? (iehdr->e_phnum
5378 * iehdr->e_phentsize)
5379 : 0))))
5380 map->p_paddr = segment->p_vaddr;
5382 /* Match up the physical address of the segment with the
5383 LMA address of the output section. */
5384 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5385 || IS_COREFILE_NOTE (segment, section)
5386 || (bed->want_p_paddr_set_to_zero &&
5387 IS_CONTAINED_BY_VMA (output_section, segment))
5390 if (matching_lma == 0)
5391 matching_lma = output_section->lma;
5393 /* We assume that if the section fits within the segment
5394 then it does not overlap any other section within that
5395 segment. */
5396 map->sections[isec ++] = output_section;
5398 else if (suggested_lma == 0)
5399 suggested_lma = output_section->lma;
5403 BFD_ASSERT (j == section_count);
5405 /* Step Two: Adjust the physical address of the current segment,
5406 if necessary. */
5407 if (isec == section_count)
5409 /* All of the sections fitted within the segment as currently
5410 specified. This is the default case. Add the segment to
5411 the list of built segments and carry on to process the next
5412 program header in the input BFD. */
5413 map->count = section_count;
5414 *pointer_to_map = map;
5415 pointer_to_map = &map->next;
5417 free (sections);
5418 continue;
5420 else
5422 if (matching_lma != 0)
5424 /* At least one section fits inside the current segment.
5425 Keep it, but modify its physical address to match the
5426 LMA of the first section that fitted. */
5427 map->p_paddr = matching_lma;
5429 else
5431 /* None of the sections fitted inside the current segment.
5432 Change the current segment's physical address to match
5433 the LMA of the first section. */
5434 map->p_paddr = suggested_lma;
5437 /* Offset the segment physical address from the lma
5438 to allow for space taken up by elf headers. */
5439 if (map->includes_filehdr)
5440 map->p_paddr -= iehdr->e_ehsize;
5442 if (map->includes_phdrs)
5444 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5446 /* iehdr->e_phnum is just an estimate of the number
5447 of program headers that we will need. Make a note
5448 here of the number we used and the segment we chose
5449 to hold these headers, so that we can adjust the
5450 offset when we know the correct value. */
5451 phdr_adjust_num = iehdr->e_phnum;
5452 phdr_adjust_seg = map;
5456 /* Step Three: Loop over the sections again, this time assigning
5457 those that fit to the current segment and removing them from the
5458 sections array; but making sure not to leave large gaps. Once all
5459 possible sections have been assigned to the current segment it is
5460 added to the list of built segments and if sections still remain
5461 to be assigned, a new segment is constructed before repeating
5462 the loop. */
5463 isec = 0;
5466 map->count = 0;
5467 suggested_lma = 0;
5469 /* Fill the current segment with sections that fit. */
5470 for (j = 0; j < section_count; j++)
5472 section = sections[j];
5474 if (section == NULL)
5475 continue;
5477 output_section = section->output_section;
5479 BFD_ASSERT (output_section != NULL);
5481 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5482 || IS_COREFILE_NOTE (segment, section))
5484 if (map->count == 0)
5486 /* If the first section in a segment does not start at
5487 the beginning of the segment, then something is
5488 wrong. */
5489 if (output_section->lma !=
5490 (map->p_paddr
5491 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5492 + (map->includes_phdrs
5493 ? iehdr->e_phnum * iehdr->e_phentsize
5494 : 0)))
5495 abort ();
5497 else
5499 asection * prev_sec;
5501 prev_sec = map->sections[map->count - 1];
5503 /* If the gap between the end of the previous section
5504 and the start of this section is more than
5505 maxpagesize then we need to start a new segment. */
5506 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5507 maxpagesize)
5508 < BFD_ALIGN (output_section->lma, maxpagesize))
5509 || ((prev_sec->lma + prev_sec->size)
5510 > output_section->lma))
5512 if (suggested_lma == 0)
5513 suggested_lma = output_section->lma;
5515 continue;
5519 map->sections[map->count++] = output_section;
5520 ++isec;
5521 sections[j] = NULL;
5522 section->segment_mark = TRUE;
5524 else if (suggested_lma == 0)
5525 suggested_lma = output_section->lma;
5528 BFD_ASSERT (map->count > 0);
5530 /* Add the current segment to the list of built segments. */
5531 *pointer_to_map = map;
5532 pointer_to_map = &map->next;
5534 if (isec < section_count)
5536 /* We still have not allocated all of the sections to
5537 segments. Create a new segment here, initialise it
5538 and carry on looping. */
5539 amt = sizeof (struct elf_segment_map);
5540 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5541 map = bfd_alloc (obfd, amt);
5542 if (map == NULL)
5544 free (sections);
5545 return FALSE;
5548 /* Initialise the fields of the segment map. Set the physical
5549 physical address to the LMA of the first section that has
5550 not yet been assigned. */
5551 map->next = NULL;
5552 map->p_type = segment->p_type;
5553 map->p_flags = segment->p_flags;
5554 map->p_flags_valid = 1;
5555 map->p_paddr = suggested_lma;
5556 map->p_paddr_valid = 1;
5557 map->includes_filehdr = 0;
5558 map->includes_phdrs = 0;
5561 while (isec < section_count);
5563 free (sections);
5566 /* The Solaris linker creates program headers in which all the
5567 p_paddr fields are zero. When we try to objcopy or strip such a
5568 file, we get confused. Check for this case, and if we find it
5569 reset the p_paddr_valid fields. */
5570 for (map = map_first; map != NULL; map = map->next)
5571 if (map->p_paddr != 0)
5572 break;
5573 if (map == NULL)
5574 for (map = map_first; map != NULL; map = map->next)
5575 map->p_paddr_valid = 0;
5577 elf_tdata (obfd)->segment_map = map_first;
5579 /* If we had to estimate the number of program headers that were
5580 going to be needed, then check our estimate now and adjust
5581 the offset if necessary. */
5582 if (phdr_adjust_seg != NULL)
5584 unsigned int count;
5586 for (count = 0, map = map_first; map != NULL; map = map->next)
5587 count++;
5589 if (count > phdr_adjust_num)
5590 phdr_adjust_seg->p_paddr
5591 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5594 #undef SEGMENT_END
5595 #undef SECTION_SIZE
5596 #undef IS_CONTAINED_BY_VMA
5597 #undef IS_CONTAINED_BY_LMA
5598 #undef IS_COREFILE_NOTE
5599 #undef IS_SOLARIS_PT_INTERP
5600 #undef INCLUDE_SECTION_IN_SEGMENT
5601 #undef SEGMENT_AFTER_SEGMENT
5602 #undef SEGMENT_OVERLAPS
5603 return TRUE;
5606 /* Initialize private output section information from input section. */
5608 bfd_boolean
5609 _bfd_elf_init_private_section_data (bfd *ibfd,
5610 asection *isec,
5611 bfd *obfd,
5612 asection *osec,
5613 struct bfd_link_info *link_info)
5616 Elf_Internal_Shdr *ihdr, *ohdr;
5617 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5619 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5620 || obfd->xvec->flavour != bfd_target_elf_flavour)
5621 return TRUE;
5623 /* FIXME: What if the output ELF section type has been set to
5624 something different? */
5625 if (elf_section_type (osec) == SHT_NULL)
5626 elf_section_type (osec) = elf_section_type (isec);
5628 /* Set things up for objcopy and relocatable link. The output
5629 SHT_GROUP section will have its elf_next_in_group pointing back
5630 to the input group members. Ignore linker created group section.
5631 See elfNN_ia64_object_p in elfxx-ia64.c. */
5633 if (need_group)
5635 if (elf_sec_group (isec) == NULL
5636 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5638 if (elf_section_flags (isec) & SHF_GROUP)
5639 elf_section_flags (osec) |= SHF_GROUP;
5640 elf_next_in_group (osec) = elf_next_in_group (isec);
5641 elf_group_name (osec) = elf_group_name (isec);
5645 ihdr = &elf_section_data (isec)->this_hdr;
5647 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5648 don't use the output section of the linked-to section since it
5649 may be NULL at this point. */
5650 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5652 ohdr = &elf_section_data (osec)->this_hdr;
5653 ohdr->sh_flags |= SHF_LINK_ORDER;
5654 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5657 osec->use_rela_p = isec->use_rela_p;
5659 return TRUE;
5662 /* Copy private section information. This copies over the entsize
5663 field, and sometimes the info field. */
5665 bfd_boolean
5666 _bfd_elf_copy_private_section_data (bfd *ibfd,
5667 asection *isec,
5668 bfd *obfd,
5669 asection *osec)
5671 Elf_Internal_Shdr *ihdr, *ohdr;
5673 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5674 || obfd->xvec->flavour != bfd_target_elf_flavour)
5675 return TRUE;
5677 ihdr = &elf_section_data (isec)->this_hdr;
5678 ohdr = &elf_section_data (osec)->this_hdr;
5680 ohdr->sh_entsize = ihdr->sh_entsize;
5682 if (ihdr->sh_type == SHT_SYMTAB
5683 || ihdr->sh_type == SHT_DYNSYM
5684 || ihdr->sh_type == SHT_GNU_verneed
5685 || ihdr->sh_type == SHT_GNU_verdef)
5686 ohdr->sh_info = ihdr->sh_info;
5688 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5689 NULL);
5692 /* Copy private header information. */
5694 bfd_boolean
5695 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5697 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5698 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5699 return TRUE;
5701 /* Copy over private BFD data if it has not already been copied.
5702 This must be done here, rather than in the copy_private_bfd_data
5703 entry point, because the latter is called after the section
5704 contents have been set, which means that the program headers have
5705 already been worked out. */
5706 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5708 if (! copy_private_bfd_data (ibfd, obfd))
5709 return FALSE;
5712 return TRUE;
5715 /* Copy private symbol information. If this symbol is in a section
5716 which we did not map into a BFD section, try to map the section
5717 index correctly. We use special macro definitions for the mapped
5718 section indices; these definitions are interpreted by the
5719 swap_out_syms function. */
5721 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5722 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5723 #define MAP_STRTAB (SHN_HIOS + 3)
5724 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5725 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5727 bfd_boolean
5728 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5729 asymbol *isymarg,
5730 bfd *obfd,
5731 asymbol *osymarg)
5733 elf_symbol_type *isym, *osym;
5735 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5736 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5737 return TRUE;
5739 isym = elf_symbol_from (ibfd, isymarg);
5740 osym = elf_symbol_from (obfd, osymarg);
5742 if (isym != NULL
5743 && osym != NULL
5744 && bfd_is_abs_section (isym->symbol.section))
5746 unsigned int shndx;
5748 shndx = isym->internal_elf_sym.st_shndx;
5749 if (shndx == elf_onesymtab (ibfd))
5750 shndx = MAP_ONESYMTAB;
5751 else if (shndx == elf_dynsymtab (ibfd))
5752 shndx = MAP_DYNSYMTAB;
5753 else if (shndx == elf_tdata (ibfd)->strtab_section)
5754 shndx = MAP_STRTAB;
5755 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5756 shndx = MAP_SHSTRTAB;
5757 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5758 shndx = MAP_SYM_SHNDX;
5759 osym->internal_elf_sym.st_shndx = shndx;
5762 return TRUE;
5765 /* Swap out the symbols. */
5767 static bfd_boolean
5768 swap_out_syms (bfd *abfd,
5769 struct bfd_strtab_hash **sttp,
5770 int relocatable_p)
5772 const struct elf_backend_data *bed;
5773 int symcount;
5774 asymbol **syms;
5775 struct bfd_strtab_hash *stt;
5776 Elf_Internal_Shdr *symtab_hdr;
5777 Elf_Internal_Shdr *symtab_shndx_hdr;
5778 Elf_Internal_Shdr *symstrtab_hdr;
5779 bfd_byte *outbound_syms;
5780 bfd_byte *outbound_shndx;
5781 int idx;
5782 bfd_size_type amt;
5783 bfd_boolean name_local_sections;
5785 if (!elf_map_symbols (abfd))
5786 return FALSE;
5788 /* Dump out the symtabs. */
5789 stt = _bfd_elf_stringtab_init ();
5790 if (stt == NULL)
5791 return FALSE;
5793 bed = get_elf_backend_data (abfd);
5794 symcount = bfd_get_symcount (abfd);
5795 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5796 symtab_hdr->sh_type = SHT_SYMTAB;
5797 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5798 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5799 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5800 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5802 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5803 symstrtab_hdr->sh_type = SHT_STRTAB;
5805 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5806 if (outbound_syms == NULL)
5808 _bfd_stringtab_free (stt);
5809 return FALSE;
5811 symtab_hdr->contents = outbound_syms;
5813 outbound_shndx = NULL;
5814 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5815 if (symtab_shndx_hdr->sh_name != 0)
5817 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5818 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
5819 sizeof (Elf_External_Sym_Shndx));
5820 if (outbound_shndx == NULL)
5822 _bfd_stringtab_free (stt);
5823 return FALSE;
5826 symtab_shndx_hdr->contents = outbound_shndx;
5827 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5828 symtab_shndx_hdr->sh_size = amt;
5829 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5830 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5833 /* Now generate the data (for "contents"). */
5835 /* Fill in zeroth symbol and swap it out. */
5836 Elf_Internal_Sym sym;
5837 sym.st_name = 0;
5838 sym.st_value = 0;
5839 sym.st_size = 0;
5840 sym.st_info = 0;
5841 sym.st_other = 0;
5842 sym.st_shndx = SHN_UNDEF;
5843 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5844 outbound_syms += bed->s->sizeof_sym;
5845 if (outbound_shndx != NULL)
5846 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5849 name_local_sections
5850 = (bed->elf_backend_name_local_section_symbols
5851 && bed->elf_backend_name_local_section_symbols (abfd));
5853 syms = bfd_get_outsymbols (abfd);
5854 for (idx = 0; idx < symcount; idx++)
5856 Elf_Internal_Sym sym;
5857 bfd_vma value = syms[idx]->value;
5858 elf_symbol_type *type_ptr;
5859 flagword flags = syms[idx]->flags;
5860 int type;
5862 if (!name_local_sections
5863 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5865 /* Local section symbols have no name. */
5866 sym.st_name = 0;
5868 else
5870 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5871 syms[idx]->name,
5872 TRUE, FALSE);
5873 if (sym.st_name == (unsigned long) -1)
5875 _bfd_stringtab_free (stt);
5876 return FALSE;
5880 type_ptr = elf_symbol_from (abfd, syms[idx]);
5882 if ((flags & BSF_SECTION_SYM) == 0
5883 && bfd_is_com_section (syms[idx]->section))
5885 /* ELF common symbols put the alignment into the `value' field,
5886 and the size into the `size' field. This is backwards from
5887 how BFD handles it, so reverse it here. */
5888 sym.st_size = value;
5889 if (type_ptr == NULL
5890 || type_ptr->internal_elf_sym.st_value == 0)
5891 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5892 else
5893 sym.st_value = type_ptr->internal_elf_sym.st_value;
5894 sym.st_shndx = _bfd_elf_section_from_bfd_section
5895 (abfd, syms[idx]->section);
5897 else
5899 asection *sec = syms[idx]->section;
5900 int shndx;
5902 if (sec->output_section)
5904 value += sec->output_offset;
5905 sec = sec->output_section;
5908 /* Don't add in the section vma for relocatable output. */
5909 if (! relocatable_p)
5910 value += sec->vma;
5911 sym.st_value = value;
5912 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5914 if (bfd_is_abs_section (sec)
5915 && type_ptr != NULL
5916 && type_ptr->internal_elf_sym.st_shndx != 0)
5918 /* This symbol is in a real ELF section which we did
5919 not create as a BFD section. Undo the mapping done
5920 by copy_private_symbol_data. */
5921 shndx = type_ptr->internal_elf_sym.st_shndx;
5922 switch (shndx)
5924 case MAP_ONESYMTAB:
5925 shndx = elf_onesymtab (abfd);
5926 break;
5927 case MAP_DYNSYMTAB:
5928 shndx = elf_dynsymtab (abfd);
5929 break;
5930 case MAP_STRTAB:
5931 shndx = elf_tdata (abfd)->strtab_section;
5932 break;
5933 case MAP_SHSTRTAB:
5934 shndx = elf_tdata (abfd)->shstrtab_section;
5935 break;
5936 case MAP_SYM_SHNDX:
5937 shndx = elf_tdata (abfd)->symtab_shndx_section;
5938 break;
5939 default:
5940 break;
5943 else
5945 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5947 if (shndx == -1)
5949 asection *sec2;
5951 /* Writing this would be a hell of a lot easier if
5952 we had some decent documentation on bfd, and
5953 knew what to expect of the library, and what to
5954 demand of applications. For example, it
5955 appears that `objcopy' might not set the
5956 section of a symbol to be a section that is
5957 actually in the output file. */
5958 sec2 = bfd_get_section_by_name (abfd, sec->name);
5959 if (sec2 == NULL)
5961 _bfd_error_handler (_("\
5962 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5963 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5964 sec->name);
5965 bfd_set_error (bfd_error_invalid_operation);
5966 _bfd_stringtab_free (stt);
5967 return FALSE;
5970 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5971 BFD_ASSERT (shndx != -1);
5975 sym.st_shndx = shndx;
5978 if ((flags & BSF_THREAD_LOCAL) != 0)
5979 type = STT_TLS;
5980 else if ((flags & BSF_FUNCTION) != 0)
5981 type = STT_FUNC;
5982 else if ((flags & BSF_OBJECT) != 0)
5983 type = STT_OBJECT;
5984 else
5985 type = STT_NOTYPE;
5987 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5988 type = STT_TLS;
5990 /* Processor-specific types. */
5991 if (type_ptr != NULL
5992 && bed->elf_backend_get_symbol_type)
5993 type = ((*bed->elf_backend_get_symbol_type)
5994 (&type_ptr->internal_elf_sym, type));
5996 if (flags & BSF_SECTION_SYM)
5998 if (flags & BSF_GLOBAL)
5999 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6000 else
6001 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6003 else if (bfd_is_com_section (syms[idx]->section))
6004 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6005 else if (bfd_is_und_section (syms[idx]->section))
6006 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6007 ? STB_WEAK
6008 : STB_GLOBAL),
6009 type);
6010 else if (flags & BSF_FILE)
6011 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6012 else
6014 int bind = STB_LOCAL;
6016 if (flags & BSF_LOCAL)
6017 bind = STB_LOCAL;
6018 else if (flags & BSF_WEAK)
6019 bind = STB_WEAK;
6020 else if (flags & BSF_GLOBAL)
6021 bind = STB_GLOBAL;
6023 sym.st_info = ELF_ST_INFO (bind, type);
6026 if (type_ptr != NULL)
6027 sym.st_other = type_ptr->internal_elf_sym.st_other;
6028 else
6029 sym.st_other = 0;
6031 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6032 outbound_syms += bed->s->sizeof_sym;
6033 if (outbound_shndx != NULL)
6034 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6037 *sttp = stt;
6038 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6039 symstrtab_hdr->sh_type = SHT_STRTAB;
6041 symstrtab_hdr->sh_flags = 0;
6042 symstrtab_hdr->sh_addr = 0;
6043 symstrtab_hdr->sh_entsize = 0;
6044 symstrtab_hdr->sh_link = 0;
6045 symstrtab_hdr->sh_info = 0;
6046 symstrtab_hdr->sh_addralign = 1;
6048 return TRUE;
6051 /* Return the number of bytes required to hold the symtab vector.
6053 Note that we base it on the count plus 1, since we will null terminate
6054 the vector allocated based on this size. However, the ELF symbol table
6055 always has a dummy entry as symbol #0, so it ends up even. */
6057 long
6058 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6060 long symcount;
6061 long symtab_size;
6062 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6064 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6065 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6066 if (symcount > 0)
6067 symtab_size -= sizeof (asymbol *);
6069 return symtab_size;
6072 long
6073 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6075 long symcount;
6076 long symtab_size;
6077 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6079 if (elf_dynsymtab (abfd) == 0)
6081 bfd_set_error (bfd_error_invalid_operation);
6082 return -1;
6085 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6086 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6087 if (symcount > 0)
6088 symtab_size -= sizeof (asymbol *);
6090 return symtab_size;
6093 long
6094 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6095 sec_ptr asect)
6097 return (asect->reloc_count + 1) * sizeof (arelent *);
6100 /* Canonicalize the relocs. */
6102 long
6103 _bfd_elf_canonicalize_reloc (bfd *abfd,
6104 sec_ptr section,
6105 arelent **relptr,
6106 asymbol **symbols)
6108 arelent *tblptr;
6109 unsigned int i;
6110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6112 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6113 return -1;
6115 tblptr = section->relocation;
6116 for (i = 0; i < section->reloc_count; i++)
6117 *relptr++ = tblptr++;
6119 *relptr = NULL;
6121 return section->reloc_count;
6124 long
6125 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6128 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6130 if (symcount >= 0)
6131 bfd_get_symcount (abfd) = symcount;
6132 return symcount;
6135 long
6136 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6137 asymbol **allocation)
6139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6140 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6142 if (symcount >= 0)
6143 bfd_get_dynamic_symcount (abfd) = symcount;
6144 return symcount;
6147 /* Return the size required for the dynamic reloc entries. Any loadable
6148 section that was actually installed in the BFD, and has type SHT_REL
6149 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6150 dynamic reloc section. */
6152 long
6153 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6155 long ret;
6156 asection *s;
6158 if (elf_dynsymtab (abfd) == 0)
6160 bfd_set_error (bfd_error_invalid_operation);
6161 return -1;
6164 ret = sizeof (arelent *);
6165 for (s = abfd->sections; s != NULL; s = s->next)
6166 if ((s->flags & SEC_LOAD) != 0
6167 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6168 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6169 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6170 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6171 * sizeof (arelent *));
6173 return ret;
6176 /* Canonicalize the dynamic relocation entries. Note that we return the
6177 dynamic relocations as a single block, although they are actually
6178 associated with particular sections; the interface, which was
6179 designed for SunOS style shared libraries, expects that there is only
6180 one set of dynamic relocs. Any loadable section that was actually
6181 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6182 dynamic symbol table, is considered to be a dynamic reloc section. */
6184 long
6185 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6186 arelent **storage,
6187 asymbol **syms)
6189 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6190 asection *s;
6191 long ret;
6193 if (elf_dynsymtab (abfd) == 0)
6195 bfd_set_error (bfd_error_invalid_operation);
6196 return -1;
6199 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6200 ret = 0;
6201 for (s = abfd->sections; s != NULL; s = s->next)
6203 if ((s->flags & SEC_LOAD) != 0
6204 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6205 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6206 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6208 arelent *p;
6209 long count, i;
6211 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6212 return -1;
6213 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6214 p = s->relocation;
6215 for (i = 0; i < count; i++)
6216 *storage++ = p++;
6217 ret += count;
6221 *storage = NULL;
6223 return ret;
6226 /* Read in the version information. */
6228 bfd_boolean
6229 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6231 bfd_byte *contents = NULL;
6232 unsigned int freeidx = 0;
6234 if (elf_dynverref (abfd) != 0)
6236 Elf_Internal_Shdr *hdr;
6237 Elf_External_Verneed *everneed;
6238 Elf_Internal_Verneed *iverneed;
6239 unsigned int i;
6240 bfd_byte *contents_end;
6242 hdr = &elf_tdata (abfd)->dynverref_hdr;
6244 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6245 sizeof (Elf_Internal_Verneed));
6246 if (elf_tdata (abfd)->verref == NULL)
6247 goto error_return;
6249 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6251 contents = bfd_malloc (hdr->sh_size);
6252 if (contents == NULL)
6254 error_return_verref:
6255 elf_tdata (abfd)->verref = NULL;
6256 elf_tdata (abfd)->cverrefs = 0;
6257 goto error_return;
6259 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6260 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6261 goto error_return_verref;
6263 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6264 goto error_return_verref;
6266 BFD_ASSERT (sizeof (Elf_External_Verneed)
6267 == sizeof (Elf_External_Vernaux));
6268 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6269 everneed = (Elf_External_Verneed *) contents;
6270 iverneed = elf_tdata (abfd)->verref;
6271 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6273 Elf_External_Vernaux *evernaux;
6274 Elf_Internal_Vernaux *ivernaux;
6275 unsigned int j;
6277 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6279 iverneed->vn_bfd = abfd;
6281 iverneed->vn_filename =
6282 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6283 iverneed->vn_file);
6284 if (iverneed->vn_filename == NULL)
6285 goto error_return_verref;
6287 if (iverneed->vn_cnt == 0)
6288 iverneed->vn_auxptr = NULL;
6289 else
6291 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6292 sizeof (Elf_Internal_Vernaux));
6293 if (iverneed->vn_auxptr == NULL)
6294 goto error_return_verref;
6297 if (iverneed->vn_aux
6298 > (size_t) (contents_end - (bfd_byte *) everneed))
6299 goto error_return_verref;
6301 evernaux = ((Elf_External_Vernaux *)
6302 ((bfd_byte *) everneed + iverneed->vn_aux));
6303 ivernaux = iverneed->vn_auxptr;
6304 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6306 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6308 ivernaux->vna_nodename =
6309 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6310 ivernaux->vna_name);
6311 if (ivernaux->vna_nodename == NULL)
6312 goto error_return_verref;
6314 if (j + 1 < iverneed->vn_cnt)
6315 ivernaux->vna_nextptr = ivernaux + 1;
6316 else
6317 ivernaux->vna_nextptr = NULL;
6319 if (ivernaux->vna_next
6320 > (size_t) (contents_end - (bfd_byte *) evernaux))
6321 goto error_return_verref;
6323 evernaux = ((Elf_External_Vernaux *)
6324 ((bfd_byte *) evernaux + ivernaux->vna_next));
6326 if (ivernaux->vna_other > freeidx)
6327 freeidx = ivernaux->vna_other;
6330 if (i + 1 < hdr->sh_info)
6331 iverneed->vn_nextref = iverneed + 1;
6332 else
6333 iverneed->vn_nextref = NULL;
6335 if (iverneed->vn_next
6336 > (size_t) (contents_end - (bfd_byte *) everneed))
6337 goto error_return_verref;
6339 everneed = ((Elf_External_Verneed *)
6340 ((bfd_byte *) everneed + iverneed->vn_next));
6343 free (contents);
6344 contents = NULL;
6347 if (elf_dynverdef (abfd) != 0)
6349 Elf_Internal_Shdr *hdr;
6350 Elf_External_Verdef *everdef;
6351 Elf_Internal_Verdef *iverdef;
6352 Elf_Internal_Verdef *iverdefarr;
6353 Elf_Internal_Verdef iverdefmem;
6354 unsigned int i;
6355 unsigned int maxidx;
6356 bfd_byte *contents_end_def, *contents_end_aux;
6358 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6360 contents = bfd_malloc (hdr->sh_size);
6361 if (contents == NULL)
6362 goto error_return;
6363 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6364 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6365 goto error_return;
6367 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6368 goto error_return;
6370 BFD_ASSERT (sizeof (Elf_External_Verdef)
6371 >= sizeof (Elf_External_Verdaux));
6372 contents_end_def = contents + hdr->sh_size
6373 - sizeof (Elf_External_Verdef);
6374 contents_end_aux = contents + hdr->sh_size
6375 - sizeof (Elf_External_Verdaux);
6377 /* We know the number of entries in the section but not the maximum
6378 index. Therefore we have to run through all entries and find
6379 the maximum. */
6380 everdef = (Elf_External_Verdef *) contents;
6381 maxidx = 0;
6382 for (i = 0; i < hdr->sh_info; ++i)
6384 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6386 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6387 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6389 if (iverdefmem.vd_next
6390 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6391 goto error_return;
6393 everdef = ((Elf_External_Verdef *)
6394 ((bfd_byte *) everdef + iverdefmem.vd_next));
6397 if (default_imported_symver)
6399 if (freeidx > maxidx)
6400 maxidx = ++freeidx;
6401 else
6402 freeidx = ++maxidx;
6404 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6405 sizeof (Elf_Internal_Verdef));
6406 if (elf_tdata (abfd)->verdef == NULL)
6407 goto error_return;
6409 elf_tdata (abfd)->cverdefs = maxidx;
6411 everdef = (Elf_External_Verdef *) contents;
6412 iverdefarr = elf_tdata (abfd)->verdef;
6413 for (i = 0; i < hdr->sh_info; i++)
6415 Elf_External_Verdaux *everdaux;
6416 Elf_Internal_Verdaux *iverdaux;
6417 unsigned int j;
6419 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6421 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6423 error_return_verdef:
6424 elf_tdata (abfd)->verdef = NULL;
6425 elf_tdata (abfd)->cverdefs = 0;
6426 goto error_return;
6429 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6430 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6432 iverdef->vd_bfd = abfd;
6434 if (iverdef->vd_cnt == 0)
6435 iverdef->vd_auxptr = NULL;
6436 else
6438 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6439 sizeof (Elf_Internal_Verdaux));
6440 if (iverdef->vd_auxptr == NULL)
6441 goto error_return_verdef;
6444 if (iverdef->vd_aux
6445 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6446 goto error_return_verdef;
6448 everdaux = ((Elf_External_Verdaux *)
6449 ((bfd_byte *) everdef + iverdef->vd_aux));
6450 iverdaux = iverdef->vd_auxptr;
6451 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6453 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6455 iverdaux->vda_nodename =
6456 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6457 iverdaux->vda_name);
6458 if (iverdaux->vda_nodename == NULL)
6459 goto error_return_verdef;
6461 if (j + 1 < iverdef->vd_cnt)
6462 iverdaux->vda_nextptr = iverdaux + 1;
6463 else
6464 iverdaux->vda_nextptr = NULL;
6466 if (iverdaux->vda_next
6467 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6468 goto error_return_verdef;
6470 everdaux = ((Elf_External_Verdaux *)
6471 ((bfd_byte *) everdaux + iverdaux->vda_next));
6474 if (iverdef->vd_cnt)
6475 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6477 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6478 iverdef->vd_nextdef = iverdef + 1;
6479 else
6480 iverdef->vd_nextdef = NULL;
6482 everdef = ((Elf_External_Verdef *)
6483 ((bfd_byte *) everdef + iverdef->vd_next));
6486 free (contents);
6487 contents = NULL;
6489 else if (default_imported_symver)
6491 if (freeidx < 3)
6492 freeidx = 3;
6493 else
6494 freeidx++;
6496 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6497 sizeof (Elf_Internal_Verdef));
6498 if (elf_tdata (abfd)->verdef == NULL)
6499 goto error_return;
6501 elf_tdata (abfd)->cverdefs = freeidx;
6504 /* Create a default version based on the soname. */
6505 if (default_imported_symver)
6507 Elf_Internal_Verdef *iverdef;
6508 Elf_Internal_Verdaux *iverdaux;
6510 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6512 iverdef->vd_version = VER_DEF_CURRENT;
6513 iverdef->vd_flags = 0;
6514 iverdef->vd_ndx = freeidx;
6515 iverdef->vd_cnt = 1;
6517 iverdef->vd_bfd = abfd;
6519 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6520 if (iverdef->vd_nodename == NULL)
6521 goto error_return_verdef;
6522 iverdef->vd_nextdef = NULL;
6523 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6524 if (iverdef->vd_auxptr == NULL)
6525 goto error_return_verdef;
6527 iverdaux = iverdef->vd_auxptr;
6528 iverdaux->vda_nodename = iverdef->vd_nodename;
6529 iverdaux->vda_nextptr = NULL;
6532 return TRUE;
6534 error_return:
6535 if (contents != NULL)
6536 free (contents);
6537 return FALSE;
6540 asymbol *
6541 _bfd_elf_make_empty_symbol (bfd *abfd)
6543 elf_symbol_type *newsym;
6544 bfd_size_type amt = sizeof (elf_symbol_type);
6546 newsym = bfd_zalloc (abfd, amt);
6547 if (!newsym)
6548 return NULL;
6549 else
6551 newsym->symbol.the_bfd = abfd;
6552 return &newsym->symbol;
6556 void
6557 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6558 asymbol *symbol,
6559 symbol_info *ret)
6561 bfd_symbol_info (symbol, ret);
6564 /* Return whether a symbol name implies a local symbol. Most targets
6565 use this function for the is_local_label_name entry point, but some
6566 override it. */
6568 bfd_boolean
6569 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6570 const char *name)
6572 /* Normal local symbols start with ``.L''. */
6573 if (name[0] == '.' && name[1] == 'L')
6574 return TRUE;
6576 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6577 DWARF debugging symbols starting with ``..''. */
6578 if (name[0] == '.' && name[1] == '.')
6579 return TRUE;
6581 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6582 emitting DWARF debugging output. I suspect this is actually a
6583 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6584 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6585 underscore to be emitted on some ELF targets). For ease of use,
6586 we treat such symbols as local. */
6587 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6588 return TRUE;
6590 return FALSE;
6593 alent *
6594 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6595 asymbol *symbol ATTRIBUTE_UNUSED)
6597 abort ();
6598 return NULL;
6601 bfd_boolean
6602 _bfd_elf_set_arch_mach (bfd *abfd,
6603 enum bfd_architecture arch,
6604 unsigned long machine)
6606 /* If this isn't the right architecture for this backend, and this
6607 isn't the generic backend, fail. */
6608 if (arch != get_elf_backend_data (abfd)->arch
6609 && arch != bfd_arch_unknown
6610 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6611 return FALSE;
6613 return bfd_default_set_arch_mach (abfd, arch, machine);
6616 /* Find the function to a particular section and offset,
6617 for error reporting. */
6619 static bfd_boolean
6620 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6621 asection *section,
6622 asymbol **symbols,
6623 bfd_vma offset,
6624 const char **filename_ptr,
6625 const char **functionname_ptr)
6627 const char *filename;
6628 asymbol *func, *file;
6629 bfd_vma low_func;
6630 asymbol **p;
6631 /* ??? Given multiple file symbols, it is impossible to reliably
6632 choose the right file name for global symbols. File symbols are
6633 local symbols, and thus all file symbols must sort before any
6634 global symbols. The ELF spec may be interpreted to say that a
6635 file symbol must sort before other local symbols, but currently
6636 ld -r doesn't do this. So, for ld -r output, it is possible to
6637 make a better choice of file name for local symbols by ignoring
6638 file symbols appearing after a given local symbol. */
6639 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6641 filename = NULL;
6642 func = NULL;
6643 file = NULL;
6644 low_func = 0;
6645 state = nothing_seen;
6647 for (p = symbols; *p != NULL; p++)
6649 elf_symbol_type *q;
6651 q = (elf_symbol_type *) *p;
6653 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6655 default:
6656 break;
6657 case STT_FILE:
6658 file = &q->symbol;
6659 if (state == symbol_seen)
6660 state = file_after_symbol_seen;
6661 continue;
6662 case STT_SECTION:
6663 continue;
6664 case STT_NOTYPE:
6665 case STT_FUNC:
6666 if (bfd_get_section (&q->symbol) == section
6667 && q->symbol.value >= low_func
6668 && q->symbol.value <= offset)
6670 func = (asymbol *) q;
6671 low_func = q->symbol.value;
6672 if (file == NULL)
6673 filename = NULL;
6674 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6675 && state == file_after_symbol_seen)
6676 filename = NULL;
6677 else
6678 filename = bfd_asymbol_name (file);
6680 break;
6682 if (state == nothing_seen)
6683 state = symbol_seen;
6686 if (func == NULL)
6687 return FALSE;
6689 if (filename_ptr)
6690 *filename_ptr = filename;
6691 if (functionname_ptr)
6692 *functionname_ptr = bfd_asymbol_name (func);
6694 return TRUE;
6697 /* Find the nearest line to a particular section and offset,
6698 for error reporting. */
6700 bfd_boolean
6701 _bfd_elf_find_nearest_line (bfd *abfd,
6702 asection *section,
6703 asymbol **symbols,
6704 bfd_vma offset,
6705 const char **filename_ptr,
6706 const char **functionname_ptr,
6707 unsigned int *line_ptr)
6709 bfd_boolean found;
6711 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6712 filename_ptr, functionname_ptr,
6713 line_ptr))
6715 if (!*functionname_ptr)
6716 elf_find_function (abfd, section, symbols, offset,
6717 *filename_ptr ? NULL : filename_ptr,
6718 functionname_ptr);
6720 return TRUE;
6723 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6724 filename_ptr, functionname_ptr,
6725 line_ptr, 0,
6726 &elf_tdata (abfd)->dwarf2_find_line_info))
6728 if (!*functionname_ptr)
6729 elf_find_function (abfd, section, symbols, offset,
6730 *filename_ptr ? NULL : filename_ptr,
6731 functionname_ptr);
6733 return TRUE;
6736 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6737 &found, filename_ptr,
6738 functionname_ptr, line_ptr,
6739 &elf_tdata (abfd)->line_info))
6740 return FALSE;
6741 if (found && (*functionname_ptr || *line_ptr))
6742 return TRUE;
6744 if (symbols == NULL)
6745 return FALSE;
6747 if (! elf_find_function (abfd, section, symbols, offset,
6748 filename_ptr, functionname_ptr))
6749 return FALSE;
6751 *line_ptr = 0;
6752 return TRUE;
6755 /* Find the line for a symbol. */
6757 bfd_boolean
6758 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6759 const char **filename_ptr, unsigned int *line_ptr)
6761 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6762 filename_ptr, line_ptr, 0,
6763 &elf_tdata (abfd)->dwarf2_find_line_info);
6766 /* After a call to bfd_find_nearest_line, successive calls to
6767 bfd_find_inliner_info can be used to get source information about
6768 each level of function inlining that terminated at the address
6769 passed to bfd_find_nearest_line. Currently this is only supported
6770 for DWARF2 with appropriate DWARF3 extensions. */
6772 bfd_boolean
6773 _bfd_elf_find_inliner_info (bfd *abfd,
6774 const char **filename_ptr,
6775 const char **functionname_ptr,
6776 unsigned int *line_ptr)
6778 bfd_boolean found;
6779 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6780 functionname_ptr, line_ptr,
6781 & elf_tdata (abfd)->dwarf2_find_line_info);
6782 return found;
6786 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6788 int ret;
6790 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6791 if (! reloc)
6792 ret += get_program_header_size (abfd);
6793 return ret;
6796 bfd_boolean
6797 _bfd_elf_set_section_contents (bfd *abfd,
6798 sec_ptr section,
6799 const void *location,
6800 file_ptr offset,
6801 bfd_size_type count)
6803 Elf_Internal_Shdr *hdr;
6804 bfd_signed_vma pos;
6806 if (! abfd->output_has_begun
6807 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6808 return FALSE;
6810 hdr = &elf_section_data (section)->this_hdr;
6811 pos = hdr->sh_offset + offset;
6812 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6813 || bfd_bwrite (location, count, abfd) != count)
6814 return FALSE;
6816 return TRUE;
6819 void
6820 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6821 arelent *cache_ptr ATTRIBUTE_UNUSED,
6822 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6824 abort ();
6827 /* Try to convert a non-ELF reloc into an ELF one. */
6829 bfd_boolean
6830 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6832 /* Check whether we really have an ELF howto. */
6834 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6836 bfd_reloc_code_real_type code;
6837 reloc_howto_type *howto;
6839 /* Alien reloc: Try to determine its type to replace it with an
6840 equivalent ELF reloc. */
6842 if (areloc->howto->pc_relative)
6844 switch (areloc->howto->bitsize)
6846 case 8:
6847 code = BFD_RELOC_8_PCREL;
6848 break;
6849 case 12:
6850 code = BFD_RELOC_12_PCREL;
6851 break;
6852 case 16:
6853 code = BFD_RELOC_16_PCREL;
6854 break;
6855 case 24:
6856 code = BFD_RELOC_24_PCREL;
6857 break;
6858 case 32:
6859 code = BFD_RELOC_32_PCREL;
6860 break;
6861 case 64:
6862 code = BFD_RELOC_64_PCREL;
6863 break;
6864 default:
6865 goto fail;
6868 howto = bfd_reloc_type_lookup (abfd, code);
6870 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6872 if (howto->pcrel_offset)
6873 areloc->addend += areloc->address;
6874 else
6875 areloc->addend -= areloc->address; /* addend is unsigned!! */
6878 else
6880 switch (areloc->howto->bitsize)
6882 case 8:
6883 code = BFD_RELOC_8;
6884 break;
6885 case 14:
6886 code = BFD_RELOC_14;
6887 break;
6888 case 16:
6889 code = BFD_RELOC_16;
6890 break;
6891 case 26:
6892 code = BFD_RELOC_26;
6893 break;
6894 case 32:
6895 code = BFD_RELOC_32;
6896 break;
6897 case 64:
6898 code = BFD_RELOC_64;
6899 break;
6900 default:
6901 goto fail;
6904 howto = bfd_reloc_type_lookup (abfd, code);
6907 if (howto)
6908 areloc->howto = howto;
6909 else
6910 goto fail;
6913 return TRUE;
6915 fail:
6916 (*_bfd_error_handler)
6917 (_("%B: unsupported relocation type %s"),
6918 abfd, areloc->howto->name);
6919 bfd_set_error (bfd_error_bad_value);
6920 return FALSE;
6923 bfd_boolean
6924 _bfd_elf_close_and_cleanup (bfd *abfd)
6926 if (bfd_get_format (abfd) == bfd_object)
6928 if (elf_shstrtab (abfd) != NULL)
6929 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6930 _bfd_dwarf2_cleanup_debug_info (abfd);
6933 return _bfd_generic_close_and_cleanup (abfd);
6936 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6937 in the relocation's offset. Thus we cannot allow any sort of sanity
6938 range-checking to interfere. There is nothing else to do in processing
6939 this reloc. */
6941 bfd_reloc_status_type
6942 _bfd_elf_rel_vtable_reloc_fn
6943 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6944 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6945 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6946 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6948 return bfd_reloc_ok;
6951 /* Elf core file support. Much of this only works on native
6952 toolchains, since we rely on knowing the
6953 machine-dependent procfs structure in order to pick
6954 out details about the corefile. */
6956 #ifdef HAVE_SYS_PROCFS_H
6957 # include <sys/procfs.h>
6958 #endif
6960 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6962 static int
6963 elfcore_make_pid (bfd *abfd)
6965 return ((elf_tdata (abfd)->core_lwpid << 16)
6966 + (elf_tdata (abfd)->core_pid));
6969 /* If there isn't a section called NAME, make one, using
6970 data from SECT. Note, this function will generate a
6971 reference to NAME, so you shouldn't deallocate or
6972 overwrite it. */
6974 static bfd_boolean
6975 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6977 asection *sect2;
6979 if (bfd_get_section_by_name (abfd, name) != NULL)
6980 return TRUE;
6982 sect2 = bfd_make_section (abfd, name);
6983 if (sect2 == NULL)
6984 return FALSE;
6986 sect2->size = sect->size;
6987 sect2->filepos = sect->filepos;
6988 sect2->flags = sect->flags;
6989 sect2->alignment_power = sect->alignment_power;
6990 return TRUE;
6993 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6994 actually creates up to two pseudosections:
6995 - For the single-threaded case, a section named NAME, unless
6996 such a section already exists.
6997 - For the multi-threaded case, a section named "NAME/PID", where
6998 PID is elfcore_make_pid (abfd).
6999 Both pseudosections have identical contents. */
7000 bfd_boolean
7001 _bfd_elfcore_make_pseudosection (bfd *abfd,
7002 char *name,
7003 size_t size,
7004 ufile_ptr filepos)
7006 char buf[100];
7007 char *threaded_name;
7008 size_t len;
7009 asection *sect;
7011 /* Build the section name. */
7013 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7014 len = strlen (buf) + 1;
7015 threaded_name = bfd_alloc (abfd, len);
7016 if (threaded_name == NULL)
7017 return FALSE;
7018 memcpy (threaded_name, buf, len);
7020 sect = bfd_make_section_anyway (abfd, threaded_name);
7021 if (sect == NULL)
7022 return FALSE;
7023 sect->size = size;
7024 sect->filepos = filepos;
7025 sect->flags = SEC_HAS_CONTENTS;
7026 sect->alignment_power = 2;
7028 return elfcore_maybe_make_sect (abfd, name, sect);
7031 /* prstatus_t exists on:
7032 solaris 2.5+
7033 linux 2.[01] + glibc
7034 unixware 4.2
7037 #if defined (HAVE_PRSTATUS_T)
7039 static bfd_boolean
7040 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7042 size_t size;
7043 int offset;
7045 if (note->descsz == sizeof (prstatus_t))
7047 prstatus_t prstat;
7049 size = sizeof (prstat.pr_reg);
7050 offset = offsetof (prstatus_t, pr_reg);
7051 memcpy (&prstat, note->descdata, sizeof (prstat));
7053 /* Do not overwrite the core signal if it
7054 has already been set by another thread. */
7055 if (elf_tdata (abfd)->core_signal == 0)
7056 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7057 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7059 /* pr_who exists on:
7060 solaris 2.5+
7061 unixware 4.2
7062 pr_who doesn't exist on:
7063 linux 2.[01]
7065 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7066 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7067 #endif
7069 #if defined (HAVE_PRSTATUS32_T)
7070 else if (note->descsz == sizeof (prstatus32_t))
7072 /* 64-bit host, 32-bit corefile */
7073 prstatus32_t prstat;
7075 size = sizeof (prstat.pr_reg);
7076 offset = offsetof (prstatus32_t, pr_reg);
7077 memcpy (&prstat, note->descdata, sizeof (prstat));
7079 /* Do not overwrite the core signal if it
7080 has already been set by another thread. */
7081 if (elf_tdata (abfd)->core_signal == 0)
7082 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7083 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7085 /* pr_who exists on:
7086 solaris 2.5+
7087 unixware 4.2
7088 pr_who doesn't exist on:
7089 linux 2.[01]
7091 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7092 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7093 #endif
7095 #endif /* HAVE_PRSTATUS32_T */
7096 else
7098 /* Fail - we don't know how to handle any other
7099 note size (ie. data object type). */
7100 return TRUE;
7103 /* Make a ".reg/999" section and a ".reg" section. */
7104 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7105 size, note->descpos + offset);
7107 #endif /* defined (HAVE_PRSTATUS_T) */
7109 /* Create a pseudosection containing the exact contents of NOTE. */
7110 static bfd_boolean
7111 elfcore_make_note_pseudosection (bfd *abfd,
7112 char *name,
7113 Elf_Internal_Note *note)
7115 return _bfd_elfcore_make_pseudosection (abfd, name,
7116 note->descsz, note->descpos);
7119 /* There isn't a consistent prfpregset_t across platforms,
7120 but it doesn't matter, because we don't have to pick this
7121 data structure apart. */
7123 static bfd_boolean
7124 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7126 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7129 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7130 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7131 literally. */
7133 static bfd_boolean
7134 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7136 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7139 #if defined (HAVE_PRPSINFO_T)
7140 typedef prpsinfo_t elfcore_psinfo_t;
7141 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7142 typedef prpsinfo32_t elfcore_psinfo32_t;
7143 #endif
7144 #endif
7146 #if defined (HAVE_PSINFO_T)
7147 typedef psinfo_t elfcore_psinfo_t;
7148 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7149 typedef psinfo32_t elfcore_psinfo32_t;
7150 #endif
7151 #endif
7153 /* return a malloc'ed copy of a string at START which is at
7154 most MAX bytes long, possibly without a terminating '\0'.
7155 the copy will always have a terminating '\0'. */
7157 char *
7158 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7160 char *dups;
7161 char *end = memchr (start, '\0', max);
7162 size_t len;
7164 if (end == NULL)
7165 len = max;
7166 else
7167 len = end - start;
7169 dups = bfd_alloc (abfd, len + 1);
7170 if (dups == NULL)
7171 return NULL;
7173 memcpy (dups, start, len);
7174 dups[len] = '\0';
7176 return dups;
7179 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7180 static bfd_boolean
7181 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7183 if (note->descsz == sizeof (elfcore_psinfo_t))
7185 elfcore_psinfo_t psinfo;
7187 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7189 elf_tdata (abfd)->core_program
7190 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7191 sizeof (psinfo.pr_fname));
7193 elf_tdata (abfd)->core_command
7194 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7195 sizeof (psinfo.pr_psargs));
7197 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7198 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7200 /* 64-bit host, 32-bit corefile */
7201 elfcore_psinfo32_t psinfo;
7203 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7205 elf_tdata (abfd)->core_program
7206 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7207 sizeof (psinfo.pr_fname));
7209 elf_tdata (abfd)->core_command
7210 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7211 sizeof (psinfo.pr_psargs));
7213 #endif
7215 else
7217 /* Fail - we don't know how to handle any other
7218 note size (ie. data object type). */
7219 return TRUE;
7222 /* Note that for some reason, a spurious space is tacked
7223 onto the end of the args in some (at least one anyway)
7224 implementations, so strip it off if it exists. */
7227 char *command = elf_tdata (abfd)->core_command;
7228 int n = strlen (command);
7230 if (0 < n && command[n - 1] == ' ')
7231 command[n - 1] = '\0';
7234 return TRUE;
7236 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7238 #if defined (HAVE_PSTATUS_T)
7239 static bfd_boolean
7240 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7242 if (note->descsz == sizeof (pstatus_t)
7243 #if defined (HAVE_PXSTATUS_T)
7244 || note->descsz == sizeof (pxstatus_t)
7245 #endif
7248 pstatus_t pstat;
7250 memcpy (&pstat, note->descdata, sizeof (pstat));
7252 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7254 #if defined (HAVE_PSTATUS32_T)
7255 else if (note->descsz == sizeof (pstatus32_t))
7257 /* 64-bit host, 32-bit corefile */
7258 pstatus32_t pstat;
7260 memcpy (&pstat, note->descdata, sizeof (pstat));
7262 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7264 #endif
7265 /* Could grab some more details from the "representative"
7266 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7267 NT_LWPSTATUS note, presumably. */
7269 return TRUE;
7271 #endif /* defined (HAVE_PSTATUS_T) */
7273 #if defined (HAVE_LWPSTATUS_T)
7274 static bfd_boolean
7275 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7277 lwpstatus_t lwpstat;
7278 char buf[100];
7279 char *name;
7280 size_t len;
7281 asection *sect;
7283 if (note->descsz != sizeof (lwpstat)
7284 #if defined (HAVE_LWPXSTATUS_T)
7285 && note->descsz != sizeof (lwpxstatus_t)
7286 #endif
7288 return TRUE;
7290 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7292 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7293 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7295 /* Make a ".reg/999" section. */
7297 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7298 len = strlen (buf) + 1;
7299 name = bfd_alloc (abfd, len);
7300 if (name == NULL)
7301 return FALSE;
7302 memcpy (name, buf, len);
7304 sect = bfd_make_section_anyway (abfd, name);
7305 if (sect == NULL)
7306 return FALSE;
7308 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7309 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7310 sect->filepos = note->descpos
7311 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7312 #endif
7314 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7315 sect->size = sizeof (lwpstat.pr_reg);
7316 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7317 #endif
7319 sect->flags = SEC_HAS_CONTENTS;
7320 sect->alignment_power = 2;
7322 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7323 return FALSE;
7325 /* Make a ".reg2/999" section */
7327 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7328 len = strlen (buf) + 1;
7329 name = bfd_alloc (abfd, len);
7330 if (name == NULL)
7331 return FALSE;
7332 memcpy (name, buf, len);
7334 sect = bfd_make_section_anyway (abfd, name);
7335 if (sect == NULL)
7336 return FALSE;
7338 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7339 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7340 sect->filepos = note->descpos
7341 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7342 #endif
7344 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7345 sect->size = sizeof (lwpstat.pr_fpreg);
7346 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7347 #endif
7349 sect->flags = SEC_HAS_CONTENTS;
7350 sect->alignment_power = 2;
7352 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7354 #endif /* defined (HAVE_LWPSTATUS_T) */
7356 #if defined (HAVE_WIN32_PSTATUS_T)
7357 static bfd_boolean
7358 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7360 char buf[30];
7361 char *name;
7362 size_t len;
7363 asection *sect;
7364 win32_pstatus_t pstatus;
7366 if (note->descsz < sizeof (pstatus))
7367 return TRUE;
7369 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7371 switch (pstatus.data_type)
7373 case NOTE_INFO_PROCESS:
7374 /* FIXME: need to add ->core_command. */
7375 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7376 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7377 break;
7379 case NOTE_INFO_THREAD:
7380 /* Make a ".reg/999" section. */
7381 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7383 len = strlen (buf) + 1;
7384 name = bfd_alloc (abfd, len);
7385 if (name == NULL)
7386 return FALSE;
7388 memcpy (name, buf, len);
7390 sect = bfd_make_section_anyway (abfd, name);
7391 if (sect == NULL)
7392 return FALSE;
7394 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7395 sect->filepos = (note->descpos
7396 + offsetof (struct win32_pstatus,
7397 data.thread_info.thread_context));
7398 sect->flags = SEC_HAS_CONTENTS;
7399 sect->alignment_power = 2;
7401 if (pstatus.data.thread_info.is_active_thread)
7402 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7403 return FALSE;
7404 break;
7406 case NOTE_INFO_MODULE:
7407 /* Make a ".module/xxxxxxxx" section. */
7408 sprintf (buf, ".module/%08lx",
7409 (long) pstatus.data.module_info.base_address);
7411 len = strlen (buf) + 1;
7412 name = bfd_alloc (abfd, len);
7413 if (name == NULL)
7414 return FALSE;
7416 memcpy (name, buf, len);
7418 sect = bfd_make_section_anyway (abfd, name);
7420 if (sect == NULL)
7421 return FALSE;
7423 sect->size = note->descsz;
7424 sect->filepos = note->descpos;
7425 sect->flags = SEC_HAS_CONTENTS;
7426 sect->alignment_power = 2;
7427 break;
7429 default:
7430 return TRUE;
7433 return TRUE;
7435 #endif /* HAVE_WIN32_PSTATUS_T */
7437 static bfd_boolean
7438 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7442 switch (note->type)
7444 default:
7445 return TRUE;
7447 case NT_PRSTATUS:
7448 if (bed->elf_backend_grok_prstatus)
7449 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7450 return TRUE;
7451 #if defined (HAVE_PRSTATUS_T)
7452 return elfcore_grok_prstatus (abfd, note);
7453 #else
7454 return TRUE;
7455 #endif
7457 #if defined (HAVE_PSTATUS_T)
7458 case NT_PSTATUS:
7459 return elfcore_grok_pstatus (abfd, note);
7460 #endif
7462 #if defined (HAVE_LWPSTATUS_T)
7463 case NT_LWPSTATUS:
7464 return elfcore_grok_lwpstatus (abfd, note);
7465 #endif
7467 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7468 return elfcore_grok_prfpreg (abfd, note);
7470 #if defined (HAVE_WIN32_PSTATUS_T)
7471 case NT_WIN32PSTATUS:
7472 return elfcore_grok_win32pstatus (abfd, note);
7473 #endif
7475 case NT_PRXFPREG: /* Linux SSE extension */
7476 if (note->namesz == 6
7477 && strcmp (note->namedata, "LINUX") == 0)
7478 return elfcore_grok_prxfpreg (abfd, note);
7479 else
7480 return TRUE;
7482 case NT_PRPSINFO:
7483 case NT_PSINFO:
7484 if (bed->elf_backend_grok_psinfo)
7485 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7486 return TRUE;
7487 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7488 return elfcore_grok_psinfo (abfd, note);
7489 #else
7490 return TRUE;
7491 #endif
7493 case NT_AUXV:
7495 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7497 if (sect == NULL)
7498 return FALSE;
7499 sect->size = note->descsz;
7500 sect->filepos = note->descpos;
7501 sect->flags = SEC_HAS_CONTENTS;
7502 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7504 return TRUE;
7509 static bfd_boolean
7510 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7512 char *cp;
7514 cp = strchr (note->namedata, '@');
7515 if (cp != NULL)
7517 *lwpidp = atoi(cp + 1);
7518 return TRUE;
7520 return FALSE;
7523 static bfd_boolean
7524 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7527 /* Signal number at offset 0x08. */
7528 elf_tdata (abfd)->core_signal
7529 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7531 /* Process ID at offset 0x50. */
7532 elf_tdata (abfd)->core_pid
7533 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7535 /* Command name at 0x7c (max 32 bytes, including nul). */
7536 elf_tdata (abfd)->core_command
7537 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7539 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7540 note);
7543 static bfd_boolean
7544 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7546 int lwp;
7548 if (elfcore_netbsd_get_lwpid (note, &lwp))
7549 elf_tdata (abfd)->core_lwpid = lwp;
7551 if (note->type == NT_NETBSDCORE_PROCINFO)
7553 /* NetBSD-specific core "procinfo". Note that we expect to
7554 find this note before any of the others, which is fine,
7555 since the kernel writes this note out first when it
7556 creates a core file. */
7558 return elfcore_grok_netbsd_procinfo (abfd, note);
7561 /* As of Jan 2002 there are no other machine-independent notes
7562 defined for NetBSD core files. If the note type is less
7563 than the start of the machine-dependent note types, we don't
7564 understand it. */
7566 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7567 return TRUE;
7570 switch (bfd_get_arch (abfd))
7572 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7573 PT_GETFPREGS == mach+2. */
7575 case bfd_arch_alpha:
7576 case bfd_arch_sparc:
7577 switch (note->type)
7579 case NT_NETBSDCORE_FIRSTMACH+0:
7580 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7582 case NT_NETBSDCORE_FIRSTMACH+2:
7583 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7585 default:
7586 return TRUE;
7589 /* On all other arch's, PT_GETREGS == mach+1 and
7590 PT_GETFPREGS == mach+3. */
7592 default:
7593 switch (note->type)
7595 case NT_NETBSDCORE_FIRSTMACH+1:
7596 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7598 case NT_NETBSDCORE_FIRSTMACH+3:
7599 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7601 default:
7602 return TRUE;
7605 /* NOTREACHED */
7608 static bfd_boolean
7609 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7611 void *ddata = note->descdata;
7612 char buf[100];
7613 char *name;
7614 asection *sect;
7615 short sig;
7616 unsigned flags;
7618 /* nto_procfs_status 'pid' field is at offset 0. */
7619 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7621 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7622 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7624 /* nto_procfs_status 'flags' field is at offset 8. */
7625 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7627 /* nto_procfs_status 'what' field is at offset 14. */
7628 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7630 elf_tdata (abfd)->core_signal = sig;
7631 elf_tdata (abfd)->core_lwpid = *tid;
7634 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7635 do not come from signals so we make sure we set the current
7636 thread just in case. */
7637 if (flags & 0x00000080)
7638 elf_tdata (abfd)->core_lwpid = *tid;
7640 /* Make a ".qnx_core_status/%d" section. */
7641 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7643 name = bfd_alloc (abfd, strlen (buf) + 1);
7644 if (name == NULL)
7645 return FALSE;
7646 strcpy (name, buf);
7648 sect = bfd_make_section_anyway (abfd, name);
7649 if (sect == NULL)
7650 return FALSE;
7652 sect->size = note->descsz;
7653 sect->filepos = note->descpos;
7654 sect->flags = SEC_HAS_CONTENTS;
7655 sect->alignment_power = 2;
7657 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7660 static bfd_boolean
7661 elfcore_grok_nto_regs (bfd *abfd,
7662 Elf_Internal_Note *note,
7663 pid_t tid,
7664 char *base)
7666 char buf[100];
7667 char *name;
7668 asection *sect;
7670 /* Make a "(base)/%d" section. */
7671 sprintf (buf, "%s/%ld", base, (long) tid);
7673 name = bfd_alloc (abfd, strlen (buf) + 1);
7674 if (name == NULL)
7675 return FALSE;
7676 strcpy (name, buf);
7678 sect = bfd_make_section_anyway (abfd, name);
7679 if (sect == NULL)
7680 return FALSE;
7682 sect->size = note->descsz;
7683 sect->filepos = note->descpos;
7684 sect->flags = SEC_HAS_CONTENTS;
7685 sect->alignment_power = 2;
7687 /* This is the current thread. */
7688 if (elf_tdata (abfd)->core_lwpid == tid)
7689 return elfcore_maybe_make_sect (abfd, base, sect);
7691 return TRUE;
7694 #define BFD_QNT_CORE_INFO 7
7695 #define BFD_QNT_CORE_STATUS 8
7696 #define BFD_QNT_CORE_GREG 9
7697 #define BFD_QNT_CORE_FPREG 10
7699 static bfd_boolean
7700 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7702 /* Every GREG section has a STATUS section before it. Store the
7703 tid from the previous call to pass down to the next gregs
7704 function. */
7705 static pid_t tid = 1;
7707 switch (note->type)
7709 case BFD_QNT_CORE_INFO:
7710 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7711 case BFD_QNT_CORE_STATUS:
7712 return elfcore_grok_nto_status (abfd, note, &tid);
7713 case BFD_QNT_CORE_GREG:
7714 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7715 case BFD_QNT_CORE_FPREG:
7716 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7717 default:
7718 return TRUE;
7722 /* Function: elfcore_write_note
7724 Inputs:
7725 buffer to hold note
7726 name of note
7727 type of note
7728 data for note
7729 size of data for note
7731 Return:
7732 End of buffer containing note. */
7734 char *
7735 elfcore_write_note (bfd *abfd,
7736 char *buf,
7737 int *bufsiz,
7738 const char *name,
7739 int type,
7740 const void *input,
7741 int size)
7743 Elf_External_Note *xnp;
7744 size_t namesz;
7745 size_t pad;
7746 size_t newspace;
7747 char *p, *dest;
7749 namesz = 0;
7750 pad = 0;
7751 if (name != NULL)
7753 const struct elf_backend_data *bed;
7755 namesz = strlen (name) + 1;
7756 bed = get_elf_backend_data (abfd);
7757 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7760 newspace = 12 + namesz + pad + size;
7762 p = realloc (buf, *bufsiz + newspace);
7763 dest = p + *bufsiz;
7764 *bufsiz += newspace;
7765 xnp = (Elf_External_Note *) dest;
7766 H_PUT_32 (abfd, namesz, xnp->namesz);
7767 H_PUT_32 (abfd, size, xnp->descsz);
7768 H_PUT_32 (abfd, type, xnp->type);
7769 dest = xnp->name;
7770 if (name != NULL)
7772 memcpy (dest, name, namesz);
7773 dest += namesz;
7774 while (pad != 0)
7776 *dest++ = '\0';
7777 --pad;
7780 memcpy (dest, input, size);
7781 return p;
7784 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7785 char *
7786 elfcore_write_prpsinfo (bfd *abfd,
7787 char *buf,
7788 int *bufsiz,
7789 const char *fname,
7790 const char *psargs)
7792 int note_type;
7793 char *note_name = "CORE";
7795 #if defined (HAVE_PSINFO_T)
7796 psinfo_t data;
7797 note_type = NT_PSINFO;
7798 #else
7799 prpsinfo_t data;
7800 note_type = NT_PRPSINFO;
7801 #endif
7803 memset (&data, 0, sizeof (data));
7804 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7805 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7806 return elfcore_write_note (abfd, buf, bufsiz,
7807 note_name, note_type, &data, sizeof (data));
7809 #endif /* PSINFO_T or PRPSINFO_T */
7811 #if defined (HAVE_PRSTATUS_T)
7812 char *
7813 elfcore_write_prstatus (bfd *abfd,
7814 char *buf,
7815 int *bufsiz,
7816 long pid,
7817 int cursig,
7818 const void *gregs)
7820 prstatus_t prstat;
7821 char *note_name = "CORE";
7823 memset (&prstat, 0, sizeof (prstat));
7824 prstat.pr_pid = pid;
7825 prstat.pr_cursig = cursig;
7826 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7827 return elfcore_write_note (abfd, buf, bufsiz,
7828 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7830 #endif /* HAVE_PRSTATUS_T */
7832 #if defined (HAVE_LWPSTATUS_T)
7833 char *
7834 elfcore_write_lwpstatus (bfd *abfd,
7835 char *buf,
7836 int *bufsiz,
7837 long pid,
7838 int cursig,
7839 const void *gregs)
7841 lwpstatus_t lwpstat;
7842 char *note_name = "CORE";
7844 memset (&lwpstat, 0, sizeof (lwpstat));
7845 lwpstat.pr_lwpid = pid >> 16;
7846 lwpstat.pr_cursig = cursig;
7847 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7848 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7849 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7850 #if !defined(gregs)
7851 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7852 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7853 #else
7854 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7855 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7856 #endif
7857 #endif
7858 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7859 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7861 #endif /* HAVE_LWPSTATUS_T */
7863 #if defined (HAVE_PSTATUS_T)
7864 char *
7865 elfcore_write_pstatus (bfd *abfd,
7866 char *buf,
7867 int *bufsiz,
7868 long pid,
7869 int cursig,
7870 const void *gregs)
7872 pstatus_t pstat;
7873 char *note_name = "CORE";
7875 memset (&pstat, 0, sizeof (pstat));
7876 pstat.pr_pid = pid & 0xffff;
7877 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7878 NT_PSTATUS, &pstat, sizeof (pstat));
7879 return buf;
7881 #endif /* HAVE_PSTATUS_T */
7883 char *
7884 elfcore_write_prfpreg (bfd *abfd,
7885 char *buf,
7886 int *bufsiz,
7887 const void *fpregs,
7888 int size)
7890 char *note_name = "CORE";
7891 return elfcore_write_note (abfd, buf, bufsiz,
7892 note_name, NT_FPREGSET, fpregs, size);
7895 char *
7896 elfcore_write_prxfpreg (bfd *abfd,
7897 char *buf,
7898 int *bufsiz,
7899 const void *xfpregs,
7900 int size)
7902 char *note_name = "LINUX";
7903 return elfcore_write_note (abfd, buf, bufsiz,
7904 note_name, NT_PRXFPREG, xfpregs, size);
7907 static bfd_boolean
7908 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7910 char *buf;
7911 char *p;
7913 if (size <= 0)
7914 return TRUE;
7916 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7917 return FALSE;
7919 buf = bfd_malloc (size);
7920 if (buf == NULL)
7921 return FALSE;
7923 if (bfd_bread (buf, size, abfd) != size)
7925 error:
7926 free (buf);
7927 return FALSE;
7930 p = buf;
7931 while (p < buf + size)
7933 /* FIXME: bad alignment assumption. */
7934 Elf_External_Note *xnp = (Elf_External_Note *) p;
7935 Elf_Internal_Note in;
7937 in.type = H_GET_32 (abfd, xnp->type);
7939 in.namesz = H_GET_32 (abfd, xnp->namesz);
7940 in.namedata = xnp->name;
7942 in.descsz = H_GET_32 (abfd, xnp->descsz);
7943 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7944 in.descpos = offset + (in.descdata - buf);
7946 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7948 if (! elfcore_grok_netbsd_note (abfd, &in))
7949 goto error;
7951 else if (strncmp (in.namedata, "QNX", 3) == 0)
7953 if (! elfcore_grok_nto_note (abfd, &in))
7954 goto error;
7956 else
7958 if (! elfcore_grok_note (abfd, &in))
7959 goto error;
7962 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7965 free (buf);
7966 return TRUE;
7969 /* Providing external access to the ELF program header table. */
7971 /* Return an upper bound on the number of bytes required to store a
7972 copy of ABFD's program header table entries. Return -1 if an error
7973 occurs; bfd_get_error will return an appropriate code. */
7975 long
7976 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7978 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7980 bfd_set_error (bfd_error_wrong_format);
7981 return -1;
7984 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7987 /* Copy ABFD's program header table entries to *PHDRS. The entries
7988 will be stored as an array of Elf_Internal_Phdr structures, as
7989 defined in include/elf/internal.h. To find out how large the
7990 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7992 Return the number of program header table entries read, or -1 if an
7993 error occurs; bfd_get_error will return an appropriate code. */
7996 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7998 int num_phdrs;
8000 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8002 bfd_set_error (bfd_error_wrong_format);
8003 return -1;
8006 num_phdrs = elf_elfheader (abfd)->e_phnum;
8007 memcpy (phdrs, elf_tdata (abfd)->phdr,
8008 num_phdrs * sizeof (Elf_Internal_Phdr));
8010 return num_phdrs;
8013 void
8014 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8016 #ifdef BFD64
8017 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8019 i_ehdrp = elf_elfheader (abfd);
8020 if (i_ehdrp == NULL)
8021 sprintf_vma (buf, value);
8022 else
8024 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8026 #if BFD_HOST_64BIT_LONG
8027 sprintf (buf, "%016lx", value);
8028 #else
8029 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8030 _bfd_int64_low (value));
8031 #endif
8033 else
8034 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8036 #else
8037 sprintf_vma (buf, value);
8038 #endif
8041 void
8042 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8044 #ifdef BFD64
8045 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8047 i_ehdrp = elf_elfheader (abfd);
8048 if (i_ehdrp == NULL)
8049 fprintf_vma ((FILE *) stream, value);
8050 else
8052 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8054 #if BFD_HOST_64BIT_LONG
8055 fprintf ((FILE *) stream, "%016lx", value);
8056 #else
8057 fprintf ((FILE *) stream, "%08lx%08lx",
8058 _bfd_int64_high (value), _bfd_int64_low (value));
8059 #endif
8061 else
8062 fprintf ((FILE *) stream, "%08lx",
8063 (unsigned long) (value & 0xffffffff));
8065 #else
8066 fprintf_vma ((FILE *) stream, value);
8067 #endif
8070 enum elf_reloc_type_class
8071 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8073 return reloc_class_normal;
8076 /* For RELA architectures, return the relocation value for a
8077 relocation against a local symbol. */
8079 bfd_vma
8080 _bfd_elf_rela_local_sym (bfd *abfd,
8081 Elf_Internal_Sym *sym,
8082 asection **psec,
8083 Elf_Internal_Rela *rel)
8085 asection *sec = *psec;
8086 bfd_vma relocation;
8088 relocation = (sec->output_section->vma
8089 + sec->output_offset
8090 + sym->st_value);
8091 if ((sec->flags & SEC_MERGE)
8092 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8093 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8095 rel->r_addend =
8096 _bfd_merged_section_offset (abfd, psec,
8097 elf_section_data (sec)->sec_info,
8098 sym->st_value + rel->r_addend);
8099 if (sec != *psec)
8101 /* If we have changed the section, and our original section is
8102 marked with SEC_EXCLUDE, it means that the original
8103 SEC_MERGE section has been completely subsumed in some
8104 other SEC_MERGE section. In this case, we need to leave
8105 some info around for --emit-relocs. */
8106 if ((sec->flags & SEC_EXCLUDE) != 0)
8107 sec->kept_section = *psec;
8108 sec = *psec;
8110 rel->r_addend -= relocation;
8111 rel->r_addend += sec->output_section->vma + sec->output_offset;
8113 return relocation;
8116 bfd_vma
8117 _bfd_elf_rel_local_sym (bfd *abfd,
8118 Elf_Internal_Sym *sym,
8119 asection **psec,
8120 bfd_vma addend)
8122 asection *sec = *psec;
8124 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8125 return sym->st_value + addend;
8127 return _bfd_merged_section_offset (abfd, psec,
8128 elf_section_data (sec)->sec_info,
8129 sym->st_value + addend);
8132 bfd_vma
8133 _bfd_elf_section_offset (bfd *abfd,
8134 struct bfd_link_info *info,
8135 asection *sec,
8136 bfd_vma offset)
8138 switch (sec->sec_info_type)
8140 case ELF_INFO_TYPE_STABS:
8141 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8142 offset);
8143 case ELF_INFO_TYPE_EH_FRAME:
8144 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8145 default:
8146 return offset;
8150 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8151 reconstruct an ELF file by reading the segments out of remote memory
8152 based on the ELF file header at EHDR_VMA and the ELF program headers it
8153 points to. If not null, *LOADBASEP is filled in with the difference
8154 between the VMAs from which the segments were read, and the VMAs the
8155 file headers (and hence BFD's idea of each section's VMA) put them at.
8157 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8158 remote memory at target address VMA into the local buffer at MYADDR; it
8159 should return zero on success or an `errno' code on failure. TEMPL must
8160 be a BFD for an ELF target with the word size and byte order found in
8161 the remote memory. */
8163 bfd *
8164 bfd_elf_bfd_from_remote_memory
8165 (bfd *templ,
8166 bfd_vma ehdr_vma,
8167 bfd_vma *loadbasep,
8168 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8170 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8171 (templ, ehdr_vma, loadbasep, target_read_memory);
8174 long
8175 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8176 long symcount ATTRIBUTE_UNUSED,
8177 asymbol **syms ATTRIBUTE_UNUSED,
8178 long dynsymcount,
8179 asymbol **dynsyms,
8180 asymbol **ret)
8182 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8183 asection *relplt;
8184 asymbol *s;
8185 const char *relplt_name;
8186 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8187 arelent *p;
8188 long count, i, n;
8189 size_t size;
8190 Elf_Internal_Shdr *hdr;
8191 char *names;
8192 asection *plt;
8194 *ret = NULL;
8196 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8197 return 0;
8199 if (dynsymcount <= 0)
8200 return 0;
8202 if (!bed->plt_sym_val)
8203 return 0;
8205 relplt_name = bed->relplt_name;
8206 if (relplt_name == NULL)
8207 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8208 relplt = bfd_get_section_by_name (abfd, relplt_name);
8209 if (relplt == NULL)
8210 return 0;
8212 hdr = &elf_section_data (relplt)->this_hdr;
8213 if (hdr->sh_link != elf_dynsymtab (abfd)
8214 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8215 return 0;
8217 plt = bfd_get_section_by_name (abfd, ".plt");
8218 if (plt == NULL)
8219 return 0;
8221 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8222 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8223 return -1;
8225 count = relplt->size / hdr->sh_entsize;
8226 size = count * sizeof (asymbol);
8227 p = relplt->relocation;
8228 for (i = 0; i < count; i++, s++, p++)
8229 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8231 s = *ret = bfd_malloc (size);
8232 if (s == NULL)
8233 return -1;
8235 names = (char *) (s + count);
8236 p = relplt->relocation;
8237 n = 0;
8238 for (i = 0; i < count; i++, s++, p++)
8240 size_t len;
8241 bfd_vma addr;
8243 addr = bed->plt_sym_val (i, plt, p);
8244 if (addr == (bfd_vma) -1)
8245 continue;
8247 *s = **p->sym_ptr_ptr;
8248 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8249 we are defining a symbol, ensure one of them is set. */
8250 if ((s->flags & BSF_LOCAL) == 0)
8251 s->flags |= BSF_GLOBAL;
8252 s->section = plt;
8253 s->value = addr - plt->vma;
8254 s->name = names;
8255 len = strlen ((*p->sym_ptr_ptr)->name);
8256 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8257 names += len;
8258 memcpy (names, "@plt", sizeof ("@plt"));
8259 names += sizeof ("@plt");
8260 ++n;
8263 return n;
8266 /* Sort symbol by binding and section. We want to put definitions
8267 sorted by section at the beginning. */
8269 static int
8270 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8272 const Elf_Internal_Sym *s1;
8273 const Elf_Internal_Sym *s2;
8274 int shndx;
8276 /* Make sure that undefined symbols are at the end. */
8277 s1 = (const Elf_Internal_Sym *) arg1;
8278 if (s1->st_shndx == SHN_UNDEF)
8279 return 1;
8280 s2 = (const Elf_Internal_Sym *) arg2;
8281 if (s2->st_shndx == SHN_UNDEF)
8282 return -1;
8284 /* Sorted by section index. */
8285 shndx = s1->st_shndx - s2->st_shndx;
8286 if (shndx != 0)
8287 return shndx;
8289 /* Sorted by binding. */
8290 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8293 struct elf_symbol
8295 Elf_Internal_Sym *sym;
8296 const char *name;
8299 static int
8300 elf_sym_name_compare (const void *arg1, const void *arg2)
8302 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8303 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8304 return strcmp (s1->name, s2->name);
8307 /* Check if 2 sections define the same set of local and global
8308 symbols. */
8310 bfd_boolean
8311 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8313 bfd *bfd1, *bfd2;
8314 const struct elf_backend_data *bed1, *bed2;
8315 Elf_Internal_Shdr *hdr1, *hdr2;
8316 bfd_size_type symcount1, symcount2;
8317 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8318 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8319 Elf_Internal_Sym *isymend;
8320 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8321 bfd_size_type count1, count2, i;
8322 int shndx1, shndx2;
8323 bfd_boolean result;
8325 bfd1 = sec1->owner;
8326 bfd2 = sec2->owner;
8328 /* If both are .gnu.linkonce sections, they have to have the same
8329 section name. */
8330 if (strncmp (sec1->name, ".gnu.linkonce",
8331 sizeof ".gnu.linkonce" - 1) == 0
8332 && strncmp (sec2->name, ".gnu.linkonce",
8333 sizeof ".gnu.linkonce" - 1) == 0)
8334 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8335 sec2->name + sizeof ".gnu.linkonce") == 0;
8337 /* Both sections have to be in ELF. */
8338 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8339 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8340 return FALSE;
8342 if (elf_section_type (sec1) != elf_section_type (sec2))
8343 return FALSE;
8345 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8346 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8348 /* If both are members of section groups, they have to have the
8349 same group name. */
8350 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8351 return FALSE;
8354 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8355 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8356 if (shndx1 == -1 || shndx2 == -1)
8357 return FALSE;
8359 bed1 = get_elf_backend_data (bfd1);
8360 bed2 = get_elf_backend_data (bfd2);
8361 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8362 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8363 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8364 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8366 if (symcount1 == 0 || symcount2 == 0)
8367 return FALSE;
8369 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8370 NULL, NULL, NULL);
8371 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8372 NULL, NULL, NULL);
8374 result = FALSE;
8375 if (isymbuf1 == NULL || isymbuf2 == NULL)
8376 goto done;
8378 /* Sort symbols by binding and section. Global definitions are at
8379 the beginning. */
8380 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8381 elf_sort_elf_symbol);
8382 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8383 elf_sort_elf_symbol);
8385 /* Count definitions in the section. */
8386 count1 = 0;
8387 for (isym = isymbuf1, isymend = isym + symcount1;
8388 isym < isymend; isym++)
8390 if (isym->st_shndx == (unsigned int) shndx1)
8392 if (count1 == 0)
8393 isymstart1 = isym;
8394 count1++;
8397 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8398 break;
8401 count2 = 0;
8402 for (isym = isymbuf2, isymend = isym + symcount2;
8403 isym < isymend; isym++)
8405 if (isym->st_shndx == (unsigned int) shndx2)
8407 if (count2 == 0)
8408 isymstart2 = isym;
8409 count2++;
8412 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8413 break;
8416 if (count1 == 0 || count2 == 0 || count1 != count2)
8417 goto done;
8419 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8420 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8422 if (symtable1 == NULL || symtable2 == NULL)
8423 goto done;
8425 symp = symtable1;
8426 for (isym = isymstart1, isymend = isym + count1;
8427 isym < isymend; isym++)
8429 symp->sym = isym;
8430 symp->name = bfd_elf_string_from_elf_section (bfd1,
8431 hdr1->sh_link,
8432 isym->st_name);
8433 symp++;
8436 symp = symtable2;
8437 for (isym = isymstart2, isymend = isym + count1;
8438 isym < isymend; isym++)
8440 symp->sym = isym;
8441 symp->name = bfd_elf_string_from_elf_section (bfd2,
8442 hdr2->sh_link,
8443 isym->st_name);
8444 symp++;
8447 /* Sort symbol by name. */
8448 qsort (symtable1, count1, sizeof (struct elf_symbol),
8449 elf_sym_name_compare);
8450 qsort (symtable2, count1, sizeof (struct elf_symbol),
8451 elf_sym_name_compare);
8453 for (i = 0; i < count1; i++)
8454 /* Two symbols must have the same binding, type and name. */
8455 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8456 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8457 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8458 goto done;
8460 result = TRUE;
8462 done:
8463 if (symtable1)
8464 free (symtable1);
8465 if (symtable2)
8466 free (symtable2);
8467 if (isymbuf1)
8468 free (isymbuf1);
8469 if (isymbuf2)
8470 free (isymbuf2);
8472 return result;
8475 /* It is only used by x86-64 so far. */
8476 asection _bfd_elf_large_com_section
8477 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8478 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8481 /* Return TRUE if 2 section types are compatible. */
8483 bfd_boolean
8484 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8485 bfd *bbfd, const asection *bsec)
8487 if (asec == NULL
8488 || bsec == NULL
8489 || abfd->xvec->flavour != bfd_target_elf_flavour
8490 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8491 return TRUE;
8493 return elf_section_type (asec) == elf_section_type (bsec);