Add -lpwl to ppllibs, and -lisl to clooglibs.
[binutils.git] / bfd / elflink.c
blobdffe0ae37b5ba4ea7d43f9c2bce9aa9acfa4a458
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
112 flags = bed->dynamic_sec_flags;
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
130 if (bed->want_got_plt)
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
143 if (bed->want_got_sym)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
156 return TRUE;
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
175 return TRUE;
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
261 if (info->emit_hash)
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
294 return TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
352 if (bed->want_dynbss)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
389 return TRUE;
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
427 default:
428 break;
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457 if (p != NULL)
458 *p = ELF_VER_CHR;
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
465 return TRUE;
468 /* Mark a symbol dynamic. */
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
570 h->def_regular = 1;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
607 return TRUE;
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
629 return 0;
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
646 return 0;
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
652 asection *s;
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
696 return 1;
699 /* Return the dynindex of a local dynamic symbol. */
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
722 size_t *count = (size_t *) data;
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
727 if (h->forced_local)
728 return TRUE;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
733 return TRUE;
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
744 size_t *count = (size_t *) data;
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749 if (!h->forced_local)
750 return TRUE;
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
755 return TRUE;
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
765 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
785 asection *ip;
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
793 return FALSE;
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
813 unsigned long dynsymcount = 0;
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
827 *section_sym_count = dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
833 if (elf_hash_table (info)->dynlocal)
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
854 /* Merge st_other field. */
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 unsigned char hvis, symvis, other, nvis;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
898 h->other = other | nvis;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
937 *skip = FALSE;
938 *override = FALSE;
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
948 *skip = TRUE;
949 return TRUE;
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
961 bed = get_elf_backend_data (abfd);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
968 /* For merging, we only care about real symbols. */
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h->root.type == bfd_link_hash_new)
985 h->non_elf = 0;
986 return TRUE;
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
992 switch (h->root.type)
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1084 *skip = TRUE;
1085 return TRUE;
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1098 if (h->type == STT_TLS)
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1107 else
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1193 struct elf_link_hash_entry *vh = *sym_hash;
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1206 else
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1215 h = vh;
1217 else
1218 h = *sym_hash;
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1233 else
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1239 if (h->def_dynamic)
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1371 *size_change_ok = TRUE;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1431 *skip = TRUE;
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec))
1482 if (oldfunc)
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1490 *type_change_ok = TRUE;
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1546 if (flip != NULL)
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1563 return TRUE;
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1603 if (override)
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1644 if (skip)
1645 goto nondefault;
1647 if (! override)
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1656 else
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1707 if (hi->root.type == bfd_link_hash_indirect)
1709 struct elf_link_hash_entry *ht;
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1718 if (! dynamic)
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1724 else
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1752 if (skip)
1753 return TRUE;
1755 if (override)
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1766 else
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1779 if (hi->root.type == bfd_link_hash_indirect)
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1787 if (! dynamic)
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1793 else
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1802 return TRUE;
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1828 bfd_boolean hide;
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 eif->failed = TRUE;
1837 return FALSE;
1842 return TRUE;
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1882 break;
1885 /* This is a new version. Add it to tree we are building. */
1887 if (t == NULL)
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1893 rinfo->failed = TRUE;
1894 return FALSE;
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1906 rinfo->failed = TRUE;
1907 return FALSE;
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924 t->vn_auxptr = a;
1926 return TRUE;
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1972 hidden = TRUE;
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1979 hidden = FALSE;
1980 ++p;
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 if (strcmp (t->name, p) == 0)
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2004 sinfo->failed = TRUE;
2005 return FALSE;
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 free (alc);
2031 break;
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2051 sinfo->failed = TRUE;
2052 return FALSE;
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2067 *pp = t;
2069 h->verinfo.vertree = t;
2071 else if (t == NULL)
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2083 if (hidden)
2084 h->hidden = 1;
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 bfd_boolean hide;
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2099 return TRUE;
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2109 Returns FALSE if something goes wrong. */
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137 bed = get_elf_backend_data (abfd);
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2155 bfd_vma r_symndx;
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2163 if ((size_t) r_symndx >= nsyms)
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2174 else if (r_symndx != STN_UNDEF)
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2188 return TRUE;
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2217 if (o->reloc_count == 0)
2218 return NULL;
2220 if (internal_relocs == NULL)
2222 bfd_size_type size;
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2234 if (external_relocs == NULL)
2236 bfd_size_type size = 0;
2238 if (esdo->rel.hdr)
2239 size += esdo->rel.hdr->sh_size;
2240 if (esdo->rela.hdr)
2241 size += esdo->rela.hdr->sh_size;
2243 alloc1 = bfd_malloc (size);
2244 if (alloc1 == NULL)
2245 goto error_return;
2246 external_relocs = alloc1;
2249 internal_rela_relocs = internal_relocs;
2250 if (esdo->rel.hdr)
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2253 external_relocs,
2254 internal_relocs))
2255 goto error_return;
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2262 if (esdo->rela.hdr
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2264 external_relocs,
2265 internal_rela_relocs)))
2266 goto error_return;
2268 /* Cache the results for next time, if we can. */
2269 if (keep_memory)
2270 esdo->relocs = internal_relocs;
2272 if (alloc1 != NULL)
2273 free (alloc1);
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2278 return internal_relocs;
2280 error_return:
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283 if (alloc2 != NULL)
2285 if (keep_memory)
2286 bfd_release (abfd, alloc2);
2287 else
2288 free (alloc2);
2290 return NULL;
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2296 static bfd_boolean
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2313 if (reldata->hashes == NULL && reldata->count)
2315 struct elf_link_hash_entry **p;
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2319 if (p == NULL)
2320 return FALSE;
2322 reldata->hashes = p;
2325 return TRUE;
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2330 OUTPUT_BFD. */
2332 bfd_boolean
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2338 ATTRIBUTE_UNUSED)
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2342 bfd_byte *erel;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 asection *output_section;
2345 const struct elf_backend_data *bed;
2346 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2347 struct bfd_elf_section_data *esdo;
2349 output_section = input_section->output_section;
2351 bed = get_elf_backend_data (output_bfd);
2352 esdo = elf_section_data (output_section);
2353 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2355 output_reldata = &esdo->rel;
2356 swap_out = bed->s->swap_reloc_out;
2358 else if (esdo->rela.hdr
2359 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2361 output_reldata = &esdo->rela;
2362 swap_out = bed->s->swap_reloca_out;
2364 else
2366 (*_bfd_error_handler)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd, input_section->owner, input_section);
2369 bfd_set_error (bfd_error_wrong_format);
2370 return FALSE;
2373 erel = output_reldata->hdr->contents;
2374 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2375 irela = internal_relocs;
2376 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2377 * bed->s->int_rels_per_ext_rel);
2378 while (irela < irelaend)
2380 (*swap_out) (output_bfd, irela, erel);
2381 irela += bed->s->int_rels_per_ext_rel;
2382 erel += input_rel_hdr->sh_entsize;
2385 /* Bump the counter, so that we know where to add the next set of
2386 relocations. */
2387 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2389 return TRUE;
2392 /* Make weak undefined symbols in PIE dynamic. */
2394 bfd_boolean
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2398 if (info->pie
2399 && h->dynindx == -1
2400 && h->root.type == bfd_link_hash_undefweak)
2401 return bfd_elf_link_record_dynamic_symbol (info, h);
2403 return TRUE;
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2412 static bfd_boolean
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2414 struct elf_info_failed *eif)
2416 const struct elf_backend_data *bed;
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2422 if (h->non_elf)
2424 while (h->root.type == bfd_link_hash_indirect)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2427 if (h->root.type != bfd_link_hash_defined
2428 && h->root.type != bfd_link_hash_defweak)
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2433 else
2435 if (h->root.u.def.section->owner != NULL
2436 && (bfd_get_flavour (h->root.u.def.section->owner)
2437 == bfd_target_elf_flavour))
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2442 else
2443 h->def_regular = 1;
2446 if (h->dynindx == -1
2447 && (h->def_dynamic
2448 || h->ref_dynamic))
2450 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2452 eif->failed = TRUE;
2453 return FALSE;
2457 else
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h->root.type == bfd_link_hash_defined
2466 || h->root.type == bfd_link_hash_defweak)
2467 && !h->def_regular
2468 && (h->root.u.def.section->owner != NULL
2469 ? (bfd_get_flavour (h->root.u.def.section->owner)
2470 != bfd_target_elf_flavour)
2471 : (bfd_is_abs_section (h->root.u.def.section)
2472 && !h->def_dynamic)))
2473 h->def_regular = 1;
2476 /* Backend specific symbol fixup. */
2477 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2478 if (bed->elf_backend_fixup_symbol
2479 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2480 return FALSE;
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h->root.type == bfd_link_hash_defined
2488 && !h->def_regular
2489 && h->ref_regular
2490 && !h->def_dynamic
2491 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2492 h->def_regular = 1;
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2500 if (h->needs_plt
2501 && eif->info->shared
2502 && is_elf_hash_table (eif->info->hash)
2503 && (SYMBOLIC_BIND (eif->info, h)
2504 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2505 && h->def_regular)
2507 bfd_boolean force_local;
2509 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2511 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2517 && h->root.type == bfd_link_hash_undefweak)
2518 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h->u.weakdef != NULL)
2525 struct elf_link_hash_entry *weakdef;
2527 weakdef = h->u.weakdef;
2528 if (h->root.type == bfd_link_hash_indirect)
2529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2531 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2532 || h->root.type == bfd_link_hash_defweak);
2533 BFD_ASSERT (weakdef->def_dynamic);
2535 /* If the real definition is defined by a regular object file,
2536 don't do anything special. See the longer description in
2537 _bfd_elf_adjust_dynamic_symbol, below. */
2538 if (weakdef->def_regular)
2539 h->u.weakdef = NULL;
2540 else
2542 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2543 || weakdef->root.type == bfd_link_hash_defweak);
2544 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2548 return TRUE;
2551 /* Make the backend pick a good value for a dynamic symbol. This is
2552 called via elf_link_hash_traverse, and also calls itself
2553 recursively. */
2555 static bfd_boolean
2556 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2558 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2559 bfd *dynobj;
2560 const struct elf_backend_data *bed;
2562 if (! is_elf_hash_table (eif->info->hash))
2563 return FALSE;
2565 if (h->root.type == bfd_link_hash_warning)
2567 h->got = elf_hash_table (eif->info)->init_got_offset;
2568 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2570 /* When warning symbols are created, they **replace** the "real"
2571 entry in the hash table, thus we never get to see the real
2572 symbol in a hash traversal. So look at it now. */
2573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h->root.type == bfd_link_hash_indirect)
2578 return TRUE;
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h, eif))
2582 return FALSE;
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2591 if (!h->needs_plt
2592 && h->type != STT_GNU_IFUNC
2593 && (h->def_regular
2594 || !h->def_dynamic
2595 || (!h->ref_regular
2596 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2598 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2599 return TRUE;
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h->dynamic_adjusted)
2605 return TRUE;
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h->dynamic_adjusted = 1;
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2625 library model.
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2631 int _timezone = 5;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2641 if (h->u.weakdef != NULL)
2643 /* If we get to this point, we know there is an implicit
2644 reference by a regular object file via the weak symbol H.
2645 FIXME: Is this really true? What if the traversal finds
2646 H->U.WEAKDEF before it finds H? */
2647 h->u.weakdef->ref_regular = 1;
2649 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2650 return FALSE;
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2658 if (h->size == 0
2659 && h->type == STT_NOTYPE
2660 && !h->needs_plt)
2661 (*_bfd_error_handler)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h->root.root.string);
2665 dynobj = elf_hash_table (eif->info)->dynobj;
2666 bed = get_elf_backend_data (dynobj);
2668 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2670 eif->failed = TRUE;
2671 return FALSE;
2674 return TRUE;
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2678 DYNBSS. */
2680 bfd_boolean
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2682 asection *dynbss)
2684 unsigned int power_of_two;
2685 bfd_vma mask;
2686 asection *sec = h->root.u.def.section;
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2694 mask = ((bfd_vma) 1 << power_of_two) - 1;
2695 while ((h->root.u.def.value & mask) != 0)
2697 mask >>= 1;
2698 --power_of_two;
2701 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2702 dynbss))
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2706 power_of_two))
2707 return FALSE;
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h->root.u.def.section = dynbss;
2715 h->root.u.def.value = dynbss->size;
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss->size += h->size;
2720 return TRUE;
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2726 static bfd_boolean
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2729 asection *sec;
2731 if (h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2734 if ((h->root.type == bfd_link_hash_defined
2735 || h->root.type == bfd_link_hash_defweak)
2736 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2737 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2739 bfd *output_bfd = (bfd *) data;
2741 h->root.u.def.value =
2742 _bfd_merged_section_offset (output_bfd,
2743 &h->root.u.def.section,
2744 elf_section_data (sec)->sec_info,
2745 h->root.u.def.value);
2748 return TRUE;
2751 /* Returns false if the symbol referred to by H should be considered
2752 to resolve local to the current module, and true if it should be
2753 considered to bind dynamically. */
2755 bfd_boolean
2756 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2757 struct bfd_link_info *info,
2758 bfd_boolean not_local_protected)
2760 bfd_boolean binding_stays_local_p;
2761 const struct elf_backend_data *bed;
2762 struct elf_link_hash_table *hash_table;
2764 if (h == NULL)
2765 return FALSE;
2767 while (h->root.type == bfd_link_hash_indirect
2768 || h->root.type == bfd_link_hash_warning)
2769 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2771 /* If it was forced local, then clearly it's not dynamic. */
2772 if (h->dynindx == -1)
2773 return FALSE;
2774 if (h->forced_local)
2775 return FALSE;
2777 /* Identify the cases where name binding rules say that a
2778 visible symbol resolves locally. */
2779 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2781 switch (ELF_ST_VISIBILITY (h->other))
2783 case STV_INTERNAL:
2784 case STV_HIDDEN:
2785 return FALSE;
2787 case STV_PROTECTED:
2788 hash_table = elf_hash_table (info);
2789 if (!is_elf_hash_table (hash_table))
2790 return FALSE;
2792 bed = get_elf_backend_data (hash_table->dynobj);
2794 /* Proper resolution for function pointer equality may require
2795 that these symbols perhaps be resolved dynamically, even though
2796 we should be resolving them to the current module. */
2797 if (!not_local_protected || !bed->is_function_type (h->type))
2798 binding_stays_local_p = TRUE;
2799 break;
2801 default:
2802 break;
2805 /* If it isn't defined locally, then clearly it's dynamic. */
2806 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2807 return TRUE;
2809 /* Otherwise, the symbol is dynamic if binding rules don't tell
2810 us that it remains local. */
2811 return !binding_stays_local_p;
2814 /* Return true if the symbol referred to by H should be considered
2815 to resolve local to the current module, and false otherwise. Differs
2816 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2817 undefined symbols. The two functions are virtually identical except
2818 for the place where forced_local and dynindx == -1 are tested. If
2819 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2820 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2821 the symbol is local only for defined symbols.
2822 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2823 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2824 treatment of undefined weak symbols. For those that do not make
2825 undefined weak symbols dynamic, both functions may return false. */
2827 bfd_boolean
2828 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2829 struct bfd_link_info *info,
2830 bfd_boolean local_protected)
2832 const struct elf_backend_data *bed;
2833 struct elf_link_hash_table *hash_table;
2835 /* If it's a local sym, of course we resolve locally. */
2836 if (h == NULL)
2837 return TRUE;
2839 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2840 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2841 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2842 return TRUE;
2844 /* Common symbols that become definitions don't get the DEF_REGULAR
2845 flag set, so test it first, and don't bail out. */
2846 if (ELF_COMMON_DEF_P (h))
2847 /* Do nothing. */;
2848 /* If we don't have a definition in a regular file, then we can't
2849 resolve locally. The sym is either undefined or dynamic. */
2850 else if (!h->def_regular)
2851 return FALSE;
2853 /* Forced local symbols resolve locally. */
2854 if (h->forced_local)
2855 return TRUE;
2857 /* As do non-dynamic symbols. */
2858 if (h->dynindx == -1)
2859 return TRUE;
2861 /* At this point, we know the symbol is defined and dynamic. In an
2862 executable it must resolve locally, likewise when building symbolic
2863 shared libraries. */
2864 if (info->executable || SYMBOLIC_BIND (info, h))
2865 return TRUE;
2867 /* Now deal with defined dynamic symbols in shared libraries. Ones
2868 with default visibility might not resolve locally. */
2869 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2870 return FALSE;
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return TRUE;
2876 bed = get_elf_backend_data (hash_table->dynobj);
2878 /* STV_PROTECTED non-function symbols are local. */
2879 if (!bed->is_function_type (h->type))
2880 return TRUE;
2882 /* Function pointer equality tests may require that STV_PROTECTED
2883 symbols be treated as dynamic symbols, even when we know that the
2884 dynamic linker will resolve them locally. */
2885 return local_protected;
2888 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2889 aligned. Returns the first TLS output section. */
2891 struct bfd_section *
2892 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2894 struct bfd_section *sec, *tls;
2895 unsigned int align = 0;
2897 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2898 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2899 break;
2900 tls = sec;
2902 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2903 if (sec->alignment_power > align)
2904 align = sec->alignment_power;
2906 elf_hash_table (info)->tls_sec = tls;
2908 /* Ensure the alignment of the first section is the largest alignment,
2909 so that the tls segment starts aligned. */
2910 if (tls != NULL)
2911 tls->alignment_power = align;
2913 return tls;
2916 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2917 static bfd_boolean
2918 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2919 Elf_Internal_Sym *sym)
2921 const struct elf_backend_data *bed;
2923 /* Local symbols do not count, but target specific ones might. */
2924 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2925 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2926 return FALSE;
2928 bed = get_elf_backend_data (abfd);
2929 /* Function symbols do not count. */
2930 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2931 return FALSE;
2933 /* If the section is undefined, then so is the symbol. */
2934 if (sym->st_shndx == SHN_UNDEF)
2935 return FALSE;
2937 /* If the symbol is defined in the common section, then
2938 it is a common definition and so does not count. */
2939 if (bed->common_definition (sym))
2940 return FALSE;
2942 /* If the symbol is in a target specific section then we
2943 must rely upon the backend to tell us what it is. */
2944 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2945 /* FIXME - this function is not coded yet:
2947 return _bfd_is_global_symbol_definition (abfd, sym);
2949 Instead for now assume that the definition is not global,
2950 Even if this is wrong, at least the linker will behave
2951 in the same way that it used to do. */
2952 return FALSE;
2954 return TRUE;
2957 /* Search the symbol table of the archive element of the archive ABFD
2958 whose archive map contains a mention of SYMDEF, and determine if
2959 the symbol is defined in this element. */
2960 static bfd_boolean
2961 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2963 Elf_Internal_Shdr * hdr;
2964 bfd_size_type symcount;
2965 bfd_size_type extsymcount;
2966 bfd_size_type extsymoff;
2967 Elf_Internal_Sym *isymbuf;
2968 Elf_Internal_Sym *isym;
2969 Elf_Internal_Sym *isymend;
2970 bfd_boolean result;
2972 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2973 if (abfd == NULL)
2974 return FALSE;
2976 if (! bfd_check_format (abfd, bfd_object))
2977 return FALSE;
2979 /* If we have already included the element containing this symbol in the
2980 link then we do not need to include it again. Just claim that any symbol
2981 it contains is not a definition, so that our caller will not decide to
2982 (re)include this element. */
2983 if (abfd->archive_pass)
2984 return FALSE;
2986 /* Select the appropriate symbol table. */
2987 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2988 hdr = &elf_tdata (abfd)->symtab_hdr;
2989 else
2990 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2992 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2994 /* The sh_info field of the symtab header tells us where the
2995 external symbols start. We don't care about the local symbols. */
2996 if (elf_bad_symtab (abfd))
2998 extsymcount = symcount;
2999 extsymoff = 0;
3001 else
3003 extsymcount = symcount - hdr->sh_info;
3004 extsymoff = hdr->sh_info;
3007 if (extsymcount == 0)
3008 return FALSE;
3010 /* Read in the symbol table. */
3011 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3012 NULL, NULL, NULL);
3013 if (isymbuf == NULL)
3014 return FALSE;
3016 /* Scan the symbol table looking for SYMDEF. */
3017 result = FALSE;
3018 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3020 const char *name;
3022 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3023 isym->st_name);
3024 if (name == NULL)
3025 break;
3027 if (strcmp (name, symdef->name) == 0)
3029 result = is_global_data_symbol_definition (abfd, isym);
3030 break;
3034 free (isymbuf);
3036 return result;
3039 /* Add an entry to the .dynamic table. */
3041 bfd_boolean
3042 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3043 bfd_vma tag,
3044 bfd_vma val)
3046 struct elf_link_hash_table *hash_table;
3047 const struct elf_backend_data *bed;
3048 asection *s;
3049 bfd_size_type newsize;
3050 bfd_byte *newcontents;
3051 Elf_Internal_Dyn dyn;
3053 hash_table = elf_hash_table (info);
3054 if (! is_elf_hash_table (hash_table))
3055 return FALSE;
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 BFD_ASSERT (s != NULL);
3061 newsize = s->size + bed->s->sizeof_dyn;
3062 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3063 if (newcontents == NULL)
3064 return FALSE;
3066 dyn.d_tag = tag;
3067 dyn.d_un.d_val = val;
3068 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3070 s->size = newsize;
3071 s->contents = newcontents;
3073 return TRUE;
3076 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3077 otherwise just check whether one already exists. Returns -1 on error,
3078 1 if a DT_NEEDED tag already exists, and 0 on success. */
3080 static int
3081 elf_add_dt_needed_tag (bfd *abfd,
3082 struct bfd_link_info *info,
3083 const char *soname,
3084 bfd_boolean do_it)
3086 struct elf_link_hash_table *hash_table;
3087 bfd_size_type oldsize;
3088 bfd_size_type strindex;
3090 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3091 return -1;
3093 hash_table = elf_hash_table (info);
3094 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3095 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3096 if (strindex == (bfd_size_type) -1)
3097 return -1;
3099 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3101 asection *sdyn;
3102 const struct elf_backend_data *bed;
3103 bfd_byte *extdyn;
3105 bed = get_elf_backend_data (hash_table->dynobj);
3106 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3107 if (sdyn != NULL)
3108 for (extdyn = sdyn->contents;
3109 extdyn < sdyn->contents + sdyn->size;
3110 extdyn += bed->s->sizeof_dyn)
3112 Elf_Internal_Dyn dyn;
3114 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3115 if (dyn.d_tag == DT_NEEDED
3116 && dyn.d_un.d_val == strindex)
3118 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3119 return 1;
3124 if (do_it)
3126 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3127 return -1;
3129 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3130 return -1;
3132 else
3133 /* We were just checking for existence of the tag. */
3134 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3136 return 0;
3139 static bfd_boolean
3140 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3142 for (; needed != NULL; needed = needed->next)
3143 if (strcmp (soname, needed->name) == 0)
3144 return TRUE;
3146 return FALSE;
3149 /* Sort symbol by value and section. */
3150 static int
3151 elf_sort_symbol (const void *arg1, const void *arg2)
3153 const struct elf_link_hash_entry *h1;
3154 const struct elf_link_hash_entry *h2;
3155 bfd_signed_vma vdiff;
3157 h1 = *(const struct elf_link_hash_entry **) arg1;
3158 h2 = *(const struct elf_link_hash_entry **) arg2;
3159 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3160 if (vdiff != 0)
3161 return vdiff > 0 ? 1 : -1;
3162 else
3164 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3165 if (sdiff != 0)
3166 return sdiff > 0 ? 1 : -1;
3168 return 0;
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3174 static bfd_boolean
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3177 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3179 if (h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3182 if (h->dynindx != -1)
3183 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3184 return TRUE;
3187 /* Assign string offsets in .dynstr, update all structures referencing
3188 them. */
3190 static bfd_boolean
3191 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3193 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3194 struct elf_link_local_dynamic_entry *entry;
3195 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3196 bfd *dynobj = hash_table->dynobj;
3197 asection *sdyn;
3198 bfd_size_type size;
3199 const struct elf_backend_data *bed;
3200 bfd_byte *extdyn;
3202 _bfd_elf_strtab_finalize (dynstr);
3203 size = _bfd_elf_strtab_size (dynstr);
3205 bed = get_elf_backend_data (dynobj);
3206 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3207 BFD_ASSERT (sdyn != NULL);
3209 /* Update all .dynamic entries referencing .dynstr strings. */
3210 for (extdyn = sdyn->contents;
3211 extdyn < sdyn->contents + sdyn->size;
3212 extdyn += bed->s->sizeof_dyn)
3214 Elf_Internal_Dyn dyn;
3216 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3217 switch (dyn.d_tag)
3219 case DT_STRSZ:
3220 dyn.d_un.d_val = size;
3221 break;
3222 case DT_NEEDED:
3223 case DT_SONAME:
3224 case DT_RPATH:
3225 case DT_RUNPATH:
3226 case DT_FILTER:
3227 case DT_AUXILIARY:
3228 case DT_AUDIT:
3229 case DT_DEPAUDIT:
3230 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3231 break;
3232 default:
3233 continue;
3235 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 /* Now update local dynamic symbols. */
3239 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3240 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3241 entry->isym.st_name);
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd)->cverdefs)
3249 asection *s;
3250 bfd_byte *p;
3251 bfd_size_type i;
3252 Elf_Internal_Verdef def;
3253 Elf_Internal_Verdaux defaux;
3255 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3256 p = s->contents;
3259 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3260 &def);
3261 p += sizeof (Elf_External_Verdef);
3262 if (def.vd_aux != sizeof (Elf_External_Verdef))
3263 continue;
3264 for (i = 0; i < def.vd_cnt; ++i)
3266 _bfd_elf_swap_verdaux_in (output_bfd,
3267 (Elf_External_Verdaux *) p, &defaux);
3268 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3269 defaux.vda_name);
3270 _bfd_elf_swap_verdaux_out (output_bfd,
3271 &defaux, (Elf_External_Verdaux *) p);
3272 p += sizeof (Elf_External_Verdaux);
3275 while (def.vd_next);
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd)->verref)
3281 asection *s;
3282 bfd_byte *p;
3283 bfd_size_type i;
3284 Elf_Internal_Verneed need;
3285 Elf_Internal_Vernaux needaux;
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3288 p = s->contents;
3291 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3292 &need);
3293 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3294 _bfd_elf_swap_verneed_out (output_bfd, &need,
3295 (Elf_External_Verneed *) p);
3296 p += sizeof (Elf_External_Verneed);
3297 for (i = 0; i < need.vn_cnt; ++i)
3299 _bfd_elf_swap_vernaux_in (output_bfd,
3300 (Elf_External_Vernaux *) p, &needaux);
3301 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3302 needaux.vna_name);
3303 _bfd_elf_swap_vernaux_out (output_bfd,
3304 &needaux,
3305 (Elf_External_Vernaux *) p);
3306 p += sizeof (Elf_External_Vernaux);
3309 while (need.vn_next);
3312 return TRUE;
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3317 the same target. */
3319 bfd_boolean
3320 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3321 const bfd_target *output)
3323 return input == output;
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3330 bfd_boolean
3331 _bfd_elf_relocs_compatible (const bfd_target *input,
3332 const bfd_target *output)
3334 const struct elf_backend_data *obed, *ibed;
3336 if (input == output)
3337 return TRUE;
3339 ibed = xvec_get_elf_backend_data (input);
3340 obed = xvec_get_elf_backend_data (output);
3342 if (ibed->arch != obed->arch)
3343 return FALSE;
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed->relocs_compatible == obed->relocs_compatible;
3349 /* Add symbols from an ELF object file to the linker hash table. */
3351 static bfd_boolean
3352 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3354 Elf_Internal_Ehdr *ehdr;
3355 Elf_Internal_Shdr *hdr;
3356 bfd_size_type symcount;
3357 bfd_size_type extsymcount;
3358 bfd_size_type extsymoff;
3359 struct elf_link_hash_entry **sym_hash;
3360 bfd_boolean dynamic;
3361 Elf_External_Versym *extversym = NULL;
3362 Elf_External_Versym *ever;
3363 struct elf_link_hash_entry *weaks;
3364 struct elf_link_hash_entry **nondeflt_vers = NULL;
3365 bfd_size_type nondeflt_vers_cnt = 0;
3366 Elf_Internal_Sym *isymbuf = NULL;
3367 Elf_Internal_Sym *isym;
3368 Elf_Internal_Sym *isymend;
3369 const struct elf_backend_data *bed;
3370 bfd_boolean add_needed;
3371 struct elf_link_hash_table *htab;
3372 bfd_size_type amt;
3373 void *alloc_mark = NULL;
3374 struct bfd_hash_entry **old_table = NULL;
3375 unsigned int old_size = 0;
3376 unsigned int old_count = 0;
3377 void *old_tab = NULL;
3378 void *old_hash;
3379 void *old_ent;
3380 struct bfd_link_hash_entry *old_undefs = NULL;
3381 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3382 long old_dynsymcount = 0;
3383 size_t tabsize = 0;
3384 size_t hashsize = 0;
3386 htab = elf_hash_table (info);
3387 bed = get_elf_backend_data (abfd);
3389 if ((abfd->flags & DYNAMIC) == 0)
3390 dynamic = FALSE;
3391 else
3393 dynamic = TRUE;
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info->relocatable
3399 || !is_elf_hash_table (htab)
3400 || info->output_bfd->xvec != abfd->xvec)
3402 if (info->relocatable)
3403 bfd_set_error (bfd_error_invalid_operation);
3404 else
3405 bfd_set_error (bfd_error_wrong_format);
3406 goto error_return;
3410 ehdr = elf_elfheader (abfd);
3411 if (info->warn_alternate_em
3412 && bed->elf_machine_code != ehdr->e_machine
3413 && ((bed->elf_machine_alt1 != 0
3414 && ehdr->e_machine == bed->elf_machine_alt1)
3415 || (bed->elf_machine_alt2 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt2)))
3417 info->callbacks->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr->e_machine, abfd, bed->elf_machine_code);
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info->executable)
3427 asection *s;
3429 for (s = abfd->sections; s != NULL; s = s->next)
3431 const char *name;
3433 name = bfd_get_section_name (abfd, s);
3434 if (CONST_STRNEQ (name, ".gnu.warning."))
3436 char *msg;
3437 bfd_size_type sz;
3439 name += sizeof ".gnu.warning." - 1;
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3449 link. */
3450 if (dynamic)
3452 struct elf_link_hash_entry *h;
3454 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3456 /* FIXME: What about bfd_link_hash_common? */
3457 if (h != NULL
3458 && (h->root.type == bfd_link_hash_defined
3459 || h->root.type == bfd_link_hash_defweak))
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3464 s->size = 0;
3465 continue;
3469 sz = s->size;
3470 msg = (char *) bfd_alloc (abfd, sz + 1);
3471 if (msg == NULL)
3472 goto error_return;
3474 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3475 goto error_return;
3477 msg[sz] = '\0';
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info, abfd, name, BSF_WARNING, s, 0, msg,
3481 FALSE, bed->collect, NULL)))
3482 goto error_return;
3484 if (! info->relocatable)
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3488 s->size = 0;
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s->flags |= SEC_EXCLUDE;
3498 add_needed = TRUE;
3499 if (! dynamic)
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3506 if (info->shared
3507 && is_elf_hash_table (htab)
3508 && info->output_bfd->xvec == abfd->xvec
3509 && !htab->dynamic_sections_created)
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3512 goto error_return;
3515 else if (!is_elf_hash_table (htab))
3516 goto error_return;
3517 else
3519 asection *s;
3520 const char *soname = NULL;
3521 char *audit = NULL;
3522 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3523 int ret;
3525 /* ld --just-symbols and dynamic objects don't mix very well.
3526 ld shouldn't allow it. */
3527 if ((s = abfd->sections) != NULL
3528 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3529 abort ();
3531 /* If this dynamic lib was specified on the command line with
3532 --as-needed in effect, then we don't want to add a DT_NEEDED
3533 tag unless the lib is actually used. Similary for libs brought
3534 in by another lib's DT_NEEDED. When --no-add-needed is used
3535 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3536 any dynamic library in DT_NEEDED tags in the dynamic lib at
3537 all. */
3538 add_needed = (elf_dyn_lib_class (abfd)
3539 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3540 | DYN_NO_NEEDED)) == 0;
3542 s = bfd_get_section_by_name (abfd, ".dynamic");
3543 if (s != NULL)
3545 bfd_byte *dynbuf;
3546 bfd_byte *extdyn;
3547 unsigned int elfsec;
3548 unsigned long shlink;
3550 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3552 error_free_dyn:
3553 free (dynbuf);
3554 goto error_return;
3557 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3558 if (elfsec == SHN_BAD)
3559 goto error_free_dyn;
3560 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3562 for (extdyn = dynbuf;
3563 extdyn < dynbuf + s->size;
3564 extdyn += bed->s->sizeof_dyn)
3566 Elf_Internal_Dyn dyn;
3568 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3569 if (dyn.d_tag == DT_SONAME)
3571 unsigned int tagv = dyn.d_un.d_val;
3572 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3573 if (soname == NULL)
3574 goto error_free_dyn;
3576 if (dyn.d_tag == DT_NEEDED)
3578 struct bfd_link_needed_list *n, **pn;
3579 char *fnm, *anm;
3580 unsigned int tagv = dyn.d_un.d_val;
3582 amt = sizeof (struct bfd_link_needed_list);
3583 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 if (n == NULL || fnm == NULL)
3586 goto error_free_dyn;
3587 amt = strlen (fnm) + 1;
3588 anm = (char *) bfd_alloc (abfd, amt);
3589 if (anm == NULL)
3590 goto error_free_dyn;
3591 memcpy (anm, fnm, amt);
3592 n->name = anm;
3593 n->by = abfd;
3594 n->next = NULL;
3595 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3597 *pn = n;
3599 if (dyn.d_tag == DT_RUNPATH)
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & runpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3622 *pn = n;
3624 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3625 if (!runpath && dyn.d_tag == DT_RPATH)
3627 struct bfd_link_needed_list *n, **pn;
3628 char *fnm, *anm;
3629 unsigned int tagv = dyn.d_un.d_val;
3631 amt = sizeof (struct bfd_link_needed_list);
3632 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3633 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3634 if (n == NULL || fnm == NULL)
3635 goto error_free_dyn;
3636 amt = strlen (fnm) + 1;
3637 anm = (char *) bfd_alloc (abfd, amt);
3638 if (anm == NULL)
3639 goto error_free_dyn;
3640 memcpy (anm, fnm, amt);
3641 n->name = anm;
3642 n->by = abfd;
3643 n->next = NULL;
3644 for (pn = & rpath;
3645 *pn != NULL;
3646 pn = &(*pn)->next)
3648 *pn = n;
3650 if (dyn.d_tag == DT_AUDIT)
3652 unsigned int tagv = dyn.d_un.d_val;
3653 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3657 free (dynbuf);
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3662 if (runpath)
3663 rpath = runpath;
3665 if (rpath)
3667 struct bfd_link_needed_list **pn;
3668 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3670 *pn = rpath;
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3679 file. */
3680 bfd_section_list_clear (abfd);
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3686 name. */
3687 if (soname == NULL || *soname == '\0')
3689 soname = elf_dt_name (abfd);
3690 if (soname == NULL || *soname == '\0')
3691 soname = bfd_get_filename (abfd);
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd) = soname;
3698 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3699 if (ret < 0)
3700 goto error_return;
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3705 if (ret > 0)
3706 return TRUE;
3708 /* Save the DT_AUDIT entry for the linker emulation code. */
3709 elf_dt_audit (abfd) = audit;
3712 /* If this is a dynamic object, we always link against the .dynsym
3713 symbol table, not the .symtab symbol table. The dynamic linker
3714 will only see the .dynsym symbol table, so there is no reason to
3715 look at .symtab for a dynamic object. */
3717 if (! dynamic || elf_dynsymtab (abfd) == 0)
3718 hdr = &elf_tdata (abfd)->symtab_hdr;
3719 else
3720 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3722 symcount = hdr->sh_size / bed->s->sizeof_sym;
3724 /* The sh_info field of the symtab header tells us where the
3725 external symbols start. We don't care about the local symbols at
3726 this point. */
3727 if (elf_bad_symtab (abfd))
3729 extsymcount = symcount;
3730 extsymoff = 0;
3732 else
3734 extsymcount = symcount - hdr->sh_info;
3735 extsymoff = hdr->sh_info;
3738 sym_hash = NULL;
3739 if (extsymcount != 0)
3741 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3742 NULL, NULL, NULL);
3743 if (isymbuf == NULL)
3744 goto error_return;
3746 /* We store a pointer to the hash table entry for each external
3747 symbol. */
3748 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3749 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3750 if (sym_hash == NULL)
3751 goto error_free_sym;
3752 elf_sym_hashes (abfd) = sym_hash;
3755 if (dynamic)
3757 /* Read in any version definitions. */
3758 if (!_bfd_elf_slurp_version_tables (abfd,
3759 info->default_imported_symver))
3760 goto error_free_sym;
3762 /* Read in the symbol versions, but don't bother to convert them
3763 to internal format. */
3764 if (elf_dynversym (abfd) != 0)
3766 Elf_Internal_Shdr *versymhdr;
3768 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3769 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3770 if (extversym == NULL)
3771 goto error_free_sym;
3772 amt = versymhdr->sh_size;
3773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3774 || bfd_bread (extversym, amt, abfd) != amt)
3775 goto error_free_vers;
3779 /* If we are loading an as-needed shared lib, save the symbol table
3780 state before we start adding symbols. If the lib turns out
3781 to be unneeded, restore the state. */
3782 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3784 unsigned int i;
3785 size_t entsize;
3787 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3789 struct bfd_hash_entry *p;
3790 struct elf_link_hash_entry *h;
3792 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3794 h = (struct elf_link_hash_entry *) p;
3795 entsize += htab->root.table.entsize;
3796 if (h->root.type == bfd_link_hash_warning)
3797 entsize += htab->root.table.entsize;
3801 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3802 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3803 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3804 if (old_tab == NULL)
3805 goto error_free_vers;
3807 /* Remember the current objalloc pointer, so that all mem for
3808 symbols added can later be reclaimed. */
3809 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3810 if (alloc_mark == NULL)
3811 goto error_free_vers;
3813 /* Make a special call to the linker "notice" function to
3814 tell it that we are about to handle an as-needed lib. */
3815 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3816 notice_as_needed))
3817 goto error_free_vers;
3819 /* Clone the symbol table and sym hashes. Remember some
3820 pointers into the symbol table, and dynamic symbol count. */
3821 old_hash = (char *) old_tab + tabsize;
3822 old_ent = (char *) old_hash + hashsize;
3823 memcpy (old_tab, htab->root.table.table, tabsize);
3824 memcpy (old_hash, sym_hash, hashsize);
3825 old_undefs = htab->root.undefs;
3826 old_undefs_tail = htab->root.undefs_tail;
3827 old_table = htab->root.table.table;
3828 old_size = htab->root.table.size;
3829 old_count = htab->root.table.count;
3830 old_dynsymcount = htab->dynsymcount;
3832 for (i = 0; i < htab->root.table.size; i++)
3834 struct bfd_hash_entry *p;
3835 struct elf_link_hash_entry *h;
3837 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3839 memcpy (old_ent, p, htab->root.table.entsize);
3840 old_ent = (char *) old_ent + htab->root.table.entsize;
3841 h = (struct elf_link_hash_entry *) p;
3842 if (h->root.type == bfd_link_hash_warning)
3844 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3845 old_ent = (char *) old_ent + htab->root.table.entsize;
3851 weaks = NULL;
3852 ever = extversym != NULL ? extversym + extsymoff : NULL;
3853 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3854 isym < isymend;
3855 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3857 int bind;
3858 bfd_vma value;
3859 asection *sec, *new_sec;
3860 flagword flags;
3861 const char *name;
3862 struct elf_link_hash_entry *h;
3863 bfd_boolean definition;
3864 bfd_boolean size_change_ok;
3865 bfd_boolean type_change_ok;
3866 bfd_boolean new_weakdef;
3867 bfd_boolean override;
3868 bfd_boolean common;
3869 unsigned int old_alignment;
3870 bfd *old_bfd;
3871 bfd * undef_bfd = NULL;
3873 override = FALSE;
3875 flags = BSF_NO_FLAGS;
3876 sec = NULL;
3877 value = isym->st_value;
3878 *sym_hash = NULL;
3879 common = bed->common_definition (isym);
3881 bind = ELF_ST_BIND (isym->st_info);
3882 switch (bind)
3884 case STB_LOCAL:
3885 /* This should be impossible, since ELF requires that all
3886 global symbols follow all local symbols, and that sh_info
3887 point to the first global symbol. Unfortunately, Irix 5
3888 screws this up. */
3889 continue;
3891 case STB_GLOBAL:
3892 if (isym->st_shndx != SHN_UNDEF && !common)
3893 flags = BSF_GLOBAL;
3894 break;
3896 case STB_WEAK:
3897 flags = BSF_WEAK;
3898 break;
3900 case STB_GNU_UNIQUE:
3901 flags = BSF_GNU_UNIQUE;
3902 break;
3904 default:
3905 /* Leave it up to the processor backend. */
3906 break;
3909 if (isym->st_shndx == SHN_UNDEF)
3910 sec = bfd_und_section_ptr;
3911 else if (isym->st_shndx == SHN_ABS)
3912 sec = bfd_abs_section_ptr;
3913 else if (isym->st_shndx == SHN_COMMON)
3915 sec = bfd_com_section_ptr;
3916 /* What ELF calls the size we call the value. What ELF
3917 calls the value we call the alignment. */
3918 value = isym->st_size;
3920 else
3922 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3923 if (sec == NULL)
3924 sec = bfd_abs_section_ptr;
3925 else if (sec->kept_section)
3927 /* Symbols from discarded section are undefined. We keep
3928 its visibility. */
3929 sec = bfd_und_section_ptr;
3930 isym->st_shndx = SHN_UNDEF;
3932 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3933 value -= sec->vma;
3936 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3937 isym->st_name);
3938 if (name == NULL)
3939 goto error_free_vers;
3941 if (isym->st_shndx == SHN_COMMON
3942 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3943 && !info->relocatable)
3945 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3947 if (tcomm == NULL)
3949 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3950 (SEC_ALLOC
3951 | SEC_IS_COMMON
3952 | SEC_LINKER_CREATED
3953 | SEC_THREAD_LOCAL));
3954 if (tcomm == NULL)
3955 goto error_free_vers;
3957 sec = tcomm;
3959 else if (bed->elf_add_symbol_hook)
3961 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3962 &sec, &value))
3963 goto error_free_vers;
3965 /* The hook function sets the name to NULL if this symbol
3966 should be skipped for some reason. */
3967 if (name == NULL)
3968 continue;
3971 /* Sanity check that all possibilities were handled. */
3972 if (sec == NULL)
3974 bfd_set_error (bfd_error_bad_value);
3975 goto error_free_vers;
3978 if (bfd_is_und_section (sec)
3979 || bfd_is_com_section (sec))
3980 definition = FALSE;
3981 else
3982 definition = TRUE;
3984 size_change_ok = FALSE;
3985 type_change_ok = bed->type_change_ok;
3986 old_alignment = 0;
3987 old_bfd = NULL;
3988 new_sec = sec;
3990 if (is_elf_hash_table (htab))
3992 Elf_Internal_Versym iver;
3993 unsigned int vernum = 0;
3994 bfd_boolean skip;
3996 /* If this is a definition of a symbol which was previously
3997 referenced in a non-weak manner then make a note of the bfd
3998 that contained the reference. This is used if we need to
3999 refer to the source of the reference later on. */
4000 if (! bfd_is_und_section (sec))
4002 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4004 if (h != NULL
4005 && h->root.type == bfd_link_hash_undefined
4006 && h->root.u.undef.abfd)
4007 undef_bfd = h->root.u.undef.abfd;
4010 if (ever == NULL)
4012 if (info->default_imported_symver)
4013 /* Use the default symbol version created earlier. */
4014 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4015 else
4016 iver.vs_vers = 0;
4018 else
4019 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4021 vernum = iver.vs_vers & VERSYM_VERSION;
4023 /* If this is a hidden symbol, or if it is not version
4024 1, we append the version name to the symbol name.
4025 However, we do not modify a non-hidden absolute symbol
4026 if it is not a function, because it might be the version
4027 symbol itself. FIXME: What if it isn't? */
4028 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4029 || (vernum > 1
4030 && (!bfd_is_abs_section (sec)
4031 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4033 const char *verstr;
4034 size_t namelen, verlen, newlen;
4035 char *newname, *p;
4037 if (isym->st_shndx != SHN_UNDEF)
4039 if (vernum > elf_tdata (abfd)->cverdefs)
4040 verstr = NULL;
4041 else if (vernum > 1)
4042 verstr =
4043 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4044 else
4045 verstr = "";
4047 if (verstr == NULL)
4049 (*_bfd_error_handler)
4050 (_("%B: %s: invalid version %u (max %d)"),
4051 abfd, name, vernum,
4052 elf_tdata (abfd)->cverdefs);
4053 bfd_set_error (bfd_error_bad_value);
4054 goto error_free_vers;
4057 else
4059 /* We cannot simply test for the number of
4060 entries in the VERNEED section since the
4061 numbers for the needed versions do not start
4062 at 0. */
4063 Elf_Internal_Verneed *t;
4065 verstr = NULL;
4066 for (t = elf_tdata (abfd)->verref;
4067 t != NULL;
4068 t = t->vn_nextref)
4070 Elf_Internal_Vernaux *a;
4072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4074 if (a->vna_other == vernum)
4076 verstr = a->vna_nodename;
4077 break;
4080 if (a != NULL)
4081 break;
4083 if (verstr == NULL)
4085 (*_bfd_error_handler)
4086 (_("%B: %s: invalid needed version %d"),
4087 abfd, name, vernum);
4088 bfd_set_error (bfd_error_bad_value);
4089 goto error_free_vers;
4093 namelen = strlen (name);
4094 verlen = strlen (verstr);
4095 newlen = namelen + verlen + 2;
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 ++newlen;
4100 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4101 if (newname == NULL)
4102 goto error_free_vers;
4103 memcpy (newname, name, namelen);
4104 p = newname + namelen;
4105 *p++ = ELF_VER_CHR;
4106 /* If this is a defined non-hidden version symbol,
4107 we add another @ to the name. This indicates the
4108 default version of the symbol. */
4109 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4110 && isym->st_shndx != SHN_UNDEF)
4111 *p++ = ELF_VER_CHR;
4112 memcpy (p, verstr, verlen + 1);
4114 name = newname;
4117 /* If necessary, make a second attempt to locate the bfd
4118 containing an unresolved, non-weak reference to the
4119 current symbol. */
4120 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4122 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4124 if (h != NULL
4125 && h->root.type == bfd_link_hash_undefined
4126 && h->root.u.undef.abfd)
4127 undef_bfd = h->root.u.undef.abfd;
4130 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4131 &value, &old_alignment,
4132 sym_hash, &skip, &override,
4133 &type_change_ok, &size_change_ok))
4134 goto error_free_vers;
4136 if (skip)
4137 continue;
4139 if (override)
4140 definition = FALSE;
4142 h = *sym_hash;
4143 while (h->root.type == bfd_link_hash_indirect
4144 || h->root.type == bfd_link_hash_warning)
4145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4147 /* Remember the old alignment if this is a common symbol, so
4148 that we don't reduce the alignment later on. We can't
4149 check later, because _bfd_generic_link_add_one_symbol
4150 will set a default for the alignment which we want to
4151 override. We also remember the old bfd where the existing
4152 definition comes from. */
4153 switch (h->root.type)
4155 default:
4156 break;
4158 case bfd_link_hash_defined:
4159 case bfd_link_hash_defweak:
4160 old_bfd = h->root.u.def.section->owner;
4161 break;
4163 case bfd_link_hash_common:
4164 old_bfd = h->root.u.c.p->section->owner;
4165 old_alignment = h->root.u.c.p->alignment_power;
4166 break;
4169 if (elf_tdata (abfd)->verdef != NULL
4170 && ! override
4171 && vernum > 1
4172 && definition)
4173 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4176 if (! (_bfd_generic_link_add_one_symbol
4177 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4178 (struct bfd_link_hash_entry **) sym_hash)))
4179 goto error_free_vers;
4181 h = *sym_hash;
4182 while (h->root.type == bfd_link_hash_indirect
4183 || h->root.type == bfd_link_hash_warning)
4184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4186 *sym_hash = h;
4187 if (is_elf_hash_table (htab))
4188 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4190 new_weakdef = FALSE;
4191 if (dynamic
4192 && definition
4193 && (flags & BSF_WEAK) != 0
4194 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4195 && is_elf_hash_table (htab)
4196 && h->u.weakdef == NULL)
4198 /* Keep a list of all weak defined non function symbols from
4199 a dynamic object, using the weakdef field. Later in this
4200 function we will set the weakdef field to the correct
4201 value. We only put non-function symbols from dynamic
4202 objects on this list, because that happens to be the only
4203 time we need to know the normal symbol corresponding to a
4204 weak symbol, and the information is time consuming to
4205 figure out. If the weakdef field is not already NULL,
4206 then this symbol was already defined by some previous
4207 dynamic object, and we will be using that previous
4208 definition anyhow. */
4210 h->u.weakdef = weaks;
4211 weaks = h;
4212 new_weakdef = TRUE;
4215 /* Set the alignment of a common symbol. */
4216 if ((common || bfd_is_com_section (sec))
4217 && h->root.type == bfd_link_hash_common)
4219 unsigned int align;
4221 if (common)
4222 align = bfd_log2 (isym->st_value);
4223 else
4225 /* The new symbol is a common symbol in a shared object.
4226 We need to get the alignment from the section. */
4227 align = new_sec->alignment_power;
4229 if (align > old_alignment
4230 /* Permit an alignment power of zero if an alignment of one
4231 is specified and no other alignments have been specified. */
4232 || (isym->st_value == 1 && old_alignment == 0))
4233 h->root.u.c.p->alignment_power = align;
4234 else
4235 h->root.u.c.p->alignment_power = old_alignment;
4238 if (is_elf_hash_table (htab))
4240 bfd_boolean dynsym;
4242 /* Check the alignment when a common symbol is involved. This
4243 can change when a common symbol is overridden by a normal
4244 definition or a common symbol is ignored due to the old
4245 normal definition. We need to make sure the maximum
4246 alignment is maintained. */
4247 if ((old_alignment || common)
4248 && h->root.type != bfd_link_hash_common)
4250 unsigned int common_align;
4251 unsigned int normal_align;
4252 unsigned int symbol_align;
4253 bfd *normal_bfd;
4254 bfd *common_bfd;
4256 symbol_align = ffs (h->root.u.def.value) - 1;
4257 if (h->root.u.def.section->owner != NULL
4258 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4260 normal_align = h->root.u.def.section->alignment_power;
4261 if (normal_align > symbol_align)
4262 normal_align = symbol_align;
4264 else
4265 normal_align = symbol_align;
4267 if (old_alignment)
4269 common_align = old_alignment;
4270 common_bfd = old_bfd;
4271 normal_bfd = abfd;
4273 else
4275 common_align = bfd_log2 (isym->st_value);
4276 common_bfd = abfd;
4277 normal_bfd = old_bfd;
4280 if (normal_align < common_align)
4282 /* PR binutils/2735 */
4283 if (normal_bfd == NULL)
4284 (*_bfd_error_handler)
4285 (_("Warning: alignment %u of common symbol `%s' in %B"
4286 " is greater than the alignment (%u) of its section %A"),
4287 common_bfd, h->root.u.def.section,
4288 1 << common_align, name, 1 << normal_align);
4289 else
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of symbol `%s' in %B"
4292 " is smaller than %u in %B"),
4293 normal_bfd, common_bfd,
4294 1 << normal_align, name, 1 << common_align);
4298 /* Remember the symbol size if it isn't undefined. */
4299 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4300 && (definition || h->size == 0))
4302 if (h->size != 0
4303 && h->size != isym->st_size
4304 && ! size_change_ok)
4305 (*_bfd_error_handler)
4306 (_("Warning: size of symbol `%s' changed"
4307 " from %lu in %B to %lu in %B"),
4308 old_bfd, abfd,
4309 name, (unsigned long) h->size,
4310 (unsigned long) isym->st_size);
4312 h->size = isym->st_size;
4315 /* If this is a common symbol, then we always want H->SIZE
4316 to be the size of the common symbol. The code just above
4317 won't fix the size if a common symbol becomes larger. We
4318 don't warn about a size change here, because that is
4319 covered by --warn-common. Allow changed between different
4320 function types. */
4321 if (h->root.type == bfd_link_hash_common)
4322 h->size = h->root.u.c.size;
4324 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4325 && (definition || h->type == STT_NOTYPE))
4327 unsigned int type = ELF_ST_TYPE (isym->st_info);
4329 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4330 symbol. */
4331 if (type == STT_GNU_IFUNC
4332 && (abfd->flags & DYNAMIC) != 0)
4333 type = STT_FUNC;
4335 if (h->type != type)
4337 if (h->type != STT_NOTYPE && ! type_change_ok)
4338 (*_bfd_error_handler)
4339 (_("Warning: type of symbol `%s' changed"
4340 " from %d to %d in %B"),
4341 abfd, name, h->type, type);
4343 h->type = type;
4347 /* Merge st_other field. */
4348 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4350 /* Set a flag in the hash table entry indicating the type of
4351 reference or definition we just found. Keep a count of
4352 the number of dynamic symbols we find. A dynamic symbol
4353 is one which is referenced or defined by both a regular
4354 object and a shared object. */
4355 dynsym = FALSE;
4356 if (! dynamic)
4358 if (! definition)
4360 h->ref_regular = 1;
4361 if (bind != STB_WEAK)
4362 h->ref_regular_nonweak = 1;
4364 else
4366 h->def_regular = 1;
4367 if (h->def_dynamic)
4369 h->def_dynamic = 0;
4370 h->ref_dynamic = 1;
4371 h->dynamic_def = 1;
4374 if (! info->executable
4375 || h->def_dynamic
4376 || h->ref_dynamic)
4377 dynsym = TRUE;
4379 else
4381 if (! definition)
4382 h->ref_dynamic = 1;
4383 else
4384 h->def_dynamic = 1;
4385 if (h->def_regular
4386 || h->ref_regular
4387 || (h->u.weakdef != NULL
4388 && ! new_weakdef
4389 && h->u.weakdef->dynindx != -1))
4390 dynsym = TRUE;
4393 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4395 /* We don't want to make debug symbol dynamic. */
4396 dynsym = FALSE;
4399 /* Check to see if we need to add an indirect symbol for
4400 the default name. */
4401 if (definition || h->root.type == bfd_link_hash_common)
4402 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4403 &sec, &value, &dynsym,
4404 override))
4405 goto error_free_vers;
4407 if (definition && !dynamic)
4409 char *p = strchr (name, ELF_VER_CHR);
4410 if (p != NULL && p[1] != ELF_VER_CHR)
4412 /* Queue non-default versions so that .symver x, x@FOO
4413 aliases can be checked. */
4414 if (!nondeflt_vers)
4416 amt = ((isymend - isym + 1)
4417 * sizeof (struct elf_link_hash_entry *));
4418 nondeflt_vers =
4419 (struct elf_link_hash_entry **) bfd_malloc (amt);
4420 if (!nondeflt_vers)
4421 goto error_free_vers;
4423 nondeflt_vers[nondeflt_vers_cnt++] = h;
4427 if (dynsym && h->dynindx == -1)
4429 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4430 goto error_free_vers;
4431 if (h->u.weakdef != NULL
4432 && ! new_weakdef
4433 && h->u.weakdef->dynindx == -1)
4435 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4436 goto error_free_vers;
4439 else if (dynsym && h->dynindx != -1)
4440 /* If the symbol already has a dynamic index, but
4441 visibility says it should not be visible, turn it into
4442 a local symbol. */
4443 switch (ELF_ST_VISIBILITY (h->other))
4445 case STV_INTERNAL:
4446 case STV_HIDDEN:
4447 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4448 dynsym = FALSE;
4449 break;
4452 if (!add_needed
4453 && definition
4454 && ((dynsym
4455 && h->ref_regular)
4456 || (h->ref_dynamic
4457 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4458 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4460 int ret;
4461 const char *soname = elf_dt_name (abfd);
4463 /* A symbol from a library loaded via DT_NEEDED of some
4464 other library is referenced by a regular object.
4465 Add a DT_NEEDED entry for it. Issue an error if
4466 --no-add-needed is used and the reference was not
4467 a weak one. */
4468 if (undef_bfd != NULL
4469 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4471 (*_bfd_error_handler)
4472 (_("%B: undefined reference to symbol '%s'"),
4473 undef_bfd, name);
4474 (*_bfd_error_handler)
4475 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4476 abfd, name);
4477 bfd_set_error (bfd_error_invalid_operation);
4478 goto error_free_vers;
4481 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4482 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4484 add_needed = TRUE;
4485 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4486 if (ret < 0)
4487 goto error_free_vers;
4489 BFD_ASSERT (ret == 0);
4494 if (extversym != NULL)
4496 free (extversym);
4497 extversym = NULL;
4500 if (isymbuf != NULL)
4502 free (isymbuf);
4503 isymbuf = NULL;
4506 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4508 unsigned int i;
4510 /* Restore the symbol table. */
4511 if (bed->as_needed_cleanup)
4512 (*bed->as_needed_cleanup) (abfd, info);
4513 old_hash = (char *) old_tab + tabsize;
4514 old_ent = (char *) old_hash + hashsize;
4515 sym_hash = elf_sym_hashes (abfd);
4516 htab->root.table.table = old_table;
4517 htab->root.table.size = old_size;
4518 htab->root.table.count = old_count;
4519 memcpy (htab->root.table.table, old_tab, tabsize);
4520 memcpy (sym_hash, old_hash, hashsize);
4521 htab->root.undefs = old_undefs;
4522 htab->root.undefs_tail = old_undefs_tail;
4523 for (i = 0; i < htab->root.table.size; i++)
4525 struct bfd_hash_entry *p;
4526 struct elf_link_hash_entry *h;
4528 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 if (h->dynindx >= old_dynsymcount)
4534 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4536 memcpy (p, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) p;
4539 if (h->root.type == bfd_link_hash_warning)
4541 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4550 notice_not_needed))
4551 goto error_free_vers;
4553 free (old_tab);
4554 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4555 alloc_mark);
4556 if (nondeflt_vers != NULL)
4557 free (nondeflt_vers);
4558 return TRUE;
4561 if (old_tab != NULL)
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_needed))
4565 goto error_free_vers;
4566 free (old_tab);
4567 old_tab = NULL;
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers != NULL)
4574 bfd_size_type cnt, symidx;
4576 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4578 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4579 char *shortname, *p;
4581 p = strchr (h->root.root.string, ELF_VER_CHR);
4582 if (p == NULL
4583 || (h->root.type != bfd_link_hash_defined
4584 && h->root.type != bfd_link_hash_defweak))
4585 continue;
4587 amt = p - h->root.root.string;
4588 shortname = (char *) bfd_malloc (amt + 1);
4589 if (!shortname)
4590 goto error_free_vers;
4591 memcpy (shortname, h->root.root.string, amt);
4592 shortname[amt] = '\0';
4594 hi = (struct elf_link_hash_entry *)
4595 bfd_link_hash_lookup (&htab->root, shortname,
4596 FALSE, FALSE, FALSE);
4597 if (hi != NULL
4598 && hi->root.type == h->root.type
4599 && hi->root.u.def.value == h->root.u.def.value
4600 && hi->root.u.def.section == h->root.u.def.section)
4602 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4603 hi->root.type = bfd_link_hash_indirect;
4604 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4606 sym_hash = elf_sym_hashes (abfd);
4607 if (sym_hash)
4608 for (symidx = 0; symidx < extsymcount; ++symidx)
4609 if (sym_hash[symidx] == hi)
4611 sym_hash[symidx] = h;
4612 break;
4615 free (shortname);
4617 free (nondeflt_vers);
4618 nondeflt_vers = NULL;
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4633 either. */
4634 if (weaks != NULL)
4636 struct elf_link_hash_entry **hpp;
4637 struct elf_link_hash_entry **hppend;
4638 struct elf_link_hash_entry **sorted_sym_hash;
4639 struct elf_link_hash_entry *h;
4640 size_t sym_count;
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4646 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4647 if (sorted_sym_hash == NULL)
4648 goto error_return;
4649 sym_hash = sorted_sym_hash;
4650 hpp = elf_sym_hashes (abfd);
4651 hppend = hpp + extsymcount;
4652 sym_count = 0;
4653 for (; hpp < hppend; hpp++)
4655 h = *hpp;
4656 if (h != NULL
4657 && h->root.type == bfd_link_hash_defined
4658 && !bed->is_function_type (h->type))
4660 *sym_hash = h;
4661 sym_hash++;
4662 sym_count++;
4666 qsort (sorted_sym_hash, sym_count,
4667 sizeof (struct elf_link_hash_entry *),
4668 elf_sort_symbol);
4670 while (weaks != NULL)
4672 struct elf_link_hash_entry *hlook;
4673 asection *slook;
4674 bfd_vma vlook;
4675 long ilook;
4676 size_t i, j, idx;
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4689 ilook = -1;
4690 i = 0;
4691 j = sym_count;
4692 while (i < j)
4694 bfd_signed_vma vdiff;
4695 idx = (i + j) / 2;
4696 h = sorted_sym_hash [idx];
4697 vdiff = vlook - h->root.u.def.value;
4698 if (vdiff < 0)
4699 j = idx;
4700 else if (vdiff > 0)
4701 i = idx + 1;
4702 else
4704 long sdiff = slook->id - h->root.u.def.section->id;
4705 if (sdiff < 0)
4706 j = idx;
4707 else if (sdiff > 0)
4708 i = idx + 1;
4709 else
4711 ilook = idx;
4712 break;
4717 /* We didn't find a value/section match. */
4718 if (ilook == -1)
4719 continue;
4721 for (i = ilook; i < sym_count; i++)
4723 h = sorted_sym_hash [i];
4725 /* Stop if value or section doesn't match. */
4726 if (h->root.u.def.value != vlook
4727 || h->root.u.def.section != slook)
4728 break;
4729 else if (h != hlook)
4731 hlook->u.weakdef = h;
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4735 there as well. */
4736 if (hlook->dynindx != -1 && h->dynindx == -1)
4738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4740 err_free_sym_hash:
4741 free (sorted_sym_hash);
4742 goto error_return;
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h->dynindx != -1 && hlook->dynindx == -1)
4753 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4754 goto err_free_sym_hash;
4756 break;
4761 free (sorted_sym_hash);
4764 if (bed->check_directives
4765 && !(*bed->check_directives) (abfd, info))
4766 return FALSE;
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4770 relocs.
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4785 if (! dynamic
4786 && is_elf_hash_table (htab)
4787 && bed->check_relocs != NULL
4788 && elf_object_id (abfd) == elf_hash_table_id (htab)
4789 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4791 asection *o;
4793 for (o = abfd->sections; o != NULL; o = o->next)
4795 Elf_Internal_Rela *internal_relocs;
4796 bfd_boolean ok;
4798 if ((o->flags & SEC_RELOC) == 0
4799 || o->reloc_count == 0
4800 || ((info->strip == strip_all || info->strip == strip_debugger)
4801 && (o->flags & SEC_DEBUGGING) != 0)
4802 || bfd_is_abs_section (o->output_section))
4803 continue;
4805 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4806 info->keep_memory);
4807 if (internal_relocs == NULL)
4808 goto error_return;
4810 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4812 if (elf_section_data (o)->relocs != internal_relocs)
4813 free (internal_relocs);
4815 if (! ok)
4816 goto error_return;
4820 /* If this is a non-traditional link, try to optimize the handling
4821 of the .stab/.stabstr sections. */
4822 if (! dynamic
4823 && ! info->traditional_format
4824 && is_elf_hash_table (htab)
4825 && (info->strip != strip_all && info->strip != strip_debugger))
4827 asection *stabstr;
4829 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4830 if (stabstr != NULL)
4832 bfd_size_type string_offset = 0;
4833 asection *stab;
4835 for (stab = abfd->sections; stab; stab = stab->next)
4836 if (CONST_STRNEQ (stab->name, ".stab")
4837 && (!stab->name[5] ||
4838 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4839 && (stab->flags & SEC_MERGE) == 0
4840 && !bfd_is_abs_section (stab->output_section))
4842 struct bfd_elf_section_data *secdata;
4844 secdata = elf_section_data (stab);
4845 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4846 stabstr, &secdata->sec_info,
4847 &string_offset))
4848 goto error_return;
4849 if (secdata->sec_info)
4850 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4855 if (is_elf_hash_table (htab) && add_needed)
4857 /* Add this bfd to the loaded list. */
4858 struct elf_link_loaded_list *n;
4860 n = (struct elf_link_loaded_list *)
4861 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4862 if (n == NULL)
4863 goto error_return;
4864 n->abfd = abfd;
4865 n->next = htab->loaded;
4866 htab->loaded = n;
4869 return TRUE;
4871 error_free_vers:
4872 if (old_tab != NULL)
4873 free (old_tab);
4874 if (nondeflt_vers != NULL)
4875 free (nondeflt_vers);
4876 if (extversym != NULL)
4877 free (extversym);
4878 error_free_sym:
4879 if (isymbuf != NULL)
4880 free (isymbuf);
4881 error_return:
4882 return FALSE;
4885 /* Return the linker hash table entry of a symbol that might be
4886 satisfied by an archive symbol. Return -1 on error. */
4888 struct elf_link_hash_entry *
4889 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4890 struct bfd_link_info *info,
4891 const char *name)
4893 struct elf_link_hash_entry *h;
4894 char *p, *copy;
4895 size_t len, first;
4897 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4898 if (h != NULL)
4899 return h;
4901 /* If this is a default version (the name contains @@), look up the
4902 symbol again with only one `@' as well as without the version.
4903 The effect is that references to the symbol with and without the
4904 version will be matched by the default symbol in the archive. */
4906 p = strchr (name, ELF_VER_CHR);
4907 if (p == NULL || p[1] != ELF_VER_CHR)
4908 return h;
4910 /* First check with only one `@'. */
4911 len = strlen (name);
4912 copy = (char *) bfd_alloc (abfd, len);
4913 if (copy == NULL)
4914 return (struct elf_link_hash_entry *) 0 - 1;
4916 first = p - name + 1;
4917 memcpy (copy, name, first);
4918 memcpy (copy + first, name + first + 1, len - first);
4920 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4921 if (h == NULL)
4923 /* We also need to check references to the symbol without the
4924 version. */
4925 copy[first - 1] = '\0';
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4927 FALSE, FALSE, FALSE);
4930 bfd_release (abfd, copy);
4931 return h;
4934 /* Add symbols from an ELF archive file to the linker hash table. We
4935 don't use _bfd_generic_link_add_archive_symbols because of a
4936 problem which arises on UnixWare. The UnixWare libc.so is an
4937 archive which includes an entry libc.so.1 which defines a bunch of
4938 symbols. The libc.so archive also includes a number of other
4939 object files, which also define symbols, some of which are the same
4940 as those defined in libc.so.1. Correct linking requires that we
4941 consider each object file in turn, and include it if it defines any
4942 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4943 this; it looks through the list of undefined symbols, and includes
4944 any object file which defines them. When this algorithm is used on
4945 UnixWare, it winds up pulling in libc.so.1 early and defining a
4946 bunch of symbols. This means that some of the other objects in the
4947 archive are not included in the link, which is incorrect since they
4948 precede libc.so.1 in the archive.
4950 Fortunately, ELF archive handling is simpler than that done by
4951 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4952 oddities. In ELF, if we find a symbol in the archive map, and the
4953 symbol is currently undefined, we know that we must pull in that
4954 object file.
4956 Unfortunately, we do have to make multiple passes over the symbol
4957 table until nothing further is resolved. */
4959 static bfd_boolean
4960 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4962 symindex c;
4963 bfd_boolean *defined = NULL;
4964 bfd_boolean *included = NULL;
4965 carsym *symdefs;
4966 bfd_boolean loop;
4967 bfd_size_type amt;
4968 const struct elf_backend_data *bed;
4969 struct elf_link_hash_entry * (*archive_symbol_lookup)
4970 (bfd *, struct bfd_link_info *, const char *);
4972 if (! bfd_has_map (abfd))
4974 /* An empty archive is a special case. */
4975 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4976 return TRUE;
4977 bfd_set_error (bfd_error_no_armap);
4978 return FALSE;
4981 /* Keep track of all symbols we know to be already defined, and all
4982 files we know to be already included. This is to speed up the
4983 second and subsequent passes. */
4984 c = bfd_ardata (abfd)->symdef_count;
4985 if (c == 0)
4986 return TRUE;
4987 amt = c;
4988 amt *= sizeof (bfd_boolean);
4989 defined = (bfd_boolean *) bfd_zmalloc (amt);
4990 included = (bfd_boolean *) bfd_zmalloc (amt);
4991 if (defined == NULL || included == NULL)
4992 goto error_return;
4994 symdefs = bfd_ardata (abfd)->symdefs;
4995 bed = get_elf_backend_data (abfd);
4996 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000 file_ptr last;
5001 symindex i;
5002 carsym *symdef;
5003 carsym *symdefend;
5005 loop = FALSE;
5006 last = -1;
5008 symdef = symdefs;
5009 symdefend = symdef + c;
5010 for (i = 0; symdef < symdefend; symdef++, i++)
5012 struct elf_link_hash_entry *h;
5013 bfd *element;
5014 struct bfd_link_hash_entry *undefs_tail;
5015 symindex mark;
5017 if (defined[i] || included[i])
5018 continue;
5019 if (symdef->file_offset == last)
5021 included[i] = TRUE;
5022 continue;
5025 h = archive_symbol_lookup (abfd, info, symdef->name);
5026 if (h == (struct elf_link_hash_entry *) 0 - 1)
5027 goto error_return;
5029 if (h == NULL)
5030 continue;
5032 if (h->root.type == bfd_link_hash_common)
5034 /* We currently have a common symbol. The archive map contains
5035 a reference to this symbol, so we may want to include it. We
5036 only want to include it however, if this archive element
5037 contains a definition of the symbol, not just another common
5038 declaration of it.
5040 Unfortunately some archivers (including GNU ar) will put
5041 declarations of common symbols into their archive maps, as
5042 well as real definitions, so we cannot just go by the archive
5043 map alone. Instead we must read in the element's symbol
5044 table and check that to see what kind of symbol definition
5045 this is. */
5046 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5047 continue;
5049 else if (h->root.type != bfd_link_hash_undefined)
5051 if (h->root.type != bfd_link_hash_undefweak)
5052 defined[i] = TRUE;
5053 continue;
5056 /* We need to include this archive member. */
5057 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5058 if (element == NULL)
5059 goto error_return;
5061 if (! bfd_check_format (element, bfd_object))
5062 goto error_return;
5064 /* Doublecheck that we have not included this object
5065 already--it should be impossible, but there may be
5066 something wrong with the archive. */
5067 if (element->archive_pass != 0)
5069 bfd_set_error (bfd_error_bad_value);
5070 goto error_return;
5072 element->archive_pass = 1;
5074 undefs_tail = info->hash->undefs_tail;
5076 if (!(*info->callbacks
5077 ->add_archive_element) (info, element, symdef->name, &element))
5078 goto error_return;
5079 if (!bfd_link_add_symbols (element, info))
5080 goto error_return;
5082 /* If there are any new undefined symbols, we need to make
5083 another pass through the archive in order to see whether
5084 they can be defined. FIXME: This isn't perfect, because
5085 common symbols wind up on undefs_tail and because an
5086 undefined symbol which is defined later on in this pass
5087 does not require another pass. This isn't a bug, but it
5088 does make the code less efficient than it could be. */
5089 if (undefs_tail != info->hash->undefs_tail)
5090 loop = TRUE;
5092 /* Look backward to mark all symbols from this object file
5093 which we have already seen in this pass. */
5094 mark = i;
5097 included[mark] = TRUE;
5098 if (mark == 0)
5099 break;
5100 --mark;
5102 while (symdefs[mark].file_offset == symdef->file_offset);
5104 /* We mark subsequent symbols from this object file as we go
5105 on through the loop. */
5106 last = symdef->file_offset;
5109 while (loop);
5111 free (defined);
5112 free (included);
5114 return TRUE;
5116 error_return:
5117 if (defined != NULL)
5118 free (defined);
5119 if (included != NULL)
5120 free (included);
5121 return FALSE;
5124 /* Given an ELF BFD, add symbols to the global hash table as
5125 appropriate. */
5127 bfd_boolean
5128 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5130 switch (bfd_get_format (abfd))
5132 case bfd_object:
5133 return elf_link_add_object_symbols (abfd, info);
5134 case bfd_archive:
5135 return elf_link_add_archive_symbols (abfd, info);
5136 default:
5137 bfd_set_error (bfd_error_wrong_format);
5138 return FALSE;
5142 struct hash_codes_info
5144 unsigned long *hashcodes;
5145 bfd_boolean error;
5148 /* This function will be called though elf_link_hash_traverse to store
5149 all hash value of the exported symbols in an array. */
5151 static bfd_boolean
5152 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5154 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5155 const char *name;
5156 char *p;
5157 unsigned long ha;
5158 char *alc = NULL;
5160 if (h->root.type == bfd_link_hash_warning)
5161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5163 /* Ignore indirect symbols. These are added by the versioning code. */
5164 if (h->dynindx == -1)
5165 return TRUE;
5167 name = h->root.root.string;
5168 p = strchr (name, ELF_VER_CHR);
5169 if (p != NULL)
5171 alc = (char *) bfd_malloc (p - name + 1);
5172 if (alc == NULL)
5174 inf->error = TRUE;
5175 return FALSE;
5177 memcpy (alc, name, p - name);
5178 alc[p - name] = '\0';
5179 name = alc;
5182 /* Compute the hash value. */
5183 ha = bfd_elf_hash (name);
5185 /* Store the found hash value in the array given as the argument. */
5186 *(inf->hashcodes)++ = ha;
5188 /* And store it in the struct so that we can put it in the hash table
5189 later. */
5190 h->u.elf_hash_value = ha;
5192 if (alc != NULL)
5193 free (alc);
5195 return TRUE;
5198 struct collect_gnu_hash_codes
5200 bfd *output_bfd;
5201 const struct elf_backend_data *bed;
5202 unsigned long int nsyms;
5203 unsigned long int maskbits;
5204 unsigned long int *hashcodes;
5205 unsigned long int *hashval;
5206 unsigned long int *indx;
5207 unsigned long int *counts;
5208 bfd_vma *bitmask;
5209 bfd_byte *contents;
5210 long int min_dynindx;
5211 unsigned long int bucketcount;
5212 unsigned long int symindx;
5213 long int local_indx;
5214 long int shift1, shift2;
5215 unsigned long int mask;
5216 bfd_boolean error;
5219 /* This function will be called though elf_link_hash_traverse to store
5220 all hash value of the exported symbols in an array. */
5222 static bfd_boolean
5223 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5225 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5226 const char *name;
5227 char *p;
5228 unsigned long ha;
5229 char *alc = NULL;
5231 if (h->root.type == bfd_link_hash_warning)
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5234 /* Ignore indirect symbols. These are added by the versioning code. */
5235 if (h->dynindx == -1)
5236 return TRUE;
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5240 return TRUE;
5242 name = h->root.root.string;
5243 p = strchr (name, ELF_VER_CHR);
5244 if (p != NULL)
5246 alc = (char *) bfd_malloc (p - name + 1);
5247 if (alc == NULL)
5249 s->error = TRUE;
5250 return FALSE;
5252 memcpy (alc, name, p - name);
5253 alc[p - name] = '\0';
5254 name = alc;
5257 /* Compute the hash value. */
5258 ha = bfd_elf_gnu_hash (name);
5260 /* Store the found hash value in the array for compute_bucket_count,
5261 and also for .dynsym reordering purposes. */
5262 s->hashcodes[s->nsyms] = ha;
5263 s->hashval[h->dynindx] = ha;
5264 ++s->nsyms;
5265 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5266 s->min_dynindx = h->dynindx;
5268 if (alc != NULL)
5269 free (alc);
5271 return TRUE;
5274 /* This function will be called though elf_link_hash_traverse to do
5275 final dynaminc symbol renumbering. */
5277 static bfd_boolean
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5280 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5281 unsigned long int bucket;
5282 unsigned long int val;
5284 if (h->root.type == bfd_link_hash_warning)
5285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5287 /* Ignore indirect symbols. */
5288 if (h->dynindx == -1)
5289 return TRUE;
5291 /* Ignore also local symbols and undefined symbols. */
5292 if (! (*s->bed->elf_hash_symbol) (h))
5294 if (h->dynindx >= s->min_dynindx)
5295 h->dynindx = s->local_indx++;
5296 return TRUE;
5299 bucket = s->hashval[h->dynindx] % s->bucketcount;
5300 val = (s->hashval[h->dynindx] >> s->shift1)
5301 & ((s->maskbits >> s->shift1) - 1);
5302 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5303 s->bitmask[val]
5304 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5305 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5306 if (s->counts[bucket] == 1)
5307 /* Last element terminates the chain. */
5308 val |= 1;
5309 bfd_put_32 (s->output_bfd, val,
5310 s->contents + (s->indx[bucket] - s->symindx) * 4);
5311 --s->counts[bucket];
5312 h->dynindx = s->indx[bucket]++;
5313 return TRUE;
5316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5318 bfd_boolean
5319 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5321 return !(h->forced_local
5322 || h->root.type == bfd_link_hash_undefined
5323 || h->root.type == bfd_link_hash_undefweak
5324 || ((h->root.type == bfd_link_hash_defined
5325 || h->root.type == bfd_link_hash_defweak)
5326 && h->root.u.def.section->output_section == NULL));
5329 /* Array used to determine the number of hash table buckets to use
5330 based on the number of symbols there are. If there are fewer than
5331 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5332 fewer than 37 we use 17 buckets, and so forth. We never use more
5333 than 32771 buckets. */
5335 static const size_t elf_buckets[] =
5337 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5338 16411, 32771, 0
5341 /* Compute bucket count for hashing table. We do not use a static set
5342 of possible tables sizes anymore. Instead we determine for all
5343 possible reasonable sizes of the table the outcome (i.e., the
5344 number of collisions etc) and choose the best solution. The
5345 weighting functions are not too simple to allow the table to grow
5346 without bounds. Instead one of the weighting factors is the size.
5347 Therefore the result is always a good payoff between few collisions
5348 (= short chain lengths) and table size. */
5349 static size_t
5350 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5351 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5352 unsigned long int nsyms,
5353 int gnu_hash)
5355 size_t best_size = 0;
5356 unsigned long int i;
5358 /* We have a problem here. The following code to optimize the table
5359 size requires an integer type with more the 32 bits. If
5360 BFD_HOST_U_64_BIT is set we know about such a type. */
5361 #ifdef BFD_HOST_U_64_BIT
5362 if (info->optimize)
5364 size_t minsize;
5365 size_t maxsize;
5366 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5367 bfd *dynobj = elf_hash_table (info)->dynobj;
5368 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5369 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5370 unsigned long int *counts;
5371 bfd_size_type amt;
5372 unsigned int no_improvement_count = 0;
5374 /* Possible optimization parameters: if we have NSYMS symbols we say
5375 that the hashing table must at least have NSYMS/4 and at most
5376 2*NSYMS buckets. */
5377 minsize = nsyms / 4;
5378 if (minsize == 0)
5379 minsize = 1;
5380 best_size = maxsize = nsyms * 2;
5381 if (gnu_hash)
5383 if (minsize < 2)
5384 minsize = 2;
5385 if ((best_size & 31) == 0)
5386 ++best_size;
5389 /* Create array where we count the collisions in. We must use bfd_malloc
5390 since the size could be large. */
5391 amt = maxsize;
5392 amt *= sizeof (unsigned long int);
5393 counts = (unsigned long int *) bfd_malloc (amt);
5394 if (counts == NULL)
5395 return 0;
5397 /* Compute the "optimal" size for the hash table. The criteria is a
5398 minimal chain length. The minor criteria is (of course) the size
5399 of the table. */
5400 for (i = minsize; i < maxsize; ++i)
5402 /* Walk through the array of hashcodes and count the collisions. */
5403 BFD_HOST_U_64_BIT max;
5404 unsigned long int j;
5405 unsigned long int fact;
5407 if (gnu_hash && (i & 31) == 0)
5408 continue;
5410 memset (counts, '\0', i * sizeof (unsigned long int));
5412 /* Determine how often each hash bucket is used. */
5413 for (j = 0; j < nsyms; ++j)
5414 ++counts[hashcodes[j] % i];
5416 /* For the weight function we need some information about the
5417 pagesize on the target. This is information need not be 100%
5418 accurate. Since this information is not available (so far) we
5419 define it here to a reasonable default value. If it is crucial
5420 to have a better value some day simply define this value. */
5421 # ifndef BFD_TARGET_PAGESIZE
5422 # define BFD_TARGET_PAGESIZE (4096)
5423 # endif
5425 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5426 and the chains. */
5427 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5429 # if 1
5430 /* Variant 1: optimize for short chains. We add the squares
5431 of all the chain lengths (which favors many small chain
5432 over a few long chains). */
5433 for (j = 0; j < i; ++j)
5434 max += counts[j] * counts[j];
5436 /* This adds penalties for the overall size of the table. */
5437 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5438 max *= fact * fact;
5439 # else
5440 /* Variant 2: Optimize a lot more for small table. Here we
5441 also add squares of the size but we also add penalties for
5442 empty slots (the +1 term). */
5443 for (j = 0; j < i; ++j)
5444 max += (1 + counts[j]) * (1 + counts[j]);
5446 /* The overall size of the table is considered, but not as
5447 strong as in variant 1, where it is squared. */
5448 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 max *= fact;
5450 # endif
5452 /* Compare with current best results. */
5453 if (max < best_chlen)
5455 best_chlen = max;
5456 best_size = i;
5457 no_improvement_count = 0;
5459 /* PR 11843: Avoid futile long searches for the best bucket size
5460 when there are a large number of symbols. */
5461 else if (++no_improvement_count == 100)
5462 break;
5465 free (counts);
5467 else
5468 #endif /* defined (BFD_HOST_U_64_BIT) */
5470 /* This is the fallback solution if no 64bit type is available or if we
5471 are not supposed to spend much time on optimizations. We select the
5472 bucket count using a fixed set of numbers. */
5473 for (i = 0; elf_buckets[i] != 0; i++)
5475 best_size = elf_buckets[i];
5476 if (nsyms < elf_buckets[i + 1])
5477 break;
5479 if (gnu_hash && best_size < 2)
5480 best_size = 2;
5483 return best_size;
5486 /* Size any SHT_GROUP section for ld -r. */
5488 bfd_boolean
5489 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5491 bfd *ibfd;
5493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5494 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5495 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5496 return FALSE;
5497 return TRUE;
5500 /* Set up the sizes and contents of the ELF dynamic sections. This is
5501 called by the ELF linker emulation before_allocation routine. We
5502 must set the sizes of the sections before the linker sets the
5503 addresses of the various sections. */
5505 bfd_boolean
5506 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5507 const char *soname,
5508 const char *rpath,
5509 const char *filter_shlib,
5510 const char *audit,
5511 const char *depaudit,
5512 const char * const *auxiliary_filters,
5513 struct bfd_link_info *info,
5514 asection **sinterpptr,
5515 struct bfd_elf_version_tree *verdefs)
5517 bfd_size_type soname_indx;
5518 bfd *dynobj;
5519 const struct elf_backend_data *bed;
5520 struct elf_info_failed asvinfo;
5522 *sinterpptr = NULL;
5524 soname_indx = (bfd_size_type) -1;
5526 if (!is_elf_hash_table (info->hash))
5527 return TRUE;
5529 bed = get_elf_backend_data (output_bfd);
5530 if (info->execstack)
5531 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5532 else if (info->noexecstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5534 else
5536 bfd *inputobj;
5537 asection *notesec = NULL;
5538 int exec = 0;
5540 for (inputobj = info->input_bfds;
5541 inputobj;
5542 inputobj = inputobj->link_next)
5544 asection *s;
5546 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5547 continue;
5548 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5549 if (s)
5551 if (s->flags & SEC_CODE)
5552 exec = PF_X;
5553 notesec = s;
5555 else if (bed->default_execstack)
5556 exec = PF_X;
5558 if (notesec)
5560 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5561 if (exec && info->relocatable
5562 && notesec->output_section != bfd_abs_section_ptr)
5563 notesec->output_section->flags |= SEC_CODE;
5567 /* Any syms created from now on start with -1 in
5568 got.refcount/offset and plt.refcount/offset. */
5569 elf_hash_table (info)->init_got_refcount
5570 = elf_hash_table (info)->init_got_offset;
5571 elf_hash_table (info)->init_plt_refcount
5572 = elf_hash_table (info)->init_plt_offset;
5574 if (info->relocatable
5575 && !_bfd_elf_size_group_sections (info))
5576 return FALSE;
5578 /* The backend may have to create some sections regardless of whether
5579 we're dynamic or not. */
5580 if (bed->elf_backend_always_size_sections
5581 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5582 return FALSE;
5584 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5585 return FALSE;
5587 dynobj = elf_hash_table (info)->dynobj;
5589 /* If there were no dynamic objects in the link, there is nothing to
5590 do here. */
5591 if (dynobj == NULL)
5592 return TRUE;
5594 if (elf_hash_table (info)->dynamic_sections_created)
5596 struct elf_info_failed eif;
5597 struct elf_link_hash_entry *h;
5598 asection *dynstr;
5599 struct bfd_elf_version_tree *t;
5600 struct bfd_elf_version_expr *d;
5601 asection *s;
5602 bfd_boolean all_defined;
5604 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5605 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5607 if (soname != NULL)
5609 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5610 soname, TRUE);
5611 if (soname_indx == (bfd_size_type) -1
5612 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5613 return FALSE;
5616 if (info->symbolic)
5618 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5619 return FALSE;
5620 info->flags |= DF_SYMBOLIC;
5623 if (rpath != NULL)
5625 bfd_size_type indx;
5627 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5628 TRUE);
5629 if (indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5631 return FALSE;
5633 if (info->new_dtags)
5635 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5637 return FALSE;
5641 if (filter_shlib != NULL)
5643 bfd_size_type indx;
5645 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5646 filter_shlib, TRUE);
5647 if (indx == (bfd_size_type) -1
5648 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5649 return FALSE;
5652 if (auxiliary_filters != NULL)
5654 const char * const *p;
5656 for (p = auxiliary_filters; *p != NULL; p++)
5658 bfd_size_type indx;
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 *p, TRUE);
5662 if (indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5664 return FALSE;
5668 if (audit != NULL)
5670 bfd_size_type indx;
5672 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5673 TRUE);
5674 if (indx == (bfd_size_type) -1
5675 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5676 return FALSE;
5679 if (depaudit != NULL)
5681 bfd_size_type indx;
5683 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5684 TRUE);
5685 if (indx == (bfd_size_type) -1
5686 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5687 return FALSE;
5690 eif.info = info;
5691 eif.verdefs = verdefs;
5692 eif.failed = FALSE;
5694 /* If we are supposed to export all symbols into the dynamic symbol
5695 table (this is not the normal case), then do so. */
5696 if (info->export_dynamic
5697 || (info->executable && info->dynamic))
5699 elf_link_hash_traverse (elf_hash_table (info),
5700 _bfd_elf_export_symbol,
5701 &eif);
5702 if (eif.failed)
5703 return FALSE;
5706 /* Make all global versions with definition. */
5707 for (t = verdefs; t != NULL; t = t->next)
5708 for (d = t->globals.list; d != NULL; d = d->next)
5709 if (!d->symver && d->literal)
5711 const char *verstr, *name;
5712 size_t namelen, verlen, newlen;
5713 char *newname, *p, leading_char;
5714 struct elf_link_hash_entry *newh;
5716 leading_char = bfd_get_symbol_leading_char (output_bfd);
5717 name = d->pattern;
5718 namelen = strlen (name) + (leading_char != '\0');
5719 verstr = t->name;
5720 verlen = strlen (verstr);
5721 newlen = namelen + verlen + 3;
5723 newname = (char *) bfd_malloc (newlen);
5724 if (newname == NULL)
5725 return FALSE;
5726 newname[0] = leading_char;
5727 memcpy (newname + (leading_char != '\0'), name, namelen);
5729 /* Check the hidden versioned definition. */
5730 p = newname + namelen;
5731 *p++ = ELF_VER_CHR;
5732 memcpy (p, verstr, verlen + 1);
5733 newh = elf_link_hash_lookup (elf_hash_table (info),
5734 newname, FALSE, FALSE,
5735 FALSE);
5736 if (newh == NULL
5737 || (newh->root.type != bfd_link_hash_defined
5738 && newh->root.type != bfd_link_hash_defweak))
5740 /* Check the default versioned definition. */
5741 *p++ = ELF_VER_CHR;
5742 memcpy (p, verstr, verlen + 1);
5743 newh = elf_link_hash_lookup (elf_hash_table (info),
5744 newname, FALSE, FALSE,
5745 FALSE);
5747 free (newname);
5749 /* Mark this version if there is a definition and it is
5750 not defined in a shared object. */
5751 if (newh != NULL
5752 && !newh->def_dynamic
5753 && (newh->root.type == bfd_link_hash_defined
5754 || newh->root.type == bfd_link_hash_defweak))
5755 d->symver = 1;
5758 /* Attach all the symbols to their version information. */
5759 asvinfo.info = info;
5760 asvinfo.verdefs = verdefs;
5761 asvinfo.failed = FALSE;
5763 elf_link_hash_traverse (elf_hash_table (info),
5764 _bfd_elf_link_assign_sym_version,
5765 &asvinfo);
5766 if (asvinfo.failed)
5767 return FALSE;
5769 if (!info->allow_undefined_version)
5771 /* Check if all global versions have a definition. */
5772 all_defined = TRUE;
5773 for (t = verdefs; t != NULL; t = t->next)
5774 for (d = t->globals.list; d != NULL; d = d->next)
5775 if (d->literal && !d->symver && !d->script)
5777 (*_bfd_error_handler)
5778 (_("%s: undefined version: %s"),
5779 d->pattern, t->name);
5780 all_defined = FALSE;
5783 if (!all_defined)
5785 bfd_set_error (bfd_error_bad_value);
5786 return FALSE;
5790 /* Find all symbols which were defined in a dynamic object and make
5791 the backend pick a reasonable value for them. */
5792 elf_link_hash_traverse (elf_hash_table (info),
5793 _bfd_elf_adjust_dynamic_symbol,
5794 &eif);
5795 if (eif.failed)
5796 return FALSE;
5798 /* Add some entries to the .dynamic section. We fill in some of the
5799 values later, in bfd_elf_final_link, but we must add the entries
5800 now so that we know the final size of the .dynamic section. */
5802 /* If there are initialization and/or finalization functions to
5803 call then add the corresponding DT_INIT/DT_FINI entries. */
5804 h = (info->init_function
5805 ? elf_link_hash_lookup (elf_hash_table (info),
5806 info->init_function, FALSE,
5807 FALSE, FALSE)
5808 : NULL);
5809 if (h != NULL
5810 && (h->ref_regular
5811 || h->def_regular))
5813 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5814 return FALSE;
5816 h = (info->fini_function
5817 ? elf_link_hash_lookup (elf_hash_table (info),
5818 info->fini_function, FALSE,
5819 FALSE, FALSE)
5820 : NULL);
5821 if (h != NULL
5822 && (h->ref_regular
5823 || h->def_regular))
5825 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5826 return FALSE;
5829 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5830 if (s != NULL && s->linker_has_input)
5832 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5833 if (! info->executable)
5835 bfd *sub;
5836 asection *o;
5838 for (sub = info->input_bfds; sub != NULL;
5839 sub = sub->link_next)
5840 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5841 for (o = sub->sections; o != NULL; o = o->next)
5842 if (elf_section_data (o)->this_hdr.sh_type
5843 == SHT_PREINIT_ARRAY)
5845 (*_bfd_error_handler)
5846 (_("%B: .preinit_array section is not allowed in DSO"),
5847 sub);
5848 break;
5851 bfd_set_error (bfd_error_nonrepresentable_section);
5852 return FALSE;
5855 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5856 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5857 return FALSE;
5859 s = bfd_get_section_by_name (output_bfd, ".init_array");
5860 if (s != NULL && s->linker_has_input)
5862 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5863 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5864 return FALSE;
5866 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5867 if (s != NULL && s->linker_has_input)
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5870 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5871 return FALSE;
5874 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5875 /* If .dynstr is excluded from the link, we don't want any of
5876 these tags. Strictly, we should be checking each section
5877 individually; This quick check covers for the case where
5878 someone does a /DISCARD/ : { *(*) }. */
5879 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5881 bfd_size_type strsize;
5883 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5884 if ((info->emit_hash
5885 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5886 || (info->emit_gnu_hash
5887 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5888 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5892 bed->s->sizeof_sym))
5893 return FALSE;
5897 /* The backend must work out the sizes of all the other dynamic
5898 sections. */
5899 if (bed->elf_backend_size_dynamic_sections
5900 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5901 return FALSE;
5903 if (elf_hash_table (info)->dynamic_sections_created)
5905 unsigned long section_sym_count;
5906 asection *s;
5908 /* Set up the version definition section. */
5909 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5910 BFD_ASSERT (s != NULL);
5912 /* We may have created additional version definitions if we are
5913 just linking a regular application. */
5914 verdefs = asvinfo.verdefs;
5916 /* Skip anonymous version tag. */
5917 if (verdefs != NULL && verdefs->vernum == 0)
5918 verdefs = verdefs->next;
5920 if (verdefs == NULL && !info->create_default_symver)
5921 s->flags |= SEC_EXCLUDE;
5922 else
5924 unsigned int cdefs;
5925 bfd_size_type size;
5926 struct bfd_elf_version_tree *t;
5927 bfd_byte *p;
5928 Elf_Internal_Verdef def;
5929 Elf_Internal_Verdaux defaux;
5930 struct bfd_link_hash_entry *bh;
5931 struct elf_link_hash_entry *h;
5932 const char *name;
5934 cdefs = 0;
5935 size = 0;
5937 /* Make space for the base version. */
5938 size += sizeof (Elf_External_Verdef);
5939 size += sizeof (Elf_External_Verdaux);
5940 ++cdefs;
5942 /* Make space for the default version. */
5943 if (info->create_default_symver)
5945 size += sizeof (Elf_External_Verdef);
5946 ++cdefs;
5949 for (t = verdefs; t != NULL; t = t->next)
5951 struct bfd_elf_version_deps *n;
5953 /* Don't emit base version twice. */
5954 if (t->vernum == 0)
5955 continue;
5957 size += sizeof (Elf_External_Verdef);
5958 size += sizeof (Elf_External_Verdaux);
5959 ++cdefs;
5961 for (n = t->deps; n != NULL; n = n->next)
5962 size += sizeof (Elf_External_Verdaux);
5965 s->size = size;
5966 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5967 if (s->contents == NULL && s->size != 0)
5968 return FALSE;
5970 /* Fill in the version definition section. */
5972 p = s->contents;
5974 def.vd_version = VER_DEF_CURRENT;
5975 def.vd_flags = VER_FLG_BASE;
5976 def.vd_ndx = 1;
5977 def.vd_cnt = 1;
5978 if (info->create_default_symver)
5980 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5981 def.vd_next = sizeof (Elf_External_Verdef);
5983 else
5985 def.vd_aux = sizeof (Elf_External_Verdef);
5986 def.vd_next = (sizeof (Elf_External_Verdef)
5987 + sizeof (Elf_External_Verdaux));
5990 if (soname_indx != (bfd_size_type) -1)
5992 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5993 soname_indx);
5994 def.vd_hash = bfd_elf_hash (soname);
5995 defaux.vda_name = soname_indx;
5996 name = soname;
5998 else
6000 bfd_size_type indx;
6002 name = lbasename (output_bfd->filename);
6003 def.vd_hash = bfd_elf_hash (name);
6004 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6005 name, FALSE);
6006 if (indx == (bfd_size_type) -1)
6007 return FALSE;
6008 defaux.vda_name = indx;
6010 defaux.vda_next = 0;
6012 _bfd_elf_swap_verdef_out (output_bfd, &def,
6013 (Elf_External_Verdef *) p);
6014 p += sizeof (Elf_External_Verdef);
6015 if (info->create_default_symver)
6017 /* Add a symbol representing this version. */
6018 bh = NULL;
6019 if (! (_bfd_generic_link_add_one_symbol
6020 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6021 0, NULL, FALSE,
6022 get_elf_backend_data (dynobj)->collect, &bh)))
6023 return FALSE;
6024 h = (struct elf_link_hash_entry *) bh;
6025 h->non_elf = 0;
6026 h->def_regular = 1;
6027 h->type = STT_OBJECT;
6028 h->verinfo.vertree = NULL;
6030 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6031 return FALSE;
6033 /* Create a duplicate of the base version with the same
6034 aux block, but different flags. */
6035 def.vd_flags = 0;
6036 def.vd_ndx = 2;
6037 def.vd_aux = sizeof (Elf_External_Verdef);
6038 if (verdefs)
6039 def.vd_next = (sizeof (Elf_External_Verdef)
6040 + sizeof (Elf_External_Verdaux));
6041 else
6042 def.vd_next = 0;
6043 _bfd_elf_swap_verdef_out (output_bfd, &def,
6044 (Elf_External_Verdef *) p);
6045 p += sizeof (Elf_External_Verdef);
6047 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6048 (Elf_External_Verdaux *) p);
6049 p += sizeof (Elf_External_Verdaux);
6051 for (t = verdefs; t != NULL; t = t->next)
6053 unsigned int cdeps;
6054 struct bfd_elf_version_deps *n;
6056 /* Don't emit the base version twice. */
6057 if (t->vernum == 0)
6058 continue;
6060 cdeps = 0;
6061 for (n = t->deps; n != NULL; n = n->next)
6062 ++cdeps;
6064 /* Add a symbol representing this version. */
6065 bh = NULL;
6066 if (! (_bfd_generic_link_add_one_symbol
6067 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6068 0, NULL, FALSE,
6069 get_elf_backend_data (dynobj)->collect, &bh)))
6070 return FALSE;
6071 h = (struct elf_link_hash_entry *) bh;
6072 h->non_elf = 0;
6073 h->def_regular = 1;
6074 h->type = STT_OBJECT;
6075 h->verinfo.vertree = t;
6077 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6078 return FALSE;
6080 def.vd_version = VER_DEF_CURRENT;
6081 def.vd_flags = 0;
6082 if (t->globals.list == NULL
6083 && t->locals.list == NULL
6084 && ! t->used)
6085 def.vd_flags |= VER_FLG_WEAK;
6086 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6087 def.vd_cnt = cdeps + 1;
6088 def.vd_hash = bfd_elf_hash (t->name);
6089 def.vd_aux = sizeof (Elf_External_Verdef);
6090 def.vd_next = 0;
6092 /* If a basever node is next, it *must* be the last node in
6093 the chain, otherwise Verdef construction breaks. */
6094 if (t->next != NULL && t->next->vernum == 0)
6095 BFD_ASSERT (t->next->next == NULL);
6097 if (t->next != NULL && t->next->vernum != 0)
6098 def.vd_next = (sizeof (Elf_External_Verdef)
6099 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6101 _bfd_elf_swap_verdef_out (output_bfd, &def,
6102 (Elf_External_Verdef *) p);
6103 p += sizeof (Elf_External_Verdef);
6105 defaux.vda_name = h->dynstr_index;
6106 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6107 h->dynstr_index);
6108 defaux.vda_next = 0;
6109 if (t->deps != NULL)
6110 defaux.vda_next = sizeof (Elf_External_Verdaux);
6111 t->name_indx = defaux.vda_name;
6113 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6114 (Elf_External_Verdaux *) p);
6115 p += sizeof (Elf_External_Verdaux);
6117 for (n = t->deps; n != NULL; n = n->next)
6119 if (n->version_needed == NULL)
6121 /* This can happen if there was an error in the
6122 version script. */
6123 defaux.vda_name = 0;
6125 else
6127 defaux.vda_name = n->version_needed->name_indx;
6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6129 defaux.vda_name);
6131 if (n->next == NULL)
6132 defaux.vda_next = 0;
6133 else
6134 defaux.vda_next = sizeof (Elf_External_Verdaux);
6136 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6137 (Elf_External_Verdaux *) p);
6138 p += sizeof (Elf_External_Verdaux);
6142 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6143 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6144 return FALSE;
6146 elf_tdata (output_bfd)->cverdefs = cdefs;
6149 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6151 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6152 return FALSE;
6154 else if (info->flags & DF_BIND_NOW)
6156 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6157 return FALSE;
6160 if (info->flags_1)
6162 if (info->executable)
6163 info->flags_1 &= ~ (DF_1_INITFIRST
6164 | DF_1_NODELETE
6165 | DF_1_NOOPEN);
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6167 return FALSE;
6170 /* Work out the size of the version reference section. */
6172 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6173 BFD_ASSERT (s != NULL);
6175 struct elf_find_verdep_info sinfo;
6177 sinfo.info = info;
6178 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6179 if (sinfo.vers == 0)
6180 sinfo.vers = 1;
6181 sinfo.failed = FALSE;
6183 elf_link_hash_traverse (elf_hash_table (info),
6184 _bfd_elf_link_find_version_dependencies,
6185 &sinfo);
6186 if (sinfo.failed)
6187 return FALSE;
6189 if (elf_tdata (output_bfd)->verref == NULL)
6190 s->flags |= SEC_EXCLUDE;
6191 else
6193 Elf_Internal_Verneed *t;
6194 unsigned int size;
6195 unsigned int crefs;
6196 bfd_byte *p;
6198 /* Build the version dependency section. */
6199 size = 0;
6200 crefs = 0;
6201 for (t = elf_tdata (output_bfd)->verref;
6202 t != NULL;
6203 t = t->vn_nextref)
6205 Elf_Internal_Vernaux *a;
6207 size += sizeof (Elf_External_Verneed);
6208 ++crefs;
6209 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6210 size += sizeof (Elf_External_Vernaux);
6213 s->size = size;
6214 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6215 if (s->contents == NULL)
6216 return FALSE;
6218 p = s->contents;
6219 for (t = elf_tdata (output_bfd)->verref;
6220 t != NULL;
6221 t = t->vn_nextref)
6223 unsigned int caux;
6224 Elf_Internal_Vernaux *a;
6225 bfd_size_type indx;
6227 caux = 0;
6228 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6229 ++caux;
6231 t->vn_version = VER_NEED_CURRENT;
6232 t->vn_cnt = caux;
6233 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6234 elf_dt_name (t->vn_bfd) != NULL
6235 ? elf_dt_name (t->vn_bfd)
6236 : lbasename (t->vn_bfd->filename),
6237 FALSE);
6238 if (indx == (bfd_size_type) -1)
6239 return FALSE;
6240 t->vn_file = indx;
6241 t->vn_aux = sizeof (Elf_External_Verneed);
6242 if (t->vn_nextref == NULL)
6243 t->vn_next = 0;
6244 else
6245 t->vn_next = (sizeof (Elf_External_Verneed)
6246 + caux * sizeof (Elf_External_Vernaux));
6248 _bfd_elf_swap_verneed_out (output_bfd, t,
6249 (Elf_External_Verneed *) p);
6250 p += sizeof (Elf_External_Verneed);
6252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6254 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6255 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6256 a->vna_nodename, FALSE);
6257 if (indx == (bfd_size_type) -1)
6258 return FALSE;
6259 a->vna_name = indx;
6260 if (a->vna_nextptr == NULL)
6261 a->vna_next = 0;
6262 else
6263 a->vna_next = sizeof (Elf_External_Vernaux);
6265 _bfd_elf_swap_vernaux_out (output_bfd, a,
6266 (Elf_External_Vernaux *) p);
6267 p += sizeof (Elf_External_Vernaux);
6271 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6272 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6273 return FALSE;
6275 elf_tdata (output_bfd)->cverrefs = crefs;
6279 if ((elf_tdata (output_bfd)->cverrefs == 0
6280 && elf_tdata (output_bfd)->cverdefs == 0)
6281 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6282 &section_sym_count) == 0)
6284 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6285 s->flags |= SEC_EXCLUDE;
6288 return TRUE;
6291 /* Find the first non-excluded output section. We'll use its
6292 section symbol for some emitted relocs. */
6293 void
6294 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6296 asection *s;
6298 for (s = output_bfd->sections; s != NULL; s = s->next)
6299 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6300 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6302 elf_hash_table (info)->text_index_section = s;
6303 break;
6307 /* Find two non-excluded output sections, one for code, one for data.
6308 We'll use their section symbols for some emitted relocs. */
6309 void
6310 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6312 asection *s;
6314 /* Data first, since setting text_index_section changes
6315 _bfd_elf_link_omit_section_dynsym. */
6316 for (s = output_bfd->sections; s != NULL; s = s->next)
6317 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6318 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6320 elf_hash_table (info)->data_index_section = s;
6321 break;
6324 for (s = output_bfd->sections; s != NULL; s = s->next)
6325 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6326 == (SEC_ALLOC | SEC_READONLY))
6327 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6329 elf_hash_table (info)->text_index_section = s;
6330 break;
6333 if (elf_hash_table (info)->text_index_section == NULL)
6334 elf_hash_table (info)->text_index_section
6335 = elf_hash_table (info)->data_index_section;
6338 bfd_boolean
6339 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6341 const struct elf_backend_data *bed;
6343 if (!is_elf_hash_table (info->hash))
6344 return TRUE;
6346 bed = get_elf_backend_data (output_bfd);
6347 (*bed->elf_backend_init_index_section) (output_bfd, info);
6349 if (elf_hash_table (info)->dynamic_sections_created)
6351 bfd *dynobj;
6352 asection *s;
6353 bfd_size_type dynsymcount;
6354 unsigned long section_sym_count;
6355 unsigned int dtagcount;
6357 dynobj = elf_hash_table (info)->dynobj;
6359 /* Assign dynsym indicies. In a shared library we generate a
6360 section symbol for each output section, which come first.
6361 Next come all of the back-end allocated local dynamic syms,
6362 followed by the rest of the global symbols. */
6364 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6365 &section_sym_count);
6367 /* Work out the size of the symbol version section. */
6368 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6369 BFD_ASSERT (s != NULL);
6370 if (dynsymcount != 0
6371 && (s->flags & SEC_EXCLUDE) == 0)
6373 s->size = dynsymcount * sizeof (Elf_External_Versym);
6374 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6375 if (s->contents == NULL)
6376 return FALSE;
6378 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6379 return FALSE;
6382 /* Set the size of the .dynsym and .hash sections. We counted
6383 the number of dynamic symbols in elf_link_add_object_symbols.
6384 We will build the contents of .dynsym and .hash when we build
6385 the final symbol table, because until then we do not know the
6386 correct value to give the symbols. We built the .dynstr
6387 section as we went along in elf_link_add_object_symbols. */
6388 s = bfd_get_section_by_name (dynobj, ".dynsym");
6389 BFD_ASSERT (s != NULL);
6390 s->size = dynsymcount * bed->s->sizeof_sym;
6392 if (dynsymcount != 0)
6394 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6398 /* The first entry in .dynsym is a dummy symbol.
6399 Clear all the section syms, in case we don't output them all. */
6400 ++section_sym_count;
6401 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6404 elf_hash_table (info)->bucketcount = 0;
6406 /* Compute the size of the hashing table. As a side effect this
6407 computes the hash values for all the names we export. */
6408 if (info->emit_hash)
6410 unsigned long int *hashcodes;
6411 struct hash_codes_info hashinf;
6412 bfd_size_type amt;
6413 unsigned long int nsyms;
6414 size_t bucketcount;
6415 size_t hash_entry_size;
6417 /* Compute the hash values for all exported symbols. At the same
6418 time store the values in an array so that we could use them for
6419 optimizations. */
6420 amt = dynsymcount * sizeof (unsigned long int);
6421 hashcodes = (unsigned long int *) bfd_malloc (amt);
6422 if (hashcodes == NULL)
6423 return FALSE;
6424 hashinf.hashcodes = hashcodes;
6425 hashinf.error = FALSE;
6427 /* Put all hash values in HASHCODES. */
6428 elf_link_hash_traverse (elf_hash_table (info),
6429 elf_collect_hash_codes, &hashinf);
6430 if (hashinf.error)
6432 free (hashcodes);
6433 return FALSE;
6436 nsyms = hashinf.hashcodes - hashcodes;
6437 bucketcount
6438 = compute_bucket_count (info, hashcodes, nsyms, 0);
6439 free (hashcodes);
6441 if (bucketcount == 0)
6442 return FALSE;
6444 elf_hash_table (info)->bucketcount = bucketcount;
6446 s = bfd_get_section_by_name (dynobj, ".hash");
6447 BFD_ASSERT (s != NULL);
6448 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6449 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6450 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6451 if (s->contents == NULL)
6452 return FALSE;
6454 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6455 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6456 s->contents + hash_entry_size);
6459 if (info->emit_gnu_hash)
6461 size_t i, cnt;
6462 unsigned char *contents;
6463 struct collect_gnu_hash_codes cinfo;
6464 bfd_size_type amt;
6465 size_t bucketcount;
6467 memset (&cinfo, 0, sizeof (cinfo));
6469 /* Compute the hash values for all exported symbols. At the same
6470 time store the values in an array so that we could use them for
6471 optimizations. */
6472 amt = dynsymcount * 2 * sizeof (unsigned long int);
6473 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6474 if (cinfo.hashcodes == NULL)
6475 return FALSE;
6477 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6478 cinfo.min_dynindx = -1;
6479 cinfo.output_bfd = output_bfd;
6480 cinfo.bed = bed;
6482 /* Put all hash values in HASHCODES. */
6483 elf_link_hash_traverse (elf_hash_table (info),
6484 elf_collect_gnu_hash_codes, &cinfo);
6485 if (cinfo.error)
6487 free (cinfo.hashcodes);
6488 return FALSE;
6491 bucketcount
6492 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6494 if (bucketcount == 0)
6496 free (cinfo.hashcodes);
6497 return FALSE;
6500 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6501 BFD_ASSERT (s != NULL);
6503 if (cinfo.nsyms == 0)
6505 /* Empty .gnu.hash section is special. */
6506 BFD_ASSERT (cinfo.min_dynindx == -1);
6507 free (cinfo.hashcodes);
6508 s->size = 5 * 4 + bed->s->arch_size / 8;
6509 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6510 if (contents == NULL)
6511 return FALSE;
6512 s->contents = contents;
6513 /* 1 empty bucket. */
6514 bfd_put_32 (output_bfd, 1, contents);
6515 /* SYMIDX above the special symbol 0. */
6516 bfd_put_32 (output_bfd, 1, contents + 4);
6517 /* Just one word for bitmask. */
6518 bfd_put_32 (output_bfd, 1, contents + 8);
6519 /* Only hash fn bloom filter. */
6520 bfd_put_32 (output_bfd, 0, contents + 12);
6521 /* No hashes are valid - empty bitmask. */
6522 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6523 /* No hashes in the only bucket. */
6524 bfd_put_32 (output_bfd, 0,
6525 contents + 16 + bed->s->arch_size / 8);
6527 else
6529 unsigned long int maskwords, maskbitslog2;
6530 BFD_ASSERT (cinfo.min_dynindx != -1);
6532 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6533 if (maskbitslog2 < 3)
6534 maskbitslog2 = 5;
6535 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6536 maskbitslog2 = maskbitslog2 + 3;
6537 else
6538 maskbitslog2 = maskbitslog2 + 2;
6539 if (bed->s->arch_size == 64)
6541 if (maskbitslog2 == 5)
6542 maskbitslog2 = 6;
6543 cinfo.shift1 = 6;
6545 else
6546 cinfo.shift1 = 5;
6547 cinfo.mask = (1 << cinfo.shift1) - 1;
6548 cinfo.shift2 = maskbitslog2;
6549 cinfo.maskbits = 1 << maskbitslog2;
6550 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6551 amt = bucketcount * sizeof (unsigned long int) * 2;
6552 amt += maskwords * sizeof (bfd_vma);
6553 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6554 if (cinfo.bitmask == NULL)
6556 free (cinfo.hashcodes);
6557 return FALSE;
6560 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6561 cinfo.indx = cinfo.counts + bucketcount;
6562 cinfo.symindx = dynsymcount - cinfo.nsyms;
6563 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6565 /* Determine how often each hash bucket is used. */
6566 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6567 for (i = 0; i < cinfo.nsyms; ++i)
6568 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6570 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6571 if (cinfo.counts[i] != 0)
6573 cinfo.indx[i] = cnt;
6574 cnt += cinfo.counts[i];
6576 BFD_ASSERT (cnt == dynsymcount);
6577 cinfo.bucketcount = bucketcount;
6578 cinfo.local_indx = cinfo.min_dynindx;
6580 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6581 s->size += cinfo.maskbits / 8;
6582 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6583 if (contents == NULL)
6585 free (cinfo.bitmask);
6586 free (cinfo.hashcodes);
6587 return FALSE;
6590 s->contents = contents;
6591 bfd_put_32 (output_bfd, bucketcount, contents);
6592 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6593 bfd_put_32 (output_bfd, maskwords, contents + 8);
6594 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6595 contents += 16 + cinfo.maskbits / 8;
6597 for (i = 0; i < bucketcount; ++i)
6599 if (cinfo.counts[i] == 0)
6600 bfd_put_32 (output_bfd, 0, contents);
6601 else
6602 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6603 contents += 4;
6606 cinfo.contents = contents;
6608 /* Renumber dynamic symbols, populate .gnu.hash section. */
6609 elf_link_hash_traverse (elf_hash_table (info),
6610 elf_renumber_gnu_hash_syms, &cinfo);
6612 contents = s->contents + 16;
6613 for (i = 0; i < maskwords; ++i)
6615 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6616 contents);
6617 contents += bed->s->arch_size / 8;
6620 free (cinfo.bitmask);
6621 free (cinfo.hashcodes);
6625 s = bfd_get_section_by_name (dynobj, ".dynstr");
6626 BFD_ASSERT (s != NULL);
6628 elf_finalize_dynstr (output_bfd, info);
6630 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6632 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6634 return FALSE;
6637 return TRUE;
6640 /* Indicate that we are only retrieving symbol values from this
6641 section. */
6643 void
6644 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6646 if (is_elf_hash_table (info->hash))
6647 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6648 _bfd_generic_link_just_syms (sec, info);
6651 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6653 static void
6654 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6655 asection *sec)
6657 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6658 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6661 /* Finish SHF_MERGE section merging. */
6663 bfd_boolean
6664 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6666 bfd *ibfd;
6667 asection *sec;
6669 if (!is_elf_hash_table (info->hash))
6670 return FALSE;
6672 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6673 if ((ibfd->flags & DYNAMIC) == 0)
6674 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6675 if ((sec->flags & SEC_MERGE) != 0
6676 && !bfd_is_abs_section (sec->output_section))
6678 struct bfd_elf_section_data *secdata;
6680 secdata = elf_section_data (sec);
6681 if (! _bfd_add_merge_section (abfd,
6682 &elf_hash_table (info)->merge_info,
6683 sec, &secdata->sec_info))
6684 return FALSE;
6685 else if (secdata->sec_info)
6686 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6689 if (elf_hash_table (info)->merge_info != NULL)
6690 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6691 merge_sections_remove_hook);
6692 return TRUE;
6695 /* Create an entry in an ELF linker hash table. */
6697 struct bfd_hash_entry *
6698 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6699 struct bfd_hash_table *table,
6700 const char *string)
6702 /* Allocate the structure if it has not already been allocated by a
6703 subclass. */
6704 if (entry == NULL)
6706 entry = (struct bfd_hash_entry *)
6707 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6708 if (entry == NULL)
6709 return entry;
6712 /* Call the allocation method of the superclass. */
6713 entry = _bfd_link_hash_newfunc (entry, table, string);
6714 if (entry != NULL)
6716 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6717 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6719 /* Set local fields. */
6720 ret->indx = -1;
6721 ret->dynindx = -1;
6722 ret->got = htab->init_got_refcount;
6723 ret->plt = htab->init_plt_refcount;
6724 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6725 - offsetof (struct elf_link_hash_entry, size)));
6726 /* Assume that we have been called by a non-ELF symbol reader.
6727 This flag is then reset by the code which reads an ELF input
6728 file. This ensures that a symbol created by a non-ELF symbol
6729 reader will have the flag set correctly. */
6730 ret->non_elf = 1;
6733 return entry;
6736 /* Copy data from an indirect symbol to its direct symbol, hiding the
6737 old indirect symbol. Also used for copying flags to a weakdef. */
6739 void
6740 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6741 struct elf_link_hash_entry *dir,
6742 struct elf_link_hash_entry *ind)
6744 struct elf_link_hash_table *htab;
6746 /* Copy down any references that we may have already seen to the
6747 symbol which just became indirect. */
6749 dir->ref_dynamic |= ind->ref_dynamic;
6750 dir->ref_regular |= ind->ref_regular;
6751 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6752 dir->non_got_ref |= ind->non_got_ref;
6753 dir->needs_plt |= ind->needs_plt;
6754 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6756 if (ind->root.type != bfd_link_hash_indirect)
6757 return;
6759 /* Copy over the global and procedure linkage table refcount entries.
6760 These may have been already set up by a check_relocs routine. */
6761 htab = elf_hash_table (info);
6762 if (ind->got.refcount > htab->init_got_refcount.refcount)
6764 if (dir->got.refcount < 0)
6765 dir->got.refcount = 0;
6766 dir->got.refcount += ind->got.refcount;
6767 ind->got.refcount = htab->init_got_refcount.refcount;
6770 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6772 if (dir->plt.refcount < 0)
6773 dir->plt.refcount = 0;
6774 dir->plt.refcount += ind->plt.refcount;
6775 ind->plt.refcount = htab->init_plt_refcount.refcount;
6778 if (ind->dynindx != -1)
6780 if (dir->dynindx != -1)
6781 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6782 dir->dynindx = ind->dynindx;
6783 dir->dynstr_index = ind->dynstr_index;
6784 ind->dynindx = -1;
6785 ind->dynstr_index = 0;
6789 void
6790 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6791 struct elf_link_hash_entry *h,
6792 bfd_boolean force_local)
6794 /* STT_GNU_IFUNC symbol must go through PLT. */
6795 if (h->type != STT_GNU_IFUNC)
6797 h->plt = elf_hash_table (info)->init_plt_offset;
6798 h->needs_plt = 0;
6800 if (force_local)
6802 h->forced_local = 1;
6803 if (h->dynindx != -1)
6805 h->dynindx = -1;
6806 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6807 h->dynstr_index);
6812 /* Initialize an ELF linker hash table. */
6814 bfd_boolean
6815 _bfd_elf_link_hash_table_init
6816 (struct elf_link_hash_table *table,
6817 bfd *abfd,
6818 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6819 struct bfd_hash_table *,
6820 const char *),
6821 unsigned int entsize,
6822 enum elf_target_id target_id)
6824 bfd_boolean ret;
6825 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6827 memset (table, 0, sizeof * table);
6828 table->init_got_refcount.refcount = can_refcount - 1;
6829 table->init_plt_refcount.refcount = can_refcount - 1;
6830 table->init_got_offset.offset = -(bfd_vma) 1;
6831 table->init_plt_offset.offset = -(bfd_vma) 1;
6832 /* The first dynamic symbol is a dummy. */
6833 table->dynsymcount = 1;
6835 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6837 table->root.type = bfd_link_elf_hash_table;
6838 table->hash_table_id = target_id;
6840 return ret;
6843 /* Create an ELF linker hash table. */
6845 struct bfd_link_hash_table *
6846 _bfd_elf_link_hash_table_create (bfd *abfd)
6848 struct elf_link_hash_table *ret;
6849 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6851 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6852 if (ret == NULL)
6853 return NULL;
6855 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6856 sizeof (struct elf_link_hash_entry),
6857 GENERIC_ELF_DATA))
6859 free (ret);
6860 return NULL;
6863 return &ret->root;
6866 /* This is a hook for the ELF emulation code in the generic linker to
6867 tell the backend linker what file name to use for the DT_NEEDED
6868 entry for a dynamic object. */
6870 void
6871 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6873 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6874 && bfd_get_format (abfd) == bfd_object)
6875 elf_dt_name (abfd) = name;
6879 bfd_elf_get_dyn_lib_class (bfd *abfd)
6881 int lib_class;
6882 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6883 && bfd_get_format (abfd) == bfd_object)
6884 lib_class = elf_dyn_lib_class (abfd);
6885 else
6886 lib_class = 0;
6887 return lib_class;
6890 void
6891 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6893 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6894 && bfd_get_format (abfd) == bfd_object)
6895 elf_dyn_lib_class (abfd) = lib_class;
6898 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6899 the linker ELF emulation code. */
6901 struct bfd_link_needed_list *
6902 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6903 struct bfd_link_info *info)
6905 if (! is_elf_hash_table (info->hash))
6906 return NULL;
6907 return elf_hash_table (info)->needed;
6910 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6911 hook for the linker ELF emulation code. */
6913 struct bfd_link_needed_list *
6914 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6915 struct bfd_link_info *info)
6917 if (! is_elf_hash_table (info->hash))
6918 return NULL;
6919 return elf_hash_table (info)->runpath;
6922 /* Get the name actually used for a dynamic object for a link. This
6923 is the SONAME entry if there is one. Otherwise, it is the string
6924 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6926 const char *
6927 bfd_elf_get_dt_soname (bfd *abfd)
6929 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6930 && bfd_get_format (abfd) == bfd_object)
6931 return elf_dt_name (abfd);
6932 return NULL;
6935 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6936 the ELF linker emulation code. */
6938 bfd_boolean
6939 bfd_elf_get_bfd_needed_list (bfd *abfd,
6940 struct bfd_link_needed_list **pneeded)
6942 asection *s;
6943 bfd_byte *dynbuf = NULL;
6944 unsigned int elfsec;
6945 unsigned long shlink;
6946 bfd_byte *extdyn, *extdynend;
6947 size_t extdynsize;
6948 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6950 *pneeded = NULL;
6952 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6953 || bfd_get_format (abfd) != bfd_object)
6954 return TRUE;
6956 s = bfd_get_section_by_name (abfd, ".dynamic");
6957 if (s == NULL || s->size == 0)
6958 return TRUE;
6960 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6961 goto error_return;
6963 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6964 if (elfsec == SHN_BAD)
6965 goto error_return;
6967 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6969 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6970 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6972 extdyn = dynbuf;
6973 extdynend = extdyn + s->size;
6974 for (; extdyn < extdynend; extdyn += extdynsize)
6976 Elf_Internal_Dyn dyn;
6978 (*swap_dyn_in) (abfd, extdyn, &dyn);
6980 if (dyn.d_tag == DT_NULL)
6981 break;
6983 if (dyn.d_tag == DT_NEEDED)
6985 const char *string;
6986 struct bfd_link_needed_list *l;
6987 unsigned int tagv = dyn.d_un.d_val;
6988 bfd_size_type amt;
6990 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6991 if (string == NULL)
6992 goto error_return;
6994 amt = sizeof *l;
6995 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6996 if (l == NULL)
6997 goto error_return;
6999 l->by = abfd;
7000 l->name = string;
7001 l->next = *pneeded;
7002 *pneeded = l;
7006 free (dynbuf);
7008 return TRUE;
7010 error_return:
7011 if (dynbuf != NULL)
7012 free (dynbuf);
7013 return FALSE;
7016 struct elf_symbuf_symbol
7018 unsigned long st_name; /* Symbol name, index in string tbl */
7019 unsigned char st_info; /* Type and binding attributes */
7020 unsigned char st_other; /* Visibilty, and target specific */
7023 struct elf_symbuf_head
7025 struct elf_symbuf_symbol *ssym;
7026 bfd_size_type count;
7027 unsigned int st_shndx;
7030 struct elf_symbol
7032 union
7034 Elf_Internal_Sym *isym;
7035 struct elf_symbuf_symbol *ssym;
7036 } u;
7037 const char *name;
7040 /* Sort references to symbols by ascending section number. */
7042 static int
7043 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7045 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7046 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7048 return s1->st_shndx - s2->st_shndx;
7051 static int
7052 elf_sym_name_compare (const void *arg1, const void *arg2)
7054 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7055 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7056 return strcmp (s1->name, s2->name);
7059 static struct elf_symbuf_head *
7060 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7062 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7063 struct elf_symbuf_symbol *ssym;
7064 struct elf_symbuf_head *ssymbuf, *ssymhead;
7065 bfd_size_type i, shndx_count, total_size;
7067 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7068 if (indbuf == NULL)
7069 return NULL;
7071 for (ind = indbuf, i = 0; i < symcount; i++)
7072 if (isymbuf[i].st_shndx != SHN_UNDEF)
7073 *ind++ = &isymbuf[i];
7074 indbufend = ind;
7076 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7077 elf_sort_elf_symbol);
7079 shndx_count = 0;
7080 if (indbufend > indbuf)
7081 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7082 if (ind[0]->st_shndx != ind[1]->st_shndx)
7083 shndx_count++;
7085 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7086 + (indbufend - indbuf) * sizeof (*ssym));
7087 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7088 if (ssymbuf == NULL)
7090 free (indbuf);
7091 return NULL;
7094 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7095 ssymbuf->ssym = NULL;
7096 ssymbuf->count = shndx_count;
7097 ssymbuf->st_shndx = 0;
7098 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7100 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7102 ssymhead++;
7103 ssymhead->ssym = ssym;
7104 ssymhead->count = 0;
7105 ssymhead->st_shndx = (*ind)->st_shndx;
7107 ssym->st_name = (*ind)->st_name;
7108 ssym->st_info = (*ind)->st_info;
7109 ssym->st_other = (*ind)->st_other;
7110 ssymhead->count++;
7112 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7113 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7114 == total_size));
7116 free (indbuf);
7117 return ssymbuf;
7120 /* Check if 2 sections define the same set of local and global
7121 symbols. */
7123 static bfd_boolean
7124 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7125 struct bfd_link_info *info)
7127 bfd *bfd1, *bfd2;
7128 const struct elf_backend_data *bed1, *bed2;
7129 Elf_Internal_Shdr *hdr1, *hdr2;
7130 bfd_size_type symcount1, symcount2;
7131 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7132 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7133 Elf_Internal_Sym *isym, *isymend;
7134 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7135 bfd_size_type count1, count2, i;
7136 unsigned int shndx1, shndx2;
7137 bfd_boolean result;
7139 bfd1 = sec1->owner;
7140 bfd2 = sec2->owner;
7142 /* Both sections have to be in ELF. */
7143 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7144 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7145 return FALSE;
7147 if (elf_section_type (sec1) != elf_section_type (sec2))
7148 return FALSE;
7150 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7151 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7152 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7153 return FALSE;
7155 bed1 = get_elf_backend_data (bfd1);
7156 bed2 = get_elf_backend_data (bfd2);
7157 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7158 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7159 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7160 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7162 if (symcount1 == 0 || symcount2 == 0)
7163 return FALSE;
7165 result = FALSE;
7166 isymbuf1 = NULL;
7167 isymbuf2 = NULL;
7168 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7169 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7171 if (ssymbuf1 == NULL)
7173 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7174 NULL, NULL, NULL);
7175 if (isymbuf1 == NULL)
7176 goto done;
7178 if (!info->reduce_memory_overheads)
7179 elf_tdata (bfd1)->symbuf = ssymbuf1
7180 = elf_create_symbuf (symcount1, isymbuf1);
7183 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7185 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7186 NULL, NULL, NULL);
7187 if (isymbuf2 == NULL)
7188 goto done;
7190 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7191 elf_tdata (bfd2)->symbuf = ssymbuf2
7192 = elf_create_symbuf (symcount2, isymbuf2);
7195 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7197 /* Optimized faster version. */
7198 bfd_size_type lo, hi, mid;
7199 struct elf_symbol *symp;
7200 struct elf_symbuf_symbol *ssym, *ssymend;
7202 lo = 0;
7203 hi = ssymbuf1->count;
7204 ssymbuf1++;
7205 count1 = 0;
7206 while (lo < hi)
7208 mid = (lo + hi) / 2;
7209 if (shndx1 < ssymbuf1[mid].st_shndx)
7210 hi = mid;
7211 else if (shndx1 > ssymbuf1[mid].st_shndx)
7212 lo = mid + 1;
7213 else
7215 count1 = ssymbuf1[mid].count;
7216 ssymbuf1 += mid;
7217 break;
7221 lo = 0;
7222 hi = ssymbuf2->count;
7223 ssymbuf2++;
7224 count2 = 0;
7225 while (lo < hi)
7227 mid = (lo + hi) / 2;
7228 if (shndx2 < ssymbuf2[mid].st_shndx)
7229 hi = mid;
7230 else if (shndx2 > ssymbuf2[mid].st_shndx)
7231 lo = mid + 1;
7232 else
7234 count2 = ssymbuf2[mid].count;
7235 ssymbuf2 += mid;
7236 break;
7240 if (count1 == 0 || count2 == 0 || count1 != count2)
7241 goto done;
7243 symtable1 = (struct elf_symbol *)
7244 bfd_malloc (count1 * sizeof (struct elf_symbol));
7245 symtable2 = (struct elf_symbol *)
7246 bfd_malloc (count2 * sizeof (struct elf_symbol));
7247 if (symtable1 == NULL || symtable2 == NULL)
7248 goto done;
7250 symp = symtable1;
7251 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7252 ssym < ssymend; ssym++, symp++)
7254 symp->u.ssym = ssym;
7255 symp->name = bfd_elf_string_from_elf_section (bfd1,
7256 hdr1->sh_link,
7257 ssym->st_name);
7260 symp = symtable2;
7261 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7262 ssym < ssymend; ssym++, symp++)
7264 symp->u.ssym = ssym;
7265 symp->name = bfd_elf_string_from_elf_section (bfd2,
7266 hdr2->sh_link,
7267 ssym->st_name);
7270 /* Sort symbol by name. */
7271 qsort (symtable1, count1, sizeof (struct elf_symbol),
7272 elf_sym_name_compare);
7273 qsort (symtable2, count1, sizeof (struct elf_symbol),
7274 elf_sym_name_compare);
7276 for (i = 0; i < count1; i++)
7277 /* Two symbols must have the same binding, type and name. */
7278 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7279 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7280 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7281 goto done;
7283 result = TRUE;
7284 goto done;
7287 symtable1 = (struct elf_symbol *)
7288 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7289 symtable2 = (struct elf_symbol *)
7290 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7291 if (symtable1 == NULL || symtable2 == NULL)
7292 goto done;
7294 /* Count definitions in the section. */
7295 count1 = 0;
7296 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7297 if (isym->st_shndx == shndx1)
7298 symtable1[count1++].u.isym = isym;
7300 count2 = 0;
7301 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx2)
7303 symtable2[count2++].u.isym = isym;
7305 if (count1 == 0 || count2 == 0 || count1 != count2)
7306 goto done;
7308 for (i = 0; i < count1; i++)
7309 symtable1[i].name
7310 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7311 symtable1[i].u.isym->st_name);
7313 for (i = 0; i < count2; i++)
7314 symtable2[i].name
7315 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7316 symtable2[i].u.isym->st_name);
7318 /* Sort symbol by name. */
7319 qsort (symtable1, count1, sizeof (struct elf_symbol),
7320 elf_sym_name_compare);
7321 qsort (symtable2, count1, sizeof (struct elf_symbol),
7322 elf_sym_name_compare);
7324 for (i = 0; i < count1; i++)
7325 /* Two symbols must have the same binding, type and name. */
7326 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7327 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7328 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7329 goto done;
7331 result = TRUE;
7333 done:
7334 if (symtable1)
7335 free (symtable1);
7336 if (symtable2)
7337 free (symtable2);
7338 if (isymbuf1)
7339 free (isymbuf1);
7340 if (isymbuf2)
7341 free (isymbuf2);
7343 return result;
7346 /* Return TRUE if 2 section types are compatible. */
7348 bfd_boolean
7349 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7350 bfd *bbfd, const asection *bsec)
7352 if (asec == NULL
7353 || bsec == NULL
7354 || abfd->xvec->flavour != bfd_target_elf_flavour
7355 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7356 return TRUE;
7358 return elf_section_type (asec) == elf_section_type (bsec);
7361 /* Final phase of ELF linker. */
7363 /* A structure we use to avoid passing large numbers of arguments. */
7365 struct elf_final_link_info
7367 /* General link information. */
7368 struct bfd_link_info *info;
7369 /* Output BFD. */
7370 bfd *output_bfd;
7371 /* Symbol string table. */
7372 struct bfd_strtab_hash *symstrtab;
7373 /* .dynsym section. */
7374 asection *dynsym_sec;
7375 /* .hash section. */
7376 asection *hash_sec;
7377 /* symbol version section (.gnu.version). */
7378 asection *symver_sec;
7379 /* Buffer large enough to hold contents of any section. */
7380 bfd_byte *contents;
7381 /* Buffer large enough to hold external relocs of any section. */
7382 void *external_relocs;
7383 /* Buffer large enough to hold internal relocs of any section. */
7384 Elf_Internal_Rela *internal_relocs;
7385 /* Buffer large enough to hold external local symbols of any input
7386 BFD. */
7387 bfd_byte *external_syms;
7388 /* And a buffer for symbol section indices. */
7389 Elf_External_Sym_Shndx *locsym_shndx;
7390 /* Buffer large enough to hold internal local symbols of any input
7391 BFD. */
7392 Elf_Internal_Sym *internal_syms;
7393 /* Array large enough to hold a symbol index for each local symbol
7394 of any input BFD. */
7395 long *indices;
7396 /* Array large enough to hold a section pointer for each local
7397 symbol of any input BFD. */
7398 asection **sections;
7399 /* Buffer to hold swapped out symbols. */
7400 bfd_byte *symbuf;
7401 /* And one for symbol section indices. */
7402 Elf_External_Sym_Shndx *symshndxbuf;
7403 /* Number of swapped out symbols in buffer. */
7404 size_t symbuf_count;
7405 /* Number of symbols which fit in symbuf. */
7406 size_t symbuf_size;
7407 /* And same for symshndxbuf. */
7408 size_t shndxbuf_size;
7411 /* This struct is used to pass information to elf_link_output_extsym. */
7413 struct elf_outext_info
7415 bfd_boolean failed;
7416 bfd_boolean localsyms;
7417 struct elf_final_link_info *finfo;
7421 /* Support for evaluating a complex relocation.
7423 Complex relocations are generalized, self-describing relocations. The
7424 implementation of them consists of two parts: complex symbols, and the
7425 relocations themselves.
7427 The relocations are use a reserved elf-wide relocation type code (R_RELC
7428 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7429 information (start bit, end bit, word width, etc) into the addend. This
7430 information is extracted from CGEN-generated operand tables within gas.
7432 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7433 internal) representing prefix-notation expressions, including but not
7434 limited to those sorts of expressions normally encoded as addends in the
7435 addend field. The symbol mangling format is:
7437 <node> := <literal>
7438 | <unary-operator> ':' <node>
7439 | <binary-operator> ':' <node> ':' <node>
7442 <literal> := 's' <digits=N> ':' <N character symbol name>
7443 | 'S' <digits=N> ':' <N character section name>
7444 | '#' <hexdigits>
7447 <binary-operator> := as in C
7448 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7450 static void
7451 set_symbol_value (bfd *bfd_with_globals,
7452 Elf_Internal_Sym *isymbuf,
7453 size_t locsymcount,
7454 size_t symidx,
7455 bfd_vma val)
7457 struct elf_link_hash_entry **sym_hashes;
7458 struct elf_link_hash_entry *h;
7459 size_t extsymoff = locsymcount;
7461 if (symidx < locsymcount)
7463 Elf_Internal_Sym *sym;
7465 sym = isymbuf + symidx;
7466 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7468 /* It is a local symbol: move it to the
7469 "absolute" section and give it a value. */
7470 sym->st_shndx = SHN_ABS;
7471 sym->st_value = val;
7472 return;
7474 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7475 extsymoff = 0;
7478 /* It is a global symbol: set its link type
7479 to "defined" and give it a value. */
7481 sym_hashes = elf_sym_hashes (bfd_with_globals);
7482 h = sym_hashes [symidx - extsymoff];
7483 while (h->root.type == bfd_link_hash_indirect
7484 || h->root.type == bfd_link_hash_warning)
7485 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7486 h->root.type = bfd_link_hash_defined;
7487 h->root.u.def.value = val;
7488 h->root.u.def.section = bfd_abs_section_ptr;
7491 static bfd_boolean
7492 resolve_symbol (const char *name,
7493 bfd *input_bfd,
7494 struct elf_final_link_info *finfo,
7495 bfd_vma *result,
7496 Elf_Internal_Sym *isymbuf,
7497 size_t locsymcount)
7499 Elf_Internal_Sym *sym;
7500 struct bfd_link_hash_entry *global_entry;
7501 const char *candidate = NULL;
7502 Elf_Internal_Shdr *symtab_hdr;
7503 size_t i;
7505 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7507 for (i = 0; i < locsymcount; ++ i)
7509 sym = isymbuf + i;
7511 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7512 continue;
7514 candidate = bfd_elf_string_from_elf_section (input_bfd,
7515 symtab_hdr->sh_link,
7516 sym->st_name);
7517 #ifdef DEBUG
7518 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7519 name, candidate, (unsigned long) sym->st_value);
7520 #endif
7521 if (candidate && strcmp (candidate, name) == 0)
7523 asection *sec = finfo->sections [i];
7525 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7526 *result += sec->output_offset + sec->output_section->vma;
7527 #ifdef DEBUG
7528 printf ("Found symbol with value %8.8lx\n",
7529 (unsigned long) *result);
7530 #endif
7531 return TRUE;
7535 /* Hmm, haven't found it yet. perhaps it is a global. */
7536 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7537 FALSE, FALSE, TRUE);
7538 if (!global_entry)
7539 return FALSE;
7541 if (global_entry->type == bfd_link_hash_defined
7542 || global_entry->type == bfd_link_hash_defweak)
7544 *result = (global_entry->u.def.value
7545 + global_entry->u.def.section->output_section->vma
7546 + global_entry->u.def.section->output_offset);
7547 #ifdef DEBUG
7548 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7549 global_entry->root.string, (unsigned long) *result);
7550 #endif
7551 return TRUE;
7554 return FALSE;
7557 static bfd_boolean
7558 resolve_section (const char *name,
7559 asection *sections,
7560 bfd_vma *result)
7562 asection *curr;
7563 unsigned int len;
7565 for (curr = sections; curr; curr = curr->next)
7566 if (strcmp (curr->name, name) == 0)
7568 *result = curr->vma;
7569 return TRUE;
7572 /* Hmm. still haven't found it. try pseudo-section names. */
7573 for (curr = sections; curr; curr = curr->next)
7575 len = strlen (curr->name);
7576 if (len > strlen (name))
7577 continue;
7579 if (strncmp (curr->name, name, len) == 0)
7581 if (strncmp (".end", name + len, 4) == 0)
7583 *result = curr->vma + curr->size;
7584 return TRUE;
7587 /* Insert more pseudo-section names here, if you like. */
7591 return FALSE;
7594 static void
7595 undefined_reference (const char *reftype, const char *name)
7597 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7598 reftype, name);
7601 static bfd_boolean
7602 eval_symbol (bfd_vma *result,
7603 const char **symp,
7604 bfd *input_bfd,
7605 struct elf_final_link_info *finfo,
7606 bfd_vma dot,
7607 Elf_Internal_Sym *isymbuf,
7608 size_t locsymcount,
7609 int signed_p)
7611 size_t len;
7612 size_t symlen;
7613 bfd_vma a;
7614 bfd_vma b;
7615 char symbuf[4096];
7616 const char *sym = *symp;
7617 const char *symend;
7618 bfd_boolean symbol_is_section = FALSE;
7620 len = strlen (sym);
7621 symend = sym + len;
7623 if (len < 1 || len > sizeof (symbuf))
7625 bfd_set_error (bfd_error_invalid_operation);
7626 return FALSE;
7629 switch (* sym)
7631 case '.':
7632 *result = dot;
7633 *symp = sym + 1;
7634 return TRUE;
7636 case '#':
7637 ++sym;
7638 *result = strtoul (sym, (char **) symp, 16);
7639 return TRUE;
7641 case 'S':
7642 symbol_is_section = TRUE;
7643 case 's':
7644 ++sym;
7645 symlen = strtol (sym, (char **) symp, 10);
7646 sym = *symp + 1; /* Skip the trailing ':'. */
7648 if (symend < sym || symlen + 1 > sizeof (symbuf))
7650 bfd_set_error (bfd_error_invalid_operation);
7651 return FALSE;
7654 memcpy (symbuf, sym, symlen);
7655 symbuf[symlen] = '\0';
7656 *symp = sym + symlen;
7658 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7659 the symbol as a section, or vice-versa. so we're pretty liberal in our
7660 interpretation here; section means "try section first", not "must be a
7661 section", and likewise with symbol. */
7663 if (symbol_is_section)
7665 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7666 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7667 isymbuf, locsymcount))
7669 undefined_reference ("section", symbuf);
7670 return FALSE;
7673 else
7675 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7676 isymbuf, locsymcount)
7677 && !resolve_section (symbuf, finfo->output_bfd->sections,
7678 result))
7680 undefined_reference ("symbol", symbuf);
7681 return FALSE;
7685 return TRUE;
7687 /* All that remains are operators. */
7689 #define UNARY_OP(op) \
7690 if (strncmp (sym, #op, strlen (#op)) == 0) \
7692 sym += strlen (#op); \
7693 if (*sym == ':') \
7694 ++sym; \
7695 *symp = sym; \
7696 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7697 isymbuf, locsymcount, signed_p)) \
7698 return FALSE; \
7699 if (signed_p) \
7700 *result = op ((bfd_signed_vma) a); \
7701 else \
7702 *result = op a; \
7703 return TRUE; \
7706 #define BINARY_OP(op) \
7707 if (strncmp (sym, #op, strlen (#op)) == 0) \
7709 sym += strlen (#op); \
7710 if (*sym == ':') \
7711 ++sym; \
7712 *symp = sym; \
7713 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7714 isymbuf, locsymcount, signed_p)) \
7715 return FALSE; \
7716 ++*symp; \
7717 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7718 isymbuf, locsymcount, signed_p)) \
7719 return FALSE; \
7720 if (signed_p) \
7721 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7722 else \
7723 *result = a op b; \
7724 return TRUE; \
7727 default:
7728 UNARY_OP (0-);
7729 BINARY_OP (<<);
7730 BINARY_OP (>>);
7731 BINARY_OP (==);
7732 BINARY_OP (!=);
7733 BINARY_OP (<=);
7734 BINARY_OP (>=);
7735 BINARY_OP (&&);
7736 BINARY_OP (||);
7737 UNARY_OP (~);
7738 UNARY_OP (!);
7739 BINARY_OP (*);
7740 BINARY_OP (/);
7741 BINARY_OP (%);
7742 BINARY_OP (^);
7743 BINARY_OP (|);
7744 BINARY_OP (&);
7745 BINARY_OP (+);
7746 BINARY_OP (-);
7747 BINARY_OP (<);
7748 BINARY_OP (>);
7749 #undef UNARY_OP
7750 #undef BINARY_OP
7751 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7752 bfd_set_error (bfd_error_invalid_operation);
7753 return FALSE;
7757 static void
7758 put_value (bfd_vma size,
7759 unsigned long chunksz,
7760 bfd *input_bfd,
7761 bfd_vma x,
7762 bfd_byte *location)
7764 location += (size - chunksz);
7766 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7768 switch (chunksz)
7770 default:
7771 case 0:
7772 abort ();
7773 case 1:
7774 bfd_put_8 (input_bfd, x, location);
7775 break;
7776 case 2:
7777 bfd_put_16 (input_bfd, x, location);
7778 break;
7779 case 4:
7780 bfd_put_32 (input_bfd, x, location);
7781 break;
7782 case 8:
7783 #ifdef BFD64
7784 bfd_put_64 (input_bfd, x, location);
7785 #else
7786 abort ();
7787 #endif
7788 break;
7793 static bfd_vma
7794 get_value (bfd_vma size,
7795 unsigned long chunksz,
7796 bfd *input_bfd,
7797 bfd_byte *location)
7799 bfd_vma x = 0;
7801 for (; size; size -= chunksz, location += chunksz)
7803 switch (chunksz)
7805 default:
7806 case 0:
7807 abort ();
7808 case 1:
7809 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7810 break;
7811 case 2:
7812 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7813 break;
7814 case 4:
7815 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7816 break;
7817 case 8:
7818 #ifdef BFD64
7819 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7820 #else
7821 abort ();
7822 #endif
7823 break;
7826 return x;
7829 static void
7830 decode_complex_addend (unsigned long *start, /* in bits */
7831 unsigned long *oplen, /* in bits */
7832 unsigned long *len, /* in bits */
7833 unsigned long *wordsz, /* in bytes */
7834 unsigned long *chunksz, /* in bytes */
7835 unsigned long *lsb0_p,
7836 unsigned long *signed_p,
7837 unsigned long *trunc_p,
7838 unsigned long encoded)
7840 * start = encoded & 0x3F;
7841 * len = (encoded >> 6) & 0x3F;
7842 * oplen = (encoded >> 12) & 0x3F;
7843 * wordsz = (encoded >> 18) & 0xF;
7844 * chunksz = (encoded >> 22) & 0xF;
7845 * lsb0_p = (encoded >> 27) & 1;
7846 * signed_p = (encoded >> 28) & 1;
7847 * trunc_p = (encoded >> 29) & 1;
7850 bfd_reloc_status_type
7851 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7852 asection *input_section ATTRIBUTE_UNUSED,
7853 bfd_byte *contents,
7854 Elf_Internal_Rela *rel,
7855 bfd_vma relocation)
7857 bfd_vma shift, x, mask;
7858 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7859 bfd_reloc_status_type r;
7861 /* Perform this reloc, since it is complex.
7862 (this is not to say that it necessarily refers to a complex
7863 symbol; merely that it is a self-describing CGEN based reloc.
7864 i.e. the addend has the complete reloc information (bit start, end,
7865 word size, etc) encoded within it.). */
7867 decode_complex_addend (&start, &oplen, &len, &wordsz,
7868 &chunksz, &lsb0_p, &signed_p,
7869 &trunc_p, rel->r_addend);
7871 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7873 if (lsb0_p)
7874 shift = (start + 1) - len;
7875 else
7876 shift = (8 * wordsz) - (start + len);
7878 /* FIXME: octets_per_byte. */
7879 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7881 #ifdef DEBUG
7882 printf ("Doing complex reloc: "
7883 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7884 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7885 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7886 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7887 oplen, (unsigned long) x, (unsigned long) mask,
7888 (unsigned long) relocation);
7889 #endif
7891 r = bfd_reloc_ok;
7892 if (! trunc_p)
7893 /* Now do an overflow check. */
7894 r = bfd_check_overflow ((signed_p
7895 ? complain_overflow_signed
7896 : complain_overflow_unsigned),
7897 len, 0, (8 * wordsz),
7898 relocation);
7900 /* Do the deed. */
7901 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7903 #ifdef DEBUG
7904 printf (" relocation: %8.8lx\n"
7905 " shifted mask: %8.8lx\n"
7906 " shifted/masked reloc: %8.8lx\n"
7907 " result: %8.8lx\n",
7908 (unsigned long) relocation, (unsigned long) (mask << shift),
7909 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7910 #endif
7911 /* FIXME: octets_per_byte. */
7912 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7913 return r;
7916 /* When performing a relocatable link, the input relocations are
7917 preserved. But, if they reference global symbols, the indices
7918 referenced must be updated. Update all the relocations found in
7919 RELDATA. */
7921 static void
7922 elf_link_adjust_relocs (bfd *abfd,
7923 struct bfd_elf_section_reloc_data *reldata)
7925 unsigned int i;
7926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7927 bfd_byte *erela;
7928 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7929 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7930 bfd_vma r_type_mask;
7931 int r_sym_shift;
7932 unsigned int count = reldata->count;
7933 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7935 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7937 swap_in = bed->s->swap_reloc_in;
7938 swap_out = bed->s->swap_reloc_out;
7940 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7942 swap_in = bed->s->swap_reloca_in;
7943 swap_out = bed->s->swap_reloca_out;
7945 else
7946 abort ();
7948 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7949 abort ();
7951 if (bed->s->arch_size == 32)
7953 r_type_mask = 0xff;
7954 r_sym_shift = 8;
7956 else
7958 r_type_mask = 0xffffffff;
7959 r_sym_shift = 32;
7962 erela = reldata->hdr->contents;
7963 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7965 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7966 unsigned int j;
7968 if (*rel_hash == NULL)
7969 continue;
7971 BFD_ASSERT ((*rel_hash)->indx >= 0);
7973 (*swap_in) (abfd, erela, irela);
7974 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7975 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7976 | (irela[j].r_info & r_type_mask));
7977 (*swap_out) (abfd, irela, erela);
7981 struct elf_link_sort_rela
7983 union {
7984 bfd_vma offset;
7985 bfd_vma sym_mask;
7986 } u;
7987 enum elf_reloc_type_class type;
7988 /* We use this as an array of size int_rels_per_ext_rel. */
7989 Elf_Internal_Rela rela[1];
7992 static int
7993 elf_link_sort_cmp1 (const void *A, const void *B)
7995 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7996 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7997 int relativea, relativeb;
7999 relativea = a->type == reloc_class_relative;
8000 relativeb = b->type == reloc_class_relative;
8002 if (relativea < relativeb)
8003 return 1;
8004 if (relativea > relativeb)
8005 return -1;
8006 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8007 return -1;
8008 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8009 return 1;
8010 if (a->rela->r_offset < b->rela->r_offset)
8011 return -1;
8012 if (a->rela->r_offset > b->rela->r_offset)
8013 return 1;
8014 return 0;
8017 static int
8018 elf_link_sort_cmp2 (const void *A, const void *B)
8020 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8021 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8022 int copya, copyb;
8024 if (a->u.offset < b->u.offset)
8025 return -1;
8026 if (a->u.offset > b->u.offset)
8027 return 1;
8028 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8029 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8030 if (copya < copyb)
8031 return -1;
8032 if (copya > copyb)
8033 return 1;
8034 if (a->rela->r_offset < b->rela->r_offset)
8035 return -1;
8036 if (a->rela->r_offset > b->rela->r_offset)
8037 return 1;
8038 return 0;
8041 static size_t
8042 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8044 asection *dynamic_relocs;
8045 asection *rela_dyn;
8046 asection *rel_dyn;
8047 bfd_size_type count, size;
8048 size_t i, ret, sort_elt, ext_size;
8049 bfd_byte *sort, *s_non_relative, *p;
8050 struct elf_link_sort_rela *sq;
8051 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8052 int i2e = bed->s->int_rels_per_ext_rel;
8053 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8054 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8055 struct bfd_link_order *lo;
8056 bfd_vma r_sym_mask;
8057 bfd_boolean use_rela;
8059 /* Find a dynamic reloc section. */
8060 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8061 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8062 if (rela_dyn != NULL && rela_dyn->size > 0
8063 && rel_dyn != NULL && rel_dyn->size > 0)
8065 bfd_boolean use_rela_initialised = FALSE;
8067 /* This is just here to stop gcc from complaining.
8068 It's initialization checking code is not perfect. */
8069 use_rela = TRUE;
8071 /* Both sections are present. Examine the sizes
8072 of the indirect sections to help us choose. */
8073 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8074 if (lo->type == bfd_indirect_link_order)
8076 asection *o = lo->u.indirect.section;
8078 if ((o->size % bed->s->sizeof_rela) == 0)
8080 if ((o->size % bed->s->sizeof_rel) == 0)
8081 /* Section size is divisible by both rel and rela sizes.
8082 It is of no help to us. */
8084 else
8086 /* Section size is only divisible by rela. */
8087 if (use_rela_initialised && (use_rela == FALSE))
8089 _bfd_error_handler
8090 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8091 bfd_set_error (bfd_error_invalid_operation);
8092 return 0;
8094 else
8096 use_rela = TRUE;
8097 use_rela_initialised = TRUE;
8101 else if ((o->size % bed->s->sizeof_rel) == 0)
8103 /* Section size is only divisible by rel. */
8104 if (use_rela_initialised && (use_rela == TRUE))
8106 _bfd_error_handler
8107 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8108 bfd_set_error (bfd_error_invalid_operation);
8109 return 0;
8111 else
8113 use_rela = FALSE;
8114 use_rela_initialised = TRUE;
8117 else
8119 /* The section size is not divisible by either - something is wrong. */
8120 _bfd_error_handler
8121 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8122 bfd_set_error (bfd_error_invalid_operation);
8123 return 0;
8127 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8128 if (lo->type == bfd_indirect_link_order)
8130 asection *o = lo->u.indirect.section;
8132 if ((o->size % bed->s->sizeof_rela) == 0)
8134 if ((o->size % bed->s->sizeof_rel) == 0)
8135 /* Section size is divisible by both rel and rela sizes.
8136 It is of no help to us. */
8138 else
8140 /* Section size is only divisible by rela. */
8141 if (use_rela_initialised && (use_rela == FALSE))
8143 _bfd_error_handler
8144 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8145 bfd_set_error (bfd_error_invalid_operation);
8146 return 0;
8148 else
8150 use_rela = TRUE;
8151 use_rela_initialised = TRUE;
8155 else if ((o->size % bed->s->sizeof_rel) == 0)
8157 /* Section size is only divisible by rel. */
8158 if (use_rela_initialised && (use_rela == TRUE))
8160 _bfd_error_handler
8161 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8162 bfd_set_error (bfd_error_invalid_operation);
8163 return 0;
8165 else
8167 use_rela = FALSE;
8168 use_rela_initialised = TRUE;
8171 else
8173 /* The section size is not divisible by either - something is wrong. */
8174 _bfd_error_handler
8175 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8176 bfd_set_error (bfd_error_invalid_operation);
8177 return 0;
8181 if (! use_rela_initialised)
8182 /* Make a guess. */
8183 use_rela = TRUE;
8185 else if (rela_dyn != NULL && rela_dyn->size > 0)
8186 use_rela = TRUE;
8187 else if (rel_dyn != NULL && rel_dyn->size > 0)
8188 use_rela = FALSE;
8189 else
8190 return 0;
8192 if (use_rela)
8194 dynamic_relocs = rela_dyn;
8195 ext_size = bed->s->sizeof_rela;
8196 swap_in = bed->s->swap_reloca_in;
8197 swap_out = bed->s->swap_reloca_out;
8199 else
8201 dynamic_relocs = rel_dyn;
8202 ext_size = bed->s->sizeof_rel;
8203 swap_in = bed->s->swap_reloc_in;
8204 swap_out = bed->s->swap_reloc_out;
8207 size = 0;
8208 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8209 if (lo->type == bfd_indirect_link_order)
8210 size += lo->u.indirect.section->size;
8212 if (size != dynamic_relocs->size)
8213 return 0;
8215 sort_elt = (sizeof (struct elf_link_sort_rela)
8216 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8218 count = dynamic_relocs->size / ext_size;
8219 if (count == 0)
8220 return 0;
8221 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8223 if (sort == NULL)
8225 (*info->callbacks->warning)
8226 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8227 return 0;
8230 if (bed->s->arch_size == 32)
8231 r_sym_mask = ~(bfd_vma) 0xff;
8232 else
8233 r_sym_mask = ~(bfd_vma) 0xffffffff;
8235 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8236 if (lo->type == bfd_indirect_link_order)
8238 bfd_byte *erel, *erelend;
8239 asection *o = lo->u.indirect.section;
8241 if (o->contents == NULL && o->size != 0)
8243 /* This is a reloc section that is being handled as a normal
8244 section. See bfd_section_from_shdr. We can't combine
8245 relocs in this case. */
8246 free (sort);
8247 return 0;
8249 erel = o->contents;
8250 erelend = o->contents + o->size;
8251 /* FIXME: octets_per_byte. */
8252 p = sort + o->output_offset / ext_size * sort_elt;
8254 while (erel < erelend)
8256 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8258 (*swap_in) (abfd, erel, s->rela);
8259 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8260 s->u.sym_mask = r_sym_mask;
8261 p += sort_elt;
8262 erel += ext_size;
8266 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8268 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8270 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8271 if (s->type != reloc_class_relative)
8272 break;
8274 ret = i;
8275 s_non_relative = p;
8277 sq = (struct elf_link_sort_rela *) s_non_relative;
8278 for (; i < count; i++, p += sort_elt)
8280 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8281 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8282 sq = sp;
8283 sp->u.offset = sq->rela->r_offset;
8286 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8288 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8289 if (lo->type == bfd_indirect_link_order)
8291 bfd_byte *erel, *erelend;
8292 asection *o = lo->u.indirect.section;
8294 erel = o->contents;
8295 erelend = o->contents + o->size;
8296 /* FIXME: octets_per_byte. */
8297 p = sort + o->output_offset / ext_size * sort_elt;
8298 while (erel < erelend)
8300 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8301 (*swap_out) (abfd, s->rela, erel);
8302 p += sort_elt;
8303 erel += ext_size;
8307 free (sort);
8308 *psec = dynamic_relocs;
8309 return ret;
8312 /* Flush the output symbols to the file. */
8314 static bfd_boolean
8315 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8316 const struct elf_backend_data *bed)
8318 if (finfo->symbuf_count > 0)
8320 Elf_Internal_Shdr *hdr;
8321 file_ptr pos;
8322 bfd_size_type amt;
8324 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8325 pos = hdr->sh_offset + hdr->sh_size;
8326 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8327 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8328 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8329 return FALSE;
8331 hdr->sh_size += amt;
8332 finfo->symbuf_count = 0;
8335 return TRUE;
8338 /* Add a symbol to the output symbol table. */
8340 static int
8341 elf_link_output_sym (struct elf_final_link_info *finfo,
8342 const char *name,
8343 Elf_Internal_Sym *elfsym,
8344 asection *input_sec,
8345 struct elf_link_hash_entry *h)
8347 bfd_byte *dest;
8348 Elf_External_Sym_Shndx *destshndx;
8349 int (*output_symbol_hook)
8350 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8351 struct elf_link_hash_entry *);
8352 const struct elf_backend_data *bed;
8354 bed = get_elf_backend_data (finfo->output_bfd);
8355 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8356 if (output_symbol_hook != NULL)
8358 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8359 if (ret != 1)
8360 return ret;
8363 if (name == NULL || *name == '\0')
8364 elfsym->st_name = 0;
8365 else if (input_sec->flags & SEC_EXCLUDE)
8366 elfsym->st_name = 0;
8367 else
8369 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8370 name, TRUE, FALSE);
8371 if (elfsym->st_name == (unsigned long) -1)
8372 return 0;
8375 if (finfo->symbuf_count >= finfo->symbuf_size)
8377 if (! elf_link_flush_output_syms (finfo, bed))
8378 return 0;
8381 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8382 destshndx = finfo->symshndxbuf;
8383 if (destshndx != NULL)
8385 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8387 bfd_size_type amt;
8389 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8390 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8391 amt * 2);
8392 if (destshndx == NULL)
8393 return 0;
8394 finfo->symshndxbuf = destshndx;
8395 memset ((char *) destshndx + amt, 0, amt);
8396 finfo->shndxbuf_size *= 2;
8398 destshndx += bfd_get_symcount (finfo->output_bfd);
8401 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8402 finfo->symbuf_count += 1;
8403 bfd_get_symcount (finfo->output_bfd) += 1;
8405 return 1;
8408 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8410 static bfd_boolean
8411 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8413 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8414 && sym->st_shndx < SHN_LORESERVE)
8416 /* The gABI doesn't support dynamic symbols in output sections
8417 beyond 64k. */
8418 (*_bfd_error_handler)
8419 (_("%B: Too many sections: %d (>= %d)"),
8420 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8421 bfd_set_error (bfd_error_nonrepresentable_section);
8422 return FALSE;
8424 return TRUE;
8427 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8428 allowing an unsatisfied unversioned symbol in the DSO to match a
8429 versioned symbol that would normally require an explicit version.
8430 We also handle the case that a DSO references a hidden symbol
8431 which may be satisfied by a versioned symbol in another DSO. */
8433 static bfd_boolean
8434 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8435 const struct elf_backend_data *bed,
8436 struct elf_link_hash_entry *h)
8438 bfd *abfd;
8439 struct elf_link_loaded_list *loaded;
8441 if (!is_elf_hash_table (info->hash))
8442 return FALSE;
8444 switch (h->root.type)
8446 default:
8447 abfd = NULL;
8448 break;
8450 case bfd_link_hash_undefined:
8451 case bfd_link_hash_undefweak:
8452 abfd = h->root.u.undef.abfd;
8453 if ((abfd->flags & DYNAMIC) == 0
8454 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8455 return FALSE;
8456 break;
8458 case bfd_link_hash_defined:
8459 case bfd_link_hash_defweak:
8460 abfd = h->root.u.def.section->owner;
8461 break;
8463 case bfd_link_hash_common:
8464 abfd = h->root.u.c.p->section->owner;
8465 break;
8467 BFD_ASSERT (abfd != NULL);
8469 for (loaded = elf_hash_table (info)->loaded;
8470 loaded != NULL;
8471 loaded = loaded->next)
8473 bfd *input;
8474 Elf_Internal_Shdr *hdr;
8475 bfd_size_type symcount;
8476 bfd_size_type extsymcount;
8477 bfd_size_type extsymoff;
8478 Elf_Internal_Shdr *versymhdr;
8479 Elf_Internal_Sym *isym;
8480 Elf_Internal_Sym *isymend;
8481 Elf_Internal_Sym *isymbuf;
8482 Elf_External_Versym *ever;
8483 Elf_External_Versym *extversym;
8485 input = loaded->abfd;
8487 /* We check each DSO for a possible hidden versioned definition. */
8488 if (input == abfd
8489 || (input->flags & DYNAMIC) == 0
8490 || elf_dynversym (input) == 0)
8491 continue;
8493 hdr = &elf_tdata (input)->dynsymtab_hdr;
8495 symcount = hdr->sh_size / bed->s->sizeof_sym;
8496 if (elf_bad_symtab (input))
8498 extsymcount = symcount;
8499 extsymoff = 0;
8501 else
8503 extsymcount = symcount - hdr->sh_info;
8504 extsymoff = hdr->sh_info;
8507 if (extsymcount == 0)
8508 continue;
8510 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8511 NULL, NULL, NULL);
8512 if (isymbuf == NULL)
8513 return FALSE;
8515 /* Read in any version definitions. */
8516 versymhdr = &elf_tdata (input)->dynversym_hdr;
8517 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8518 if (extversym == NULL)
8519 goto error_ret;
8521 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8522 || (bfd_bread (extversym, versymhdr->sh_size, input)
8523 != versymhdr->sh_size))
8525 free (extversym);
8526 error_ret:
8527 free (isymbuf);
8528 return FALSE;
8531 ever = extversym + extsymoff;
8532 isymend = isymbuf + extsymcount;
8533 for (isym = isymbuf; isym < isymend; isym++, ever++)
8535 const char *name;
8536 Elf_Internal_Versym iver;
8537 unsigned short version_index;
8539 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8540 || isym->st_shndx == SHN_UNDEF)
8541 continue;
8543 name = bfd_elf_string_from_elf_section (input,
8544 hdr->sh_link,
8545 isym->st_name);
8546 if (strcmp (name, h->root.root.string) != 0)
8547 continue;
8549 _bfd_elf_swap_versym_in (input, ever, &iver);
8551 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8552 && !(h->def_regular
8553 && h->forced_local))
8555 /* If we have a non-hidden versioned sym, then it should
8556 have provided a definition for the undefined sym unless
8557 it is defined in a non-shared object and forced local.
8559 abort ();
8562 version_index = iver.vs_vers & VERSYM_VERSION;
8563 if (version_index == 1 || version_index == 2)
8565 /* This is the base or first version. We can use it. */
8566 free (extversym);
8567 free (isymbuf);
8568 return TRUE;
8572 free (extversym);
8573 free (isymbuf);
8576 return FALSE;
8579 /* Add an external symbol to the symbol table. This is called from
8580 the hash table traversal routine. When generating a shared object,
8581 we go through the symbol table twice. The first time we output
8582 anything that might have been forced to local scope in a version
8583 script. The second time we output the symbols that are still
8584 global symbols. */
8586 static bfd_boolean
8587 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8589 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8590 struct elf_final_link_info *finfo = eoinfo->finfo;
8591 bfd_boolean strip;
8592 Elf_Internal_Sym sym;
8593 asection *input_sec;
8594 const struct elf_backend_data *bed;
8595 long indx;
8596 int ret;
8598 if (h->root.type == bfd_link_hash_warning)
8600 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8601 if (h->root.type == bfd_link_hash_new)
8602 return TRUE;
8605 /* Decide whether to output this symbol in this pass. */
8606 if (eoinfo->localsyms)
8608 if (!h->forced_local)
8609 return TRUE;
8611 else
8613 if (h->forced_local)
8614 return TRUE;
8617 bed = get_elf_backend_data (finfo->output_bfd);
8619 if (h->root.type == bfd_link_hash_undefined)
8621 /* If we have an undefined symbol reference here then it must have
8622 come from a shared library that is being linked in. (Undefined
8623 references in regular files have already been handled unless
8624 they are in unreferenced sections which are removed by garbage
8625 collection). */
8626 bfd_boolean ignore_undef = FALSE;
8628 /* Some symbols may be special in that the fact that they're
8629 undefined can be safely ignored - let backend determine that. */
8630 if (bed->elf_backend_ignore_undef_symbol)
8631 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8633 /* If we are reporting errors for this situation then do so now. */
8634 if (!ignore_undef
8635 && h->ref_dynamic
8636 && (!h->ref_regular || finfo->info->gc_sections)
8637 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8638 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8640 if (! (finfo->info->callbacks->undefined_symbol
8641 (finfo->info, h->root.root.string,
8642 h->ref_regular ? NULL : h->root.u.undef.abfd,
8643 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8645 bfd_set_error (bfd_error_bad_value);
8646 eoinfo->failed = TRUE;
8647 return FALSE;
8652 /* We should also warn if a forced local symbol is referenced from
8653 shared libraries. */
8654 if (! finfo->info->relocatable
8655 && (! finfo->info->shared)
8656 && h->forced_local
8657 && h->ref_dynamic
8658 && !h->dynamic_def
8659 && !h->dynamic_weak
8660 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8662 bfd *def_bfd;
8663 const char *msg;
8665 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8666 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8667 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8668 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8669 else
8670 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8671 def_bfd = finfo->output_bfd;
8672 if (h->root.u.def.section != bfd_abs_section_ptr)
8673 def_bfd = h->root.u.def.section->owner;
8674 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8675 h->root.root.string);
8676 bfd_set_error (bfd_error_bad_value);
8677 eoinfo->failed = TRUE;
8678 return FALSE;
8681 /* We don't want to output symbols that have never been mentioned by
8682 a regular file, or that we have been told to strip. However, if
8683 h->indx is set to -2, the symbol is used by a reloc and we must
8684 output it. */
8685 if (h->indx == -2)
8686 strip = FALSE;
8687 else if ((h->def_dynamic
8688 || h->ref_dynamic
8689 || h->root.type == bfd_link_hash_new)
8690 && !h->def_regular
8691 && !h->ref_regular)
8692 strip = TRUE;
8693 else if (finfo->info->strip == strip_all)
8694 strip = TRUE;
8695 else if (finfo->info->strip == strip_some
8696 && bfd_hash_lookup (finfo->info->keep_hash,
8697 h->root.root.string, FALSE, FALSE) == NULL)
8698 strip = TRUE;
8699 else if (finfo->info->strip_discarded
8700 && (h->root.type == bfd_link_hash_defined
8701 || h->root.type == bfd_link_hash_defweak)
8702 && elf_discarded_section (h->root.u.def.section))
8703 strip = TRUE;
8704 else
8705 strip = FALSE;
8707 /* If we're stripping it, and it's not a dynamic symbol, there's
8708 nothing else to do unless it is a forced local symbol or a
8709 STT_GNU_IFUNC symbol. */
8710 if (strip
8711 && h->dynindx == -1
8712 && h->type != STT_GNU_IFUNC
8713 && !h->forced_local)
8714 return TRUE;
8716 sym.st_value = 0;
8717 sym.st_size = h->size;
8718 sym.st_other = h->other;
8719 if (h->forced_local)
8721 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8722 /* Turn off visibility on local symbol. */
8723 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8725 else if (h->unique_global)
8726 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8727 else if (h->root.type == bfd_link_hash_undefweak
8728 || h->root.type == bfd_link_hash_defweak)
8729 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8730 else
8731 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8733 switch (h->root.type)
8735 default:
8736 case bfd_link_hash_new:
8737 case bfd_link_hash_warning:
8738 abort ();
8739 return FALSE;
8741 case bfd_link_hash_undefined:
8742 case bfd_link_hash_undefweak:
8743 input_sec = bfd_und_section_ptr;
8744 sym.st_shndx = SHN_UNDEF;
8745 break;
8747 case bfd_link_hash_defined:
8748 case bfd_link_hash_defweak:
8750 input_sec = h->root.u.def.section;
8751 if (input_sec->output_section != NULL)
8753 sym.st_shndx =
8754 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8755 input_sec->output_section);
8756 if (sym.st_shndx == SHN_BAD)
8758 (*_bfd_error_handler)
8759 (_("%B: could not find output section %A for input section %A"),
8760 finfo->output_bfd, input_sec->output_section, input_sec);
8761 bfd_set_error (bfd_error_nonrepresentable_section);
8762 eoinfo->failed = TRUE;
8763 return FALSE;
8766 /* ELF symbols in relocatable files are section relative,
8767 but in nonrelocatable files they are virtual
8768 addresses. */
8769 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8770 if (! finfo->info->relocatable)
8772 sym.st_value += input_sec->output_section->vma;
8773 if (h->type == STT_TLS)
8775 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8776 if (tls_sec != NULL)
8777 sym.st_value -= tls_sec->vma;
8778 else
8780 /* The TLS section may have been garbage collected. */
8781 BFD_ASSERT (finfo->info->gc_sections
8782 && !input_sec->gc_mark);
8787 else
8789 BFD_ASSERT (input_sec->owner == NULL
8790 || (input_sec->owner->flags & DYNAMIC) != 0);
8791 sym.st_shndx = SHN_UNDEF;
8792 input_sec = bfd_und_section_ptr;
8795 break;
8797 case bfd_link_hash_common:
8798 input_sec = h->root.u.c.p->section;
8799 sym.st_shndx = bed->common_section_index (input_sec);
8800 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8801 break;
8803 case bfd_link_hash_indirect:
8804 /* These symbols are created by symbol versioning. They point
8805 to the decorated version of the name. For example, if the
8806 symbol foo@@GNU_1.2 is the default, which should be used when
8807 foo is used with no version, then we add an indirect symbol
8808 foo which points to foo@@GNU_1.2. We ignore these symbols,
8809 since the indirected symbol is already in the hash table. */
8810 return TRUE;
8813 /* Give the processor backend a chance to tweak the symbol value,
8814 and also to finish up anything that needs to be done for this
8815 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8816 forced local syms when non-shared is due to a historical quirk.
8817 STT_GNU_IFUNC symbol must go through PLT. */
8818 if ((h->type == STT_GNU_IFUNC
8819 && h->def_regular
8820 && !finfo->info->relocatable)
8821 || ((h->dynindx != -1
8822 || h->forced_local)
8823 && ((finfo->info->shared
8824 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8825 || h->root.type != bfd_link_hash_undefweak))
8826 || !h->forced_local)
8827 && elf_hash_table (finfo->info)->dynamic_sections_created))
8829 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8830 (finfo->output_bfd, finfo->info, h, &sym)))
8832 eoinfo->failed = TRUE;
8833 return FALSE;
8837 /* If we are marking the symbol as undefined, and there are no
8838 non-weak references to this symbol from a regular object, then
8839 mark the symbol as weak undefined; if there are non-weak
8840 references, mark the symbol as strong. We can't do this earlier,
8841 because it might not be marked as undefined until the
8842 finish_dynamic_symbol routine gets through with it. */
8843 if (sym.st_shndx == SHN_UNDEF
8844 && h->ref_regular
8845 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8846 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8848 int bindtype;
8849 unsigned int type = ELF_ST_TYPE (sym.st_info);
8851 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8852 if (type == STT_GNU_IFUNC)
8853 type = STT_FUNC;
8855 if (h->ref_regular_nonweak)
8856 bindtype = STB_GLOBAL;
8857 else
8858 bindtype = STB_WEAK;
8859 sym.st_info = ELF_ST_INFO (bindtype, type);
8862 /* If this is a symbol defined in a dynamic library, don't use the
8863 symbol size from the dynamic library. Relinking an executable
8864 against a new library may introduce gratuitous changes in the
8865 executable's symbols if we keep the size. */
8866 if (sym.st_shndx == SHN_UNDEF
8867 && !h->def_regular
8868 && h->def_dynamic)
8869 sym.st_size = 0;
8871 /* If a non-weak symbol with non-default visibility is not defined
8872 locally, it is a fatal error. */
8873 if (! finfo->info->relocatable
8874 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8875 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8876 && h->root.type == bfd_link_hash_undefined
8877 && !h->def_regular)
8879 const char *msg;
8881 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8882 msg = _("%B: protected symbol `%s' isn't defined");
8883 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8884 msg = _("%B: internal symbol `%s' isn't defined");
8885 else
8886 msg = _("%B: hidden symbol `%s' isn't defined");
8887 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8888 bfd_set_error (bfd_error_bad_value);
8889 eoinfo->failed = TRUE;
8890 return FALSE;
8893 /* If this symbol should be put in the .dynsym section, then put it
8894 there now. We already know the symbol index. We also fill in
8895 the entry in the .hash section. */
8896 if (h->dynindx != -1
8897 && elf_hash_table (finfo->info)->dynamic_sections_created)
8899 bfd_byte *esym;
8901 sym.st_name = h->dynstr_index;
8902 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8903 if (! check_dynsym (finfo->output_bfd, &sym))
8905 eoinfo->failed = TRUE;
8906 return FALSE;
8908 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8910 if (finfo->hash_sec != NULL)
8912 size_t hash_entry_size;
8913 bfd_byte *bucketpos;
8914 bfd_vma chain;
8915 size_t bucketcount;
8916 size_t bucket;
8918 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8919 bucket = h->u.elf_hash_value % bucketcount;
8921 hash_entry_size
8922 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8923 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8924 + (bucket + 2) * hash_entry_size);
8925 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8926 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8927 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8928 ((bfd_byte *) finfo->hash_sec->contents
8929 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8932 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8934 Elf_Internal_Versym iversym;
8935 Elf_External_Versym *eversym;
8937 if (!h->def_regular)
8939 if (h->verinfo.verdef == NULL)
8940 iversym.vs_vers = 0;
8941 else
8942 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8944 else
8946 if (h->verinfo.vertree == NULL)
8947 iversym.vs_vers = 1;
8948 else
8949 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8950 if (finfo->info->create_default_symver)
8951 iversym.vs_vers++;
8954 if (h->hidden)
8955 iversym.vs_vers |= VERSYM_HIDDEN;
8957 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8958 eversym += h->dynindx;
8959 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8963 /* If we're stripping it, then it was just a dynamic symbol, and
8964 there's nothing else to do. */
8965 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8966 return TRUE;
8968 indx = bfd_get_symcount (finfo->output_bfd);
8969 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8970 if (ret == 0)
8972 eoinfo->failed = TRUE;
8973 return FALSE;
8975 else if (ret == 1)
8976 h->indx = indx;
8977 else if (h->indx == -2)
8978 abort();
8980 return TRUE;
8983 /* Return TRUE if special handling is done for relocs in SEC against
8984 symbols defined in discarded sections. */
8986 static bfd_boolean
8987 elf_section_ignore_discarded_relocs (asection *sec)
8989 const struct elf_backend_data *bed;
8991 switch (sec->sec_info_type)
8993 case ELF_INFO_TYPE_STABS:
8994 case ELF_INFO_TYPE_EH_FRAME:
8995 return TRUE;
8996 default:
8997 break;
9000 bed = get_elf_backend_data (sec->owner);
9001 if (bed->elf_backend_ignore_discarded_relocs != NULL
9002 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9003 return TRUE;
9005 return FALSE;
9008 /* Return a mask saying how ld should treat relocations in SEC against
9009 symbols defined in discarded sections. If this function returns
9010 COMPLAIN set, ld will issue a warning message. If this function
9011 returns PRETEND set, and the discarded section was link-once and the
9012 same size as the kept link-once section, ld will pretend that the
9013 symbol was actually defined in the kept section. Otherwise ld will
9014 zero the reloc (at least that is the intent, but some cooperation by
9015 the target dependent code is needed, particularly for REL targets). */
9017 unsigned int
9018 _bfd_elf_default_action_discarded (asection *sec)
9020 if (sec->flags & SEC_DEBUGGING)
9021 return PRETEND;
9023 if (strcmp (".eh_frame", sec->name) == 0)
9024 return 0;
9026 if (strcmp (".gcc_except_table", sec->name) == 0)
9027 return 0;
9029 return COMPLAIN | PRETEND;
9032 /* Find a match between a section and a member of a section group. */
9034 static asection *
9035 match_group_member (asection *sec, asection *group,
9036 struct bfd_link_info *info)
9038 asection *first = elf_next_in_group (group);
9039 asection *s = first;
9041 while (s != NULL)
9043 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9044 return s;
9046 s = elf_next_in_group (s);
9047 if (s == first)
9048 break;
9051 return NULL;
9054 /* Check if the kept section of a discarded section SEC can be used
9055 to replace it. Return the replacement if it is OK. Otherwise return
9056 NULL. */
9058 asection *
9059 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9061 asection *kept;
9063 kept = sec->kept_section;
9064 if (kept != NULL)
9066 if ((kept->flags & SEC_GROUP) != 0)
9067 kept = match_group_member (sec, kept, info);
9068 if (kept != NULL
9069 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9070 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9071 kept = NULL;
9072 sec->kept_section = kept;
9074 return kept;
9077 /* Link an input file into the linker output file. This function
9078 handles all the sections and relocations of the input file at once.
9079 This is so that we only have to read the local symbols once, and
9080 don't have to keep them in memory. */
9082 static bfd_boolean
9083 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9085 int (*relocate_section)
9086 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9087 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9088 bfd *output_bfd;
9089 Elf_Internal_Shdr *symtab_hdr;
9090 size_t locsymcount;
9091 size_t extsymoff;
9092 Elf_Internal_Sym *isymbuf;
9093 Elf_Internal_Sym *isym;
9094 Elf_Internal_Sym *isymend;
9095 long *pindex;
9096 asection **ppsection;
9097 asection *o;
9098 const struct elf_backend_data *bed;
9099 struct elf_link_hash_entry **sym_hashes;
9101 output_bfd = finfo->output_bfd;
9102 bed = get_elf_backend_data (output_bfd);
9103 relocate_section = bed->elf_backend_relocate_section;
9105 /* If this is a dynamic object, we don't want to do anything here:
9106 we don't want the local symbols, and we don't want the section
9107 contents. */
9108 if ((input_bfd->flags & DYNAMIC) != 0)
9109 return TRUE;
9111 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9112 if (elf_bad_symtab (input_bfd))
9114 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9115 extsymoff = 0;
9117 else
9119 locsymcount = symtab_hdr->sh_info;
9120 extsymoff = symtab_hdr->sh_info;
9123 /* Read the local symbols. */
9124 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9125 if (isymbuf == NULL && locsymcount != 0)
9127 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9128 finfo->internal_syms,
9129 finfo->external_syms,
9130 finfo->locsym_shndx);
9131 if (isymbuf == NULL)
9132 return FALSE;
9135 /* Find local symbol sections and adjust values of symbols in
9136 SEC_MERGE sections. Write out those local symbols we know are
9137 going into the output file. */
9138 isymend = isymbuf + locsymcount;
9139 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9140 isym < isymend;
9141 isym++, pindex++, ppsection++)
9143 asection *isec;
9144 const char *name;
9145 Elf_Internal_Sym osym;
9146 long indx;
9147 int ret;
9149 *pindex = -1;
9151 if (elf_bad_symtab (input_bfd))
9153 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9155 *ppsection = NULL;
9156 continue;
9160 if (isym->st_shndx == SHN_UNDEF)
9161 isec = bfd_und_section_ptr;
9162 else if (isym->st_shndx == SHN_ABS)
9163 isec = bfd_abs_section_ptr;
9164 else if (isym->st_shndx == SHN_COMMON)
9165 isec = bfd_com_section_ptr;
9166 else
9168 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9169 if (isec == NULL)
9171 /* Don't attempt to output symbols with st_shnx in the
9172 reserved range other than SHN_ABS and SHN_COMMON. */
9173 *ppsection = NULL;
9174 continue;
9176 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9177 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9178 isym->st_value =
9179 _bfd_merged_section_offset (output_bfd, &isec,
9180 elf_section_data (isec)->sec_info,
9181 isym->st_value);
9184 *ppsection = isec;
9186 /* Don't output the first, undefined, symbol. */
9187 if (ppsection == finfo->sections)
9188 continue;
9190 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9192 /* We never output section symbols. Instead, we use the
9193 section symbol of the corresponding section in the output
9194 file. */
9195 continue;
9198 /* If we are stripping all symbols, we don't want to output this
9199 one. */
9200 if (finfo->info->strip == strip_all)
9201 continue;
9203 /* If we are discarding all local symbols, we don't want to
9204 output this one. If we are generating a relocatable output
9205 file, then some of the local symbols may be required by
9206 relocs; we output them below as we discover that they are
9207 needed. */
9208 if (finfo->info->discard == discard_all)
9209 continue;
9211 /* If this symbol is defined in a section which we are
9212 discarding, we don't need to keep it. */
9213 if (isym->st_shndx != SHN_UNDEF
9214 && isym->st_shndx < SHN_LORESERVE
9215 && bfd_section_removed_from_list (output_bfd,
9216 isec->output_section))
9217 continue;
9219 /* Get the name of the symbol. */
9220 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9221 isym->st_name);
9222 if (name == NULL)
9223 return FALSE;
9225 /* See if we are discarding symbols with this name. */
9226 if ((finfo->info->strip == strip_some
9227 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9228 == NULL))
9229 || (((finfo->info->discard == discard_sec_merge
9230 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9231 || finfo->info->discard == discard_l)
9232 && bfd_is_local_label_name (input_bfd, name)))
9233 continue;
9235 osym = *isym;
9237 /* Adjust the section index for the output file. */
9238 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9239 isec->output_section);
9240 if (osym.st_shndx == SHN_BAD)
9241 return FALSE;
9243 /* ELF symbols in relocatable files are section relative, but
9244 in executable files they are virtual addresses. Note that
9245 this code assumes that all ELF sections have an associated
9246 BFD section with a reasonable value for output_offset; below
9247 we assume that they also have a reasonable value for
9248 output_section. Any special sections must be set up to meet
9249 these requirements. */
9250 osym.st_value += isec->output_offset;
9251 if (! finfo->info->relocatable)
9253 osym.st_value += isec->output_section->vma;
9254 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9256 /* STT_TLS symbols are relative to PT_TLS segment base. */
9257 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9258 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9262 indx = bfd_get_symcount (output_bfd);
9263 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9264 if (ret == 0)
9265 return FALSE;
9266 else if (ret == 1)
9267 *pindex = indx;
9270 /* Relocate the contents of each section. */
9271 sym_hashes = elf_sym_hashes (input_bfd);
9272 for (o = input_bfd->sections; o != NULL; o = o->next)
9274 bfd_byte *contents;
9276 if (! o->linker_mark)
9278 /* This section was omitted from the link. */
9279 continue;
9282 if (finfo->info->relocatable
9283 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9285 /* Deal with the group signature symbol. */
9286 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9287 unsigned long symndx = sec_data->this_hdr.sh_info;
9288 asection *osec = o->output_section;
9290 if (symndx >= locsymcount
9291 || (elf_bad_symtab (input_bfd)
9292 && finfo->sections[symndx] == NULL))
9294 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9295 while (h->root.type == bfd_link_hash_indirect
9296 || h->root.type == bfd_link_hash_warning)
9297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9298 /* Arrange for symbol to be output. */
9299 h->indx = -2;
9300 elf_section_data (osec)->this_hdr.sh_info = -2;
9302 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9304 /* We'll use the output section target_index. */
9305 asection *sec = finfo->sections[symndx]->output_section;
9306 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9308 else
9310 if (finfo->indices[symndx] == -1)
9312 /* Otherwise output the local symbol now. */
9313 Elf_Internal_Sym sym = isymbuf[symndx];
9314 asection *sec = finfo->sections[symndx]->output_section;
9315 const char *name;
9316 long indx;
9317 int ret;
9319 name = bfd_elf_string_from_elf_section (input_bfd,
9320 symtab_hdr->sh_link,
9321 sym.st_name);
9322 if (name == NULL)
9323 return FALSE;
9325 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9326 sec);
9327 if (sym.st_shndx == SHN_BAD)
9328 return FALSE;
9330 sym.st_value += o->output_offset;
9332 indx = bfd_get_symcount (output_bfd);
9333 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9334 if (ret == 0)
9335 return FALSE;
9336 else if (ret == 1)
9337 finfo->indices[symndx] = indx;
9338 else
9339 abort ();
9341 elf_section_data (osec)->this_hdr.sh_info
9342 = finfo->indices[symndx];
9346 if ((o->flags & SEC_HAS_CONTENTS) == 0
9347 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9348 continue;
9350 if ((o->flags & SEC_LINKER_CREATED) != 0)
9352 /* Section was created by _bfd_elf_link_create_dynamic_sections
9353 or somesuch. */
9354 continue;
9357 /* Get the contents of the section. They have been cached by a
9358 relaxation routine. Note that o is a section in an input
9359 file, so the contents field will not have been set by any of
9360 the routines which work on output files. */
9361 if (elf_section_data (o)->this_hdr.contents != NULL)
9362 contents = elf_section_data (o)->this_hdr.contents;
9363 else
9365 contents = finfo->contents;
9366 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9367 return FALSE;
9370 if ((o->flags & SEC_RELOC) != 0)
9372 Elf_Internal_Rela *internal_relocs;
9373 Elf_Internal_Rela *rel, *relend;
9374 bfd_vma r_type_mask;
9375 int r_sym_shift;
9376 int action_discarded;
9377 int ret;
9379 /* Get the swapped relocs. */
9380 internal_relocs
9381 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9382 finfo->internal_relocs, FALSE);
9383 if (internal_relocs == NULL
9384 && o->reloc_count > 0)
9385 return FALSE;
9387 if (bed->s->arch_size == 32)
9389 r_type_mask = 0xff;
9390 r_sym_shift = 8;
9392 else
9394 r_type_mask = 0xffffffff;
9395 r_sym_shift = 32;
9398 action_discarded = -1;
9399 if (!elf_section_ignore_discarded_relocs (o))
9400 action_discarded = (*bed->action_discarded) (o);
9402 /* Run through the relocs evaluating complex reloc symbols and
9403 looking for relocs against symbols from discarded sections
9404 or section symbols from removed link-once sections.
9405 Complain about relocs against discarded sections. Zero
9406 relocs against removed link-once sections. */
9408 rel = internal_relocs;
9409 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9410 for ( ; rel < relend; rel++)
9412 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9413 unsigned int s_type;
9414 asection **ps, *sec;
9415 struct elf_link_hash_entry *h = NULL;
9416 const char *sym_name;
9418 if (r_symndx == STN_UNDEF)
9419 continue;
9421 if (r_symndx >= locsymcount
9422 || (elf_bad_symtab (input_bfd)
9423 && finfo->sections[r_symndx] == NULL))
9425 h = sym_hashes[r_symndx - extsymoff];
9427 /* Badly formatted input files can contain relocs that
9428 reference non-existant symbols. Check here so that
9429 we do not seg fault. */
9430 if (h == NULL)
9432 char buffer [32];
9434 sprintf_vma (buffer, rel->r_info);
9435 (*_bfd_error_handler)
9436 (_("error: %B contains a reloc (0x%s) for section %A "
9437 "that references a non-existent global symbol"),
9438 input_bfd, o, buffer);
9439 bfd_set_error (bfd_error_bad_value);
9440 return FALSE;
9443 while (h->root.type == bfd_link_hash_indirect
9444 || h->root.type == bfd_link_hash_warning)
9445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9447 s_type = h->type;
9449 ps = NULL;
9450 if (h->root.type == bfd_link_hash_defined
9451 || h->root.type == bfd_link_hash_defweak)
9452 ps = &h->root.u.def.section;
9454 sym_name = h->root.root.string;
9456 else
9458 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9460 s_type = ELF_ST_TYPE (sym->st_info);
9461 ps = &finfo->sections[r_symndx];
9462 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9463 sym, *ps);
9466 if ((s_type == STT_RELC || s_type == STT_SRELC)
9467 && !finfo->info->relocatable)
9469 bfd_vma val;
9470 bfd_vma dot = (rel->r_offset
9471 + o->output_offset + o->output_section->vma);
9472 #ifdef DEBUG
9473 printf ("Encountered a complex symbol!");
9474 printf (" (input_bfd %s, section %s, reloc %ld\n",
9475 input_bfd->filename, o->name,
9476 (long) (rel - internal_relocs));
9477 printf (" symbol: idx %8.8lx, name %s\n",
9478 r_symndx, sym_name);
9479 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9480 (unsigned long) rel->r_info,
9481 (unsigned long) rel->r_offset);
9482 #endif
9483 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9484 isymbuf, locsymcount, s_type == STT_SRELC))
9485 return FALSE;
9487 /* Symbol evaluated OK. Update to absolute value. */
9488 set_symbol_value (input_bfd, isymbuf, locsymcount,
9489 r_symndx, val);
9490 continue;
9493 if (action_discarded != -1 && ps != NULL)
9495 /* Complain if the definition comes from a
9496 discarded section. */
9497 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9499 BFD_ASSERT (r_symndx != STN_UNDEF);
9500 if (action_discarded & COMPLAIN)
9501 (*finfo->info->callbacks->einfo)
9502 (_("%X`%s' referenced in section `%A' of %B: "
9503 "defined in discarded section `%A' of %B\n"),
9504 sym_name, o, input_bfd, sec, sec->owner);
9506 /* Try to do the best we can to support buggy old
9507 versions of gcc. Pretend that the symbol is
9508 really defined in the kept linkonce section.
9509 FIXME: This is quite broken. Modifying the
9510 symbol here means we will be changing all later
9511 uses of the symbol, not just in this section. */
9512 if (action_discarded & PRETEND)
9514 asection *kept;
9516 kept = _bfd_elf_check_kept_section (sec,
9517 finfo->info);
9518 if (kept != NULL)
9520 *ps = kept;
9521 continue;
9528 /* Relocate the section by invoking a back end routine.
9530 The back end routine is responsible for adjusting the
9531 section contents as necessary, and (if using Rela relocs
9532 and generating a relocatable output file) adjusting the
9533 reloc addend as necessary.
9535 The back end routine does not have to worry about setting
9536 the reloc address or the reloc symbol index.
9538 The back end routine is given a pointer to the swapped in
9539 internal symbols, and can access the hash table entries
9540 for the external symbols via elf_sym_hashes (input_bfd).
9542 When generating relocatable output, the back end routine
9543 must handle STB_LOCAL/STT_SECTION symbols specially. The
9544 output symbol is going to be a section symbol
9545 corresponding to the output section, which will require
9546 the addend to be adjusted. */
9548 ret = (*relocate_section) (output_bfd, finfo->info,
9549 input_bfd, o, contents,
9550 internal_relocs,
9551 isymbuf,
9552 finfo->sections);
9553 if (!ret)
9554 return FALSE;
9556 if (ret == 2
9557 || finfo->info->relocatable
9558 || finfo->info->emitrelocations)
9560 Elf_Internal_Rela *irela;
9561 Elf_Internal_Rela *irelaend, *irelamid;
9562 bfd_vma last_offset;
9563 struct elf_link_hash_entry **rel_hash;
9564 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9565 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9566 unsigned int next_erel;
9567 bfd_boolean rela_normal;
9568 struct bfd_elf_section_data *esdi, *esdo;
9570 esdi = elf_section_data (o);
9571 esdo = elf_section_data (o->output_section);
9572 rela_normal = FALSE;
9574 /* Adjust the reloc addresses and symbol indices. */
9576 irela = internal_relocs;
9577 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9578 rel_hash = esdo->rel.hashes + esdo->rel.count;
9579 /* We start processing the REL relocs, if any. When we reach
9580 IRELAMID in the loop, we switch to the RELA relocs. */
9581 irelamid = irela;
9582 if (esdi->rel.hdr != NULL)
9583 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9584 * bed->s->int_rels_per_ext_rel);
9585 rel_hash_list = rel_hash;
9586 rela_hash_list = NULL;
9587 last_offset = o->output_offset;
9588 if (!finfo->info->relocatable)
9589 last_offset += o->output_section->vma;
9590 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9592 unsigned long r_symndx;
9593 asection *sec;
9594 Elf_Internal_Sym sym;
9596 if (next_erel == bed->s->int_rels_per_ext_rel)
9598 rel_hash++;
9599 next_erel = 0;
9602 if (irela == irelamid)
9604 rel_hash = esdo->rela.hashes + esdo->rela.count;
9605 rela_hash_list = rel_hash;
9606 rela_normal = bed->rela_normal;
9609 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9610 finfo->info, o,
9611 irela->r_offset);
9612 if (irela->r_offset >= (bfd_vma) -2)
9614 /* This is a reloc for a deleted entry or somesuch.
9615 Turn it into an R_*_NONE reloc, at the same
9616 offset as the last reloc. elf_eh_frame.c and
9617 bfd_elf_discard_info rely on reloc offsets
9618 being ordered. */
9619 irela->r_offset = last_offset;
9620 irela->r_info = 0;
9621 irela->r_addend = 0;
9622 continue;
9625 irela->r_offset += o->output_offset;
9627 /* Relocs in an executable have to be virtual addresses. */
9628 if (!finfo->info->relocatable)
9629 irela->r_offset += o->output_section->vma;
9631 last_offset = irela->r_offset;
9633 r_symndx = irela->r_info >> r_sym_shift;
9634 if (r_symndx == STN_UNDEF)
9635 continue;
9637 if (r_symndx >= locsymcount
9638 || (elf_bad_symtab (input_bfd)
9639 && finfo->sections[r_symndx] == NULL))
9641 struct elf_link_hash_entry *rh;
9642 unsigned long indx;
9644 /* This is a reloc against a global symbol. We
9645 have not yet output all the local symbols, so
9646 we do not know the symbol index of any global
9647 symbol. We set the rel_hash entry for this
9648 reloc to point to the global hash table entry
9649 for this symbol. The symbol index is then
9650 set at the end of bfd_elf_final_link. */
9651 indx = r_symndx - extsymoff;
9652 rh = elf_sym_hashes (input_bfd)[indx];
9653 while (rh->root.type == bfd_link_hash_indirect
9654 || rh->root.type == bfd_link_hash_warning)
9655 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9657 /* Setting the index to -2 tells
9658 elf_link_output_extsym that this symbol is
9659 used by a reloc. */
9660 BFD_ASSERT (rh->indx < 0);
9661 rh->indx = -2;
9663 *rel_hash = rh;
9665 continue;
9668 /* This is a reloc against a local symbol. */
9670 *rel_hash = NULL;
9671 sym = isymbuf[r_symndx];
9672 sec = finfo->sections[r_symndx];
9673 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9675 /* I suppose the backend ought to fill in the
9676 section of any STT_SECTION symbol against a
9677 processor specific section. */
9678 r_symndx = STN_UNDEF;
9679 if (bfd_is_abs_section (sec))
9681 else if (sec == NULL || sec->owner == NULL)
9683 bfd_set_error (bfd_error_bad_value);
9684 return FALSE;
9686 else
9688 asection *osec = sec->output_section;
9690 /* If we have discarded a section, the output
9691 section will be the absolute section. In
9692 case of discarded SEC_MERGE sections, use
9693 the kept section. relocate_section should
9694 have already handled discarded linkonce
9695 sections. */
9696 if (bfd_is_abs_section (osec)
9697 && sec->kept_section != NULL
9698 && sec->kept_section->output_section != NULL)
9700 osec = sec->kept_section->output_section;
9701 irela->r_addend -= osec->vma;
9704 if (!bfd_is_abs_section (osec))
9706 r_symndx = osec->target_index;
9707 if (r_symndx == STN_UNDEF)
9709 struct elf_link_hash_table *htab;
9710 asection *oi;
9712 htab = elf_hash_table (finfo->info);
9713 oi = htab->text_index_section;
9714 if ((osec->flags & SEC_READONLY) == 0
9715 && htab->data_index_section != NULL)
9716 oi = htab->data_index_section;
9718 if (oi != NULL)
9720 irela->r_addend += osec->vma - oi->vma;
9721 r_symndx = oi->target_index;
9725 BFD_ASSERT (r_symndx != STN_UNDEF);
9729 /* Adjust the addend according to where the
9730 section winds up in the output section. */
9731 if (rela_normal)
9732 irela->r_addend += sec->output_offset;
9734 else
9736 if (finfo->indices[r_symndx] == -1)
9738 unsigned long shlink;
9739 const char *name;
9740 asection *osec;
9741 long indx;
9743 if (finfo->info->strip == strip_all)
9745 /* You can't do ld -r -s. */
9746 bfd_set_error (bfd_error_invalid_operation);
9747 return FALSE;
9750 /* This symbol was skipped earlier, but
9751 since it is needed by a reloc, we
9752 must output it now. */
9753 shlink = symtab_hdr->sh_link;
9754 name = (bfd_elf_string_from_elf_section
9755 (input_bfd, shlink, sym.st_name));
9756 if (name == NULL)
9757 return FALSE;
9759 osec = sec->output_section;
9760 sym.st_shndx =
9761 _bfd_elf_section_from_bfd_section (output_bfd,
9762 osec);
9763 if (sym.st_shndx == SHN_BAD)
9764 return FALSE;
9766 sym.st_value += sec->output_offset;
9767 if (! finfo->info->relocatable)
9769 sym.st_value += osec->vma;
9770 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9772 /* STT_TLS symbols are relative to PT_TLS
9773 segment base. */
9774 BFD_ASSERT (elf_hash_table (finfo->info)
9775 ->tls_sec != NULL);
9776 sym.st_value -= (elf_hash_table (finfo->info)
9777 ->tls_sec->vma);
9781 indx = bfd_get_symcount (output_bfd);
9782 ret = elf_link_output_sym (finfo, name, &sym, sec,
9783 NULL);
9784 if (ret == 0)
9785 return FALSE;
9786 else if (ret == 1)
9787 finfo->indices[r_symndx] = indx;
9788 else
9789 abort ();
9792 r_symndx = finfo->indices[r_symndx];
9795 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9796 | (irela->r_info & r_type_mask));
9799 /* Swap out the relocs. */
9800 input_rel_hdr = esdi->rel.hdr;
9801 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9803 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9804 input_rel_hdr,
9805 internal_relocs,
9806 rel_hash_list))
9807 return FALSE;
9808 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9809 * bed->s->int_rels_per_ext_rel);
9810 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9813 input_rela_hdr = esdi->rela.hdr;
9814 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9816 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9817 input_rela_hdr,
9818 internal_relocs,
9819 rela_hash_list))
9820 return FALSE;
9825 /* Write out the modified section contents. */
9826 if (bed->elf_backend_write_section
9827 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9828 contents))
9830 /* Section written out. */
9832 else switch (o->sec_info_type)
9834 case ELF_INFO_TYPE_STABS:
9835 if (! (_bfd_write_section_stabs
9836 (output_bfd,
9837 &elf_hash_table (finfo->info)->stab_info,
9838 o, &elf_section_data (o)->sec_info, contents)))
9839 return FALSE;
9840 break;
9841 case ELF_INFO_TYPE_MERGE:
9842 if (! _bfd_write_merged_section (output_bfd, o,
9843 elf_section_data (o)->sec_info))
9844 return FALSE;
9845 break;
9846 case ELF_INFO_TYPE_EH_FRAME:
9848 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9849 o, contents))
9850 return FALSE;
9852 break;
9853 default:
9855 /* FIXME: octets_per_byte. */
9856 if (! (o->flags & SEC_EXCLUDE)
9857 && ! bfd_set_section_contents (output_bfd, o->output_section,
9858 contents,
9859 (file_ptr) o->output_offset,
9860 o->size))
9861 return FALSE;
9863 break;
9867 return TRUE;
9870 /* Generate a reloc when linking an ELF file. This is a reloc
9871 requested by the linker, and does not come from any input file. This
9872 is used to build constructor and destructor tables when linking
9873 with -Ur. */
9875 static bfd_boolean
9876 elf_reloc_link_order (bfd *output_bfd,
9877 struct bfd_link_info *info,
9878 asection *output_section,
9879 struct bfd_link_order *link_order)
9881 reloc_howto_type *howto;
9882 long indx;
9883 bfd_vma offset;
9884 bfd_vma addend;
9885 struct bfd_elf_section_reloc_data *reldata;
9886 struct elf_link_hash_entry **rel_hash_ptr;
9887 Elf_Internal_Shdr *rel_hdr;
9888 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9889 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9890 bfd_byte *erel;
9891 unsigned int i;
9892 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9894 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9895 if (howto == NULL)
9897 bfd_set_error (bfd_error_bad_value);
9898 return FALSE;
9901 addend = link_order->u.reloc.p->addend;
9903 if (esdo->rel.hdr)
9904 reldata = &esdo->rel;
9905 else if (esdo->rela.hdr)
9906 reldata = &esdo->rela;
9907 else
9909 reldata = NULL;
9910 BFD_ASSERT (0);
9913 /* Figure out the symbol index. */
9914 rel_hash_ptr = reldata->hashes + reldata->count;
9915 if (link_order->type == bfd_section_reloc_link_order)
9917 indx = link_order->u.reloc.p->u.section->target_index;
9918 BFD_ASSERT (indx != 0);
9919 *rel_hash_ptr = NULL;
9921 else
9923 struct elf_link_hash_entry *h;
9925 /* Treat a reloc against a defined symbol as though it were
9926 actually against the section. */
9927 h = ((struct elf_link_hash_entry *)
9928 bfd_wrapped_link_hash_lookup (output_bfd, info,
9929 link_order->u.reloc.p->u.name,
9930 FALSE, FALSE, TRUE));
9931 if (h != NULL
9932 && (h->root.type == bfd_link_hash_defined
9933 || h->root.type == bfd_link_hash_defweak))
9935 asection *section;
9937 section = h->root.u.def.section;
9938 indx = section->output_section->target_index;
9939 *rel_hash_ptr = NULL;
9940 /* It seems that we ought to add the symbol value to the
9941 addend here, but in practice it has already been added
9942 because it was passed to constructor_callback. */
9943 addend += section->output_section->vma + section->output_offset;
9945 else if (h != NULL)
9947 /* Setting the index to -2 tells elf_link_output_extsym that
9948 this symbol is used by a reloc. */
9949 h->indx = -2;
9950 *rel_hash_ptr = h;
9951 indx = 0;
9953 else
9955 if (! ((*info->callbacks->unattached_reloc)
9956 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9957 return FALSE;
9958 indx = 0;
9962 /* If this is an inplace reloc, we must write the addend into the
9963 object file. */
9964 if (howto->partial_inplace && addend != 0)
9966 bfd_size_type size;
9967 bfd_reloc_status_type rstat;
9968 bfd_byte *buf;
9969 bfd_boolean ok;
9970 const char *sym_name;
9972 size = (bfd_size_type) bfd_get_reloc_size (howto);
9973 buf = (bfd_byte *) bfd_zmalloc (size);
9974 if (buf == NULL)
9975 return FALSE;
9976 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9977 switch (rstat)
9979 case bfd_reloc_ok:
9980 break;
9982 default:
9983 case bfd_reloc_outofrange:
9984 abort ();
9986 case bfd_reloc_overflow:
9987 if (link_order->type == bfd_section_reloc_link_order)
9988 sym_name = bfd_section_name (output_bfd,
9989 link_order->u.reloc.p->u.section);
9990 else
9991 sym_name = link_order->u.reloc.p->u.name;
9992 if (! ((*info->callbacks->reloc_overflow)
9993 (info, NULL, sym_name, howto->name, addend, NULL,
9994 NULL, (bfd_vma) 0)))
9996 free (buf);
9997 return FALSE;
9999 break;
10001 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10002 link_order->offset, size);
10003 free (buf);
10004 if (! ok)
10005 return FALSE;
10008 /* The address of a reloc is relative to the section in a
10009 relocatable file, and is a virtual address in an executable
10010 file. */
10011 offset = link_order->offset;
10012 if (! info->relocatable)
10013 offset += output_section->vma;
10015 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10017 irel[i].r_offset = offset;
10018 irel[i].r_info = 0;
10019 irel[i].r_addend = 0;
10021 if (bed->s->arch_size == 32)
10022 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10023 else
10024 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10026 rel_hdr = reldata->hdr;
10027 erel = rel_hdr->contents;
10028 if (rel_hdr->sh_type == SHT_REL)
10030 erel += reldata->count * bed->s->sizeof_rel;
10031 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10033 else
10035 irel[0].r_addend = addend;
10036 erel += reldata->count * bed->s->sizeof_rela;
10037 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10040 ++reldata->count;
10042 return TRUE;
10046 /* Get the output vma of the section pointed to by the sh_link field. */
10048 static bfd_vma
10049 elf_get_linked_section_vma (struct bfd_link_order *p)
10051 Elf_Internal_Shdr **elf_shdrp;
10052 asection *s;
10053 int elfsec;
10055 s = p->u.indirect.section;
10056 elf_shdrp = elf_elfsections (s->owner);
10057 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10058 elfsec = elf_shdrp[elfsec]->sh_link;
10059 /* PR 290:
10060 The Intel C compiler generates SHT_IA_64_UNWIND with
10061 SHF_LINK_ORDER. But it doesn't set the sh_link or
10062 sh_info fields. Hence we could get the situation
10063 where elfsec is 0. */
10064 if (elfsec == 0)
10066 const struct elf_backend_data *bed
10067 = get_elf_backend_data (s->owner);
10068 if (bed->link_order_error_handler)
10069 bed->link_order_error_handler
10070 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10071 return 0;
10073 else
10075 s = elf_shdrp[elfsec]->bfd_section;
10076 return s->output_section->vma + s->output_offset;
10081 /* Compare two sections based on the locations of the sections they are
10082 linked to. Used by elf_fixup_link_order. */
10084 static int
10085 compare_link_order (const void * a, const void * b)
10087 bfd_vma apos;
10088 bfd_vma bpos;
10090 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10091 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10092 if (apos < bpos)
10093 return -1;
10094 return apos > bpos;
10098 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10099 order as their linked sections. Returns false if this could not be done
10100 because an output section includes both ordered and unordered
10101 sections. Ideally we'd do this in the linker proper. */
10103 static bfd_boolean
10104 elf_fixup_link_order (bfd *abfd, asection *o)
10106 int seen_linkorder;
10107 int seen_other;
10108 int n;
10109 struct bfd_link_order *p;
10110 bfd *sub;
10111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10112 unsigned elfsec;
10113 struct bfd_link_order **sections;
10114 asection *s, *other_sec, *linkorder_sec;
10115 bfd_vma offset;
10117 other_sec = NULL;
10118 linkorder_sec = NULL;
10119 seen_other = 0;
10120 seen_linkorder = 0;
10121 for (p = o->map_head.link_order; p != NULL; p = p->next)
10123 if (p->type == bfd_indirect_link_order)
10125 s = p->u.indirect.section;
10126 sub = s->owner;
10127 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10128 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10129 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10130 && elfsec < elf_numsections (sub)
10131 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10132 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10134 seen_linkorder++;
10135 linkorder_sec = s;
10137 else
10139 seen_other++;
10140 other_sec = s;
10143 else
10144 seen_other++;
10146 if (seen_other && seen_linkorder)
10148 if (other_sec && linkorder_sec)
10149 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10150 o, linkorder_sec,
10151 linkorder_sec->owner, other_sec,
10152 other_sec->owner);
10153 else
10154 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10156 bfd_set_error (bfd_error_bad_value);
10157 return FALSE;
10161 if (!seen_linkorder)
10162 return TRUE;
10164 sections = (struct bfd_link_order **)
10165 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10166 if (sections == NULL)
10167 return FALSE;
10168 seen_linkorder = 0;
10170 for (p = o->map_head.link_order; p != NULL; p = p->next)
10172 sections[seen_linkorder++] = p;
10174 /* Sort the input sections in the order of their linked section. */
10175 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10176 compare_link_order);
10178 /* Change the offsets of the sections. */
10179 offset = 0;
10180 for (n = 0; n < seen_linkorder; n++)
10182 s = sections[n]->u.indirect.section;
10183 offset &= ~(bfd_vma) 0 << s->alignment_power;
10184 s->output_offset = offset;
10185 sections[n]->offset = offset;
10186 /* FIXME: octets_per_byte. */
10187 offset += sections[n]->size;
10190 free (sections);
10191 return TRUE;
10195 /* Do the final step of an ELF link. */
10197 bfd_boolean
10198 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10200 bfd_boolean dynamic;
10201 bfd_boolean emit_relocs;
10202 bfd *dynobj;
10203 struct elf_final_link_info finfo;
10204 asection *o;
10205 struct bfd_link_order *p;
10206 bfd *sub;
10207 bfd_size_type max_contents_size;
10208 bfd_size_type max_external_reloc_size;
10209 bfd_size_type max_internal_reloc_count;
10210 bfd_size_type max_sym_count;
10211 bfd_size_type max_sym_shndx_count;
10212 file_ptr off;
10213 Elf_Internal_Sym elfsym;
10214 unsigned int i;
10215 Elf_Internal_Shdr *symtab_hdr;
10216 Elf_Internal_Shdr *symtab_shndx_hdr;
10217 Elf_Internal_Shdr *symstrtab_hdr;
10218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10219 struct elf_outext_info eoinfo;
10220 bfd_boolean merged;
10221 size_t relativecount = 0;
10222 asection *reldyn = 0;
10223 bfd_size_type amt;
10224 asection *attr_section = NULL;
10225 bfd_vma attr_size = 0;
10226 const char *std_attrs_section;
10228 if (! is_elf_hash_table (info->hash))
10229 return FALSE;
10231 if (info->shared)
10232 abfd->flags |= DYNAMIC;
10234 dynamic = elf_hash_table (info)->dynamic_sections_created;
10235 dynobj = elf_hash_table (info)->dynobj;
10237 emit_relocs = (info->relocatable
10238 || info->emitrelocations);
10240 finfo.info = info;
10241 finfo.output_bfd = abfd;
10242 finfo.symstrtab = _bfd_elf_stringtab_init ();
10243 if (finfo.symstrtab == NULL)
10244 return FALSE;
10246 if (! dynamic)
10248 finfo.dynsym_sec = NULL;
10249 finfo.hash_sec = NULL;
10250 finfo.symver_sec = NULL;
10252 else
10254 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10255 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10256 BFD_ASSERT (finfo.dynsym_sec != NULL);
10257 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10258 /* Note that it is OK if symver_sec is NULL. */
10261 finfo.contents = NULL;
10262 finfo.external_relocs = NULL;
10263 finfo.internal_relocs = NULL;
10264 finfo.external_syms = NULL;
10265 finfo.locsym_shndx = NULL;
10266 finfo.internal_syms = NULL;
10267 finfo.indices = NULL;
10268 finfo.sections = NULL;
10269 finfo.symbuf = NULL;
10270 finfo.symshndxbuf = NULL;
10271 finfo.symbuf_count = 0;
10272 finfo.shndxbuf_size = 0;
10274 /* The object attributes have been merged. Remove the input
10275 sections from the link, and set the contents of the output
10276 secton. */
10277 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10278 for (o = abfd->sections; o != NULL; o = o->next)
10280 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10281 || strcmp (o->name, ".gnu.attributes") == 0)
10283 for (p = o->map_head.link_order; p != NULL; p = p->next)
10285 asection *input_section;
10287 if (p->type != bfd_indirect_link_order)
10288 continue;
10289 input_section = p->u.indirect.section;
10290 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10291 elf_link_input_bfd ignores this section. */
10292 input_section->flags &= ~SEC_HAS_CONTENTS;
10295 attr_size = bfd_elf_obj_attr_size (abfd);
10296 if (attr_size)
10298 bfd_set_section_size (abfd, o, attr_size);
10299 attr_section = o;
10300 /* Skip this section later on. */
10301 o->map_head.link_order = NULL;
10303 else
10304 o->flags |= SEC_EXCLUDE;
10308 /* Count up the number of relocations we will output for each output
10309 section, so that we know the sizes of the reloc sections. We
10310 also figure out some maximum sizes. */
10311 max_contents_size = 0;
10312 max_external_reloc_size = 0;
10313 max_internal_reloc_count = 0;
10314 max_sym_count = 0;
10315 max_sym_shndx_count = 0;
10316 merged = FALSE;
10317 for (o = abfd->sections; o != NULL; o = o->next)
10319 struct bfd_elf_section_data *esdo = elf_section_data (o);
10320 o->reloc_count = 0;
10322 for (p = o->map_head.link_order; p != NULL; p = p->next)
10324 unsigned int reloc_count = 0;
10325 struct bfd_elf_section_data *esdi = NULL;
10327 if (p->type == bfd_section_reloc_link_order
10328 || p->type == bfd_symbol_reloc_link_order)
10329 reloc_count = 1;
10330 else if (p->type == bfd_indirect_link_order)
10332 asection *sec;
10334 sec = p->u.indirect.section;
10335 esdi = elf_section_data (sec);
10337 /* Mark all sections which are to be included in the
10338 link. This will normally be every section. We need
10339 to do this so that we can identify any sections which
10340 the linker has decided to not include. */
10341 sec->linker_mark = TRUE;
10343 if (sec->flags & SEC_MERGE)
10344 merged = TRUE;
10346 if (info->relocatable || info->emitrelocations)
10347 reloc_count = sec->reloc_count;
10348 else if (bed->elf_backend_count_relocs)
10349 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10351 if (sec->rawsize > max_contents_size)
10352 max_contents_size = sec->rawsize;
10353 if (sec->size > max_contents_size)
10354 max_contents_size = sec->size;
10356 /* We are interested in just local symbols, not all
10357 symbols. */
10358 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10359 && (sec->owner->flags & DYNAMIC) == 0)
10361 size_t sym_count;
10363 if (elf_bad_symtab (sec->owner))
10364 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10365 / bed->s->sizeof_sym);
10366 else
10367 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10369 if (sym_count > max_sym_count)
10370 max_sym_count = sym_count;
10372 if (sym_count > max_sym_shndx_count
10373 && elf_symtab_shndx (sec->owner) != 0)
10374 max_sym_shndx_count = sym_count;
10376 if ((sec->flags & SEC_RELOC) != 0)
10378 size_t ext_size = 0;
10380 if (esdi->rel.hdr != NULL)
10381 ext_size = esdi->rel.hdr->sh_size;
10382 if (esdi->rela.hdr != NULL)
10383 ext_size += esdi->rela.hdr->sh_size;
10385 if (ext_size > max_external_reloc_size)
10386 max_external_reloc_size = ext_size;
10387 if (sec->reloc_count > max_internal_reloc_count)
10388 max_internal_reloc_count = sec->reloc_count;
10393 if (reloc_count == 0)
10394 continue;
10396 o->reloc_count += reloc_count;
10398 if (p->type == bfd_indirect_link_order
10399 && (info->relocatable || info->emitrelocations))
10401 if (esdi->rel.hdr)
10402 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10403 if (esdi->rela.hdr)
10404 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10406 else
10408 if (o->use_rela_p)
10409 esdo->rela.count += reloc_count;
10410 else
10411 esdo->rel.count += reloc_count;
10415 if (o->reloc_count > 0)
10416 o->flags |= SEC_RELOC;
10417 else
10419 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10420 set it (this is probably a bug) and if it is set
10421 assign_section_numbers will create a reloc section. */
10422 o->flags &=~ SEC_RELOC;
10425 /* If the SEC_ALLOC flag is not set, force the section VMA to
10426 zero. This is done in elf_fake_sections as well, but forcing
10427 the VMA to 0 here will ensure that relocs against these
10428 sections are handled correctly. */
10429 if ((o->flags & SEC_ALLOC) == 0
10430 && ! o->user_set_vma)
10431 o->vma = 0;
10434 if (! info->relocatable && merged)
10435 elf_link_hash_traverse (elf_hash_table (info),
10436 _bfd_elf_link_sec_merge_syms, abfd);
10438 /* Figure out the file positions for everything but the symbol table
10439 and the relocs. We set symcount to force assign_section_numbers
10440 to create a symbol table. */
10441 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10442 BFD_ASSERT (! abfd->output_has_begun);
10443 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10444 goto error_return;
10446 /* Set sizes, and assign file positions for reloc sections. */
10447 for (o = abfd->sections; o != NULL; o = o->next)
10449 struct bfd_elf_section_data *esdo = elf_section_data (o);
10450 if ((o->flags & SEC_RELOC) != 0)
10452 if (esdo->rel.hdr
10453 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10454 goto error_return;
10456 if (esdo->rela.hdr
10457 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10458 goto error_return;
10461 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10462 to count upwards while actually outputting the relocations. */
10463 esdo->rel.count = 0;
10464 esdo->rela.count = 0;
10467 _bfd_elf_assign_file_positions_for_relocs (abfd);
10469 /* We have now assigned file positions for all the sections except
10470 .symtab and .strtab. We start the .symtab section at the current
10471 file position, and write directly to it. We build the .strtab
10472 section in memory. */
10473 bfd_get_symcount (abfd) = 0;
10474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10475 /* sh_name is set in prep_headers. */
10476 symtab_hdr->sh_type = SHT_SYMTAB;
10477 /* sh_flags, sh_addr and sh_size all start off zero. */
10478 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10479 /* sh_link is set in assign_section_numbers. */
10480 /* sh_info is set below. */
10481 /* sh_offset is set just below. */
10482 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10484 off = elf_tdata (abfd)->next_file_pos;
10485 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10487 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10488 incorrect. We do not yet know the size of the .symtab section.
10489 We correct next_file_pos below, after we do know the size. */
10491 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10492 continuously seeking to the right position in the file. */
10493 if (! info->keep_memory || max_sym_count < 20)
10494 finfo.symbuf_size = 20;
10495 else
10496 finfo.symbuf_size = max_sym_count;
10497 amt = finfo.symbuf_size;
10498 amt *= bed->s->sizeof_sym;
10499 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10500 if (finfo.symbuf == NULL)
10501 goto error_return;
10502 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10504 /* Wild guess at number of output symbols. realloc'd as needed. */
10505 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10506 finfo.shndxbuf_size = amt;
10507 amt *= sizeof (Elf_External_Sym_Shndx);
10508 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10509 if (finfo.symshndxbuf == NULL)
10510 goto error_return;
10513 /* Start writing out the symbol table. The first symbol is always a
10514 dummy symbol. */
10515 if (info->strip != strip_all
10516 || emit_relocs)
10518 elfsym.st_value = 0;
10519 elfsym.st_size = 0;
10520 elfsym.st_info = 0;
10521 elfsym.st_other = 0;
10522 elfsym.st_shndx = SHN_UNDEF;
10523 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10524 NULL) != 1)
10525 goto error_return;
10528 /* Output a symbol for each section. We output these even if we are
10529 discarding local symbols, since they are used for relocs. These
10530 symbols have no names. We store the index of each one in the
10531 index field of the section, so that we can find it again when
10532 outputting relocs. */
10533 if (info->strip != strip_all
10534 || emit_relocs)
10536 elfsym.st_size = 0;
10537 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10538 elfsym.st_other = 0;
10539 elfsym.st_value = 0;
10540 for (i = 1; i < elf_numsections (abfd); i++)
10542 o = bfd_section_from_elf_index (abfd, i);
10543 if (o != NULL)
10545 o->target_index = bfd_get_symcount (abfd);
10546 elfsym.st_shndx = i;
10547 if (!info->relocatable)
10548 elfsym.st_value = o->vma;
10549 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10550 goto error_return;
10555 /* Allocate some memory to hold information read in from the input
10556 files. */
10557 if (max_contents_size != 0)
10559 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10560 if (finfo.contents == NULL)
10561 goto error_return;
10564 if (max_external_reloc_size != 0)
10566 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10567 if (finfo.external_relocs == NULL)
10568 goto error_return;
10571 if (max_internal_reloc_count != 0)
10573 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10574 amt *= sizeof (Elf_Internal_Rela);
10575 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10576 if (finfo.internal_relocs == NULL)
10577 goto error_return;
10580 if (max_sym_count != 0)
10582 amt = max_sym_count * bed->s->sizeof_sym;
10583 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10584 if (finfo.external_syms == NULL)
10585 goto error_return;
10587 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10588 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10589 if (finfo.internal_syms == NULL)
10590 goto error_return;
10592 amt = max_sym_count * sizeof (long);
10593 finfo.indices = (long int *) bfd_malloc (amt);
10594 if (finfo.indices == NULL)
10595 goto error_return;
10597 amt = max_sym_count * sizeof (asection *);
10598 finfo.sections = (asection **) bfd_malloc (amt);
10599 if (finfo.sections == NULL)
10600 goto error_return;
10603 if (max_sym_shndx_count != 0)
10605 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10606 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10607 if (finfo.locsym_shndx == NULL)
10608 goto error_return;
10611 if (elf_hash_table (info)->tls_sec)
10613 bfd_vma base, end = 0;
10614 asection *sec;
10616 for (sec = elf_hash_table (info)->tls_sec;
10617 sec && (sec->flags & SEC_THREAD_LOCAL);
10618 sec = sec->next)
10620 bfd_size_type size = sec->size;
10622 if (size == 0
10623 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10625 struct bfd_link_order *ord = sec->map_tail.link_order;
10627 if (ord != NULL)
10628 size = ord->offset + ord->size;
10630 end = sec->vma + size;
10632 base = elf_hash_table (info)->tls_sec->vma;
10633 /* Only align end of TLS section if static TLS doesn't have special
10634 alignment requirements. */
10635 if (bed->static_tls_alignment == 1)
10636 end = align_power (end,
10637 elf_hash_table (info)->tls_sec->alignment_power);
10638 elf_hash_table (info)->tls_size = end - base;
10641 /* Reorder SHF_LINK_ORDER sections. */
10642 for (o = abfd->sections; o != NULL; o = o->next)
10644 if (!elf_fixup_link_order (abfd, o))
10645 return FALSE;
10648 /* Since ELF permits relocations to be against local symbols, we
10649 must have the local symbols available when we do the relocations.
10650 Since we would rather only read the local symbols once, and we
10651 would rather not keep them in memory, we handle all the
10652 relocations for a single input file at the same time.
10654 Unfortunately, there is no way to know the total number of local
10655 symbols until we have seen all of them, and the local symbol
10656 indices precede the global symbol indices. This means that when
10657 we are generating relocatable output, and we see a reloc against
10658 a global symbol, we can not know the symbol index until we have
10659 finished examining all the local symbols to see which ones we are
10660 going to output. To deal with this, we keep the relocations in
10661 memory, and don't output them until the end of the link. This is
10662 an unfortunate waste of memory, but I don't see a good way around
10663 it. Fortunately, it only happens when performing a relocatable
10664 link, which is not the common case. FIXME: If keep_memory is set
10665 we could write the relocs out and then read them again; I don't
10666 know how bad the memory loss will be. */
10668 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10669 sub->output_has_begun = FALSE;
10670 for (o = abfd->sections; o != NULL; o = o->next)
10672 for (p = o->map_head.link_order; p != NULL; p = p->next)
10674 if (p->type == bfd_indirect_link_order
10675 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10676 == bfd_target_elf_flavour)
10677 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10679 if (! sub->output_has_begun)
10681 if (! elf_link_input_bfd (&finfo, sub))
10682 goto error_return;
10683 sub->output_has_begun = TRUE;
10686 else if (p->type == bfd_section_reloc_link_order
10687 || p->type == bfd_symbol_reloc_link_order)
10689 if (! elf_reloc_link_order (abfd, info, o, p))
10690 goto error_return;
10692 else
10694 if (! _bfd_default_link_order (abfd, info, o, p))
10696 if (p->type == bfd_indirect_link_order
10697 && (bfd_get_flavour (sub)
10698 == bfd_target_elf_flavour)
10699 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10700 != bed->s->elfclass))
10702 const char *iclass, *oclass;
10704 if (bed->s->elfclass == ELFCLASS64)
10706 iclass = "ELFCLASS32";
10707 oclass = "ELFCLASS64";
10709 else
10711 iclass = "ELFCLASS64";
10712 oclass = "ELFCLASS32";
10715 bfd_set_error (bfd_error_wrong_format);
10716 (*_bfd_error_handler)
10717 (_("%B: file class %s incompatible with %s"),
10718 sub, iclass, oclass);
10721 goto error_return;
10727 /* Free symbol buffer if needed. */
10728 if (!info->reduce_memory_overheads)
10730 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10731 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10732 && elf_tdata (sub)->symbuf)
10734 free (elf_tdata (sub)->symbuf);
10735 elf_tdata (sub)->symbuf = NULL;
10739 /* Output any global symbols that got converted to local in a
10740 version script or due to symbol visibility. We do this in a
10741 separate step since ELF requires all local symbols to appear
10742 prior to any global symbols. FIXME: We should only do this if
10743 some global symbols were, in fact, converted to become local.
10744 FIXME: Will this work correctly with the Irix 5 linker? */
10745 eoinfo.failed = FALSE;
10746 eoinfo.finfo = &finfo;
10747 eoinfo.localsyms = TRUE;
10748 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10749 &eoinfo);
10750 if (eoinfo.failed)
10751 return FALSE;
10753 /* If backend needs to output some local symbols not present in the hash
10754 table, do it now. */
10755 if (bed->elf_backend_output_arch_local_syms)
10757 typedef int (*out_sym_func)
10758 (void *, const char *, Elf_Internal_Sym *, asection *,
10759 struct elf_link_hash_entry *);
10761 if (! ((*bed->elf_backend_output_arch_local_syms)
10762 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10763 return FALSE;
10766 /* That wrote out all the local symbols. Finish up the symbol table
10767 with the global symbols. Even if we want to strip everything we
10768 can, we still need to deal with those global symbols that got
10769 converted to local in a version script. */
10771 /* The sh_info field records the index of the first non local symbol. */
10772 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10774 if (dynamic
10775 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10777 Elf_Internal_Sym sym;
10778 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10779 long last_local = 0;
10781 /* Write out the section symbols for the output sections. */
10782 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10784 asection *s;
10786 sym.st_size = 0;
10787 sym.st_name = 0;
10788 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10789 sym.st_other = 0;
10791 for (s = abfd->sections; s != NULL; s = s->next)
10793 int indx;
10794 bfd_byte *dest;
10795 long dynindx;
10797 dynindx = elf_section_data (s)->dynindx;
10798 if (dynindx <= 0)
10799 continue;
10800 indx = elf_section_data (s)->this_idx;
10801 BFD_ASSERT (indx > 0);
10802 sym.st_shndx = indx;
10803 if (! check_dynsym (abfd, &sym))
10804 return FALSE;
10805 sym.st_value = s->vma;
10806 dest = dynsym + dynindx * bed->s->sizeof_sym;
10807 if (last_local < dynindx)
10808 last_local = dynindx;
10809 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10813 /* Write out the local dynsyms. */
10814 if (elf_hash_table (info)->dynlocal)
10816 struct elf_link_local_dynamic_entry *e;
10817 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10819 asection *s;
10820 bfd_byte *dest;
10822 /* Copy the internal symbol and turn off visibility.
10823 Note that we saved a word of storage and overwrote
10824 the original st_name with the dynstr_index. */
10825 sym = e->isym;
10826 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10828 s = bfd_section_from_elf_index (e->input_bfd,
10829 e->isym.st_shndx);
10830 if (s != NULL)
10832 sym.st_shndx =
10833 elf_section_data (s->output_section)->this_idx;
10834 if (! check_dynsym (abfd, &sym))
10835 return FALSE;
10836 sym.st_value = (s->output_section->vma
10837 + s->output_offset
10838 + e->isym.st_value);
10841 if (last_local < e->dynindx)
10842 last_local = e->dynindx;
10844 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10845 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10849 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10850 last_local + 1;
10853 /* We get the global symbols from the hash table. */
10854 eoinfo.failed = FALSE;
10855 eoinfo.localsyms = FALSE;
10856 eoinfo.finfo = &finfo;
10857 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10858 &eoinfo);
10859 if (eoinfo.failed)
10860 return FALSE;
10862 /* If backend needs to output some symbols not present in the hash
10863 table, do it now. */
10864 if (bed->elf_backend_output_arch_syms)
10866 typedef int (*out_sym_func)
10867 (void *, const char *, Elf_Internal_Sym *, asection *,
10868 struct elf_link_hash_entry *);
10870 if (! ((*bed->elf_backend_output_arch_syms)
10871 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10872 return FALSE;
10875 /* Flush all symbols to the file. */
10876 if (! elf_link_flush_output_syms (&finfo, bed))
10877 return FALSE;
10879 /* Now we know the size of the symtab section. */
10880 off += symtab_hdr->sh_size;
10882 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10883 if (symtab_shndx_hdr->sh_name != 0)
10885 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10886 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10887 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10888 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10889 symtab_shndx_hdr->sh_size = amt;
10891 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10892 off, TRUE);
10894 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10895 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10896 return FALSE;
10900 /* Finish up and write out the symbol string table (.strtab)
10901 section. */
10902 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10903 /* sh_name was set in prep_headers. */
10904 symstrtab_hdr->sh_type = SHT_STRTAB;
10905 symstrtab_hdr->sh_flags = 0;
10906 symstrtab_hdr->sh_addr = 0;
10907 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10908 symstrtab_hdr->sh_entsize = 0;
10909 symstrtab_hdr->sh_link = 0;
10910 symstrtab_hdr->sh_info = 0;
10911 /* sh_offset is set just below. */
10912 symstrtab_hdr->sh_addralign = 1;
10914 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10915 elf_tdata (abfd)->next_file_pos = off;
10917 if (bfd_get_symcount (abfd) > 0)
10919 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10920 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10921 return FALSE;
10924 /* Adjust the relocs to have the correct symbol indices. */
10925 for (o = abfd->sections; o != NULL; o = o->next)
10927 struct bfd_elf_section_data *esdo = elf_section_data (o);
10928 if ((o->flags & SEC_RELOC) == 0)
10929 continue;
10931 if (esdo->rel.hdr != NULL)
10932 elf_link_adjust_relocs (abfd, &esdo->rel);
10933 if (esdo->rela.hdr != NULL)
10934 elf_link_adjust_relocs (abfd, &esdo->rela);
10936 /* Set the reloc_count field to 0 to prevent write_relocs from
10937 trying to swap the relocs out itself. */
10938 o->reloc_count = 0;
10941 if (dynamic && info->combreloc && dynobj != NULL)
10942 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10944 /* If we are linking against a dynamic object, or generating a
10945 shared library, finish up the dynamic linking information. */
10946 if (dynamic)
10948 bfd_byte *dyncon, *dynconend;
10950 /* Fix up .dynamic entries. */
10951 o = bfd_get_section_by_name (dynobj, ".dynamic");
10952 BFD_ASSERT (o != NULL);
10954 dyncon = o->contents;
10955 dynconend = o->contents + o->size;
10956 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10958 Elf_Internal_Dyn dyn;
10959 const char *name;
10960 unsigned int type;
10962 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10964 switch (dyn.d_tag)
10966 default:
10967 continue;
10968 case DT_NULL:
10969 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10971 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10973 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10974 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10975 default: continue;
10977 dyn.d_un.d_val = relativecount;
10978 relativecount = 0;
10979 break;
10981 continue;
10983 case DT_INIT:
10984 name = info->init_function;
10985 goto get_sym;
10986 case DT_FINI:
10987 name = info->fini_function;
10988 get_sym:
10990 struct elf_link_hash_entry *h;
10992 h = elf_link_hash_lookup (elf_hash_table (info), name,
10993 FALSE, FALSE, TRUE);
10994 if (h != NULL
10995 && (h->root.type == bfd_link_hash_defined
10996 || h->root.type == bfd_link_hash_defweak))
10998 dyn.d_un.d_ptr = h->root.u.def.value;
10999 o = h->root.u.def.section;
11000 if (o->output_section != NULL)
11001 dyn.d_un.d_ptr += (o->output_section->vma
11002 + o->output_offset);
11003 else
11005 /* The symbol is imported from another shared
11006 library and does not apply to this one. */
11007 dyn.d_un.d_ptr = 0;
11009 break;
11012 continue;
11014 case DT_PREINIT_ARRAYSZ:
11015 name = ".preinit_array";
11016 goto get_size;
11017 case DT_INIT_ARRAYSZ:
11018 name = ".init_array";
11019 goto get_size;
11020 case DT_FINI_ARRAYSZ:
11021 name = ".fini_array";
11022 get_size:
11023 o = bfd_get_section_by_name (abfd, name);
11024 if (o == NULL)
11026 (*_bfd_error_handler)
11027 (_("%B: could not find output section %s"), abfd, name);
11028 goto error_return;
11030 if (o->size == 0)
11031 (*_bfd_error_handler)
11032 (_("warning: %s section has zero size"), name);
11033 dyn.d_un.d_val = o->size;
11034 break;
11036 case DT_PREINIT_ARRAY:
11037 name = ".preinit_array";
11038 goto get_vma;
11039 case DT_INIT_ARRAY:
11040 name = ".init_array";
11041 goto get_vma;
11042 case DT_FINI_ARRAY:
11043 name = ".fini_array";
11044 goto get_vma;
11046 case DT_HASH:
11047 name = ".hash";
11048 goto get_vma;
11049 case DT_GNU_HASH:
11050 name = ".gnu.hash";
11051 goto get_vma;
11052 case DT_STRTAB:
11053 name = ".dynstr";
11054 goto get_vma;
11055 case DT_SYMTAB:
11056 name = ".dynsym";
11057 goto get_vma;
11058 case DT_VERDEF:
11059 name = ".gnu.version_d";
11060 goto get_vma;
11061 case DT_VERNEED:
11062 name = ".gnu.version_r";
11063 goto get_vma;
11064 case DT_VERSYM:
11065 name = ".gnu.version";
11066 get_vma:
11067 o = bfd_get_section_by_name (abfd, name);
11068 if (o == NULL)
11070 (*_bfd_error_handler)
11071 (_("%B: could not find output section %s"), abfd, name);
11072 goto error_return;
11074 dyn.d_un.d_ptr = o->vma;
11075 break;
11077 case DT_REL:
11078 case DT_RELA:
11079 case DT_RELSZ:
11080 case DT_RELASZ:
11081 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11082 type = SHT_REL;
11083 else
11084 type = SHT_RELA;
11085 dyn.d_un.d_val = 0;
11086 dyn.d_un.d_ptr = 0;
11087 for (i = 1; i < elf_numsections (abfd); i++)
11089 Elf_Internal_Shdr *hdr;
11091 hdr = elf_elfsections (abfd)[i];
11092 if (hdr->sh_type == type
11093 && (hdr->sh_flags & SHF_ALLOC) != 0)
11095 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11096 dyn.d_un.d_val += hdr->sh_size;
11097 else
11099 if (dyn.d_un.d_ptr == 0
11100 || hdr->sh_addr < dyn.d_un.d_ptr)
11101 dyn.d_un.d_ptr = hdr->sh_addr;
11105 break;
11107 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11111 /* If we have created any dynamic sections, then output them. */
11112 if (dynobj != NULL)
11114 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11115 goto error_return;
11117 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11118 if (info->warn_shared_textrel && info->shared)
11120 bfd_byte *dyncon, *dynconend;
11122 /* Fix up .dynamic entries. */
11123 o = bfd_get_section_by_name (dynobj, ".dynamic");
11124 BFD_ASSERT (o != NULL);
11126 dyncon = o->contents;
11127 dynconend = o->contents + o->size;
11128 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11130 Elf_Internal_Dyn dyn;
11132 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11134 if (dyn.d_tag == DT_TEXTREL)
11136 info->callbacks->einfo
11137 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11138 break;
11143 for (o = dynobj->sections; o != NULL; o = o->next)
11145 if ((o->flags & SEC_HAS_CONTENTS) == 0
11146 || o->size == 0
11147 || o->output_section == bfd_abs_section_ptr)
11148 continue;
11149 if ((o->flags & SEC_LINKER_CREATED) == 0)
11151 /* At this point, we are only interested in sections
11152 created by _bfd_elf_link_create_dynamic_sections. */
11153 continue;
11155 if (elf_hash_table (info)->stab_info.stabstr == o)
11156 continue;
11157 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11158 continue;
11159 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11160 != SHT_STRTAB)
11161 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11163 /* FIXME: octets_per_byte. */
11164 if (! bfd_set_section_contents (abfd, o->output_section,
11165 o->contents,
11166 (file_ptr) o->output_offset,
11167 o->size))
11168 goto error_return;
11170 else
11172 /* The contents of the .dynstr section are actually in a
11173 stringtab. */
11174 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11175 if (bfd_seek (abfd, off, SEEK_SET) != 0
11176 || ! _bfd_elf_strtab_emit (abfd,
11177 elf_hash_table (info)->dynstr))
11178 goto error_return;
11183 if (info->relocatable)
11185 bfd_boolean failed = FALSE;
11187 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11188 if (failed)
11189 goto error_return;
11192 /* If we have optimized stabs strings, output them. */
11193 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11195 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11196 goto error_return;
11199 if (info->eh_frame_hdr)
11201 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11202 goto error_return;
11205 if (finfo.symstrtab != NULL)
11206 _bfd_stringtab_free (finfo.symstrtab);
11207 if (finfo.contents != NULL)
11208 free (finfo.contents);
11209 if (finfo.external_relocs != NULL)
11210 free (finfo.external_relocs);
11211 if (finfo.internal_relocs != NULL)
11212 free (finfo.internal_relocs);
11213 if (finfo.external_syms != NULL)
11214 free (finfo.external_syms);
11215 if (finfo.locsym_shndx != NULL)
11216 free (finfo.locsym_shndx);
11217 if (finfo.internal_syms != NULL)
11218 free (finfo.internal_syms);
11219 if (finfo.indices != NULL)
11220 free (finfo.indices);
11221 if (finfo.sections != NULL)
11222 free (finfo.sections);
11223 if (finfo.symbuf != NULL)
11224 free (finfo.symbuf);
11225 if (finfo.symshndxbuf != NULL)
11226 free (finfo.symshndxbuf);
11227 for (o = abfd->sections; o != NULL; o = o->next)
11229 struct bfd_elf_section_data *esdo = elf_section_data (o);
11230 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11231 free (esdo->rel.hashes);
11232 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11233 free (esdo->rela.hashes);
11236 elf_tdata (abfd)->linker = TRUE;
11238 if (attr_section)
11240 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11241 if (contents == NULL)
11242 return FALSE; /* Bail out and fail. */
11243 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11244 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11245 free (contents);
11248 return TRUE;
11250 error_return:
11251 if (finfo.symstrtab != NULL)
11252 _bfd_stringtab_free (finfo.symstrtab);
11253 if (finfo.contents != NULL)
11254 free (finfo.contents);
11255 if (finfo.external_relocs != NULL)
11256 free (finfo.external_relocs);
11257 if (finfo.internal_relocs != NULL)
11258 free (finfo.internal_relocs);
11259 if (finfo.external_syms != NULL)
11260 free (finfo.external_syms);
11261 if (finfo.locsym_shndx != NULL)
11262 free (finfo.locsym_shndx);
11263 if (finfo.internal_syms != NULL)
11264 free (finfo.internal_syms);
11265 if (finfo.indices != NULL)
11266 free (finfo.indices);
11267 if (finfo.sections != NULL)
11268 free (finfo.sections);
11269 if (finfo.symbuf != NULL)
11270 free (finfo.symbuf);
11271 if (finfo.symshndxbuf != NULL)
11272 free (finfo.symshndxbuf);
11273 for (o = abfd->sections; o != NULL; o = o->next)
11275 struct bfd_elf_section_data *esdo = elf_section_data (o);
11276 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11277 free (esdo->rel.hashes);
11278 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11279 free (esdo->rela.hashes);
11282 return FALSE;
11285 /* Initialize COOKIE for input bfd ABFD. */
11287 static bfd_boolean
11288 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11289 struct bfd_link_info *info, bfd *abfd)
11291 Elf_Internal_Shdr *symtab_hdr;
11292 const struct elf_backend_data *bed;
11294 bed = get_elf_backend_data (abfd);
11295 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11297 cookie->abfd = abfd;
11298 cookie->sym_hashes = elf_sym_hashes (abfd);
11299 cookie->bad_symtab = elf_bad_symtab (abfd);
11300 if (cookie->bad_symtab)
11302 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11303 cookie->extsymoff = 0;
11305 else
11307 cookie->locsymcount = symtab_hdr->sh_info;
11308 cookie->extsymoff = symtab_hdr->sh_info;
11311 if (bed->s->arch_size == 32)
11312 cookie->r_sym_shift = 8;
11313 else
11314 cookie->r_sym_shift = 32;
11316 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11317 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11319 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11320 cookie->locsymcount, 0,
11321 NULL, NULL, NULL);
11322 if (cookie->locsyms == NULL)
11324 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11325 return FALSE;
11327 if (info->keep_memory)
11328 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11330 return TRUE;
11333 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11335 static void
11336 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11338 Elf_Internal_Shdr *symtab_hdr;
11340 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11341 if (cookie->locsyms != NULL
11342 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11343 free (cookie->locsyms);
11346 /* Initialize the relocation information in COOKIE for input section SEC
11347 of input bfd ABFD. */
11349 static bfd_boolean
11350 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11351 struct bfd_link_info *info, bfd *abfd,
11352 asection *sec)
11354 const struct elf_backend_data *bed;
11356 if (sec->reloc_count == 0)
11358 cookie->rels = NULL;
11359 cookie->relend = NULL;
11361 else
11363 bed = get_elf_backend_data (abfd);
11365 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11366 info->keep_memory);
11367 if (cookie->rels == NULL)
11368 return FALSE;
11369 cookie->rel = cookie->rels;
11370 cookie->relend = (cookie->rels
11371 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11373 cookie->rel = cookie->rels;
11374 return TRUE;
11377 /* Free the memory allocated by init_reloc_cookie_rels,
11378 if appropriate. */
11380 static void
11381 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11382 asection *sec)
11384 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11385 free (cookie->rels);
11388 /* Initialize the whole of COOKIE for input section SEC. */
11390 static bfd_boolean
11391 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11392 struct bfd_link_info *info,
11393 asection *sec)
11395 if (!init_reloc_cookie (cookie, info, sec->owner))
11396 goto error1;
11397 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11398 goto error2;
11399 return TRUE;
11401 error2:
11402 fini_reloc_cookie (cookie, sec->owner);
11403 error1:
11404 return FALSE;
11407 /* Free the memory allocated by init_reloc_cookie_for_section,
11408 if appropriate. */
11410 static void
11411 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11412 asection *sec)
11414 fini_reloc_cookie_rels (cookie, sec);
11415 fini_reloc_cookie (cookie, sec->owner);
11418 /* Garbage collect unused sections. */
11420 /* Default gc_mark_hook. */
11422 asection *
11423 _bfd_elf_gc_mark_hook (asection *sec,
11424 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11425 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11426 struct elf_link_hash_entry *h,
11427 Elf_Internal_Sym *sym)
11429 const char *sec_name;
11431 if (h != NULL)
11433 switch (h->root.type)
11435 case bfd_link_hash_defined:
11436 case bfd_link_hash_defweak:
11437 return h->root.u.def.section;
11439 case bfd_link_hash_common:
11440 return h->root.u.c.p->section;
11442 case bfd_link_hash_undefined:
11443 case bfd_link_hash_undefweak:
11444 /* To work around a glibc bug, keep all XXX input sections
11445 when there is an as yet undefined reference to __start_XXX
11446 or __stop_XXX symbols. The linker will later define such
11447 symbols for orphan input sections that have a name
11448 representable as a C identifier. */
11449 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11450 sec_name = h->root.root.string + 8;
11451 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11452 sec_name = h->root.root.string + 7;
11453 else
11454 sec_name = NULL;
11456 if (sec_name && *sec_name != '\0')
11458 bfd *i;
11460 for (i = info->input_bfds; i; i = i->link_next)
11462 sec = bfd_get_section_by_name (i, sec_name);
11463 if (sec)
11464 sec->flags |= SEC_KEEP;
11467 break;
11469 default:
11470 break;
11473 else
11474 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11476 return NULL;
11479 /* COOKIE->rel describes a relocation against section SEC, which is
11480 a section we've decided to keep. Return the section that contains
11481 the relocation symbol, or NULL if no section contains it. */
11483 asection *
11484 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11485 elf_gc_mark_hook_fn gc_mark_hook,
11486 struct elf_reloc_cookie *cookie)
11488 unsigned long r_symndx;
11489 struct elf_link_hash_entry *h;
11491 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11492 if (r_symndx == STN_UNDEF)
11493 return NULL;
11495 if (r_symndx >= cookie->locsymcount
11496 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11498 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11499 while (h->root.type == bfd_link_hash_indirect
11500 || h->root.type == bfd_link_hash_warning)
11501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11502 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11505 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11506 &cookie->locsyms[r_symndx]);
11509 /* COOKIE->rel describes a relocation against section SEC, which is
11510 a section we've decided to keep. Mark the section that contains
11511 the relocation symbol. */
11513 bfd_boolean
11514 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11515 asection *sec,
11516 elf_gc_mark_hook_fn gc_mark_hook,
11517 struct elf_reloc_cookie *cookie)
11519 asection *rsec;
11521 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11522 if (rsec && !rsec->gc_mark)
11524 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11525 rsec->gc_mark = 1;
11526 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11527 return FALSE;
11529 return TRUE;
11532 /* The mark phase of garbage collection. For a given section, mark
11533 it and any sections in this section's group, and all the sections
11534 which define symbols to which it refers. */
11536 bfd_boolean
11537 _bfd_elf_gc_mark (struct bfd_link_info *info,
11538 asection *sec,
11539 elf_gc_mark_hook_fn gc_mark_hook)
11541 bfd_boolean ret;
11542 asection *group_sec, *eh_frame;
11544 sec->gc_mark = 1;
11546 /* Mark all the sections in the group. */
11547 group_sec = elf_section_data (sec)->next_in_group;
11548 if (group_sec && !group_sec->gc_mark)
11549 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11550 return FALSE;
11552 /* Look through the section relocs. */
11553 ret = TRUE;
11554 eh_frame = elf_eh_frame_section (sec->owner);
11555 if ((sec->flags & SEC_RELOC) != 0
11556 && sec->reloc_count > 0
11557 && sec != eh_frame)
11559 struct elf_reloc_cookie cookie;
11561 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11562 ret = FALSE;
11563 else
11565 for (; cookie.rel < cookie.relend; cookie.rel++)
11566 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11568 ret = FALSE;
11569 break;
11571 fini_reloc_cookie_for_section (&cookie, sec);
11575 if (ret && eh_frame && elf_fde_list (sec))
11577 struct elf_reloc_cookie cookie;
11579 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11580 ret = FALSE;
11581 else
11583 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11584 gc_mark_hook, &cookie))
11585 ret = FALSE;
11586 fini_reloc_cookie_for_section (&cookie, eh_frame);
11590 return ret;
11593 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11595 struct elf_gc_sweep_symbol_info
11597 struct bfd_link_info *info;
11598 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11599 bfd_boolean);
11602 static bfd_boolean
11603 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11605 if (h->root.type == bfd_link_hash_warning)
11606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11608 if ((h->root.type == bfd_link_hash_defined
11609 || h->root.type == bfd_link_hash_defweak)
11610 && !h->root.u.def.section->gc_mark
11611 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11613 struct elf_gc_sweep_symbol_info *inf =
11614 (struct elf_gc_sweep_symbol_info *) data;
11615 (*inf->hide_symbol) (inf->info, h, TRUE);
11618 return TRUE;
11621 /* The sweep phase of garbage collection. Remove all garbage sections. */
11623 typedef bfd_boolean (*gc_sweep_hook_fn)
11624 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11626 static bfd_boolean
11627 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11629 bfd *sub;
11630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11631 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11632 unsigned long section_sym_count;
11633 struct elf_gc_sweep_symbol_info sweep_info;
11635 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11637 asection *o;
11639 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11640 continue;
11642 for (o = sub->sections; o != NULL; o = o->next)
11644 /* When any section in a section group is kept, we keep all
11645 sections in the section group. If the first member of
11646 the section group is excluded, we will also exclude the
11647 group section. */
11648 if (o->flags & SEC_GROUP)
11650 asection *first = elf_next_in_group (o);
11651 o->gc_mark = first->gc_mark;
11653 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11654 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11655 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11657 /* Keep debug, special and SHT_NOTE sections. */
11658 o->gc_mark = 1;
11661 if (o->gc_mark)
11662 continue;
11664 /* Skip sweeping sections already excluded. */
11665 if (o->flags & SEC_EXCLUDE)
11666 continue;
11668 /* Since this is early in the link process, it is simple
11669 to remove a section from the output. */
11670 o->flags |= SEC_EXCLUDE;
11672 if (info->print_gc_sections && o->size != 0)
11673 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11675 /* But we also have to update some of the relocation
11676 info we collected before. */
11677 if (gc_sweep_hook
11678 && (o->flags & SEC_RELOC) != 0
11679 && o->reloc_count > 0
11680 && !bfd_is_abs_section (o->output_section))
11682 Elf_Internal_Rela *internal_relocs;
11683 bfd_boolean r;
11685 internal_relocs
11686 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11687 info->keep_memory);
11688 if (internal_relocs == NULL)
11689 return FALSE;
11691 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11693 if (elf_section_data (o)->relocs != internal_relocs)
11694 free (internal_relocs);
11696 if (!r)
11697 return FALSE;
11702 /* Remove the symbols that were in the swept sections from the dynamic
11703 symbol table. GCFIXME: Anyone know how to get them out of the
11704 static symbol table as well? */
11705 sweep_info.info = info;
11706 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11707 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11708 &sweep_info);
11710 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11711 return TRUE;
11714 /* Propagate collected vtable information. This is called through
11715 elf_link_hash_traverse. */
11717 static bfd_boolean
11718 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11720 if (h->root.type == bfd_link_hash_warning)
11721 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11723 /* Those that are not vtables. */
11724 if (h->vtable == NULL || h->vtable->parent == NULL)
11725 return TRUE;
11727 /* Those vtables that do not have parents, we cannot merge. */
11728 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11729 return TRUE;
11731 /* If we've already been done, exit. */
11732 if (h->vtable->used && h->vtable->used[-1])
11733 return TRUE;
11735 /* Make sure the parent's table is up to date. */
11736 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11738 if (h->vtable->used == NULL)
11740 /* None of this table's entries were referenced. Re-use the
11741 parent's table. */
11742 h->vtable->used = h->vtable->parent->vtable->used;
11743 h->vtable->size = h->vtable->parent->vtable->size;
11745 else
11747 size_t n;
11748 bfd_boolean *cu, *pu;
11750 /* Or the parent's entries into ours. */
11751 cu = h->vtable->used;
11752 cu[-1] = TRUE;
11753 pu = h->vtable->parent->vtable->used;
11754 if (pu != NULL)
11756 const struct elf_backend_data *bed;
11757 unsigned int log_file_align;
11759 bed = get_elf_backend_data (h->root.u.def.section->owner);
11760 log_file_align = bed->s->log_file_align;
11761 n = h->vtable->parent->vtable->size >> log_file_align;
11762 while (n--)
11764 if (*pu)
11765 *cu = TRUE;
11766 pu++;
11767 cu++;
11772 return TRUE;
11775 static bfd_boolean
11776 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11778 asection *sec;
11779 bfd_vma hstart, hend;
11780 Elf_Internal_Rela *relstart, *relend, *rel;
11781 const struct elf_backend_data *bed;
11782 unsigned int log_file_align;
11784 if (h->root.type == bfd_link_hash_warning)
11785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11787 /* Take care of both those symbols that do not describe vtables as
11788 well as those that are not loaded. */
11789 if (h->vtable == NULL || h->vtable->parent == NULL)
11790 return TRUE;
11792 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11793 || h->root.type == bfd_link_hash_defweak);
11795 sec = h->root.u.def.section;
11796 hstart = h->root.u.def.value;
11797 hend = hstart + h->size;
11799 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11800 if (!relstart)
11801 return *(bfd_boolean *) okp = FALSE;
11802 bed = get_elf_backend_data (sec->owner);
11803 log_file_align = bed->s->log_file_align;
11805 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11807 for (rel = relstart; rel < relend; ++rel)
11808 if (rel->r_offset >= hstart && rel->r_offset < hend)
11810 /* If the entry is in use, do nothing. */
11811 if (h->vtable->used
11812 && (rel->r_offset - hstart) < h->vtable->size)
11814 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11815 if (h->vtable->used[entry])
11816 continue;
11818 /* Otherwise, kill it. */
11819 rel->r_offset = rel->r_info = rel->r_addend = 0;
11822 return TRUE;
11825 /* Mark sections containing dynamically referenced symbols. When
11826 building shared libraries, we must assume that any visible symbol is
11827 referenced. */
11829 bfd_boolean
11830 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11832 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11834 if (h->root.type == bfd_link_hash_warning)
11835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11837 if ((h->root.type == bfd_link_hash_defined
11838 || h->root.type == bfd_link_hash_defweak)
11839 && (h->ref_dynamic
11840 || (!info->executable
11841 && h->def_regular
11842 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11843 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11844 h->root.u.def.section->flags |= SEC_KEEP;
11846 return TRUE;
11849 /* Keep all sections containing symbols undefined on the command-line,
11850 and the section containing the entry symbol. */
11852 void
11853 _bfd_elf_gc_keep (struct bfd_link_info *info)
11855 struct bfd_sym_chain *sym;
11857 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11859 struct elf_link_hash_entry *h;
11861 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11862 FALSE, FALSE, FALSE);
11864 if (h != NULL
11865 && (h->root.type == bfd_link_hash_defined
11866 || h->root.type == bfd_link_hash_defweak)
11867 && !bfd_is_abs_section (h->root.u.def.section))
11868 h->root.u.def.section->flags |= SEC_KEEP;
11872 /* Do mark and sweep of unused sections. */
11874 bfd_boolean
11875 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11877 bfd_boolean ok = TRUE;
11878 bfd *sub;
11879 elf_gc_mark_hook_fn gc_mark_hook;
11880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11882 if (!bed->can_gc_sections
11883 || !is_elf_hash_table (info->hash))
11885 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11886 return TRUE;
11889 bed->gc_keep (info);
11891 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11892 at the .eh_frame section if we can mark the FDEs individually. */
11893 _bfd_elf_begin_eh_frame_parsing (info);
11894 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11896 asection *sec;
11897 struct elf_reloc_cookie cookie;
11899 sec = bfd_get_section_by_name (sub, ".eh_frame");
11900 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11902 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11903 if (elf_section_data (sec)->sec_info)
11904 elf_eh_frame_section (sub) = sec;
11905 fini_reloc_cookie_for_section (&cookie, sec);
11908 _bfd_elf_end_eh_frame_parsing (info);
11910 /* Apply transitive closure to the vtable entry usage info. */
11911 elf_link_hash_traverse (elf_hash_table (info),
11912 elf_gc_propagate_vtable_entries_used,
11913 &ok);
11914 if (!ok)
11915 return FALSE;
11917 /* Kill the vtable relocations that were not used. */
11918 elf_link_hash_traverse (elf_hash_table (info),
11919 elf_gc_smash_unused_vtentry_relocs,
11920 &ok);
11921 if (!ok)
11922 return FALSE;
11924 /* Mark dynamically referenced symbols. */
11925 if (elf_hash_table (info)->dynamic_sections_created)
11926 elf_link_hash_traverse (elf_hash_table (info),
11927 bed->gc_mark_dynamic_ref,
11928 info);
11930 /* Grovel through relocs to find out who stays ... */
11931 gc_mark_hook = bed->gc_mark_hook;
11932 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11934 asection *o;
11936 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11937 continue;
11939 for (o = sub->sections; o != NULL; o = o->next)
11940 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11941 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11942 return FALSE;
11945 /* Allow the backend to mark additional target specific sections. */
11946 if (bed->gc_mark_extra_sections)
11947 bed->gc_mark_extra_sections (info, gc_mark_hook);
11949 /* ... and mark SEC_EXCLUDE for those that go. */
11950 return elf_gc_sweep (abfd, info);
11953 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11955 bfd_boolean
11956 bfd_elf_gc_record_vtinherit (bfd *abfd,
11957 asection *sec,
11958 struct elf_link_hash_entry *h,
11959 bfd_vma offset)
11961 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11962 struct elf_link_hash_entry **search, *child;
11963 bfd_size_type extsymcount;
11964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11966 /* The sh_info field of the symtab header tells us where the
11967 external symbols start. We don't care about the local symbols at
11968 this point. */
11969 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11970 if (!elf_bad_symtab (abfd))
11971 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11973 sym_hashes = elf_sym_hashes (abfd);
11974 sym_hashes_end = sym_hashes + extsymcount;
11976 /* Hunt down the child symbol, which is in this section at the same
11977 offset as the relocation. */
11978 for (search = sym_hashes; search != sym_hashes_end; ++search)
11980 if ((child = *search) != NULL
11981 && (child->root.type == bfd_link_hash_defined
11982 || child->root.type == bfd_link_hash_defweak)
11983 && child->root.u.def.section == sec
11984 && child->root.u.def.value == offset)
11985 goto win;
11988 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11989 abfd, sec, (unsigned long) offset);
11990 bfd_set_error (bfd_error_invalid_operation);
11991 return FALSE;
11993 win:
11994 if (!child->vtable)
11996 child->vtable = (struct elf_link_virtual_table_entry *)
11997 bfd_zalloc (abfd, sizeof (*child->vtable));
11998 if (!child->vtable)
11999 return FALSE;
12001 if (!h)
12003 /* This *should* only be the absolute section. It could potentially
12004 be that someone has defined a non-global vtable though, which
12005 would be bad. It isn't worth paging in the local symbols to be
12006 sure though; that case should simply be handled by the assembler. */
12008 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12010 else
12011 child->vtable->parent = h;
12013 return TRUE;
12016 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12018 bfd_boolean
12019 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12020 asection *sec ATTRIBUTE_UNUSED,
12021 struct elf_link_hash_entry *h,
12022 bfd_vma addend)
12024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12025 unsigned int log_file_align = bed->s->log_file_align;
12027 if (!h->vtable)
12029 h->vtable = (struct elf_link_virtual_table_entry *)
12030 bfd_zalloc (abfd, sizeof (*h->vtable));
12031 if (!h->vtable)
12032 return FALSE;
12035 if (addend >= h->vtable->size)
12037 size_t size, bytes, file_align;
12038 bfd_boolean *ptr = h->vtable->used;
12040 /* While the symbol is undefined, we have to be prepared to handle
12041 a zero size. */
12042 file_align = 1 << log_file_align;
12043 if (h->root.type == bfd_link_hash_undefined)
12044 size = addend + file_align;
12045 else
12047 size = h->size;
12048 if (addend >= size)
12050 /* Oops! We've got a reference past the defined end of
12051 the table. This is probably a bug -- shall we warn? */
12052 size = addend + file_align;
12055 size = (size + file_align - 1) & -file_align;
12057 /* Allocate one extra entry for use as a "done" flag for the
12058 consolidation pass. */
12059 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12061 if (ptr)
12063 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12065 if (ptr != NULL)
12067 size_t oldbytes;
12069 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12070 * sizeof (bfd_boolean));
12071 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12074 else
12075 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12077 if (ptr == NULL)
12078 return FALSE;
12080 /* And arrange for that done flag to be at index -1. */
12081 h->vtable->used = ptr + 1;
12082 h->vtable->size = size;
12085 h->vtable->used[addend >> log_file_align] = TRUE;
12087 return TRUE;
12090 struct alloc_got_off_arg {
12091 bfd_vma gotoff;
12092 struct bfd_link_info *info;
12095 /* We need a special top-level link routine to convert got reference counts
12096 to real got offsets. */
12098 static bfd_boolean
12099 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12101 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12102 bfd *obfd = gofarg->info->output_bfd;
12103 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12105 if (h->root.type == bfd_link_hash_warning)
12106 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12108 if (h->got.refcount > 0)
12110 h->got.offset = gofarg->gotoff;
12111 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12113 else
12114 h->got.offset = (bfd_vma) -1;
12116 return TRUE;
12119 /* And an accompanying bit to work out final got entry offsets once
12120 we're done. Should be called from final_link. */
12122 bfd_boolean
12123 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12124 struct bfd_link_info *info)
12126 bfd *i;
12127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12128 bfd_vma gotoff;
12129 struct alloc_got_off_arg gofarg;
12131 BFD_ASSERT (abfd == info->output_bfd);
12133 if (! is_elf_hash_table (info->hash))
12134 return FALSE;
12136 /* The GOT offset is relative to the .got section, but the GOT header is
12137 put into the .got.plt section, if the backend uses it. */
12138 if (bed->want_got_plt)
12139 gotoff = 0;
12140 else
12141 gotoff = bed->got_header_size;
12143 /* Do the local .got entries first. */
12144 for (i = info->input_bfds; i; i = i->link_next)
12146 bfd_signed_vma *local_got;
12147 bfd_size_type j, locsymcount;
12148 Elf_Internal_Shdr *symtab_hdr;
12150 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12151 continue;
12153 local_got = elf_local_got_refcounts (i);
12154 if (!local_got)
12155 continue;
12157 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12158 if (elf_bad_symtab (i))
12159 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12160 else
12161 locsymcount = symtab_hdr->sh_info;
12163 for (j = 0; j < locsymcount; ++j)
12165 if (local_got[j] > 0)
12167 local_got[j] = gotoff;
12168 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12170 else
12171 local_got[j] = (bfd_vma) -1;
12175 /* Then the global .got entries. .plt refcounts are handled by
12176 adjust_dynamic_symbol */
12177 gofarg.gotoff = gotoff;
12178 gofarg.info = info;
12179 elf_link_hash_traverse (elf_hash_table (info),
12180 elf_gc_allocate_got_offsets,
12181 &gofarg);
12182 return TRUE;
12185 /* Many folk need no more in the way of final link than this, once
12186 got entry reference counting is enabled. */
12188 bfd_boolean
12189 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12191 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12192 return FALSE;
12194 /* Invoke the regular ELF backend linker to do all the work. */
12195 return bfd_elf_final_link (abfd, info);
12198 bfd_boolean
12199 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12201 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12203 if (rcookie->bad_symtab)
12204 rcookie->rel = rcookie->rels;
12206 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12208 unsigned long r_symndx;
12210 if (! rcookie->bad_symtab)
12211 if (rcookie->rel->r_offset > offset)
12212 return FALSE;
12213 if (rcookie->rel->r_offset != offset)
12214 continue;
12216 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12217 if (r_symndx == STN_UNDEF)
12218 return TRUE;
12220 if (r_symndx >= rcookie->locsymcount
12221 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12223 struct elf_link_hash_entry *h;
12225 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12227 while (h->root.type == bfd_link_hash_indirect
12228 || h->root.type == bfd_link_hash_warning)
12229 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12231 if ((h->root.type == bfd_link_hash_defined
12232 || h->root.type == bfd_link_hash_defweak)
12233 && elf_discarded_section (h->root.u.def.section))
12234 return TRUE;
12235 else
12236 return FALSE;
12238 else
12240 /* It's not a relocation against a global symbol,
12241 but it could be a relocation against a local
12242 symbol for a discarded section. */
12243 asection *isec;
12244 Elf_Internal_Sym *isym;
12246 /* Need to: get the symbol; get the section. */
12247 isym = &rcookie->locsyms[r_symndx];
12248 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12249 if (isec != NULL && elf_discarded_section (isec))
12250 return TRUE;
12252 return FALSE;
12254 return FALSE;
12257 /* Discard unneeded references to discarded sections.
12258 Returns TRUE if any section's size was changed. */
12259 /* This function assumes that the relocations are in sorted order,
12260 which is true for all known assemblers. */
12262 bfd_boolean
12263 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12265 struct elf_reloc_cookie cookie;
12266 asection *stab, *eh;
12267 const struct elf_backend_data *bed;
12268 bfd *abfd;
12269 bfd_boolean ret = FALSE;
12271 if (info->traditional_format
12272 || !is_elf_hash_table (info->hash))
12273 return FALSE;
12275 _bfd_elf_begin_eh_frame_parsing (info);
12276 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12278 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12279 continue;
12281 bed = get_elf_backend_data (abfd);
12283 if ((abfd->flags & DYNAMIC) != 0)
12284 continue;
12286 eh = NULL;
12287 if (!info->relocatable)
12289 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12290 if (eh != NULL
12291 && (eh->size == 0
12292 || bfd_is_abs_section (eh->output_section)))
12293 eh = NULL;
12296 stab = bfd_get_section_by_name (abfd, ".stab");
12297 if (stab != NULL
12298 && (stab->size == 0
12299 || bfd_is_abs_section (stab->output_section)
12300 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12301 stab = NULL;
12303 if (stab == NULL
12304 && eh == NULL
12305 && bed->elf_backend_discard_info == NULL)
12306 continue;
12308 if (!init_reloc_cookie (&cookie, info, abfd))
12309 return FALSE;
12311 if (stab != NULL
12312 && stab->reloc_count > 0
12313 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12315 if (_bfd_discard_section_stabs (abfd, stab,
12316 elf_section_data (stab)->sec_info,
12317 bfd_elf_reloc_symbol_deleted_p,
12318 &cookie))
12319 ret = TRUE;
12320 fini_reloc_cookie_rels (&cookie, stab);
12323 if (eh != NULL
12324 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12326 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12327 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12328 bfd_elf_reloc_symbol_deleted_p,
12329 &cookie))
12330 ret = TRUE;
12331 fini_reloc_cookie_rels (&cookie, eh);
12334 if (bed->elf_backend_discard_info != NULL
12335 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12336 ret = TRUE;
12338 fini_reloc_cookie (&cookie, abfd);
12340 _bfd_elf_end_eh_frame_parsing (info);
12342 if (info->eh_frame_hdr
12343 && !info->relocatable
12344 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12345 ret = TRUE;
12347 return ret;
12350 /* For a SHT_GROUP section, return the group signature. For other
12351 sections, return the normal section name. */
12353 static const char *
12354 section_signature (asection *sec)
12356 if ((sec->flags & SEC_GROUP) != 0
12357 && elf_next_in_group (sec) != NULL
12358 && elf_group_name (elf_next_in_group (sec)) != NULL)
12359 return elf_group_name (elf_next_in_group (sec));
12360 return sec->name;
12363 void
12364 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12365 struct bfd_link_info *info)
12367 flagword flags;
12368 const char *name, *p;
12369 struct bfd_section_already_linked *l;
12370 struct bfd_section_already_linked_hash_entry *already_linked_list;
12372 if (sec->output_section == bfd_abs_section_ptr)
12373 return;
12375 flags = sec->flags;
12377 /* Return if it isn't a linkonce section. A comdat group section
12378 also has SEC_LINK_ONCE set. */
12379 if ((flags & SEC_LINK_ONCE) == 0)
12380 return;
12382 /* Don't put group member sections on our list of already linked
12383 sections. They are handled as a group via their group section. */
12384 if (elf_sec_group (sec) != NULL)
12385 return;
12387 /* FIXME: When doing a relocatable link, we may have trouble
12388 copying relocations in other sections that refer to local symbols
12389 in the section being discarded. Those relocations will have to
12390 be converted somehow; as of this writing I'm not sure that any of
12391 the backends handle that correctly.
12393 It is tempting to instead not discard link once sections when
12394 doing a relocatable link (technically, they should be discarded
12395 whenever we are building constructors). However, that fails,
12396 because the linker winds up combining all the link once sections
12397 into a single large link once section, which defeats the purpose
12398 of having link once sections in the first place.
12400 Also, not merging link once sections in a relocatable link
12401 causes trouble for MIPS ELF, which relies on link once semantics
12402 to handle the .reginfo section correctly. */
12404 name = section_signature (sec);
12406 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12407 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12408 p++;
12409 else
12410 p = name;
12412 already_linked_list = bfd_section_already_linked_table_lookup (p);
12414 for (l = already_linked_list->entry; l != NULL; l = l->next)
12416 /* We may have 2 different types of sections on the list: group
12417 sections and linkonce sections. Match like sections. */
12418 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12419 && strcmp (name, section_signature (l->sec)) == 0
12420 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12422 /* The section has already been linked. See if we should
12423 issue a warning. */
12424 switch (flags & SEC_LINK_DUPLICATES)
12426 default:
12427 abort ();
12429 case SEC_LINK_DUPLICATES_DISCARD:
12430 break;
12432 case SEC_LINK_DUPLICATES_ONE_ONLY:
12433 (*_bfd_error_handler)
12434 (_("%B: ignoring duplicate section `%A'"),
12435 abfd, sec);
12436 break;
12438 case SEC_LINK_DUPLICATES_SAME_SIZE:
12439 if (sec->size != l->sec->size)
12440 (*_bfd_error_handler)
12441 (_("%B: duplicate section `%A' has different size"),
12442 abfd, sec);
12443 break;
12445 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12446 if (sec->size != l->sec->size)
12447 (*_bfd_error_handler)
12448 (_("%B: duplicate section `%A' has different size"),
12449 abfd, sec);
12450 else if (sec->size != 0)
12452 bfd_byte *sec_contents, *l_sec_contents;
12454 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12455 (*_bfd_error_handler)
12456 (_("%B: warning: could not read contents of section `%A'"),
12457 abfd, sec);
12458 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12459 &l_sec_contents))
12460 (*_bfd_error_handler)
12461 (_("%B: warning: could not read contents of section `%A'"),
12462 l->sec->owner, l->sec);
12463 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12464 (*_bfd_error_handler)
12465 (_("%B: warning: duplicate section `%A' has different contents"),
12466 abfd, sec);
12468 if (sec_contents)
12469 free (sec_contents);
12470 if (l_sec_contents)
12471 free (l_sec_contents);
12473 break;
12476 /* Set the output_section field so that lang_add_section
12477 does not create a lang_input_section structure for this
12478 section. Since there might be a symbol in the section
12479 being discarded, we must retain a pointer to the section
12480 which we are really going to use. */
12481 sec->output_section = bfd_abs_section_ptr;
12482 sec->kept_section = l->sec;
12484 if (flags & SEC_GROUP)
12486 asection *first = elf_next_in_group (sec);
12487 asection *s = first;
12489 while (s != NULL)
12491 s->output_section = bfd_abs_section_ptr;
12492 /* Record which group discards it. */
12493 s->kept_section = l->sec;
12494 s = elf_next_in_group (s);
12495 /* These lists are circular. */
12496 if (s == first)
12497 break;
12501 return;
12505 /* A single member comdat group section may be discarded by a
12506 linkonce section and vice versa. */
12508 if ((flags & SEC_GROUP) != 0)
12510 asection *first = elf_next_in_group (sec);
12512 if (first != NULL && elf_next_in_group (first) == first)
12513 /* Check this single member group against linkonce sections. */
12514 for (l = already_linked_list->entry; l != NULL; l = l->next)
12515 if ((l->sec->flags & SEC_GROUP) == 0
12516 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12517 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12519 first->output_section = bfd_abs_section_ptr;
12520 first->kept_section = l->sec;
12521 sec->output_section = bfd_abs_section_ptr;
12522 break;
12525 else
12526 /* Check this linkonce section against single member groups. */
12527 for (l = already_linked_list->entry; l != NULL; l = l->next)
12528 if (l->sec->flags & SEC_GROUP)
12530 asection *first = elf_next_in_group (l->sec);
12532 if (first != NULL
12533 && elf_next_in_group (first) == first
12534 && bfd_elf_match_symbols_in_sections (first, sec, info))
12536 sec->output_section = bfd_abs_section_ptr;
12537 sec->kept_section = first;
12538 break;
12542 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12543 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12544 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12545 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12546 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12547 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12548 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12549 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12550 The reverse order cannot happen as there is never a bfd with only the
12551 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12552 matter as here were are looking only for cross-bfd sections. */
12554 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12555 for (l = already_linked_list->entry; l != NULL; l = l->next)
12556 if ((l->sec->flags & SEC_GROUP) == 0
12557 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12559 if (abfd != l->sec->owner)
12560 sec->output_section = bfd_abs_section_ptr;
12561 break;
12564 /* This is the first section with this name. Record it. */
12565 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12566 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12569 bfd_boolean
12570 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12572 return sym->st_shndx == SHN_COMMON;
12575 unsigned int
12576 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12578 return SHN_COMMON;
12581 asection *
12582 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12584 return bfd_com_section_ptr;
12587 bfd_vma
12588 _bfd_elf_default_got_elt_size (bfd *abfd,
12589 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12590 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12591 bfd *ibfd ATTRIBUTE_UNUSED,
12592 unsigned long symndx ATTRIBUTE_UNUSED)
12594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12595 return bed->s->arch_size / 8;
12598 /* Routines to support the creation of dynamic relocs. */
12600 /* Return true if NAME is a name of a relocation
12601 section associated with section S. */
12603 static bfd_boolean
12604 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12606 if (rela)
12607 return CONST_STRNEQ (name, ".rela")
12608 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12610 return CONST_STRNEQ (name, ".rel")
12611 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12614 /* Returns the name of the dynamic reloc section associated with SEC. */
12616 static const char *
12617 get_dynamic_reloc_section_name (bfd * abfd,
12618 asection * sec,
12619 bfd_boolean is_rela)
12621 const char * name;
12622 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12623 unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name;
12625 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12626 if (name == NULL)
12627 return NULL;
12629 if (! is_reloc_section (is_rela, name, sec))
12631 static bfd_boolean complained = FALSE;
12633 if (! complained)
12635 (*_bfd_error_handler)
12636 (_("%B: bad relocation section name `%s\'"), abfd, name);
12637 complained = TRUE;
12639 name = NULL;
12642 return name;
12645 /* Returns the dynamic reloc section associated with SEC.
12646 If necessary compute the name of the dynamic reloc section based
12647 on SEC's name (looked up in ABFD's string table) and the setting
12648 of IS_RELA. */
12650 asection *
12651 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12652 asection * sec,
12653 bfd_boolean is_rela)
12655 asection * reloc_sec = elf_section_data (sec)->sreloc;
12657 if (reloc_sec == NULL)
12659 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12661 if (name != NULL)
12663 reloc_sec = bfd_get_section_by_name (abfd, name);
12665 if (reloc_sec != NULL)
12666 elf_section_data (sec)->sreloc = reloc_sec;
12670 return reloc_sec;
12673 /* Returns the dynamic reloc section associated with SEC. If the
12674 section does not exist it is created and attached to the DYNOBJ
12675 bfd and stored in the SRELOC field of SEC's elf_section_data
12676 structure.
12678 ALIGNMENT is the alignment for the newly created section and
12679 IS_RELA defines whether the name should be .rela.<SEC's name>
12680 or .rel.<SEC's name>. The section name is looked up in the
12681 string table associated with ABFD. */
12683 asection *
12684 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12685 bfd * dynobj,
12686 unsigned int alignment,
12687 bfd * abfd,
12688 bfd_boolean is_rela)
12690 asection * reloc_sec = elf_section_data (sec)->sreloc;
12692 if (reloc_sec == NULL)
12694 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12696 if (name == NULL)
12697 return NULL;
12699 reloc_sec = bfd_get_section_by_name (dynobj, name);
12701 if (reloc_sec == NULL)
12703 flagword flags;
12705 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12706 if ((sec->flags & SEC_ALLOC) != 0)
12707 flags |= SEC_ALLOC | SEC_LOAD;
12709 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12710 if (reloc_sec != NULL)
12712 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12713 reloc_sec = NULL;
12717 elf_section_data (sec)->sreloc = reloc_sec;
12720 return reloc_sec;
12723 /* Copy the ELF symbol type associated with a linker hash entry. */
12724 void
12725 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12726 struct bfd_link_hash_entry * hdest,
12727 struct bfd_link_hash_entry * hsrc)
12729 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12730 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12732 ehdest->type = ehsrc->type;
12735 /* Append a RELA relocation REL to section S in BFD. */
12737 void
12738 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12741 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12742 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12743 bed->s->swap_reloca_out (abfd, rel, loc);
12746 /* Append a REL relocation REL to section S in BFD. */
12748 void
12749 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12751 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12752 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12753 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12754 bed->s->swap_reloca_out (abfd, rel, loc);