* ar.c (move_members): Plug memory leak.
[binutils.git] / gas / doc / c-arm.texi
bloba5a88ba1d62df4861be88aca2bcf6a851636d306
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2 @c 2006, 2007, 2008, 2009, 2010, 2011  Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options::              Options
21 * ARM Syntax::               Syntax
22 * ARM Floating Point::       Floating Point
23 * ARM Directives::           ARM Machine Directives
24 * ARM Opcodes::              Opcodes
25 * ARM Mapping Symbols::      Mapping Symbols
26 * ARM Unwinding Tutorial::   Unwinding
27 @end menu
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
34 @table @code
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor.  The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor.  The following processor names are
41 recognized: 
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa606te} (Faraday FA606TE processor),
106 @code{fa616te} (Faraday FA616TE processor),
107 @code{fa626te} (Faraday FA626TE processor),
108 @code{fmp626} (Faraday FMP626 processor),
109 @code{fa726te} (Faraday FA726TE processor),
110 @code{arm1136j-s},
111 @code{arm1136jf-s},
112 @code{arm1156t2-s},
113 @code{arm1156t2f-s},
114 @code{arm1176jz-s},
115 @code{arm1176jzf-s},
116 @code{mpcore},
117 @code{mpcorenovfp},
118 @code{cortex-a5},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-r4},
123 @code{cortex-r4f},
124 @code{cortex-m4},
125 @code{cortex-m3},
126 @code{cortex-m1},
127 @code{cortex-m0},
128 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
129 @code{i80200} (Intel XScale processor)
130 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
132 @code{xscale}.  
133 The special name @code{all} may be used to allow the
134 assembler to accept instructions valid for any ARM processor.
136 In addition to the basic instruction set, the assembler can be told to 
137 accept various extension mnemonics that extend the processor using the 
138 co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
139 is equivalent to specifying @code{-mcpu=ep9312}.  
141 Multiple extensions may be specified, separated by a @code{+}.  The 
142 extensions should be specified in ascending alphabetical order.
144 Some extensions may be restricted to particular architectures; this is 
145 documented in the list of extensions below.
147 Extension mnemonics may also be removed from those the assembler accepts.  
148 This is done be prepending @code{no} to the option that adds the extension.  
149 Extensions that are removed should be listed after all extensions which have 
150 been added, again in ascending alphabetical order.  For example, 
151 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
154 The following extensions are currently supported:
155 @code{idiv}, (Integer Divide Extensions for v7-A architecture),
156 @code{iwmmxt},
157 @code{iwmmxt2},
158 @code{maverick},
159 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
160 @code{os} (Operating System for v6M architecture),
161 @code{sec} (Security Extensions for v6K and v7-A architectures),
162 @code{virt} (Virtualization Extensions for v7-A architecture, implies 
163 @code{idiv}),
165 @code{xscale}.
167 @cindex @code{-march=} command line option, ARM
168 @item -march=@var{architecture}[+@var{extension}@dots{}]
169 This option specifies the target architecture.  The assembler will issue
170 an error message if an attempt is made to assemble an instruction which
171 will not execute on the target architecture.  The following architecture 
172 names are recognized: 
173 @code{armv1},
174 @code{armv2},
175 @code{armv2a},
176 @code{armv2s},
177 @code{armv3},
178 @code{armv3m},
179 @code{armv4},
180 @code{armv4xm},
181 @code{armv4t},
182 @code{armv4txm},
183 @code{armv5},
184 @code{armv5t},
185 @code{armv5txm},
186 @code{armv5te},
187 @code{armv5texp},
188 @code{armv6},
189 @code{armv6j},
190 @code{armv6k},
191 @code{armv6z},
192 @code{armv6zk},
193 @code{armv6-m},
194 @code{armv6s-m},
195 @code{armv7},
196 @code{armv7-a},
197 @code{armv7-r},
198 @code{armv7-m},
199 @code{armv7e-m},
200 @code{iwmmxt}
202 @code{xscale}.
203 If both @code{-mcpu} and
204 @code{-march} are specified, the assembler will use
205 the setting for @code{-mcpu}.
207 The architecture option can be extended with the same instruction set
208 extension options as the @code{-mcpu} option.
210 @cindex @code{-mfpu=} command line option, ARM
211 @item -mfpu=@var{floating-point-format}
213 This option specifies the floating point format to assemble for.  The
214 assembler will issue an error message if an attempt is made to assemble
215 an instruction which will not execute on the target floating point unit.  
216 The following format options are recognized:
217 @code{softfpa},
218 @code{fpe},
219 @code{fpe2},
220 @code{fpe3},
221 @code{fpa},
222 @code{fpa10},
223 @code{fpa11},
224 @code{arm7500fe},
225 @code{softvfp},
226 @code{softvfp+vfp},
227 @code{vfp},
228 @code{vfp10},
229 @code{vfp10-r0},
230 @code{vfp9},
231 @code{vfpxd},
232 @code{vfpv2},
233 @code{vfpv3},
234 @code{vfpv3-fp16},
235 @code{vfpv3-d16},
236 @code{vfpv3-d16-fp16},
237 @code{vfpv3xd},
238 @code{vfpv3xd-d16},
239 @code{vfpv4},
240 @code{vfpv4-d16},
241 @code{fpv4-sp-d16},
242 @code{arm1020t},
243 @code{arm1020e},
244 @code{arm1136jf-s},
245 @code{maverick},
246 @code{neon},
248 @code{neon-vfpv4}.
250 In addition to determining which instructions are assembled, this option
251 also affects the way in which the @code{.double} assembler directive behaves
252 when assembling little-endian code.
254 The default is dependent on the processor selected.  For Architecture 5 or 
255 later, the default is to assembler for VFP instructions; for earlier 
256 architectures the default is to assemble for FPA instructions.
258 @cindex @code{-mthumb} command line option, ARM
259 @item -mthumb
260 This option specifies that the assembler should start assembling Thumb
261 instructions; that is, it should behave as though the file starts with a 
262 @code{.code 16} directive.
264 @cindex @code{-mthumb-interwork} command line option, ARM
265 @item -mthumb-interwork
266 This option specifies that the output generated by the assembler should
267 be marked as supporting interworking.
269 @cindex @code{-mimplicit-it} command line option, ARM
270 @item -mimplicit-it=never
271 @itemx -mimplicit-it=always
272 @itemx -mimplicit-it=arm
273 @itemx -mimplicit-it=thumb
274 The @code{-mimplicit-it} option controls the behavior of the assembler when
275 conditional instructions are not enclosed in IT blocks.
276 There are four possible behaviors.
277 If @code{never} is specified, such constructs cause a warning in ARM
278 code and an error in Thumb-2 code.
279 If @code{always} is specified, such constructs are accepted in both
280 ARM and Thumb-2 code, where the IT instruction is added implicitly.
281 If @code{arm} is specified, such constructs are accepted in ARM code
282 and cause an error in Thumb-2 code.
283 If @code{thumb} is specified, such constructs cause a warning in ARM
284 code and are accepted in Thumb-2 code.  If you omit this option, the
285 behavior is equivalent to @code{-mimplicit-it=arm}.
287 @cindex @code{-mapcs-26} command line option, ARM
288 @cindex @code{-mapcs-32} command line option, ARM
289 @item -mapcs-26
290 @itemx -mapcs-32
291 These options specify that the output generated by the assembler should
292 be marked as supporting the indicated version of the Arm Procedure.
293 Calling Standard.
295 @cindex @code{-matpcs} command line option, ARM
296 @item -matpcs
297 This option specifies that the output generated by the assembler should 
298 be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
299 enabled this option will cause the assembler to create an empty
300 debugging section in the object file called .arm.atpcs.  Debuggers can
301 use this to determine the ABI being used by.
303 @cindex @code{-mapcs-float} command line option, ARM
304 @item -mapcs-float
305 This indicates the floating point variant of the APCS should be
306 used.  In this variant floating point arguments are passed in FP
307 registers rather than integer registers.
309 @cindex @code{-mapcs-reentrant} command line option, ARM
310 @item -mapcs-reentrant
311 This indicates that the reentrant variant of the APCS should be used.
312 This variant supports position independent code.
314 @cindex @code{-mfloat-abi=} command line option, ARM
315 @item -mfloat-abi=@var{abi}
316 This option specifies that the output generated by the assembler should be
317 marked as using specified floating point ABI.
318 The following values are recognized:
319 @code{soft},
320 @code{softfp}
322 @code{hard}.
324 @cindex @code{-eabi=} command line option, ARM
325 @item -meabi=@var{ver}
326 This option specifies which EABI version the produced object files should
327 conform to.
328 The following values are recognized:
329 @code{gnu},
330 @code{4}
332 @code{5}.
334 @cindex @code{-EB} command line option, ARM
335 @item -EB
336 This option specifies that the output generated by the assembler should
337 be marked as being encoded for a big-endian processor.
339 @cindex @code{-EL} command line option, ARM
340 @item -EL
341 This option specifies that the output generated by the assembler should
342 be marked as being encoded for a little-endian processor.
344 @cindex @code{-k} command line option, ARM
345 @cindex PIC code generation for ARM
346 @item -k
347 This option specifies that the output of the assembler should be marked
348 as position-independent code (PIC).
350 @cindex @code{--fix-v4bx} command line option, ARM
351 @item --fix-v4bx
352 Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
353 the linker option of the same name.
355 @cindex @code{-mwarn-deprecated} command line option, ARM
356 @item -mwarn-deprecated
357 @itemx -mno-warn-deprecated
358 Enable or disable warnings about using deprecated options or
359 features.  The default is to warn.
361 @end table
364 @node ARM Syntax
365 @section Syntax
366 @menu
367 * ARM-Instruction-Set::      Instruction Set
368 * ARM-Chars::                Special Characters
369 * ARM-Regs::                 Register Names
370 * ARM-Relocations::          Relocations
371 * ARM-Neon-Alignment::       NEON Alignment Specifiers
372 @end menu
374 @node ARM-Instruction-Set
375 @subsection Instruction Set Syntax
376 Two slightly different syntaxes are support for ARM and THUMB
377 instructions.  The default, @code{divided}, uses the old style where
378 ARM and THUMB instructions had their own, separate syntaxes.  The new,
379 @code{unified} syntax, which can be selected via the @code{.syntax}
380 directive, and has the following main features:
382 @table @bullet
383 @item
384 Immediate operands do not require a @code{#} prefix.
386 @item
387 The @code{IT} instruction may appear, and if it does it is validated
388 against subsequent conditional affixes.  In ARM mode it does not
389 generate machine code, in THUMB mode it does.
391 @item
392 For ARM instructions the conditional affixes always appear at the end
393 of the instruction.  For THUMB instructions conditional affixes can be
394 used, but only inside the scope of an @code{IT} instruction.
396 @item
397 All of the instructions new to the V6T2 architecture (and later) are
398 available.  (Only a few such instructions can be written in the
399 @code{divided} syntax).
401 @item
402 The @code{.N} and @code{.W} suffixes are recognized and honored.
404 @item
405 All instructions set the flags if and only if they have an @code{s}
406 affix.
407 @end table
409 @node ARM-Chars
410 @subsection Special Characters
412 @cindex line comment character, ARM
413 @cindex ARM line comment character
414 The presence of a @samp{@@} anywhere on a line indicates the start of
415 a comment that extends to the end of that line.
417 If a @samp{#} appears as the first character of a line then the whole
418 line is treated as a comment, but in this case the line could also be
419 a logical line number directive (@pxref{Comments}) or a preprocessor
420 control command (@pxref{Preprocessing}).
422 @cindex line separator, ARM
423 @cindex statement separator, ARM
424 @cindex ARM line separator
425 The @samp{;} character can be used instead of a newline to separate
426 statements.
428 @cindex immediate character, ARM
429 @cindex ARM immediate character
430 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
432 @cindex identifiers, ARM
433 @cindex ARM identifiers
434 *TODO* Explain about /data modifier on symbols.
436 @node ARM-Regs
437 @subsection Register Names
439 @cindex ARM register names
440 @cindex register names, ARM
441 *TODO* Explain about ARM register naming, and the predefined names.
443 @node ARM-Neon-Alignment
444 @subsection NEON Alignment Specifiers
446 @cindex alignment for NEON instructions
447 Some NEON load/store instructions allow an optional address
448 alignment qualifier.
449 The ARM documentation specifies that this is indicated by
450 @samp{@@ @var{align}}. However GAS already interprets
451 the @samp{@@} character as a "line comment" start,
452 so @samp{: @var{align}} is used instead.  For example:
454 @smallexample
455         vld1.8 @{q0@}, [r0, :128]
456 @end smallexample
458 @node ARM Floating Point
459 @section Floating Point
461 @cindex floating point, ARM (@sc{ieee})
462 @cindex ARM floating point (@sc{ieee})
463 The ARM family uses @sc{ieee} floating-point numbers.
465 @node ARM-Relocations
466 @subsection ARM relocation generation
468 @cindex data relocations, ARM
469 @cindex ARM data relocations
470 Specific data relocations can be generated by putting the relocation name
471 in parentheses after the symbol name.  For example:
473 @smallexample
474         .word foo(TARGET1)
475 @end smallexample
477 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
478 @var{foo}.
479 The following relocations are supported:
480 @code{GOT},
481 @code{GOTOFF},
482 @code{TARGET1},
483 @code{TARGET2},
484 @code{SBREL},
485 @code{TLSGD},
486 @code{TLSLDM},
487 @code{TLSLDO},
488 @code{TLSDESC},
489 @code{TLSCALL},
490 @code{GOTTPOFF},
491 @code{GOT_PREL}
493 @code{TPOFF}.
495 For compatibility with older toolchains the assembler also accepts
496 @code{(PLT)} after branch targets.  This will generate the deprecated
497 @samp{R_ARM_PLT32} relocation.
499 @cindex MOVW and MOVT relocations, ARM
500 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
501 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
502 respectively.  For example to load the 32-bit address of foo into r0:
504 @smallexample
505         MOVW r0, #:lower16:foo
506         MOVT r0, #:upper16:foo
507 @end smallexample
509 @node ARM Directives
510 @section ARM Machine Directives
512 @cindex machine directives, ARM
513 @cindex ARM machine directives
514 @table @code
516 @c AAAAAAAAAAAAAAAAAAAAAAAAA
518 @cindex @code{.2byte} directive, ARM
519 @cindex @code{.4byte} directive, ARM
520 @cindex @code{.8byte} directive, ARM
521 @item .2byte @var{expression} [, @var{expression}]*
522 @itemx .4byte @var{expression} [, @var{expression}]*
523 @itemx .8byte @var{expression} [, @var{expression}]*
524 These directives write 2, 4 or 8 byte values to the output section.
526 @cindex @code{.align} directive, ARM
527 @item .align @var{expression} [, @var{expression}]
528 This is the generic @var{.align} directive.  For the ARM however if the
529 first argument is zero (ie no alignment is needed) the assembler will
530 behave as if the argument had been 2 (ie pad to the next four byte
531 boundary).  This is for compatibility with ARM's own assembler.
533 @cindex @code{.arch} directive, ARM
534 @item .arch @var{name}
535 Select the target architecture.  Valid values for @var{name} are the same as
536 for the @option{-march} commandline option.
538 Specifying @code{.arch} clears any previously selected architecture 
539 extensions.
541 @cindex @code{.arch_extension} directive, ARM
542 @item .arch_extension @var{name}
543 Add or remove an architecture extension to the target architecture.  Valid 
544 values for @var{name} are the same as those accepted as architectural 
545 extensions by the @option{-mcpu} commandline option.
547 @code{.arch_extension} may be used multiple times to add or remove extensions
548 incrementally to the architecture being compiled for.
550 @cindex @code{.arm} directive, ARM
551 @item .arm
552 This performs the same action as @var{.code 32}.
554 @anchor{arm_pad}
555 @cindex @code{.pad} directive, ARM
556 @item .pad #@var{count}
557 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
558 A positive value indicates the function prologue allocated stack space by
559 decrementing the stack pointer.
561 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
563 @cindex @code{.bss} directive, ARM
564 @item .bss
565 This directive switches to the @code{.bss} section.
567 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
569 @cindex @code{.cantunwind} directive, ARM
570 @item .cantunwind
571 Prevents unwinding through the current function.  No personality routine
572 or exception table data is required or permitted.
574 @cindex @code{.code} directive, ARM
575 @item .code @code{[16|32]}
576 This directive selects the instruction set being generated. The value 16
577 selects Thumb, with the value 32 selecting ARM.
579 @cindex @code{.cpu} directive, ARM
580 @item .cpu @var{name}
581 Select the target processor.  Valid values for @var{name} are the same as
582 for the @option{-mcpu} commandline option.
584 Specifying @code{.cpu} clears any previously selected architecture 
585 extensions.
587 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
589 @cindex @code{.dn} and @code{.qn} directives, ARM
590 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
591 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
593 The @code{dn} and @code{qn} directives are used to create typed
594 and/or indexed register aliases for use in Advanced SIMD Extension
595 (Neon) instructions.  The former should be used to create aliases
596 of double-precision registers, and the latter to create aliases of
597 quad-precision registers.
599 If these directives are used to create typed aliases, those aliases can
600 be used in Neon instructions instead of writing types after the mnemonic
601 or after each operand.  For example:
603 @smallexample
604         x .dn d2.f32
605         y .dn d3.f32
606         z .dn d4.f32[1]
607         vmul x,y,z
608 @end smallexample
610 This is equivalent to writing the following:
612 @smallexample
613         vmul.f32 d2,d3,d4[1]
614 @end smallexample
616 Aliases created using @code{dn} or @code{qn} can be destroyed using
617 @code{unreq}.
619 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
621 @cindex @code{.eabi_attribute} directive, ARM
622 @item .eabi_attribute @var{tag}, @var{value}
623 Set the EABI object attribute @var{tag} to @var{value}.
625 The @var{tag} is either an attribute number, or one of the following:
626 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
627 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
628 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
629 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
630 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
631 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
632 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
633 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
634 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
635 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
636 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
637 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
638 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
639 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
640 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
641 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
642 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
643 @code{Tag_conformance}, @code{Tag_T2EE_use},
644 @code{Tag_Virtualization_use}
646 The @var{value} is either a @code{number}, @code{"string"}, or
647 @code{number, "string"} depending on the tag.
649 Note - the following legacy values are also accepted by @var{tag}:
650 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed}, 
651 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
653 @cindex @code{.even} directive, ARM
654 @item .even
655 This directive aligns to an even-numbered address.
657 @cindex @code{.extend} directive, ARM
658 @cindex @code{.ldouble} directive, ARM
659 @item .extend  @var{expression} [, @var{expression}]*
660 @itemx .ldouble  @var{expression} [, @var{expression}]*
661 These directives write 12byte long double floating-point values to the
662 output section.  These are not compatible with current ARM processors
663 or ABIs.
665 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
667 @anchor{arm_fnend}
668 @cindex @code{.fnend} directive, ARM
669 @item .fnend
670 Marks the end of a function with an unwind table entry.  The unwind index
671 table entry is created when this directive is processed.
673 If no personality routine has been specified then standard personality
674 routine 0 or 1 will be used, depending on the number of unwind opcodes
675 required.
677 @anchor{arm_fnstart}
678 @cindex @code{.fnstart} directive, ARM
679 @item .fnstart
680 Marks the start of a function with an unwind table entry.
682 @cindex @code{.force_thumb} directive, ARM
683 @item .force_thumb
684 This directive forces the selection of Thumb instructions, even if the
685 target processor does not support those instructions
687 @cindex @code{.fpu} directive, ARM
688 @item .fpu @var{name}
689 Select the floating-point unit to assemble for.  Valid values for @var{name}
690 are the same as for the @option{-mfpu} commandline option.
692 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
693 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
695 @cindex @code{.handlerdata} directive, ARM
696 @item .handlerdata
697 Marks the end of the current function, and the start of the exception table
698 entry for that function.  Anything between this directive and the
699 @code{.fnend} directive will be added to the exception table entry.
701 Must be preceded by a @code{.personality} or @code{.personalityindex}
702 directive.
704 @c IIIIIIIIIIIIIIIIIIIIIIIIII
706 @cindex @code{.inst} directive, ARM
707 @item .inst @var{opcode} [ , @dots{} ]
708 @itemx .inst.n @var{opcode} [ , @dots{} ]
709 @itemx .inst.w @var{opcode} [ , @dots{} ]
710 Generates the instruction corresponding to the numerical value @var{opcode}.
711 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
712 specified explicitly, overriding the normal encoding rules.
714 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
715 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
716 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
718 @item .ldouble  @var{expression} [, @var{expression}]*
719 See @code{.extend}.
721 @cindex @code{.ltorg} directive, ARM
722 @item .ltorg
723 This directive causes the current contents of the literal pool to be
724 dumped into the current section (which is assumed to be the .text
725 section) at the current location (aligned to a word boundary).
726 @code{GAS} maintains a separate literal pool for each section and each
727 sub-section.  The @code{.ltorg} directive will only affect the literal
728 pool of the current section and sub-section.  At the end of assembly
729 all remaining, un-empty literal pools will automatically be dumped.
731 Note - older versions of @code{GAS} would dump the current literal
732 pool any time a section change occurred.  This is no longer done, since
733 it prevents accurate control of the placement of literal pools.
735 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
737 @cindex @code{.movsp} directive, ARM
738 @item .movsp @var{reg} [, #@var{offset}]
739 Tell the unwinder that @var{reg} contains an offset from the current
740 stack pointer.  If @var{offset} is not specified then it is assumed to be
741 zero.
743 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
744 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
746 @cindex @code{.object_arch} directive, ARM
747 @item .object_arch @var{name}
748 Override the architecture recorded in the EABI object attribute section.
749 Valid values for @var{name} are the same as for the @code{.arch} directive.
750 Typically this is useful when code uses runtime detection of CPU features.
752 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
754 @cindex @code{.packed} directive, ARM
755 @item .packed  @var{expression} [, @var{expression}]*
756 This directive writes 12-byte packed floating-point values to the
757 output section.  These are not compatible with current ARM processors
758 or ABIs.
760 @cindex @code{.pad} directive, ARM
761 @item .pad #@var{count}
762 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
763 A positive value indicates the function prologue allocated stack space by
764 decrementing the stack pointer.
766 @cindex @code{.personality} directive, ARM
767 @item .personality @var{name}
768 Sets the personality routine for the current function to @var{name}.
770 @cindex @code{.personalityindex} directive, ARM
771 @item .personalityindex @var{index}
772 Sets the personality routine for the current function to the EABI standard
773 routine number @var{index}
775 @cindex @code{.pool} directive, ARM
776 @item .pool
777 This is a synonym for .ltorg.
779 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
780 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
782 @cindex @code{.req} directive, ARM
783 @item @var{name} .req @var{register name}
784 This creates an alias for @var{register name} called @var{name}.  For
785 example:
787 @smallexample
788         foo .req r0
789 @end smallexample
791 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
793 @anchor{arm_save}
794 @cindex @code{.save} directive, ARM
795 @item .save @var{reglist}
796 Generate unwinder annotations to restore the registers in @var{reglist}.
797 The format of @var{reglist} is the same as the corresponding store-multiple
798 instruction.
800 @smallexample
801 @exdent @emph{core registers}
802   .save @{r4, r5, r6, lr@}
803   stmfd sp!, @{r4, r5, r6, lr@}
804 @exdent @emph{FPA registers}
805   .save f4, 2
806   sfmfd f4, 2, [sp]!
807 @exdent @emph{VFP registers}
808   .save @{d8, d9, d10@}
809   fstmdx sp!, @{d8, d9, d10@}
810 @exdent @emph{iWMMXt registers}
811   .save @{wr10, wr11@}
812   wstrd wr11, [sp, #-8]!
813   wstrd wr10, [sp, #-8]!
815   .save wr11
816   wstrd wr11, [sp, #-8]!
817   .save wr10
818   wstrd wr10, [sp, #-8]!
819 @end smallexample
821 @anchor{arm_setfp}
822 @cindex @code{.setfp} directive, ARM
823 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
824 Make all unwinder annotations relative to a frame pointer.  Without this
825 the unwinder will use offsets from the stack pointer.
827 The syntax of this directive is the same as the @code{add} or @code{mov}
828 instruction used to set the frame pointer.  @var{spreg} must be either
829 @code{sp} or mentioned in a previous @code{.movsp} directive.
831 @smallexample
832 .movsp ip
833 mov ip, sp
834 @dots{}
835 .setfp fp, ip, #4
836 add fp, ip, #4
837 @end smallexample
839 @cindex @code{.secrel32} directive, ARM
840 @item .secrel32 @var{expression} [, @var{expression}]*
841 This directive emits relocations that evaluate to the section-relative
842 offset of each expression's symbol.  This directive is only supported
843 for PE targets.
845 @cindex @code{.syntax} directive, ARM
846 @item .syntax [@code{unified} | @code{divided}]
847 This directive sets the Instruction Set Syntax as described in the
848 @ref{ARM-Instruction-Set} section.
850 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
852 @cindex @code{.thumb} directive, ARM
853 @item .thumb
854 This performs the same action as @var{.code 16}.
856 @cindex @code{.thumb_func} directive, ARM
857 @item .thumb_func
858 This directive specifies that the following symbol is the name of a
859 Thumb encoded function.  This information is necessary in order to allow
860 the assembler and linker to generate correct code for interworking
861 between Arm and Thumb instructions and should be used even if
862 interworking is not going to be performed.  The presence of this
863 directive also implies @code{.thumb}
865 This directive is not neccessary when generating EABI objects.  On these
866 targets the encoding is implicit when generating Thumb code.
868 @cindex @code{.thumb_set} directive, ARM
869 @item .thumb_set
870 This performs the equivalent of a @code{.set} directive in that it
871 creates a symbol which is an alias for another symbol (possibly not yet
872 defined).  This directive also has the added property in that it marks
873 the aliased symbol as being a thumb function entry point, in the same
874 way that the @code{.thumb_func} directive does.
876 @cindex @code{.tlsdescseq} directive, ARM
877 @item .tlsdescseq @var{tls-variable}
878 This directive is used to annotate parts of an inlined TLS descriptor
879 trampoline.  Normally the trampoline is provided by the linker, and
880 this directive is not needed.
882 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
884 @cindex @code{.unreq} directive, ARM
885 @item .unreq @var{alias-name}
886 This undefines a register alias which was previously defined using the
887 @code{req}, @code{dn} or @code{qn} directives.  For example:
889 @smallexample
890         foo .req r0
891         .unreq foo
892 @end smallexample
894 An error occurs if the name is undefined.  Note - this pseudo op can
895 be used to delete builtin in register name aliases (eg 'r0').  This
896 should only be done if it is really necessary.
898 @cindex @code{.unwind_raw} directive, ARM
899 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
900 Insert one of more arbitary unwind opcode bytes, which are known to adjust
901 the stack pointer by @var{offset} bytes.
903 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
904 @code{.save @{r0@}}
906 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
908 @cindex @code{.vsave} directive, ARM
909 @item .vsave @var{vfp-reglist}
910 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
911 using FLDMD.  Also works for VFPv3 registers
912 that are to be restored using VLDM.
913 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
914 instruction.
916 @smallexample
917 @exdent @emph{VFP registers}
918   .vsave @{d8, d9, d10@}
919   fstmdd sp!, @{d8, d9, d10@}
920 @exdent @emph{VFPv3 registers}
921   .vsave @{d15, d16, d17@}
922   vstm sp!, @{d15, d16, d17@}
923 @end smallexample
925 Since FLDMX and FSTMX are now deprecated, this directive should be
926 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
928 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
929 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
930 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
931 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
933 @end table
935 @node ARM Opcodes
936 @section Opcodes
938 @cindex ARM opcodes
939 @cindex opcodes for ARM
940 @code{@value{AS}} implements all the standard ARM opcodes.  It also
941 implements several pseudo opcodes, including several synthetic load
942 instructions. 
944 @table @code
946 @cindex @code{NOP} pseudo op, ARM
947 @item NOP
948 @smallexample
949   nop
950 @end smallexample
952 This pseudo op will always evaluate to a legal ARM instruction that does
953 nothing.  Currently it will evaluate to MOV r0, r0.
955 @cindex @code{LDR reg,=<label>} pseudo op, ARM
956 @item LDR 
957 @smallexample
958   ldr <register> , = <expression>
959 @end smallexample
961 If expression evaluates to a numeric constant then a MOV or MVN
962 instruction will be used in place of the LDR instruction, if the
963 constant can be generated by either of these instructions.  Otherwise
964 the constant will be placed into the nearest literal pool (if it not
965 already there) and a PC relative LDR instruction will be generated.
967 @cindex @code{ADR reg,<label>} pseudo op, ARM
968 @item ADR
969 @smallexample
970   adr <register> <label>
971 @end smallexample
973 This instruction will load the address of @var{label} into the indicated
974 register.  The instruction will evaluate to a PC relative ADD or SUB
975 instruction depending upon where the label is located.  If the label is
976 out of range, or if it is not defined in the same file (and section) as
977 the ADR instruction, then an error will be generated.  This instruction
978 will not make use of the literal pool.
980 @cindex @code{ADRL reg,<label>} pseudo op, ARM
981 @item ADRL 
982 @smallexample
983   adrl <register> <label>
984 @end smallexample
986 This instruction will load the address of @var{label} into the indicated
987 register.  The instruction will evaluate to one or two PC relative ADD
988 or SUB instructions depending upon where the label is located.  If a
989 second instruction is not needed a NOP instruction will be generated in
990 its place, so that this instruction is always 8 bytes long.
992 If the label is out of range, or if it is not defined in the same file
993 (and section) as the ADRL instruction, then an error will be generated.
994 This instruction will not make use of the literal pool.
996 @end table
998 For information on the ARM or Thumb instruction sets, see @cite{ARM
999 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1000 Ltd.
1002 @node ARM Mapping Symbols
1003 @section Mapping Symbols
1005 The ARM ELF specification requires that special symbols be inserted
1006 into object files to mark certain features:
1008 @table @code
1010 @cindex @code{$a}
1011 @item $a
1012 At the start of a region of code containing ARM instructions.
1014 @cindex @code{$t}
1015 @item $t
1016 At the start of a region of code containing THUMB instructions.
1018 @cindex @code{$d}
1019 @item $d
1020 At the start of a region of data.
1022 @end table
1024 The assembler will automatically insert these symbols for you - there
1025 is no need to code them yourself.  Support for tagging symbols ($b,
1026 $f, $p and $m) which is also mentioned in the current ARM ELF
1027 specification is not implemented.  This is because they have been
1028 dropped from the new EABI and so tools cannot rely upon their
1029 presence.
1031 @node ARM Unwinding Tutorial
1032 @section Unwinding
1034 The ABI for the ARM Architecture specifies a standard format for
1035 exception unwind information.  This information is used when an
1036 exception is thrown to determine where control should be transferred.
1037 In particular, the unwind information is used to determine which
1038 function called the function that threw the exception, and which
1039 function called that one, and so forth.  This information is also used
1040 to restore the values of callee-saved registers in the function
1041 catching the exception.
1043 If you are writing functions in assembly code, and those functions
1044 call other functions that throw exceptions, you must use assembly
1045 pseudo ops to ensure that appropriate exception unwind information is
1046 generated.  Otherwise, if one of the functions called by your assembly
1047 code throws an exception, the run-time library will be unable to
1048 unwind the stack through your assembly code and your program will not
1049 behave correctly.
1051 To illustrate the use of these pseudo ops, we will examine the code
1052 that G++ generates for the following C++ input:
1054 @verbatim
1055 void callee (int *);
1057 int 
1058 caller () 
1060   int i;
1061   callee (&i);
1062   return i; 
1064 @end verbatim
1066 This example does not show how to throw or catch an exception from
1067 assembly code.  That is a much more complex operation and should
1068 always be done in a high-level language, such as C++, that directly
1069 supports exceptions.
1071 The code generated by one particular version of G++ when compiling the
1072 example above is:
1074 @verbatim
1075 _Z6callerv:
1076         .fnstart
1077 .LFB2:
1078         @ Function supports interworking.
1079         @ args = 0, pretend = 0, frame = 8
1080         @ frame_needed = 1, uses_anonymous_args = 0
1081         stmfd   sp!, {fp, lr}
1082         .save {fp, lr}
1083 .LCFI0:
1084         .setfp fp, sp, #4
1085         add     fp, sp, #4
1086 .LCFI1:
1087         .pad #8
1088         sub     sp, sp, #8
1089 .LCFI2:
1090         sub     r3, fp, #8
1091         mov     r0, r3
1092         bl      _Z6calleePi
1093         ldr     r3, [fp, #-8]
1094         mov     r0, r3
1095         sub     sp, fp, #4
1096         ldmfd   sp!, {fp, lr}
1097         bx      lr
1098 .LFE2:
1099         .fnend
1100 @end verbatim
1102 Of course, the sequence of instructions varies based on the options
1103 you pass to GCC and on the version of GCC in use.  The exact
1104 instructions are not important since we are focusing on the pseudo ops
1105 that are used to generate unwind information.
1107 An important assumption made by the unwinder is that the stack frame
1108 does not change during the body of the function.  In particular, since
1109 we assume that the assembly code does not itself throw an exception,
1110 the only point where an exception can be thrown is from a call, such
1111 as the @code{bl} instruction above.  At each call site, the same saved
1112 registers (including @code{lr}, which indicates the return address)
1113 must be located in the same locations relative to the frame pointer.
1115 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1116 op appears immediately before the first instruction of the function
1117 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1118 op appears immediately after the last instruction of the function.
1119 These pseudo ops specify the range of the function.  
1121 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1122 @code{.pad}) matters; their exact locations are irrelevant.  In the
1123 example above, the compiler emits the pseudo ops with particular
1124 instructions.  That makes it easier to understand the code, but it is
1125 not required for correctness.  It would work just as well to emit all
1126 of the pseudo ops other than @code{.fnend} in the same order, but
1127 immediately after @code{.fnstart}.
1129 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1130 indicates registers that have been saved to the stack so that they can
1131 be restored before the function returns.  The argument to the
1132 @code{.save} pseudo op is a list of registers to save.  If a register
1133 is ``callee-saved'' (as specified by the ABI) and is modified by the
1134 function you are writing, then your code must save the value before it
1135 is modified and restore the original value before the function
1136 returns.  If an exception is thrown, the run-time library restores the
1137 values of these registers from their locations on the stack before
1138 returning control to the exception handler.  (Of course, if an
1139 exception is not thrown, the function that contains the @code{.save}
1140 pseudo op restores these registers in the function epilogue, as is
1141 done with the @code{ldmfd} instruction above.)
1143 You do not have to save callee-saved registers at the very beginning
1144 of the function and you do not need to use the @code{.save} pseudo op
1145 immediately following the point at which the registers are saved.
1146 However, if you modify a callee-saved register, you must save it on
1147 the stack before modifying it and before calling any functions which
1148 might throw an exception.  And, you must use the @code{.save} pseudo
1149 op to indicate that you have done so.
1151 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1152 modification of the stack pointer that does not save any registers.
1153 The argument is the number of bytes (in decimal) that are subtracted
1154 from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
1155 subtracting from the stack pointer increases the size of the stack.)
1157 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1158 indicates the register that contains the frame pointer.  The first
1159 argument is the register that is set, which is typically @code{fp}.
1160 The second argument indicates the register from which the frame
1161 pointer takes its value.  The third argument, if present, is the value
1162 (in decimal) added to the register specified by the second argument to
1163 compute the value of the frame pointer.  You should not modify the
1164 frame pointer in the body of the function.
1166 If you do not use a frame pointer, then you should not use the
1167 @code{.setfp} pseudo op.  If you do not use a frame pointer, then you
1168 should avoid modifying the stack pointer outside of the function
1169 prologue.  Otherwise, the run-time library will be unable to find
1170 saved registers when it is unwinding the stack.
1172 The pseudo ops described above are sufficient for writing assembly
1173 code that calls functions which may throw exceptions.  If you need to
1174 know more about the object-file format used to represent unwind
1175 information, you may consult the @cite{Exception Handling ABI for the
1176 ARM Architecture} available from @uref{http://infocenter.arm.com}.