2007-05-15 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / bfd / elfxx-mips.c
blobe4ddb37cd42e381ef2140342cbd3316513700752
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
45 #include "hashtab.h"
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
113 /* This structure is used to hold .got information when linking. */
115 struct mips_got_info
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
146 /* Map an input bfd to a got in a multi-got link. */
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
156 struct mips_elf_got_per_bfd_arg
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
185 /* Another structure used to pass arguments for got entries traversal. */
187 struct mips_elf_set_global_got_offset_arg
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
198 struct mips_elf_count_tls_arg
200 struct bfd_link_info *info;
201 unsigned int needed;
204 struct _mips_elf_section_data
206 struct bfd_elf_section_data elf;
207 union
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
220 struct mips_elf_hash_sort_data
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
240 struct mips_elf_link_hash_entry
242 struct elf_link_hash_entry root;
244 /* External symbol information. */
245 EXTR esym;
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
303 /* MIPS ELF linker hash table. */
305 struct mips_elf_link_hash_table
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
357 /* Structure used to pass information to mips_elf_output_extsym. */
359 struct extsym_info
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
368 /* The names of the runtime procedure table symbols used on IRIX5. */
370 static const char * const mips_elf_dynsym_rtproc_names[] =
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
381 typedef struct
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
391 typedef struct
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
401 typedef struct
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
411 typedef struct
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
420 typedef struct
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
427 typedef struct
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
433 /* These are the constants used to swap the bitfields in a crinfo. */
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
707 We record any stubs that we find in the symbol table. */
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
755 /* Look up an entry in a MIPS ELF linker hash table. */
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
762 /* Traverse a MIPS ELF linker hash table. */
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
799 /* Create an entry in a MIPS ELF linker hash table. */
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
839 return (struct bfd_hash_entry *) ret;
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
845 if (!sec->used_by_bfd)
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
856 return _bfd_elf_new_section_hook (abfd, sec);
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
914 debug->fdr = NULL;
916 return TRUE;
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
946 /* Swap RPDR (runtime procedure table entry) for output. */
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
964 /* Create a runtime procedure table from the .mdebug section. */
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
1000 size = swap->external_pdr_size;
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1098 return TRUE;
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1160 return TRUE;
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1167 The format of these instructions is:
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1252 bfd_vma extend, insn, val;
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1279 bfd_vma extend, insn, val;
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1288 if (jal_shuffle)
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1294 else
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1300 else
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1332 _bfd_mips_elf_sign_extend (val, 16);
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1341 if (reloc_entry->howto->partial_inplace)
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1349 else
1350 reloc_entry->addend = val;
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1355 return bfd_reloc_ok;
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1363 struct mips_hi16
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1371 /* FIXME: This should not be a static variable. */
1373 static struct mips_hi16 *mips_hi16_list;
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1390 struct mips_hi16 *n;
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1408 return bfd_reloc_ok;
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1453 while (mips_hi16_list != NULL)
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1458 hi = mips_hi16_list;
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1478 mips_hi16_list = hi->next;
1479 free (hi);
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1501 relocatable = (output_bfd != NULL);
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1517 if (!relocatable)
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1551 if (status != bfd_reloc_ok)
1552 return status;
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1558 return bfd_reloc_ok;
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1596 unsigned long l;
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1667 /* Swap in an options header. */
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1679 /* Swap out an options header. */
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1787 if (strip)
1788 return TRUE;
1790 if (h->esym.ifd == -2)
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1803 const char *name;
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1828 else
1829 h->esym.asym.sc = scUndefined;
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1836 const char *name;
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1847 name = bfd_section_name (output_section->owner, output_section);
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1894 else if (h->root.needs_plt)
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1905 if (!no_fn_stub)
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1929 einfo->failed = TRUE;
1930 return FALSE;
1933 return TRUE;
1936 /* A comparison routine used to sort .gptab entries. */
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1947 /* Functions to manage the got entry hash table. */
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2065 return sreloc;
2068 /* Returns the GOT section for ABFD. */
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2087 asection *sgot;
2088 struct mips_got_info *g;
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2099 return g;
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2125 if (!need_relocs)
2126 return FALSE;
2128 if (tls_type & GOT_TLS_GD)
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2141 return ret;
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2156 return 1;
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2174 return 1;
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2189 return 1;
2192 /* Output a simple dynamic relocation into SRELOC. */
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2201 Elf_Internal_Rela rel[3];
2203 memset (rel, 0, sizeof (rel));
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2208 if (ABI_64_P (output_bfd))
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2241 indx = 0;
2242 if (h != NULL)
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2275 if (need_relocs)
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2291 else
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2305 offset = got_offset;
2307 if (need_relocs)
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2326 if (*tls_type_p & GOT_TLS_LDM)
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2344 *tls_type_p |= GOT_TLS_DONE;
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2371 if (r_type == R_MIPS_TLS_GD)
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2377 if (r_type == R_MIPS_TLS_LDM)
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2383 return got_index;
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2413 return got_address - got_value;
2416 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
2421 static bfd_vma
2422 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2423 bfd_vma value, unsigned long r_symndx,
2424 struct mips_elf_link_hash_entry *h, int r_type)
2426 asection *sgot;
2427 struct mips_got_info *g;
2428 struct mips_got_entry *entry;
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2433 value, r_symndx, h, r_type);
2434 if (!entry)
2435 return MINUS_ONE;
2437 if (TLS_RELOC_P (r_type))
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2448 else
2449 return entry->gotidx;
2452 /* Returns the GOT index for the global symbol indicated by H. */
2454 static bfd_vma
2455 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
2458 bfd_vma index;
2459 asection *sgot;
2460 struct mips_got_info *g, *gg;
2461 long global_got_dynindx = 0;
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2466 struct mips_got_entry e, *p;
2468 BFD_ASSERT (h->dynindx >= 0);
2470 g = mips_elf_got_for_ibfd (g, ibfd);
2471 if (g->next != gg || TLS_RELOC_P (r_type))
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
2476 e.tls_type = 0;
2478 p = htab_find (g->got_entries, &e);
2480 BFD_ASSERT (p->gotidx > 0);
2482 if (TLS_RELOC_P (r_type))
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2495 else
2496 return p->gotidx;
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
2503 if (TLS_RELOC_P (r_type))
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2519 else
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2529 BFD_ASSERT (index < sgot->size);
2531 return index;
2534 /* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
2538 offset of the GOT entry from VALUE. */
2540 static bfd_vma
2541 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 bfd_vma value, bfd_vma *offsetp)
2544 asection *sgot;
2545 struct mips_got_info *g;
2546 bfd_vma page, index;
2547 struct mips_got_entry *entry;
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2553 page, 0, NULL, R_MIPS_GOT_PAGE);
2555 if (!entry)
2556 return MINUS_ONE;
2558 index = entry->gotidx;
2560 if (offsetp)
2561 *offsetp = value - entry->d.address;
2563 return index;
2566 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
2570 static bfd_vma
2571 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2572 bfd_vma value, bfd_boolean external)
2574 asection *sgot;
2575 struct mips_got_info *g;
2576 struct mips_got_entry *entry;
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2582 if (! external)
2583 value = mips_elf_high (value) << 16;
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2588 value, 0, NULL, R_MIPS_GOT16);
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
2595 /* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2598 static bfd_vma
2599 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
2602 asection *sgot;
2603 bfd_vma gp;
2604 struct mips_got_info *g;
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
2613 /* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
2618 static struct mips_got_entry *
2619 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
2626 struct mips_got_entry entry, **loc;
2627 struct mips_got_info *g;
2628 struct mips_elf_link_hash_table *htab;
2630 htab = mips_elf_hash_table (info);
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
2635 entry.tls_type = 0;
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
2648 BFD_ASSERT (h == NULL || h->root.forced_local);
2649 if (TLS_RELOC_P (r_type))
2651 struct mips_got_entry *p;
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2660 else if (h == NULL)
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2665 else
2666 entry.d.h = h;
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2671 BFD_ASSERT (p);
2672 return p;
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2681 entry.tls_type = 0;
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2685 if (! *loc)
2686 return NULL;
2688 memcpy (*loc, &entry, sizeof entry);
2690 if (g->assigned_gotno >= g->local_gotno)
2692 (*loc)->gotidx = -1;
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2700 MIPS_ELF_PUT_WORD (abfd, value,
2701 (sgot->contents + entry.gotidx));
2703 /* These GOT entries need a dynamic relocation on VxWorks. */
2704 if (htab->is_vxworks)
2706 Elf_Internal_Rela outrel;
2707 asection *s;
2708 bfd_byte *loc;
2709 bfd_vma got_address;
2711 s = mips_elf_rel_dyn_section (info, FALSE);
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2723 return *loc;
2726 /* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2733 static bfd_boolean
2734 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2740 dynobj = elf_hash_table (info)->dynobj;
2742 g = mips_elf_got_info (dynobj, NULL);
2744 hsd.low = NULL;
2745 hsd.max_unref_got_dynindx =
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2761 /* There should have been enough room in the symbol table to
2762 accommodate both the GOT and non-GOT symbols. */
2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
2769 g->global_gotsym = hsd.low;
2771 return TRUE;
2774 /* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2778 static bfd_boolean
2779 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2781 struct mips_elf_hash_sort_data *hsd = data;
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
2789 return TRUE;
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2803 else if (h->root.got.offset != 1)
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2813 return TRUE;
2816 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2820 static bfd_boolean
2821 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
2826 struct mips_got_entry entry, **loc;
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
2830 if (h->dynindx == -1)
2832 switch (ELF_ST_VISIBILITY (h->other))
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2837 break;
2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2840 return FALSE;
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2849 entry.tls_type = 0;
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
2856 if (*loc)
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2864 if (! *loc)
2865 return FALSE;
2867 entry.gotidx = -1;
2868 entry.tls_type = tls_flag;
2870 memcpy (*loc, &entry, sizeof entry);
2872 if (h->got.offset != MINUS_ONE)
2873 return TRUE;
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
2881 return TRUE;
2884 /* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2887 static bfd_boolean
2888 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
2892 struct mips_got_entry entry, **loc;
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
2897 entry.tls_type = tls_flag;
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2901 if (*loc)
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2913 return TRUE;
2916 if (tls_flag != 0)
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2930 else
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2938 if (! *loc)
2939 return FALSE;
2941 memcpy (*loc, &entry, sizeof entry);
2943 return TRUE;
2946 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2948 static hashval_t
2949 mips_elf_bfd2got_entry_hash (const void *entry_)
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2954 return entry->bfd->id;
2957 /* Check whether two hash entries have the same bfd. */
2959 static int
2960 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2967 return e1->bfd == e2->bfd;
2970 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2971 be the master GOT data. */
2973 static struct mips_got_info *
2974 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2976 struct mips_elf_bfd2got_hash e, *p;
2978 if (! g->bfd2got)
2979 return g;
2981 e.bfd = ibfd;
2982 p = htab_find (g->bfd2got, &e);
2983 return p ? p->g : NULL;
2986 /* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2990 static int
2991 mips_elf_make_got_per_bfd (void **entryp, void *p)
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3013 if (bfdgot == NULL)
3015 arg->obfd = 0;
3016 return 0;
3019 *bfdgotp = bfdgot;
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3026 arg->obfd = 0;
3027 return 0;
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3038 mips_elf_multi_got_entry_eq, NULL);
3039 if (g->got_entries == NULL)
3041 arg->obfd = 0;
3042 return 0;
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
3054 *entryp = entry;
3056 if (entry->tls_type)
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3068 return 1;
3071 /* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3078 static int
3079 mips_elf_merge_gots (void **bfd2got_, void *p)
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
3086 unsigned int tcount = bfd2got->g->tls_gotno;
3087 unsigned int maxcnt = arg->max_count;
3088 bfd_boolean too_many_for_tls = FALSE;
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3097 if (primary_total > maxcnt)
3098 too_many_for_tls = TRUE;
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
3118 int old_tcount = arg->primary->tls_gotno;
3120 bfd2got->g = arg->primary;
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3137 arg->primary_count = arg->primary->local_gotno
3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
3147 int old_tcount = arg->current->tls_gotno;
3149 bfd2got->g = arg->current;
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3157 htab_delete (g->got_entries);
3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3163 arg->current_count = arg->current->local_gotno
3164 + arg->current->global_gotno + arg->current->tls_gotno;
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
3174 arg->current_count = lcount + gcount + 2 * tcount;
3177 return 1;
3180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
3183 static int
3184 mips_elf_initialize_tls_index (void **entryp, void *p)
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
3188 bfd_vma next_index;
3190 /* We're only interested in TLS symbols. */
3191 if (entry->tls_type == 0)
3192 return 1;
3194 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196 if (entry->symndx == -1 && g->next == NULL)
3198 /* A type (3) got entry in the single-GOT case. We use the symbol's
3199 hash table entry to track its index. */
3200 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3201 return 1;
3202 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3203 entry->d.h->tls_got_offset = next_index;
3205 else
3207 if (entry->tls_type & GOT_TLS_LDM)
3209 /* There are separate mips_got_entry objects for each input bfd
3210 that requires an LDM entry. Make sure that all LDM entries in
3211 a GOT resolve to the same index. */
3212 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3214 entry->gotidx = g->tls_ldm_offset;
3215 return 1;
3217 g->tls_ldm_offset = next_index;
3219 entry->gotidx = next_index;
3222 /* Account for the entries we've just allocated. */
3223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3224 g->tls_assigned_gotno += 2;
3225 if (entry->tls_type & GOT_TLS_IE)
3226 g->tls_assigned_gotno += 1;
3228 return 1;
3231 /* If passed a NULL mips_got_info in the argument, set the marker used
3232 to tell whether a global symbol needs a got entry (in the primary
3233 got) to the given VALUE.
3235 If passed a pointer G to a mips_got_info in the argument (it must
3236 not be the primary GOT), compute the offset from the beginning of
3237 the (primary) GOT section to the entry in G corresponding to the
3238 global symbol. G's assigned_gotno must contain the index of the
3239 first available global GOT entry in G. VALUE must contain the size
3240 of a GOT entry in bytes. For each global GOT entry that requires a
3241 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3242 marked as not eligible for lazy resolution through a function
3243 stub. */
3244 static int
3245 mips_elf_set_global_got_offset (void **entryp, void *p)
3247 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3248 struct mips_elf_set_global_got_offset_arg *arg
3249 = (struct mips_elf_set_global_got_offset_arg *)p;
3250 struct mips_got_info *g = arg->g;
3252 if (g && entry->tls_type != GOT_NORMAL)
3253 arg->needed_relocs +=
3254 mips_tls_got_relocs (arg->info, entry->tls_type,
3255 entry->symndx == -1 ? &entry->d.h->root : NULL);
3257 if (entry->abfd != NULL && entry->symndx == -1
3258 && entry->d.h->root.dynindx != -1
3259 && entry->d.h->tls_type == GOT_NORMAL)
3261 if (g)
3263 BFD_ASSERT (g->global_gotsym == NULL);
3265 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3266 if (arg->info->shared
3267 || (elf_hash_table (arg->info)->dynamic_sections_created
3268 && entry->d.h->root.def_dynamic
3269 && !entry->d.h->root.def_regular))
3270 ++arg->needed_relocs;
3272 else
3273 entry->d.h->root.got.offset = arg->value;
3276 return 1;
3279 /* Mark any global symbols referenced in the GOT we are iterating over
3280 as inelligible for lazy resolution stubs. */
3281 static int
3282 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3284 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3286 if (entry->abfd != NULL
3287 && entry->symndx == -1
3288 && entry->d.h->root.dynindx != -1)
3289 entry->d.h->no_fn_stub = TRUE;
3291 return 1;
3294 /* Follow indirect and warning hash entries so that each got entry
3295 points to the final symbol definition. P must point to a pointer
3296 to the hash table we're traversing. Since this traversal may
3297 modify the hash table, we set this pointer to NULL to indicate
3298 we've made a potentially-destructive change to the hash table, so
3299 the traversal must be restarted. */
3300 static int
3301 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3303 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3304 htab_t got_entries = *(htab_t *)p;
3306 if (entry->abfd != NULL && entry->symndx == -1)
3308 struct mips_elf_link_hash_entry *h = entry->d.h;
3310 while (h->root.root.type == bfd_link_hash_indirect
3311 || h->root.root.type == bfd_link_hash_warning)
3312 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3314 if (entry->d.h == h)
3315 return 1;
3317 entry->d.h = h;
3319 /* If we can't find this entry with the new bfd hash, re-insert
3320 it, and get the traversal restarted. */
3321 if (! htab_find (got_entries, entry))
3323 htab_clear_slot (got_entries, entryp);
3324 entryp = htab_find_slot (got_entries, entry, INSERT);
3325 if (! *entryp)
3326 *entryp = entry;
3327 /* Abort the traversal, since the whole table may have
3328 moved, and leave it up to the parent to restart the
3329 process. */
3330 *(htab_t *)p = NULL;
3331 return 0;
3333 /* We might want to decrement the global_gotno count, but it's
3334 either too early or too late for that at this point. */
3337 return 1;
3340 /* Turn indirect got entries in a got_entries table into their final
3341 locations. */
3342 static void
3343 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3345 htab_t got_entries;
3349 got_entries = g->got_entries;
3351 htab_traverse (got_entries,
3352 mips_elf_resolve_final_got_entry,
3353 &got_entries);
3355 while (got_entries == NULL);
3358 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3359 the primary GOT. */
3360 static bfd_vma
3361 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3363 if (g->bfd2got == NULL)
3364 return 0;
3366 g = mips_elf_got_for_ibfd (g, ibfd);
3367 if (! g)
3368 return 0;
3370 BFD_ASSERT (g->next);
3372 g = g->next;
3374 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3375 * MIPS_ELF_GOT_SIZE (abfd);
3378 /* Turn a single GOT that is too big for 16-bit addressing into
3379 a sequence of GOTs, each one 16-bit addressable. */
3381 static bfd_boolean
3382 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3383 struct mips_got_info *g, asection *got,
3384 bfd_size_type pages)
3386 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3387 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3388 struct mips_got_info *gg;
3389 unsigned int assign;
3391 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3392 mips_elf_bfd2got_entry_eq, NULL);
3393 if (g->bfd2got == NULL)
3394 return FALSE;
3396 got_per_bfd_arg.bfd2got = g->bfd2got;
3397 got_per_bfd_arg.obfd = abfd;
3398 got_per_bfd_arg.info = info;
3400 /* Count how many GOT entries each input bfd requires, creating a
3401 map from bfd to got info while at that. */
3402 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3403 if (got_per_bfd_arg.obfd == NULL)
3404 return FALSE;
3406 got_per_bfd_arg.current = NULL;
3407 got_per_bfd_arg.primary = NULL;
3408 /* Taking out PAGES entries is a worst-case estimate. We could
3409 compute the maximum number of pages that each separate input bfd
3410 uses, but it's probably not worth it. */
3411 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3412 / MIPS_ELF_GOT_SIZE (abfd))
3413 - MIPS_RESERVED_GOTNO (info) - pages);
3414 /* The number of globals that will be included in the primary GOT.
3415 See the calls to mips_elf_set_global_got_offset below for more
3416 information. */
3417 got_per_bfd_arg.global_count = g->global_gotno;
3419 /* Try to merge the GOTs of input bfds together, as long as they
3420 don't seem to exceed the maximum GOT size, choosing one of them
3421 to be the primary GOT. */
3422 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3423 if (got_per_bfd_arg.obfd == NULL)
3424 return FALSE;
3426 /* If we do not find any suitable primary GOT, create an empty one. */
3427 if (got_per_bfd_arg.primary == NULL)
3429 g->next = (struct mips_got_info *)
3430 bfd_alloc (abfd, sizeof (struct mips_got_info));
3431 if (g->next == NULL)
3432 return FALSE;
3434 g->next->global_gotsym = NULL;
3435 g->next->global_gotno = 0;
3436 g->next->local_gotno = 0;
3437 g->next->tls_gotno = 0;
3438 g->next->assigned_gotno = 0;
3439 g->next->tls_assigned_gotno = 0;
3440 g->next->tls_ldm_offset = MINUS_ONE;
3441 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3442 mips_elf_multi_got_entry_eq,
3443 NULL);
3444 if (g->next->got_entries == NULL)
3445 return FALSE;
3446 g->next->bfd2got = NULL;
3448 else
3449 g->next = got_per_bfd_arg.primary;
3450 g->next->next = got_per_bfd_arg.current;
3452 /* GG is now the master GOT, and G is the primary GOT. */
3453 gg = g;
3454 g = g->next;
3456 /* Map the output bfd to the primary got. That's what we're going
3457 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3458 didn't mark in check_relocs, and we want a quick way to find it.
3459 We can't just use gg->next because we're going to reverse the
3460 list. */
3462 struct mips_elf_bfd2got_hash *bfdgot;
3463 void **bfdgotp;
3465 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3466 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3468 if (bfdgot == NULL)
3469 return FALSE;
3471 bfdgot->bfd = abfd;
3472 bfdgot->g = g;
3473 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3475 BFD_ASSERT (*bfdgotp == NULL);
3476 *bfdgotp = bfdgot;
3479 /* The IRIX dynamic linker requires every symbol that is referenced
3480 in a dynamic relocation to be present in the primary GOT, so
3481 arrange for them to appear after those that are actually
3482 referenced.
3484 GNU/Linux could very well do without it, but it would slow down
3485 the dynamic linker, since it would have to resolve every dynamic
3486 symbol referenced in other GOTs more than once, without help from
3487 the cache. Also, knowing that every external symbol has a GOT
3488 helps speed up the resolution of local symbols too, so GNU/Linux
3489 follows IRIX's practice.
3491 The number 2 is used by mips_elf_sort_hash_table_f to count
3492 global GOT symbols that are unreferenced in the primary GOT, with
3493 an initial dynamic index computed from gg->assigned_gotno, where
3494 the number of unreferenced global entries in the primary GOT is
3495 preserved. */
3496 if (1)
3498 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3499 g->global_gotno = gg->global_gotno;
3500 set_got_offset_arg.value = 2;
3502 else
3504 /* This could be used for dynamic linkers that don't optimize
3505 symbol resolution while applying relocations so as to use
3506 primary GOT entries or assuming the symbol is locally-defined.
3507 With this code, we assign lower dynamic indices to global
3508 symbols that are not referenced in the primary GOT, so that
3509 their entries can be omitted. */
3510 gg->assigned_gotno = 0;
3511 set_got_offset_arg.value = -1;
3514 /* Reorder dynamic symbols as described above (which behavior
3515 depends on the setting of VALUE). */
3516 set_got_offset_arg.g = NULL;
3517 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3518 &set_got_offset_arg);
3519 set_got_offset_arg.value = 1;
3520 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 if (! mips_elf_sort_hash_table (info, 1))
3523 return FALSE;
3525 /* Now go through the GOTs assigning them offset ranges.
3526 [assigned_gotno, local_gotno[ will be set to the range of local
3527 entries in each GOT. We can then compute the end of a GOT by
3528 adding local_gotno to global_gotno. We reverse the list and make
3529 it circular since then we'll be able to quickly compute the
3530 beginning of a GOT, by computing the end of its predecessor. To
3531 avoid special cases for the primary GOT, while still preserving
3532 assertions that are valid for both single- and multi-got links,
3533 we arrange for the main got struct to have the right number of
3534 global entries, but set its local_gotno such that the initial
3535 offset of the primary GOT is zero. Remember that the primary GOT
3536 will become the last item in the circular linked list, so it
3537 points back to the master GOT. */
3538 gg->local_gotno = -g->global_gotno;
3539 gg->global_gotno = g->global_gotno;
3540 gg->tls_gotno = 0;
3541 assign = 0;
3542 gg->next = gg;
3546 struct mips_got_info *gn;
3548 assign += MIPS_RESERVED_GOTNO (info);
3549 g->assigned_gotno = assign;
3550 g->local_gotno += assign + pages;
3551 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3553 /* Take g out of the direct list, and push it onto the reversed
3554 list that gg points to. g->next is guaranteed to be nonnull after
3555 this operation, as required by mips_elf_initialize_tls_index. */
3556 gn = g->next;
3557 g->next = gg->next;
3558 gg->next = g;
3560 /* Set up any TLS entries. We always place the TLS entries after
3561 all non-TLS entries. */
3562 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3563 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3565 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3566 g = gn;
3568 /* Mark global symbols in every non-primary GOT as ineligible for
3569 stubs. */
3570 if (g)
3571 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3573 while (g);
3575 got->size = (gg->next->local_gotno
3576 + gg->next->global_gotno
3577 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3579 return TRUE;
3583 /* Returns the first relocation of type r_type found, beginning with
3584 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3586 static const Elf_Internal_Rela *
3587 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3588 const Elf_Internal_Rela *relocation,
3589 const Elf_Internal_Rela *relend)
3591 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3593 while (relocation < relend)
3595 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3596 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3597 return relocation;
3599 ++relocation;
3602 /* We didn't find it. */
3603 return NULL;
3606 /* Return whether a relocation is against a local symbol. */
3608 static bfd_boolean
3609 mips_elf_local_relocation_p (bfd *input_bfd,
3610 const Elf_Internal_Rela *relocation,
3611 asection **local_sections,
3612 bfd_boolean check_forced)
3614 unsigned long r_symndx;
3615 Elf_Internal_Shdr *symtab_hdr;
3616 struct mips_elf_link_hash_entry *h;
3617 size_t extsymoff;
3619 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3620 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3621 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3623 if (r_symndx < extsymoff)
3624 return TRUE;
3625 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3626 return TRUE;
3628 if (check_forced)
3630 /* Look up the hash table to check whether the symbol
3631 was forced local. */
3632 h = (struct mips_elf_link_hash_entry *)
3633 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3634 /* Find the real hash-table entry for this symbol. */
3635 while (h->root.root.type == bfd_link_hash_indirect
3636 || h->root.root.type == bfd_link_hash_warning)
3637 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3638 if (h->root.forced_local)
3639 return TRUE;
3642 return FALSE;
3645 /* Sign-extend VALUE, which has the indicated number of BITS. */
3647 bfd_vma
3648 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3650 if (value & ((bfd_vma) 1 << (bits - 1)))
3651 /* VALUE is negative. */
3652 value |= ((bfd_vma) - 1) << bits;
3654 return value;
3657 /* Return non-zero if the indicated VALUE has overflowed the maximum
3658 range expressible by a signed number with the indicated number of
3659 BITS. */
3661 static bfd_boolean
3662 mips_elf_overflow_p (bfd_vma value, int bits)
3664 bfd_signed_vma svalue = (bfd_signed_vma) value;
3666 if (svalue > (1 << (bits - 1)) - 1)
3667 /* The value is too big. */
3668 return TRUE;
3669 else if (svalue < -(1 << (bits - 1)))
3670 /* The value is too small. */
3671 return TRUE;
3673 /* All is well. */
3674 return FALSE;
3677 /* Calculate the %high function. */
3679 static bfd_vma
3680 mips_elf_high (bfd_vma value)
3682 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3685 /* Calculate the %higher function. */
3687 static bfd_vma
3688 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3690 #ifdef BFD64
3691 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3692 #else
3693 abort ();
3694 return MINUS_ONE;
3695 #endif
3698 /* Calculate the %highest function. */
3700 static bfd_vma
3701 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3703 #ifdef BFD64
3704 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3705 #else
3706 abort ();
3707 return MINUS_ONE;
3708 #endif
3711 /* Create the .compact_rel section. */
3713 static bfd_boolean
3714 mips_elf_create_compact_rel_section
3715 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3717 flagword flags;
3718 register asection *s;
3720 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3722 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3723 | SEC_READONLY);
3725 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3726 if (s == NULL
3727 || ! bfd_set_section_alignment (abfd, s,
3728 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3729 return FALSE;
3731 s->size = sizeof (Elf32_External_compact_rel);
3734 return TRUE;
3737 /* Create the .got section to hold the global offset table. */
3739 static bfd_boolean
3740 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3741 bfd_boolean maybe_exclude)
3743 flagword flags;
3744 register asection *s;
3745 struct elf_link_hash_entry *h;
3746 struct bfd_link_hash_entry *bh;
3747 struct mips_got_info *g;
3748 bfd_size_type amt;
3749 struct mips_elf_link_hash_table *htab;
3751 htab = mips_elf_hash_table (info);
3753 /* This function may be called more than once. */
3754 s = mips_elf_got_section (abfd, TRUE);
3755 if (s)
3757 if (! maybe_exclude)
3758 s->flags &= ~SEC_EXCLUDE;
3759 return TRUE;
3762 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3763 | SEC_LINKER_CREATED);
3765 if (maybe_exclude)
3766 flags |= SEC_EXCLUDE;
3768 /* We have to use an alignment of 2**4 here because this is hardcoded
3769 in the function stub generation and in the linker script. */
3770 s = bfd_make_section_with_flags (abfd, ".got", flags);
3771 if (s == NULL
3772 || ! bfd_set_section_alignment (abfd, s, 4))
3773 return FALSE;
3775 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3776 linker script because we don't want to define the symbol if we
3777 are not creating a global offset table. */
3778 bh = NULL;
3779 if (! (_bfd_generic_link_add_one_symbol
3780 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3781 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3782 return FALSE;
3784 h = (struct elf_link_hash_entry *) bh;
3785 h->non_elf = 0;
3786 h->def_regular = 1;
3787 h->type = STT_OBJECT;
3788 elf_hash_table (info)->hgot = h;
3790 if (info->shared
3791 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3792 return FALSE;
3794 amt = sizeof (struct mips_got_info);
3795 g = bfd_alloc (abfd, amt);
3796 if (g == NULL)
3797 return FALSE;
3798 g->global_gotsym = NULL;
3799 g->global_gotno = 0;
3800 g->tls_gotno = 0;
3801 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3802 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3803 g->bfd2got = NULL;
3804 g->next = NULL;
3805 g->tls_ldm_offset = MINUS_ONE;
3806 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3807 mips_elf_got_entry_eq, NULL);
3808 if (g->got_entries == NULL)
3809 return FALSE;
3810 mips_elf_section_data (s)->u.got_info = g;
3811 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3812 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3814 /* VxWorks also needs a .got.plt section. */
3815 if (htab->is_vxworks)
3817 s = bfd_make_section_with_flags (abfd, ".got.plt",
3818 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3819 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3820 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3821 return FALSE;
3823 htab->sgotplt = s;
3825 return TRUE;
3828 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3829 __GOTT_INDEX__ symbols. These symbols are only special for
3830 shared objects; they are not used in executables. */
3832 static bfd_boolean
3833 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3835 return (mips_elf_hash_table (info)->is_vxworks
3836 && info->shared
3837 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3838 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3841 /* Calculate the value produced by the RELOCATION (which comes from
3842 the INPUT_BFD). The ADDEND is the addend to use for this
3843 RELOCATION; RELOCATION->R_ADDEND is ignored.
3845 The result of the relocation calculation is stored in VALUEP.
3846 REQUIRE_JALXP indicates whether or not the opcode used with this
3847 relocation must be JALX.
3849 This function returns bfd_reloc_continue if the caller need take no
3850 further action regarding this relocation, bfd_reloc_notsupported if
3851 something goes dramatically wrong, bfd_reloc_overflow if an
3852 overflow occurs, and bfd_reloc_ok to indicate success. */
3854 static bfd_reloc_status_type
3855 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3856 asection *input_section,
3857 struct bfd_link_info *info,
3858 const Elf_Internal_Rela *relocation,
3859 bfd_vma addend, reloc_howto_type *howto,
3860 Elf_Internal_Sym *local_syms,
3861 asection **local_sections, bfd_vma *valuep,
3862 const char **namep, bfd_boolean *require_jalxp,
3863 bfd_boolean save_addend)
3865 /* The eventual value we will return. */
3866 bfd_vma value;
3867 /* The address of the symbol against which the relocation is
3868 occurring. */
3869 bfd_vma symbol = 0;
3870 /* The final GP value to be used for the relocatable, executable, or
3871 shared object file being produced. */
3872 bfd_vma gp = MINUS_ONE;
3873 /* The place (section offset or address) of the storage unit being
3874 relocated. */
3875 bfd_vma p;
3876 /* The value of GP used to create the relocatable object. */
3877 bfd_vma gp0 = MINUS_ONE;
3878 /* The offset into the global offset table at which the address of
3879 the relocation entry symbol, adjusted by the addend, resides
3880 during execution. */
3881 bfd_vma g = MINUS_ONE;
3882 /* The section in which the symbol referenced by the relocation is
3883 located. */
3884 asection *sec = NULL;
3885 struct mips_elf_link_hash_entry *h = NULL;
3886 /* TRUE if the symbol referred to by this relocation is a local
3887 symbol. */
3888 bfd_boolean local_p, was_local_p;
3889 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3890 bfd_boolean gp_disp_p = FALSE;
3891 /* TRUE if the symbol referred to by this relocation is
3892 "__gnu_local_gp". */
3893 bfd_boolean gnu_local_gp_p = FALSE;
3894 Elf_Internal_Shdr *symtab_hdr;
3895 size_t extsymoff;
3896 unsigned long r_symndx;
3897 int r_type;
3898 /* TRUE if overflow occurred during the calculation of the
3899 relocation value. */
3900 bfd_boolean overflowed_p;
3901 /* TRUE if this relocation refers to a MIPS16 function. */
3902 bfd_boolean target_is_16_bit_code_p = FALSE;
3903 struct mips_elf_link_hash_table *htab;
3904 bfd *dynobj;
3906 dynobj = elf_hash_table (info)->dynobj;
3907 htab = mips_elf_hash_table (info);
3909 /* Parse the relocation. */
3910 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3911 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3912 p = (input_section->output_section->vma
3913 + input_section->output_offset
3914 + relocation->r_offset);
3916 /* Assume that there will be no overflow. */
3917 overflowed_p = FALSE;
3919 /* Figure out whether or not the symbol is local, and get the offset
3920 used in the array of hash table entries. */
3921 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3922 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3923 local_sections, FALSE);
3924 was_local_p = local_p;
3925 if (! elf_bad_symtab (input_bfd))
3926 extsymoff = symtab_hdr->sh_info;
3927 else
3929 /* The symbol table does not follow the rule that local symbols
3930 must come before globals. */
3931 extsymoff = 0;
3934 /* Figure out the value of the symbol. */
3935 if (local_p)
3937 Elf_Internal_Sym *sym;
3939 sym = local_syms + r_symndx;
3940 sec = local_sections[r_symndx];
3942 symbol = sec->output_section->vma + sec->output_offset;
3943 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3944 || (sec->flags & SEC_MERGE))
3945 symbol += sym->st_value;
3946 if ((sec->flags & SEC_MERGE)
3947 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3949 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3950 addend -= symbol;
3951 addend += sec->output_section->vma + sec->output_offset;
3954 /* MIPS16 text labels should be treated as odd. */
3955 if (sym->st_other == STO_MIPS16)
3956 ++symbol;
3958 /* Record the name of this symbol, for our caller. */
3959 *namep = bfd_elf_string_from_elf_section (input_bfd,
3960 symtab_hdr->sh_link,
3961 sym->st_name);
3962 if (*namep == '\0')
3963 *namep = bfd_section_name (input_bfd, sec);
3965 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3967 else
3969 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3971 /* For global symbols we look up the symbol in the hash-table. */
3972 h = ((struct mips_elf_link_hash_entry *)
3973 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3974 /* Find the real hash-table entry for this symbol. */
3975 while (h->root.root.type == bfd_link_hash_indirect
3976 || h->root.root.type == bfd_link_hash_warning)
3977 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3979 /* Record the name of this symbol, for our caller. */
3980 *namep = h->root.root.root.string;
3982 /* See if this is the special _gp_disp symbol. Note that such a
3983 symbol must always be a global symbol. */
3984 if (strcmp (*namep, "_gp_disp") == 0
3985 && ! NEWABI_P (input_bfd))
3987 /* Relocations against _gp_disp are permitted only with
3988 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3989 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3990 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3991 return bfd_reloc_notsupported;
3993 gp_disp_p = TRUE;
3995 /* See if this is the special _gp symbol. Note that such a
3996 symbol must always be a global symbol. */
3997 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3998 gnu_local_gp_p = TRUE;
4001 /* If this symbol is defined, calculate its address. Note that
4002 _gp_disp is a magic symbol, always implicitly defined by the
4003 linker, so it's inappropriate to check to see whether or not
4004 its defined. */
4005 else if ((h->root.root.type == bfd_link_hash_defined
4006 || h->root.root.type == bfd_link_hash_defweak)
4007 && h->root.root.u.def.section)
4009 sec = h->root.root.u.def.section;
4010 if (sec->output_section)
4011 symbol = (h->root.root.u.def.value
4012 + sec->output_section->vma
4013 + sec->output_offset);
4014 else
4015 symbol = h->root.root.u.def.value;
4017 else if (h->root.root.type == bfd_link_hash_undefweak)
4018 /* We allow relocations against undefined weak symbols, giving
4019 it the value zero, so that you can undefined weak functions
4020 and check to see if they exist by looking at their
4021 addresses. */
4022 symbol = 0;
4023 else if (info->unresolved_syms_in_objects == RM_IGNORE
4024 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4025 symbol = 0;
4026 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4027 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4029 /* If this is a dynamic link, we should have created a
4030 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4031 in in _bfd_mips_elf_create_dynamic_sections.
4032 Otherwise, we should define the symbol with a value of 0.
4033 FIXME: It should probably get into the symbol table
4034 somehow as well. */
4035 BFD_ASSERT (! info->shared);
4036 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4037 symbol = 0;
4039 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4041 /* This is an optional symbol - an Irix specific extension to the
4042 ELF spec. Ignore it for now.
4043 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4044 than simply ignoring them, but we do not handle this for now.
4045 For information see the "64-bit ELF Object File Specification"
4046 which is available from here:
4047 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4048 symbol = 0;
4050 else
4052 if (! ((*info->callbacks->undefined_symbol)
4053 (info, h->root.root.root.string, input_bfd,
4054 input_section, relocation->r_offset,
4055 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4056 || ELF_ST_VISIBILITY (h->root.other))))
4057 return bfd_reloc_undefined;
4058 symbol = 0;
4061 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4064 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4065 need to redirect the call to the stub, unless we're already *in*
4066 a stub. */
4067 if (r_type != R_MIPS16_26 && !info->relocatable
4068 && ((h != NULL && h->fn_stub != NULL)
4069 || (local_p
4070 && elf_tdata (input_bfd)->local_stubs != NULL
4071 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4072 && !mips16_stub_section_p (input_bfd, input_section))
4074 /* This is a 32- or 64-bit call to a 16-bit function. We should
4075 have already noticed that we were going to need the
4076 stub. */
4077 if (local_p)
4078 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4079 else
4081 BFD_ASSERT (h->need_fn_stub);
4082 sec = h->fn_stub;
4085 symbol = sec->output_section->vma + sec->output_offset;
4086 /* The target is 16-bit, but the stub isn't. */
4087 target_is_16_bit_code_p = FALSE;
4089 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4090 need to redirect the call to the stub. */
4091 else if (r_type == R_MIPS16_26 && !info->relocatable
4092 && h != NULL
4093 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4094 || (local_p
4095 && elf_tdata (input_bfd)->local_call_stubs != NULL
4096 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4097 && !target_is_16_bit_code_p)
4099 if (local_p)
4100 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4101 else
4103 /* If both call_stub and call_fp_stub are defined, we can figure
4104 out which one to use by checking which one appears in the input
4105 file. */
4106 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4108 asection *o;
4110 sec = NULL;
4111 for (o = input_bfd->sections; o != NULL; o = o->next)
4113 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4115 sec = h->call_fp_stub;
4116 break;
4119 if (sec == NULL)
4120 sec = h->call_stub;
4122 else if (h->call_stub != NULL)
4123 sec = h->call_stub;
4124 else
4125 sec = h->call_fp_stub;
4128 BFD_ASSERT (sec->size > 0);
4129 symbol = sec->output_section->vma + sec->output_offset;
4132 /* Calls from 16-bit code to 32-bit code and vice versa require the
4133 special jalx instruction. */
4134 *require_jalxp = (!info->relocatable
4135 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4136 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4138 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4139 local_sections, TRUE);
4141 /* If we haven't already determined the GOT offset, or the GP value,
4142 and we're going to need it, get it now. */
4143 switch (r_type)
4145 case R_MIPS_GOT_PAGE:
4146 case R_MIPS_GOT_OFST:
4147 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4148 bind locally. */
4149 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4150 if (local_p || r_type == R_MIPS_GOT_OFST)
4151 break;
4152 /* Fall through. */
4154 case R_MIPS_CALL16:
4155 case R_MIPS_GOT16:
4156 case R_MIPS_GOT_DISP:
4157 case R_MIPS_GOT_HI16:
4158 case R_MIPS_CALL_HI16:
4159 case R_MIPS_GOT_LO16:
4160 case R_MIPS_CALL_LO16:
4161 case R_MIPS_TLS_GD:
4162 case R_MIPS_TLS_GOTTPREL:
4163 case R_MIPS_TLS_LDM:
4164 /* Find the index into the GOT where this value is located. */
4165 if (r_type == R_MIPS_TLS_LDM)
4167 g = mips_elf_local_got_index (abfd, input_bfd, info,
4168 0, 0, NULL, r_type);
4169 if (g == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4172 else if (!local_p)
4174 /* On VxWorks, CALL relocations should refer to the .got.plt
4175 entry, which is initialized to point at the PLT stub. */
4176 if (htab->is_vxworks
4177 && (r_type == R_MIPS_CALL_HI16
4178 || r_type == R_MIPS_CALL_LO16
4179 || r_type == R_MIPS_CALL16))
4181 BFD_ASSERT (addend == 0);
4182 BFD_ASSERT (h->root.needs_plt);
4183 g = mips_elf_gotplt_index (info, &h->root);
4185 else
4187 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4188 GOT_PAGE relocation that decays to GOT_DISP because the
4189 symbol turns out to be global. The addend is then added
4190 as GOT_OFST. */
4191 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4192 g = mips_elf_global_got_index (dynobj, input_bfd,
4193 &h->root, r_type, info);
4194 if (h->tls_type == GOT_NORMAL
4195 && (! elf_hash_table(info)->dynamic_sections_created
4196 || (info->shared
4197 && (info->symbolic || h->root.forced_local)
4198 && h->root.def_regular)))
4200 /* This is a static link or a -Bsymbolic link. The
4201 symbol is defined locally, or was forced to be local.
4202 We must initialize this entry in the GOT. */
4203 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4204 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4208 else if (!htab->is_vxworks
4209 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4210 /* The calculation below does not involve "g". */
4211 break;
4212 else
4214 g = mips_elf_local_got_index (abfd, input_bfd, info,
4215 symbol + addend, r_symndx, h, r_type);
4216 if (g == MINUS_ONE)
4217 return bfd_reloc_outofrange;
4220 /* Convert GOT indices to actual offsets. */
4221 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4222 break;
4224 case R_MIPS_HI16:
4225 case R_MIPS_LO16:
4226 case R_MIPS_GPREL16:
4227 case R_MIPS_GPREL32:
4228 case R_MIPS_LITERAL:
4229 case R_MIPS16_HI16:
4230 case R_MIPS16_LO16:
4231 case R_MIPS16_GPREL:
4232 gp0 = _bfd_get_gp_value (input_bfd);
4233 gp = _bfd_get_gp_value (abfd);
4234 if (dynobj)
4235 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4236 input_bfd);
4237 break;
4239 default:
4240 break;
4243 if (gnu_local_gp_p)
4244 symbol = gp;
4246 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4247 symbols are resolved by the loader. Add them to .rela.dyn. */
4248 if (h != NULL && is_gott_symbol (info, &h->root))
4250 Elf_Internal_Rela outrel;
4251 bfd_byte *loc;
4252 asection *s;
4254 s = mips_elf_rel_dyn_section (info, FALSE);
4255 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4257 outrel.r_offset = (input_section->output_section->vma
4258 + input_section->output_offset
4259 + relocation->r_offset);
4260 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4261 outrel.r_addend = addend;
4262 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4264 /* If we've written this relocation for a readonly section,
4265 we need to set DF_TEXTREL again, so that we do not delete the
4266 DT_TEXTREL tag. */
4267 if (MIPS_ELF_READONLY_SECTION (input_section))
4268 info->flags |= DF_TEXTREL;
4270 *valuep = 0;
4271 return bfd_reloc_ok;
4274 /* Figure out what kind of relocation is being performed. */
4275 switch (r_type)
4277 case R_MIPS_NONE:
4278 return bfd_reloc_continue;
4280 case R_MIPS_16:
4281 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4282 overflowed_p = mips_elf_overflow_p (value, 16);
4283 break;
4285 case R_MIPS_32:
4286 case R_MIPS_REL32:
4287 case R_MIPS_64:
4288 if ((info->shared
4289 || (!htab->is_vxworks
4290 && htab->root.dynamic_sections_created
4291 && h != NULL
4292 && h->root.def_dynamic
4293 && !h->root.def_regular))
4294 && r_symndx != 0
4295 && (input_section->flags & SEC_ALLOC) != 0)
4297 /* If we're creating a shared library, or this relocation is
4298 against a symbol in a shared library, then we can't know
4299 where the symbol will end up. So, we create a relocation
4300 record in the output, and leave the job up to the dynamic
4301 linker.
4303 In VxWorks executables, references to external symbols
4304 are handled using copy relocs or PLT stubs, so there's
4305 no need to add a dynamic relocation here. */
4306 value = addend;
4307 if (!mips_elf_create_dynamic_relocation (abfd,
4308 info,
4309 relocation,
4311 sec,
4312 symbol,
4313 &value,
4314 input_section))
4315 return bfd_reloc_undefined;
4317 else
4319 if (r_type != R_MIPS_REL32)
4320 value = symbol + addend;
4321 else
4322 value = addend;
4324 value &= howto->dst_mask;
4325 break;
4327 case R_MIPS_PC32:
4328 value = symbol + addend - p;
4329 value &= howto->dst_mask;
4330 break;
4332 case R_MIPS16_26:
4333 /* The calculation for R_MIPS16_26 is just the same as for an
4334 R_MIPS_26. It's only the storage of the relocated field into
4335 the output file that's different. That's handled in
4336 mips_elf_perform_relocation. So, we just fall through to the
4337 R_MIPS_26 case here. */
4338 case R_MIPS_26:
4339 if (local_p)
4340 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4341 else
4343 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4344 if (h->root.root.type != bfd_link_hash_undefweak)
4345 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4347 value &= howto->dst_mask;
4348 break;
4350 case R_MIPS_TLS_DTPREL_HI16:
4351 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4352 & howto->dst_mask);
4353 break;
4355 case R_MIPS_TLS_DTPREL_LO16:
4356 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4357 break;
4359 case R_MIPS_TLS_TPREL_HI16:
4360 value = (mips_elf_high (addend + symbol - tprel_base (info))
4361 & howto->dst_mask);
4362 break;
4364 case R_MIPS_TLS_TPREL_LO16:
4365 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4366 break;
4368 case R_MIPS_HI16:
4369 case R_MIPS16_HI16:
4370 if (!gp_disp_p)
4372 value = mips_elf_high (addend + symbol);
4373 value &= howto->dst_mask;
4375 else
4377 /* For MIPS16 ABI code we generate this sequence
4378 0: li $v0,%hi(_gp_disp)
4379 4: addiupc $v1,%lo(_gp_disp)
4380 8: sll $v0,16
4381 12: addu $v0,$v1
4382 14: move $gp,$v0
4383 So the offsets of hi and lo relocs are the same, but the
4384 $pc is four higher than $t9 would be, so reduce
4385 both reloc addends by 4. */
4386 if (r_type == R_MIPS16_HI16)
4387 value = mips_elf_high (addend + gp - p - 4);
4388 else
4389 value = mips_elf_high (addend + gp - p);
4390 overflowed_p = mips_elf_overflow_p (value, 16);
4392 break;
4394 case R_MIPS_LO16:
4395 case R_MIPS16_LO16:
4396 if (!gp_disp_p)
4397 value = (symbol + addend) & howto->dst_mask;
4398 else
4400 /* See the comment for R_MIPS16_HI16 above for the reason
4401 for this conditional. */
4402 if (r_type == R_MIPS16_LO16)
4403 value = addend + gp - p;
4404 else
4405 value = addend + gp - p + 4;
4406 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4407 for overflow. But, on, say, IRIX5, relocations against
4408 _gp_disp are normally generated from the .cpload
4409 pseudo-op. It generates code that normally looks like
4410 this:
4412 lui $gp,%hi(_gp_disp)
4413 addiu $gp,$gp,%lo(_gp_disp)
4414 addu $gp,$gp,$t9
4416 Here $t9 holds the address of the function being called,
4417 as required by the MIPS ELF ABI. The R_MIPS_LO16
4418 relocation can easily overflow in this situation, but the
4419 R_MIPS_HI16 relocation will handle the overflow.
4420 Therefore, we consider this a bug in the MIPS ABI, and do
4421 not check for overflow here. */
4423 break;
4425 case R_MIPS_LITERAL:
4426 /* Because we don't merge literal sections, we can handle this
4427 just like R_MIPS_GPREL16. In the long run, we should merge
4428 shared literals, and then we will need to additional work
4429 here. */
4431 /* Fall through. */
4433 case R_MIPS16_GPREL:
4434 /* The R_MIPS16_GPREL performs the same calculation as
4435 R_MIPS_GPREL16, but stores the relocated bits in a different
4436 order. We don't need to do anything special here; the
4437 differences are handled in mips_elf_perform_relocation. */
4438 case R_MIPS_GPREL16:
4439 /* Only sign-extend the addend if it was extracted from the
4440 instruction. If the addend was separate, leave it alone,
4441 otherwise we may lose significant bits. */
4442 if (howto->partial_inplace)
4443 addend = _bfd_mips_elf_sign_extend (addend, 16);
4444 value = symbol + addend - gp;
4445 /* If the symbol was local, any earlier relocatable links will
4446 have adjusted its addend with the gp offset, so compensate
4447 for that now. Don't do it for symbols forced local in this
4448 link, though, since they won't have had the gp offset applied
4449 to them before. */
4450 if (was_local_p)
4451 value += gp0;
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4455 case R_MIPS_GOT16:
4456 case R_MIPS_CALL16:
4457 /* VxWorks does not have separate local and global semantics for
4458 R_MIPS_GOT16; every relocation evaluates to "G". */
4459 if (!htab->is_vxworks && local_p)
4461 bfd_boolean forced;
4463 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4464 local_sections, FALSE);
4465 value = mips_elf_got16_entry (abfd, input_bfd, info,
4466 symbol + addend, forced);
4467 if (value == MINUS_ONE)
4468 return bfd_reloc_outofrange;
4469 value
4470 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4471 overflowed_p = mips_elf_overflow_p (value, 16);
4472 break;
4475 /* Fall through. */
4477 case R_MIPS_TLS_GD:
4478 case R_MIPS_TLS_GOTTPREL:
4479 case R_MIPS_TLS_LDM:
4480 case R_MIPS_GOT_DISP:
4481 got_disp:
4482 value = g;
4483 overflowed_p = mips_elf_overflow_p (value, 16);
4484 break;
4486 case R_MIPS_GPREL32:
4487 value = (addend + symbol + gp0 - gp);
4488 if (!save_addend)
4489 value &= howto->dst_mask;
4490 break;
4492 case R_MIPS_PC16:
4493 case R_MIPS_GNU_REL16_S2:
4494 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4495 overflowed_p = mips_elf_overflow_p (value, 18);
4496 value >>= howto->rightshift;
4497 value &= howto->dst_mask;
4498 break;
4500 case R_MIPS_GOT_HI16:
4501 case R_MIPS_CALL_HI16:
4502 /* We're allowed to handle these two relocations identically.
4503 The dynamic linker is allowed to handle the CALL relocations
4504 differently by creating a lazy evaluation stub. */
4505 value = g;
4506 value = mips_elf_high (value);
4507 value &= howto->dst_mask;
4508 break;
4510 case R_MIPS_GOT_LO16:
4511 case R_MIPS_CALL_LO16:
4512 value = g & howto->dst_mask;
4513 break;
4515 case R_MIPS_GOT_PAGE:
4516 /* GOT_PAGE relocations that reference non-local symbols decay
4517 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4518 0. */
4519 if (! local_p)
4520 goto got_disp;
4521 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4522 if (value == MINUS_ONE)
4523 return bfd_reloc_outofrange;
4524 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4525 overflowed_p = mips_elf_overflow_p (value, 16);
4526 break;
4528 case R_MIPS_GOT_OFST:
4529 if (local_p)
4530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4531 else
4532 value = addend;
4533 overflowed_p = mips_elf_overflow_p (value, 16);
4534 break;
4536 case R_MIPS_SUB:
4537 value = symbol - addend;
4538 value &= howto->dst_mask;
4539 break;
4541 case R_MIPS_HIGHER:
4542 value = mips_elf_higher (addend + symbol);
4543 value &= howto->dst_mask;
4544 break;
4546 case R_MIPS_HIGHEST:
4547 value = mips_elf_highest (addend + symbol);
4548 value &= howto->dst_mask;
4549 break;
4551 case R_MIPS_SCN_DISP:
4552 value = symbol + addend - sec->output_offset;
4553 value &= howto->dst_mask;
4554 break;
4556 case R_MIPS_JALR:
4557 /* This relocation is only a hint. In some cases, we optimize
4558 it into a bal instruction. But we don't try to optimize
4559 branches to the PLT; that will wind up wasting time. */
4560 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4561 return bfd_reloc_continue;
4562 value = symbol + addend;
4563 break;
4565 case R_MIPS_PJUMP:
4566 case R_MIPS_GNU_VTINHERIT:
4567 case R_MIPS_GNU_VTENTRY:
4568 /* We don't do anything with these at present. */
4569 return bfd_reloc_continue;
4571 default:
4572 /* An unrecognized relocation type. */
4573 return bfd_reloc_notsupported;
4576 /* Store the VALUE for our caller. */
4577 *valuep = value;
4578 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4581 /* Obtain the field relocated by RELOCATION. */
4583 static bfd_vma
4584 mips_elf_obtain_contents (reloc_howto_type *howto,
4585 const Elf_Internal_Rela *relocation,
4586 bfd *input_bfd, bfd_byte *contents)
4588 bfd_vma x;
4589 bfd_byte *location = contents + relocation->r_offset;
4591 /* Obtain the bytes. */
4592 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4594 return x;
4597 /* It has been determined that the result of the RELOCATION is the
4598 VALUE. Use HOWTO to place VALUE into the output file at the
4599 appropriate position. The SECTION is the section to which the
4600 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4601 for the relocation must be either JAL or JALX, and it is
4602 unconditionally converted to JALX.
4604 Returns FALSE if anything goes wrong. */
4606 static bfd_boolean
4607 mips_elf_perform_relocation (struct bfd_link_info *info,
4608 reloc_howto_type *howto,
4609 const Elf_Internal_Rela *relocation,
4610 bfd_vma value, bfd *input_bfd,
4611 asection *input_section, bfd_byte *contents,
4612 bfd_boolean require_jalx)
4614 bfd_vma x;
4615 bfd_byte *location;
4616 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4618 /* Figure out where the relocation is occurring. */
4619 location = contents + relocation->r_offset;
4621 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4623 /* Obtain the current value. */
4624 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4626 /* Clear the field we are setting. */
4627 x &= ~howto->dst_mask;
4629 /* Set the field. */
4630 x |= (value & howto->dst_mask);
4632 /* If required, turn JAL into JALX. */
4633 if (require_jalx)
4635 bfd_boolean ok;
4636 bfd_vma opcode = x >> 26;
4637 bfd_vma jalx_opcode;
4639 /* Check to see if the opcode is already JAL or JALX. */
4640 if (r_type == R_MIPS16_26)
4642 ok = ((opcode == 0x6) || (opcode == 0x7));
4643 jalx_opcode = 0x7;
4645 else
4647 ok = ((opcode == 0x3) || (opcode == 0x1d));
4648 jalx_opcode = 0x1d;
4651 /* If the opcode is not JAL or JALX, there's a problem. */
4652 if (!ok)
4654 (*_bfd_error_handler)
4655 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4656 input_bfd,
4657 input_section,
4658 (unsigned long) relocation->r_offset);
4659 bfd_set_error (bfd_error_bad_value);
4660 return FALSE;
4663 /* Make this the JALX opcode. */
4664 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4667 /* On the RM9000, bal is faster than jal, because bal uses branch
4668 prediction hardware. If we are linking for the RM9000, and we
4669 see jal, and bal fits, use it instead. Note that this
4670 transformation should be safe for all architectures. */
4671 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4672 && !info->relocatable
4673 && !require_jalx
4674 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4675 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4677 bfd_vma addr;
4678 bfd_vma dest;
4679 bfd_signed_vma off;
4681 addr = (input_section->output_section->vma
4682 + input_section->output_offset
4683 + relocation->r_offset
4684 + 4);
4685 if (r_type == R_MIPS_26)
4686 dest = (value << 2) | ((addr >> 28) << 28);
4687 else
4688 dest = value;
4689 off = dest - addr;
4690 if (off <= 0x1ffff && off >= -0x20000)
4691 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4694 /* Put the value into the output. */
4695 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4697 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4698 location);
4700 return TRUE;
4703 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4705 static bfd_boolean
4706 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4708 const char *name = bfd_get_section_name (abfd, section);
4710 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4713 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4715 static void
4716 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4717 unsigned int n)
4719 asection *s;
4720 struct mips_elf_link_hash_table *htab;
4722 htab = mips_elf_hash_table (info);
4723 s = mips_elf_rel_dyn_section (info, FALSE);
4724 BFD_ASSERT (s != NULL);
4726 if (htab->is_vxworks)
4727 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4728 else
4730 if (s->size == 0)
4732 /* Make room for a null element. */
4733 s->size += MIPS_ELF_REL_SIZE (abfd);
4734 ++s->reloc_count;
4736 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4740 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4741 is the original relocation, which is now being transformed into a
4742 dynamic relocation. The ADDENDP is adjusted if necessary; the
4743 caller should store the result in place of the original addend. */
4745 static bfd_boolean
4746 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4747 struct bfd_link_info *info,
4748 const Elf_Internal_Rela *rel,
4749 struct mips_elf_link_hash_entry *h,
4750 asection *sec, bfd_vma symbol,
4751 bfd_vma *addendp, asection *input_section)
4753 Elf_Internal_Rela outrel[3];
4754 asection *sreloc;
4755 bfd *dynobj;
4756 int r_type;
4757 long indx;
4758 bfd_boolean defined_p;
4759 struct mips_elf_link_hash_table *htab;
4761 htab = mips_elf_hash_table (info);
4762 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4763 dynobj = elf_hash_table (info)->dynobj;
4764 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4765 BFD_ASSERT (sreloc != NULL);
4766 BFD_ASSERT (sreloc->contents != NULL);
4767 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4768 < sreloc->size);
4770 outrel[0].r_offset =
4771 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4772 if (ABI_64_P (output_bfd))
4774 outrel[1].r_offset =
4775 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4776 outrel[2].r_offset =
4777 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4780 if (outrel[0].r_offset == MINUS_ONE)
4781 /* The relocation field has been deleted. */
4782 return TRUE;
4784 if (outrel[0].r_offset == MINUS_TWO)
4786 /* The relocation field has been converted into a relative value of
4787 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4788 the field to be fully relocated, so add in the symbol's value. */
4789 *addendp += symbol;
4790 return TRUE;
4793 /* We must now calculate the dynamic symbol table index to use
4794 in the relocation. */
4795 if (h != NULL
4796 && (!h->root.def_regular
4797 || (info->shared && !info->symbolic && !h->root.forced_local)))
4799 indx = h->root.dynindx;
4800 if (SGI_COMPAT (output_bfd))
4801 defined_p = h->root.def_regular;
4802 else
4803 /* ??? glibc's ld.so just adds the final GOT entry to the
4804 relocation field. It therefore treats relocs against
4805 defined symbols in the same way as relocs against
4806 undefined symbols. */
4807 defined_p = FALSE;
4809 else
4811 if (sec != NULL && bfd_is_abs_section (sec))
4812 indx = 0;
4813 else if (sec == NULL || sec->owner == NULL)
4815 bfd_set_error (bfd_error_bad_value);
4816 return FALSE;
4818 else
4820 indx = elf_section_data (sec->output_section)->dynindx;
4821 if (indx == 0)
4823 asection *osec = htab->root.text_index_section;
4824 indx = elf_section_data (osec)->dynindx;
4826 if (indx == 0)
4827 abort ();
4830 /* Instead of generating a relocation using the section
4831 symbol, we may as well make it a fully relative
4832 relocation. We want to avoid generating relocations to
4833 local symbols because we used to generate them
4834 incorrectly, without adding the original symbol value,
4835 which is mandated by the ABI for section symbols. In
4836 order to give dynamic loaders and applications time to
4837 phase out the incorrect use, we refrain from emitting
4838 section-relative relocations. It's not like they're
4839 useful, after all. This should be a bit more efficient
4840 as well. */
4841 /* ??? Although this behavior is compatible with glibc's ld.so,
4842 the ABI says that relocations against STN_UNDEF should have
4843 a symbol value of 0. Irix rld honors this, so relocations
4844 against STN_UNDEF have no effect. */
4845 if (!SGI_COMPAT (output_bfd))
4846 indx = 0;
4847 defined_p = TRUE;
4850 /* If the relocation was previously an absolute relocation and
4851 this symbol will not be referred to by the relocation, we must
4852 adjust it by the value we give it in the dynamic symbol table.
4853 Otherwise leave the job up to the dynamic linker. */
4854 if (defined_p && r_type != R_MIPS_REL32)
4855 *addendp += symbol;
4857 if (htab->is_vxworks)
4858 /* VxWorks uses non-relative relocations for this. */
4859 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4860 else
4861 /* The relocation is always an REL32 relocation because we don't
4862 know where the shared library will wind up at load-time. */
4863 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4864 R_MIPS_REL32);
4866 /* For strict adherence to the ABI specification, we should
4867 generate a R_MIPS_64 relocation record by itself before the
4868 _REL32/_64 record as well, such that the addend is read in as
4869 a 64-bit value (REL32 is a 32-bit relocation, after all).
4870 However, since none of the existing ELF64 MIPS dynamic
4871 loaders seems to care, we don't waste space with these
4872 artificial relocations. If this turns out to not be true,
4873 mips_elf_allocate_dynamic_relocation() should be tweaked so
4874 as to make room for a pair of dynamic relocations per
4875 invocation if ABI_64_P, and here we should generate an
4876 additional relocation record with R_MIPS_64 by itself for a
4877 NULL symbol before this relocation record. */
4878 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4879 ABI_64_P (output_bfd)
4880 ? R_MIPS_64
4881 : R_MIPS_NONE);
4882 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4884 /* Adjust the output offset of the relocation to reference the
4885 correct location in the output file. */
4886 outrel[0].r_offset += (input_section->output_section->vma
4887 + input_section->output_offset);
4888 outrel[1].r_offset += (input_section->output_section->vma
4889 + input_section->output_offset);
4890 outrel[2].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4893 /* Put the relocation back out. We have to use the special
4894 relocation outputter in the 64-bit case since the 64-bit
4895 relocation format is non-standard. */
4896 if (ABI_64_P (output_bfd))
4898 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4899 (output_bfd, &outrel[0],
4900 (sreloc->contents
4901 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4903 else if (htab->is_vxworks)
4905 /* VxWorks uses RELA rather than REL dynamic relocations. */
4906 outrel[0].r_addend = *addendp;
4907 bfd_elf32_swap_reloca_out
4908 (output_bfd, &outrel[0],
4909 (sreloc->contents
4910 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4912 else
4913 bfd_elf32_swap_reloc_out
4914 (output_bfd, &outrel[0],
4915 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4917 /* We've now added another relocation. */
4918 ++sreloc->reloc_count;
4920 /* Make sure the output section is writable. The dynamic linker
4921 will be writing to it. */
4922 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4923 |= SHF_WRITE;
4925 /* On IRIX5, make an entry of compact relocation info. */
4926 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4928 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4929 bfd_byte *cr;
4931 if (scpt)
4933 Elf32_crinfo cptrel;
4935 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4936 cptrel.vaddr = (rel->r_offset
4937 + input_section->output_section->vma
4938 + input_section->output_offset);
4939 if (r_type == R_MIPS_REL32)
4940 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4941 else
4942 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4943 mips_elf_set_cr_dist2to (cptrel, 0);
4944 cptrel.konst = *addendp;
4946 cr = (scpt->contents
4947 + sizeof (Elf32_External_compact_rel));
4948 mips_elf_set_cr_relvaddr (cptrel, 0);
4949 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4950 ((Elf32_External_crinfo *) cr
4951 + scpt->reloc_count));
4952 ++scpt->reloc_count;
4956 /* If we've written this relocation for a readonly section,
4957 we need to set DF_TEXTREL again, so that we do not delete the
4958 DT_TEXTREL tag. */
4959 if (MIPS_ELF_READONLY_SECTION (input_section))
4960 info->flags |= DF_TEXTREL;
4962 return TRUE;
4965 /* Return the MACH for a MIPS e_flags value. */
4967 unsigned long
4968 _bfd_elf_mips_mach (flagword flags)
4970 switch (flags & EF_MIPS_MACH)
4972 case E_MIPS_MACH_3900:
4973 return bfd_mach_mips3900;
4975 case E_MIPS_MACH_4010:
4976 return bfd_mach_mips4010;
4978 case E_MIPS_MACH_4100:
4979 return bfd_mach_mips4100;
4981 case E_MIPS_MACH_4111:
4982 return bfd_mach_mips4111;
4984 case E_MIPS_MACH_4120:
4985 return bfd_mach_mips4120;
4987 case E_MIPS_MACH_4650:
4988 return bfd_mach_mips4650;
4990 case E_MIPS_MACH_5400:
4991 return bfd_mach_mips5400;
4993 case E_MIPS_MACH_5500:
4994 return bfd_mach_mips5500;
4996 case E_MIPS_MACH_9000:
4997 return bfd_mach_mips9000;
4999 case E_MIPS_MACH_SB1:
5000 return bfd_mach_mips_sb1;
5002 default:
5003 switch (flags & EF_MIPS_ARCH)
5005 default:
5006 case E_MIPS_ARCH_1:
5007 return bfd_mach_mips3000;
5009 case E_MIPS_ARCH_2:
5010 return bfd_mach_mips6000;
5012 case E_MIPS_ARCH_3:
5013 return bfd_mach_mips4000;
5015 case E_MIPS_ARCH_4:
5016 return bfd_mach_mips8000;
5018 case E_MIPS_ARCH_5:
5019 return bfd_mach_mips5;
5021 case E_MIPS_ARCH_32:
5022 return bfd_mach_mipsisa32;
5024 case E_MIPS_ARCH_64:
5025 return bfd_mach_mipsisa64;
5027 case E_MIPS_ARCH_32R2:
5028 return bfd_mach_mipsisa32r2;
5030 case E_MIPS_ARCH_64R2:
5031 return bfd_mach_mipsisa64r2;
5035 return 0;
5038 /* Return printable name for ABI. */
5040 static INLINE char *
5041 elf_mips_abi_name (bfd *abfd)
5043 flagword flags;
5045 flags = elf_elfheader (abfd)->e_flags;
5046 switch (flags & EF_MIPS_ABI)
5048 case 0:
5049 if (ABI_N32_P (abfd))
5050 return "N32";
5051 else if (ABI_64_P (abfd))
5052 return "64";
5053 else
5054 return "none";
5055 case E_MIPS_ABI_O32:
5056 return "O32";
5057 case E_MIPS_ABI_O64:
5058 return "O64";
5059 case E_MIPS_ABI_EABI32:
5060 return "EABI32";
5061 case E_MIPS_ABI_EABI64:
5062 return "EABI64";
5063 default:
5064 return "unknown abi";
5068 /* MIPS ELF uses two common sections. One is the usual one, and the
5069 other is for small objects. All the small objects are kept
5070 together, and then referenced via the gp pointer, which yields
5071 faster assembler code. This is what we use for the small common
5072 section. This approach is copied from ecoff.c. */
5073 static asection mips_elf_scom_section;
5074 static asymbol mips_elf_scom_symbol;
5075 static asymbol *mips_elf_scom_symbol_ptr;
5077 /* MIPS ELF also uses an acommon section, which represents an
5078 allocated common symbol which may be overridden by a
5079 definition in a shared library. */
5080 static asection mips_elf_acom_section;
5081 static asymbol mips_elf_acom_symbol;
5082 static asymbol *mips_elf_acom_symbol_ptr;
5084 /* Handle the special MIPS section numbers that a symbol may use.
5085 This is used for both the 32-bit and the 64-bit ABI. */
5087 void
5088 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5090 elf_symbol_type *elfsym;
5092 elfsym = (elf_symbol_type *) asym;
5093 switch (elfsym->internal_elf_sym.st_shndx)
5095 case SHN_MIPS_ACOMMON:
5096 /* This section is used in a dynamically linked executable file.
5097 It is an allocated common section. The dynamic linker can
5098 either resolve these symbols to something in a shared
5099 library, or it can just leave them here. For our purposes,
5100 we can consider these symbols to be in a new section. */
5101 if (mips_elf_acom_section.name == NULL)
5103 /* Initialize the acommon section. */
5104 mips_elf_acom_section.name = ".acommon";
5105 mips_elf_acom_section.flags = SEC_ALLOC;
5106 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5107 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5108 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5109 mips_elf_acom_symbol.name = ".acommon";
5110 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5111 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5112 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5114 asym->section = &mips_elf_acom_section;
5115 break;
5117 case SHN_COMMON:
5118 /* Common symbols less than the GP size are automatically
5119 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5120 if (asym->value > elf_gp_size (abfd)
5121 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5122 || IRIX_COMPAT (abfd) == ict_irix6)
5123 break;
5124 /* Fall through. */
5125 case SHN_MIPS_SCOMMON:
5126 if (mips_elf_scom_section.name == NULL)
5128 /* Initialize the small common section. */
5129 mips_elf_scom_section.name = ".scommon";
5130 mips_elf_scom_section.flags = SEC_IS_COMMON;
5131 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5132 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5133 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5134 mips_elf_scom_symbol.name = ".scommon";
5135 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5136 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5137 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5139 asym->section = &mips_elf_scom_section;
5140 asym->value = elfsym->internal_elf_sym.st_size;
5141 break;
5143 case SHN_MIPS_SUNDEFINED:
5144 asym->section = bfd_und_section_ptr;
5145 break;
5147 case SHN_MIPS_TEXT:
5149 asection *section = bfd_get_section_by_name (abfd, ".text");
5151 BFD_ASSERT (SGI_COMPAT (abfd));
5152 if (section != NULL)
5154 asym->section = section;
5155 /* MIPS_TEXT is a bit special, the address is not an offset
5156 to the base of the .text section. So substract the section
5157 base address to make it an offset. */
5158 asym->value -= section->vma;
5161 break;
5163 case SHN_MIPS_DATA:
5165 asection *section = bfd_get_section_by_name (abfd, ".data");
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5170 asym->section = section;
5171 /* MIPS_DATA is a bit special, the address is not an offset
5172 to the base of the .data section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5177 break;
5181 /* Implement elf_backend_eh_frame_address_size. This differs from
5182 the default in the way it handles EABI64.
5184 EABI64 was originally specified as an LP64 ABI, and that is what
5185 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5186 historically accepted the combination of -mabi=eabi and -mlong32,
5187 and this ILP32 variation has become semi-official over time.
5188 Both forms use elf32 and have pointer-sized FDE addresses.
5190 If an EABI object was generated by GCC 4.0 or above, it will have
5191 an empty .gcc_compiled_longXX section, where XX is the size of longs
5192 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5193 have no special marking to distinguish them from LP64 objects.
5195 We don't want users of the official LP64 ABI to be punished for the
5196 existence of the ILP32 variant, but at the same time, we don't want
5197 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5198 We therefore take the following approach:
5200 - If ABFD contains a .gcc_compiled_longXX section, use it to
5201 determine the pointer size.
5203 - Otherwise check the type of the first relocation. Assume that
5204 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5206 - Otherwise punt.
5208 The second check is enough to detect LP64 objects generated by pre-4.0
5209 compilers because, in the kind of output generated by those compilers,
5210 the first relocation will be associated with either a CIE personality
5211 routine or an FDE start address. Furthermore, the compilers never
5212 used a special (non-pointer) encoding for this ABI.
5214 Checking the relocation type should also be safe because there is no
5215 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5216 did so. */
5218 unsigned int
5219 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5221 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5222 return 8;
5223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5225 bfd_boolean long32_p, long64_p;
5227 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5228 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5229 if (long32_p && long64_p)
5230 return 0;
5231 if (long32_p)
5232 return 4;
5233 if (long64_p)
5234 return 8;
5236 if (sec->reloc_count > 0
5237 && elf_section_data (sec)->relocs != NULL
5238 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5239 == R_MIPS_64))
5240 return 8;
5242 return 0;
5244 return 4;
5247 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5248 relocations against two unnamed section symbols to resolve to the
5249 same address. For example, if we have code like:
5251 lw $4,%got_disp(.data)($gp)
5252 lw $25,%got_disp(.text)($gp)
5253 jalr $25
5255 then the linker will resolve both relocations to .data and the program
5256 will jump there rather than to .text.
5258 We can work around this problem by giving names to local section symbols.
5259 This is also what the MIPSpro tools do. */
5261 bfd_boolean
5262 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5264 return SGI_COMPAT (abfd);
5267 /* Work over a section just before writing it out. This routine is
5268 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5269 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5270 a better way. */
5272 bfd_boolean
5273 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5275 if (hdr->sh_type == SHT_MIPS_REGINFO
5276 && hdr->sh_size > 0)
5278 bfd_byte buf[4];
5280 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5281 BFD_ASSERT (hdr->contents == NULL);
5283 if (bfd_seek (abfd,
5284 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5285 SEEK_SET) != 0)
5286 return FALSE;
5287 H_PUT_32 (abfd, elf_gp (abfd), buf);
5288 if (bfd_bwrite (buf, 4, abfd) != 4)
5289 return FALSE;
5292 if (hdr->sh_type == SHT_MIPS_OPTIONS
5293 && hdr->bfd_section != NULL
5294 && mips_elf_section_data (hdr->bfd_section) != NULL
5295 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5297 bfd_byte *contents, *l, *lend;
5299 /* We stored the section contents in the tdata field in the
5300 set_section_contents routine. We save the section contents
5301 so that we don't have to read them again.
5302 At this point we know that elf_gp is set, so we can look
5303 through the section contents to see if there is an
5304 ODK_REGINFO structure. */
5306 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5307 l = contents;
5308 lend = contents + hdr->sh_size;
5309 while (l + sizeof (Elf_External_Options) <= lend)
5311 Elf_Internal_Options intopt;
5313 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5314 &intopt);
5315 if (intopt.size < sizeof (Elf_External_Options))
5317 (*_bfd_error_handler)
5318 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5319 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5320 break;
5322 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5324 bfd_byte buf[8];
5326 if (bfd_seek (abfd,
5327 (hdr->sh_offset
5328 + (l - contents)
5329 + sizeof (Elf_External_Options)
5330 + (sizeof (Elf64_External_RegInfo) - 8)),
5331 SEEK_SET) != 0)
5332 return FALSE;
5333 H_PUT_64 (abfd, elf_gp (abfd), buf);
5334 if (bfd_bwrite (buf, 8, abfd) != 8)
5335 return FALSE;
5337 else if (intopt.kind == ODK_REGINFO)
5339 bfd_byte buf[4];
5341 if (bfd_seek (abfd,
5342 (hdr->sh_offset
5343 + (l - contents)
5344 + sizeof (Elf_External_Options)
5345 + (sizeof (Elf32_External_RegInfo) - 4)),
5346 SEEK_SET) != 0)
5347 return FALSE;
5348 H_PUT_32 (abfd, elf_gp (abfd), buf);
5349 if (bfd_bwrite (buf, 4, abfd) != 4)
5350 return FALSE;
5352 l += intopt.size;
5356 if (hdr->bfd_section != NULL)
5358 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5360 if (strcmp (name, ".sdata") == 0
5361 || strcmp (name, ".lit8") == 0
5362 || strcmp (name, ".lit4") == 0)
5364 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5365 hdr->sh_type = SHT_PROGBITS;
5367 else if (strcmp (name, ".sbss") == 0)
5369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5370 hdr->sh_type = SHT_NOBITS;
5372 else if (strcmp (name, ".srdata") == 0)
5374 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5375 hdr->sh_type = SHT_PROGBITS;
5377 else if (strcmp (name, ".compact_rel") == 0)
5379 hdr->sh_flags = 0;
5380 hdr->sh_type = SHT_PROGBITS;
5382 else if (strcmp (name, ".rtproc") == 0)
5384 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5386 unsigned int adjust;
5388 adjust = hdr->sh_size % hdr->sh_addralign;
5389 if (adjust != 0)
5390 hdr->sh_size += hdr->sh_addralign - adjust;
5395 return TRUE;
5398 /* Handle a MIPS specific section when reading an object file. This
5399 is called when elfcode.h finds a section with an unknown type.
5400 This routine supports both the 32-bit and 64-bit ELF ABI.
5402 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5403 how to. */
5405 bfd_boolean
5406 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5407 Elf_Internal_Shdr *hdr,
5408 const char *name,
5409 int shindex)
5411 flagword flags = 0;
5413 /* There ought to be a place to keep ELF backend specific flags, but
5414 at the moment there isn't one. We just keep track of the
5415 sections by their name, instead. Fortunately, the ABI gives
5416 suggested names for all the MIPS specific sections, so we will
5417 probably get away with this. */
5418 switch (hdr->sh_type)
5420 case SHT_MIPS_LIBLIST:
5421 if (strcmp (name, ".liblist") != 0)
5422 return FALSE;
5423 break;
5424 case SHT_MIPS_MSYM:
5425 if (strcmp (name, ".msym") != 0)
5426 return FALSE;
5427 break;
5428 case SHT_MIPS_CONFLICT:
5429 if (strcmp (name, ".conflict") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_GPTAB:
5433 if (! CONST_STRNEQ (name, ".gptab."))
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_UCODE:
5437 if (strcmp (name, ".ucode") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_DEBUG:
5441 if (strcmp (name, ".mdebug") != 0)
5442 return FALSE;
5443 flags = SEC_DEBUGGING;
5444 break;
5445 case SHT_MIPS_REGINFO:
5446 if (strcmp (name, ".reginfo") != 0
5447 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5448 return FALSE;
5449 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5450 break;
5451 case SHT_MIPS_IFACE:
5452 if (strcmp (name, ".MIPS.interfaces") != 0)
5453 return FALSE;
5454 break;
5455 case SHT_MIPS_CONTENT:
5456 if (! CONST_STRNEQ (name, ".MIPS.content"))
5457 return FALSE;
5458 break;
5459 case SHT_MIPS_OPTIONS:
5460 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5461 return FALSE;
5462 break;
5463 case SHT_MIPS_DWARF:
5464 if (! CONST_STRNEQ (name, ".debug_"))
5465 return FALSE;
5466 break;
5467 case SHT_MIPS_SYMBOL_LIB:
5468 if (strcmp (name, ".MIPS.symlib") != 0)
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_EVENTS:
5472 if (! CONST_STRNEQ (name, ".MIPS.events")
5473 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5474 return FALSE;
5475 break;
5476 default:
5477 break;
5480 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5481 return FALSE;
5483 if (flags)
5485 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5486 (bfd_get_section_flags (abfd,
5487 hdr->bfd_section)
5488 | flags)))
5489 return FALSE;
5492 /* FIXME: We should record sh_info for a .gptab section. */
5494 /* For a .reginfo section, set the gp value in the tdata information
5495 from the contents of this section. We need the gp value while
5496 processing relocs, so we just get it now. The .reginfo section
5497 is not used in the 64-bit MIPS ELF ABI. */
5498 if (hdr->sh_type == SHT_MIPS_REGINFO)
5500 Elf32_External_RegInfo ext;
5501 Elf32_RegInfo s;
5503 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5504 &ext, 0, sizeof ext))
5505 return FALSE;
5506 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5507 elf_gp (abfd) = s.ri_gp_value;
5510 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5511 set the gp value based on what we find. We may see both
5512 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5513 they should agree. */
5514 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5516 bfd_byte *contents, *l, *lend;
5518 contents = bfd_malloc (hdr->sh_size);
5519 if (contents == NULL)
5520 return FALSE;
5521 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5522 0, hdr->sh_size))
5524 free (contents);
5525 return FALSE;
5527 l = contents;
5528 lend = contents + hdr->sh_size;
5529 while (l + sizeof (Elf_External_Options) <= lend)
5531 Elf_Internal_Options intopt;
5533 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5534 &intopt);
5535 if (intopt.size < sizeof (Elf_External_Options))
5537 (*_bfd_error_handler)
5538 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5539 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5540 break;
5542 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5544 Elf64_Internal_RegInfo intreg;
5546 bfd_mips_elf64_swap_reginfo_in
5547 (abfd,
5548 ((Elf64_External_RegInfo *)
5549 (l + sizeof (Elf_External_Options))),
5550 &intreg);
5551 elf_gp (abfd) = intreg.ri_gp_value;
5553 else if (intopt.kind == ODK_REGINFO)
5555 Elf32_RegInfo intreg;
5557 bfd_mips_elf32_swap_reginfo_in
5558 (abfd,
5559 ((Elf32_External_RegInfo *)
5560 (l + sizeof (Elf_External_Options))),
5561 &intreg);
5562 elf_gp (abfd) = intreg.ri_gp_value;
5564 l += intopt.size;
5566 free (contents);
5569 return TRUE;
5572 /* Set the correct type for a MIPS ELF section. We do this by the
5573 section name, which is a hack, but ought to work. This routine is
5574 used by both the 32-bit and the 64-bit ABI. */
5576 bfd_boolean
5577 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5579 const char *name = bfd_get_section_name (abfd, sec);
5581 if (strcmp (name, ".liblist") == 0)
5583 hdr->sh_type = SHT_MIPS_LIBLIST;
5584 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5585 /* The sh_link field is set in final_write_processing. */
5587 else if (strcmp (name, ".conflict") == 0)
5588 hdr->sh_type = SHT_MIPS_CONFLICT;
5589 else if (CONST_STRNEQ (name, ".gptab."))
5591 hdr->sh_type = SHT_MIPS_GPTAB;
5592 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5593 /* The sh_info field is set in final_write_processing. */
5595 else if (strcmp (name, ".ucode") == 0)
5596 hdr->sh_type = SHT_MIPS_UCODE;
5597 else if (strcmp (name, ".mdebug") == 0)
5599 hdr->sh_type = SHT_MIPS_DEBUG;
5600 /* In a shared object on IRIX 5.3, the .mdebug section has an
5601 entsize of 0. FIXME: Does this matter? */
5602 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5603 hdr->sh_entsize = 0;
5604 else
5605 hdr->sh_entsize = 1;
5607 else if (strcmp (name, ".reginfo") == 0)
5609 hdr->sh_type = SHT_MIPS_REGINFO;
5610 /* In a shared object on IRIX 5.3, the .reginfo section has an
5611 entsize of 0x18. FIXME: Does this matter? */
5612 if (SGI_COMPAT (abfd))
5614 if ((abfd->flags & DYNAMIC) != 0)
5615 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5616 else
5617 hdr->sh_entsize = 1;
5619 else
5620 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5622 else if (SGI_COMPAT (abfd)
5623 && (strcmp (name, ".hash") == 0
5624 || strcmp (name, ".dynamic") == 0
5625 || strcmp (name, ".dynstr") == 0))
5627 if (SGI_COMPAT (abfd))
5628 hdr->sh_entsize = 0;
5629 #if 0
5630 /* This isn't how the IRIX6 linker behaves. */
5631 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5632 #endif
5634 else if (strcmp (name, ".got") == 0
5635 || strcmp (name, ".srdata") == 0
5636 || strcmp (name, ".sdata") == 0
5637 || strcmp (name, ".sbss") == 0
5638 || strcmp (name, ".lit4") == 0
5639 || strcmp (name, ".lit8") == 0)
5640 hdr->sh_flags |= SHF_MIPS_GPREL;
5641 else if (strcmp (name, ".MIPS.interfaces") == 0)
5643 hdr->sh_type = SHT_MIPS_IFACE;
5644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5646 else if (CONST_STRNEQ (name, ".MIPS.content"))
5648 hdr->sh_type = SHT_MIPS_CONTENT;
5649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5650 /* The sh_info field is set in final_write_processing. */
5652 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5654 hdr->sh_type = SHT_MIPS_OPTIONS;
5655 hdr->sh_entsize = 1;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5658 else if (CONST_STRNEQ (name, ".debug_"))
5659 hdr->sh_type = SHT_MIPS_DWARF;
5660 else if (strcmp (name, ".MIPS.symlib") == 0)
5662 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5663 /* The sh_link and sh_info fields are set in
5664 final_write_processing. */
5666 else if (CONST_STRNEQ (name, ".MIPS.events")
5667 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5669 hdr->sh_type = SHT_MIPS_EVENTS;
5670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5671 /* The sh_link field is set in final_write_processing. */
5673 else if (strcmp (name, ".msym") == 0)
5675 hdr->sh_type = SHT_MIPS_MSYM;
5676 hdr->sh_flags |= SHF_ALLOC;
5677 hdr->sh_entsize = 8;
5680 /* The generic elf_fake_sections will set up REL_HDR using the default
5681 kind of relocations. We used to set up a second header for the
5682 non-default kind of relocations here, but only NewABI would use
5683 these, and the IRIX ld doesn't like resulting empty RELA sections.
5684 Thus we create those header only on demand now. */
5686 return TRUE;
5689 /* Given a BFD section, try to locate the corresponding ELF section
5690 index. This is used by both the 32-bit and the 64-bit ABI.
5691 Actually, it's not clear to me that the 64-bit ABI supports these,
5692 but for non-PIC objects we will certainly want support for at least
5693 the .scommon section. */
5695 bfd_boolean
5696 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5697 asection *sec, int *retval)
5699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5701 *retval = SHN_MIPS_SCOMMON;
5702 return TRUE;
5704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5706 *retval = SHN_MIPS_ACOMMON;
5707 return TRUE;
5709 return FALSE;
5712 /* Hook called by the linker routine which adds symbols from an object
5713 file. We must handle the special MIPS section numbers here. */
5715 bfd_boolean
5716 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5717 Elf_Internal_Sym *sym, const char **namep,
5718 flagword *flagsp ATTRIBUTE_UNUSED,
5719 asection **secp, bfd_vma *valp)
5721 if (SGI_COMPAT (abfd)
5722 && (abfd->flags & DYNAMIC) != 0
5723 && strcmp (*namep, "_rld_new_interface") == 0)
5725 /* Skip IRIX5 rld entry name. */
5726 *namep = NULL;
5727 return TRUE;
5730 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5731 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5732 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5733 a magic symbol resolved by the linker, we ignore this bogus definition
5734 of _gp_disp. New ABI objects do not suffer from this problem so this
5735 is not done for them. */
5736 if (!NEWABI_P(abfd)
5737 && (sym->st_shndx == SHN_ABS)
5738 && (strcmp (*namep, "_gp_disp") == 0))
5740 *namep = NULL;
5741 return TRUE;
5744 switch (sym->st_shndx)
5746 case SHN_COMMON:
5747 /* Common symbols less than the GP size are automatically
5748 treated as SHN_MIPS_SCOMMON symbols. */
5749 if (sym->st_size > elf_gp_size (abfd)
5750 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5751 || IRIX_COMPAT (abfd) == ict_irix6)
5752 break;
5753 /* Fall through. */
5754 case SHN_MIPS_SCOMMON:
5755 *secp = bfd_make_section_old_way (abfd, ".scommon");
5756 (*secp)->flags |= SEC_IS_COMMON;
5757 *valp = sym->st_size;
5758 break;
5760 case SHN_MIPS_TEXT:
5761 /* This section is used in a shared object. */
5762 if (elf_tdata (abfd)->elf_text_section == NULL)
5764 asymbol *elf_text_symbol;
5765 asection *elf_text_section;
5766 bfd_size_type amt = sizeof (asection);
5768 elf_text_section = bfd_zalloc (abfd, amt);
5769 if (elf_text_section == NULL)
5770 return FALSE;
5772 amt = sizeof (asymbol);
5773 elf_text_symbol = bfd_zalloc (abfd, amt);
5774 if (elf_text_symbol == NULL)
5775 return FALSE;
5777 /* Initialize the section. */
5779 elf_tdata (abfd)->elf_text_section = elf_text_section;
5780 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5782 elf_text_section->symbol = elf_text_symbol;
5783 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5785 elf_text_section->name = ".text";
5786 elf_text_section->flags = SEC_NO_FLAGS;
5787 elf_text_section->output_section = NULL;
5788 elf_text_section->owner = abfd;
5789 elf_text_symbol->name = ".text";
5790 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5791 elf_text_symbol->section = elf_text_section;
5793 /* This code used to do *secp = bfd_und_section_ptr if
5794 info->shared. I don't know why, and that doesn't make sense,
5795 so I took it out. */
5796 *secp = elf_tdata (abfd)->elf_text_section;
5797 break;
5799 case SHN_MIPS_ACOMMON:
5800 /* Fall through. XXX Can we treat this as allocated data? */
5801 case SHN_MIPS_DATA:
5802 /* This section is used in a shared object. */
5803 if (elf_tdata (abfd)->elf_data_section == NULL)
5805 asymbol *elf_data_symbol;
5806 asection *elf_data_section;
5807 bfd_size_type amt = sizeof (asection);
5809 elf_data_section = bfd_zalloc (abfd, amt);
5810 if (elf_data_section == NULL)
5811 return FALSE;
5813 amt = sizeof (asymbol);
5814 elf_data_symbol = bfd_zalloc (abfd, amt);
5815 if (elf_data_symbol == NULL)
5816 return FALSE;
5818 /* Initialize the section. */
5820 elf_tdata (abfd)->elf_data_section = elf_data_section;
5821 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5823 elf_data_section->symbol = elf_data_symbol;
5824 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5826 elf_data_section->name = ".data";
5827 elf_data_section->flags = SEC_NO_FLAGS;
5828 elf_data_section->output_section = NULL;
5829 elf_data_section->owner = abfd;
5830 elf_data_symbol->name = ".data";
5831 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5832 elf_data_symbol->section = elf_data_section;
5834 /* This code used to do *secp = bfd_und_section_ptr if
5835 info->shared. I don't know why, and that doesn't make sense,
5836 so I took it out. */
5837 *secp = elf_tdata (abfd)->elf_data_section;
5838 break;
5840 case SHN_MIPS_SUNDEFINED:
5841 *secp = bfd_und_section_ptr;
5842 break;
5845 if (SGI_COMPAT (abfd)
5846 && ! info->shared
5847 && info->hash->creator == abfd->xvec
5848 && strcmp (*namep, "__rld_obj_head") == 0)
5850 struct elf_link_hash_entry *h;
5851 struct bfd_link_hash_entry *bh;
5853 /* Mark __rld_obj_head as dynamic. */
5854 bh = NULL;
5855 if (! (_bfd_generic_link_add_one_symbol
5856 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5857 get_elf_backend_data (abfd)->collect, &bh)))
5858 return FALSE;
5860 h = (struct elf_link_hash_entry *) bh;
5861 h->non_elf = 0;
5862 h->def_regular = 1;
5863 h->type = STT_OBJECT;
5865 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5866 return FALSE;
5868 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5871 /* If this is a mips16 text symbol, add 1 to the value to make it
5872 odd. This will cause something like .word SYM to come up with
5873 the right value when it is loaded into the PC. */
5874 if (sym->st_other == STO_MIPS16)
5875 ++*valp;
5877 return TRUE;
5880 /* This hook function is called before the linker writes out a global
5881 symbol. We mark symbols as small common if appropriate. This is
5882 also where we undo the increment of the value for a mips16 symbol. */
5884 bfd_boolean
5885 _bfd_mips_elf_link_output_symbol_hook
5886 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5887 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5888 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5890 /* If we see a common symbol, which implies a relocatable link, then
5891 if a symbol was small common in an input file, mark it as small
5892 common in the output file. */
5893 if (sym->st_shndx == SHN_COMMON
5894 && strcmp (input_sec->name, ".scommon") == 0)
5895 sym->st_shndx = SHN_MIPS_SCOMMON;
5897 if (sym->st_other == STO_MIPS16)
5898 sym->st_value &= ~1;
5900 return TRUE;
5903 /* Functions for the dynamic linker. */
5905 /* Create dynamic sections when linking against a dynamic object. */
5907 bfd_boolean
5908 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5910 struct elf_link_hash_entry *h;
5911 struct bfd_link_hash_entry *bh;
5912 flagword flags;
5913 register asection *s;
5914 const char * const *namep;
5915 struct mips_elf_link_hash_table *htab;
5917 htab = mips_elf_hash_table (info);
5918 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5919 | SEC_LINKER_CREATED | SEC_READONLY);
5921 /* The psABI requires a read-only .dynamic section, but the VxWorks
5922 EABI doesn't. */
5923 if (!htab->is_vxworks)
5925 s = bfd_get_section_by_name (abfd, ".dynamic");
5926 if (s != NULL)
5928 if (! bfd_set_section_flags (abfd, s, flags))
5929 return FALSE;
5933 /* We need to create .got section. */
5934 if (! mips_elf_create_got_section (abfd, info, FALSE))
5935 return FALSE;
5937 if (! mips_elf_rel_dyn_section (info, TRUE))
5938 return FALSE;
5940 /* Create .stub section. */
5941 if (bfd_get_section_by_name (abfd,
5942 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5944 s = bfd_make_section_with_flags (abfd,
5945 MIPS_ELF_STUB_SECTION_NAME (abfd),
5946 flags | SEC_CODE);
5947 if (s == NULL
5948 || ! bfd_set_section_alignment (abfd, s,
5949 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5950 return FALSE;
5953 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5954 && !info->shared
5955 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5957 s = bfd_make_section_with_flags (abfd, ".rld_map",
5958 flags &~ (flagword) SEC_READONLY);
5959 if (s == NULL
5960 || ! bfd_set_section_alignment (abfd, s,
5961 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5962 return FALSE;
5965 /* On IRIX5, we adjust add some additional symbols and change the
5966 alignments of several sections. There is no ABI documentation
5967 indicating that this is necessary on IRIX6, nor any evidence that
5968 the linker takes such action. */
5969 if (IRIX_COMPAT (abfd) == ict_irix5)
5971 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5973 bh = NULL;
5974 if (! (_bfd_generic_link_add_one_symbol
5975 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5976 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5977 return FALSE;
5979 h = (struct elf_link_hash_entry *) bh;
5980 h->non_elf = 0;
5981 h->def_regular = 1;
5982 h->type = STT_SECTION;
5984 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5985 return FALSE;
5988 /* We need to create a .compact_rel section. */
5989 if (SGI_COMPAT (abfd))
5991 if (!mips_elf_create_compact_rel_section (abfd, info))
5992 return FALSE;
5995 /* Change alignments of some sections. */
5996 s = bfd_get_section_by_name (abfd, ".hash");
5997 if (s != NULL)
5998 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5999 s = bfd_get_section_by_name (abfd, ".dynsym");
6000 if (s != NULL)
6001 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6002 s = bfd_get_section_by_name (abfd, ".dynstr");
6003 if (s != NULL)
6004 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6005 s = bfd_get_section_by_name (abfd, ".reginfo");
6006 if (s != NULL)
6007 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6008 s = bfd_get_section_by_name (abfd, ".dynamic");
6009 if (s != NULL)
6010 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6013 if (!info->shared)
6015 const char *name;
6017 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6018 bh = NULL;
6019 if (!(_bfd_generic_link_add_one_symbol
6020 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6021 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6022 return FALSE;
6024 h = (struct elf_link_hash_entry *) bh;
6025 h->non_elf = 0;
6026 h->def_regular = 1;
6027 h->type = STT_SECTION;
6029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6030 return FALSE;
6032 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6034 /* __rld_map is a four byte word located in the .data section
6035 and is filled in by the rtld to contain a pointer to
6036 the _r_debug structure. Its symbol value will be set in
6037 _bfd_mips_elf_finish_dynamic_symbol. */
6038 s = bfd_get_section_by_name (abfd, ".rld_map");
6039 BFD_ASSERT (s != NULL);
6041 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6042 bh = NULL;
6043 if (!(_bfd_generic_link_add_one_symbol
6044 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6045 get_elf_backend_data (abfd)->collect, &bh)))
6046 return FALSE;
6048 h = (struct elf_link_hash_entry *) bh;
6049 h->non_elf = 0;
6050 h->def_regular = 1;
6051 h->type = STT_OBJECT;
6053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6054 return FALSE;
6058 if (htab->is_vxworks)
6060 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6061 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6062 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6063 return FALSE;
6065 /* Cache the sections created above. */
6066 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6067 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6068 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6069 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6070 if (!htab->sdynbss
6071 || (!htab->srelbss && !info->shared)
6072 || !htab->srelplt
6073 || !htab->splt)
6074 abort ();
6076 /* Do the usual VxWorks handling. */
6077 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6078 return FALSE;
6080 /* Work out the PLT sizes. */
6081 if (info->shared)
6083 htab->plt_header_size
6084 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6085 htab->plt_entry_size
6086 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6088 else
6090 htab->plt_header_size
6091 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6092 htab->plt_entry_size
6093 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6097 return TRUE;
6100 /* Look through the relocs for a section during the first phase, and
6101 allocate space in the global offset table. */
6103 bfd_boolean
6104 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6105 asection *sec, const Elf_Internal_Rela *relocs)
6107 const char *name;
6108 bfd *dynobj;
6109 Elf_Internal_Shdr *symtab_hdr;
6110 struct elf_link_hash_entry **sym_hashes;
6111 struct mips_got_info *g;
6112 size_t extsymoff;
6113 const Elf_Internal_Rela *rel;
6114 const Elf_Internal_Rela *rel_end;
6115 asection *sgot;
6116 asection *sreloc;
6117 const struct elf_backend_data *bed;
6118 struct mips_elf_link_hash_table *htab;
6120 if (info->relocatable)
6121 return TRUE;
6123 htab = mips_elf_hash_table (info);
6124 dynobj = elf_hash_table (info)->dynobj;
6125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6126 sym_hashes = elf_sym_hashes (abfd);
6127 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6129 /* Check for the mips16 stub sections. */
6131 name = bfd_get_section_name (abfd, sec);
6132 if (FN_STUB_P (name))
6134 unsigned long r_symndx;
6136 /* Look at the relocation information to figure out which symbol
6137 this is for. */
6139 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6141 if (r_symndx < extsymoff
6142 || sym_hashes[r_symndx - extsymoff] == NULL)
6144 asection *o;
6146 /* This stub is for a local symbol. This stub will only be
6147 needed if there is some relocation in this BFD, other
6148 than a 16 bit function call, which refers to this symbol. */
6149 for (o = abfd->sections; o != NULL; o = o->next)
6151 Elf_Internal_Rela *sec_relocs;
6152 const Elf_Internal_Rela *r, *rend;
6154 /* We can ignore stub sections when looking for relocs. */
6155 if ((o->flags & SEC_RELOC) == 0
6156 || o->reloc_count == 0
6157 || mips16_stub_section_p (abfd, o))
6158 continue;
6160 sec_relocs
6161 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6162 info->keep_memory);
6163 if (sec_relocs == NULL)
6164 return FALSE;
6166 rend = sec_relocs + o->reloc_count;
6167 for (r = sec_relocs; r < rend; r++)
6168 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6169 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6170 break;
6172 if (elf_section_data (o)->relocs != sec_relocs)
6173 free (sec_relocs);
6175 if (r < rend)
6176 break;
6179 if (o == NULL)
6181 /* There is no non-call reloc for this stub, so we do
6182 not need it. Since this function is called before
6183 the linker maps input sections to output sections, we
6184 can easily discard it by setting the SEC_EXCLUDE
6185 flag. */
6186 sec->flags |= SEC_EXCLUDE;
6187 return TRUE;
6190 /* Record this stub in an array of local symbol stubs for
6191 this BFD. */
6192 if (elf_tdata (abfd)->local_stubs == NULL)
6194 unsigned long symcount;
6195 asection **n;
6196 bfd_size_type amt;
6198 if (elf_bad_symtab (abfd))
6199 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6200 else
6201 symcount = symtab_hdr->sh_info;
6202 amt = symcount * sizeof (asection *);
6203 n = bfd_zalloc (abfd, amt);
6204 if (n == NULL)
6205 return FALSE;
6206 elf_tdata (abfd)->local_stubs = n;
6209 sec->flags |= SEC_KEEP;
6210 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6212 /* We don't need to set mips16_stubs_seen in this case.
6213 That flag is used to see whether we need to look through
6214 the global symbol table for stubs. We don't need to set
6215 it here, because we just have a local stub. */
6217 else
6219 struct mips_elf_link_hash_entry *h;
6221 h = ((struct mips_elf_link_hash_entry *)
6222 sym_hashes[r_symndx - extsymoff]);
6224 while (h->root.root.type == bfd_link_hash_indirect
6225 || h->root.root.type == bfd_link_hash_warning)
6226 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6228 /* H is the symbol this stub is for. */
6230 /* If we already have an appropriate stub for this function, we
6231 don't need another one, so we can discard this one. Since
6232 this function is called before the linker maps input sections
6233 to output sections, we can easily discard it by setting the
6234 SEC_EXCLUDE flag. */
6235 if (h->fn_stub != NULL)
6237 sec->flags |= SEC_EXCLUDE;
6238 return TRUE;
6241 sec->flags |= SEC_KEEP;
6242 h->fn_stub = sec;
6243 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6246 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6248 unsigned long r_symndx;
6249 struct mips_elf_link_hash_entry *h;
6250 asection **loc;
6252 /* Look at the relocation information to figure out which symbol
6253 this is for. */
6255 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6257 if (r_symndx < extsymoff
6258 || sym_hashes[r_symndx - extsymoff] == NULL)
6260 asection *o;
6262 /* This stub is for a local symbol. This stub will only be
6263 needed if there is some relocation (R_MIPS16_26) in this BFD
6264 that refers to this symbol. */
6265 for (o = abfd->sections; o != NULL; o = o->next)
6267 Elf_Internal_Rela *sec_relocs;
6268 const Elf_Internal_Rela *r, *rend;
6270 /* We can ignore stub sections when looking for relocs. */
6271 if ((o->flags & SEC_RELOC) == 0
6272 || o->reloc_count == 0
6273 || mips16_stub_section_p (abfd, o))
6274 continue;
6276 sec_relocs
6277 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6278 info->keep_memory);
6279 if (sec_relocs == NULL)
6280 return FALSE;
6282 rend = sec_relocs + o->reloc_count;
6283 for (r = sec_relocs; r < rend; r++)
6284 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6285 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6286 break;
6288 if (elf_section_data (o)->relocs != sec_relocs)
6289 free (sec_relocs);
6291 if (r < rend)
6292 break;
6295 if (o == NULL)
6297 /* There is no non-call reloc for this stub, so we do
6298 not need it. Since this function is called before
6299 the linker maps input sections to output sections, we
6300 can easily discard it by setting the SEC_EXCLUDE
6301 flag. */
6302 sec->flags |= SEC_EXCLUDE;
6303 return TRUE;
6306 /* Record this stub in an array of local symbol call_stubs for
6307 this BFD. */
6308 if (elf_tdata (abfd)->local_call_stubs == NULL)
6310 unsigned long symcount;
6311 asection **n;
6312 bfd_size_type amt;
6314 if (elf_bad_symtab (abfd))
6315 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6316 else
6317 symcount = symtab_hdr->sh_info;
6318 amt = symcount * sizeof (asection *);
6319 n = bfd_zalloc (abfd, amt);
6320 if (n == NULL)
6321 return FALSE;
6322 elf_tdata (abfd)->local_call_stubs = n;
6325 sec->flags |= SEC_KEEP;
6326 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6328 /* We don't need to set mips16_stubs_seen in this case.
6329 That flag is used to see whether we need to look through
6330 the global symbol table for stubs. We don't need to set
6331 it here, because we just have a local stub. */
6333 else
6335 h = ((struct mips_elf_link_hash_entry *)
6336 sym_hashes[r_symndx - extsymoff]);
6338 /* H is the symbol this stub is for. */
6340 if (CALL_FP_STUB_P (name))
6341 loc = &h->call_fp_stub;
6342 else
6343 loc = &h->call_stub;
6345 /* If we already have an appropriate stub for this function, we
6346 don't need another one, so we can discard this one. Since
6347 this function is called before the linker maps input sections
6348 to output sections, we can easily discard it by setting the
6349 SEC_EXCLUDE flag. */
6350 if (*loc != NULL)
6352 sec->flags |= SEC_EXCLUDE;
6353 return TRUE;
6356 sec->flags |= SEC_KEEP;
6357 *loc = sec;
6358 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6362 if (dynobj == NULL)
6364 sgot = NULL;
6365 g = NULL;
6367 else
6369 sgot = mips_elf_got_section (dynobj, FALSE);
6370 if (sgot == NULL)
6371 g = NULL;
6372 else
6374 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6375 g = mips_elf_section_data (sgot)->u.got_info;
6376 BFD_ASSERT (g != NULL);
6380 sreloc = NULL;
6381 bed = get_elf_backend_data (abfd);
6382 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6383 for (rel = relocs; rel < rel_end; ++rel)
6385 unsigned long r_symndx;
6386 unsigned int r_type;
6387 struct elf_link_hash_entry *h;
6389 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6390 r_type = ELF_R_TYPE (abfd, rel->r_info);
6392 if (r_symndx < extsymoff)
6393 h = NULL;
6394 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6396 (*_bfd_error_handler)
6397 (_("%B: Malformed reloc detected for section %s"),
6398 abfd, name);
6399 bfd_set_error (bfd_error_bad_value);
6400 return FALSE;
6402 else
6404 h = sym_hashes[r_symndx - extsymoff];
6406 /* This may be an indirect symbol created because of a version. */
6407 if (h != NULL)
6409 while (h->root.type == bfd_link_hash_indirect)
6410 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6414 /* Some relocs require a global offset table. */
6415 if (dynobj == NULL || sgot == NULL)
6417 switch (r_type)
6419 case R_MIPS_GOT16:
6420 case R_MIPS_CALL16:
6421 case R_MIPS_CALL_HI16:
6422 case R_MIPS_CALL_LO16:
6423 case R_MIPS_GOT_HI16:
6424 case R_MIPS_GOT_LO16:
6425 case R_MIPS_GOT_PAGE:
6426 case R_MIPS_GOT_OFST:
6427 case R_MIPS_GOT_DISP:
6428 case R_MIPS_TLS_GOTTPREL:
6429 case R_MIPS_TLS_GD:
6430 case R_MIPS_TLS_LDM:
6431 if (dynobj == NULL)
6432 elf_hash_table (info)->dynobj = dynobj = abfd;
6433 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6434 return FALSE;
6435 g = mips_elf_got_info (dynobj, &sgot);
6436 if (htab->is_vxworks && !info->shared)
6438 (*_bfd_error_handler)
6439 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6440 abfd, (unsigned long) rel->r_offset);
6441 bfd_set_error (bfd_error_bad_value);
6442 return FALSE;
6444 break;
6446 case R_MIPS_32:
6447 case R_MIPS_REL32:
6448 case R_MIPS_64:
6449 /* In VxWorks executables, references to external symbols
6450 are handled using copy relocs or PLT stubs, so there's
6451 no need to add a dynamic relocation here. */
6452 if (dynobj == NULL
6453 && (info->shared || (h != NULL && !htab->is_vxworks))
6454 && (sec->flags & SEC_ALLOC) != 0)
6455 elf_hash_table (info)->dynobj = dynobj = abfd;
6456 break;
6458 default:
6459 break;
6463 if (h)
6465 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6467 /* Relocations against the special VxWorks __GOTT_BASE__ and
6468 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6469 room for them in .rela.dyn. */
6470 if (is_gott_symbol (info, h))
6472 if (sreloc == NULL)
6474 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6475 if (sreloc == NULL)
6476 return FALSE;
6478 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6479 if (MIPS_ELF_READONLY_SECTION (sec))
6480 /* We tell the dynamic linker that there are
6481 relocations against the text segment. */
6482 info->flags |= DF_TEXTREL;
6485 else if (r_type == R_MIPS_CALL_LO16
6486 || r_type == R_MIPS_GOT_LO16
6487 || r_type == R_MIPS_GOT_DISP
6488 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6490 /* We may need a local GOT entry for this relocation. We
6491 don't count R_MIPS_GOT_PAGE because we can estimate the
6492 maximum number of pages needed by looking at the size of
6493 the segment. Similar comments apply to R_MIPS_GOT16 and
6494 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6495 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6496 R_MIPS_CALL_HI16 because these are always followed by an
6497 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6498 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6499 rel->r_addend, g, 0))
6500 return FALSE;
6503 switch (r_type)
6505 case R_MIPS_CALL16:
6506 if (h == NULL)
6508 (*_bfd_error_handler)
6509 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6510 abfd, (unsigned long) rel->r_offset);
6511 bfd_set_error (bfd_error_bad_value);
6512 return FALSE;
6514 /* Fall through. */
6516 case R_MIPS_CALL_HI16:
6517 case R_MIPS_CALL_LO16:
6518 if (h != NULL)
6520 /* VxWorks call relocations point the function's .got.plt
6521 entry, which will be allocated by adjust_dynamic_symbol.
6522 Otherwise, this symbol requires a global GOT entry. */
6523 if (!htab->is_vxworks
6524 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6525 return FALSE;
6527 /* We need a stub, not a plt entry for the undefined
6528 function. But we record it as if it needs plt. See
6529 _bfd_elf_adjust_dynamic_symbol. */
6530 h->needs_plt = 1;
6531 h->type = STT_FUNC;
6533 break;
6535 case R_MIPS_GOT_PAGE:
6536 /* If this is a global, overridable symbol, GOT_PAGE will
6537 decay to GOT_DISP, so we'll need a GOT entry for it. */
6538 if (h == NULL)
6539 break;
6540 else
6542 struct mips_elf_link_hash_entry *hmips =
6543 (struct mips_elf_link_hash_entry *) h;
6545 while (hmips->root.root.type == bfd_link_hash_indirect
6546 || hmips->root.root.type == bfd_link_hash_warning)
6547 hmips = (struct mips_elf_link_hash_entry *)
6548 hmips->root.root.u.i.link;
6550 if (hmips->root.def_regular
6551 && ! (info->shared && ! info->symbolic
6552 && ! hmips->root.forced_local))
6553 break;
6555 /* Fall through. */
6557 case R_MIPS_GOT16:
6558 case R_MIPS_GOT_HI16:
6559 case R_MIPS_GOT_LO16:
6560 case R_MIPS_GOT_DISP:
6561 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6562 return FALSE;
6563 break;
6565 case R_MIPS_TLS_GOTTPREL:
6566 if (info->shared)
6567 info->flags |= DF_STATIC_TLS;
6568 /* Fall through */
6570 case R_MIPS_TLS_LDM:
6571 if (r_type == R_MIPS_TLS_LDM)
6573 r_symndx = 0;
6574 h = NULL;
6576 /* Fall through */
6578 case R_MIPS_TLS_GD:
6579 /* This symbol requires a global offset table entry, or two
6580 for TLS GD relocations. */
6582 unsigned char flag = (r_type == R_MIPS_TLS_GD
6583 ? GOT_TLS_GD
6584 : r_type == R_MIPS_TLS_LDM
6585 ? GOT_TLS_LDM
6586 : GOT_TLS_IE);
6587 if (h != NULL)
6589 struct mips_elf_link_hash_entry *hmips =
6590 (struct mips_elf_link_hash_entry *) h;
6591 hmips->tls_type |= flag;
6593 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6594 return FALSE;
6596 else
6598 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6600 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6601 rel->r_addend, g, flag))
6602 return FALSE;
6605 break;
6607 case R_MIPS_32:
6608 case R_MIPS_REL32:
6609 case R_MIPS_64:
6610 /* In VxWorks executables, references to external symbols
6611 are handled using copy relocs or PLT stubs, so there's
6612 no need to add a .rela.dyn entry for this relocation. */
6613 if ((info->shared || (h != NULL && !htab->is_vxworks))
6614 && (sec->flags & SEC_ALLOC) != 0)
6616 if (sreloc == NULL)
6618 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6619 if (sreloc == NULL)
6620 return FALSE;
6622 if (info->shared)
6624 /* When creating a shared object, we must copy these
6625 reloc types into the output file as R_MIPS_REL32
6626 relocs. Make room for this reloc in .rel(a).dyn. */
6627 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6628 if (MIPS_ELF_READONLY_SECTION (sec))
6629 /* We tell the dynamic linker that there are
6630 relocations against the text segment. */
6631 info->flags |= DF_TEXTREL;
6633 else
6635 struct mips_elf_link_hash_entry *hmips;
6637 /* We only need to copy this reloc if the symbol is
6638 defined in a dynamic object. */
6639 hmips = (struct mips_elf_link_hash_entry *) h;
6640 ++hmips->possibly_dynamic_relocs;
6641 if (MIPS_ELF_READONLY_SECTION (sec))
6642 /* We need it to tell the dynamic linker if there
6643 are relocations against the text segment. */
6644 hmips->readonly_reloc = TRUE;
6647 /* Even though we don't directly need a GOT entry for
6648 this symbol, a symbol must have a dynamic symbol
6649 table index greater that DT_MIPS_GOTSYM if there are
6650 dynamic relocations against it. This does not apply
6651 to VxWorks, which does not have the usual coupling
6652 between global GOT entries and .dynsym entries. */
6653 if (h != NULL && !htab->is_vxworks)
6655 if (dynobj == NULL)
6656 elf_hash_table (info)->dynobj = dynobj = abfd;
6657 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6658 return FALSE;
6659 g = mips_elf_got_info (dynobj, &sgot);
6660 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6661 return FALSE;
6665 if (SGI_COMPAT (abfd))
6666 mips_elf_hash_table (info)->compact_rel_size +=
6667 sizeof (Elf32_External_crinfo);
6668 break;
6670 case R_MIPS_PC16:
6671 if (h)
6672 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6673 break;
6675 case R_MIPS_26:
6676 if (h)
6677 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6678 /* Fall through. */
6680 case R_MIPS_GPREL16:
6681 case R_MIPS_LITERAL:
6682 case R_MIPS_GPREL32:
6683 if (SGI_COMPAT (abfd))
6684 mips_elf_hash_table (info)->compact_rel_size +=
6685 sizeof (Elf32_External_crinfo);
6686 break;
6688 /* This relocation describes the C++ object vtable hierarchy.
6689 Reconstruct it for later use during GC. */
6690 case R_MIPS_GNU_VTINHERIT:
6691 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6692 return FALSE;
6693 break;
6695 /* This relocation describes which C++ vtable entries are actually
6696 used. Record for later use during GC. */
6697 case R_MIPS_GNU_VTENTRY:
6698 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6699 return FALSE;
6700 break;
6702 default:
6703 break;
6706 /* We must not create a stub for a symbol that has relocations
6707 related to taking the function's address. This doesn't apply to
6708 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6709 a normal .got entry. */
6710 if (!htab->is_vxworks && h != NULL)
6711 switch (r_type)
6713 default:
6714 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6715 break;
6716 case R_MIPS_CALL16:
6717 case R_MIPS_CALL_HI16:
6718 case R_MIPS_CALL_LO16:
6719 case R_MIPS_JALR:
6720 break;
6723 /* If this reloc is not a 16 bit call, and it has a global
6724 symbol, then we will need the fn_stub if there is one.
6725 References from a stub section do not count. */
6726 if (h != NULL
6727 && r_type != R_MIPS16_26
6728 && !mips16_stub_section_p (abfd, sec))
6730 struct mips_elf_link_hash_entry *mh;
6732 mh = (struct mips_elf_link_hash_entry *) h;
6733 mh->need_fn_stub = TRUE;
6737 return TRUE;
6740 bfd_boolean
6741 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6742 struct bfd_link_info *link_info,
6743 bfd_boolean *again)
6745 Elf_Internal_Rela *internal_relocs;
6746 Elf_Internal_Rela *irel, *irelend;
6747 Elf_Internal_Shdr *symtab_hdr;
6748 bfd_byte *contents = NULL;
6749 size_t extsymoff;
6750 bfd_boolean changed_contents = FALSE;
6751 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6752 Elf_Internal_Sym *isymbuf = NULL;
6754 /* We are not currently changing any sizes, so only one pass. */
6755 *again = FALSE;
6757 if (link_info->relocatable)
6758 return TRUE;
6760 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6761 link_info->keep_memory);
6762 if (internal_relocs == NULL)
6763 return TRUE;
6765 irelend = internal_relocs + sec->reloc_count
6766 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6767 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6768 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6770 for (irel = internal_relocs; irel < irelend; irel++)
6772 bfd_vma symval;
6773 bfd_signed_vma sym_offset;
6774 unsigned int r_type;
6775 unsigned long r_symndx;
6776 asection *sym_sec;
6777 unsigned long instruction;
6779 /* Turn jalr into bgezal, and jr into beq, if they're marked
6780 with a JALR relocation, that indicate where they jump to.
6781 This saves some pipeline bubbles. */
6782 r_type = ELF_R_TYPE (abfd, irel->r_info);
6783 if (r_type != R_MIPS_JALR)
6784 continue;
6786 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6787 /* Compute the address of the jump target. */
6788 if (r_symndx >= extsymoff)
6790 struct mips_elf_link_hash_entry *h
6791 = ((struct mips_elf_link_hash_entry *)
6792 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6794 while (h->root.root.type == bfd_link_hash_indirect
6795 || h->root.root.type == bfd_link_hash_warning)
6796 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6798 /* If a symbol is undefined, or if it may be overridden,
6799 skip it. */
6800 if (! ((h->root.root.type == bfd_link_hash_defined
6801 || h->root.root.type == bfd_link_hash_defweak)
6802 && h->root.root.u.def.section)
6803 || (link_info->shared && ! link_info->symbolic
6804 && !h->root.forced_local))
6805 continue;
6807 sym_sec = h->root.root.u.def.section;
6808 if (sym_sec->output_section)
6809 symval = (h->root.root.u.def.value
6810 + sym_sec->output_section->vma
6811 + sym_sec->output_offset);
6812 else
6813 symval = h->root.root.u.def.value;
6815 else
6817 Elf_Internal_Sym *isym;
6819 /* Read this BFD's symbols if we haven't done so already. */
6820 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6822 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6823 if (isymbuf == NULL)
6824 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6825 symtab_hdr->sh_info, 0,
6826 NULL, NULL, NULL);
6827 if (isymbuf == NULL)
6828 goto relax_return;
6831 isym = isymbuf + r_symndx;
6832 if (isym->st_shndx == SHN_UNDEF)
6833 continue;
6834 else if (isym->st_shndx == SHN_ABS)
6835 sym_sec = bfd_abs_section_ptr;
6836 else if (isym->st_shndx == SHN_COMMON)
6837 sym_sec = bfd_com_section_ptr;
6838 else
6839 sym_sec
6840 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6841 symval = isym->st_value
6842 + sym_sec->output_section->vma
6843 + sym_sec->output_offset;
6846 /* Compute branch offset, from delay slot of the jump to the
6847 branch target. */
6848 sym_offset = (symval + irel->r_addend)
6849 - (sec_start + irel->r_offset + 4);
6851 /* Branch offset must be properly aligned. */
6852 if ((sym_offset & 3) != 0)
6853 continue;
6855 sym_offset >>= 2;
6857 /* Check that it's in range. */
6858 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6859 continue;
6861 /* Get the section contents if we haven't done so already. */
6862 if (contents == NULL)
6864 /* Get cached copy if it exists. */
6865 if (elf_section_data (sec)->this_hdr.contents != NULL)
6866 contents = elf_section_data (sec)->this_hdr.contents;
6867 else
6869 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6870 goto relax_return;
6874 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6876 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6877 if ((instruction & 0xfc1fffff) == 0x0000f809)
6878 instruction = 0x04110000;
6879 /* If it was jr <reg>, turn it into b <target>. */
6880 else if ((instruction & 0xfc1fffff) == 0x00000008)
6881 instruction = 0x10000000;
6882 else
6883 continue;
6885 instruction |= (sym_offset & 0xffff);
6886 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6887 changed_contents = TRUE;
6890 if (contents != NULL
6891 && elf_section_data (sec)->this_hdr.contents != contents)
6893 if (!changed_contents && !link_info->keep_memory)
6894 free (contents);
6895 else
6897 /* Cache the section contents for elf_link_input_bfd. */
6898 elf_section_data (sec)->this_hdr.contents = contents;
6901 return TRUE;
6903 relax_return:
6904 if (contents != NULL
6905 && elf_section_data (sec)->this_hdr.contents != contents)
6906 free (contents);
6907 return FALSE;
6910 /* Adjust a symbol defined by a dynamic object and referenced by a
6911 regular object. The current definition is in some section of the
6912 dynamic object, but we're not including those sections. We have to
6913 change the definition to something the rest of the link can
6914 understand. */
6916 bfd_boolean
6917 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6918 struct elf_link_hash_entry *h)
6920 bfd *dynobj;
6921 struct mips_elf_link_hash_entry *hmips;
6922 asection *s;
6923 struct mips_elf_link_hash_table *htab;
6925 htab = mips_elf_hash_table (info);
6926 dynobj = elf_hash_table (info)->dynobj;
6928 /* Make sure we know what is going on here. */
6929 BFD_ASSERT (dynobj != NULL
6930 && (h->needs_plt
6931 || h->u.weakdef != NULL
6932 || (h->def_dynamic
6933 && h->ref_regular
6934 && !h->def_regular)));
6936 /* If this symbol is defined in a dynamic object, we need to copy
6937 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6938 file. */
6939 hmips = (struct mips_elf_link_hash_entry *) h;
6940 if (! info->relocatable
6941 && hmips->possibly_dynamic_relocs != 0
6942 && (h->root.type == bfd_link_hash_defweak
6943 || !h->def_regular))
6945 mips_elf_allocate_dynamic_relocations
6946 (dynobj, info, hmips->possibly_dynamic_relocs);
6947 if (hmips->readonly_reloc)
6948 /* We tell the dynamic linker that there are relocations
6949 against the text segment. */
6950 info->flags |= DF_TEXTREL;
6953 /* For a function, create a stub, if allowed. */
6954 if (! hmips->no_fn_stub
6955 && h->needs_plt)
6957 if (! elf_hash_table (info)->dynamic_sections_created)
6958 return TRUE;
6960 /* If this symbol is not defined in a regular file, then set
6961 the symbol to the stub location. This is required to make
6962 function pointers compare as equal between the normal
6963 executable and the shared library. */
6964 if (!h->def_regular)
6966 /* We need .stub section. */
6967 s = bfd_get_section_by_name (dynobj,
6968 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6969 BFD_ASSERT (s != NULL);
6971 h->root.u.def.section = s;
6972 h->root.u.def.value = s->size;
6974 /* XXX Write this stub address somewhere. */
6975 h->plt.offset = s->size;
6977 /* Make room for this stub code. */
6978 s->size += htab->function_stub_size;
6980 /* The last half word of the stub will be filled with the index
6981 of this symbol in .dynsym section. */
6982 return TRUE;
6985 else if ((h->type == STT_FUNC)
6986 && !h->needs_plt)
6988 /* This will set the entry for this symbol in the GOT to 0, and
6989 the dynamic linker will take care of this. */
6990 h->root.u.def.value = 0;
6991 return TRUE;
6994 /* If this is a weak symbol, and there is a real definition, the
6995 processor independent code will have arranged for us to see the
6996 real definition first, and we can just use the same value. */
6997 if (h->u.weakdef != NULL)
6999 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7000 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7001 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7002 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7003 return TRUE;
7006 /* This is a reference to a symbol defined by a dynamic object which
7007 is not a function. */
7009 return TRUE;
7012 /* Likewise, for VxWorks. */
7014 bfd_boolean
7015 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7016 struct elf_link_hash_entry *h)
7018 bfd *dynobj;
7019 struct mips_elf_link_hash_entry *hmips;
7020 struct mips_elf_link_hash_table *htab;
7022 htab = mips_elf_hash_table (info);
7023 dynobj = elf_hash_table (info)->dynobj;
7024 hmips = (struct mips_elf_link_hash_entry *) h;
7026 /* Make sure we know what is going on here. */
7027 BFD_ASSERT (dynobj != NULL
7028 && (h->needs_plt
7029 || h->needs_copy
7030 || h->u.weakdef != NULL
7031 || (h->def_dynamic
7032 && h->ref_regular
7033 && !h->def_regular)));
7035 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7036 either (a) we want to branch to the symbol or (b) we're linking an
7037 executable that needs a canonical function address. In the latter
7038 case, the canonical address will be the address of the executable's
7039 load stub. */
7040 if ((hmips->is_branch_target
7041 || (!info->shared
7042 && h->type == STT_FUNC
7043 && hmips->is_relocation_target))
7044 && h->def_dynamic
7045 && h->ref_regular
7046 && !h->def_regular
7047 && !h->forced_local)
7048 h->needs_plt = 1;
7050 /* Locally-binding symbols do not need a PLT stub; we can refer to
7051 the functions directly. */
7052 else if (h->needs_plt
7053 && (SYMBOL_CALLS_LOCAL (info, h)
7054 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7055 && h->root.type == bfd_link_hash_undefweak)))
7057 h->needs_plt = 0;
7058 return TRUE;
7061 if (h->needs_plt)
7063 /* If this is the first symbol to need a PLT entry, allocate room
7064 for the header, and for the header's .rela.plt.unloaded entries. */
7065 if (htab->splt->size == 0)
7067 htab->splt->size += htab->plt_header_size;
7068 if (!info->shared)
7069 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7072 /* Assign the next .plt entry to this symbol. */
7073 h->plt.offset = htab->splt->size;
7074 htab->splt->size += htab->plt_entry_size;
7076 /* If the output file has no definition of the symbol, set the
7077 symbol's value to the address of the stub. For executables,
7078 point at the PLT load stub rather than the lazy resolution stub;
7079 this stub will become the canonical function address. */
7080 if (!h->def_regular)
7082 h->root.u.def.section = htab->splt;
7083 h->root.u.def.value = h->plt.offset;
7084 if (!info->shared)
7085 h->root.u.def.value += 8;
7088 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7089 htab->sgotplt->size += 4;
7090 htab->srelplt->size += sizeof (Elf32_External_Rela);
7092 /* Make room for the .rela.plt.unloaded relocations. */
7093 if (!info->shared)
7094 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7096 return TRUE;
7099 /* If a function symbol is defined by a dynamic object, and we do not
7100 need a PLT stub for it, the symbol's value should be zero. */
7101 if (h->type == STT_FUNC
7102 && h->def_dynamic
7103 && h->ref_regular
7104 && !h->def_regular)
7106 h->root.u.def.value = 0;
7107 return TRUE;
7110 /* If this is a weak symbol, and there is a real definition, the
7111 processor independent code will have arranged for us to see the
7112 real definition first, and we can just use the same value. */
7113 if (h->u.weakdef != NULL)
7115 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7116 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7117 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7118 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7119 return TRUE;
7122 /* This is a reference to a symbol defined by a dynamic object which
7123 is not a function. */
7124 if (info->shared)
7125 return TRUE;
7127 /* We must allocate the symbol in our .dynbss section, which will
7128 become part of the .bss section of the executable. There will be
7129 an entry for this symbol in the .dynsym section. The dynamic
7130 object will contain position independent code, so all references
7131 from the dynamic object to this symbol will go through the global
7132 offset table. The dynamic linker will use the .dynsym entry to
7133 determine the address it must put in the global offset table, so
7134 both the dynamic object and the regular object will refer to the
7135 same memory location for the variable. */
7137 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7139 htab->srelbss->size += sizeof (Elf32_External_Rela);
7140 h->needs_copy = 1;
7143 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7146 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7147 The number might be exact or a worst-case estimate, depending on how
7148 much information is available to elf_backend_omit_section_dynsym at
7149 the current linking stage. */
7151 static bfd_size_type
7152 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7154 bfd_size_type count;
7156 count = 0;
7157 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7159 asection *p;
7160 const struct elf_backend_data *bed;
7162 bed = get_elf_backend_data (output_bfd);
7163 for (p = output_bfd->sections; p ; p = p->next)
7164 if ((p->flags & SEC_EXCLUDE) == 0
7165 && (p->flags & SEC_ALLOC) != 0
7166 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7167 ++count;
7169 return count;
7172 /* This function is called after all the input files have been read,
7173 and the input sections have been assigned to output sections. We
7174 check for any mips16 stub sections that we can discard. */
7176 bfd_boolean
7177 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7178 struct bfd_link_info *info)
7180 asection *ri;
7182 bfd *dynobj;
7183 asection *s;
7184 struct mips_got_info *g;
7185 int i;
7186 bfd_size_type loadable_size = 0;
7187 bfd_size_type local_gotno;
7188 bfd_size_type dynsymcount;
7189 bfd *sub;
7190 struct mips_elf_count_tls_arg count_tls_arg;
7191 struct mips_elf_link_hash_table *htab;
7193 htab = mips_elf_hash_table (info);
7195 /* The .reginfo section has a fixed size. */
7196 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7197 if (ri != NULL)
7198 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7200 if (! (info->relocatable
7201 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7202 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7203 mips_elf_check_mips16_stubs, NULL);
7205 dynobj = elf_hash_table (info)->dynobj;
7206 if (dynobj == NULL)
7207 /* Relocatable links don't have it. */
7208 return TRUE;
7210 g = mips_elf_got_info (dynobj, &s);
7211 if (s == NULL)
7212 return TRUE;
7214 /* Calculate the total loadable size of the output. That
7215 will give us the maximum number of GOT_PAGE entries
7216 required. */
7217 for (sub = info->input_bfds; sub; sub = sub->link_next)
7219 asection *subsection;
7221 for (subsection = sub->sections;
7222 subsection;
7223 subsection = subsection->next)
7225 if ((subsection->flags & SEC_ALLOC) == 0)
7226 continue;
7227 loadable_size += ((subsection->size + 0xf)
7228 &~ (bfd_size_type) 0xf);
7232 /* There has to be a global GOT entry for every symbol with
7233 a dynamic symbol table index of DT_MIPS_GOTSYM or
7234 higher. Therefore, it make sense to put those symbols
7235 that need GOT entries at the end of the symbol table. We
7236 do that here. */
7237 if (! mips_elf_sort_hash_table (info, 1))
7238 return FALSE;
7240 if (g->global_gotsym != NULL)
7241 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7242 else
7243 /* If there are no global symbols, or none requiring
7244 relocations, then GLOBAL_GOTSYM will be NULL. */
7245 i = 0;
7247 /* Get a worst-case estimate of the number of dynamic symbols needed.
7248 At this point, dynsymcount does not account for section symbols
7249 and count_section_dynsyms may overestimate the number that will
7250 be needed. */
7251 dynsymcount = (elf_hash_table (info)->dynsymcount
7252 + count_section_dynsyms (output_bfd, info));
7254 /* Determine the size of one stub entry. */
7255 htab->function_stub_size = (dynsymcount > 0x10000
7256 ? MIPS_FUNCTION_STUB_BIG_SIZE
7257 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7259 /* In the worst case, we'll get one stub per dynamic symbol, plus
7260 one to account for the dummy entry at the end required by IRIX
7261 rld. */
7262 loadable_size += htab->function_stub_size * (i + 1);
7264 if (htab->is_vxworks)
7265 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7266 relocations against local symbols evaluate to "G", and the EABI does
7267 not include R_MIPS_GOT_PAGE. */
7268 local_gotno = 0;
7269 else
7270 /* Assume there are two loadable segments consisting of contiguous
7271 sections. Is 5 enough? */
7272 local_gotno = (loadable_size >> 16) + 5;
7274 g->local_gotno += local_gotno;
7275 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7277 g->global_gotno = i;
7278 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7280 /* We need to calculate tls_gotno for global symbols at this point
7281 instead of building it up earlier, to avoid doublecounting
7282 entries for one global symbol from multiple input files. */
7283 count_tls_arg.info = info;
7284 count_tls_arg.needed = 0;
7285 elf_link_hash_traverse (elf_hash_table (info),
7286 mips_elf_count_global_tls_entries,
7287 &count_tls_arg);
7288 g->tls_gotno += count_tls_arg.needed;
7289 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7291 mips_elf_resolve_final_got_entries (g);
7293 /* VxWorks does not support multiple GOTs. It initializes $gp to
7294 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7295 dynamic loader. */
7296 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7298 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7299 return FALSE;
7301 else
7303 /* Set up TLS entries for the first GOT. */
7304 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7305 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7308 return TRUE;
7311 /* Set the sizes of the dynamic sections. */
7313 bfd_boolean
7314 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7315 struct bfd_link_info *info)
7317 bfd *dynobj;
7318 asection *s, *sreldyn;
7319 bfd_boolean reltext;
7320 struct mips_elf_link_hash_table *htab;
7322 htab = mips_elf_hash_table (info);
7323 dynobj = elf_hash_table (info)->dynobj;
7324 BFD_ASSERT (dynobj != NULL);
7326 if (elf_hash_table (info)->dynamic_sections_created)
7328 /* Set the contents of the .interp section to the interpreter. */
7329 if (info->executable)
7331 s = bfd_get_section_by_name (dynobj, ".interp");
7332 BFD_ASSERT (s != NULL);
7333 s->size
7334 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7335 s->contents
7336 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7340 /* The check_relocs and adjust_dynamic_symbol entry points have
7341 determined the sizes of the various dynamic sections. Allocate
7342 memory for them. */
7343 reltext = FALSE;
7344 sreldyn = NULL;
7345 for (s = dynobj->sections; s != NULL; s = s->next)
7347 const char *name;
7349 /* It's OK to base decisions on the section name, because none
7350 of the dynobj section names depend upon the input files. */
7351 name = bfd_get_section_name (dynobj, s);
7353 if ((s->flags & SEC_LINKER_CREATED) == 0)
7354 continue;
7356 if (CONST_STRNEQ (name, ".rel"))
7358 if (s->size != 0)
7360 const char *outname;
7361 asection *target;
7363 /* If this relocation section applies to a read only
7364 section, then we probably need a DT_TEXTREL entry.
7365 If the relocation section is .rel(a).dyn, we always
7366 assert a DT_TEXTREL entry rather than testing whether
7367 there exists a relocation to a read only section or
7368 not. */
7369 outname = bfd_get_section_name (output_bfd,
7370 s->output_section);
7371 target = bfd_get_section_by_name (output_bfd, outname + 4);
7372 if ((target != NULL
7373 && (target->flags & SEC_READONLY) != 0
7374 && (target->flags & SEC_ALLOC) != 0)
7375 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7376 reltext = TRUE;
7378 /* We use the reloc_count field as a counter if we need
7379 to copy relocs into the output file. */
7380 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7381 s->reloc_count = 0;
7383 /* If combreloc is enabled, elf_link_sort_relocs() will
7384 sort relocations, but in a different way than we do,
7385 and before we're done creating relocations. Also, it
7386 will move them around between input sections'
7387 relocation's contents, so our sorting would be
7388 broken, so don't let it run. */
7389 info->combreloc = 0;
7392 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7394 /* Executables do not need a GOT. */
7395 if (info->shared)
7397 /* Allocate relocations for all but the reserved entries. */
7398 struct mips_got_info *g;
7399 unsigned int count;
7401 g = mips_elf_got_info (dynobj, NULL);
7402 count = (g->global_gotno
7403 + g->local_gotno
7404 - MIPS_RESERVED_GOTNO (info));
7405 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7408 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7410 /* _bfd_mips_elf_always_size_sections() has already done
7411 most of the work, but some symbols may have been mapped
7412 to versions that we must now resolve in the got_entries
7413 hash tables. */
7414 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7415 struct mips_got_info *g = gg;
7416 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7417 unsigned int needed_relocs = 0;
7419 if (gg->next)
7421 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7422 set_got_offset_arg.info = info;
7424 /* NOTE 2005-02-03: How can this call, or the next, ever
7425 find any indirect entries to resolve? They were all
7426 resolved in mips_elf_multi_got. */
7427 mips_elf_resolve_final_got_entries (gg);
7428 for (g = gg->next; g && g->next != gg; g = g->next)
7430 unsigned int save_assign;
7432 mips_elf_resolve_final_got_entries (g);
7434 /* Assign offsets to global GOT entries. */
7435 save_assign = g->assigned_gotno;
7436 g->assigned_gotno = g->local_gotno;
7437 set_got_offset_arg.g = g;
7438 set_got_offset_arg.needed_relocs = 0;
7439 htab_traverse (g->got_entries,
7440 mips_elf_set_global_got_offset,
7441 &set_got_offset_arg);
7442 needed_relocs += set_got_offset_arg.needed_relocs;
7443 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7444 <= g->global_gotno);
7446 g->assigned_gotno = save_assign;
7447 if (info->shared)
7449 needed_relocs += g->local_gotno - g->assigned_gotno;
7450 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7451 + g->next->global_gotno
7452 + g->next->tls_gotno
7453 + MIPS_RESERVED_GOTNO (info));
7457 else
7459 struct mips_elf_count_tls_arg arg;
7460 arg.info = info;
7461 arg.needed = 0;
7463 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7464 &arg);
7465 elf_link_hash_traverse (elf_hash_table (info),
7466 mips_elf_count_global_tls_relocs,
7467 &arg);
7469 needed_relocs += arg.needed;
7472 if (needed_relocs)
7473 mips_elf_allocate_dynamic_relocations (dynobj, info,
7474 needed_relocs);
7476 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7478 /* IRIX rld assumes that the function stub isn't at the end
7479 of .text section. So put a dummy. XXX */
7480 s->size += htab->function_stub_size;
7482 else if (! info->shared
7483 && ! mips_elf_hash_table (info)->use_rld_obj_head
7484 && CONST_STRNEQ (name, ".rld_map"))
7486 /* We add a room for __rld_map. It will be filled in by the
7487 rtld to contain a pointer to the _r_debug structure. */
7488 s->size += 4;
7490 else if (SGI_COMPAT (output_bfd)
7491 && CONST_STRNEQ (name, ".compact_rel"))
7492 s->size += mips_elf_hash_table (info)->compact_rel_size;
7493 else if (! CONST_STRNEQ (name, ".init")
7494 && s != htab->sgotplt
7495 && s != htab->splt)
7497 /* It's not one of our sections, so don't allocate space. */
7498 continue;
7501 if (s->size == 0)
7503 s->flags |= SEC_EXCLUDE;
7504 continue;
7507 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7508 continue;
7510 /* Allocate memory for this section last, since we may increase its
7511 size above. */
7512 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7514 sreldyn = s;
7515 continue;
7518 /* Allocate memory for the section contents. */
7519 s->contents = bfd_zalloc (dynobj, s->size);
7520 if (s->contents == NULL)
7522 bfd_set_error (bfd_error_no_memory);
7523 return FALSE;
7527 /* Allocate memory for the .rel(a).dyn section. */
7528 if (sreldyn != NULL)
7530 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7531 if (sreldyn->contents == NULL)
7533 bfd_set_error (bfd_error_no_memory);
7534 return FALSE;
7538 if (elf_hash_table (info)->dynamic_sections_created)
7540 /* Add some entries to the .dynamic section. We fill in the
7541 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7542 must add the entries now so that we get the correct size for
7543 the .dynamic section. */
7545 /* SGI object has the equivalence of DT_DEBUG in the
7546 DT_MIPS_RLD_MAP entry. This must come first because glibc
7547 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7548 looks at the first one it sees. */
7549 if (!info->shared
7550 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7551 return FALSE;
7553 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7554 used by the debugger. */
7555 if (info->executable
7556 && !SGI_COMPAT (output_bfd)
7557 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7558 return FALSE;
7560 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7561 info->flags |= DF_TEXTREL;
7563 if ((info->flags & DF_TEXTREL) != 0)
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7566 return FALSE;
7568 /* Clear the DF_TEXTREL flag. It will be set again if we
7569 write out an actual text relocation; we may not, because
7570 at this point we do not know whether e.g. any .eh_frame
7571 absolute relocations have been converted to PC-relative. */
7572 info->flags &= ~DF_TEXTREL;
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7576 return FALSE;
7578 if (htab->is_vxworks)
7580 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7581 use any of the DT_MIPS_* tags. */
7582 if (mips_elf_rel_dyn_section (info, FALSE))
7584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7585 return FALSE;
7587 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7588 return FALSE;
7590 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7591 return FALSE;
7593 if (htab->splt->size > 0)
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7596 return FALSE;
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7599 return FALSE;
7601 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7602 return FALSE;
7605 else
7607 if (mips_elf_rel_dyn_section (info, FALSE))
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7610 return FALSE;
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7613 return FALSE;
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7616 return FALSE;
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7620 return FALSE;
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7623 return FALSE;
7625 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7626 return FALSE;
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7629 return FALSE;
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7632 return FALSE;
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7635 return FALSE;
7637 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7638 return FALSE;
7640 if (IRIX_COMPAT (dynobj) == ict_irix5
7641 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7642 return FALSE;
7644 if (IRIX_COMPAT (dynobj) == ict_irix6
7645 && (bfd_get_section_by_name
7646 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7647 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7648 return FALSE;
7652 return TRUE;
7655 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7656 Adjust its R_ADDEND field so that it is correct for the output file.
7657 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7658 and sections respectively; both use symbol indexes. */
7660 static void
7661 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7662 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7663 asection **local_sections, Elf_Internal_Rela *rel)
7665 unsigned int r_type, r_symndx;
7666 Elf_Internal_Sym *sym;
7667 asection *sec;
7669 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7671 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7672 if (r_type == R_MIPS16_GPREL
7673 || r_type == R_MIPS_GPREL16
7674 || r_type == R_MIPS_GPREL32
7675 || r_type == R_MIPS_LITERAL)
7677 rel->r_addend += _bfd_get_gp_value (input_bfd);
7678 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7681 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7682 sym = local_syms + r_symndx;
7684 /* Adjust REL's addend to account for section merging. */
7685 if (!info->relocatable)
7687 sec = local_sections[r_symndx];
7688 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7691 /* This would normally be done by the rela_normal code in elflink.c. */
7692 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7693 rel->r_addend += local_sections[r_symndx]->output_offset;
7697 /* Relocate a MIPS ELF section. */
7699 bfd_boolean
7700 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7701 bfd *input_bfd, asection *input_section,
7702 bfd_byte *contents, Elf_Internal_Rela *relocs,
7703 Elf_Internal_Sym *local_syms,
7704 asection **local_sections)
7706 Elf_Internal_Rela *rel;
7707 const Elf_Internal_Rela *relend;
7708 bfd_vma addend = 0;
7709 bfd_boolean use_saved_addend_p = FALSE;
7710 const struct elf_backend_data *bed;
7712 bed = get_elf_backend_data (output_bfd);
7713 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7714 for (rel = relocs; rel < relend; ++rel)
7716 const char *name;
7717 bfd_vma value = 0;
7718 reloc_howto_type *howto;
7719 bfd_boolean require_jalx;
7720 /* TRUE if the relocation is a RELA relocation, rather than a
7721 REL relocation. */
7722 bfd_boolean rela_relocation_p = TRUE;
7723 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7724 const char *msg;
7725 unsigned long r_symndx;
7726 asection *sec;
7727 Elf_Internal_Shdr *symtab_hdr;
7728 struct elf_link_hash_entry *h;
7730 /* Find the relocation howto for this relocation. */
7731 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7732 NEWABI_P (input_bfd)
7733 && (MIPS_RELOC_RELA_P
7734 (input_bfd, input_section,
7735 rel - relocs)));
7737 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7739 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7741 sec = local_sections[r_symndx];
7742 h = NULL;
7744 else
7746 unsigned long extsymoff;
7748 extsymoff = 0;
7749 if (!elf_bad_symtab (input_bfd))
7750 extsymoff = symtab_hdr->sh_info;
7751 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7752 while (h->root.type == bfd_link_hash_indirect
7753 || h->root.type == bfd_link_hash_warning)
7754 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7756 sec = NULL;
7757 if (h->root.type == bfd_link_hash_defined
7758 || h->root.type == bfd_link_hash_defweak)
7759 sec = h->root.u.def.section;
7762 if (sec != NULL && elf_discarded_section (sec))
7764 /* For relocs against symbols from removed linkonce sections,
7765 or sections discarded by a linker script, we just want the
7766 section contents zeroed. Avoid any special processing. */
7767 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7768 rel->r_info = 0;
7769 rel->r_addend = 0;
7770 continue;
7773 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7775 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7776 64-bit code, but make sure all their addresses are in the
7777 lowermost or uppermost 32-bit section of the 64-bit address
7778 space. Thus, when they use an R_MIPS_64 they mean what is
7779 usually meant by R_MIPS_32, with the exception that the
7780 stored value is sign-extended to 64 bits. */
7781 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7783 /* On big-endian systems, we need to lie about the position
7784 of the reloc. */
7785 if (bfd_big_endian (input_bfd))
7786 rel->r_offset += 4;
7789 if (!use_saved_addend_p)
7791 Elf_Internal_Shdr *rel_hdr;
7793 /* If these relocations were originally of the REL variety,
7794 we must pull the addend out of the field that will be
7795 relocated. Otherwise, we simply use the contents of the
7796 RELA relocation. To determine which flavor or relocation
7797 this is, we depend on the fact that the INPUT_SECTION's
7798 REL_HDR is read before its REL_HDR2. */
7799 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7800 if ((size_t) (rel - relocs)
7801 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7802 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7803 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7805 bfd_byte *location = contents + rel->r_offset;
7807 /* Note that this is a REL relocation. */
7808 rela_relocation_p = FALSE;
7810 /* Get the addend, which is stored in the input file. */
7811 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7812 location);
7813 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7814 contents);
7815 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7816 location);
7818 addend &= howto->src_mask;
7820 /* For some kinds of relocations, the ADDEND is a
7821 combination of the addend stored in two different
7822 relocations. */
7823 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7824 || (r_type == R_MIPS_GOT16
7825 && mips_elf_local_relocation_p (input_bfd, rel,
7826 local_sections, FALSE)))
7828 const Elf_Internal_Rela *lo16_relocation;
7829 reloc_howto_type *lo16_howto;
7830 int lo16_type;
7832 if (r_type == R_MIPS16_HI16)
7833 lo16_type = R_MIPS16_LO16;
7834 else
7835 lo16_type = R_MIPS_LO16;
7837 /* The combined value is the sum of the HI16 addend,
7838 left-shifted by sixteen bits, and the LO16
7839 addend, sign extended. (Usually, the code does
7840 a `lui' of the HI16 value, and then an `addiu' of
7841 the LO16 value.)
7843 Scan ahead to find a matching LO16 relocation.
7845 According to the MIPS ELF ABI, the R_MIPS_LO16
7846 relocation must be immediately following.
7847 However, for the IRIX6 ABI, the next relocation
7848 may be a composed relocation consisting of
7849 several relocations for the same address. In
7850 that case, the R_MIPS_LO16 relocation may occur
7851 as one of these. We permit a similar extension
7852 in general, as that is useful for GCC.
7854 In some cases GCC dead code elimination removes
7855 the LO16 but keeps the corresponding HI16. This
7856 is strictly speaking a violation of the ABI but
7857 not immediately harmful. */
7858 lo16_relocation = mips_elf_next_relocation (input_bfd,
7859 lo16_type,
7860 rel, relend);
7861 if (lo16_relocation == NULL)
7863 const char *name;
7865 if (h)
7866 name = h->root.root.string;
7867 else
7868 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7869 local_syms + r_symndx,
7870 sec);
7871 (*_bfd_error_handler)
7872 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7873 input_bfd, input_section, name, howto->name,
7874 rel->r_offset);
7876 else
7878 bfd_byte *lo16_location;
7879 bfd_vma l;
7881 lo16_location = contents + lo16_relocation->r_offset;
7883 /* Obtain the addend kept there. */
7884 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7885 lo16_type, FALSE);
7886 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7887 FALSE, lo16_location);
7888 l = mips_elf_obtain_contents (lo16_howto,
7889 lo16_relocation,
7890 input_bfd, contents);
7891 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7892 FALSE, lo16_location);
7893 l &= lo16_howto->src_mask;
7894 l <<= lo16_howto->rightshift;
7895 l = _bfd_mips_elf_sign_extend (l, 16);
7897 addend <<= 16;
7899 /* Compute the combined addend. */
7900 addend += l;
7903 else
7904 addend <<= howto->rightshift;
7906 else
7907 addend = rel->r_addend;
7908 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7909 local_syms, local_sections, rel);
7912 if (info->relocatable)
7914 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7915 && bfd_big_endian (input_bfd))
7916 rel->r_offset -= 4;
7918 if (!rela_relocation_p && rel->r_addend)
7920 addend += rel->r_addend;
7921 if (r_type == R_MIPS_HI16
7922 || r_type == R_MIPS_GOT16)
7923 addend = mips_elf_high (addend);
7924 else if (r_type == R_MIPS_HIGHER)
7925 addend = mips_elf_higher (addend);
7926 else if (r_type == R_MIPS_HIGHEST)
7927 addend = mips_elf_highest (addend);
7928 else
7929 addend >>= howto->rightshift;
7931 /* We use the source mask, rather than the destination
7932 mask because the place to which we are writing will be
7933 source of the addend in the final link. */
7934 addend &= howto->src_mask;
7936 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7937 /* See the comment above about using R_MIPS_64 in the 32-bit
7938 ABI. Here, we need to update the addend. It would be
7939 possible to get away with just using the R_MIPS_32 reloc
7940 but for endianness. */
7942 bfd_vma sign_bits;
7943 bfd_vma low_bits;
7944 bfd_vma high_bits;
7946 if (addend & ((bfd_vma) 1 << 31))
7947 #ifdef BFD64
7948 sign_bits = ((bfd_vma) 1 << 32) - 1;
7949 #else
7950 sign_bits = -1;
7951 #endif
7952 else
7953 sign_bits = 0;
7955 /* If we don't know that we have a 64-bit type,
7956 do two separate stores. */
7957 if (bfd_big_endian (input_bfd))
7959 /* Store the sign-bits (which are most significant)
7960 first. */
7961 low_bits = sign_bits;
7962 high_bits = addend;
7964 else
7966 low_bits = addend;
7967 high_bits = sign_bits;
7969 bfd_put_32 (input_bfd, low_bits,
7970 contents + rel->r_offset);
7971 bfd_put_32 (input_bfd, high_bits,
7972 contents + rel->r_offset + 4);
7973 continue;
7976 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7977 input_bfd, input_section,
7978 contents, FALSE))
7979 return FALSE;
7982 /* Go on to the next relocation. */
7983 continue;
7986 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7987 relocations for the same offset. In that case we are
7988 supposed to treat the output of each relocation as the addend
7989 for the next. */
7990 if (rel + 1 < relend
7991 && rel->r_offset == rel[1].r_offset
7992 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7993 use_saved_addend_p = TRUE;
7994 else
7995 use_saved_addend_p = FALSE;
7997 /* Figure out what value we are supposed to relocate. */
7998 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7999 input_section, info, rel,
8000 addend, howto, local_syms,
8001 local_sections, &value,
8002 &name, &require_jalx,
8003 use_saved_addend_p))
8005 case bfd_reloc_continue:
8006 /* There's nothing to do. */
8007 continue;
8009 case bfd_reloc_undefined:
8010 /* mips_elf_calculate_relocation already called the
8011 undefined_symbol callback. There's no real point in
8012 trying to perform the relocation at this point, so we
8013 just skip ahead to the next relocation. */
8014 continue;
8016 case bfd_reloc_notsupported:
8017 msg = _("internal error: unsupported relocation error");
8018 info->callbacks->warning
8019 (info, msg, name, input_bfd, input_section, rel->r_offset);
8020 return FALSE;
8022 case bfd_reloc_overflow:
8023 if (use_saved_addend_p)
8024 /* Ignore overflow until we reach the last relocation for
8025 a given location. */
8027 else
8029 BFD_ASSERT (name != NULL);
8030 if (! ((*info->callbacks->reloc_overflow)
8031 (info, NULL, name, howto->name, (bfd_vma) 0,
8032 input_bfd, input_section, rel->r_offset)))
8033 return FALSE;
8035 break;
8037 case bfd_reloc_ok:
8038 break;
8040 default:
8041 abort ();
8042 break;
8045 /* If we've got another relocation for the address, keep going
8046 until we reach the last one. */
8047 if (use_saved_addend_p)
8049 addend = value;
8050 continue;
8053 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8054 /* See the comment above about using R_MIPS_64 in the 32-bit
8055 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8056 that calculated the right value. Now, however, we
8057 sign-extend the 32-bit result to 64-bits, and store it as a
8058 64-bit value. We are especially generous here in that we
8059 go to extreme lengths to support this usage on systems with
8060 only a 32-bit VMA. */
8062 bfd_vma sign_bits;
8063 bfd_vma low_bits;
8064 bfd_vma high_bits;
8066 if (value & ((bfd_vma) 1 << 31))
8067 #ifdef BFD64
8068 sign_bits = ((bfd_vma) 1 << 32) - 1;
8069 #else
8070 sign_bits = -1;
8071 #endif
8072 else
8073 sign_bits = 0;
8075 /* If we don't know that we have a 64-bit type,
8076 do two separate stores. */
8077 if (bfd_big_endian (input_bfd))
8079 /* Undo what we did above. */
8080 rel->r_offset -= 4;
8081 /* Store the sign-bits (which are most significant)
8082 first. */
8083 low_bits = sign_bits;
8084 high_bits = value;
8086 else
8088 low_bits = value;
8089 high_bits = sign_bits;
8091 bfd_put_32 (input_bfd, low_bits,
8092 contents + rel->r_offset);
8093 bfd_put_32 (input_bfd, high_bits,
8094 contents + rel->r_offset + 4);
8095 continue;
8098 /* Actually perform the relocation. */
8099 if (! mips_elf_perform_relocation (info, howto, rel, value,
8100 input_bfd, input_section,
8101 contents, require_jalx))
8102 return FALSE;
8105 return TRUE;
8108 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8109 adjust it appropriately now. */
8111 static void
8112 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8113 const char *name, Elf_Internal_Sym *sym)
8115 /* The linker script takes care of providing names and values for
8116 these, but we must place them into the right sections. */
8117 static const char* const text_section_symbols[] = {
8118 "_ftext",
8119 "_etext",
8120 "__dso_displacement",
8121 "__elf_header",
8122 "__program_header_table",
8123 NULL
8126 static const char* const data_section_symbols[] = {
8127 "_fdata",
8128 "_edata",
8129 "_end",
8130 "_fbss",
8131 NULL
8134 const char* const *p;
8135 int i;
8137 for (i = 0; i < 2; ++i)
8138 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8140 ++p)
8141 if (strcmp (*p, name) == 0)
8143 /* All of these symbols are given type STT_SECTION by the
8144 IRIX6 linker. */
8145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8146 sym->st_other = STO_PROTECTED;
8148 /* The IRIX linker puts these symbols in special sections. */
8149 if (i == 0)
8150 sym->st_shndx = SHN_MIPS_TEXT;
8151 else
8152 sym->st_shndx = SHN_MIPS_DATA;
8154 break;
8158 /* Finish up dynamic symbol handling. We set the contents of various
8159 dynamic sections here. */
8161 bfd_boolean
8162 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8163 struct bfd_link_info *info,
8164 struct elf_link_hash_entry *h,
8165 Elf_Internal_Sym *sym)
8167 bfd *dynobj;
8168 asection *sgot;
8169 struct mips_got_info *g, *gg;
8170 const char *name;
8171 int idx;
8172 struct mips_elf_link_hash_table *htab;
8174 htab = mips_elf_hash_table (info);
8175 dynobj = elf_hash_table (info)->dynobj;
8177 if (h->plt.offset != MINUS_ONE)
8179 asection *s;
8180 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8182 /* This symbol has a stub. Set it up. */
8184 BFD_ASSERT (h->dynindx != -1);
8186 s = bfd_get_section_by_name (dynobj,
8187 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8188 BFD_ASSERT (s != NULL);
8190 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8191 || (h->dynindx <= 0xffff));
8193 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8194 sign extension at runtime in the stub, resulting in a negative
8195 index value. */
8196 if (h->dynindx & ~0x7fffffff)
8197 return FALSE;
8199 /* Fill the stub. */
8200 idx = 0;
8201 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8202 idx += 4;
8203 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8204 idx += 4;
8205 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8207 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8208 stub + idx);
8209 idx += 4;
8211 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8212 idx += 4;
8214 /* If a large stub is not required and sign extension is not a
8215 problem, then use legacy code in the stub. */
8216 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8217 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8218 else if (h->dynindx & ~0x7fff)
8219 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8220 else
8221 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8222 stub + idx);
8224 BFD_ASSERT (h->plt.offset <= s->size);
8225 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8227 /* Mark the symbol as undefined. plt.offset != -1 occurs
8228 only for the referenced symbol. */
8229 sym->st_shndx = SHN_UNDEF;
8231 /* The run-time linker uses the st_value field of the symbol
8232 to reset the global offset table entry for this external
8233 to its stub address when unlinking a shared object. */
8234 sym->st_value = (s->output_section->vma + s->output_offset
8235 + h->plt.offset);
8238 BFD_ASSERT (h->dynindx != -1
8239 || h->forced_local);
8241 sgot = mips_elf_got_section (dynobj, FALSE);
8242 BFD_ASSERT (sgot != NULL);
8243 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8244 g = mips_elf_section_data (sgot)->u.got_info;
8245 BFD_ASSERT (g != NULL);
8247 /* Run through the global symbol table, creating GOT entries for all
8248 the symbols that need them. */
8249 if (g->global_gotsym != NULL
8250 && h->dynindx >= g->global_gotsym->dynindx)
8252 bfd_vma offset;
8253 bfd_vma value;
8255 value = sym->st_value;
8256 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8257 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8260 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8262 struct mips_got_entry e, *p;
8263 bfd_vma entry;
8264 bfd_vma offset;
8266 gg = g;
8268 e.abfd = output_bfd;
8269 e.symndx = -1;
8270 e.d.h = (struct mips_elf_link_hash_entry *)h;
8271 e.tls_type = 0;
8273 for (g = g->next; g->next != gg; g = g->next)
8275 if (g->got_entries
8276 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8277 &e)))
8279 offset = p->gotidx;
8280 if (info->shared
8281 || (elf_hash_table (info)->dynamic_sections_created
8282 && p->d.h != NULL
8283 && p->d.h->root.def_dynamic
8284 && !p->d.h->root.def_regular))
8286 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8287 the various compatibility problems, it's easier to mock
8288 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8289 mips_elf_create_dynamic_relocation to calculate the
8290 appropriate addend. */
8291 Elf_Internal_Rela rel[3];
8293 memset (rel, 0, sizeof (rel));
8294 if (ABI_64_P (output_bfd))
8295 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8296 else
8297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8298 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8300 entry = 0;
8301 if (! (mips_elf_create_dynamic_relocation
8302 (output_bfd, info, rel,
8303 e.d.h, NULL, sym->st_value, &entry, sgot)))
8304 return FALSE;
8306 else
8307 entry = sym->st_value;
8308 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8313 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8314 name = h->root.root.string;
8315 if (strcmp (name, "_DYNAMIC") == 0
8316 || h == elf_hash_table (info)->hgot)
8317 sym->st_shndx = SHN_ABS;
8318 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8319 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8321 sym->st_shndx = SHN_ABS;
8322 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8323 sym->st_value = 1;
8325 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8327 sym->st_shndx = SHN_ABS;
8328 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8329 sym->st_value = elf_gp (output_bfd);
8331 else if (SGI_COMPAT (output_bfd))
8333 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8334 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8336 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8337 sym->st_other = STO_PROTECTED;
8338 sym->st_value = 0;
8339 sym->st_shndx = SHN_MIPS_DATA;
8341 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8343 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8344 sym->st_other = STO_PROTECTED;
8345 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8346 sym->st_shndx = SHN_ABS;
8348 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8350 if (h->type == STT_FUNC)
8351 sym->st_shndx = SHN_MIPS_TEXT;
8352 else if (h->type == STT_OBJECT)
8353 sym->st_shndx = SHN_MIPS_DATA;
8357 /* Handle the IRIX6-specific symbols. */
8358 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8359 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8361 if (! info->shared)
8363 if (! mips_elf_hash_table (info)->use_rld_obj_head
8364 && (strcmp (name, "__rld_map") == 0
8365 || strcmp (name, "__RLD_MAP") == 0))
8367 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8368 BFD_ASSERT (s != NULL);
8369 sym->st_value = s->output_section->vma + s->output_offset;
8370 bfd_put_32 (output_bfd, 0, s->contents);
8371 if (mips_elf_hash_table (info)->rld_value == 0)
8372 mips_elf_hash_table (info)->rld_value = sym->st_value;
8374 else if (mips_elf_hash_table (info)->use_rld_obj_head
8375 && strcmp (name, "__rld_obj_head") == 0)
8377 /* IRIX6 does not use a .rld_map section. */
8378 if (IRIX_COMPAT (output_bfd) == ict_irix5
8379 || IRIX_COMPAT (output_bfd) == ict_none)
8380 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8381 != NULL);
8382 mips_elf_hash_table (info)->rld_value = sym->st_value;
8386 /* If this is a mips16 symbol, force the value to be even. */
8387 if (sym->st_other == STO_MIPS16)
8388 sym->st_value &= ~1;
8390 return TRUE;
8393 /* Likewise, for VxWorks. */
8395 bfd_boolean
8396 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8397 struct bfd_link_info *info,
8398 struct elf_link_hash_entry *h,
8399 Elf_Internal_Sym *sym)
8401 bfd *dynobj;
8402 asection *sgot;
8403 struct mips_got_info *g;
8404 struct mips_elf_link_hash_table *htab;
8406 htab = mips_elf_hash_table (info);
8407 dynobj = elf_hash_table (info)->dynobj;
8409 if (h->plt.offset != (bfd_vma) -1)
8411 bfd_byte *loc;
8412 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8413 Elf_Internal_Rela rel;
8414 static const bfd_vma *plt_entry;
8416 BFD_ASSERT (h->dynindx != -1);
8417 BFD_ASSERT (htab->splt != NULL);
8418 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8420 /* Calculate the address of the .plt entry. */
8421 plt_address = (htab->splt->output_section->vma
8422 + htab->splt->output_offset
8423 + h->plt.offset);
8425 /* Calculate the index of the entry. */
8426 plt_index = ((h->plt.offset - htab->plt_header_size)
8427 / htab->plt_entry_size);
8429 /* Calculate the address of the .got.plt entry. */
8430 got_address = (htab->sgotplt->output_section->vma
8431 + htab->sgotplt->output_offset
8432 + plt_index * 4);
8434 /* Calculate the offset of the .got.plt entry from
8435 _GLOBAL_OFFSET_TABLE_. */
8436 got_offset = mips_elf_gotplt_index (info, h);
8438 /* Calculate the offset for the branch at the start of the PLT
8439 entry. The branch jumps to the beginning of .plt. */
8440 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8442 /* Fill in the initial value of the .got.plt entry. */
8443 bfd_put_32 (output_bfd, plt_address,
8444 htab->sgotplt->contents + plt_index * 4);
8446 /* Find out where the .plt entry should go. */
8447 loc = htab->splt->contents + h->plt.offset;
8449 if (info->shared)
8451 plt_entry = mips_vxworks_shared_plt_entry;
8452 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8453 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8455 else
8457 bfd_vma got_address_high, got_address_low;
8459 plt_entry = mips_vxworks_exec_plt_entry;
8460 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8461 got_address_low = got_address & 0xffff;
8463 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8464 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8465 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8466 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8467 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8468 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8469 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8470 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8472 loc = (htab->srelplt2->contents
8473 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8475 /* Emit a relocation for the .got.plt entry. */
8476 rel.r_offset = got_address;
8477 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8478 rel.r_addend = h->plt.offset;
8479 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8481 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8482 loc += sizeof (Elf32_External_Rela);
8483 rel.r_offset = plt_address + 8;
8484 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8485 rel.r_addend = got_offset;
8486 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8488 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8489 loc += sizeof (Elf32_External_Rela);
8490 rel.r_offset += 4;
8491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8495 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8496 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8497 rel.r_offset = got_address;
8498 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8499 rel.r_addend = 0;
8500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8502 if (!h->def_regular)
8503 sym->st_shndx = SHN_UNDEF;
8506 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8508 sgot = mips_elf_got_section (dynobj, FALSE);
8509 BFD_ASSERT (sgot != NULL);
8510 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8511 g = mips_elf_section_data (sgot)->u.got_info;
8512 BFD_ASSERT (g != NULL);
8514 /* See if this symbol has an entry in the GOT. */
8515 if (g->global_gotsym != NULL
8516 && h->dynindx >= g->global_gotsym->dynindx)
8518 bfd_vma offset;
8519 Elf_Internal_Rela outrel;
8520 bfd_byte *loc;
8521 asection *s;
8523 /* Install the symbol value in the GOT. */
8524 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8525 R_MIPS_GOT16, info);
8526 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8528 /* Add a dynamic relocation for it. */
8529 s = mips_elf_rel_dyn_section (info, FALSE);
8530 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8531 outrel.r_offset = (sgot->output_section->vma
8532 + sgot->output_offset
8533 + offset);
8534 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8535 outrel.r_addend = 0;
8536 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8539 /* Emit a copy reloc, if needed. */
8540 if (h->needs_copy)
8542 Elf_Internal_Rela rel;
8544 BFD_ASSERT (h->dynindx != -1);
8546 rel.r_offset = (h->root.u.def.section->output_section->vma
8547 + h->root.u.def.section->output_offset
8548 + h->root.u.def.value);
8549 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8550 rel.r_addend = 0;
8551 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8552 htab->srelbss->contents
8553 + (htab->srelbss->reloc_count
8554 * sizeof (Elf32_External_Rela)));
8555 ++htab->srelbss->reloc_count;
8558 /* If this is a mips16 symbol, force the value to be even. */
8559 if (sym->st_other == STO_MIPS16)
8560 sym->st_value &= ~1;
8562 return TRUE;
8565 /* Install the PLT header for a VxWorks executable and finalize the
8566 contents of .rela.plt.unloaded. */
8568 static void
8569 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8571 Elf_Internal_Rela rela;
8572 bfd_byte *loc;
8573 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8574 static const bfd_vma *plt_entry;
8575 struct mips_elf_link_hash_table *htab;
8577 htab = mips_elf_hash_table (info);
8578 plt_entry = mips_vxworks_exec_plt0_entry;
8580 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8581 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8582 + htab->root.hgot->root.u.def.section->output_offset
8583 + htab->root.hgot->root.u.def.value);
8585 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8586 got_value_low = got_value & 0xffff;
8588 /* Calculate the address of the PLT header. */
8589 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8591 /* Install the PLT header. */
8592 loc = htab->splt->contents;
8593 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8594 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8595 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8596 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8597 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8598 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8600 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8601 loc = htab->srelplt2->contents;
8602 rela.r_offset = plt_address;
8603 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8604 rela.r_addend = 0;
8605 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8606 loc += sizeof (Elf32_External_Rela);
8608 /* Output the relocation for the following addiu of
8609 %lo(_GLOBAL_OFFSET_TABLE_). */
8610 rela.r_offset += 4;
8611 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8612 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8613 loc += sizeof (Elf32_External_Rela);
8615 /* Fix up the remaining relocations. They may have the wrong
8616 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8617 in which symbols were output. */
8618 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8620 Elf_Internal_Rela rel;
8622 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8623 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8624 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8625 loc += sizeof (Elf32_External_Rela);
8627 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8628 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8629 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8630 loc += sizeof (Elf32_External_Rela);
8632 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8633 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8634 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8635 loc += sizeof (Elf32_External_Rela);
8639 /* Install the PLT header for a VxWorks shared library. */
8641 static void
8642 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8644 unsigned int i;
8645 struct mips_elf_link_hash_table *htab;
8647 htab = mips_elf_hash_table (info);
8649 /* We just need to copy the entry byte-by-byte. */
8650 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8651 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8652 htab->splt->contents + i * 4);
8655 /* Finish up the dynamic sections. */
8657 bfd_boolean
8658 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8659 struct bfd_link_info *info)
8661 bfd *dynobj;
8662 asection *sdyn;
8663 asection *sgot;
8664 struct mips_got_info *gg, *g;
8665 struct mips_elf_link_hash_table *htab;
8667 htab = mips_elf_hash_table (info);
8668 dynobj = elf_hash_table (info)->dynobj;
8670 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8672 sgot = mips_elf_got_section (dynobj, FALSE);
8673 if (sgot == NULL)
8674 gg = g = NULL;
8675 else
8677 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8678 gg = mips_elf_section_data (sgot)->u.got_info;
8679 BFD_ASSERT (gg != NULL);
8680 g = mips_elf_got_for_ibfd (gg, output_bfd);
8681 BFD_ASSERT (g != NULL);
8684 if (elf_hash_table (info)->dynamic_sections_created)
8686 bfd_byte *b;
8687 int dyn_to_skip = 0, dyn_skipped = 0;
8689 BFD_ASSERT (sdyn != NULL);
8690 BFD_ASSERT (g != NULL);
8692 for (b = sdyn->contents;
8693 b < sdyn->contents + sdyn->size;
8694 b += MIPS_ELF_DYN_SIZE (dynobj))
8696 Elf_Internal_Dyn dyn;
8697 const char *name;
8698 size_t elemsize;
8699 asection *s;
8700 bfd_boolean swap_out_p;
8702 /* Read in the current dynamic entry. */
8703 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8705 /* Assume that we're going to modify it and write it out. */
8706 swap_out_p = TRUE;
8708 switch (dyn.d_tag)
8710 case DT_RELENT:
8711 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8712 break;
8714 case DT_RELAENT:
8715 BFD_ASSERT (htab->is_vxworks);
8716 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8717 break;
8719 case DT_STRSZ:
8720 /* Rewrite DT_STRSZ. */
8721 dyn.d_un.d_val =
8722 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8723 break;
8725 case DT_PLTGOT:
8726 name = ".got";
8727 if (htab->is_vxworks)
8729 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8730 of the ".got" section in DYNOBJ. */
8731 s = bfd_get_section_by_name (dynobj, name);
8732 BFD_ASSERT (s != NULL);
8733 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8735 else
8737 s = bfd_get_section_by_name (output_bfd, name);
8738 BFD_ASSERT (s != NULL);
8739 dyn.d_un.d_ptr = s->vma;
8741 break;
8743 case DT_MIPS_RLD_VERSION:
8744 dyn.d_un.d_val = 1; /* XXX */
8745 break;
8747 case DT_MIPS_FLAGS:
8748 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8749 break;
8751 case DT_MIPS_TIME_STAMP:
8753 time_t t;
8754 time (&t);
8755 dyn.d_un.d_val = t;
8757 break;
8759 case DT_MIPS_ICHECKSUM:
8760 /* XXX FIXME: */
8761 swap_out_p = FALSE;
8762 break;
8764 case DT_MIPS_IVERSION:
8765 /* XXX FIXME: */
8766 swap_out_p = FALSE;
8767 break;
8769 case DT_MIPS_BASE_ADDRESS:
8770 s = output_bfd->sections;
8771 BFD_ASSERT (s != NULL);
8772 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8773 break;
8775 case DT_MIPS_LOCAL_GOTNO:
8776 dyn.d_un.d_val = g->local_gotno;
8777 break;
8779 case DT_MIPS_UNREFEXTNO:
8780 /* The index into the dynamic symbol table which is the
8781 entry of the first external symbol that is not
8782 referenced within the same object. */
8783 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8784 break;
8786 case DT_MIPS_GOTSYM:
8787 if (gg->global_gotsym)
8789 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8790 break;
8792 /* In case if we don't have global got symbols we default
8793 to setting DT_MIPS_GOTSYM to the same value as
8794 DT_MIPS_SYMTABNO, so we just fall through. */
8796 case DT_MIPS_SYMTABNO:
8797 name = ".dynsym";
8798 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8799 s = bfd_get_section_by_name (output_bfd, name);
8800 BFD_ASSERT (s != NULL);
8802 dyn.d_un.d_val = s->size / elemsize;
8803 break;
8805 case DT_MIPS_HIPAGENO:
8806 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8807 break;
8809 case DT_MIPS_RLD_MAP:
8810 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8811 break;
8813 case DT_MIPS_OPTIONS:
8814 s = (bfd_get_section_by_name
8815 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8816 dyn.d_un.d_ptr = s->vma;
8817 break;
8819 case DT_RELASZ:
8820 BFD_ASSERT (htab->is_vxworks);
8821 /* The count does not include the JUMP_SLOT relocations. */
8822 if (htab->srelplt)
8823 dyn.d_un.d_val -= htab->srelplt->size;
8824 break;
8826 case DT_PLTREL:
8827 BFD_ASSERT (htab->is_vxworks);
8828 dyn.d_un.d_val = DT_RELA;
8829 break;
8831 case DT_PLTRELSZ:
8832 BFD_ASSERT (htab->is_vxworks);
8833 dyn.d_un.d_val = htab->srelplt->size;
8834 break;
8836 case DT_JMPREL:
8837 BFD_ASSERT (htab->is_vxworks);
8838 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8839 + htab->srelplt->output_offset);
8840 break;
8842 case DT_TEXTREL:
8843 /* If we didn't need any text relocations after all, delete
8844 the dynamic tag. */
8845 if (!(info->flags & DF_TEXTREL))
8847 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8848 swap_out_p = FALSE;
8850 break;
8852 case DT_FLAGS:
8853 /* If we didn't need any text relocations after all, clear
8854 DF_TEXTREL from DT_FLAGS. */
8855 if (!(info->flags & DF_TEXTREL))
8856 dyn.d_un.d_val &= ~DF_TEXTREL;
8857 else
8858 swap_out_p = FALSE;
8859 break;
8861 default:
8862 swap_out_p = FALSE;
8863 break;
8866 if (swap_out_p || dyn_skipped)
8867 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8868 (dynobj, &dyn, b - dyn_skipped);
8870 if (dyn_to_skip)
8872 dyn_skipped += dyn_to_skip;
8873 dyn_to_skip = 0;
8877 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8878 if (dyn_skipped > 0)
8879 memset (b - dyn_skipped, 0, dyn_skipped);
8882 if (sgot != NULL && sgot->size > 0)
8884 if (htab->is_vxworks)
8886 /* The first entry of the global offset table points to the
8887 ".dynamic" section. The second is initialized by the
8888 loader and contains the shared library identifier.
8889 The third is also initialized by the loader and points
8890 to the lazy resolution stub. */
8891 MIPS_ELF_PUT_WORD (output_bfd,
8892 sdyn->output_offset + sdyn->output_section->vma,
8893 sgot->contents);
8894 MIPS_ELF_PUT_WORD (output_bfd, 0,
8895 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8896 MIPS_ELF_PUT_WORD (output_bfd, 0,
8897 sgot->contents
8898 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8900 else
8902 /* The first entry of the global offset table will be filled at
8903 runtime. The second entry will be used by some runtime loaders.
8904 This isn't the case of IRIX rld. */
8905 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8906 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8907 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8910 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8911 = MIPS_ELF_GOT_SIZE (output_bfd);
8914 /* Generate dynamic relocations for the non-primary gots. */
8915 if (gg != NULL && gg->next)
8917 Elf_Internal_Rela rel[3];
8918 bfd_vma addend = 0;
8920 memset (rel, 0, sizeof (rel));
8921 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8923 for (g = gg->next; g->next != gg; g = g->next)
8925 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8926 + g->next->tls_gotno;
8928 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8929 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8930 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8931 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8933 if (! info->shared)
8934 continue;
8936 while (index < g->assigned_gotno)
8938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8939 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8940 if (!(mips_elf_create_dynamic_relocation
8941 (output_bfd, info, rel, NULL,
8942 bfd_abs_section_ptr,
8943 0, &addend, sgot)))
8944 return FALSE;
8945 BFD_ASSERT (addend == 0);
8950 /* The generation of dynamic relocations for the non-primary gots
8951 adds more dynamic relocations. We cannot count them until
8952 here. */
8954 if (elf_hash_table (info)->dynamic_sections_created)
8956 bfd_byte *b;
8957 bfd_boolean swap_out_p;
8959 BFD_ASSERT (sdyn != NULL);
8961 for (b = sdyn->contents;
8962 b < sdyn->contents + sdyn->size;
8963 b += MIPS_ELF_DYN_SIZE (dynobj))
8965 Elf_Internal_Dyn dyn;
8966 asection *s;
8968 /* Read in the current dynamic entry. */
8969 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8971 /* Assume that we're going to modify it and write it out. */
8972 swap_out_p = TRUE;
8974 switch (dyn.d_tag)
8976 case DT_RELSZ:
8977 /* Reduce DT_RELSZ to account for any relocations we
8978 decided not to make. This is for the n64 irix rld,
8979 which doesn't seem to apply any relocations if there
8980 are trailing null entries. */
8981 s = mips_elf_rel_dyn_section (info, FALSE);
8982 dyn.d_un.d_val = (s->reloc_count
8983 * (ABI_64_P (output_bfd)
8984 ? sizeof (Elf64_Mips_External_Rel)
8985 : sizeof (Elf32_External_Rel)));
8986 /* Adjust the section size too. Tools like the prelinker
8987 can reasonably expect the values to the same. */
8988 elf_section_data (s->output_section)->this_hdr.sh_size
8989 = dyn.d_un.d_val;
8990 break;
8992 default:
8993 swap_out_p = FALSE;
8994 break;
8997 if (swap_out_p)
8998 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8999 (dynobj, &dyn, b);
9004 asection *s;
9005 Elf32_compact_rel cpt;
9007 if (SGI_COMPAT (output_bfd))
9009 /* Write .compact_rel section out. */
9010 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9011 if (s != NULL)
9013 cpt.id1 = 1;
9014 cpt.num = s->reloc_count;
9015 cpt.id2 = 2;
9016 cpt.offset = (s->output_section->filepos
9017 + sizeof (Elf32_External_compact_rel));
9018 cpt.reserved0 = 0;
9019 cpt.reserved1 = 0;
9020 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9021 ((Elf32_External_compact_rel *)
9022 s->contents));
9024 /* Clean up a dummy stub function entry in .text. */
9025 s = bfd_get_section_by_name (dynobj,
9026 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9027 if (s != NULL)
9029 file_ptr dummy_offset;
9031 BFD_ASSERT (s->size >= htab->function_stub_size);
9032 dummy_offset = s->size - htab->function_stub_size;
9033 memset (s->contents + dummy_offset, 0,
9034 htab->function_stub_size);
9039 /* The psABI says that the dynamic relocations must be sorted in
9040 increasing order of r_symndx. The VxWorks EABI doesn't require
9041 this, and because the code below handles REL rather than RELA
9042 relocations, using it for VxWorks would be outright harmful. */
9043 if (!htab->is_vxworks)
9045 s = mips_elf_rel_dyn_section (info, FALSE);
9046 if (s != NULL
9047 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9049 reldyn_sorting_bfd = output_bfd;
9051 if (ABI_64_P (output_bfd))
9052 qsort ((Elf64_External_Rel *) s->contents + 1,
9053 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9054 sort_dynamic_relocs_64);
9055 else
9056 qsort ((Elf32_External_Rel *) s->contents + 1,
9057 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9058 sort_dynamic_relocs);
9063 if (htab->is_vxworks && htab->splt->size > 0)
9065 if (info->shared)
9066 mips_vxworks_finish_shared_plt (output_bfd, info);
9067 else
9068 mips_vxworks_finish_exec_plt (output_bfd, info);
9070 return TRUE;
9074 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9076 static void
9077 mips_set_isa_flags (bfd *abfd)
9079 flagword val;
9081 switch (bfd_get_mach (abfd))
9083 default:
9084 case bfd_mach_mips3000:
9085 val = E_MIPS_ARCH_1;
9086 break;
9088 case bfd_mach_mips3900:
9089 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9090 break;
9092 case bfd_mach_mips6000:
9093 val = E_MIPS_ARCH_2;
9094 break;
9096 case bfd_mach_mips4000:
9097 case bfd_mach_mips4300:
9098 case bfd_mach_mips4400:
9099 case bfd_mach_mips4600:
9100 val = E_MIPS_ARCH_3;
9101 break;
9103 case bfd_mach_mips4010:
9104 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9105 break;
9107 case bfd_mach_mips4100:
9108 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9109 break;
9111 case bfd_mach_mips4111:
9112 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9113 break;
9115 case bfd_mach_mips4120:
9116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9117 break;
9119 case bfd_mach_mips4650:
9120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9121 break;
9123 case bfd_mach_mips5400:
9124 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9125 break;
9127 case bfd_mach_mips5500:
9128 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9129 break;
9131 case bfd_mach_mips9000:
9132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9133 break;
9135 case bfd_mach_mips5000:
9136 case bfd_mach_mips7000:
9137 case bfd_mach_mips8000:
9138 case bfd_mach_mips10000:
9139 case bfd_mach_mips12000:
9140 val = E_MIPS_ARCH_4;
9141 break;
9143 case bfd_mach_mips5:
9144 val = E_MIPS_ARCH_5;
9145 break;
9147 case bfd_mach_mips_sb1:
9148 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9149 break;
9151 case bfd_mach_mipsisa32:
9152 val = E_MIPS_ARCH_32;
9153 break;
9155 case bfd_mach_mipsisa64:
9156 val = E_MIPS_ARCH_64;
9157 break;
9159 case bfd_mach_mipsisa32r2:
9160 val = E_MIPS_ARCH_32R2;
9161 break;
9163 case bfd_mach_mipsisa64r2:
9164 val = E_MIPS_ARCH_64R2;
9165 break;
9167 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9168 elf_elfheader (abfd)->e_flags |= val;
9173 /* The final processing done just before writing out a MIPS ELF object
9174 file. This gets the MIPS architecture right based on the machine
9175 number. This is used by both the 32-bit and the 64-bit ABI. */
9177 void
9178 _bfd_mips_elf_final_write_processing (bfd *abfd,
9179 bfd_boolean linker ATTRIBUTE_UNUSED)
9181 unsigned int i;
9182 Elf_Internal_Shdr **hdrpp;
9183 const char *name;
9184 asection *sec;
9186 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9187 is nonzero. This is for compatibility with old objects, which used
9188 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9189 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9190 mips_set_isa_flags (abfd);
9192 /* Set the sh_info field for .gptab sections and other appropriate
9193 info for each special section. */
9194 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9195 i < elf_numsections (abfd);
9196 i++, hdrpp++)
9198 switch ((*hdrpp)->sh_type)
9200 case SHT_MIPS_MSYM:
9201 case SHT_MIPS_LIBLIST:
9202 sec = bfd_get_section_by_name (abfd, ".dynstr");
9203 if (sec != NULL)
9204 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9205 break;
9207 case SHT_MIPS_GPTAB:
9208 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9209 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9210 BFD_ASSERT (name != NULL
9211 && CONST_STRNEQ (name, ".gptab."));
9212 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9213 BFD_ASSERT (sec != NULL);
9214 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9215 break;
9217 case SHT_MIPS_CONTENT:
9218 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9219 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9220 BFD_ASSERT (name != NULL
9221 && CONST_STRNEQ (name, ".MIPS.content"));
9222 sec = bfd_get_section_by_name (abfd,
9223 name + sizeof ".MIPS.content" - 1);
9224 BFD_ASSERT (sec != NULL);
9225 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9226 break;
9228 case SHT_MIPS_SYMBOL_LIB:
9229 sec = bfd_get_section_by_name (abfd, ".dynsym");
9230 if (sec != NULL)
9231 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9232 sec = bfd_get_section_by_name (abfd, ".liblist");
9233 if (sec != NULL)
9234 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9235 break;
9237 case SHT_MIPS_EVENTS:
9238 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9239 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9240 BFD_ASSERT (name != NULL);
9241 if (CONST_STRNEQ (name, ".MIPS.events"))
9242 sec = bfd_get_section_by_name (abfd,
9243 name + sizeof ".MIPS.events" - 1);
9244 else
9246 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9247 sec = bfd_get_section_by_name (abfd,
9248 (name
9249 + sizeof ".MIPS.post_rel" - 1));
9251 BFD_ASSERT (sec != NULL);
9252 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9253 break;
9259 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9260 segments. */
9263 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9264 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9266 asection *s;
9267 int ret = 0;
9269 /* See if we need a PT_MIPS_REGINFO segment. */
9270 s = bfd_get_section_by_name (abfd, ".reginfo");
9271 if (s && (s->flags & SEC_LOAD))
9272 ++ret;
9274 /* See if we need a PT_MIPS_OPTIONS segment. */
9275 if (IRIX_COMPAT (abfd) == ict_irix6
9276 && bfd_get_section_by_name (abfd,
9277 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9278 ++ret;
9280 /* See if we need a PT_MIPS_RTPROC segment. */
9281 if (IRIX_COMPAT (abfd) == ict_irix5
9282 && bfd_get_section_by_name (abfd, ".dynamic")
9283 && bfd_get_section_by_name (abfd, ".mdebug"))
9284 ++ret;
9286 /* Allocate a PT_NULL header in dynamic objects. See
9287 _bfd_mips_elf_modify_segment_map for details. */
9288 if (!SGI_COMPAT (abfd)
9289 && bfd_get_section_by_name (abfd, ".dynamic"))
9290 ++ret;
9292 return ret;
9295 /* Modify the segment map for an IRIX5 executable. */
9297 bfd_boolean
9298 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9299 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9301 asection *s;
9302 struct elf_segment_map *m, **pm;
9303 bfd_size_type amt;
9305 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9306 segment. */
9307 s = bfd_get_section_by_name (abfd, ".reginfo");
9308 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9310 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9311 if (m->p_type == PT_MIPS_REGINFO)
9312 break;
9313 if (m == NULL)
9315 amt = sizeof *m;
9316 m = bfd_zalloc (abfd, amt);
9317 if (m == NULL)
9318 return FALSE;
9320 m->p_type = PT_MIPS_REGINFO;
9321 m->count = 1;
9322 m->sections[0] = s;
9324 /* We want to put it after the PHDR and INTERP segments. */
9325 pm = &elf_tdata (abfd)->segment_map;
9326 while (*pm != NULL
9327 && ((*pm)->p_type == PT_PHDR
9328 || (*pm)->p_type == PT_INTERP))
9329 pm = &(*pm)->next;
9331 m->next = *pm;
9332 *pm = m;
9336 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9337 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9338 PT_MIPS_OPTIONS segment immediately following the program header
9339 table. */
9340 if (NEWABI_P (abfd)
9341 /* On non-IRIX6 new abi, we'll have already created a segment
9342 for this section, so don't create another. I'm not sure this
9343 is not also the case for IRIX 6, but I can't test it right
9344 now. */
9345 && IRIX_COMPAT (abfd) == ict_irix6)
9347 for (s = abfd->sections; s; s = s->next)
9348 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9349 break;
9351 if (s)
9353 struct elf_segment_map *options_segment;
9355 pm = &elf_tdata (abfd)->segment_map;
9356 while (*pm != NULL
9357 && ((*pm)->p_type == PT_PHDR
9358 || (*pm)->p_type == PT_INTERP))
9359 pm = &(*pm)->next;
9361 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9363 amt = sizeof (struct elf_segment_map);
9364 options_segment = bfd_zalloc (abfd, amt);
9365 options_segment->next = *pm;
9366 options_segment->p_type = PT_MIPS_OPTIONS;
9367 options_segment->p_flags = PF_R;
9368 options_segment->p_flags_valid = TRUE;
9369 options_segment->count = 1;
9370 options_segment->sections[0] = s;
9371 *pm = options_segment;
9375 else
9377 if (IRIX_COMPAT (abfd) == ict_irix5)
9379 /* If there are .dynamic and .mdebug sections, we make a room
9380 for the RTPROC header. FIXME: Rewrite without section names. */
9381 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9382 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9383 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9385 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9386 if (m->p_type == PT_MIPS_RTPROC)
9387 break;
9388 if (m == NULL)
9390 amt = sizeof *m;
9391 m = bfd_zalloc (abfd, amt);
9392 if (m == NULL)
9393 return FALSE;
9395 m->p_type = PT_MIPS_RTPROC;
9397 s = bfd_get_section_by_name (abfd, ".rtproc");
9398 if (s == NULL)
9400 m->count = 0;
9401 m->p_flags = 0;
9402 m->p_flags_valid = 1;
9404 else
9406 m->count = 1;
9407 m->sections[0] = s;
9410 /* We want to put it after the DYNAMIC segment. */
9411 pm = &elf_tdata (abfd)->segment_map;
9412 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9413 pm = &(*pm)->next;
9414 if (*pm != NULL)
9415 pm = &(*pm)->next;
9417 m->next = *pm;
9418 *pm = m;
9422 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9423 .dynstr, .dynsym, and .hash sections, and everything in
9424 between. */
9425 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9426 pm = &(*pm)->next)
9427 if ((*pm)->p_type == PT_DYNAMIC)
9428 break;
9429 m = *pm;
9430 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9432 /* For a normal mips executable the permissions for the PT_DYNAMIC
9433 segment are read, write and execute. We do that here since
9434 the code in elf.c sets only the read permission. This matters
9435 sometimes for the dynamic linker. */
9436 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9438 m->p_flags = PF_R | PF_W | PF_X;
9439 m->p_flags_valid = 1;
9442 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9443 glibc's dynamic linker has traditionally derived the number of
9444 tags from the p_filesz field, and sometimes allocates stack
9445 arrays of that size. An overly-big PT_DYNAMIC segment can
9446 be actively harmful in such cases. Making PT_DYNAMIC contain
9447 other sections can also make life hard for the prelinker,
9448 which might move one of the other sections to a different
9449 PT_LOAD segment. */
9450 if (SGI_COMPAT (abfd)
9451 && m != NULL
9452 && m->count == 1
9453 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9455 static const char *sec_names[] =
9457 ".dynamic", ".dynstr", ".dynsym", ".hash"
9459 bfd_vma low, high;
9460 unsigned int i, c;
9461 struct elf_segment_map *n;
9463 low = ~(bfd_vma) 0;
9464 high = 0;
9465 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9467 s = bfd_get_section_by_name (abfd, sec_names[i]);
9468 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9470 bfd_size_type sz;
9472 if (low > s->vma)
9473 low = s->vma;
9474 sz = s->size;
9475 if (high < s->vma + sz)
9476 high = s->vma + sz;
9480 c = 0;
9481 for (s = abfd->sections; s != NULL; s = s->next)
9482 if ((s->flags & SEC_LOAD) != 0
9483 && s->vma >= low
9484 && s->vma + s->size <= high)
9485 ++c;
9487 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9488 n = bfd_zalloc (abfd, amt);
9489 if (n == NULL)
9490 return FALSE;
9491 *n = *m;
9492 n->count = c;
9494 i = 0;
9495 for (s = abfd->sections; s != NULL; s = s->next)
9497 if ((s->flags & SEC_LOAD) != 0
9498 && s->vma >= low
9499 && s->vma + s->size <= high)
9501 n->sections[i] = s;
9502 ++i;
9506 *pm = n;
9510 /* Allocate a spare program header in dynamic objects so that tools
9511 like the prelinker can add an extra PT_LOAD entry.
9513 If the prelinker needs to make room for a new PT_LOAD entry, its
9514 standard procedure is to move the first (read-only) sections into
9515 the new (writable) segment. However, the MIPS ABI requires
9516 .dynamic to be in a read-only segment, and the section will often
9517 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9519 Although the prelinker could in principle move .dynamic to a
9520 writable segment, it seems better to allocate a spare program
9521 header instead, and avoid the need to move any sections.
9522 There is a long tradition of allocating spare dynamic tags,
9523 so allocating a spare program header seems like a natural
9524 extension. */
9525 if (!SGI_COMPAT (abfd)
9526 && bfd_get_section_by_name (abfd, ".dynamic"))
9528 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9529 if ((*pm)->p_type == PT_NULL)
9530 break;
9531 if (*pm == NULL)
9533 m = bfd_zalloc (abfd, sizeof (*m));
9534 if (m == NULL)
9535 return FALSE;
9537 m->p_type = PT_NULL;
9538 *pm = m;
9542 return TRUE;
9545 /* Return the section that should be marked against GC for a given
9546 relocation. */
9548 asection *
9549 _bfd_mips_elf_gc_mark_hook (asection *sec,
9550 struct bfd_link_info *info,
9551 Elf_Internal_Rela *rel,
9552 struct elf_link_hash_entry *h,
9553 Elf_Internal_Sym *sym)
9555 /* ??? Do mips16 stub sections need to be handled special? */
9557 if (h != NULL)
9558 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9560 case R_MIPS_GNU_VTINHERIT:
9561 case R_MIPS_GNU_VTENTRY:
9562 return NULL;
9565 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9568 /* Update the got entry reference counts for the section being removed. */
9570 bfd_boolean
9571 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9572 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9573 asection *sec ATTRIBUTE_UNUSED,
9574 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9576 #if 0
9577 Elf_Internal_Shdr *symtab_hdr;
9578 struct elf_link_hash_entry **sym_hashes;
9579 bfd_signed_vma *local_got_refcounts;
9580 const Elf_Internal_Rela *rel, *relend;
9581 unsigned long r_symndx;
9582 struct elf_link_hash_entry *h;
9584 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9585 sym_hashes = elf_sym_hashes (abfd);
9586 local_got_refcounts = elf_local_got_refcounts (abfd);
9588 relend = relocs + sec->reloc_count;
9589 for (rel = relocs; rel < relend; rel++)
9590 switch (ELF_R_TYPE (abfd, rel->r_info))
9592 case R_MIPS_GOT16:
9593 case R_MIPS_CALL16:
9594 case R_MIPS_CALL_HI16:
9595 case R_MIPS_CALL_LO16:
9596 case R_MIPS_GOT_HI16:
9597 case R_MIPS_GOT_LO16:
9598 case R_MIPS_GOT_DISP:
9599 case R_MIPS_GOT_PAGE:
9600 case R_MIPS_GOT_OFST:
9601 /* ??? It would seem that the existing MIPS code does no sort
9602 of reference counting or whatnot on its GOT and PLT entries,
9603 so it is not possible to garbage collect them at this time. */
9604 break;
9606 default:
9607 break;
9609 #endif
9611 return TRUE;
9614 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9615 hiding the old indirect symbol. Process additional relocation
9616 information. Also called for weakdefs, in which case we just let
9617 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9619 void
9620 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9621 struct elf_link_hash_entry *dir,
9622 struct elf_link_hash_entry *ind)
9624 struct mips_elf_link_hash_entry *dirmips, *indmips;
9626 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9628 if (ind->root.type != bfd_link_hash_indirect)
9629 return;
9631 dirmips = (struct mips_elf_link_hash_entry *) dir;
9632 indmips = (struct mips_elf_link_hash_entry *) ind;
9633 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9634 if (indmips->readonly_reloc)
9635 dirmips->readonly_reloc = TRUE;
9636 if (indmips->no_fn_stub)
9637 dirmips->no_fn_stub = TRUE;
9639 if (dirmips->tls_type == 0)
9640 dirmips->tls_type = indmips->tls_type;
9643 void
9644 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9645 struct elf_link_hash_entry *entry,
9646 bfd_boolean force_local)
9648 bfd *dynobj;
9649 asection *got;
9650 struct mips_got_info *g;
9651 struct mips_elf_link_hash_entry *h;
9653 h = (struct mips_elf_link_hash_entry *) entry;
9654 if (h->forced_local)
9655 return;
9656 h->forced_local = force_local;
9658 dynobj = elf_hash_table (info)->dynobj;
9659 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9660 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9661 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9663 if (g->next)
9665 struct mips_got_entry e;
9666 struct mips_got_info *gg = g;
9668 /* Since we're turning what used to be a global symbol into a
9669 local one, bump up the number of local entries of each GOT
9670 that had an entry for it. This will automatically decrease
9671 the number of global entries, since global_gotno is actually
9672 the upper limit of global entries. */
9673 e.abfd = dynobj;
9674 e.symndx = -1;
9675 e.d.h = h;
9676 e.tls_type = 0;
9678 for (g = g->next; g != gg; g = g->next)
9679 if (htab_find (g->got_entries, &e))
9681 BFD_ASSERT (g->global_gotno > 0);
9682 g->local_gotno++;
9683 g->global_gotno--;
9686 /* If this was a global symbol forced into the primary GOT, we
9687 no longer need an entry for it. We can't release the entry
9688 at this point, but we must at least stop counting it as one
9689 of the symbols that required a forced got entry. */
9690 if (h->root.got.offset == 2)
9692 BFD_ASSERT (gg->assigned_gotno > 0);
9693 gg->assigned_gotno--;
9696 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9697 /* If we haven't got through GOT allocation yet, just bump up the
9698 number of local entries, as this symbol won't be counted as
9699 global. */
9700 g->local_gotno++;
9701 else if (h->root.got.offset == 1)
9703 /* If we're past non-multi-GOT allocation and this symbol had
9704 been marked for a global got entry, give it a local entry
9705 instead. */
9706 BFD_ASSERT (g->global_gotno > 0);
9707 g->local_gotno++;
9708 g->global_gotno--;
9712 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9715 #define PDR_SIZE 32
9717 bfd_boolean
9718 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9719 struct bfd_link_info *info)
9721 asection *o;
9722 bfd_boolean ret = FALSE;
9723 unsigned char *tdata;
9724 size_t i, skip;
9726 o = bfd_get_section_by_name (abfd, ".pdr");
9727 if (! o)
9728 return FALSE;
9729 if (o->size == 0)
9730 return FALSE;
9731 if (o->size % PDR_SIZE != 0)
9732 return FALSE;
9733 if (o->output_section != NULL
9734 && bfd_is_abs_section (o->output_section))
9735 return FALSE;
9737 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9738 if (! tdata)
9739 return FALSE;
9741 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9742 info->keep_memory);
9743 if (!cookie->rels)
9745 free (tdata);
9746 return FALSE;
9749 cookie->rel = cookie->rels;
9750 cookie->relend = cookie->rels + o->reloc_count;
9752 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9754 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9756 tdata[i] = 1;
9757 skip ++;
9761 if (skip != 0)
9763 mips_elf_section_data (o)->u.tdata = tdata;
9764 o->size -= skip * PDR_SIZE;
9765 ret = TRUE;
9767 else
9768 free (tdata);
9770 if (! info->keep_memory)
9771 free (cookie->rels);
9773 return ret;
9776 bfd_boolean
9777 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9779 if (strcmp (sec->name, ".pdr") == 0)
9780 return TRUE;
9781 return FALSE;
9784 bfd_boolean
9785 _bfd_mips_elf_write_section (bfd *output_bfd,
9786 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9787 asection *sec, bfd_byte *contents)
9789 bfd_byte *to, *from, *end;
9790 int i;
9792 if (strcmp (sec->name, ".pdr") != 0)
9793 return FALSE;
9795 if (mips_elf_section_data (sec)->u.tdata == NULL)
9796 return FALSE;
9798 to = contents;
9799 end = contents + sec->size;
9800 for (from = contents, i = 0;
9801 from < end;
9802 from += PDR_SIZE, i++)
9804 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9805 continue;
9806 if (to != from)
9807 memcpy (to, from, PDR_SIZE);
9808 to += PDR_SIZE;
9810 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9811 sec->output_offset, sec->size);
9812 return TRUE;
9815 /* MIPS ELF uses a special find_nearest_line routine in order the
9816 handle the ECOFF debugging information. */
9818 struct mips_elf_find_line
9820 struct ecoff_debug_info d;
9821 struct ecoff_find_line i;
9824 bfd_boolean
9825 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9826 asymbol **symbols, bfd_vma offset,
9827 const char **filename_ptr,
9828 const char **functionname_ptr,
9829 unsigned int *line_ptr)
9831 asection *msec;
9833 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9834 filename_ptr, functionname_ptr,
9835 line_ptr))
9836 return TRUE;
9838 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9839 filename_ptr, functionname_ptr,
9840 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9841 &elf_tdata (abfd)->dwarf2_find_line_info))
9842 return TRUE;
9844 msec = bfd_get_section_by_name (abfd, ".mdebug");
9845 if (msec != NULL)
9847 flagword origflags;
9848 struct mips_elf_find_line *fi;
9849 const struct ecoff_debug_swap * const swap =
9850 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9852 /* If we are called during a link, mips_elf_final_link may have
9853 cleared the SEC_HAS_CONTENTS field. We force it back on here
9854 if appropriate (which it normally will be). */
9855 origflags = msec->flags;
9856 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9857 msec->flags |= SEC_HAS_CONTENTS;
9859 fi = elf_tdata (abfd)->find_line_info;
9860 if (fi == NULL)
9862 bfd_size_type external_fdr_size;
9863 char *fraw_src;
9864 char *fraw_end;
9865 struct fdr *fdr_ptr;
9866 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9868 fi = bfd_zalloc (abfd, amt);
9869 if (fi == NULL)
9871 msec->flags = origflags;
9872 return FALSE;
9875 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9877 msec->flags = origflags;
9878 return FALSE;
9881 /* Swap in the FDR information. */
9882 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9883 fi->d.fdr = bfd_alloc (abfd, amt);
9884 if (fi->d.fdr == NULL)
9886 msec->flags = origflags;
9887 return FALSE;
9889 external_fdr_size = swap->external_fdr_size;
9890 fdr_ptr = fi->d.fdr;
9891 fraw_src = (char *) fi->d.external_fdr;
9892 fraw_end = (fraw_src
9893 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9894 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9895 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9897 elf_tdata (abfd)->find_line_info = fi;
9899 /* Note that we don't bother to ever free this information.
9900 find_nearest_line is either called all the time, as in
9901 objdump -l, so the information should be saved, or it is
9902 rarely called, as in ld error messages, so the memory
9903 wasted is unimportant. Still, it would probably be a
9904 good idea for free_cached_info to throw it away. */
9907 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9908 &fi->i, filename_ptr, functionname_ptr,
9909 line_ptr))
9911 msec->flags = origflags;
9912 return TRUE;
9915 msec->flags = origflags;
9918 /* Fall back on the generic ELF find_nearest_line routine. */
9920 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9921 filename_ptr, functionname_ptr,
9922 line_ptr);
9925 bfd_boolean
9926 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9927 const char **filename_ptr,
9928 const char **functionname_ptr,
9929 unsigned int *line_ptr)
9931 bfd_boolean found;
9932 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9933 functionname_ptr, line_ptr,
9934 & elf_tdata (abfd)->dwarf2_find_line_info);
9935 return found;
9939 /* When are writing out the .options or .MIPS.options section,
9940 remember the bytes we are writing out, so that we can install the
9941 GP value in the section_processing routine. */
9943 bfd_boolean
9944 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9945 const void *location,
9946 file_ptr offset, bfd_size_type count)
9948 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9950 bfd_byte *c;
9952 if (elf_section_data (section) == NULL)
9954 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9955 section->used_by_bfd = bfd_zalloc (abfd, amt);
9956 if (elf_section_data (section) == NULL)
9957 return FALSE;
9959 c = mips_elf_section_data (section)->u.tdata;
9960 if (c == NULL)
9962 c = bfd_zalloc (abfd, section->size);
9963 if (c == NULL)
9964 return FALSE;
9965 mips_elf_section_data (section)->u.tdata = c;
9968 memcpy (c + offset, location, count);
9971 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9972 count);
9975 /* This is almost identical to bfd_generic_get_... except that some
9976 MIPS relocations need to be handled specially. Sigh. */
9978 bfd_byte *
9979 _bfd_elf_mips_get_relocated_section_contents
9980 (bfd *abfd,
9981 struct bfd_link_info *link_info,
9982 struct bfd_link_order *link_order,
9983 bfd_byte *data,
9984 bfd_boolean relocatable,
9985 asymbol **symbols)
9987 /* Get enough memory to hold the stuff */
9988 bfd *input_bfd = link_order->u.indirect.section->owner;
9989 asection *input_section = link_order->u.indirect.section;
9990 bfd_size_type sz;
9992 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9993 arelent **reloc_vector = NULL;
9994 long reloc_count;
9996 if (reloc_size < 0)
9997 goto error_return;
9999 reloc_vector = bfd_malloc (reloc_size);
10000 if (reloc_vector == NULL && reloc_size != 0)
10001 goto error_return;
10003 /* read in the section */
10004 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10005 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10006 goto error_return;
10008 reloc_count = bfd_canonicalize_reloc (input_bfd,
10009 input_section,
10010 reloc_vector,
10011 symbols);
10012 if (reloc_count < 0)
10013 goto error_return;
10015 if (reloc_count > 0)
10017 arelent **parent;
10018 /* for mips */
10019 int gp_found;
10020 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10023 struct bfd_hash_entry *h;
10024 struct bfd_link_hash_entry *lh;
10025 /* Skip all this stuff if we aren't mixing formats. */
10026 if (abfd && input_bfd
10027 && abfd->xvec == input_bfd->xvec)
10028 lh = 0;
10029 else
10031 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10032 lh = (struct bfd_link_hash_entry *) h;
10034 lookup:
10035 if (lh)
10037 switch (lh->type)
10039 case bfd_link_hash_undefined:
10040 case bfd_link_hash_undefweak:
10041 case bfd_link_hash_common:
10042 gp_found = 0;
10043 break;
10044 case bfd_link_hash_defined:
10045 case bfd_link_hash_defweak:
10046 gp_found = 1;
10047 gp = lh->u.def.value;
10048 break;
10049 case bfd_link_hash_indirect:
10050 case bfd_link_hash_warning:
10051 lh = lh->u.i.link;
10052 /* @@FIXME ignoring warning for now */
10053 goto lookup;
10054 case bfd_link_hash_new:
10055 default:
10056 abort ();
10059 else
10060 gp_found = 0;
10062 /* end mips */
10063 for (parent = reloc_vector; *parent != NULL; parent++)
10065 char *error_message = NULL;
10066 bfd_reloc_status_type r;
10068 /* Specific to MIPS: Deal with relocation types that require
10069 knowing the gp of the output bfd. */
10070 asymbol *sym = *(*parent)->sym_ptr_ptr;
10072 /* If we've managed to find the gp and have a special
10073 function for the relocation then go ahead, else default
10074 to the generic handling. */
10075 if (gp_found
10076 && (*parent)->howto->special_function
10077 == _bfd_mips_elf32_gprel16_reloc)
10078 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10079 input_section, relocatable,
10080 data, gp);
10081 else
10082 r = bfd_perform_relocation (input_bfd, *parent, data,
10083 input_section,
10084 relocatable ? abfd : NULL,
10085 &error_message);
10087 if (relocatable)
10089 asection *os = input_section->output_section;
10091 /* A partial link, so keep the relocs */
10092 os->orelocation[os->reloc_count] = *parent;
10093 os->reloc_count++;
10096 if (r != bfd_reloc_ok)
10098 switch (r)
10100 case bfd_reloc_undefined:
10101 if (!((*link_info->callbacks->undefined_symbol)
10102 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10103 input_bfd, input_section, (*parent)->address, TRUE)))
10104 goto error_return;
10105 break;
10106 case bfd_reloc_dangerous:
10107 BFD_ASSERT (error_message != NULL);
10108 if (!((*link_info->callbacks->reloc_dangerous)
10109 (link_info, error_message, input_bfd, input_section,
10110 (*parent)->address)))
10111 goto error_return;
10112 break;
10113 case bfd_reloc_overflow:
10114 if (!((*link_info->callbacks->reloc_overflow)
10115 (link_info, NULL,
10116 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10117 (*parent)->howto->name, (*parent)->addend,
10118 input_bfd, input_section, (*parent)->address)))
10119 goto error_return;
10120 break;
10121 case bfd_reloc_outofrange:
10122 default:
10123 abort ();
10124 break;
10130 if (reloc_vector != NULL)
10131 free (reloc_vector);
10132 return data;
10134 error_return:
10135 if (reloc_vector != NULL)
10136 free (reloc_vector);
10137 return NULL;
10140 /* Create a MIPS ELF linker hash table. */
10142 struct bfd_link_hash_table *
10143 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10145 struct mips_elf_link_hash_table *ret;
10146 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10148 ret = bfd_malloc (amt);
10149 if (ret == NULL)
10150 return NULL;
10152 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10153 mips_elf_link_hash_newfunc,
10154 sizeof (struct mips_elf_link_hash_entry)))
10156 free (ret);
10157 return NULL;
10160 #if 0
10161 /* We no longer use this. */
10162 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10163 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10164 #endif
10165 ret->procedure_count = 0;
10166 ret->compact_rel_size = 0;
10167 ret->use_rld_obj_head = FALSE;
10168 ret->rld_value = 0;
10169 ret->mips16_stubs_seen = FALSE;
10170 ret->is_vxworks = FALSE;
10171 ret->srelbss = NULL;
10172 ret->sdynbss = NULL;
10173 ret->srelplt = NULL;
10174 ret->srelplt2 = NULL;
10175 ret->sgotplt = NULL;
10176 ret->splt = NULL;
10177 ret->plt_header_size = 0;
10178 ret->plt_entry_size = 0;
10179 ret->function_stub_size = 0;
10181 return &ret->root.root;
10184 /* Likewise, but indicate that the target is VxWorks. */
10186 struct bfd_link_hash_table *
10187 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10189 struct bfd_link_hash_table *ret;
10191 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10192 if (ret)
10194 struct mips_elf_link_hash_table *htab;
10196 htab = (struct mips_elf_link_hash_table *) ret;
10197 htab->is_vxworks = 1;
10199 return ret;
10202 /* We need to use a special link routine to handle the .reginfo and
10203 the .mdebug sections. We need to merge all instances of these
10204 sections together, not write them all out sequentially. */
10206 bfd_boolean
10207 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10209 asection *o;
10210 struct bfd_link_order *p;
10211 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10212 asection *rtproc_sec;
10213 Elf32_RegInfo reginfo;
10214 struct ecoff_debug_info debug;
10215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10216 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10217 HDRR *symhdr = &debug.symbolic_header;
10218 void *mdebug_handle = NULL;
10219 asection *s;
10220 EXTR esym;
10221 unsigned int i;
10222 bfd_size_type amt;
10223 struct mips_elf_link_hash_table *htab;
10225 static const char * const secname[] =
10227 ".text", ".init", ".fini", ".data",
10228 ".rodata", ".sdata", ".sbss", ".bss"
10230 static const int sc[] =
10232 scText, scInit, scFini, scData,
10233 scRData, scSData, scSBss, scBss
10236 /* We'd carefully arranged the dynamic symbol indices, and then the
10237 generic size_dynamic_sections renumbered them out from under us.
10238 Rather than trying somehow to prevent the renumbering, just do
10239 the sort again. */
10240 htab = mips_elf_hash_table (info);
10241 if (elf_hash_table (info)->dynamic_sections_created)
10243 bfd *dynobj;
10244 asection *got;
10245 struct mips_got_info *g;
10246 bfd_size_type dynsecsymcount;
10248 /* When we resort, we must tell mips_elf_sort_hash_table what
10249 the lowest index it may use is. That's the number of section
10250 symbols we're going to add. The generic ELF linker only
10251 adds these symbols when building a shared object. Note that
10252 we count the sections after (possibly) removing the .options
10253 section above. */
10255 dynsecsymcount = count_section_dynsyms (abfd, info);
10256 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10257 return FALSE;
10259 /* Make sure we didn't grow the global .got region. */
10260 dynobj = elf_hash_table (info)->dynobj;
10261 got = mips_elf_got_section (dynobj, FALSE);
10262 g = mips_elf_section_data (got)->u.got_info;
10264 if (g->global_gotsym != NULL)
10265 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10266 - g->global_gotsym->dynindx)
10267 <= g->global_gotno);
10270 /* Get a value for the GP register. */
10271 if (elf_gp (abfd) == 0)
10273 struct bfd_link_hash_entry *h;
10275 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10276 if (h != NULL && h->type == bfd_link_hash_defined)
10277 elf_gp (abfd) = (h->u.def.value
10278 + h->u.def.section->output_section->vma
10279 + h->u.def.section->output_offset);
10280 else if (htab->is_vxworks
10281 && (h = bfd_link_hash_lookup (info->hash,
10282 "_GLOBAL_OFFSET_TABLE_",
10283 FALSE, FALSE, TRUE))
10284 && h->type == bfd_link_hash_defined)
10285 elf_gp (abfd) = (h->u.def.section->output_section->vma
10286 + h->u.def.section->output_offset
10287 + h->u.def.value);
10288 else if (info->relocatable)
10290 bfd_vma lo = MINUS_ONE;
10292 /* Find the GP-relative section with the lowest offset. */
10293 for (o = abfd->sections; o != NULL; o = o->next)
10294 if (o->vma < lo
10295 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10296 lo = o->vma;
10298 /* And calculate GP relative to that. */
10299 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10301 else
10303 /* If the relocate_section function needs to do a reloc
10304 involving the GP value, it should make a reloc_dangerous
10305 callback to warn that GP is not defined. */
10309 /* Go through the sections and collect the .reginfo and .mdebug
10310 information. */
10311 reginfo_sec = NULL;
10312 mdebug_sec = NULL;
10313 gptab_data_sec = NULL;
10314 gptab_bss_sec = NULL;
10315 for (o = abfd->sections; o != NULL; o = o->next)
10317 if (strcmp (o->name, ".reginfo") == 0)
10319 memset (&reginfo, 0, sizeof reginfo);
10321 /* We have found the .reginfo section in the output file.
10322 Look through all the link_orders comprising it and merge
10323 the information together. */
10324 for (p = o->map_head.link_order; p != NULL; p = p->next)
10326 asection *input_section;
10327 bfd *input_bfd;
10328 Elf32_External_RegInfo ext;
10329 Elf32_RegInfo sub;
10331 if (p->type != bfd_indirect_link_order)
10333 if (p->type == bfd_data_link_order)
10334 continue;
10335 abort ();
10338 input_section = p->u.indirect.section;
10339 input_bfd = input_section->owner;
10341 if (! bfd_get_section_contents (input_bfd, input_section,
10342 &ext, 0, sizeof ext))
10343 return FALSE;
10345 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10347 reginfo.ri_gprmask |= sub.ri_gprmask;
10348 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10349 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10350 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10351 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10353 /* ri_gp_value is set by the function
10354 mips_elf32_section_processing when the section is
10355 finally written out. */
10357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10358 elf_link_input_bfd ignores this section. */
10359 input_section->flags &= ~SEC_HAS_CONTENTS;
10362 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10363 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10365 /* Skip this section later on (I don't think this currently
10366 matters, but someday it might). */
10367 o->map_head.link_order = NULL;
10369 reginfo_sec = o;
10372 if (strcmp (o->name, ".mdebug") == 0)
10374 struct extsym_info einfo;
10375 bfd_vma last;
10377 /* We have found the .mdebug section in the output file.
10378 Look through all the link_orders comprising it and merge
10379 the information together. */
10380 symhdr->magic = swap->sym_magic;
10381 /* FIXME: What should the version stamp be? */
10382 symhdr->vstamp = 0;
10383 symhdr->ilineMax = 0;
10384 symhdr->cbLine = 0;
10385 symhdr->idnMax = 0;
10386 symhdr->ipdMax = 0;
10387 symhdr->isymMax = 0;
10388 symhdr->ioptMax = 0;
10389 symhdr->iauxMax = 0;
10390 symhdr->issMax = 0;
10391 symhdr->issExtMax = 0;
10392 symhdr->ifdMax = 0;
10393 symhdr->crfd = 0;
10394 symhdr->iextMax = 0;
10396 /* We accumulate the debugging information itself in the
10397 debug_info structure. */
10398 debug.line = NULL;
10399 debug.external_dnr = NULL;
10400 debug.external_pdr = NULL;
10401 debug.external_sym = NULL;
10402 debug.external_opt = NULL;
10403 debug.external_aux = NULL;
10404 debug.ss = NULL;
10405 debug.ssext = debug.ssext_end = NULL;
10406 debug.external_fdr = NULL;
10407 debug.external_rfd = NULL;
10408 debug.external_ext = debug.external_ext_end = NULL;
10410 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10411 if (mdebug_handle == NULL)
10412 return FALSE;
10414 esym.jmptbl = 0;
10415 esym.cobol_main = 0;
10416 esym.weakext = 0;
10417 esym.reserved = 0;
10418 esym.ifd = ifdNil;
10419 esym.asym.iss = issNil;
10420 esym.asym.st = stLocal;
10421 esym.asym.reserved = 0;
10422 esym.asym.index = indexNil;
10423 last = 0;
10424 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10426 esym.asym.sc = sc[i];
10427 s = bfd_get_section_by_name (abfd, secname[i]);
10428 if (s != NULL)
10430 esym.asym.value = s->vma;
10431 last = s->vma + s->size;
10433 else
10434 esym.asym.value = last;
10435 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10436 secname[i], &esym))
10437 return FALSE;
10440 for (p = o->map_head.link_order; p != NULL; p = p->next)
10442 asection *input_section;
10443 bfd *input_bfd;
10444 const struct ecoff_debug_swap *input_swap;
10445 struct ecoff_debug_info input_debug;
10446 char *eraw_src;
10447 char *eraw_end;
10449 if (p->type != bfd_indirect_link_order)
10451 if (p->type == bfd_data_link_order)
10452 continue;
10453 abort ();
10456 input_section = p->u.indirect.section;
10457 input_bfd = input_section->owner;
10459 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10460 || (get_elf_backend_data (input_bfd)
10461 ->elf_backend_ecoff_debug_swap) == NULL)
10463 /* I don't know what a non MIPS ELF bfd would be
10464 doing with a .mdebug section, but I don't really
10465 want to deal with it. */
10466 continue;
10469 input_swap = (get_elf_backend_data (input_bfd)
10470 ->elf_backend_ecoff_debug_swap);
10472 BFD_ASSERT (p->size == input_section->size);
10474 /* The ECOFF linking code expects that we have already
10475 read in the debugging information and set up an
10476 ecoff_debug_info structure, so we do that now. */
10477 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10478 &input_debug))
10479 return FALSE;
10481 if (! (bfd_ecoff_debug_accumulate
10482 (mdebug_handle, abfd, &debug, swap, input_bfd,
10483 &input_debug, input_swap, info)))
10484 return FALSE;
10486 /* Loop through the external symbols. For each one with
10487 interesting information, try to find the symbol in
10488 the linker global hash table and save the information
10489 for the output external symbols. */
10490 eraw_src = input_debug.external_ext;
10491 eraw_end = (eraw_src
10492 + (input_debug.symbolic_header.iextMax
10493 * input_swap->external_ext_size));
10494 for (;
10495 eraw_src < eraw_end;
10496 eraw_src += input_swap->external_ext_size)
10498 EXTR ext;
10499 const char *name;
10500 struct mips_elf_link_hash_entry *h;
10502 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10503 if (ext.asym.sc == scNil
10504 || ext.asym.sc == scUndefined
10505 || ext.asym.sc == scSUndefined)
10506 continue;
10508 name = input_debug.ssext + ext.asym.iss;
10509 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10510 name, FALSE, FALSE, TRUE);
10511 if (h == NULL || h->esym.ifd != -2)
10512 continue;
10514 if (ext.ifd != -1)
10516 BFD_ASSERT (ext.ifd
10517 < input_debug.symbolic_header.ifdMax);
10518 ext.ifd = input_debug.ifdmap[ext.ifd];
10521 h->esym = ext;
10524 /* Free up the information we just read. */
10525 free (input_debug.line);
10526 free (input_debug.external_dnr);
10527 free (input_debug.external_pdr);
10528 free (input_debug.external_sym);
10529 free (input_debug.external_opt);
10530 free (input_debug.external_aux);
10531 free (input_debug.ss);
10532 free (input_debug.ssext);
10533 free (input_debug.external_fdr);
10534 free (input_debug.external_rfd);
10535 free (input_debug.external_ext);
10537 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10538 elf_link_input_bfd ignores this section. */
10539 input_section->flags &= ~SEC_HAS_CONTENTS;
10542 if (SGI_COMPAT (abfd) && info->shared)
10544 /* Create .rtproc section. */
10545 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10546 if (rtproc_sec == NULL)
10548 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10549 | SEC_LINKER_CREATED | SEC_READONLY);
10551 rtproc_sec = bfd_make_section_with_flags (abfd,
10552 ".rtproc",
10553 flags);
10554 if (rtproc_sec == NULL
10555 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10556 return FALSE;
10559 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10560 info, rtproc_sec,
10561 &debug))
10562 return FALSE;
10565 /* Build the external symbol information. */
10566 einfo.abfd = abfd;
10567 einfo.info = info;
10568 einfo.debug = &debug;
10569 einfo.swap = swap;
10570 einfo.failed = FALSE;
10571 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10572 mips_elf_output_extsym, &einfo);
10573 if (einfo.failed)
10574 return FALSE;
10576 /* Set the size of the .mdebug section. */
10577 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10579 /* Skip this section later on (I don't think this currently
10580 matters, but someday it might). */
10581 o->map_head.link_order = NULL;
10583 mdebug_sec = o;
10586 if (CONST_STRNEQ (o->name, ".gptab."))
10588 const char *subname;
10589 unsigned int c;
10590 Elf32_gptab *tab;
10591 Elf32_External_gptab *ext_tab;
10592 unsigned int j;
10594 /* The .gptab.sdata and .gptab.sbss sections hold
10595 information describing how the small data area would
10596 change depending upon the -G switch. These sections
10597 not used in executables files. */
10598 if (! info->relocatable)
10600 for (p = o->map_head.link_order; p != NULL; p = p->next)
10602 asection *input_section;
10604 if (p->type != bfd_indirect_link_order)
10606 if (p->type == bfd_data_link_order)
10607 continue;
10608 abort ();
10611 input_section = p->u.indirect.section;
10613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10614 elf_link_input_bfd ignores this section. */
10615 input_section->flags &= ~SEC_HAS_CONTENTS;
10618 /* Skip this section later on (I don't think this
10619 currently matters, but someday it might). */
10620 o->map_head.link_order = NULL;
10622 /* Really remove the section. */
10623 bfd_section_list_remove (abfd, o);
10624 --abfd->section_count;
10626 continue;
10629 /* There is one gptab for initialized data, and one for
10630 uninitialized data. */
10631 if (strcmp (o->name, ".gptab.sdata") == 0)
10632 gptab_data_sec = o;
10633 else if (strcmp (o->name, ".gptab.sbss") == 0)
10634 gptab_bss_sec = o;
10635 else
10637 (*_bfd_error_handler)
10638 (_("%s: illegal section name `%s'"),
10639 bfd_get_filename (abfd), o->name);
10640 bfd_set_error (bfd_error_nonrepresentable_section);
10641 return FALSE;
10644 /* The linker script always combines .gptab.data and
10645 .gptab.sdata into .gptab.sdata, and likewise for
10646 .gptab.bss and .gptab.sbss. It is possible that there is
10647 no .sdata or .sbss section in the output file, in which
10648 case we must change the name of the output section. */
10649 subname = o->name + sizeof ".gptab" - 1;
10650 if (bfd_get_section_by_name (abfd, subname) == NULL)
10652 if (o == gptab_data_sec)
10653 o->name = ".gptab.data";
10654 else
10655 o->name = ".gptab.bss";
10656 subname = o->name + sizeof ".gptab" - 1;
10657 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10660 /* Set up the first entry. */
10661 c = 1;
10662 amt = c * sizeof (Elf32_gptab);
10663 tab = bfd_malloc (amt);
10664 if (tab == NULL)
10665 return FALSE;
10666 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10667 tab[0].gt_header.gt_unused = 0;
10669 /* Combine the input sections. */
10670 for (p = o->map_head.link_order; p != NULL; p = p->next)
10672 asection *input_section;
10673 bfd *input_bfd;
10674 bfd_size_type size;
10675 unsigned long last;
10676 bfd_size_type gpentry;
10678 if (p->type != bfd_indirect_link_order)
10680 if (p->type == bfd_data_link_order)
10681 continue;
10682 abort ();
10685 input_section = p->u.indirect.section;
10686 input_bfd = input_section->owner;
10688 /* Combine the gptab entries for this input section one
10689 by one. We know that the input gptab entries are
10690 sorted by ascending -G value. */
10691 size = input_section->size;
10692 last = 0;
10693 for (gpentry = sizeof (Elf32_External_gptab);
10694 gpentry < size;
10695 gpentry += sizeof (Elf32_External_gptab))
10697 Elf32_External_gptab ext_gptab;
10698 Elf32_gptab int_gptab;
10699 unsigned long val;
10700 unsigned long add;
10701 bfd_boolean exact;
10702 unsigned int look;
10704 if (! (bfd_get_section_contents
10705 (input_bfd, input_section, &ext_gptab, gpentry,
10706 sizeof (Elf32_External_gptab))))
10708 free (tab);
10709 return FALSE;
10712 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10713 &int_gptab);
10714 val = int_gptab.gt_entry.gt_g_value;
10715 add = int_gptab.gt_entry.gt_bytes - last;
10717 exact = FALSE;
10718 for (look = 1; look < c; look++)
10720 if (tab[look].gt_entry.gt_g_value >= val)
10721 tab[look].gt_entry.gt_bytes += add;
10723 if (tab[look].gt_entry.gt_g_value == val)
10724 exact = TRUE;
10727 if (! exact)
10729 Elf32_gptab *new_tab;
10730 unsigned int max;
10732 /* We need a new table entry. */
10733 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10734 new_tab = bfd_realloc (tab, amt);
10735 if (new_tab == NULL)
10737 free (tab);
10738 return FALSE;
10740 tab = new_tab;
10741 tab[c].gt_entry.gt_g_value = val;
10742 tab[c].gt_entry.gt_bytes = add;
10744 /* Merge in the size for the next smallest -G
10745 value, since that will be implied by this new
10746 value. */
10747 max = 0;
10748 for (look = 1; look < c; look++)
10750 if (tab[look].gt_entry.gt_g_value < val
10751 && (max == 0
10752 || (tab[look].gt_entry.gt_g_value
10753 > tab[max].gt_entry.gt_g_value)))
10754 max = look;
10756 if (max != 0)
10757 tab[c].gt_entry.gt_bytes +=
10758 tab[max].gt_entry.gt_bytes;
10760 ++c;
10763 last = int_gptab.gt_entry.gt_bytes;
10766 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10767 elf_link_input_bfd ignores this section. */
10768 input_section->flags &= ~SEC_HAS_CONTENTS;
10771 /* The table must be sorted by -G value. */
10772 if (c > 2)
10773 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10775 /* Swap out the table. */
10776 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10777 ext_tab = bfd_alloc (abfd, amt);
10778 if (ext_tab == NULL)
10780 free (tab);
10781 return FALSE;
10784 for (j = 0; j < c; j++)
10785 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10786 free (tab);
10788 o->size = c * sizeof (Elf32_External_gptab);
10789 o->contents = (bfd_byte *) ext_tab;
10791 /* Skip this section later on (I don't think this currently
10792 matters, but someday it might). */
10793 o->map_head.link_order = NULL;
10797 /* Invoke the regular ELF backend linker to do all the work. */
10798 if (!bfd_elf_final_link (abfd, info))
10799 return FALSE;
10801 /* Now write out the computed sections. */
10803 if (reginfo_sec != NULL)
10805 Elf32_External_RegInfo ext;
10807 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10808 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10809 return FALSE;
10812 if (mdebug_sec != NULL)
10814 BFD_ASSERT (abfd->output_has_begun);
10815 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10816 swap, info,
10817 mdebug_sec->filepos))
10818 return FALSE;
10820 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10823 if (gptab_data_sec != NULL)
10825 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10826 gptab_data_sec->contents,
10827 0, gptab_data_sec->size))
10828 return FALSE;
10831 if (gptab_bss_sec != NULL)
10833 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10834 gptab_bss_sec->contents,
10835 0, gptab_bss_sec->size))
10836 return FALSE;
10839 if (SGI_COMPAT (abfd))
10841 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10842 if (rtproc_sec != NULL)
10844 if (! bfd_set_section_contents (abfd, rtproc_sec,
10845 rtproc_sec->contents,
10846 0, rtproc_sec->size))
10847 return FALSE;
10851 return TRUE;
10854 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10856 struct mips_mach_extension {
10857 unsigned long extension, base;
10861 /* An array describing how BFD machines relate to one another. The entries
10862 are ordered topologically with MIPS I extensions listed last. */
10864 static const struct mips_mach_extension mips_mach_extensions[] = {
10865 /* MIPS64 extensions. */
10866 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10867 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10869 /* MIPS V extensions. */
10870 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10872 /* R10000 extensions. */
10873 { bfd_mach_mips12000, bfd_mach_mips10000 },
10875 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10876 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10877 better to allow vr5400 and vr5500 code to be merged anyway, since
10878 many libraries will just use the core ISA. Perhaps we could add
10879 some sort of ASE flag if this ever proves a problem. */
10880 { bfd_mach_mips5500, bfd_mach_mips5400 },
10881 { bfd_mach_mips5400, bfd_mach_mips5000 },
10883 /* MIPS IV extensions. */
10884 { bfd_mach_mips5, bfd_mach_mips8000 },
10885 { bfd_mach_mips10000, bfd_mach_mips8000 },
10886 { bfd_mach_mips5000, bfd_mach_mips8000 },
10887 { bfd_mach_mips7000, bfd_mach_mips8000 },
10888 { bfd_mach_mips9000, bfd_mach_mips8000 },
10890 /* VR4100 extensions. */
10891 { bfd_mach_mips4120, bfd_mach_mips4100 },
10892 { bfd_mach_mips4111, bfd_mach_mips4100 },
10894 /* MIPS III extensions. */
10895 { bfd_mach_mips8000, bfd_mach_mips4000 },
10896 { bfd_mach_mips4650, bfd_mach_mips4000 },
10897 { bfd_mach_mips4600, bfd_mach_mips4000 },
10898 { bfd_mach_mips4400, bfd_mach_mips4000 },
10899 { bfd_mach_mips4300, bfd_mach_mips4000 },
10900 { bfd_mach_mips4100, bfd_mach_mips4000 },
10901 { bfd_mach_mips4010, bfd_mach_mips4000 },
10903 /* MIPS32 extensions. */
10904 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10906 /* MIPS II extensions. */
10907 { bfd_mach_mips4000, bfd_mach_mips6000 },
10908 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10910 /* MIPS I extensions. */
10911 { bfd_mach_mips6000, bfd_mach_mips3000 },
10912 { bfd_mach_mips3900, bfd_mach_mips3000 }
10916 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10918 static bfd_boolean
10919 mips_mach_extends_p (unsigned long base, unsigned long extension)
10921 size_t i;
10923 if (extension == base)
10924 return TRUE;
10926 if (base == bfd_mach_mipsisa32
10927 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10928 return TRUE;
10930 if (base == bfd_mach_mipsisa32r2
10931 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10932 return TRUE;
10934 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10935 if (extension == mips_mach_extensions[i].extension)
10937 extension = mips_mach_extensions[i].base;
10938 if (extension == base)
10939 return TRUE;
10942 return FALSE;
10946 /* Return true if the given ELF header flags describe a 32-bit binary. */
10948 static bfd_boolean
10949 mips_32bit_flags_p (flagword flags)
10951 return ((flags & EF_MIPS_32BITMODE) != 0
10952 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10953 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10954 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10955 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10956 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10957 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10961 /* Merge backend specific data from an object file to the output
10962 object file when linking. */
10964 bfd_boolean
10965 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10967 flagword old_flags;
10968 flagword new_flags;
10969 bfd_boolean ok;
10970 bfd_boolean null_input_bfd = TRUE;
10971 asection *sec;
10973 /* Check if we have the same endianess */
10974 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10976 (*_bfd_error_handler)
10977 (_("%B: endianness incompatible with that of the selected emulation"),
10978 ibfd);
10979 return FALSE;
10982 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10983 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10984 return TRUE;
10986 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10988 (*_bfd_error_handler)
10989 (_("%B: ABI is incompatible with that of the selected emulation"),
10990 ibfd);
10991 return FALSE;
10994 new_flags = elf_elfheader (ibfd)->e_flags;
10995 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10996 old_flags = elf_elfheader (obfd)->e_flags;
10998 if (! elf_flags_init (obfd))
11000 elf_flags_init (obfd) = TRUE;
11001 elf_elfheader (obfd)->e_flags = new_flags;
11002 elf_elfheader (obfd)->e_ident[EI_CLASS]
11003 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11005 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11006 && (bfd_get_arch_info (obfd)->the_default
11007 || mips_mach_extends_p (bfd_get_mach (obfd),
11008 bfd_get_mach (ibfd))))
11010 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11011 bfd_get_mach (ibfd)))
11012 return FALSE;
11015 return TRUE;
11018 /* Check flag compatibility. */
11020 new_flags &= ~EF_MIPS_NOREORDER;
11021 old_flags &= ~EF_MIPS_NOREORDER;
11023 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11024 doesn't seem to matter. */
11025 new_flags &= ~EF_MIPS_XGOT;
11026 old_flags &= ~EF_MIPS_XGOT;
11028 /* MIPSpro generates ucode info in n64 objects. Again, we should
11029 just be able to ignore this. */
11030 new_flags &= ~EF_MIPS_UCODE;
11031 old_flags &= ~EF_MIPS_UCODE;
11033 /* Don't care about the PIC flags from dynamic objects; they are
11034 PIC by design. */
11035 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11036 && (ibfd->flags & DYNAMIC) != 0)
11037 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11039 if (new_flags == old_flags)
11040 return TRUE;
11042 /* Check to see if the input BFD actually contains any sections.
11043 If not, its flags may not have been initialised either, but it cannot
11044 actually cause any incompatibility. */
11045 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11047 /* Ignore synthetic sections and empty .text, .data and .bss sections
11048 which are automatically generated by gas. */
11049 if (strcmp (sec->name, ".reginfo")
11050 && strcmp (sec->name, ".mdebug")
11051 && (sec->size != 0
11052 || (strcmp (sec->name, ".text")
11053 && strcmp (sec->name, ".data")
11054 && strcmp (sec->name, ".bss"))))
11056 null_input_bfd = FALSE;
11057 break;
11060 if (null_input_bfd)
11061 return TRUE;
11063 ok = TRUE;
11065 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11066 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11068 (*_bfd_error_handler)
11069 (_("%B: warning: linking PIC files with non-PIC files"),
11070 ibfd);
11071 ok = TRUE;
11074 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11075 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11076 if (! (new_flags & EF_MIPS_PIC))
11077 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11079 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11080 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11082 /* Compare the ISAs. */
11083 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11085 (*_bfd_error_handler)
11086 (_("%B: linking 32-bit code with 64-bit code"),
11087 ibfd);
11088 ok = FALSE;
11090 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11092 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11093 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11095 /* Copy the architecture info from IBFD to OBFD. Also copy
11096 the 32-bit flag (if set) so that we continue to recognise
11097 OBFD as a 32-bit binary. */
11098 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11099 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11100 elf_elfheader (obfd)->e_flags
11101 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11103 /* Copy across the ABI flags if OBFD doesn't use them
11104 and if that was what caused us to treat IBFD as 32-bit. */
11105 if ((old_flags & EF_MIPS_ABI) == 0
11106 && mips_32bit_flags_p (new_flags)
11107 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11108 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11110 else
11112 /* The ISAs aren't compatible. */
11113 (*_bfd_error_handler)
11114 (_("%B: linking %s module with previous %s modules"),
11115 ibfd,
11116 bfd_printable_name (ibfd),
11117 bfd_printable_name (obfd));
11118 ok = FALSE;
11122 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11123 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11125 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11126 does set EI_CLASS differently from any 32-bit ABI. */
11127 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11128 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11129 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11131 /* Only error if both are set (to different values). */
11132 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11133 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11134 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11136 (*_bfd_error_handler)
11137 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11138 ibfd,
11139 elf_mips_abi_name (ibfd),
11140 elf_mips_abi_name (obfd));
11141 ok = FALSE;
11143 new_flags &= ~EF_MIPS_ABI;
11144 old_flags &= ~EF_MIPS_ABI;
11147 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11148 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11150 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11152 new_flags &= ~ EF_MIPS_ARCH_ASE;
11153 old_flags &= ~ EF_MIPS_ARCH_ASE;
11156 /* Warn about any other mismatches */
11157 if (new_flags != old_flags)
11159 (*_bfd_error_handler)
11160 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11161 ibfd, (unsigned long) new_flags,
11162 (unsigned long) old_flags);
11163 ok = FALSE;
11166 if (! ok)
11168 bfd_set_error (bfd_error_bad_value);
11169 return FALSE;
11172 return TRUE;
11175 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11177 bfd_boolean
11178 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11180 BFD_ASSERT (!elf_flags_init (abfd)
11181 || elf_elfheader (abfd)->e_flags == flags);
11183 elf_elfheader (abfd)->e_flags = flags;
11184 elf_flags_init (abfd) = TRUE;
11185 return TRUE;
11188 bfd_boolean
11189 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11191 FILE *file = ptr;
11193 BFD_ASSERT (abfd != NULL && ptr != NULL);
11195 /* Print normal ELF private data. */
11196 _bfd_elf_print_private_bfd_data (abfd, ptr);
11198 /* xgettext:c-format */
11199 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11201 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11202 fprintf (file, _(" [abi=O32]"));
11203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11204 fprintf (file, _(" [abi=O64]"));
11205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11206 fprintf (file, _(" [abi=EABI32]"));
11207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11208 fprintf (file, _(" [abi=EABI64]"));
11209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11210 fprintf (file, _(" [abi unknown]"));
11211 else if (ABI_N32_P (abfd))
11212 fprintf (file, _(" [abi=N32]"));
11213 else if (ABI_64_P (abfd))
11214 fprintf (file, _(" [abi=64]"));
11215 else
11216 fprintf (file, _(" [no abi set]"));
11218 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11219 fprintf (file, " [mips1]");
11220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11221 fprintf (file, " [mips2]");
11222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11223 fprintf (file, " [mips3]");
11224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11225 fprintf (file, " [mips4]");
11226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11227 fprintf (file, " [mips5]");
11228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11229 fprintf (file, " [mips32]");
11230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11231 fprintf (file, " [mips64]");
11232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11233 fprintf (file, " [mips32r2]");
11234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11235 fprintf (file, " [mips64r2]");
11236 else
11237 fprintf (file, _(" [unknown ISA]"));
11239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11240 fprintf (file, " [mdmx]");
11242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11243 fprintf (file, " [mips16]");
11245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11246 fprintf (file, " [32bitmode]");
11247 else
11248 fprintf (file, _(" [not 32bitmode]"));
11250 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11251 fprintf (file, " [noreorder]");
11253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11254 fprintf (file, " [PIC]");
11256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11257 fprintf (file, " [CPIC]");
11259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11260 fprintf (file, " [XGOT]");
11262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11263 fprintf (file, " [UCODE]");
11265 fputc ('\n', file);
11267 return TRUE;
11270 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11272 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11273 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11274 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11275 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11276 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11277 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11278 { NULL, 0, 0, 0, 0 }
11281 /* Merge non visibility st_other attributes. Ensure that the
11282 STO_OPTIONAL flag is copied into h->other, even if this is not a
11283 definiton of the symbol. */
11284 void
11285 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11286 const Elf_Internal_Sym *isym,
11287 bfd_boolean definition,
11288 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11290 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11292 unsigned char other;
11294 other = (definition ? isym->st_other : h->other);
11295 other &= ~ELF_ST_VISIBILITY (-1);
11296 h->other = other | ELF_ST_VISIBILITY (h->other);
11299 if (!definition
11300 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11301 h->other |= STO_OPTIONAL;
11304 /* Decide whether an undefined symbol is special and can be ignored.
11305 This is the case for OPTIONAL symbols on IRIX. */
11306 bfd_boolean
11307 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11309 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11312 bfd_boolean
11313 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11315 return (sym->st_shndx == SHN_COMMON
11316 || sym->st_shndx == SHN_MIPS_ACOMMON
11317 || sym->st_shndx == SHN_MIPS_SCOMMON);