Add docs and arch tests to BMI.
[binutils.git] / gas / doc / c-i386.texi
blob4ea33f6db513c05c267f7499716d28de273f28b4
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
26 @menu
27 * i386-Options::                Options
28 * i386-Directives::             X86 specific directives
29 * i386-Syntax::                 AT&T Syntax versus Intel Syntax
30 * i386-Mnemonics::              Instruction Naming
31 * i386-Regs::                   Register Naming
32 * i386-Prefixes::               Instruction Prefixes
33 * i386-Memory::                 Memory References
34 * i386-Jumps::                  Handling of Jump Instructions
35 * i386-Float::                  Floating Point
36 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP::                    AMD's Lightweight Profiling Instructions
38 * i386-BMI::                    Bit Manipulation Instruction
39 * i386-16bit::                  Writing 16-bit Code
40 * i386-Arch::                   Specifying an x86 CPU architecture
41 * i386-Bugs::                   AT&T Syntax bugs
42 * i386-Notes::                  Notes
43 @end menu
45 @node i386-Options
46 @section Options
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options 
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--n32} option, i386
61 @cindex @samp{--n32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --n32 | --64
65 Select the word size, either 32 bits or 64 bits.  @samp{--32}
66 implies Intel i386 architecture, while @samp{--n32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi.  This switch disables the optimization.
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions.  The
84 @samp{--divide} option turns @samp{/} into a normal character.  This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor.  The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor.  The following
94 processor names are recognized: 
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{generic32} and
121 @code{generic64}.
123 In addition to the basic instruction set, the assembler can be told to 
124 accept various extension mnemonics.  For example,
125 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
126 @var{vmx}.  The following extensions are currently supported:
127 @code{8087},
128 @code{287},
129 @code{387},
130 @code{no87},
131 @code{mmx},
132 @code{nommx},
133 @code{sse},
134 @code{sse2},
135 @code{sse3},
136 @code{ssse3},
137 @code{sse4.1},
138 @code{sse4.2},
139 @code{sse4},
140 @code{nosse},
141 @code{avx},
142 @code{noavx},
143 @code{vmx},
144 @code{smx},
145 @code{xsave},
146 @code{xsaveopt},
147 @code{aes},
148 @code{pclmul},
149 @code{fsgsbase},
150 @code{rdrnd},
151 @code{f16c},
152 @code{fma},
153 @code{movbe},
154 @code{ept},
155 @code{clflush},
156 @code{lwp},
157 @code{fma4},
158 @code{xop},
159 @code{syscall},
160 @code{rdtscp},
161 @code{3dnow},
162 @code{3dnowa},
163 @code{sse4a},
164 @code{sse5},
165 @code{svme},
166 @code{abm} and
167 @code{padlock}.
168 Note that rather than extending a basic instruction set, the extension
169 mnemonics starting with @code{no} revoke the respective functionality.
171 When the @code{.arch} directive is used with @option{-march}, the
172 @code{.arch} directive will take precedent.
174 @cindex @samp{-mtune=} option, i386
175 @cindex @samp{-mtune=} option, x86-64
176 @item -mtune=@var{CPU}
177 This option specifies a processor to optimize for. When used in
178 conjunction with the @option{-march} option, only instructions
179 of the processor specified by the @option{-march} option will be
180 generated.
182 Valid @var{CPU} values are identical to the processor list of
183 @option{-march=@var{CPU}}.
185 @cindex @samp{-msse2avx} option, i386
186 @cindex @samp{-msse2avx} option, x86-64
187 @item -msse2avx
188 This option specifies that the assembler should encode SSE instructions
189 with VEX prefix.
191 @cindex @samp{-msse-check=} option, i386
192 @cindex @samp{-msse-check=} option, x86-64
193 @item -msse-check=@var{none}
194 @itemx -msse-check=@var{warning}
195 @itemx -msse-check=@var{error}
196 These options control if the assembler should check SSE intructions.
197 @option{-msse-check=@var{none}} will make the assembler not to check SSE
198 instructions,  which is the default.  @option{-msse-check=@var{warning}}
199 will make the assembler issue a warning for any SSE intruction.
200 @option{-msse-check=@var{error}} will make the assembler issue an error
201 for any SSE intruction.
203 @cindex @samp{-mavxscalar=} option, i386
204 @cindex @samp{-mavxscalar=} option, x86-64
205 @item -mavxscalar=@var{128}
206 @itemx -mavxscalar=@var{256}
207 This options control how the assembler should encode scalar AVX
208 instructions.  @option{-mavxscalar=@var{128}} will encode scalar
209 AVX instructions with 128bit vector length, which is the default.
210 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
211 with 256bit vector length.
213 @cindex @samp{-mmnemonic=} option, i386
214 @cindex @samp{-mmnemonic=} option, x86-64
215 @item -mmnemonic=@var{att}
216 @itemx -mmnemonic=@var{intel}
217 This option specifies instruction mnemonic for matching instructions. 
218 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
219 take precedent.
221 @cindex @samp{-msyntax=} option, i386
222 @cindex @samp{-msyntax=} option, x86-64
223 @item -msyntax=@var{att}
224 @itemx -msyntax=@var{intel}
225 This option specifies instruction syntax when processing instructions. 
226 The @code{.att_syntax} and @code{.intel_syntax} directives will
227 take precedent.
229 @cindex @samp{-mnaked-reg} option, i386
230 @cindex @samp{-mnaked-reg} option, x86-64
231 @item -mnaked-reg
232 This opetion specifies that registers don't require a @samp{%} prefix.
233 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
235 @end table
236 @c man end
238 @node i386-Directives
239 @section x86 specific Directives
241 @cindex machine directives, x86
242 @cindex x86 machine directives
243 @table @code
245 @cindex @code{lcomm} directive, COFF
246 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
247 Reserve @var{length} (an absolute expression) bytes for a local common
248 denoted by @var{symbol}.  The section and value of @var{symbol} are
249 those of the new local common.  The addresses are allocated in the bss
250 section, so that at run-time the bytes start off zeroed.  Since
251 @var{symbol} is not declared global, it is normally not visible to
252 @code{@value{LD}}.  The optional third parameter, @var{alignment},
253 specifies the desired alignment of the symbol in the bss section.
255 This directive is only available for COFF based x86 targets.
257 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
258 @c .largecomm
260 @end table
262 @node i386-Syntax
263 @section AT&T Syntax versus Intel Syntax
265 @cindex i386 intel_syntax pseudo op
266 @cindex intel_syntax pseudo op, i386
267 @cindex i386 att_syntax pseudo op
268 @cindex att_syntax pseudo op, i386
269 @cindex i386 syntax compatibility
270 @cindex syntax compatibility, i386
271 @cindex x86-64 intel_syntax pseudo op
272 @cindex intel_syntax pseudo op, x86-64
273 @cindex x86-64 att_syntax pseudo op
274 @cindex att_syntax pseudo op, x86-64
275 @cindex x86-64 syntax compatibility
276 @cindex syntax compatibility, x86-64
278 @code{@value{AS}} now supports assembly using Intel assembler syntax.
279 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
280 back to the usual AT&T mode for compatibility with the output of
281 @code{@value{GCC}}.  Either of these directives may have an optional
282 argument, @code{prefix}, or @code{noprefix} specifying whether registers
283 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
284 different from Intel syntax.  We mention these differences because
285 almost all 80386 documents use Intel syntax.  Notable differences
286 between the two syntaxes are:
288 @cindex immediate operands, i386
289 @cindex i386 immediate operands
290 @cindex register operands, i386
291 @cindex i386 register operands
292 @cindex jump/call operands, i386
293 @cindex i386 jump/call operands
294 @cindex operand delimiters, i386
296 @cindex immediate operands, x86-64
297 @cindex x86-64 immediate operands
298 @cindex register operands, x86-64
299 @cindex x86-64 register operands
300 @cindex jump/call operands, x86-64
301 @cindex x86-64 jump/call operands
302 @cindex operand delimiters, x86-64
303 @itemize @bullet
304 @item
305 AT&T immediate operands are preceded by @samp{$}; Intel immediate
306 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
307 AT&T register operands are preceded by @samp{%}; Intel register operands
308 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
309 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
311 @cindex i386 source, destination operands
312 @cindex source, destination operands; i386
313 @cindex x86-64 source, destination operands
314 @cindex source, destination operands; x86-64
315 @item
316 AT&T and Intel syntax use the opposite order for source and destination
317 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
318 @samp{source, dest} convention is maintained for compatibility with
319 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
320 instructions with 2 immediate operands, such as the @samp{enter}
321 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
323 @cindex mnemonic suffixes, i386
324 @cindex sizes operands, i386
325 @cindex i386 size suffixes
326 @cindex mnemonic suffixes, x86-64
327 @cindex sizes operands, x86-64
328 @cindex x86-64 size suffixes
329 @item
330 In AT&T syntax the size of memory operands is determined from the last
331 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
332 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
333 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
334 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
335 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
336 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
337 syntax.
339 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
340 instruction with the 64-bit displacement or immediate operand.
342 @cindex return instructions, i386
343 @cindex i386 jump, call, return
344 @cindex return instructions, x86-64
345 @cindex x86-64 jump, call, return
346 @item
347 Immediate form long jumps and calls are
348 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
349 Intel syntax is
350 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
351 instruction
352 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
353 @samp{ret far @var{stack-adjust}}.
355 @cindex sections, i386
356 @cindex i386 sections
357 @cindex sections, x86-64
358 @cindex x86-64 sections
359 @item
360 The AT&T assembler does not provide support for multiple section
361 programs.  Unix style systems expect all programs to be single sections.
362 @end itemize
364 @node i386-Mnemonics
365 @section Instruction Naming
367 @cindex i386 instruction naming
368 @cindex instruction naming, i386
369 @cindex x86-64 instruction naming
370 @cindex instruction naming, x86-64
372 Instruction mnemonics are suffixed with one character modifiers which
373 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
374 and @samp{q} specify byte, word, long and quadruple word operands.  If
375 no suffix is specified by an instruction then @code{@value{AS}} tries to
376 fill in the missing suffix based on the destination register operand
377 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
378 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
379 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
380 assembler which assumes that a missing mnemonic suffix implies long
381 operand size.  (This incompatibility does not affect compiler output
382 since compilers always explicitly specify the mnemonic suffix.)
384 Almost all instructions have the same names in AT&T and Intel format.
385 There are a few exceptions.  The sign extend and zero extend
386 instructions need two sizes to specify them.  They need a size to
387 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
388 is accomplished by using two instruction mnemonic suffixes in AT&T
389 syntax.  Base names for sign extend and zero extend are
390 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
391 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
392 are tacked on to this base name, the @emph{from} suffix before the
393 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
394 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
395 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
396 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
397 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
398 quadruple word).
400 @cindex encoding options, i386
401 @cindex encoding options, x86-64
403 Different encoding options can be specified via optional mnemonic
404 suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
405 moving from one register to another.  @samp{.d32} suffix forces 32bit
406 displacement in encoding.
408 @cindex conversion instructions, i386
409 @cindex i386 conversion instructions
410 @cindex conversion instructions, x86-64
411 @cindex x86-64 conversion instructions
412 The Intel-syntax conversion instructions
414 @itemize @bullet
415 @item
416 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
418 @item
419 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
421 @item
422 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
424 @item
425 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
427 @item
428 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
429 (x86-64 only),
431 @item
432 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
433 @samp{%rdx:%rax} (x86-64 only),
434 @end itemize
436 @noindent
437 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
438 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
439 instructions.
441 @cindex jump instructions, i386
442 @cindex call instructions, i386
443 @cindex jump instructions, x86-64
444 @cindex call instructions, x86-64
445 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
446 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
447 convention.
449 @section AT&T Mnemonic versus Intel Mnemonic
451 @cindex i386 mnemonic compatibility
452 @cindex mnemonic compatibility, i386
454 @code{@value{AS}} supports assembly using Intel mnemonic.
455 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
456 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
457 syntax for compatibility with the output of @code{@value{GCC}}.
458 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
459 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
460 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
461 assembler with different mnemonics from those in Intel IA32 specification.
462 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
464 @node i386-Regs
465 @section Register Naming
467 @cindex i386 registers
468 @cindex registers, i386
469 @cindex x86-64 registers
470 @cindex registers, x86-64
471 Register operands are always prefixed with @samp{%}.  The 80386 registers
472 consist of
474 @itemize @bullet
475 @item
476 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
477 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
478 frame pointer), and @samp{%esp} (the stack pointer).
480 @item
481 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
482 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
484 @item
485 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
486 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
487 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
488 @samp{%cx}, and @samp{%dx})
490 @item
491 the 6 section registers @samp{%cs} (code section), @samp{%ds}
492 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
493 and @samp{%gs}.
495 @item
496 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
497 @samp{%cr3}.
499 @item
500 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
501 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
503 @item
504 the 2 test registers @samp{%tr6} and @samp{%tr7}.
506 @item
507 the 8 floating point register stack @samp{%st} or equivalently
508 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
509 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
510 These registers are overloaded by 8 MMX registers @samp{%mm0},
511 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
512 @samp{%mm6} and @samp{%mm7}.
514 @item
515 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
516 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
517 @end itemize
519 The AMD x86-64 architecture extends the register set by:
521 @itemize @bullet
522 @item
523 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
524 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
525 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
526 pointer)
528 @item
529 the 8 extended registers @samp{%r8}--@samp{%r15}.
531 @item
532 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
534 @item
535 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
537 @item
538 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
540 @item
541 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
543 @item
544 the 8 debug registers: @samp{%db8}--@samp{%db15}.
546 @item
547 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
548 @end itemize
550 @node i386-Prefixes
551 @section Instruction Prefixes
553 @cindex i386 instruction prefixes
554 @cindex instruction prefixes, i386
555 @cindex prefixes, i386
556 Instruction prefixes are used to modify the following instruction.  They
557 are used to repeat string instructions, to provide section overrides, to
558 perform bus lock operations, and to change operand and address sizes.
559 (Most instructions that normally operate on 32-bit operands will use
560 16-bit operands if the instruction has an ``operand size'' prefix.)
561 Instruction prefixes are best written on the same line as the instruction
562 they act upon. For example, the @samp{scas} (scan string) instruction is
563 repeated with:
565 @smallexample
566         repne scas %es:(%edi),%al
567 @end smallexample
569 You may also place prefixes on the lines immediately preceding the
570 instruction, but this circumvents checks that @code{@value{AS}} does
571 with prefixes, and will not work with all prefixes.
573 Here is a list of instruction prefixes:
575 @cindex section override prefixes, i386
576 @itemize @bullet
577 @item
578 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
579 @samp{fs}, @samp{gs}.  These are automatically added by specifying
580 using the @var{section}:@var{memory-operand} form for memory references.
582 @cindex size prefixes, i386
583 @item
584 Operand/Address size prefixes @samp{data16} and @samp{addr16}
585 change 32-bit operands/addresses into 16-bit operands/addresses,
586 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
587 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
588 @emph{must} appear on the same line of code as the instruction they
589 modify. For example, in a 16-bit @code{.code16} section, you might
590 write:
592 @smallexample
593         addr32 jmpl *(%ebx)
594 @end smallexample
596 @cindex bus lock prefixes, i386
597 @cindex inhibiting interrupts, i386
598 @item
599 The bus lock prefix @samp{lock} inhibits interrupts during execution of
600 the instruction it precedes.  (This is only valid with certain
601 instructions; see a 80386 manual for details).
603 @cindex coprocessor wait, i386
604 @item
605 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
606 complete the current instruction.  This should never be needed for the
607 80386/80387 combination.
609 @cindex repeat prefixes, i386
610 @item
611 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
612 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
613 times if the current address size is 16-bits).
614 @cindex REX prefixes, i386
615 @item
616 The @samp{rex} family of prefixes is used by x86-64 to encode
617 extensions to i386 instruction set.  The @samp{rex} prefix has four
618 bits --- an operand size overwrite (@code{64}) used to change operand size
619 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
620 register set.
622 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
623 instruction emits @samp{rex} prefix with all the bits set.  By omitting
624 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
625 prefixes as well.  Normally, there is no need to write the prefixes
626 explicitly, since gas will automatically generate them based on the
627 instruction operands.
628 @end itemize
630 @node i386-Memory
631 @section Memory References
633 @cindex i386 memory references
634 @cindex memory references, i386
635 @cindex x86-64 memory references
636 @cindex memory references, x86-64
637 An Intel syntax indirect memory reference of the form
639 @smallexample
640 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
641 @end smallexample
643 @noindent
644 is translated into the AT&T syntax
646 @smallexample
647 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
648 @end smallexample
650 @noindent
651 where @var{base} and @var{index} are the optional 32-bit base and
652 index registers, @var{disp} is the optional displacement, and
653 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
654 to calculate the address of the operand.  If no @var{scale} is
655 specified, @var{scale} is taken to be 1.  @var{section} specifies the
656 optional section register for the memory operand, and may override the
657 default section register (see a 80386 manual for section register
658 defaults). Note that section overrides in AT&T syntax @emph{must}
659 be preceded by a @samp{%}.  If you specify a section override which
660 coincides with the default section register, @code{@value{AS}} does @emph{not}
661 output any section register override prefixes to assemble the given
662 instruction.  Thus, section overrides can be specified to emphasize which
663 section register is used for a given memory operand.
665 Here are some examples of Intel and AT&T style memory references:
667 @table @asis
668 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
669 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
670 missing, and the default section is used (@samp{%ss} for addressing with
671 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
673 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
674 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
675 @samp{foo}.  All other fields are missing.  The section register here
676 defaults to @samp{%ds}.
678 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
679 This uses the value pointed to by @samp{foo} as a memory operand.
680 Note that @var{base} and @var{index} are both missing, but there is only
681 @emph{one} @samp{,}.  This is a syntactic exception.
683 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
684 This selects the contents of the variable @samp{foo} with section
685 register @var{section} being @samp{%gs}.
686 @end table
688 Absolute (as opposed to PC relative) call and jump operands must be
689 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
690 always chooses PC relative addressing for jump/call labels.
692 Any instruction that has a memory operand, but no register operand,
693 @emph{must} specify its size (byte, word, long, or quadruple) with an
694 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
695 respectively).
697 The x86-64 architecture adds an RIP (instruction pointer relative)
698 addressing.  This addressing mode is specified by using @samp{rip} as a
699 base register.  Only constant offsets are valid. For example:
701 @table @asis
702 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
703 Points to the address 1234 bytes past the end of the current
704 instruction.
706 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
707 Points to the @code{symbol} in RIP relative way, this is shorter than
708 the default absolute addressing.
709 @end table
711 Other addressing modes remain unchanged in x86-64 architecture, except
712 registers used are 64-bit instead of 32-bit.
714 @node i386-Jumps
715 @section Handling of Jump Instructions
717 @cindex jump optimization, i386
718 @cindex i386 jump optimization
719 @cindex jump optimization, x86-64
720 @cindex x86-64 jump optimization
721 Jump instructions are always optimized to use the smallest possible
722 displacements.  This is accomplished by using byte (8-bit) displacement
723 jumps whenever the target is sufficiently close.  If a byte displacement
724 is insufficient a long displacement is used.  We do not support
725 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
726 instruction with the @samp{data16} instruction prefix), since the 80386
727 insists upon masking @samp{%eip} to 16 bits after the word displacement
728 is added. (See also @pxref{i386-Arch})
730 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
731 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
732 displacements, so that if you use these instructions (@code{@value{GCC}} does
733 not use them) you may get an error message (and incorrect code).  The AT&T
734 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
737 @smallexample
738          jcxz cx_zero
739          jmp cx_nonzero
740 cx_zero: jmp foo
741 cx_nonzero:
742 @end smallexample
744 @node i386-Float
745 @section Floating Point
747 @cindex i386 floating point
748 @cindex floating point, i386
749 @cindex x86-64 floating point
750 @cindex floating point, x86-64
751 All 80387 floating point types except packed BCD are supported.
752 (BCD support may be added without much difficulty).  These data
753 types are 16-, 32-, and 64- bit integers, and single (32-bit),
754 double (64-bit), and extended (80-bit) precision floating point.
755 Each supported type has an instruction mnemonic suffix and a constructor
756 associated with it.  Instruction mnemonic suffixes specify the operand's
757 data type.  Constructors build these data types into memory.
759 @cindex @code{float} directive, i386
760 @cindex @code{single} directive, i386
761 @cindex @code{double} directive, i386
762 @cindex @code{tfloat} directive, i386
763 @cindex @code{float} directive, x86-64
764 @cindex @code{single} directive, x86-64
765 @cindex @code{double} directive, x86-64
766 @cindex @code{tfloat} directive, x86-64
767 @itemize @bullet
768 @item
769 Floating point constructors are @samp{.float} or @samp{.single},
770 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
771 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
772 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
773 only supports this format via the @samp{fldt} (load 80-bit real to stack
774 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
776 @cindex @code{word} directive, i386
777 @cindex @code{long} directive, i386
778 @cindex @code{int} directive, i386
779 @cindex @code{quad} directive, i386
780 @cindex @code{word} directive, x86-64
781 @cindex @code{long} directive, x86-64
782 @cindex @code{int} directive, x86-64
783 @cindex @code{quad} directive, x86-64
784 @item
785 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
786 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
787 corresponding instruction mnemonic suffixes are @samp{s} (single),
788 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
789 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
790 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
791 stack) instructions.
792 @end itemize
794 Register to register operations should not use instruction mnemonic suffixes.
795 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
796 wrote @samp{fst %st, %st(1)}, since all register to register operations
797 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
798 which converts @samp{%st} from 80-bit to 64-bit floating point format,
799 then stores the result in the 4 byte location @samp{mem})
801 @node i386-SIMD
802 @section Intel's MMX and AMD's 3DNow! SIMD Operations
804 @cindex MMX, i386
805 @cindex 3DNow!, i386
806 @cindex SIMD, i386
807 @cindex MMX, x86-64
808 @cindex 3DNow!, x86-64
809 @cindex SIMD, x86-64
811 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
812 instructions for integer data), available on Intel's Pentium MMX
813 processors and Pentium II processors, AMD's K6 and K6-2 processors,
814 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
815 instruction set (SIMD instructions for 32-bit floating point data)
816 available on AMD's K6-2 processor and possibly others in the future.
818 Currently, @code{@value{AS}} does not support Intel's floating point
819 SIMD, Katmai (KNI).
821 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
822 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
823 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
824 floating point values.  The MMX registers cannot be used at the same time
825 as the floating point stack.
827 See Intel and AMD documentation, keeping in mind that the operand order in
828 instructions is reversed from the Intel syntax.
830 @node i386-LWP
831 @section AMD's Lightweight Profiling Instructions
833 @cindex LWP, i386
834 @cindex LWP, x86-64
836 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
837 instruction set, available on AMD's Family 15h (Orochi) processors.
839 LWP enables applications to collect and manage performance data, and
840 react to performance events.  The collection of performance data
841 requires no context switches.  LWP runs in the context of a thread and
842 so several counters can be used independently across multiple threads.
843 LWP can be used in both 64-bit and legacy 32-bit modes.
845 For detailed information on the LWP instruction set, see the
846 @cite{AMD Lightweight Profiling Specification} available at
847 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
849 @node i386-BMI
850 @section Bit Manipulation Instructions
852 @cindex BMI, i386
853 @cindex BMI, x86-64
855 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
857 BMI instructions provide several instructions implementing individual
858 bit manipulation operations such as isolation, masking, setting, or
859 resetting.  
861 @c Need to add a specification citation here when available.
864 @node i386-16bit
865 @section Writing 16-bit Code
867 @cindex i386 16-bit code
868 @cindex 16-bit code, i386
869 @cindex real-mode code, i386
870 @cindex @code{code16gcc} directive, i386
871 @cindex @code{code16} directive, i386
872 @cindex @code{code32} directive, i386
873 @cindex @code{code64} directive, i386
874 @cindex @code{code64} directive, x86-64
875 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
876 or 64-bit x86-64 code depending on the default configuration,
877 it also supports writing code to run in real mode or in 16-bit protected
878 mode code segments.  To do this, put a @samp{.code16} or
879 @samp{.code16gcc} directive before the assembly language instructions to
880 be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
881 32-bit code with the @samp{.code32} directive or 64-bit code with the
882 @samp{.code64} directive.
884 @samp{.code16gcc} provides experimental support for generating 16-bit
885 code from gcc, and differs from @samp{.code16} in that @samp{call},
886 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
887 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
888 default to 32-bit size.  This is so that the stack pointer is
889 manipulated in the same way over function calls, allowing access to
890 function parameters at the same stack offsets as in 32-bit mode.
891 @samp{.code16gcc} also automatically adds address size prefixes where
892 necessary to use the 32-bit addressing modes that gcc generates.
894 The code which @code{@value{AS}} generates in 16-bit mode will not
895 necessarily run on a 16-bit pre-80386 processor.  To write code that
896 runs on such a processor, you must refrain from using @emph{any} 32-bit
897 constructs which require @code{@value{AS}} to output address or operand
898 size prefixes.
900 Note that writing 16-bit code instructions by explicitly specifying a
901 prefix or an instruction mnemonic suffix within a 32-bit code section
902 generates different machine instructions than those generated for a
903 16-bit code segment.  In a 32-bit code section, the following code
904 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
905 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
907 @smallexample
908         pushw $4
909 @end smallexample
911 The same code in a 16-bit code section would generate the machine
912 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
913 is correct since the processor default operand size is assumed to be 16
914 bits in a 16-bit code section.
916 @node i386-Bugs
917 @section AT&T Syntax bugs
919 The UnixWare assembler, and probably other AT&T derived ix86 Unix
920 assemblers, generate floating point instructions with reversed source
921 and destination registers in certain cases.  Unfortunately, gcc and
922 possibly many other programs use this reversed syntax, so we're stuck
923 with it.
925 For example
927 @smallexample
928         fsub %st,%st(3)
929 @end smallexample
930 @noindent
931 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
932 than the expected @samp{%st(3) - %st}.  This happens with all the
933 non-commutative arithmetic floating point operations with two register
934 operands where the source register is @samp{%st} and the destination
935 register is @samp{%st(i)}.
937 @node i386-Arch
938 @section Specifying CPU Architecture
940 @cindex arch directive, i386
941 @cindex i386 arch directive
942 @cindex arch directive, x86-64
943 @cindex x86-64 arch directive
945 @code{@value{AS}} may be told to assemble for a particular CPU
946 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
947 directive enables a warning when gas detects an instruction that is not
948 supported on the CPU specified.  The choices for @var{cpu_type} are:
950 @multitable @columnfractions .20 .20 .20 .20
951 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
952 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
953 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
954 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
955 @item @samp{corei7} @tab @samp{l1om}
956 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
957 @item @samp{amdfam10} @tab @samp{bdver1}
958 @item @samp{generic32} @tab @samp{generic64}
959 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
960 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
961 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
962 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
963 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
964 @item @samp{.rdrnd} @tab @samp{.f16c}
965 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
966 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
967 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
968 @item @samp{.padlock}
969 @end multitable
971 Apart from the warning, there are only two other effects on
972 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
973 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
974 will automatically use a two byte opcode sequence.  The larger three
975 byte opcode sequence is used on the 486 (and when no architecture is
976 specified) because it executes faster on the 486.  Note that you can
977 explicitly request the two byte opcode by writing @samp{sarl %eax}.
978 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
979 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
980 conditional jumps will be promoted when necessary to a two instruction
981 sequence consisting of a conditional jump of the opposite sense around
982 an unconditional jump to the target.
984 Following the CPU architecture (but not a sub-architecture, which are those
985 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
986 control automatic promotion of conditional jumps. @samp{jumps} is the
987 default, and enables jump promotion;  All external jumps will be of the long
988 variety, and file-local jumps will be promoted as necessary.
989 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
990 byte offset jumps, and warns about file-local conditional jumps that
991 @code{@value{AS}} promotes.
992 Unconditional jumps are treated as for @samp{jumps}.
994 For example
996 @smallexample
997  .arch i8086,nojumps
998 @end smallexample
1000 @node i386-Notes
1001 @section Notes
1003 @cindex i386 @code{mul}, @code{imul} instructions
1004 @cindex @code{mul} instruction, i386
1005 @cindex @code{imul} instruction, i386
1006 @cindex @code{mul} instruction, x86-64
1007 @cindex @code{imul} instruction, x86-64
1008 There is some trickery concerning the @samp{mul} and @samp{imul}
1009 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1010 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1011 for @samp{imul}) can be output only in the one operand form.  Thus,
1012 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1013 the expanding multiply would clobber the @samp{%edx} register, and this
1014 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1015 64-bit product in @samp{%edx:%eax}.
1017 We have added a two operand form of @samp{imul} when the first operand
1018 is an immediate mode expression and the second operand is a register.
1019 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1020 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1021 $69, %eax, %eax}.