Add s390 support
[binutils.git] / bfd / reloc.c
blob9d4516302d374e02e9086be1bf0ff3d35c3a958a
1 /* BFD support for handling relocation entries.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 SECTION
24 Relocations
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
28 en-masse and translated into an internal form. A common
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
39 @menu
40 @* typedef arelent::
41 @* howto manager::
42 @end menu
46 /* DO compile in the reloc_code name table from libbfd.h. */
47 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49 #include "bfd.h"
50 #include "sysdep.h"
51 #include "bfdlink.h"
52 #include "libbfd.h"
54 DOCDD
55 INODE
56 typedef arelent, howto manager, Relocations, Relocations
58 SUBSECTION
59 typedef arelent
61 This is the structure of a relocation entry:
63 CODE_FRAGMENT
65 .typedef enum bfd_reloc_status
67 . {* No errors detected *}
68 . bfd_reloc_ok,
70 . {* The relocation was performed, but there was an overflow. *}
71 . bfd_reloc_overflow,
73 . {* The address to relocate was not within the section supplied. *}
74 . bfd_reloc_outofrange,
76 . {* Used by special functions *}
77 . bfd_reloc_continue,
79 . {* Unsupported relocation size requested. *}
80 . bfd_reloc_notsupported,
82 . {* Unused *}
83 . bfd_reloc_other,
85 . {* The symbol to relocate against was undefined. *}
86 . bfd_reloc_undefined,
88 . {* The relocation was performed, but may not be ok - presently
89 . generated only when linking i960 coff files with i960 b.out
90 . symbols. If this type is returned, the error_message argument
91 . to bfd_perform_relocation will be set. *}
92 . bfd_reloc_dangerous
93 . }
94 . bfd_reloc_status_type;
97 .typedef struct reloc_cache_entry
99 . {* A pointer into the canonical table of pointers *}
100 . struct symbol_cache_entry **sym_ptr_ptr;
102 . {* offset in section *}
103 . bfd_size_type address;
105 . {* addend for relocation value *}
106 . bfd_vma addend;
108 . {* Pointer to how to perform the required relocation *}
109 . reloc_howto_type *howto;
111 .} arelent;
116 DESCRIPTION
118 Here is a description of each of the fields within an <<arelent>>:
120 o <<sym_ptr_ptr>>
122 The symbol table pointer points to a pointer to the symbol
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
133 o <<address>>
135 The <<address>> field gives the offset in bytes from the base of
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
138 will be relative to this point; for example, a relocation
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
141 world.
143 o <<addend>>
145 The <<addend>> is a value provided by the back end to be added (!)
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
149 | char foo[];
150 | main()
152 | return foo[0x12345678];
155 Could be compiled into:
157 | linkw fp,#-4
158 | moveb @@#12345678,d0
159 | extbl d0
160 | unlk fp
161 | rts
163 This could create a reloc pointing to <<foo>>, but leave the
164 offset in the data, something like:
166 |RELOCATION RECORDS FOR [.text]:
167 |offset type value
168 |00000006 32 _foo
170 |00000000 4e56 fffc ; linkw fp,#-4
171 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
172 |0000000a 49c0 ; extbl d0
173 |0000000c 4e5e ; unlk fp
174 |0000000e 4e75 ; rts
176 Using coff and an 88k, some instructions don't have enough
177 space in them to represent the full address range, and
178 pointers have to be loaded in two parts. So you'd get something like:
180 | or.u r13,r0,hi16(_foo+0x12345678)
181 | ld.b r2,r13,lo16(_foo+0x12345678)
182 | jmp r1
184 This should create two relocs, both pointing to <<_foo>>, and with
185 0x12340000 in their addend field. The data would consist of:
187 |RELOCATION RECORDS FOR [.text]:
188 |offset type value
189 |00000002 HVRT16 _foo+0x12340000
190 |00000006 LVRT16 _foo+0x12340000
192 |00000000 5da05678 ; or.u r13,r0,0x5678
193 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
194 |00000008 f400c001 ; jmp r1
196 The relocation routine digs out the value from the data, adds
197 it to the addend to get the original offset, and then adds the
198 value of <<_foo>>. Note that all 32 bits have to be kept around
199 somewhere, to cope with carry from bit 15 to bit 16.
201 One further example is the sparc and the a.out format. The
202 sparc has a similar problem to the 88k, in that some
203 instructions don't have room for an entire offset, but on the
204 sparc the parts are created in odd sized lumps. The designers of
205 the a.out format chose to not use the data within the section
206 for storing part of the offset; all the offset is kept within
207 the reloc. Anything in the data should be ignored.
209 | save %sp,-112,%sp
210 | sethi %hi(_foo+0x12345678),%g2
211 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
212 | ret
213 | restore
215 Both relocs contain a pointer to <<foo>>, and the offsets
216 contain junk.
218 |RELOCATION RECORDS FOR [.text]:
219 |offset type value
220 |00000004 HI22 _foo+0x12345678
221 |00000008 LO10 _foo+0x12345678
223 |00000000 9de3bf90 ; save %sp,-112,%sp
224 |00000004 05000000 ; sethi %hi(_foo+0),%g2
225 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
226 |0000000c 81c7e008 ; ret
227 |00000010 81e80000 ; restore
229 o <<howto>>
231 The <<howto>> field can be imagined as a
232 relocation instruction. It is a pointer to a structure which
233 contains information on what to do with all of the other
234 information in the reloc record and data section. A back end
235 would normally have a relocation instruction set and turn
236 relocations into pointers to the correct structure on input -
237 but it would be possible to create each howto field on demand.
242 SUBSUBSECTION
243 <<enum complain_overflow>>
245 Indicates what sort of overflow checking should be done when
246 performing a relocation.
248 CODE_FRAGMENT
250 .enum complain_overflow
252 . {* Do not complain on overflow. *}
253 . complain_overflow_dont,
255 . {* Complain if the bitfield overflows, whether it is considered
256 . as signed or unsigned. *}
257 . complain_overflow_bitfield,
259 . {* Complain if the value overflows when considered as signed
260 . number. *}
261 . complain_overflow_signed,
263 . {* Complain if the value overflows when considered as an
264 . unsigned number. *}
265 . complain_overflow_unsigned
271 SUBSUBSECTION
272 <<reloc_howto_type>>
274 The <<reloc_howto_type>> is a structure which contains all the
275 information that libbfd needs to know to tie up a back end's data.
277 CODE_FRAGMENT
278 .struct symbol_cache_entry; {* Forward declaration *}
280 .struct reloc_howto_struct
282 . {* The type field has mainly a documentary use - the back end can
283 . do what it wants with it, though normally the back end's
284 . external idea of what a reloc number is stored
285 . in this field. For example, a PC relative word relocation
286 . in a coff environment has the type 023 - because that's
287 . what the outside world calls a R_PCRWORD reloc. *}
288 . unsigned int type;
290 . {* The value the final relocation is shifted right by. This drops
291 . unwanted data from the relocation. *}
292 . unsigned int rightshift;
294 . {* The size of the item to be relocated. This is *not* a
295 . power-of-two measure. To get the number of bytes operated
296 . on by a type of relocation, use bfd_get_reloc_size. *}
297 . int size;
299 . {* The number of bits in the item to be relocated. This is used
300 . when doing overflow checking. *}
301 . unsigned int bitsize;
303 . {* Notes that the relocation is relative to the location in the
304 . data section of the addend. The relocation function will
305 . subtract from the relocation value the address of the location
306 . being relocated. *}
307 . boolean pc_relative;
309 . {* The bit position of the reloc value in the destination.
310 . The relocated value is left shifted by this amount. *}
311 . unsigned int bitpos;
313 . {* What type of overflow error should be checked for when
314 . relocating. *}
315 . enum complain_overflow complain_on_overflow;
317 . {* If this field is non null, then the supplied function is
318 . called rather than the normal function. This allows really
319 . strange relocation methods to be accomodated (e.g., i960 callj
320 . instructions). *}
321 . bfd_reloc_status_type (*special_function)
322 . PARAMS ((bfd *abfd,
323 . arelent *reloc_entry,
324 . struct symbol_cache_entry *symbol,
325 . PTR data,
326 . asection *input_section,
327 . bfd *output_bfd,
328 . char **error_message));
330 . {* The textual name of the relocation type. *}
331 . char *name;
333 . {* Some formats record a relocation addend in the section contents
334 . rather than with the relocation. For ELF formats this is the
335 . distinction between USE_REL and USE_RELA (though the code checks
336 . for USE_REL == 1/0). The value of this field is TRUE if the
337 . addend is recorded with the section contents; when performing a
338 . partial link (ld -r) the section contents (the data) will be
339 . modified. The value of this field is FALSE if addends are
340 . recorded with the relocation (in arelent.addend); when performing
341 . a partial link the relocation will be modified.
342 . All relocations for all ELF USE_RELA targets should set this field
343 . to FALSE (values of TRUE should be looked on with suspicion).
344 . However, the converse is not true: not all relocations of all ELF
345 . USE_REL targets set this field to TRUE. Why this is so is peculiar
346 . to each particular target. For relocs that aren't used in partial
347 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
348 . boolean partial_inplace;
350 . {* The src_mask selects which parts of the read in data
351 . are to be used in the relocation sum. E.g., if this was an 8 bit
352 . byte of data which we read and relocated, this would be
353 . 0x000000ff. When we have relocs which have an addend, such as
354 . sun4 extended relocs, the value in the offset part of a
355 . relocating field is garbage so we never use it. In this case
356 . the mask would be 0x00000000. *}
357 . bfd_vma src_mask;
359 . {* The dst_mask selects which parts of the instruction are replaced
360 . into the instruction. In most cases src_mask == dst_mask,
361 . except in the above special case, where dst_mask would be
362 . 0x000000ff, and src_mask would be 0x00000000. *}
363 . bfd_vma dst_mask;
365 . {* When some formats create PC relative instructions, they leave
366 . the value of the pc of the place being relocated in the offset
367 . slot of the instruction, so that a PC relative relocation can
368 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
369 . Some formats leave the displacement part of an instruction
370 . empty (e.g., m88k bcs); this flag signals the fact.*}
371 . boolean pcrel_offset;
378 FUNCTION
379 The HOWTO Macro
381 DESCRIPTION
382 The HOWTO define is horrible and will go away.
384 .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
385 . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
387 DESCRIPTION
388 And will be replaced with the totally magic way. But for the
389 moment, we are compatible, so do it this way.
391 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
394 DESCRIPTION
395 This is used to fill in an empty howto entry in an array.
397 .#define EMPTY_HOWTO(C) \
398 . HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
401 DESCRIPTION
402 Helper routine to turn a symbol into a relocation value.
404 .#define HOWTO_PREPARE(relocation, symbol) \
405 . { \
406 . if (symbol != (asymbol *)NULL) { \
407 . if (bfd_is_com_section (symbol->section)) { \
408 . relocation = 0; \
409 . } \
410 . else { \
411 . relocation = symbol->value; \
412 . } \
413 . } \
419 FUNCTION
420 bfd_get_reloc_size
422 SYNOPSIS
423 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425 DESCRIPTION
426 For a reloc_howto_type that operates on a fixed number of bytes,
427 this returns the number of bytes operated on.
430 unsigned int
431 bfd_get_reloc_size (howto)
432 reloc_howto_type *howto;
434 switch (howto->size)
436 case 0: return 1;
437 case 1: return 2;
438 case 2: return 4;
439 case 3: return 0;
440 case 4: return 8;
441 case 8: return 16;
442 case -2: return 4;
443 default: abort ();
448 TYPEDEF
449 arelent_chain
451 DESCRIPTION
453 How relocs are tied together in an <<asection>>:
455 .typedef struct relent_chain {
456 . arelent relent;
457 . struct relent_chain *next;
458 .} arelent_chain;
462 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
463 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
466 FUNCTION
467 bfd_check_overflow
469 SYNOPSIS
470 bfd_reloc_status_type
471 bfd_check_overflow
472 (enum complain_overflow how,
473 unsigned int bitsize,
474 unsigned int rightshift,
475 unsigned int addrsize,
476 bfd_vma relocation);
478 DESCRIPTION
479 Perform overflow checking on @var{relocation} which has
480 @var{bitsize} significant bits and will be shifted right by
481 @var{rightshift} bits, on a machine with addresses containing
482 @var{addrsize} significant bits. The result is either of
483 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
487 bfd_reloc_status_type
488 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
489 enum complain_overflow how;
490 unsigned int bitsize;
491 unsigned int rightshift;
492 unsigned int addrsize;
493 bfd_vma relocation;
495 bfd_vma fieldmask, addrmask, signmask, ss, a;
496 bfd_reloc_status_type flag = bfd_reloc_ok;
498 a = relocation;
500 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
501 we'll be permissive: extra bits in the field mask will
502 automatically extend the address mask for purposes of the
503 overflow check. */
504 fieldmask = N_ONES (bitsize);
505 addrmask = N_ONES (addrsize) | fieldmask;
507 switch (how)
509 case complain_overflow_dont:
510 break;
512 case complain_overflow_signed:
513 /* If any sign bits are set, all sign bits must be set. That
514 is, A must be a valid negative address after shifting. */
515 a = (a & addrmask) >> rightshift;
516 signmask = ~ (fieldmask >> 1);
517 ss = a & signmask;
518 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
519 flag = bfd_reloc_overflow;
520 break;
522 case complain_overflow_unsigned:
523 /* We have an overflow if the address does not fit in the field. */
524 a = (a & addrmask) >> rightshift;
525 if ((a & ~ fieldmask) != 0)
526 flag = bfd_reloc_overflow;
527 break;
529 case complain_overflow_bitfield:
530 /* Bitfields are sometimes signed, sometimes unsigned. We
531 explicitly allow an address wrap too, which means a bitfield
532 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
533 if the value has some, but not all, bits set outside the
534 field. */
535 a >>= rightshift;
536 ss = a & ~ fieldmask;
537 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
538 flag = bfd_reloc_overflow;
539 break;
541 default:
542 abort ();
545 return flag;
549 FUNCTION
550 bfd_perform_relocation
552 SYNOPSIS
553 bfd_reloc_status_type
554 bfd_perform_relocation
555 (bfd *abfd,
556 arelent *reloc_entry,
557 PTR data,
558 asection *input_section,
559 bfd *output_bfd,
560 char **error_message);
562 DESCRIPTION
563 If @var{output_bfd} is supplied to this function, the
564 generated image will be relocatable; the relocations are
565 copied to the output file after they have been changed to
566 reflect the new state of the world. There are two ways of
567 reflecting the results of partial linkage in an output file:
568 by modifying the output data in place, and by modifying the
569 relocation record. Some native formats (e.g., basic a.out and
570 basic coff) have no way of specifying an addend in the
571 relocation type, so the addend has to go in the output data.
572 This is no big deal since in these formats the output data
573 slot will always be big enough for the addend. Complex reloc
574 types with addends were invented to solve just this problem.
575 The @var{error_message} argument is set to an error message if
576 this return @code{bfd_reloc_dangerous}.
580 bfd_reloc_status_type
581 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
582 error_message)
583 bfd *abfd;
584 arelent *reloc_entry;
585 PTR data;
586 asection *input_section;
587 bfd *output_bfd;
588 char **error_message;
590 bfd_vma relocation;
591 bfd_reloc_status_type flag = bfd_reloc_ok;
592 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
593 bfd_vma output_base = 0;
594 reloc_howto_type *howto = reloc_entry->howto;
595 asection *reloc_target_output_section;
596 asymbol *symbol;
598 symbol = *(reloc_entry->sym_ptr_ptr);
599 if (bfd_is_abs_section (symbol->section)
600 && output_bfd != (bfd *) NULL)
602 reloc_entry->address += input_section->output_offset;
603 return bfd_reloc_ok;
606 /* If we are not producing relocateable output, return an error if
607 the symbol is not defined. An undefined weak symbol is
608 considered to have a value of zero (SVR4 ABI, p. 4-27). */
609 if (bfd_is_und_section (symbol->section)
610 && (symbol->flags & BSF_WEAK) == 0
611 && output_bfd == (bfd *) NULL)
612 flag = bfd_reloc_undefined;
614 /* If there is a function supplied to handle this relocation type,
615 call it. It'll return `bfd_reloc_continue' if further processing
616 can be done. */
617 if (howto->special_function)
619 bfd_reloc_status_type cont;
620 cont = howto->special_function (abfd, reloc_entry, symbol, data,
621 input_section, output_bfd,
622 error_message);
623 if (cont != bfd_reloc_continue)
624 return cont;
627 /* Is the address of the relocation really within the section? */
628 if (reloc_entry->address > input_section->_cooked_size /
629 bfd_octets_per_byte (abfd))
630 return bfd_reloc_outofrange;
632 /* Work out which section the relocation is targetted at and the
633 initial relocation command value. */
635 /* Get symbol value. (Common symbols are special.) */
636 if (bfd_is_com_section (symbol->section))
637 relocation = 0;
638 else
639 relocation = symbol->value;
641 reloc_target_output_section = symbol->section->output_section;
643 /* Convert input-section-relative symbol value to absolute. */
644 if (output_bfd && howto->partial_inplace == false)
645 output_base = 0;
646 else
647 output_base = reloc_target_output_section->vma;
649 relocation += output_base + symbol->section->output_offset;
651 /* Add in supplied addend. */
652 relocation += reloc_entry->addend;
654 /* Here the variable relocation holds the final address of the
655 symbol we are relocating against, plus any addend. */
657 if (howto->pc_relative == true)
659 /* This is a PC relative relocation. We want to set RELOCATION
660 to the distance between the address of the symbol and the
661 location. RELOCATION is already the address of the symbol.
663 We start by subtracting the address of the section containing
664 the location.
666 If pcrel_offset is set, we must further subtract the position
667 of the location within the section. Some targets arrange for
668 the addend to be the negative of the position of the location
669 within the section; for example, i386-aout does this. For
670 i386-aout, pcrel_offset is false. Some other targets do not
671 include the position of the location; for example, m88kbcs,
672 or ELF. For those targets, pcrel_offset is true.
674 If we are producing relocateable output, then we must ensure
675 that this reloc will be correctly computed when the final
676 relocation is done. If pcrel_offset is false we want to wind
677 up with the negative of the location within the section,
678 which means we must adjust the existing addend by the change
679 in the location within the section. If pcrel_offset is true
680 we do not want to adjust the existing addend at all.
682 FIXME: This seems logical to me, but for the case of
683 producing relocateable output it is not what the code
684 actually does. I don't want to change it, because it seems
685 far too likely that something will break. */
687 relocation -=
688 input_section->output_section->vma + input_section->output_offset;
690 if (howto->pcrel_offset == true)
691 relocation -= reloc_entry->address;
694 if (output_bfd != (bfd *) NULL)
696 if (howto->partial_inplace == false)
698 /* This is a partial relocation, and we want to apply the relocation
699 to the reloc entry rather than the raw data. Modify the reloc
700 inplace to reflect what we now know. */
701 reloc_entry->addend = relocation;
702 reloc_entry->address += input_section->output_offset;
703 return flag;
705 else
707 /* This is a partial relocation, but inplace, so modify the
708 reloc record a bit.
710 If we've relocated with a symbol with a section, change
711 into a ref to the section belonging to the symbol. */
713 reloc_entry->address += input_section->output_offset;
715 /* WTF?? */
716 if (abfd->xvec->flavour == bfd_target_coff_flavour
717 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
718 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
720 #if 1
721 /* For m68k-coff, the addend was being subtracted twice during
722 relocation with -r. Removing the line below this comment
723 fixes that problem; see PR 2953.
725 However, Ian wrote the following, regarding removing the line below,
726 which explains why it is still enabled: --djm
728 If you put a patch like that into BFD you need to check all the COFF
729 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
730 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
731 problem in a different way. There may very well be a reason that the
732 code works as it does.
734 Hmmm. The first obvious point is that bfd_perform_relocation should
735 not have any tests that depend upon the flavour. It's seem like
736 entirely the wrong place for such a thing. The second obvious point
737 is that the current code ignores the reloc addend when producing
738 relocateable output for COFF. That's peculiar. In fact, I really
739 have no idea what the point of the line you want to remove is.
741 A typical COFF reloc subtracts the old value of the symbol and adds in
742 the new value to the location in the object file (if it's a pc
743 relative reloc it adds the difference between the symbol value and the
744 location). When relocating we need to preserve that property.
746 BFD handles this by setting the addend to the negative of the old
747 value of the symbol. Unfortunately it handles common symbols in a
748 non-standard way (it doesn't subtract the old value) but that's a
749 different story (we can't change it without losing backward
750 compatibility with old object files) (coff-i386 does subtract the old
751 value, to be compatible with existing coff-i386 targets, like SCO).
753 So everything works fine when not producing relocateable output. When
754 we are producing relocateable output, logically we should do exactly
755 what we do when not producing relocateable output. Therefore, your
756 patch is correct. In fact, it should probably always just set
757 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
758 add the value into the object file. This won't hurt the COFF code,
759 which doesn't use the addend; I'm not sure what it will do to other
760 formats (the thing to check for would be whether any formats both use
761 the addend and set partial_inplace).
763 When I wanted to make coff-i386 produce relocateable output, I ran
764 into the problem that you are running into: I wanted to remove that
765 line. Rather than risk it, I made the coff-i386 relocs use a special
766 function; it's coff_i386_reloc in coff-i386.c. The function
767 specifically adds the addend field into the object file, knowing that
768 bfd_perform_relocation is not going to. If you remove that line, then
769 coff-i386.c will wind up adding the addend field in twice. It's
770 trivial to fix; it just needs to be done.
772 The problem with removing the line is just that it may break some
773 working code. With BFD it's hard to be sure of anything. The right
774 way to deal with this is simply to build and test at least all the
775 supported COFF targets. It should be straightforward if time and disk
776 space consuming. For each target:
777 1) build the linker
778 2) generate some executable, and link it using -r (I would
779 probably use paranoia.o and link against newlib/libc.a, which
780 for all the supported targets would be available in
781 /usr/cygnus/progressive/H-host/target/lib/libc.a).
782 3) make the change to reloc.c
783 4) rebuild the linker
784 5) repeat step 2
785 6) if the resulting object files are the same, you have at least
786 made it no worse
787 7) if they are different you have to figure out which version is
788 right
790 relocation -= reloc_entry->addend;
791 #endif
792 reloc_entry->addend = 0;
794 else
796 reloc_entry->addend = relocation;
800 else
802 reloc_entry->addend = 0;
805 /* FIXME: This overflow checking is incomplete, because the value
806 might have overflowed before we get here. For a correct check we
807 need to compute the value in a size larger than bitsize, but we
808 can't reasonably do that for a reloc the same size as a host
809 machine word.
810 FIXME: We should also do overflow checking on the result after
811 adding in the value contained in the object file. */
812 if (howto->complain_on_overflow != complain_overflow_dont
813 && flag == bfd_reloc_ok)
814 flag = bfd_check_overflow (howto->complain_on_overflow,
815 howto->bitsize,
816 howto->rightshift,
817 bfd_arch_bits_per_address (abfd),
818 relocation);
821 Either we are relocating all the way, or we don't want to apply
822 the relocation to the reloc entry (probably because there isn't
823 any room in the output format to describe addends to relocs)
826 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
827 (OSF version 1.3, compiler version 3.11). It miscompiles the
828 following program:
830 struct str
832 unsigned int i0;
833 } s = { 0 };
836 main ()
838 unsigned long x;
840 x = 0x100000000;
841 x <<= (unsigned long) s.i0;
842 if (x == 0)
843 printf ("failed\n");
844 else
845 printf ("succeeded (%lx)\n", x);
849 relocation >>= (bfd_vma) howto->rightshift;
851 /* Shift everything up to where it's going to be used */
853 relocation <<= (bfd_vma) howto->bitpos;
855 /* Wait for the day when all have the mask in them */
857 /* What we do:
858 i instruction to be left alone
859 o offset within instruction
860 r relocation offset to apply
861 S src mask
862 D dst mask
863 N ~dst mask
864 A part 1
865 B part 2
866 R result
868 Do this:
869 (( i i i i i o o o o o from bfd_get<size>
870 and S S S S S) to get the size offset we want
871 + r r r r r r r r r r) to get the final value to place
872 and D D D D D to chop to right size
873 -----------------------
874 = A A A A A
875 And this:
876 ( i i i i i o o o o o from bfd_get<size>
877 and N N N N N ) get instruction
878 -----------------------
879 = B B B B B
881 And then:
882 ( B B B B B
883 or A A A A A)
884 -----------------------
885 = R R R R R R R R R R put into bfd_put<size>
888 #define DOIT(x) \
889 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891 switch (howto->size)
893 case 0:
895 char x = bfd_get_8 (abfd, (char *) data + octets);
896 DOIT (x);
897 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
899 break;
901 case 1:
903 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
904 DOIT (x);
905 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
907 break;
908 case 2:
910 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
911 DOIT (x);
912 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
914 break;
915 case -2:
917 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
918 relocation = -relocation;
919 DOIT (x);
920 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
922 break;
924 case -1:
926 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
927 relocation = -relocation;
928 DOIT (x);
929 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
931 break;
933 case 3:
934 /* Do nothing */
935 break;
937 case 4:
938 #ifdef BFD64
940 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
941 DOIT (x);
942 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
944 #else
945 abort ();
946 #endif
947 break;
948 default:
949 return bfd_reloc_other;
952 return flag;
956 FUNCTION
957 bfd_install_relocation
959 SYNOPSIS
960 bfd_reloc_status_type
961 bfd_install_relocation
962 (bfd *abfd,
963 arelent *reloc_entry,
964 PTR data, bfd_vma data_start,
965 asection *input_section,
966 char **error_message);
968 DESCRIPTION
969 This looks remarkably like <<bfd_perform_relocation>>, except it
970 does not expect that the section contents have been filled in.
971 I.e., it's suitable for use when creating, rather than applying
972 a relocation.
974 For now, this function should be considered reserved for the
975 assembler.
979 bfd_reloc_status_type
980 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1010 bfd_reloc_status_type cont;
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1023 /* Is the address of the relocation really within the section? */
1024 if (reloc_entry->address > input_section->_cooked_size)
1025 return bfd_reloc_outofrange;
1027 /* Work out which section the relocation is targetted at and the
1028 initial relocation command value. */
1030 /* Get symbol value. (Common symbols are special.) */
1031 if (bfd_is_com_section (symbol->section))
1032 relocation = 0;
1033 else
1034 relocation = symbol->value;
1036 reloc_target_output_section = symbol->section->output_section;
1038 /* Convert input-section-relative symbol value to absolute. */
1039 if (howto->partial_inplace == false)
1040 output_base = 0;
1041 else
1042 output_base = reloc_target_output_section->vma;
1044 relocation += output_base + symbol->section->output_offset;
1046 /* Add in supplied addend. */
1047 relocation += reloc_entry->addend;
1049 /* Here the variable relocation holds the final address of the
1050 symbol we are relocating against, plus any addend. */
1052 if (howto->pc_relative == true)
1054 /* This is a PC relative relocation. We want to set RELOCATION
1055 to the distance between the address of the symbol and the
1056 location. RELOCATION is already the address of the symbol.
1058 We start by subtracting the address of the section containing
1059 the location.
1061 If pcrel_offset is set, we must further subtract the position
1062 of the location within the section. Some targets arrange for
1063 the addend to be the negative of the position of the location
1064 within the section; for example, i386-aout does this. For
1065 i386-aout, pcrel_offset is false. Some other targets do not
1066 include the position of the location; for example, m88kbcs,
1067 or ELF. For those targets, pcrel_offset is true.
1069 If we are producing relocateable output, then we must ensure
1070 that this reloc will be correctly computed when the final
1071 relocation is done. If pcrel_offset is false we want to wind
1072 up with the negative of the location within the section,
1073 which means we must adjust the existing addend by the change
1074 in the location within the section. If pcrel_offset is true
1075 we do not want to adjust the existing addend at all.
1077 FIXME: This seems logical to me, but for the case of
1078 producing relocateable output it is not what the code
1079 actually does. I don't want to change it, because it seems
1080 far too likely that something will break. */
1082 relocation -=
1083 input_section->output_section->vma + input_section->output_offset;
1085 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1086 relocation -= reloc_entry->address;
1089 if (howto->partial_inplace == false)
1091 /* This is a partial relocation, and we want to apply the relocation
1092 to the reloc entry rather than the raw data. Modify the reloc
1093 inplace to reflect what we now know. */
1094 reloc_entry->addend = relocation;
1095 reloc_entry->address += input_section->output_offset;
1096 return flag;
1098 else
1100 /* This is a partial relocation, but inplace, so modify the
1101 reloc record a bit.
1103 If we've relocated with a symbol with a section, change
1104 into a ref to the section belonging to the symbol. */
1106 reloc_entry->address += input_section->output_offset;
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 #if 1
1114 /* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1118 However, Ian wrote the following, regarding removing the line below,
1119 which explains why it is still enabled: --djm
1121 If you put a patch like that into BFD you need to check all the COFF
1122 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124 problem in a different way. There may very well be a reason that the
1125 code works as it does.
1127 Hmmm. The first obvious point is that bfd_install_relocation should
1128 not have any tests that depend upon the flavour. It's seem like
1129 entirely the wrong place for such a thing. The second obvious point
1130 is that the current code ignores the reloc addend when producing
1131 relocateable output for COFF. That's peculiar. In fact, I really
1132 have no idea what the point of the line you want to remove is.
1134 A typical COFF reloc subtracts the old value of the symbol and adds in
1135 the new value to the location in the object file (if it's a pc
1136 relative reloc it adds the difference between the symbol value and the
1137 location). When relocating we need to preserve that property.
1139 BFD handles this by setting the addend to the negative of the old
1140 value of the symbol. Unfortunately it handles common symbols in a
1141 non-standard way (it doesn't subtract the old value) but that's a
1142 different story (we can't change it without losing backward
1143 compatibility with old object files) (coff-i386 does subtract the old
1144 value, to be compatible with existing coff-i386 targets, like SCO).
1146 So everything works fine when not producing relocateable output. When
1147 we are producing relocateable output, logically we should do exactly
1148 what we do when not producing relocateable output. Therefore, your
1149 patch is correct. In fact, it should probably always just set
1150 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151 add the value into the object file. This won't hurt the COFF code,
1152 which doesn't use the addend; I'm not sure what it will do to other
1153 formats (the thing to check for would be whether any formats both use
1154 the addend and set partial_inplace).
1156 When I wanted to make coff-i386 produce relocateable output, I ran
1157 into the problem that you are running into: I wanted to remove that
1158 line. Rather than risk it, I made the coff-i386 relocs use a special
1159 function; it's coff_i386_reloc in coff-i386.c. The function
1160 specifically adds the addend field into the object file, knowing that
1161 bfd_install_relocation is not going to. If you remove that line, then
1162 coff-i386.c will wind up adding the addend field in twice. It's
1163 trivial to fix; it just needs to be done.
1165 The problem with removing the line is just that it may break some
1166 working code. With BFD it's hard to be sure of anything. The right
1167 way to deal with this is simply to build and test at least all the
1168 supported COFF targets. It should be straightforward if time and disk
1169 space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
1181 right
1183 relocation -= reloc_entry->addend;
1184 #endif
1185 reloc_entry->addend = 0;
1187 else
1189 reloc_entry->addend = relocation;
1193 /* FIXME: This overflow checking is incomplete, because the value
1194 might have overflowed before we get here. For a correct check we
1195 need to compute the value in a size larger than bitsize, but we
1196 can't reasonably do that for a reloc the same size as a host
1197 machine word.
1198 FIXME: We should also do overflow checking on the result after
1199 adding in the value contained in the object file. */
1200 if (howto->complain_on_overflow != complain_overflow_dont)
1201 flag = bfd_check_overflow (howto->complain_on_overflow,
1202 howto->bitsize,
1203 howto->rightshift,
1204 bfd_arch_bits_per_address (abfd),
1205 relocation);
1208 Either we are relocating all the way, or we don't want to apply
1209 the relocation to the reloc entry (probably because there isn't
1210 any room in the output format to describe addends to relocs)
1213 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1214 (OSF version 1.3, compiler version 3.11). It miscompiles the
1215 following program:
1217 struct str
1219 unsigned int i0;
1220 } s = { 0 };
1223 main ()
1225 unsigned long x;
1227 x = 0x100000000;
1228 x <<= (unsigned long) s.i0;
1229 if (x == 0)
1230 printf ("failed\n");
1231 else
1232 printf ("succeeded (%lx)\n", x);
1236 relocation >>= (bfd_vma) howto->rightshift;
1238 /* Shift everything up to where it's going to be used */
1240 relocation <<= (bfd_vma) howto->bitpos;
1242 /* Wait for the day when all have the mask in them */
1244 /* What we do:
1245 i instruction to be left alone
1246 o offset within instruction
1247 r relocation offset to apply
1248 S src mask
1249 D dst mask
1250 N ~dst mask
1251 A part 1
1252 B part 2
1253 R result
1255 Do this:
1256 (( i i i i i o o o o o from bfd_get<size>
1257 and S S S S S) to get the size offset we want
1258 + r r r r r r r r r r) to get the final value to place
1259 and D D D D D to chop to right size
1260 -----------------------
1261 = A A A A A
1262 And this:
1263 ( i i i i i o o o o o from bfd_get<size>
1264 and N N N N N ) get instruction
1265 -----------------------
1266 = B B B B B
1268 And then:
1269 ( B B B B B
1270 or A A A A A)
1271 -----------------------
1272 = R R R R R R R R R R put into bfd_put<size>
1275 #define DOIT(x) \
1276 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1278 data = (bfd_byte *) data_start + (octets - data_start_offset);
1280 switch (howto->size)
1282 case 0:
1284 char x = bfd_get_8 (abfd, (char *) data);
1285 DOIT (x);
1286 bfd_put_8 (abfd, x, (unsigned char *) data);
1288 break;
1290 case 1:
1292 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1293 DOIT (x);
1294 bfd_put_16 (abfd, x, (unsigned char *) data);
1296 break;
1297 case 2:
1299 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1300 DOIT (x);
1301 bfd_put_32 (abfd, x, (bfd_byte *) data);
1303 break;
1304 case -2:
1306 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1307 relocation = -relocation;
1308 DOIT (x);
1309 bfd_put_32 (abfd, x, (bfd_byte *) data);
1311 break;
1313 case 3:
1314 /* Do nothing */
1315 break;
1317 case 4:
1319 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1320 DOIT (x);
1321 bfd_put_64 (abfd, x, (bfd_byte *) data);
1323 break;
1324 default:
1325 return bfd_reloc_other;
1328 return flag;
1331 /* This relocation routine is used by some of the backend linkers.
1332 They do not construct asymbol or arelent structures, so there is no
1333 reason for them to use bfd_perform_relocation. Also,
1334 bfd_perform_relocation is so hacked up it is easier to write a new
1335 function than to try to deal with it.
1337 This routine does a final relocation. Whether it is useful for a
1338 relocateable link depends upon how the object format defines
1339 relocations.
1341 FIXME: This routine ignores any special_function in the HOWTO,
1342 since the existing special_function values have been written for
1343 bfd_perform_relocation.
1345 HOWTO is the reloc howto information.
1346 INPUT_BFD is the BFD which the reloc applies to.
1347 INPUT_SECTION is the section which the reloc applies to.
1348 CONTENTS is the contents of the section.
1349 ADDRESS is the address of the reloc within INPUT_SECTION.
1350 VALUE is the value of the symbol the reloc refers to.
1351 ADDEND is the addend of the reloc. */
1353 bfd_reloc_status_type
1354 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1355 value, addend)
1356 reloc_howto_type *howto;
1357 bfd *input_bfd;
1358 asection *input_section;
1359 bfd_byte *contents;
1360 bfd_vma address;
1361 bfd_vma value;
1362 bfd_vma addend;
1364 bfd_vma relocation;
1366 /* Sanity check the address. */
1367 if (address > input_section->_raw_size)
1368 return bfd_reloc_outofrange;
1370 /* This function assumes that we are dealing with a basic relocation
1371 against a symbol. We want to compute the value of the symbol to
1372 relocate to. This is just VALUE, the value of the symbol, plus
1373 ADDEND, any addend associated with the reloc. */
1374 relocation = value + addend;
1376 /* If the relocation is PC relative, we want to set RELOCATION to
1377 the distance between the symbol (currently in RELOCATION) and the
1378 location we are relocating. Some targets (e.g., i386-aout)
1379 arrange for the contents of the section to be the negative of the
1380 offset of the location within the section; for such targets
1381 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1382 simply leave the contents of the section as zero; for such
1383 targets pcrel_offset is true. If pcrel_offset is false we do not
1384 need to subtract out the offset of the location within the
1385 section (which is just ADDRESS). */
1386 if (howto->pc_relative)
1388 relocation -= (input_section->output_section->vma
1389 + input_section->output_offset);
1390 if (howto->pcrel_offset)
1391 relocation -= address;
1394 return _bfd_relocate_contents (howto, input_bfd, relocation,
1395 contents + address);
1398 /* Relocate a given location using a given value and howto. */
1400 bfd_reloc_status_type
1401 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1402 reloc_howto_type *howto;
1403 bfd *input_bfd;
1404 bfd_vma relocation;
1405 bfd_byte *location;
1407 int size;
1408 bfd_vma x = 0;
1409 bfd_reloc_status_type flag;
1410 unsigned int rightshift = howto->rightshift;
1411 unsigned int bitpos = howto->bitpos;
1413 /* If the size is negative, negate RELOCATION. This isn't very
1414 general. */
1415 if (howto->size < 0)
1416 relocation = -relocation;
1418 /* Get the value we are going to relocate. */
1419 size = bfd_get_reloc_size (howto);
1420 switch (size)
1422 default:
1423 case 0:
1424 abort ();
1425 case 1:
1426 x = bfd_get_8 (input_bfd, location);
1427 break;
1428 case 2:
1429 x = bfd_get_16 (input_bfd, location);
1430 break;
1431 case 4:
1432 x = bfd_get_32 (input_bfd, location);
1433 break;
1434 case 8:
1435 #ifdef BFD64
1436 x = bfd_get_64 (input_bfd, location);
1437 #else
1438 abort ();
1439 #endif
1440 break;
1443 /* Check for overflow. FIXME: We may drop bits during the addition
1444 which we don't check for. We must either check at every single
1445 operation, which would be tedious, or we must do the computations
1446 in a type larger than bfd_vma, which would be inefficient. */
1447 flag = bfd_reloc_ok;
1448 if (howto->complain_on_overflow != complain_overflow_dont)
1450 bfd_vma addrmask, fieldmask, signmask, ss;
1451 bfd_vma a, b, sum;
1453 /* Get the values to be added together. For signed and unsigned
1454 relocations, we assume that all values should be truncated to
1455 the size of an address. For bitfields, all the bits matter.
1456 See also bfd_check_overflow. */
1457 fieldmask = N_ONES (howto->bitsize);
1458 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1459 a = relocation;
1460 b = x & howto->src_mask;
1462 switch (howto->complain_on_overflow)
1464 case complain_overflow_signed:
1465 a = (a & addrmask) >> rightshift;
1467 /* If any sign bits are set, all sign bits must be set.
1468 That is, A must be a valid negative address after
1469 shifting. */
1470 signmask = ~ (fieldmask >> 1);
1471 ss = a & signmask;
1472 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1473 flag = bfd_reloc_overflow;
1475 /* We only need this next bit of code if the sign bit of B
1476 is below the sign bit of A. This would only happen if
1477 SRC_MASK had fewer bits than BITSIZE. Note that if
1478 SRC_MASK has more bits than BITSIZE, we can get into
1479 trouble; we would need to verify that B is in range, as
1480 we do for A above. */
1481 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1483 /* Set all the bits above the sign bit. */
1484 b = (b ^ signmask) - signmask;
1486 b = (b & addrmask) >> bitpos;
1488 /* Now we can do the addition. */
1489 sum = a + b;
1491 /* See if the result has the correct sign. Bits above the
1492 sign bit are junk now; ignore them. If the sum is
1493 positive, make sure we did not have all negative inputs;
1494 if the sum is negative, make sure we did not have all
1495 positive inputs. The test below looks only at the sign
1496 bits, and it really just
1497 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1499 signmask = (fieldmask >> 1) + 1;
1500 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1501 flag = bfd_reloc_overflow;
1503 break;
1505 case complain_overflow_unsigned:
1506 /* Checking for an unsigned overflow is relatively easy:
1507 trim the addresses and add, and trim the result as well.
1508 Overflow is normally indicated when the result does not
1509 fit in the field. However, we also need to consider the
1510 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1511 input is 0x80000000, and bfd_vma is only 32 bits; then we
1512 will get sum == 0, but there is an overflow, since the
1513 inputs did not fit in the field. Instead of doing a
1514 separate test, we can check for this by or-ing in the
1515 operands when testing for the sum overflowing its final
1516 field. */
1517 a = (a & addrmask) >> rightshift;
1518 b = (b & addrmask) >> bitpos;
1519 sum = (a + b) & addrmask;
1520 if ((a | b | sum) & ~ fieldmask)
1521 flag = bfd_reloc_overflow;
1523 break;
1525 case complain_overflow_bitfield:
1526 /* Much like the signed check, but for a field one bit
1527 wider, and no trimming inputs with addrmask. We allow a
1528 bitfield to represent numbers in the range -2**n to
1529 2**n-1, where n is the number of bits in the field.
1530 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1531 overflow, which is exactly what we want. */
1532 a >>= rightshift;
1534 signmask = ~ fieldmask;
1535 ss = a & signmask;
1536 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1537 flag = bfd_reloc_overflow;
1539 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1540 b = (b ^ signmask) - signmask;
1542 b >>= bitpos;
1544 sum = a + b;
1546 /* We mask with addrmask here to explicitly allow an address
1547 wrap-around. The Linux kernel relies on it, and it is
1548 the only way to write assembler code which can run when
1549 loaded at a location 0x80000000 away from the location at
1550 which it is linked. */
1551 signmask = fieldmask + 1;
1552 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1553 flag = bfd_reloc_overflow;
1555 break;
1557 default:
1558 abort ();
1562 /* Put RELOCATION in the right bits. */
1563 relocation >>= (bfd_vma) rightshift;
1564 relocation <<= (bfd_vma) bitpos;
1566 /* Add RELOCATION to the right bits of X. */
1567 x = ((x & ~howto->dst_mask)
1568 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1570 /* Put the relocated value back in the object file. */
1571 switch (size)
1573 default:
1574 case 0:
1575 abort ();
1576 case 1:
1577 bfd_put_8 (input_bfd, x, location);
1578 break;
1579 case 2:
1580 bfd_put_16 (input_bfd, x, location);
1581 break;
1582 case 4:
1583 bfd_put_32 (input_bfd, x, location);
1584 break;
1585 case 8:
1586 #ifdef BFD64
1587 bfd_put_64 (input_bfd, x, location);
1588 #else
1589 abort ();
1590 #endif
1591 break;
1594 return flag;
1598 DOCDD
1599 INODE
1600 howto manager, , typedef arelent, Relocations
1602 SECTION
1603 The howto manager
1605 When an application wants to create a relocation, but doesn't
1606 know what the target machine might call it, it can find out by
1607 using this bit of code.
1612 TYPEDEF
1613 bfd_reloc_code_type
1615 DESCRIPTION
1616 The insides of a reloc code. The idea is that, eventually, there
1617 will be one enumerator for every type of relocation we ever do.
1618 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1619 return a howto pointer.
1621 This does mean that the application must determine the correct
1622 enumerator value; you can't get a howto pointer from a random set
1623 of attributes.
1625 SENUM
1626 bfd_reloc_code_real
1628 ENUM
1629 BFD_RELOC_64
1630 ENUMX
1631 BFD_RELOC_32
1632 ENUMX
1633 BFD_RELOC_26
1634 ENUMX
1635 BFD_RELOC_24
1636 ENUMX
1637 BFD_RELOC_16
1638 ENUMX
1639 BFD_RELOC_14
1640 ENUMX
1641 BFD_RELOC_8
1642 ENUMDOC
1643 Basic absolute relocations of N bits.
1645 ENUM
1646 BFD_RELOC_64_PCREL
1647 ENUMX
1648 BFD_RELOC_32_PCREL
1649 ENUMX
1650 BFD_RELOC_24_PCREL
1651 ENUMX
1652 BFD_RELOC_16_PCREL
1653 ENUMX
1654 BFD_RELOC_12_PCREL
1655 ENUMX
1656 BFD_RELOC_8_PCREL
1657 ENUMDOC
1658 PC-relative relocations. Sometimes these are relative to the address
1659 of the relocation itself; sometimes they are relative to the start of
1660 the section containing the relocation. It depends on the specific target.
1662 The 24-bit relocation is used in some Intel 960 configurations.
1664 ENUM
1665 BFD_RELOC_32_GOT_PCREL
1666 ENUMX
1667 BFD_RELOC_16_GOT_PCREL
1668 ENUMX
1669 BFD_RELOC_8_GOT_PCREL
1670 ENUMX
1671 BFD_RELOC_32_GOTOFF
1672 ENUMX
1673 BFD_RELOC_16_GOTOFF
1674 ENUMX
1675 BFD_RELOC_LO16_GOTOFF
1676 ENUMX
1677 BFD_RELOC_HI16_GOTOFF
1678 ENUMX
1679 BFD_RELOC_HI16_S_GOTOFF
1680 ENUMX
1681 BFD_RELOC_8_GOTOFF
1682 ENUMX
1683 BFD_RELOC_32_PLT_PCREL
1684 ENUMX
1685 BFD_RELOC_24_PLT_PCREL
1686 ENUMX
1687 BFD_RELOC_16_PLT_PCREL
1688 ENUMX
1689 BFD_RELOC_8_PLT_PCREL
1690 ENUMX
1691 BFD_RELOC_32_PLTOFF
1692 ENUMX
1693 BFD_RELOC_16_PLTOFF
1694 ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696 ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698 ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700 ENUMX
1701 BFD_RELOC_8_PLTOFF
1702 ENUMDOC
1703 For ELF.
1705 ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707 ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709 ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711 ENUMDOC
1712 Relocations used by 68K ELF.
1714 ENUM
1715 BFD_RELOC_32_BASEREL
1716 ENUMX
1717 BFD_RELOC_16_BASEREL
1718 ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720 ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722 ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724 ENUMX
1725 BFD_RELOC_8_BASEREL
1726 ENUMX
1727 BFD_RELOC_RVA
1728 ENUMDOC
1729 Linkage-table relative.
1731 ENUM
1732 BFD_RELOC_8_FFnn
1733 ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1736 ENUM
1737 BFD_RELOC_32_PCREL_S2
1738 ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740 ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742 ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744 i.e., byte displacements shifted right two bits. The 30-bit word
1745 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747 signed 16-bit displacement is used on the MIPS, and the 23-bit
1748 displacement is used on the Alpha.
1750 ENUM
1751 BFD_RELOC_HI22
1752 ENUMX
1753 BFD_RELOC_LO10
1754 ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756 the target word. These are used on the SPARC.
1758 ENUM
1759 BFD_RELOC_GPREL16
1760 ENUMX
1761 BFD_RELOC_GPREL32
1762 ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764 displacements off that register. These relocation types are
1765 handled specially, because the value the register will have is
1766 decided relatively late.
1768 ENUM
1769 BFD_RELOC_I960_CALLJ
1770 ENUMDOC
1771 Reloc types used for i960/b.out.
1773 ENUM
1774 BFD_RELOC_NONE
1775 ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777 ENUMX
1778 BFD_RELOC_SPARC22
1779 ENUMX
1780 BFD_RELOC_SPARC13
1781 ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783 ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785 ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787 ENUMX
1788 BFD_RELOC_SPARC_PC10
1789 ENUMX
1790 BFD_RELOC_SPARC_PC22
1791 ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793 ENUMX
1794 BFD_RELOC_SPARC_COPY
1795 ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797 ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799 ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
1801 ENUMX
1802 BFD_RELOC_SPARC_UA32
1803 ENUMDOC
1804 SPARC ELF relocations. There is probably some overlap with other
1805 relocation types already defined.
1807 ENUM
1808 BFD_RELOC_SPARC_BASE13
1809 ENUMX
1810 BFD_RELOC_SPARC_BASE22
1811 ENUMDOC
1812 I think these are specific to SPARC a.out (e.g., Sun 4).
1814 ENUMEQ
1815 BFD_RELOC_SPARC_64
1816 BFD_RELOC_64
1817 ENUMX
1818 BFD_RELOC_SPARC_10
1819 ENUMX
1820 BFD_RELOC_SPARC_11
1821 ENUMX
1822 BFD_RELOC_SPARC_OLO10
1823 ENUMX
1824 BFD_RELOC_SPARC_HH22
1825 ENUMX
1826 BFD_RELOC_SPARC_HM10
1827 ENUMX
1828 BFD_RELOC_SPARC_LM22
1829 ENUMX
1830 BFD_RELOC_SPARC_PC_HH22
1831 ENUMX
1832 BFD_RELOC_SPARC_PC_HM10
1833 ENUMX
1834 BFD_RELOC_SPARC_PC_LM22
1835 ENUMX
1836 BFD_RELOC_SPARC_WDISP16
1837 ENUMX
1838 BFD_RELOC_SPARC_WDISP19
1839 ENUMX
1840 BFD_RELOC_SPARC_7
1841 ENUMX
1842 BFD_RELOC_SPARC_6
1843 ENUMX
1844 BFD_RELOC_SPARC_5
1845 ENUMEQX
1846 BFD_RELOC_SPARC_DISP64
1847 BFD_RELOC_64_PCREL
1848 ENUMX
1849 BFD_RELOC_SPARC_PLT64
1850 ENUMX
1851 BFD_RELOC_SPARC_HIX22
1852 ENUMX
1853 BFD_RELOC_SPARC_LOX10
1854 ENUMX
1855 BFD_RELOC_SPARC_H44
1856 ENUMX
1857 BFD_RELOC_SPARC_M44
1858 ENUMX
1859 BFD_RELOC_SPARC_L44
1860 ENUMX
1861 BFD_RELOC_SPARC_REGISTER
1862 ENUMDOC
1863 SPARC64 relocations
1865 ENUM
1866 BFD_RELOC_SPARC_REV32
1867 ENUMDOC
1868 SPARC little endian relocation
1870 ENUM
1871 BFD_RELOC_ALPHA_GPDISP_HI16
1872 ENUMDOC
1873 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1874 "addend" in some special way.
1875 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1876 writing; when reading, it will be the absolute section symbol. The
1877 addend is the displacement in bytes of the "lda" instruction from
1878 the "ldah" instruction (which is at the address of this reloc).
1879 ENUM
1880 BFD_RELOC_ALPHA_GPDISP_LO16
1881 ENUMDOC
1882 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1883 with GPDISP_HI16 relocs. The addend is ignored when writing the
1884 relocations out, and is filled in with the file's GP value on
1885 reading, for convenience.
1887 ENUM
1888 BFD_RELOC_ALPHA_GPDISP
1889 ENUMDOC
1890 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1891 relocation except that there is no accompanying GPDISP_LO16
1892 relocation.
1894 ENUM
1895 BFD_RELOC_ALPHA_LITERAL
1896 ENUMX
1897 BFD_RELOC_ALPHA_ELF_LITERAL
1898 ENUMX
1899 BFD_RELOC_ALPHA_LITUSE
1900 ENUMDOC
1901 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1902 the assembler turns it into a LDQ instruction to load the address of
1903 the symbol, and then fills in a register in the real instruction.
1905 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1906 section symbol. The addend is ignored when writing, but is filled
1907 in with the file's GP value on reading, for convenience, as with the
1908 GPDISP_LO16 reloc.
1910 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1911 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1912 but it generates output not based on the position within the .got
1913 section, but relative to the GP value chosen for the file during the
1914 final link stage.
1916 The LITUSE reloc, on the instruction using the loaded address, gives
1917 information to the linker that it might be able to use to optimize
1918 away some literal section references. The symbol is ignored (read
1919 as the absolute section symbol), and the "addend" indicates the type
1920 of instruction using the register:
1921 1 - "memory" fmt insn
1922 2 - byte-manipulation (byte offset reg)
1923 3 - jsr (target of branch)
1925 The GNU linker currently doesn't do any of this optimizing.
1927 ENUM
1928 BFD_RELOC_ALPHA_USER_LITERAL
1929 ENUMX
1930 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1931 ENUMX
1932 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1933 ENUMX
1934 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1935 ENUMX
1936 BFD_RELOC_ALPHA_USER_GPDISP
1937 ENUMX
1938 BFD_RELOC_ALPHA_USER_GPRELHIGH
1939 ENUMX
1940 BFD_RELOC_ALPHA_USER_GPRELLOW
1941 ENUMDOC
1942 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1943 process the explicit !<reloc>!sequence relocations, and are mapped
1944 into the normal relocations at the end of processing.
1946 ENUM
1947 BFD_RELOC_ALPHA_HINT
1948 ENUMDOC
1949 The HINT relocation indicates a value that should be filled into the
1950 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1951 prediction logic which may be provided on some processors.
1953 ENUM
1954 BFD_RELOC_ALPHA_LINKAGE
1955 ENUMDOC
1956 The LINKAGE relocation outputs a linkage pair in the object file,
1957 which is filled by the linker.
1959 ENUM
1960 BFD_RELOC_ALPHA_CODEADDR
1961 ENUMDOC
1962 The CODEADDR relocation outputs a STO_CA in the object file,
1963 which is filled by the linker.
1965 ENUM
1966 BFD_RELOC_MIPS_JMP
1967 ENUMDOC
1968 Bits 27..2 of the relocation address shifted right 2 bits;
1969 simple reloc otherwise.
1971 ENUM
1972 BFD_RELOC_MIPS16_JMP
1973 ENUMDOC
1974 The MIPS16 jump instruction.
1976 ENUM
1977 BFD_RELOC_MIPS16_GPREL
1978 ENUMDOC
1979 MIPS16 GP relative reloc.
1981 ENUM
1982 BFD_RELOC_HI16
1983 ENUMDOC
1984 High 16 bits of 32-bit value; simple reloc.
1985 ENUM
1986 BFD_RELOC_HI16_S
1987 ENUMDOC
1988 High 16 bits of 32-bit value but the low 16 bits will be sign
1989 extended and added to form the final result. If the low 16
1990 bits form a negative number, we need to add one to the high value
1991 to compensate for the borrow when the low bits are added.
1992 ENUM
1993 BFD_RELOC_LO16
1994 ENUMDOC
1995 Low 16 bits.
1996 ENUM
1997 BFD_RELOC_PCREL_HI16_S
1998 ENUMDOC
1999 Like BFD_RELOC_HI16_S, but PC relative.
2000 ENUM
2001 BFD_RELOC_PCREL_LO16
2002 ENUMDOC
2003 Like BFD_RELOC_LO16, but PC relative.
2005 ENUMEQ
2006 BFD_RELOC_MIPS_GPREL
2007 BFD_RELOC_GPREL16
2008 ENUMDOC
2009 Relocation relative to the global pointer.
2011 ENUM
2012 BFD_RELOC_MIPS_LITERAL
2013 ENUMDOC
2014 Relocation against a MIPS literal section.
2016 ENUM
2017 BFD_RELOC_MIPS_GOT16
2018 ENUMX
2019 BFD_RELOC_MIPS_CALL16
2020 ENUMEQX
2021 BFD_RELOC_MIPS_GPREL32
2022 BFD_RELOC_GPREL32
2023 ENUMX
2024 BFD_RELOC_MIPS_GOT_HI16
2025 ENUMX
2026 BFD_RELOC_MIPS_GOT_LO16
2027 ENUMX
2028 BFD_RELOC_MIPS_CALL_HI16
2029 ENUMX
2030 BFD_RELOC_MIPS_CALL_LO16
2031 ENUMX
2032 BFD_RELOC_MIPS_SUB
2033 ENUMX
2034 BFD_RELOC_MIPS_GOT_PAGE
2035 ENUMX
2036 BFD_RELOC_MIPS_GOT_OFST
2037 ENUMX
2038 BFD_RELOC_MIPS_GOT_DISP
2039 COMMENT
2040 ENUMDOC
2041 MIPS ELF relocations.
2043 COMMENT
2045 ENUM
2046 BFD_RELOC_386_GOT32
2047 ENUMX
2048 BFD_RELOC_386_PLT32
2049 ENUMX
2050 BFD_RELOC_386_COPY
2051 ENUMX
2052 BFD_RELOC_386_GLOB_DAT
2053 ENUMX
2054 BFD_RELOC_386_JUMP_SLOT
2055 ENUMX
2056 BFD_RELOC_386_RELATIVE
2057 ENUMX
2058 BFD_RELOC_386_GOTOFF
2059 ENUMX
2060 BFD_RELOC_386_GOTPC
2061 ENUMDOC
2062 i386/elf relocations
2064 ENUM
2065 BFD_RELOC_X86_64_GOT32
2066 ENUMX
2067 BFD_RELOC_X86_64_PLT32
2068 ENUMX
2069 BFD_RELOC_X86_64_COPY
2070 ENUMX
2071 BFD_RELOC_X86_64_GLOB_DAT
2072 ENUMX
2073 BFD_RELOC_X86_64_JUMP_SLOT
2074 ENUMX
2075 BFD_RELOC_X86_64_RELATIVE
2076 ENUMX
2077 BFD_RELOC_X86_64_GOTPCREL
2078 ENUMX
2079 BFD_RELOC_X86_64_32S
2080 ENUMDOC
2081 x86-64/elf relocations
2083 ENUM
2084 BFD_RELOC_NS32K_IMM_8
2085 ENUMX
2086 BFD_RELOC_NS32K_IMM_16
2087 ENUMX
2088 BFD_RELOC_NS32K_IMM_32
2089 ENUMX
2090 BFD_RELOC_NS32K_IMM_8_PCREL
2091 ENUMX
2092 BFD_RELOC_NS32K_IMM_16_PCREL
2093 ENUMX
2094 BFD_RELOC_NS32K_IMM_32_PCREL
2095 ENUMX
2096 BFD_RELOC_NS32K_DISP_8
2097 ENUMX
2098 BFD_RELOC_NS32K_DISP_16
2099 ENUMX
2100 BFD_RELOC_NS32K_DISP_32
2101 ENUMX
2102 BFD_RELOC_NS32K_DISP_8_PCREL
2103 ENUMX
2104 BFD_RELOC_NS32K_DISP_16_PCREL
2105 ENUMX
2106 BFD_RELOC_NS32K_DISP_32_PCREL
2107 ENUMDOC
2108 ns32k relocations
2110 ENUM
2111 BFD_RELOC_PJ_CODE_HI16
2112 ENUMX
2113 BFD_RELOC_PJ_CODE_LO16
2114 ENUMX
2115 BFD_RELOC_PJ_CODE_DIR16
2116 ENUMX
2117 BFD_RELOC_PJ_CODE_DIR32
2118 ENUMX
2119 BFD_RELOC_PJ_CODE_REL16
2120 ENUMX
2121 BFD_RELOC_PJ_CODE_REL32
2122 ENUMDOC
2123 Picojava relocs. Not all of these appear in object files.
2125 ENUM
2126 BFD_RELOC_PPC_B26
2127 ENUMX
2128 BFD_RELOC_PPC_BA26
2129 ENUMX
2130 BFD_RELOC_PPC_TOC16
2131 ENUMX
2132 BFD_RELOC_PPC_B16
2133 ENUMX
2134 BFD_RELOC_PPC_B16_BRTAKEN
2135 ENUMX
2136 BFD_RELOC_PPC_B16_BRNTAKEN
2137 ENUMX
2138 BFD_RELOC_PPC_BA16
2139 ENUMX
2140 BFD_RELOC_PPC_BA16_BRTAKEN
2141 ENUMX
2142 BFD_RELOC_PPC_BA16_BRNTAKEN
2143 ENUMX
2144 BFD_RELOC_PPC_COPY
2145 ENUMX
2146 BFD_RELOC_PPC_GLOB_DAT
2147 ENUMX
2148 BFD_RELOC_PPC_JMP_SLOT
2149 ENUMX
2150 BFD_RELOC_PPC_RELATIVE
2151 ENUMX
2152 BFD_RELOC_PPC_LOCAL24PC
2153 ENUMX
2154 BFD_RELOC_PPC_EMB_NADDR32
2155 ENUMX
2156 BFD_RELOC_PPC_EMB_NADDR16
2157 ENUMX
2158 BFD_RELOC_PPC_EMB_NADDR16_LO
2159 ENUMX
2160 BFD_RELOC_PPC_EMB_NADDR16_HI
2161 ENUMX
2162 BFD_RELOC_PPC_EMB_NADDR16_HA
2163 ENUMX
2164 BFD_RELOC_PPC_EMB_SDAI16
2165 ENUMX
2166 BFD_RELOC_PPC_EMB_SDA2I16
2167 ENUMX
2168 BFD_RELOC_PPC_EMB_SDA2REL
2169 ENUMX
2170 BFD_RELOC_PPC_EMB_SDA21
2171 ENUMX
2172 BFD_RELOC_PPC_EMB_MRKREF
2173 ENUMX
2174 BFD_RELOC_PPC_EMB_RELSEC16
2175 ENUMX
2176 BFD_RELOC_PPC_EMB_RELST_LO
2177 ENUMX
2178 BFD_RELOC_PPC_EMB_RELST_HI
2179 ENUMX
2180 BFD_RELOC_PPC_EMB_RELST_HA
2181 ENUMX
2182 BFD_RELOC_PPC_EMB_BIT_FLD
2183 ENUMX
2184 BFD_RELOC_PPC_EMB_RELSDA
2185 ENUMDOC
2186 Power(rs6000) and PowerPC relocations.
2188 ENUM
2189 BFD_RELOC_I370_D12
2190 ENUMDOC
2191 IBM 370/390 relocations
2193 ENUM
2194 BFD_RELOC_CTOR
2195 ENUMDOC
2196 The type of reloc used to build a contructor table - at the moment
2197 probably a 32 bit wide absolute relocation, but the target can choose.
2198 It generally does map to one of the other relocation types.
2200 ENUM
2201 BFD_RELOC_ARM_PCREL_BRANCH
2202 ENUMDOC
2203 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2204 not stored in the instruction.
2205 ENUM
2206 BFD_RELOC_ARM_PCREL_BLX
2207 ENUMDOC
2208 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2209 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2210 field in the instruction.
2211 ENUM
2212 BFD_RELOC_THUMB_PCREL_BLX
2213 ENUMDOC
2214 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2215 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2216 field in the instruction.
2217 ENUM
2218 BFD_RELOC_ARM_IMMEDIATE
2219 ENUMX
2220 BFD_RELOC_ARM_ADRL_IMMEDIATE
2221 ENUMX
2222 BFD_RELOC_ARM_OFFSET_IMM
2223 ENUMX
2224 BFD_RELOC_ARM_SHIFT_IMM
2225 ENUMX
2226 BFD_RELOC_ARM_SWI
2227 ENUMX
2228 BFD_RELOC_ARM_MULTI
2229 ENUMX
2230 BFD_RELOC_ARM_CP_OFF_IMM
2231 ENUMX
2232 BFD_RELOC_ARM_ADR_IMM
2233 ENUMX
2234 BFD_RELOC_ARM_LDR_IMM
2235 ENUMX
2236 BFD_RELOC_ARM_LITERAL
2237 ENUMX
2238 BFD_RELOC_ARM_IN_POOL
2239 ENUMX
2240 BFD_RELOC_ARM_OFFSET_IMM8
2241 ENUMX
2242 BFD_RELOC_ARM_HWLITERAL
2243 ENUMX
2244 BFD_RELOC_ARM_THUMB_ADD
2245 ENUMX
2246 BFD_RELOC_ARM_THUMB_IMM
2247 ENUMX
2248 BFD_RELOC_ARM_THUMB_SHIFT
2249 ENUMX
2250 BFD_RELOC_ARM_THUMB_OFFSET
2251 ENUMX
2252 BFD_RELOC_ARM_GOT12
2253 ENUMX
2254 BFD_RELOC_ARM_GOT32
2255 ENUMX
2256 BFD_RELOC_ARM_JUMP_SLOT
2257 ENUMX
2258 BFD_RELOC_ARM_COPY
2259 ENUMX
2260 BFD_RELOC_ARM_GLOB_DAT
2261 ENUMX
2262 BFD_RELOC_ARM_PLT32
2263 ENUMX
2264 BFD_RELOC_ARM_RELATIVE
2265 ENUMX
2266 BFD_RELOC_ARM_GOTOFF
2267 ENUMX
2268 BFD_RELOC_ARM_GOTPC
2269 ENUMDOC
2270 These relocs are only used within the ARM assembler. They are not
2271 (at present) written to any object files.
2273 ENUM
2274 BFD_RELOC_SH_PCDISP8BY2
2275 ENUMX
2276 BFD_RELOC_SH_PCDISP12BY2
2277 ENUMX
2278 BFD_RELOC_SH_IMM4
2279 ENUMX
2280 BFD_RELOC_SH_IMM4BY2
2281 ENUMX
2282 BFD_RELOC_SH_IMM4BY4
2283 ENUMX
2284 BFD_RELOC_SH_IMM8
2285 ENUMX
2286 BFD_RELOC_SH_IMM8BY2
2287 ENUMX
2288 BFD_RELOC_SH_IMM8BY4
2289 ENUMX
2290 BFD_RELOC_SH_PCRELIMM8BY2
2291 ENUMX
2292 BFD_RELOC_SH_PCRELIMM8BY4
2293 ENUMX
2294 BFD_RELOC_SH_SWITCH16
2295 ENUMX
2296 BFD_RELOC_SH_SWITCH32
2297 ENUMX
2298 BFD_RELOC_SH_USES
2299 ENUMX
2300 BFD_RELOC_SH_COUNT
2301 ENUMX
2302 BFD_RELOC_SH_ALIGN
2303 ENUMX
2304 BFD_RELOC_SH_CODE
2305 ENUMX
2306 BFD_RELOC_SH_DATA
2307 ENUMX
2308 BFD_RELOC_SH_LABEL
2309 ENUMX
2310 BFD_RELOC_SH_LOOP_START
2311 ENUMX
2312 BFD_RELOC_SH_LOOP_END
2313 ENUMX
2314 BFD_RELOC_SH_COPY
2315 ENUMX
2316 BFD_RELOC_SH_GLOB_DAT
2317 ENUMX
2318 BFD_RELOC_SH_JMP_SLOT
2319 ENUMX
2320 BFD_RELOC_SH_RELATIVE
2321 ENUMX
2322 BFD_RELOC_SH_GOTPC
2323 ENUMDOC
2324 Hitachi SH relocs. Not all of these appear in object files.
2326 ENUM
2327 BFD_RELOC_THUMB_PCREL_BRANCH9
2328 ENUMX
2329 BFD_RELOC_THUMB_PCREL_BRANCH12
2330 ENUMX
2331 BFD_RELOC_THUMB_PCREL_BRANCH23
2332 ENUMDOC
2333 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2334 be zero and is not stored in the instruction.
2336 ENUM
2337 BFD_RELOC_ARC_B22_PCREL
2338 ENUMDOC
2339 ARC Cores relocs.
2340 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2341 not stored in the instruction. The high 20 bits are installed in bits 26
2342 through 7 of the instruction.
2343 ENUM
2344 BFD_RELOC_ARC_B26
2345 ENUMDOC
2346 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2347 stored in the instruction. The high 24 bits are installed in bits 23
2348 through 0.
2350 ENUM
2351 BFD_RELOC_D10V_10_PCREL_R
2352 ENUMDOC
2353 Mitsubishi D10V relocs.
2354 This is a 10-bit reloc with the right 2 bits
2355 assumed to be 0.
2356 ENUM
2357 BFD_RELOC_D10V_10_PCREL_L
2358 ENUMDOC
2359 Mitsubishi D10V relocs.
2360 This is a 10-bit reloc with the right 2 bits
2361 assumed to be 0. This is the same as the previous reloc
2362 except it is in the left container, i.e.,
2363 shifted left 15 bits.
2364 ENUM
2365 BFD_RELOC_D10V_18
2366 ENUMDOC
2367 This is an 18-bit reloc with the right 2 bits
2368 assumed to be 0.
2369 ENUM
2370 BFD_RELOC_D10V_18_PCREL
2371 ENUMDOC
2372 This is an 18-bit reloc with the right 2 bits
2373 assumed to be 0.
2375 ENUM
2376 BFD_RELOC_D30V_6
2377 ENUMDOC
2378 Mitsubishi D30V relocs.
2379 This is a 6-bit absolute reloc.
2380 ENUM
2381 BFD_RELOC_D30V_9_PCREL
2382 ENUMDOC
2383 This is a 6-bit pc-relative reloc with
2384 the right 3 bits assumed to be 0.
2385 ENUM
2386 BFD_RELOC_D30V_9_PCREL_R
2387 ENUMDOC
2388 This is a 6-bit pc-relative reloc with
2389 the right 3 bits assumed to be 0. Same
2390 as the previous reloc but on the right side
2391 of the container.
2392 ENUM
2393 BFD_RELOC_D30V_15
2394 ENUMDOC
2395 This is a 12-bit absolute reloc with the
2396 right 3 bitsassumed to be 0.
2397 ENUM
2398 BFD_RELOC_D30V_15_PCREL
2399 ENUMDOC
2400 This is a 12-bit pc-relative reloc with
2401 the right 3 bits assumed to be 0.
2402 ENUM
2403 BFD_RELOC_D30V_15_PCREL_R
2404 ENUMDOC
2405 This is a 12-bit pc-relative reloc with
2406 the right 3 bits assumed to be 0. Same
2407 as the previous reloc but on the right side
2408 of the container.
2409 ENUM
2410 BFD_RELOC_D30V_21
2411 ENUMDOC
2412 This is an 18-bit absolute reloc with
2413 the right 3 bits assumed to be 0.
2414 ENUM
2415 BFD_RELOC_D30V_21_PCREL
2416 ENUMDOC
2417 This is an 18-bit pc-relative reloc with
2418 the right 3 bits assumed to be 0.
2419 ENUM
2420 BFD_RELOC_D30V_21_PCREL_R
2421 ENUMDOC
2422 This is an 18-bit pc-relative reloc with
2423 the right 3 bits assumed to be 0. Same
2424 as the previous reloc but on the right side
2425 of the container.
2426 ENUM
2427 BFD_RELOC_D30V_32
2428 ENUMDOC
2429 This is a 32-bit absolute reloc.
2430 ENUM
2431 BFD_RELOC_D30V_32_PCREL
2432 ENUMDOC
2433 This is a 32-bit pc-relative reloc.
2435 ENUM
2436 BFD_RELOC_M32R_24
2437 ENUMDOC
2438 Mitsubishi M32R relocs.
2439 This is a 24 bit absolute address.
2440 ENUM
2441 BFD_RELOC_M32R_10_PCREL
2442 ENUMDOC
2443 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2444 ENUM
2445 BFD_RELOC_M32R_18_PCREL
2446 ENUMDOC
2447 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2448 ENUM
2449 BFD_RELOC_M32R_26_PCREL
2450 ENUMDOC
2451 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2452 ENUM
2453 BFD_RELOC_M32R_HI16_ULO
2454 ENUMDOC
2455 This is a 16-bit reloc containing the high 16 bits of an address
2456 used when the lower 16 bits are treated as unsigned.
2457 ENUM
2458 BFD_RELOC_M32R_HI16_SLO
2459 ENUMDOC
2460 This is a 16-bit reloc containing the high 16 bits of an address
2461 used when the lower 16 bits are treated as signed.
2462 ENUM
2463 BFD_RELOC_M32R_LO16
2464 ENUMDOC
2465 This is a 16-bit reloc containing the lower 16 bits of an address.
2466 ENUM
2467 BFD_RELOC_M32R_SDA16
2468 ENUMDOC
2469 This is a 16-bit reloc containing the small data area offset for use in
2470 add3, load, and store instructions.
2472 ENUM
2473 BFD_RELOC_V850_9_PCREL
2474 ENUMDOC
2475 This is a 9-bit reloc
2476 ENUM
2477 BFD_RELOC_V850_22_PCREL
2478 ENUMDOC
2479 This is a 22-bit reloc
2481 ENUM
2482 BFD_RELOC_V850_SDA_16_16_OFFSET
2483 ENUMDOC
2484 This is a 16 bit offset from the short data area pointer.
2485 ENUM
2486 BFD_RELOC_V850_SDA_15_16_OFFSET
2487 ENUMDOC
2488 This is a 16 bit offset (of which only 15 bits are used) from the
2489 short data area pointer.
2490 ENUM
2491 BFD_RELOC_V850_ZDA_16_16_OFFSET
2492 ENUMDOC
2493 This is a 16 bit offset from the zero data area pointer.
2494 ENUM
2495 BFD_RELOC_V850_ZDA_15_16_OFFSET
2496 ENUMDOC
2497 This is a 16 bit offset (of which only 15 bits are used) from the
2498 zero data area pointer.
2499 ENUM
2500 BFD_RELOC_V850_TDA_6_8_OFFSET
2501 ENUMDOC
2502 This is an 8 bit offset (of which only 6 bits are used) from the
2503 tiny data area pointer.
2504 ENUM
2505 BFD_RELOC_V850_TDA_7_8_OFFSET
2506 ENUMDOC
2507 This is an 8bit offset (of which only 7 bits are used) from the tiny
2508 data area pointer.
2509 ENUM
2510 BFD_RELOC_V850_TDA_7_7_OFFSET
2511 ENUMDOC
2512 This is a 7 bit offset from the tiny data area pointer.
2513 ENUM
2514 BFD_RELOC_V850_TDA_16_16_OFFSET
2515 ENUMDOC
2516 This is a 16 bit offset from the tiny data area pointer.
2517 COMMENT
2518 ENUM
2519 BFD_RELOC_V850_TDA_4_5_OFFSET
2520 ENUMDOC
2521 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2522 data area pointer.
2523 ENUM
2524 BFD_RELOC_V850_TDA_4_4_OFFSET
2525 ENUMDOC
2526 This is a 4 bit offset from the tiny data area pointer.
2527 ENUM
2528 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2529 ENUMDOC
2530 This is a 16 bit offset from the short data area pointer, with the
2531 bits placed non-contigously in the instruction.
2532 ENUM
2533 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2534 ENUMDOC
2535 This is a 16 bit offset from the zero data area pointer, with the
2536 bits placed non-contigously in the instruction.
2537 ENUM
2538 BFD_RELOC_V850_CALLT_6_7_OFFSET
2539 ENUMDOC
2540 This is a 6 bit offset from the call table base pointer.
2541 ENUM
2542 BFD_RELOC_V850_CALLT_16_16_OFFSET
2543 ENUMDOC
2544 This is a 16 bit offset from the call table base pointer.
2545 COMMENT
2547 ENUM
2548 BFD_RELOC_MN10300_32_PCREL
2549 ENUMDOC
2550 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2551 instruction.
2552 ENUM
2553 BFD_RELOC_MN10300_16_PCREL
2554 ENUMDOC
2555 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2556 instruction.
2558 ENUM
2559 BFD_RELOC_TIC30_LDP
2560 ENUMDOC
2561 This is a 8bit DP reloc for the tms320c30, where the most
2562 significant 8 bits of a 24 bit word are placed into the least
2563 significant 8 bits of the opcode.
2565 ENUM
2566 BFD_RELOC_TIC54X_PARTLS7
2567 ENUMDOC
2568 This is a 7bit reloc for the tms320c54x, where the least
2569 significant 7 bits of a 16 bit word are placed into the least
2570 significant 7 bits of the opcode.
2572 ENUM
2573 BFD_RELOC_TIC54X_PARTMS9
2574 ENUMDOC
2575 This is a 9bit DP reloc for the tms320c54x, where the most
2576 significant 9 bits of a 16 bit word are placed into the least
2577 significant 9 bits of the opcode.
2579 ENUM
2580 BFD_RELOC_TIC54X_23
2581 ENUMDOC
2582 This is an extended address 23-bit reloc for the tms320c54x.
2584 ENUM
2585 BFD_RELOC_TIC54X_16_OF_23
2586 ENUMDOC
2587 This is a 16-bit reloc for the tms320c54x, where the least
2588 significant 16 bits of a 23-bit extended address are placed into
2589 the opcode.
2591 ENUM
2592 BFD_RELOC_TIC54X_MS7_OF_23
2593 ENUMDOC
2594 This is a reloc for the tms320c54x, where the most
2595 significant 7 bits of a 23-bit extended address are placed into
2596 the opcode.
2598 ENUM
2599 BFD_RELOC_FR30_48
2600 ENUMDOC
2601 This is a 48 bit reloc for the FR30 that stores 32 bits.
2602 ENUM
2603 BFD_RELOC_FR30_20
2604 ENUMDOC
2605 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2606 two sections.
2607 ENUM
2608 BFD_RELOC_FR30_6_IN_4
2609 ENUMDOC
2610 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2611 4 bits.
2612 ENUM
2613 BFD_RELOC_FR30_8_IN_8
2614 ENUMDOC
2615 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2616 into 8 bits.
2617 ENUM
2618 BFD_RELOC_FR30_9_IN_8
2619 ENUMDOC
2620 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2621 into 8 bits.
2622 ENUM
2623 BFD_RELOC_FR30_10_IN_8
2624 ENUMDOC
2625 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2626 into 8 bits.
2627 ENUM
2628 BFD_RELOC_FR30_9_PCREL
2629 ENUMDOC
2630 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2631 short offset into 8 bits.
2632 ENUM
2633 BFD_RELOC_FR30_12_PCREL
2634 ENUMDOC
2635 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2636 short offset into 11 bits.
2638 ENUM
2639 BFD_RELOC_MCORE_PCREL_IMM8BY4
2640 ENUMX
2641 BFD_RELOC_MCORE_PCREL_IMM11BY2
2642 ENUMX
2643 BFD_RELOC_MCORE_PCREL_IMM4BY2
2644 ENUMX
2645 BFD_RELOC_MCORE_PCREL_32
2646 ENUMX
2647 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2648 ENUMX
2649 BFD_RELOC_MCORE_RVA
2650 ENUMDOC
2651 Motorola Mcore relocations.
2653 ENUM
2654 BFD_RELOC_AVR_7_PCREL
2655 ENUMDOC
2656 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2657 short offset into 7 bits.
2658 ENUM
2659 BFD_RELOC_AVR_13_PCREL
2660 ENUMDOC
2661 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2662 short offset into 12 bits.
2663 ENUM
2664 BFD_RELOC_AVR_16_PM
2665 ENUMDOC
2666 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2667 program memory address) into 16 bits.
2668 ENUM
2669 BFD_RELOC_AVR_LO8_LDI
2670 ENUMDOC
2671 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2672 data memory address) into 8 bit immediate value of LDI insn.
2673 ENUM
2674 BFD_RELOC_AVR_HI8_LDI
2675 ENUMDOC
2676 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2677 of data memory address) into 8 bit immediate value of LDI insn.
2678 ENUM
2679 BFD_RELOC_AVR_HH8_LDI
2680 ENUMDOC
2681 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2682 of program memory address) into 8 bit immediate value of LDI insn.
2683 ENUM
2684 BFD_RELOC_AVR_LO8_LDI_NEG
2685 ENUMDOC
2686 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2687 (usually data memory address) into 8 bit immediate value of SUBI insn.
2688 ENUM
2689 BFD_RELOC_AVR_HI8_LDI_NEG
2690 ENUMDOC
2691 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2692 (high 8 bit of data memory address) into 8 bit immediate value of
2693 SUBI insn.
2694 ENUM
2695 BFD_RELOC_AVR_HH8_LDI_NEG
2696 ENUMDOC
2697 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2698 (most high 8 bit of program memory address) into 8 bit immediate value
2699 of LDI or SUBI insn.
2700 ENUM
2701 BFD_RELOC_AVR_LO8_LDI_PM
2702 ENUMDOC
2703 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2704 command address) into 8 bit immediate value of LDI insn.
2705 ENUM
2706 BFD_RELOC_AVR_HI8_LDI_PM
2707 ENUMDOC
2708 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2709 of command address) into 8 bit immediate value of LDI insn.
2710 ENUM
2711 BFD_RELOC_AVR_HH8_LDI_PM
2712 ENUMDOC
2713 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2714 of command address) into 8 bit immediate value of LDI insn.
2715 ENUM
2716 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2717 ENUMDOC
2718 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2719 (usually command address) into 8 bit immediate value of SUBI insn.
2720 ENUM
2721 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2722 ENUMDOC
2723 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2724 (high 8 bit of 16 bit command address) into 8 bit immediate value
2725 of SUBI insn.
2726 ENUM
2727 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2728 ENUMDOC
2729 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2730 (high 6 bit of 22 bit command address) into 8 bit immediate
2731 value of SUBI insn.
2732 ENUM
2733 BFD_RELOC_AVR_CALL
2734 ENUMDOC
2735 This is a 32 bit reloc for the AVR that stores 23 bit value
2736 into 22 bits.
2738 ENUM
2739 BFD_RELOC_390_12
2740 ENUMDOC
2741 Direct 12 bit.
2742 ENUM
2743 BFD_RELOC_390_GOT12
2744 ENUMDOC
2745 12 bit GOT offset.
2746 ENUM
2747 BFD_RELOC_390_PLT32
2748 ENUMDOC
2749 32 bit PC relative PLT address.
2750 ENUM
2751 BFD_RELOC_390_COPY
2752 ENUMDOC
2753 Copy symbol at runtime.
2754 ENUM
2755 BFD_RELOC_390_GLOB_DAT
2756 ENUMDOC
2757 Create GOT entry.
2758 ENUM
2759 BFD_RELOC_390_JMP_SLOT
2760 ENUMDOC
2761 Create PLT entry.
2762 ENUM
2763 BFD_RELOC_390_RELATIVE
2764 ENUMDOC
2765 Adjust by program base.
2766 ENUM
2767 BFD_RELOC_390_GOTPC
2768 ENUMDOC
2769 32 bit PC relative offset to GOT.
2770 ENUM
2771 BFD_RELOC_390_GOT16
2772 ENUMDOC
2773 16 bit GOT offset.
2774 ENUM
2775 BFD_RELOC_390_PC16DBL
2776 ENUMDOC
2777 PC relative 16 bit shifted by 1.
2778 ENUM
2779 BFD_RELOC_390_PLT16DBL
2780 ENUMDOC
2781 16 bit PC rel. PLT shifted by 1.
2782 ENUM
2783 BFD_RELOC_390_PC32DBL
2784 ENUMDOC
2785 PC relative 32 bit shifted by 1.
2786 ENUM
2787 BFD_RELOC_390_PLT32DBL
2788 ENUMDOC
2789 32 bit PC rel. PLT shifted by 1.
2790 ENUM
2791 BFD_RELOC_390_GOTPCDBL
2792 ENUMDOC
2793 32 bit PC rel. GOT shifted by 1.
2794 ENUM
2795 BFD_RELOC_390_GOT64
2796 ENUMDOC
2797 64 bit GOT offset.
2798 ENUM
2799 BFD_RELOC_390_PLT64
2800 ENUMDOC
2801 64 bit PC relative PLT address.
2802 ENUM
2803 BFD_RELOC_390_GOTENT
2804 ENUMDOC
2805 32 bit rel. offset to GOT entry.
2807 ENUM
2808 BFD_RELOC_VTABLE_INHERIT
2809 ENUMX
2810 BFD_RELOC_VTABLE_ENTRY
2811 ENUMDOC
2812 These two relocations are used by the linker to determine which of
2813 the entries in a C++ virtual function table are actually used. When
2814 the --gc-sections option is given, the linker will zero out the entries
2815 that are not used, so that the code for those functions need not be
2816 included in the output.
2818 VTABLE_INHERIT is a zero-space relocation used to describe to the
2819 linker the inheritence tree of a C++ virtual function table. The
2820 relocation's symbol should be the parent class' vtable, and the
2821 relocation should be located at the child vtable.
2823 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2824 virtual function table entry. The reloc's symbol should refer to the
2825 table of the class mentioned in the code. Off of that base, an offset
2826 describes the entry that is being used. For Rela hosts, this offset
2827 is stored in the reloc's addend. For Rel hosts, we are forced to put
2828 this offset in the reloc's section offset.
2830 ENUM
2831 BFD_RELOC_IA64_IMM14
2832 ENUMX
2833 BFD_RELOC_IA64_IMM22
2834 ENUMX
2835 BFD_RELOC_IA64_IMM64
2836 ENUMX
2837 BFD_RELOC_IA64_DIR32MSB
2838 ENUMX
2839 BFD_RELOC_IA64_DIR32LSB
2840 ENUMX
2841 BFD_RELOC_IA64_DIR64MSB
2842 ENUMX
2843 BFD_RELOC_IA64_DIR64LSB
2844 ENUMX
2845 BFD_RELOC_IA64_GPREL22
2846 ENUMX
2847 BFD_RELOC_IA64_GPREL64I
2848 ENUMX
2849 BFD_RELOC_IA64_GPREL32MSB
2850 ENUMX
2851 BFD_RELOC_IA64_GPREL32LSB
2852 ENUMX
2853 BFD_RELOC_IA64_GPREL64MSB
2854 ENUMX
2855 BFD_RELOC_IA64_GPREL64LSB
2856 ENUMX
2857 BFD_RELOC_IA64_LTOFF22
2858 ENUMX
2859 BFD_RELOC_IA64_LTOFF64I
2860 ENUMX
2861 BFD_RELOC_IA64_PLTOFF22
2862 ENUMX
2863 BFD_RELOC_IA64_PLTOFF64I
2864 ENUMX
2865 BFD_RELOC_IA64_PLTOFF64MSB
2866 ENUMX
2867 BFD_RELOC_IA64_PLTOFF64LSB
2868 ENUMX
2869 BFD_RELOC_IA64_FPTR64I
2870 ENUMX
2871 BFD_RELOC_IA64_FPTR32MSB
2872 ENUMX
2873 BFD_RELOC_IA64_FPTR32LSB
2874 ENUMX
2875 BFD_RELOC_IA64_FPTR64MSB
2876 ENUMX
2877 BFD_RELOC_IA64_FPTR64LSB
2878 ENUMX
2879 BFD_RELOC_IA64_PCREL21B
2880 ENUMX
2881 BFD_RELOC_IA64_PCREL21BI
2882 ENUMX
2883 BFD_RELOC_IA64_PCREL21M
2884 ENUMX
2885 BFD_RELOC_IA64_PCREL21F
2886 ENUMX
2887 BFD_RELOC_IA64_PCREL22
2888 ENUMX
2889 BFD_RELOC_IA64_PCREL60B
2890 ENUMX
2891 BFD_RELOC_IA64_PCREL64I
2892 ENUMX
2893 BFD_RELOC_IA64_PCREL32MSB
2894 ENUMX
2895 BFD_RELOC_IA64_PCREL32LSB
2896 ENUMX
2897 BFD_RELOC_IA64_PCREL64MSB
2898 ENUMX
2899 BFD_RELOC_IA64_PCREL64LSB
2900 ENUMX
2901 BFD_RELOC_IA64_LTOFF_FPTR22
2902 ENUMX
2903 BFD_RELOC_IA64_LTOFF_FPTR64I
2904 ENUMX
2905 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2906 ENUMX
2907 BFD_RELOC_IA64_LTOFF_FPTR64LSB
2908 ENUMX
2909 BFD_RELOC_IA64_SEGREL32MSB
2910 ENUMX
2911 BFD_RELOC_IA64_SEGREL32LSB
2912 ENUMX
2913 BFD_RELOC_IA64_SEGREL64MSB
2914 ENUMX
2915 BFD_RELOC_IA64_SEGREL64LSB
2916 ENUMX
2917 BFD_RELOC_IA64_SECREL32MSB
2918 ENUMX
2919 BFD_RELOC_IA64_SECREL32LSB
2920 ENUMX
2921 BFD_RELOC_IA64_SECREL64MSB
2922 ENUMX
2923 BFD_RELOC_IA64_SECREL64LSB
2924 ENUMX
2925 BFD_RELOC_IA64_REL32MSB
2926 ENUMX
2927 BFD_RELOC_IA64_REL32LSB
2928 ENUMX
2929 BFD_RELOC_IA64_REL64MSB
2930 ENUMX
2931 BFD_RELOC_IA64_REL64LSB
2932 ENUMX
2933 BFD_RELOC_IA64_LTV32MSB
2934 ENUMX
2935 BFD_RELOC_IA64_LTV32LSB
2936 ENUMX
2937 BFD_RELOC_IA64_LTV64MSB
2938 ENUMX
2939 BFD_RELOC_IA64_LTV64LSB
2940 ENUMX
2941 BFD_RELOC_IA64_IPLTMSB
2942 ENUMX
2943 BFD_RELOC_IA64_IPLTLSB
2944 ENUMX
2945 BFD_RELOC_IA64_COPY
2946 ENUMX
2947 BFD_RELOC_IA64_TPREL22
2948 ENUMX
2949 BFD_RELOC_IA64_TPREL64MSB
2950 ENUMX
2951 BFD_RELOC_IA64_TPREL64LSB
2952 ENUMX
2953 BFD_RELOC_IA64_LTOFF_TP22
2954 ENUMX
2955 BFD_RELOC_IA64_LTOFF22X
2956 ENUMX
2957 BFD_RELOC_IA64_LDXMOV
2958 ENUMDOC
2959 Intel IA64 Relocations.
2961 ENUM
2962 BFD_RELOC_M68HC11_HI8
2963 ENUMDOC
2964 Motorola 68HC11 reloc.
2965 This is the 8 bits high part of an absolute address.
2966 ENUM
2967 BFD_RELOC_M68HC11_LO8
2968 ENUMDOC
2969 Motorola 68HC11 reloc.
2970 This is the 8 bits low part of an absolute address.
2971 ENUM
2972 BFD_RELOC_M68HC11_3B
2973 ENUMDOC
2974 Motorola 68HC11 reloc.
2975 This is the 3 bits of a value.
2977 ENUM
2978 BFD_RELOC_CRIS_BDISP8
2979 ENUMX
2980 BFD_RELOC_CRIS_UNSIGNED_5
2981 ENUMX
2982 BFD_RELOC_CRIS_SIGNED_6
2983 ENUMX
2984 BFD_RELOC_CRIS_UNSIGNED_6
2985 ENUMX
2986 BFD_RELOC_CRIS_UNSIGNED_4
2987 ENUMDOC
2988 These relocs are only used within the CRIS assembler. They are not
2989 (at present) written to any object files.
2991 ENUM
2992 BFD_RELOC_860_COPY
2993 ENUMX
2994 BFD_RELOC_860_GLOB_DAT
2995 ENUMX
2996 BFD_RELOC_860_JUMP_SLOT
2997 ENUMX
2998 BFD_RELOC_860_RELATIVE
2999 ENUMX
3000 BFD_RELOC_860_PC26
3001 ENUMX
3002 BFD_RELOC_860_PLT26
3003 ENUMX
3004 BFD_RELOC_860_PC16
3005 ENUMX
3006 BFD_RELOC_860_LOW0
3007 ENUMX
3008 BFD_RELOC_860_SPLIT0
3009 ENUMX
3010 BFD_RELOC_860_LOW1
3011 ENUMX
3012 BFD_RELOC_860_SPLIT1
3013 ENUMX
3014 BFD_RELOC_860_LOW2
3015 ENUMX
3016 BFD_RELOC_860_SPLIT2
3017 ENUMX
3018 BFD_RELOC_860_LOW3
3019 ENUMX
3020 BFD_RELOC_860_LOGOT0
3021 ENUMX
3022 BFD_RELOC_860_SPGOT0
3023 ENUMX
3024 BFD_RELOC_860_LOGOT1
3025 ENUMX
3026 BFD_RELOC_860_SPGOT1
3027 ENUMX
3028 BFD_RELOC_860_LOGOTOFF0
3029 ENUMX
3030 BFD_RELOC_860_SPGOTOFF0
3031 ENUMX
3032 BFD_RELOC_860_LOGOTOFF1
3033 ENUMX
3034 BFD_RELOC_860_SPGOTOFF1
3035 ENUMX
3036 BFD_RELOC_860_LOGOTOFF2
3037 ENUMX
3038 BFD_RELOC_860_LOGOTOFF3
3039 ENUMX
3040 BFD_RELOC_860_LOPC
3041 ENUMX
3042 BFD_RELOC_860_HIGHADJ
3043 ENUMX
3044 BFD_RELOC_860_HAGOT
3045 ENUMX
3046 BFD_RELOC_860_HAGOTOFF
3047 ENUMX
3048 BFD_RELOC_860_HAPC
3049 ENUMX
3050 BFD_RELOC_860_HIGH
3051 ENUMX
3052 BFD_RELOC_860_HIGOT
3053 ENUMX
3054 BFD_RELOC_860_HIGOTOFF
3055 ENUMDOC
3056 Intel i860 Relocations.
3058 ENDSENUM
3059 BFD_RELOC_UNUSED
3060 CODE_FRAGMENT
3062 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3066 FUNCTION
3067 bfd_reloc_type_lookup
3069 SYNOPSIS
3070 reloc_howto_type *
3071 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3073 DESCRIPTION
3074 Return a pointer to a howto structure which, when
3075 invoked, will perform the relocation @var{code} on data from the
3076 architecture noted.
3080 reloc_howto_type *
3081 bfd_reloc_type_lookup (abfd, code)
3082 bfd *abfd;
3083 bfd_reloc_code_real_type code;
3085 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3088 static reloc_howto_type bfd_howto_32 =
3089 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3092 INTERNAL_FUNCTION
3093 bfd_default_reloc_type_lookup
3095 SYNOPSIS
3096 reloc_howto_type *bfd_default_reloc_type_lookup
3097 (bfd *abfd, bfd_reloc_code_real_type code);
3099 DESCRIPTION
3100 Provides a default relocation lookup routine for any architecture.
3104 reloc_howto_type *
3105 bfd_default_reloc_type_lookup (abfd, code)
3106 bfd *abfd;
3107 bfd_reloc_code_real_type code;
3109 switch (code)
3111 case BFD_RELOC_CTOR:
3112 /* The type of reloc used in a ctor, which will be as wide as the
3113 address - so either a 64, 32, or 16 bitter. */
3114 switch (bfd_get_arch_info (abfd)->bits_per_address)
3116 case 64:
3117 BFD_FAIL ();
3118 case 32:
3119 return &bfd_howto_32;
3120 case 16:
3121 BFD_FAIL ();
3122 default:
3123 BFD_FAIL ();
3125 default:
3126 BFD_FAIL ();
3128 return (reloc_howto_type *) NULL;
3132 FUNCTION
3133 bfd_get_reloc_code_name
3135 SYNOPSIS
3136 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3138 DESCRIPTION
3139 Provides a printable name for the supplied relocation code.
3140 Useful mainly for printing error messages.
3143 const char *
3144 bfd_get_reloc_code_name (code)
3145 bfd_reloc_code_real_type code;
3147 if (code > BFD_RELOC_UNUSED)
3148 return 0;
3149 return bfd_reloc_code_real_names[(int)code];
3153 INTERNAL_FUNCTION
3154 bfd_generic_relax_section
3156 SYNOPSIS
3157 boolean bfd_generic_relax_section
3158 (bfd *abfd,
3159 asection *section,
3160 struct bfd_link_info *,
3161 boolean *);
3163 DESCRIPTION
3164 Provides default handling for relaxing for back ends which
3165 don't do relaxing -- i.e., does nothing.
3168 /*ARGSUSED*/
3169 boolean
3170 bfd_generic_relax_section (abfd, section, link_info, again)
3171 bfd *abfd ATTRIBUTE_UNUSED;
3172 asection *section ATTRIBUTE_UNUSED;
3173 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3174 boolean *again;
3176 *again = false;
3177 return true;
3181 INTERNAL_FUNCTION
3182 bfd_generic_gc_sections
3184 SYNOPSIS
3185 boolean bfd_generic_gc_sections
3186 (bfd *, struct bfd_link_info *);
3188 DESCRIPTION
3189 Provides default handling for relaxing for back ends which
3190 don't do section gc -- i.e., does nothing.
3193 /*ARGSUSED*/
3194 boolean
3195 bfd_generic_gc_sections (abfd, link_info)
3196 bfd *abfd ATTRIBUTE_UNUSED;
3197 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3199 return true;
3203 INTERNAL_FUNCTION
3204 bfd_generic_get_relocated_section_contents
3206 SYNOPSIS
3207 bfd_byte *
3208 bfd_generic_get_relocated_section_contents (bfd *abfd,
3209 struct bfd_link_info *link_info,
3210 struct bfd_link_order *link_order,
3211 bfd_byte *data,
3212 boolean relocateable,
3213 asymbol **symbols);
3215 DESCRIPTION
3216 Provides default handling of relocation effort for back ends
3217 which can't be bothered to do it efficiently.
3221 bfd_byte *
3222 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3223 relocateable, symbols)
3224 bfd *abfd;
3225 struct bfd_link_info *link_info;
3226 struct bfd_link_order *link_order;
3227 bfd_byte *data;
3228 boolean relocateable;
3229 asymbol **symbols;
3231 /* Get enough memory to hold the stuff */
3232 bfd *input_bfd = link_order->u.indirect.section->owner;
3233 asection *input_section = link_order->u.indirect.section;
3235 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3236 arelent **reloc_vector = NULL;
3237 long reloc_count;
3239 if (reloc_size < 0)
3240 goto error_return;
3242 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3243 if (reloc_vector == NULL && reloc_size != 0)
3244 goto error_return;
3246 /* read in the section */
3247 if (!bfd_get_section_contents (input_bfd,
3248 input_section,
3249 (PTR) data,
3251 input_section->_raw_size))
3252 goto error_return;
3254 /* We're not relaxing the section, so just copy the size info */
3255 input_section->_cooked_size = input_section->_raw_size;
3256 input_section->reloc_done = true;
3258 reloc_count = bfd_canonicalize_reloc (input_bfd,
3259 input_section,
3260 reloc_vector,
3261 symbols);
3262 if (reloc_count < 0)
3263 goto error_return;
3265 if (reloc_count > 0)
3267 arelent **parent;
3268 for (parent = reloc_vector; *parent != (arelent *) NULL;
3269 parent++)
3271 char *error_message = (char *) NULL;
3272 bfd_reloc_status_type r =
3273 bfd_perform_relocation (input_bfd,
3274 *parent,
3275 (PTR) data,
3276 input_section,
3277 relocateable ? abfd : (bfd *) NULL,
3278 &error_message);
3280 if (relocateable)
3282 asection *os = input_section->output_section;
3284 /* A partial link, so keep the relocs */
3285 os->orelocation[os->reloc_count] = *parent;
3286 os->reloc_count++;
3289 if (r != bfd_reloc_ok)
3291 switch (r)
3293 case bfd_reloc_undefined:
3294 if (!((*link_info->callbacks->undefined_symbol)
3295 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3296 input_bfd, input_section, (*parent)->address,
3297 true)))
3298 goto error_return;
3299 break;
3300 case bfd_reloc_dangerous:
3301 BFD_ASSERT (error_message != (char *) NULL);
3302 if (!((*link_info->callbacks->reloc_dangerous)
3303 (link_info, error_message, input_bfd, input_section,
3304 (*parent)->address)))
3305 goto error_return;
3306 break;
3307 case bfd_reloc_overflow:
3308 if (!((*link_info->callbacks->reloc_overflow)
3309 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3310 (*parent)->howto->name, (*parent)->addend,
3311 input_bfd, input_section, (*parent)->address)))
3312 goto error_return;
3313 break;
3314 case bfd_reloc_outofrange:
3315 default:
3316 abort ();
3317 break;
3323 if (reloc_vector != NULL)
3324 free (reloc_vector);
3325 return data;
3327 error_return:
3328 if (reloc_vector != NULL)
3329 free (reloc_vector);
3330 return NULL;