* config/tc-arm.c (s_arm_tls_desceq): Move code into ELF-only
[binutils.git] / gas / config / tc-arm.c
blob78a98bec20d02ccbc737b748487eb2136c27a4b7
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
36 #include "opcode/arm.h"
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
43 #include "dwarf2dbg.h"
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
51 static struct
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
80 #endif /* OBJ_ELF */
82 /* Results from operand parsing worker functions. */
84 typedef enum
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
91 enum arm_float_abi
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
126 #define streq(a, b) (strcmp (a, b) == 0)
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242 #ifdef OBJ_ELF
243 # ifdef EABI_DEFAULT
244 static int meabi_flags = EABI_DEFAULT;
245 # else
246 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
247 # endif
249 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
251 bfd_boolean
252 arm_is_eabi (void)
254 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
256 #endif
258 #ifdef OBJ_ELF
259 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
260 symbolS * GOT_symbol;
261 #endif
263 /* 0: assemble for ARM,
264 1: assemble for Thumb,
265 2: assemble for Thumb even though target CPU does not support thumb
266 instructions. */
267 static int thumb_mode = 0;
268 /* A value distinct from the possible values for thumb_mode that we
269 can use to record whether thumb_mode has been copied into the
270 tc_frag_data field of a frag. */
271 #define MODE_RECORDED (1 << 4)
273 /* Specifies the intrinsic IT insn behavior mode. */
274 enum implicit_it_mode
276 IMPLICIT_IT_MODE_NEVER = 0x00,
277 IMPLICIT_IT_MODE_ARM = 0x01,
278 IMPLICIT_IT_MODE_THUMB = 0x02,
279 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
281 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
283 /* If unified_syntax is true, we are processing the new unified
284 ARM/Thumb syntax. Important differences from the old ARM mode:
286 - Immediate operands do not require a # prefix.
287 - Conditional affixes always appear at the end of the
288 instruction. (For backward compatibility, those instructions
289 that formerly had them in the middle, continue to accept them
290 there.)
291 - The IT instruction may appear, and if it does is validated
292 against subsequent conditional affixes. It does not generate
293 machine code.
295 Important differences from the old Thumb mode:
297 - Immediate operands do not require a # prefix.
298 - Most of the V6T2 instructions are only available in unified mode.
299 - The .N and .W suffixes are recognized and honored (it is an error
300 if they cannot be honored).
301 - All instructions set the flags if and only if they have an 's' affix.
302 - Conditional affixes may be used. They are validated against
303 preceding IT instructions. Unlike ARM mode, you cannot use a
304 conditional affix except in the scope of an IT instruction. */
306 static bfd_boolean unified_syntax = FALSE;
308 enum neon_el_type
310 NT_invtype,
311 NT_untyped,
312 NT_integer,
313 NT_float,
314 NT_poly,
315 NT_signed,
316 NT_unsigned
319 struct neon_type_el
321 enum neon_el_type type;
322 unsigned size;
325 #define NEON_MAX_TYPE_ELS 4
327 struct neon_type
329 struct neon_type_el el[NEON_MAX_TYPE_ELS];
330 unsigned elems;
333 enum it_instruction_type
335 OUTSIDE_IT_INSN,
336 INSIDE_IT_INSN,
337 INSIDE_IT_LAST_INSN,
338 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
339 if inside, should be the last one. */
340 NEUTRAL_IT_INSN, /* This could be either inside or outside,
341 i.e. BKPT and NOP. */
342 IT_INSN /* The IT insn has been parsed. */
345 struct arm_it
347 const char * error;
348 unsigned long instruction;
349 int size;
350 int size_req;
351 int cond;
352 /* "uncond_value" is set to the value in place of the conditional field in
353 unconditional versions of the instruction, or -1 if nothing is
354 appropriate. */
355 int uncond_value;
356 struct neon_type vectype;
357 /* This does not indicate an actual NEON instruction, only that
358 the mnemonic accepts neon-style type suffixes. */
359 int is_neon;
360 /* Set to the opcode if the instruction needs relaxation.
361 Zero if the instruction is not relaxed. */
362 unsigned long relax;
363 struct
365 bfd_reloc_code_real_type type;
366 expressionS exp;
367 int pc_rel;
368 } reloc;
370 enum it_instruction_type it_insn_type;
372 struct
374 unsigned reg;
375 signed int imm;
376 struct neon_type_el vectype;
377 unsigned present : 1; /* Operand present. */
378 unsigned isreg : 1; /* Operand was a register. */
379 unsigned immisreg : 1; /* .imm field is a second register. */
380 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
381 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
382 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
383 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
384 instructions. This allows us to disambiguate ARM <-> vector insns. */
385 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
386 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
387 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
388 unsigned issingle : 1; /* Operand is VFP single-precision register. */
389 unsigned hasreloc : 1; /* Operand has relocation suffix. */
390 unsigned writeback : 1; /* Operand has trailing ! */
391 unsigned preind : 1; /* Preindexed address. */
392 unsigned postind : 1; /* Postindexed address. */
393 unsigned negative : 1; /* Index register was negated. */
394 unsigned shifted : 1; /* Shift applied to operation. */
395 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
396 } operands[6];
399 static struct arm_it inst;
401 #define NUM_FLOAT_VALS 8
403 const char * fp_const[] =
405 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
408 /* Number of littlenums required to hold an extended precision number. */
409 #define MAX_LITTLENUMS 6
411 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
413 #define FAIL (-1)
414 #define SUCCESS (0)
416 #define SUFF_S 1
417 #define SUFF_D 2
418 #define SUFF_E 3
419 #define SUFF_P 4
421 #define CP_T_X 0x00008000
422 #define CP_T_Y 0x00400000
424 #define CONDS_BIT 0x00100000
425 #define LOAD_BIT 0x00100000
427 #define DOUBLE_LOAD_FLAG 0x00000001
429 struct asm_cond
431 const char * template_name;
432 unsigned long value;
435 #define COND_ALWAYS 0xE
437 struct asm_psr
439 const char * template_name;
440 unsigned long field;
443 struct asm_barrier_opt
445 const char * template_name;
446 unsigned long value;
449 /* The bit that distinguishes CPSR and SPSR. */
450 #define SPSR_BIT (1 << 22)
452 /* The individual PSR flag bits. */
453 #define PSR_c (1 << 16)
454 #define PSR_x (1 << 17)
455 #define PSR_s (1 << 18)
456 #define PSR_f (1 << 19)
458 struct reloc_entry
460 char * name;
461 bfd_reloc_code_real_type reloc;
464 enum vfp_reg_pos
466 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
467 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
470 enum vfp_ldstm_type
472 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
475 /* Bits for DEFINED field in neon_typed_alias. */
476 #define NTA_HASTYPE 1
477 #define NTA_HASINDEX 2
479 struct neon_typed_alias
481 unsigned char defined;
482 unsigned char index;
483 struct neon_type_el eltype;
486 /* ARM register categories. This includes coprocessor numbers and various
487 architecture extensions' registers. */
488 enum arm_reg_type
490 REG_TYPE_RN,
491 REG_TYPE_CP,
492 REG_TYPE_CN,
493 REG_TYPE_FN,
494 REG_TYPE_VFS,
495 REG_TYPE_VFD,
496 REG_TYPE_NQ,
497 REG_TYPE_VFSD,
498 REG_TYPE_NDQ,
499 REG_TYPE_NSDQ,
500 REG_TYPE_VFC,
501 REG_TYPE_MVF,
502 REG_TYPE_MVD,
503 REG_TYPE_MVFX,
504 REG_TYPE_MVDX,
505 REG_TYPE_MVAX,
506 REG_TYPE_DSPSC,
507 REG_TYPE_MMXWR,
508 REG_TYPE_MMXWC,
509 REG_TYPE_MMXWCG,
510 REG_TYPE_XSCALE,
511 REG_TYPE_RNB
514 /* Structure for a hash table entry for a register.
515 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
516 information which states whether a vector type or index is specified (for a
517 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
518 struct reg_entry
520 const char * name;
521 unsigned int number;
522 unsigned char type;
523 unsigned char builtin;
524 struct neon_typed_alias * neon;
527 /* Diagnostics used when we don't get a register of the expected type. */
528 const char * const reg_expected_msgs[] =
530 N_("ARM register expected"),
531 N_("bad or missing co-processor number"),
532 N_("co-processor register expected"),
533 N_("FPA register expected"),
534 N_("VFP single precision register expected"),
535 N_("VFP/Neon double precision register expected"),
536 N_("Neon quad precision register expected"),
537 N_("VFP single or double precision register expected"),
538 N_("Neon double or quad precision register expected"),
539 N_("VFP single, double or Neon quad precision register expected"),
540 N_("VFP system register expected"),
541 N_("Maverick MVF register expected"),
542 N_("Maverick MVD register expected"),
543 N_("Maverick MVFX register expected"),
544 N_("Maverick MVDX register expected"),
545 N_("Maverick MVAX register expected"),
546 N_("Maverick DSPSC register expected"),
547 N_("iWMMXt data register expected"),
548 N_("iWMMXt control register expected"),
549 N_("iWMMXt scalar register expected"),
550 N_("XScale accumulator register expected"),
553 /* Some well known registers that we refer to directly elsewhere. */
554 #define REG_SP 13
555 #define REG_LR 14
556 #define REG_PC 15
558 /* ARM instructions take 4bytes in the object file, Thumb instructions
559 take 2: */
560 #define INSN_SIZE 4
562 struct asm_opcode
564 /* Basic string to match. */
565 const char * template_name;
567 /* Parameters to instruction. */
568 unsigned int operands[8];
570 /* Conditional tag - see opcode_lookup. */
571 unsigned int tag : 4;
573 /* Basic instruction code. */
574 unsigned int avalue : 28;
576 /* Thumb-format instruction code. */
577 unsigned int tvalue;
579 /* Which architecture variant provides this instruction. */
580 const arm_feature_set * avariant;
581 const arm_feature_set * tvariant;
583 /* Function to call to encode instruction in ARM format. */
584 void (* aencode) (void);
586 /* Function to call to encode instruction in Thumb format. */
587 void (* tencode) (void);
590 /* Defines for various bits that we will want to toggle. */
591 #define INST_IMMEDIATE 0x02000000
592 #define OFFSET_REG 0x02000000
593 #define HWOFFSET_IMM 0x00400000
594 #define SHIFT_BY_REG 0x00000010
595 #define PRE_INDEX 0x01000000
596 #define INDEX_UP 0x00800000
597 #define WRITE_BACK 0x00200000
598 #define LDM_TYPE_2_OR_3 0x00400000
599 #define CPSI_MMOD 0x00020000
601 #define LITERAL_MASK 0xf000f000
602 #define OPCODE_MASK 0xfe1fffff
603 #define V4_STR_BIT 0x00000020
605 #define T2_SUBS_PC_LR 0xf3de8f00
607 #define DATA_OP_SHIFT 21
609 #define T2_OPCODE_MASK 0xfe1fffff
610 #define T2_DATA_OP_SHIFT 21
612 /* Codes to distinguish the arithmetic instructions. */
613 #define OPCODE_AND 0
614 #define OPCODE_EOR 1
615 #define OPCODE_SUB 2
616 #define OPCODE_RSB 3
617 #define OPCODE_ADD 4
618 #define OPCODE_ADC 5
619 #define OPCODE_SBC 6
620 #define OPCODE_RSC 7
621 #define OPCODE_TST 8
622 #define OPCODE_TEQ 9
623 #define OPCODE_CMP 10
624 #define OPCODE_CMN 11
625 #define OPCODE_ORR 12
626 #define OPCODE_MOV 13
627 #define OPCODE_BIC 14
628 #define OPCODE_MVN 15
630 #define T2_OPCODE_AND 0
631 #define T2_OPCODE_BIC 1
632 #define T2_OPCODE_ORR 2
633 #define T2_OPCODE_ORN 3
634 #define T2_OPCODE_EOR 4
635 #define T2_OPCODE_ADD 8
636 #define T2_OPCODE_ADC 10
637 #define T2_OPCODE_SBC 11
638 #define T2_OPCODE_SUB 13
639 #define T2_OPCODE_RSB 14
641 #define T_OPCODE_MUL 0x4340
642 #define T_OPCODE_TST 0x4200
643 #define T_OPCODE_CMN 0x42c0
644 #define T_OPCODE_NEG 0x4240
645 #define T_OPCODE_MVN 0x43c0
647 #define T_OPCODE_ADD_R3 0x1800
648 #define T_OPCODE_SUB_R3 0x1a00
649 #define T_OPCODE_ADD_HI 0x4400
650 #define T_OPCODE_ADD_ST 0xb000
651 #define T_OPCODE_SUB_ST 0xb080
652 #define T_OPCODE_ADD_SP 0xa800
653 #define T_OPCODE_ADD_PC 0xa000
654 #define T_OPCODE_ADD_I8 0x3000
655 #define T_OPCODE_SUB_I8 0x3800
656 #define T_OPCODE_ADD_I3 0x1c00
657 #define T_OPCODE_SUB_I3 0x1e00
659 #define T_OPCODE_ASR_R 0x4100
660 #define T_OPCODE_LSL_R 0x4080
661 #define T_OPCODE_LSR_R 0x40c0
662 #define T_OPCODE_ROR_R 0x41c0
663 #define T_OPCODE_ASR_I 0x1000
664 #define T_OPCODE_LSL_I 0x0000
665 #define T_OPCODE_LSR_I 0x0800
667 #define T_OPCODE_MOV_I8 0x2000
668 #define T_OPCODE_CMP_I8 0x2800
669 #define T_OPCODE_CMP_LR 0x4280
670 #define T_OPCODE_MOV_HR 0x4600
671 #define T_OPCODE_CMP_HR 0x4500
673 #define T_OPCODE_LDR_PC 0x4800
674 #define T_OPCODE_LDR_SP 0x9800
675 #define T_OPCODE_STR_SP 0x9000
676 #define T_OPCODE_LDR_IW 0x6800
677 #define T_OPCODE_STR_IW 0x6000
678 #define T_OPCODE_LDR_IH 0x8800
679 #define T_OPCODE_STR_IH 0x8000
680 #define T_OPCODE_LDR_IB 0x7800
681 #define T_OPCODE_STR_IB 0x7000
682 #define T_OPCODE_LDR_RW 0x5800
683 #define T_OPCODE_STR_RW 0x5000
684 #define T_OPCODE_LDR_RH 0x5a00
685 #define T_OPCODE_STR_RH 0x5200
686 #define T_OPCODE_LDR_RB 0x5c00
687 #define T_OPCODE_STR_RB 0x5400
689 #define T_OPCODE_PUSH 0xb400
690 #define T_OPCODE_POP 0xbc00
692 #define T_OPCODE_BRANCH 0xe000
694 #define THUMB_SIZE 2 /* Size of thumb instruction. */
695 #define THUMB_PP_PC_LR 0x0100
696 #define THUMB_LOAD_BIT 0x0800
697 #define THUMB2_LOAD_BIT 0x00100000
699 #define BAD_ARGS _("bad arguments to instruction")
700 #define BAD_SP _("r13 not allowed here")
701 #define BAD_PC _("r15 not allowed here")
702 #define BAD_COND _("instruction cannot be conditional")
703 #define BAD_OVERLAP _("registers may not be the same")
704 #define BAD_HIREG _("lo register required")
705 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
706 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
707 #define BAD_BRANCH _("branch must be last instruction in IT block")
708 #define BAD_NOT_IT _("instruction not allowed in IT block")
709 #define BAD_FPU _("selected FPU does not support instruction")
710 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
711 #define BAD_IT_COND _("incorrect condition in IT block")
712 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
713 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
714 #define BAD_PC_ADDRESSING \
715 _("cannot use register index with PC-relative addressing")
716 #define BAD_PC_WRITEBACK \
717 _("cannot use writeback with PC-relative addressing")
719 static struct hash_control * arm_ops_hsh;
720 static struct hash_control * arm_cond_hsh;
721 static struct hash_control * arm_shift_hsh;
722 static struct hash_control * arm_psr_hsh;
723 static struct hash_control * arm_v7m_psr_hsh;
724 static struct hash_control * arm_reg_hsh;
725 static struct hash_control * arm_reloc_hsh;
726 static struct hash_control * arm_barrier_opt_hsh;
728 /* Stuff needed to resolve the label ambiguity
731 label: <insn>
732 may differ from:
734 label:
735 <insn> */
737 symbolS * last_label_seen;
738 static int label_is_thumb_function_name = FALSE;
740 /* Literal pool structure. Held on a per-section
741 and per-sub-section basis. */
743 #define MAX_LITERAL_POOL_SIZE 1024
744 typedef struct literal_pool
746 expressionS literals [MAX_LITERAL_POOL_SIZE];
747 unsigned int next_free_entry;
748 unsigned int id;
749 symbolS * symbol;
750 segT section;
751 subsegT sub_section;
752 struct literal_pool * next;
753 } literal_pool;
755 /* Pointer to a linked list of literal pools. */
756 literal_pool * list_of_pools = NULL;
758 #ifdef OBJ_ELF
759 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
760 #else
761 static struct current_it now_it;
762 #endif
764 static inline int
765 now_it_compatible (int cond)
767 return (cond & ~1) == (now_it.cc & ~1);
770 static inline int
771 conditional_insn (void)
773 return inst.cond != COND_ALWAYS;
776 static int in_it_block (void);
778 static int handle_it_state (void);
780 static void force_automatic_it_block_close (void);
782 static void it_fsm_post_encode (void);
784 #define set_it_insn_type(type) \
785 do \
787 inst.it_insn_type = type; \
788 if (handle_it_state () == FAIL) \
789 return; \
791 while (0)
793 #define set_it_insn_type_nonvoid(type, failret) \
794 do \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return failret; \
800 while(0)
802 #define set_it_insn_type_last() \
803 do \
805 if (inst.cond == COND_ALWAYS) \
806 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
807 else \
808 set_it_insn_type (INSIDE_IT_LAST_INSN); \
810 while (0)
812 /* Pure syntax. */
814 /* This array holds the chars that always start a comment. If the
815 pre-processor is disabled, these aren't very useful. */
816 const char comment_chars[] = "@";
818 /* This array holds the chars that only start a comment at the beginning of
819 a line. If the line seems to have the form '# 123 filename'
820 .line and .file directives will appear in the pre-processed output. */
821 /* Note that input_file.c hand checks for '#' at the beginning of the
822 first line of the input file. This is because the compiler outputs
823 #NO_APP at the beginning of its output. */
824 /* Also note that comments like this one will always work. */
825 const char line_comment_chars[] = "#";
827 const char line_separator_chars[] = ";";
829 /* Chars that can be used to separate mant
830 from exp in floating point numbers. */
831 const char EXP_CHARS[] = "eE";
833 /* Chars that mean this number is a floating point constant. */
834 /* As in 0f12.456 */
835 /* or 0d1.2345e12 */
837 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
839 /* Prefix characters that indicate the start of an immediate
840 value. */
841 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
843 /* Separator character handling. */
845 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
847 static inline int
848 skip_past_char (char ** str, char c)
850 if (**str == c)
852 (*str)++;
853 return SUCCESS;
855 else
856 return FAIL;
859 #define skip_past_comma(str) skip_past_char (str, ',')
861 /* Arithmetic expressions (possibly involving symbols). */
863 /* Return TRUE if anything in the expression is a bignum. */
865 static int
866 walk_no_bignums (symbolS * sp)
868 if (symbol_get_value_expression (sp)->X_op == O_big)
869 return 1;
871 if (symbol_get_value_expression (sp)->X_add_symbol)
873 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
874 || (symbol_get_value_expression (sp)->X_op_symbol
875 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
878 return 0;
881 static int in_my_get_expression = 0;
883 /* Third argument to my_get_expression. */
884 #define GE_NO_PREFIX 0
885 #define GE_IMM_PREFIX 1
886 #define GE_OPT_PREFIX 2
887 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
888 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
889 #define GE_OPT_PREFIX_BIG 3
891 static int
892 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
894 char * save_in;
895 segT seg;
897 /* In unified syntax, all prefixes are optional. */
898 if (unified_syntax)
899 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
900 : GE_OPT_PREFIX;
902 switch (prefix_mode)
904 case GE_NO_PREFIX: break;
905 case GE_IMM_PREFIX:
906 if (!is_immediate_prefix (**str))
908 inst.error = _("immediate expression requires a # prefix");
909 return FAIL;
911 (*str)++;
912 break;
913 case GE_OPT_PREFIX:
914 case GE_OPT_PREFIX_BIG:
915 if (is_immediate_prefix (**str))
916 (*str)++;
917 break;
918 default: abort ();
921 memset (ep, 0, sizeof (expressionS));
923 save_in = input_line_pointer;
924 input_line_pointer = *str;
925 in_my_get_expression = 1;
926 seg = expression (ep);
927 in_my_get_expression = 0;
929 if (ep->X_op == O_illegal || ep->X_op == O_absent)
931 /* We found a bad or missing expression in md_operand(). */
932 *str = input_line_pointer;
933 input_line_pointer = save_in;
934 if (inst.error == NULL)
935 inst.error = (ep->X_op == O_absent
936 ? _("missing expression") :_("bad expression"));
937 return 1;
940 #ifdef OBJ_AOUT
941 if (seg != absolute_section
942 && seg != text_section
943 && seg != data_section
944 && seg != bss_section
945 && seg != undefined_section)
947 inst.error = _("bad segment");
948 *str = input_line_pointer;
949 input_line_pointer = save_in;
950 return 1;
952 #else
953 (void) seg;
954 #endif
956 /* Get rid of any bignums now, so that we don't generate an error for which
957 we can't establish a line number later on. Big numbers are never valid
958 in instructions, which is where this routine is always called. */
959 if (prefix_mode != GE_OPT_PREFIX_BIG
960 && (ep->X_op == O_big
961 || (ep->X_add_symbol
962 && (walk_no_bignums (ep->X_add_symbol)
963 || (ep->X_op_symbol
964 && walk_no_bignums (ep->X_op_symbol))))))
966 inst.error = _("invalid constant");
967 *str = input_line_pointer;
968 input_line_pointer = save_in;
969 return 1;
972 *str = input_line_pointer;
973 input_line_pointer = save_in;
974 return 0;
977 /* Turn a string in input_line_pointer into a floating point constant
978 of type TYPE, and store the appropriate bytes in *LITP. The number
979 of LITTLENUMS emitted is stored in *SIZEP. An error message is
980 returned, or NULL on OK.
982 Note that fp constants aren't represent in the normal way on the ARM.
983 In big endian mode, things are as expected. However, in little endian
984 mode fp constants are big-endian word-wise, and little-endian byte-wise
985 within the words. For example, (double) 1.1 in big endian mode is
986 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
987 the byte sequence 99 99 f1 3f 9a 99 99 99.
989 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
991 char *
992 md_atof (int type, char * litP, int * sizeP)
994 int prec;
995 LITTLENUM_TYPE words[MAX_LITTLENUMS];
996 char *t;
997 int i;
999 switch (type)
1001 case 'f':
1002 case 'F':
1003 case 's':
1004 case 'S':
1005 prec = 2;
1006 break;
1008 case 'd':
1009 case 'D':
1010 case 'r':
1011 case 'R':
1012 prec = 4;
1013 break;
1015 case 'x':
1016 case 'X':
1017 prec = 5;
1018 break;
1020 case 'p':
1021 case 'P':
1022 prec = 5;
1023 break;
1025 default:
1026 *sizeP = 0;
1027 return _("Unrecognized or unsupported floating point constant");
1030 t = atof_ieee (input_line_pointer, type, words);
1031 if (t)
1032 input_line_pointer = t;
1033 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1035 if (target_big_endian)
1037 for (i = 0; i < prec; i++)
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
1043 else
1045 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1046 for (i = prec - 1; i >= 0; i--)
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
1051 else
1052 /* For a 4 byte float the order of elements in `words' is 1 0.
1053 For an 8 byte float the order is 1 0 3 2. */
1054 for (i = 0; i < prec; i += 2)
1056 md_number_to_chars (litP, (valueT) words[i + 1],
1057 sizeof (LITTLENUM_TYPE));
1058 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1059 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1060 litP += 2 * sizeof (LITTLENUM_TYPE);
1064 return NULL;
1067 /* We handle all bad expressions here, so that we can report the faulty
1068 instruction in the error message. */
1069 void
1070 md_operand (expressionS * exp)
1072 if (in_my_get_expression)
1073 exp->X_op = O_illegal;
1076 /* Immediate values. */
1078 /* Generic immediate-value read function for use in directives.
1079 Accepts anything that 'expression' can fold to a constant.
1080 *val receives the number. */
1081 #ifdef OBJ_ELF
1082 static int
1083 immediate_for_directive (int *val)
1085 expressionS exp;
1086 exp.X_op = O_illegal;
1088 if (is_immediate_prefix (*input_line_pointer))
1090 input_line_pointer++;
1091 expression (&exp);
1094 if (exp.X_op != O_constant)
1096 as_bad (_("expected #constant"));
1097 ignore_rest_of_line ();
1098 return FAIL;
1100 *val = exp.X_add_number;
1101 return SUCCESS;
1103 #endif
1105 /* Register parsing. */
1107 /* Generic register parser. CCP points to what should be the
1108 beginning of a register name. If it is indeed a valid register
1109 name, advance CCP over it and return the reg_entry structure;
1110 otherwise return NULL. Does not issue diagnostics. */
1112 static struct reg_entry *
1113 arm_reg_parse_multi (char **ccp)
1115 char *start = *ccp;
1116 char *p;
1117 struct reg_entry *reg;
1119 #ifdef REGISTER_PREFIX
1120 if (*start != REGISTER_PREFIX)
1121 return NULL;
1122 start++;
1123 #endif
1124 #ifdef OPTIONAL_REGISTER_PREFIX
1125 if (*start == OPTIONAL_REGISTER_PREFIX)
1126 start++;
1127 #endif
1129 p = start;
1130 if (!ISALPHA (*p) || !is_name_beginner (*p))
1131 return NULL;
1134 p++;
1135 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1137 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1139 if (!reg)
1140 return NULL;
1142 *ccp = p;
1143 return reg;
1146 static int
1147 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1148 enum arm_reg_type type)
1150 /* Alternative syntaxes are accepted for a few register classes. */
1151 switch (type)
1153 case REG_TYPE_MVF:
1154 case REG_TYPE_MVD:
1155 case REG_TYPE_MVFX:
1156 case REG_TYPE_MVDX:
1157 /* Generic coprocessor register names are allowed for these. */
1158 if (reg && reg->type == REG_TYPE_CN)
1159 return reg->number;
1160 break;
1162 case REG_TYPE_CP:
1163 /* For backward compatibility, a bare number is valid here. */
1165 unsigned long processor = strtoul (start, ccp, 10);
1166 if (*ccp != start && processor <= 15)
1167 return processor;
1170 case REG_TYPE_MMXWC:
1171 /* WC includes WCG. ??? I'm not sure this is true for all
1172 instructions that take WC registers. */
1173 if (reg && reg->type == REG_TYPE_MMXWCG)
1174 return reg->number;
1175 break;
1177 default:
1178 break;
1181 return FAIL;
1184 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1185 return value is the register number or FAIL. */
1187 static int
1188 arm_reg_parse (char **ccp, enum arm_reg_type type)
1190 char *start = *ccp;
1191 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1192 int ret;
1194 /* Do not allow a scalar (reg+index) to parse as a register. */
1195 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1196 return FAIL;
1198 if (reg && reg->type == type)
1199 return reg->number;
1201 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1202 return ret;
1204 *ccp = start;
1205 return FAIL;
1208 /* Parse a Neon type specifier. *STR should point at the leading '.'
1209 character. Does no verification at this stage that the type fits the opcode
1210 properly. E.g.,
1212 .i32.i32.s16
1213 .s32.f32
1214 .u16
1216 Can all be legally parsed by this function.
1218 Fills in neon_type struct pointer with parsed information, and updates STR
1219 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1220 type, FAIL if not. */
1222 static int
1223 parse_neon_type (struct neon_type *type, char **str)
1225 char *ptr = *str;
1227 if (type)
1228 type->elems = 0;
1230 while (type->elems < NEON_MAX_TYPE_ELS)
1232 enum neon_el_type thistype = NT_untyped;
1233 unsigned thissize = -1u;
1235 if (*ptr != '.')
1236 break;
1238 ptr++;
1240 /* Just a size without an explicit type. */
1241 if (ISDIGIT (*ptr))
1242 goto parsesize;
1244 switch (TOLOWER (*ptr))
1246 case 'i': thistype = NT_integer; break;
1247 case 'f': thistype = NT_float; break;
1248 case 'p': thistype = NT_poly; break;
1249 case 's': thistype = NT_signed; break;
1250 case 'u': thistype = NT_unsigned; break;
1251 case 'd':
1252 thistype = NT_float;
1253 thissize = 64;
1254 ptr++;
1255 goto done;
1256 default:
1257 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1258 return FAIL;
1261 ptr++;
1263 /* .f is an abbreviation for .f32. */
1264 if (thistype == NT_float && !ISDIGIT (*ptr))
1265 thissize = 32;
1266 else
1268 parsesize:
1269 thissize = strtoul (ptr, &ptr, 10);
1271 if (thissize != 8 && thissize != 16 && thissize != 32
1272 && thissize != 64)
1274 as_bad (_("bad size %d in type specifier"), thissize);
1275 return FAIL;
1279 done:
1280 if (type)
1282 type->el[type->elems].type = thistype;
1283 type->el[type->elems].size = thissize;
1284 type->elems++;
1288 /* Empty/missing type is not a successful parse. */
1289 if (type->elems == 0)
1290 return FAIL;
1292 *str = ptr;
1294 return SUCCESS;
1297 /* Errors may be set multiple times during parsing or bit encoding
1298 (particularly in the Neon bits), but usually the earliest error which is set
1299 will be the most meaningful. Avoid overwriting it with later (cascading)
1300 errors by calling this function. */
1302 static void
1303 first_error (const char *err)
1305 if (!inst.error)
1306 inst.error = err;
1309 /* Parse a single type, e.g. ".s32", leading period included. */
1310 static int
1311 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1313 char *str = *ccp;
1314 struct neon_type optype;
1316 if (*str == '.')
1318 if (parse_neon_type (&optype, &str) == SUCCESS)
1320 if (optype.elems == 1)
1321 *vectype = optype.el[0];
1322 else
1324 first_error (_("only one type should be specified for operand"));
1325 return FAIL;
1328 else
1330 first_error (_("vector type expected"));
1331 return FAIL;
1334 else
1335 return FAIL;
1337 *ccp = str;
1339 return SUCCESS;
1342 /* Special meanings for indices (which have a range of 0-7), which will fit into
1343 a 4-bit integer. */
1345 #define NEON_ALL_LANES 15
1346 #define NEON_INTERLEAVE_LANES 14
1348 /* Parse either a register or a scalar, with an optional type. Return the
1349 register number, and optionally fill in the actual type of the register
1350 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1351 type/index information in *TYPEINFO. */
1353 static int
1354 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype,
1356 struct neon_typed_alias *typeinfo)
1358 char *str = *ccp;
1359 struct reg_entry *reg = arm_reg_parse_multi (&str);
1360 struct neon_typed_alias atype;
1361 struct neon_type_el parsetype;
1363 atype.defined = 0;
1364 atype.index = -1;
1365 atype.eltype.type = NT_invtype;
1366 atype.eltype.size = -1;
1368 /* Try alternate syntax for some types of register. Note these are mutually
1369 exclusive with the Neon syntax extensions. */
1370 if (reg == NULL)
1372 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1373 if (altreg != FAIL)
1374 *ccp = str;
1375 if (typeinfo)
1376 *typeinfo = atype;
1377 return altreg;
1380 /* Undo polymorphism when a set of register types may be accepted. */
1381 if ((type == REG_TYPE_NDQ
1382 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1383 || (type == REG_TYPE_VFSD
1384 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1385 || (type == REG_TYPE_NSDQ
1386 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1387 || reg->type == REG_TYPE_NQ))
1388 || (type == REG_TYPE_MMXWC
1389 && (reg->type == REG_TYPE_MMXWCG)))
1390 type = (enum arm_reg_type) reg->type;
1392 if (type != reg->type)
1393 return FAIL;
1395 if (reg->neon)
1396 atype = *reg->neon;
1398 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1400 if ((atype.defined & NTA_HASTYPE) != 0)
1402 first_error (_("can't redefine type for operand"));
1403 return FAIL;
1405 atype.defined |= NTA_HASTYPE;
1406 atype.eltype = parsetype;
1409 if (skip_past_char (&str, '[') == SUCCESS)
1411 if (type != REG_TYPE_VFD)
1413 first_error (_("only D registers may be indexed"));
1414 return FAIL;
1417 if ((atype.defined & NTA_HASINDEX) != 0)
1419 first_error (_("can't change index for operand"));
1420 return FAIL;
1423 atype.defined |= NTA_HASINDEX;
1425 if (skip_past_char (&str, ']') == SUCCESS)
1426 atype.index = NEON_ALL_LANES;
1427 else
1429 expressionS exp;
1431 my_get_expression (&exp, &str, GE_NO_PREFIX);
1433 if (exp.X_op != O_constant)
1435 first_error (_("constant expression required"));
1436 return FAIL;
1439 if (skip_past_char (&str, ']') == FAIL)
1440 return FAIL;
1442 atype.index = exp.X_add_number;
1446 if (typeinfo)
1447 *typeinfo = atype;
1449 if (rtype)
1450 *rtype = type;
1452 *ccp = str;
1454 return reg->number;
1457 /* Like arm_reg_parse, but allow allow the following extra features:
1458 - If RTYPE is non-zero, return the (possibly restricted) type of the
1459 register (e.g. Neon double or quad reg when either has been requested).
1460 - If this is a Neon vector type with additional type information, fill
1461 in the struct pointed to by VECTYPE (if non-NULL).
1462 This function will fault on encountering a scalar. */
1464 static int
1465 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1466 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1468 struct neon_typed_alias atype;
1469 char *str = *ccp;
1470 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1472 if (reg == FAIL)
1473 return FAIL;
1475 /* Do not allow regname(... to parse as a register. */
1476 if (*str == '(')
1477 return FAIL;
1479 /* Do not allow a scalar (reg+index) to parse as a register. */
1480 if ((atype.defined & NTA_HASINDEX) != 0)
1482 first_error (_("register operand expected, but got scalar"));
1483 return FAIL;
1486 if (vectype)
1487 *vectype = atype.eltype;
1489 *ccp = str;
1491 return reg;
1494 #define NEON_SCALAR_REG(X) ((X) >> 4)
1495 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1497 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1498 have enough information to be able to do a good job bounds-checking. So, we
1499 just do easy checks here, and do further checks later. */
1501 static int
1502 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1504 int reg;
1505 char *str = *ccp;
1506 struct neon_typed_alias atype;
1508 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1510 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1511 return FAIL;
1513 if (atype.index == NEON_ALL_LANES)
1515 first_error (_("scalar must have an index"));
1516 return FAIL;
1518 else if (atype.index >= 64 / elsize)
1520 first_error (_("scalar index out of range"));
1521 return FAIL;
1524 if (type)
1525 *type = atype.eltype;
1527 *ccp = str;
1529 return reg * 16 + atype.index;
1532 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1534 static long
1535 parse_reg_list (char ** strp)
1537 char * str = * strp;
1538 long range = 0;
1539 int another_range;
1541 /* We come back here if we get ranges concatenated by '+' or '|'. */
1544 another_range = 0;
1546 if (*str == '{')
1548 int in_range = 0;
1549 int cur_reg = -1;
1551 str++;
1554 int reg;
1556 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1558 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1559 return FAIL;
1562 if (in_range)
1564 int i;
1566 if (reg <= cur_reg)
1568 first_error (_("bad range in register list"));
1569 return FAIL;
1572 for (i = cur_reg + 1; i < reg; i++)
1574 if (range & (1 << i))
1575 as_tsktsk
1576 (_("Warning: duplicated register (r%d) in register list"),
1578 else
1579 range |= 1 << i;
1581 in_range = 0;
1584 if (range & (1 << reg))
1585 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1586 reg);
1587 else if (reg <= cur_reg)
1588 as_tsktsk (_("Warning: register range not in ascending order"));
1590 range |= 1 << reg;
1591 cur_reg = reg;
1593 while (skip_past_comma (&str) != FAIL
1594 || (in_range = 1, *str++ == '-'));
1595 str--;
1597 if (*str++ != '}')
1599 first_error (_("missing `}'"));
1600 return FAIL;
1603 else
1605 expressionS exp;
1607 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1608 return FAIL;
1610 if (exp.X_op == O_constant)
1612 if (exp.X_add_number
1613 != (exp.X_add_number & 0x0000ffff))
1615 inst.error = _("invalid register mask");
1616 return FAIL;
1619 if ((range & exp.X_add_number) != 0)
1621 int regno = range & exp.X_add_number;
1623 regno &= -regno;
1624 regno = (1 << regno) - 1;
1625 as_tsktsk
1626 (_("Warning: duplicated register (r%d) in register list"),
1627 regno);
1630 range |= exp.X_add_number;
1632 else
1634 if (inst.reloc.type != 0)
1636 inst.error = _("expression too complex");
1637 return FAIL;
1640 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1641 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1642 inst.reloc.pc_rel = 0;
1646 if (*str == '|' || *str == '+')
1648 str++;
1649 another_range = 1;
1652 while (another_range);
1654 *strp = str;
1655 return range;
1658 /* Types of registers in a list. */
1660 enum reg_list_els
1662 REGLIST_VFP_S,
1663 REGLIST_VFP_D,
1664 REGLIST_NEON_D
1667 /* Parse a VFP register list. If the string is invalid return FAIL.
1668 Otherwise return the number of registers, and set PBASE to the first
1669 register. Parses registers of type ETYPE.
1670 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1671 - Q registers can be used to specify pairs of D registers
1672 - { } can be omitted from around a singleton register list
1673 FIXME: This is not implemented, as it would require backtracking in
1674 some cases, e.g.:
1675 vtbl.8 d3,d4,d5
1676 This could be done (the meaning isn't really ambiguous), but doesn't
1677 fit in well with the current parsing framework.
1678 - 32 D registers may be used (also true for VFPv3).
1679 FIXME: Types are ignored in these register lists, which is probably a
1680 bug. */
1682 static int
1683 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1685 char *str = *ccp;
1686 int base_reg;
1687 int new_base;
1688 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1689 int max_regs = 0;
1690 int count = 0;
1691 int warned = 0;
1692 unsigned long mask = 0;
1693 int i;
1695 if (*str != '{')
1697 inst.error = _("expecting {");
1698 return FAIL;
1701 str++;
1703 switch (etype)
1705 case REGLIST_VFP_S:
1706 regtype = REG_TYPE_VFS;
1707 max_regs = 32;
1708 break;
1710 case REGLIST_VFP_D:
1711 regtype = REG_TYPE_VFD;
1712 break;
1714 case REGLIST_NEON_D:
1715 regtype = REG_TYPE_NDQ;
1716 break;
1719 if (etype != REGLIST_VFP_S)
1721 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1722 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1724 max_regs = 32;
1725 if (thumb_mode)
1726 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1727 fpu_vfp_ext_d32);
1728 else
1729 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1730 fpu_vfp_ext_d32);
1732 else
1733 max_regs = 16;
1736 base_reg = max_regs;
1740 int setmask = 1, addregs = 1;
1742 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1744 if (new_base == FAIL)
1746 first_error (_(reg_expected_msgs[regtype]));
1747 return FAIL;
1750 if (new_base >= max_regs)
1752 first_error (_("register out of range in list"));
1753 return FAIL;
1756 /* Note: a value of 2 * n is returned for the register Q<n>. */
1757 if (regtype == REG_TYPE_NQ)
1759 setmask = 3;
1760 addregs = 2;
1763 if (new_base < base_reg)
1764 base_reg = new_base;
1766 if (mask & (setmask << new_base))
1768 first_error (_("invalid register list"));
1769 return FAIL;
1772 if ((mask >> new_base) != 0 && ! warned)
1774 as_tsktsk (_("register list not in ascending order"));
1775 warned = 1;
1778 mask |= setmask << new_base;
1779 count += addregs;
1781 if (*str == '-') /* We have the start of a range expression */
1783 int high_range;
1785 str++;
1787 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1788 == FAIL)
1790 inst.error = gettext (reg_expected_msgs[regtype]);
1791 return FAIL;
1794 if (high_range >= max_regs)
1796 first_error (_("register out of range in list"));
1797 return FAIL;
1800 if (regtype == REG_TYPE_NQ)
1801 high_range = high_range + 1;
1803 if (high_range <= new_base)
1805 inst.error = _("register range not in ascending order");
1806 return FAIL;
1809 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1811 if (mask & (setmask << new_base))
1813 inst.error = _("invalid register list");
1814 return FAIL;
1817 mask |= setmask << new_base;
1818 count += addregs;
1822 while (skip_past_comma (&str) != FAIL);
1824 str++;
1826 /* Sanity check -- should have raised a parse error above. */
1827 if (count == 0 || count > max_regs)
1828 abort ();
1830 *pbase = base_reg;
1832 /* Final test -- the registers must be consecutive. */
1833 mask >>= base_reg;
1834 for (i = 0; i < count; i++)
1836 if ((mask & (1u << i)) == 0)
1838 inst.error = _("non-contiguous register range");
1839 return FAIL;
1843 *ccp = str;
1845 return count;
1848 /* True if two alias types are the same. */
1850 static bfd_boolean
1851 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1853 if (!a && !b)
1854 return TRUE;
1856 if (!a || !b)
1857 return FALSE;
1859 if (a->defined != b->defined)
1860 return FALSE;
1862 if ((a->defined & NTA_HASTYPE) != 0
1863 && (a->eltype.type != b->eltype.type
1864 || a->eltype.size != b->eltype.size))
1865 return FALSE;
1867 if ((a->defined & NTA_HASINDEX) != 0
1868 && (a->index != b->index))
1869 return FALSE;
1871 return TRUE;
1874 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1875 The base register is put in *PBASE.
1876 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1877 the return value.
1878 The register stride (minus one) is put in bit 4 of the return value.
1879 Bits [6:5] encode the list length (minus one).
1880 The type of the list elements is put in *ELTYPE, if non-NULL. */
1882 #define NEON_LANE(X) ((X) & 0xf)
1883 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1884 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1886 static int
1887 parse_neon_el_struct_list (char **str, unsigned *pbase,
1888 struct neon_type_el *eltype)
1890 char *ptr = *str;
1891 int base_reg = -1;
1892 int reg_incr = -1;
1893 int count = 0;
1894 int lane = -1;
1895 int leading_brace = 0;
1896 enum arm_reg_type rtype = REG_TYPE_NDQ;
1897 const char *const incr_error = _("register stride must be 1 or 2");
1898 const char *const type_error = _("mismatched element/structure types in list");
1899 struct neon_typed_alias firsttype;
1901 if (skip_past_char (&ptr, '{') == SUCCESS)
1902 leading_brace = 1;
1906 struct neon_typed_alias atype;
1907 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1909 if (getreg == FAIL)
1911 first_error (_(reg_expected_msgs[rtype]));
1912 return FAIL;
1915 if (base_reg == -1)
1917 base_reg = getreg;
1918 if (rtype == REG_TYPE_NQ)
1920 reg_incr = 1;
1922 firsttype = atype;
1924 else if (reg_incr == -1)
1926 reg_incr = getreg - base_reg;
1927 if (reg_incr < 1 || reg_incr > 2)
1929 first_error (_(incr_error));
1930 return FAIL;
1933 else if (getreg != base_reg + reg_incr * count)
1935 first_error (_(incr_error));
1936 return FAIL;
1939 if (! neon_alias_types_same (&atype, &firsttype))
1941 first_error (_(type_error));
1942 return FAIL;
1945 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1946 modes. */
1947 if (ptr[0] == '-')
1949 struct neon_typed_alias htype;
1950 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1951 if (lane == -1)
1952 lane = NEON_INTERLEAVE_LANES;
1953 else if (lane != NEON_INTERLEAVE_LANES)
1955 first_error (_(type_error));
1956 return FAIL;
1958 if (reg_incr == -1)
1959 reg_incr = 1;
1960 else if (reg_incr != 1)
1962 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1963 return FAIL;
1965 ptr++;
1966 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1967 if (hireg == FAIL)
1969 first_error (_(reg_expected_msgs[rtype]));
1970 return FAIL;
1972 if (! neon_alias_types_same (&htype, &firsttype))
1974 first_error (_(type_error));
1975 return FAIL;
1977 count += hireg + dregs - getreg;
1978 continue;
1981 /* If we're using Q registers, we can't use [] or [n] syntax. */
1982 if (rtype == REG_TYPE_NQ)
1984 count += 2;
1985 continue;
1988 if ((atype.defined & NTA_HASINDEX) != 0)
1990 if (lane == -1)
1991 lane = atype.index;
1992 else if (lane != atype.index)
1994 first_error (_(type_error));
1995 return FAIL;
1998 else if (lane == -1)
1999 lane = NEON_INTERLEAVE_LANES;
2000 else if (lane != NEON_INTERLEAVE_LANES)
2002 first_error (_(type_error));
2003 return FAIL;
2005 count++;
2007 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2009 /* No lane set by [x]. We must be interleaving structures. */
2010 if (lane == -1)
2011 lane = NEON_INTERLEAVE_LANES;
2013 /* Sanity check. */
2014 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2015 || (count > 1 && reg_incr == -1))
2017 first_error (_("error parsing element/structure list"));
2018 return FAIL;
2021 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2023 first_error (_("expected }"));
2024 return FAIL;
2027 if (reg_incr == -1)
2028 reg_incr = 1;
2030 if (eltype)
2031 *eltype = firsttype.eltype;
2033 *pbase = base_reg;
2034 *str = ptr;
2036 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2039 /* Parse an explicit relocation suffix on an expression. This is
2040 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2041 arm_reloc_hsh contains no entries, so this function can only
2042 succeed if there is no () after the word. Returns -1 on error,
2043 BFD_RELOC_UNUSED if there wasn't any suffix. */
2044 static int
2045 parse_reloc (char **str)
2047 struct reloc_entry *r;
2048 char *p, *q;
2050 if (**str != '(')
2051 return BFD_RELOC_UNUSED;
2053 p = *str + 1;
2054 q = p;
2056 while (*q && *q != ')' && *q != ',')
2057 q++;
2058 if (*q != ')')
2059 return -1;
2061 if ((r = (struct reloc_entry *)
2062 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2063 return -1;
2065 *str = q + 1;
2066 return r->reloc;
2069 /* Directives: register aliases. */
2071 static struct reg_entry *
2072 insert_reg_alias (char *str, unsigned number, int type)
2074 struct reg_entry *new_reg;
2075 const char *name;
2077 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2079 if (new_reg->builtin)
2080 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2082 /* Only warn about a redefinition if it's not defined as the
2083 same register. */
2084 else if (new_reg->number != number || new_reg->type != type)
2085 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2087 return NULL;
2090 name = xstrdup (str);
2091 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2093 new_reg->name = name;
2094 new_reg->number = number;
2095 new_reg->type = type;
2096 new_reg->builtin = FALSE;
2097 new_reg->neon = NULL;
2099 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2100 abort ();
2102 return new_reg;
2105 static void
2106 insert_neon_reg_alias (char *str, int number, int type,
2107 struct neon_typed_alias *atype)
2109 struct reg_entry *reg = insert_reg_alias (str, number, type);
2111 if (!reg)
2113 first_error (_("attempt to redefine typed alias"));
2114 return;
2117 if (atype)
2119 reg->neon = (struct neon_typed_alias *)
2120 xmalloc (sizeof (struct neon_typed_alias));
2121 *reg->neon = *atype;
2125 /* Look for the .req directive. This is of the form:
2127 new_register_name .req existing_register_name
2129 If we find one, or if it looks sufficiently like one that we want to
2130 handle any error here, return TRUE. Otherwise return FALSE. */
2132 static bfd_boolean
2133 create_register_alias (char * newname, char *p)
2135 struct reg_entry *old;
2136 char *oldname, *nbuf;
2137 size_t nlen;
2139 /* The input scrubber ensures that whitespace after the mnemonic is
2140 collapsed to single spaces. */
2141 oldname = p;
2142 if (strncmp (oldname, " .req ", 6) != 0)
2143 return FALSE;
2145 oldname += 6;
2146 if (*oldname == '\0')
2147 return FALSE;
2149 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2150 if (!old)
2152 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2153 return TRUE;
2156 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2157 the desired alias name, and p points to its end. If not, then
2158 the desired alias name is in the global original_case_string. */
2159 #ifdef TC_CASE_SENSITIVE
2160 nlen = p - newname;
2161 #else
2162 newname = original_case_string;
2163 nlen = strlen (newname);
2164 #endif
2166 nbuf = (char *) alloca (nlen + 1);
2167 memcpy (nbuf, newname, nlen);
2168 nbuf[nlen] = '\0';
2170 /* Create aliases under the new name as stated; an all-lowercase
2171 version of the new name; and an all-uppercase version of the new
2172 name. */
2173 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2175 for (p = nbuf; *p; p++)
2176 *p = TOUPPER (*p);
2178 if (strncmp (nbuf, newname, nlen))
2180 /* If this attempt to create an additional alias fails, do not bother
2181 trying to create the all-lower case alias. We will fail and issue
2182 a second, duplicate error message. This situation arises when the
2183 programmer does something like:
2184 foo .req r0
2185 Foo .req r1
2186 The second .req creates the "Foo" alias but then fails to create
2187 the artificial FOO alias because it has already been created by the
2188 first .req. */
2189 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2190 return TRUE;
2193 for (p = nbuf; *p; p++)
2194 *p = TOLOWER (*p);
2196 if (strncmp (nbuf, newname, nlen))
2197 insert_reg_alias (nbuf, old->number, old->type);
2200 return TRUE;
2203 /* Create a Neon typed/indexed register alias using directives, e.g.:
2204 X .dn d5.s32[1]
2205 Y .qn 6.s16
2206 Z .dn d7
2207 T .dn Z[0]
2208 These typed registers can be used instead of the types specified after the
2209 Neon mnemonic, so long as all operands given have types. Types can also be
2210 specified directly, e.g.:
2211 vadd d0.s32, d1.s32, d2.s32 */
2213 static bfd_boolean
2214 create_neon_reg_alias (char *newname, char *p)
2216 enum arm_reg_type basetype;
2217 struct reg_entry *basereg;
2218 struct reg_entry mybasereg;
2219 struct neon_type ntype;
2220 struct neon_typed_alias typeinfo;
2221 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2222 int namelen;
2224 typeinfo.defined = 0;
2225 typeinfo.eltype.type = NT_invtype;
2226 typeinfo.eltype.size = -1;
2227 typeinfo.index = -1;
2229 nameend = p;
2231 if (strncmp (p, " .dn ", 5) == 0)
2232 basetype = REG_TYPE_VFD;
2233 else if (strncmp (p, " .qn ", 5) == 0)
2234 basetype = REG_TYPE_NQ;
2235 else
2236 return FALSE;
2238 p += 5;
2240 if (*p == '\0')
2241 return FALSE;
2243 basereg = arm_reg_parse_multi (&p);
2245 if (basereg && basereg->type != basetype)
2247 as_bad (_("bad type for register"));
2248 return FALSE;
2251 if (basereg == NULL)
2253 expressionS exp;
2254 /* Try parsing as an integer. */
2255 my_get_expression (&exp, &p, GE_NO_PREFIX);
2256 if (exp.X_op != O_constant)
2258 as_bad (_("expression must be constant"));
2259 return FALSE;
2261 basereg = &mybasereg;
2262 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2263 : exp.X_add_number;
2264 basereg->neon = 0;
2267 if (basereg->neon)
2268 typeinfo = *basereg->neon;
2270 if (parse_neon_type (&ntype, &p) == SUCCESS)
2272 /* We got a type. */
2273 if (typeinfo.defined & NTA_HASTYPE)
2275 as_bad (_("can't redefine the type of a register alias"));
2276 return FALSE;
2279 typeinfo.defined |= NTA_HASTYPE;
2280 if (ntype.elems != 1)
2282 as_bad (_("you must specify a single type only"));
2283 return FALSE;
2285 typeinfo.eltype = ntype.el[0];
2288 if (skip_past_char (&p, '[') == SUCCESS)
2290 expressionS exp;
2291 /* We got a scalar index. */
2293 if (typeinfo.defined & NTA_HASINDEX)
2295 as_bad (_("can't redefine the index of a scalar alias"));
2296 return FALSE;
2299 my_get_expression (&exp, &p, GE_NO_PREFIX);
2301 if (exp.X_op != O_constant)
2303 as_bad (_("scalar index must be constant"));
2304 return FALSE;
2307 typeinfo.defined |= NTA_HASINDEX;
2308 typeinfo.index = exp.X_add_number;
2310 if (skip_past_char (&p, ']') == FAIL)
2312 as_bad (_("expecting ]"));
2313 return FALSE;
2317 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2318 the desired alias name, and p points to its end. If not, then
2319 the desired alias name is in the global original_case_string. */
2320 #ifdef TC_CASE_SENSITIVE
2321 namelen = nameend - newname;
2322 #else
2323 newname = original_case_string;
2324 namelen = strlen (newname);
2325 #endif
2327 namebuf = (char *) alloca (namelen + 1);
2328 strncpy (namebuf, newname, namelen);
2329 namebuf[namelen] = '\0';
2331 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2332 typeinfo.defined != 0 ? &typeinfo : NULL);
2334 /* Insert name in all uppercase. */
2335 for (p = namebuf; *p; p++)
2336 *p = TOUPPER (*p);
2338 if (strncmp (namebuf, newname, namelen))
2339 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2340 typeinfo.defined != 0 ? &typeinfo : NULL);
2342 /* Insert name in all lowercase. */
2343 for (p = namebuf; *p; p++)
2344 *p = TOLOWER (*p);
2346 if (strncmp (namebuf, newname, namelen))
2347 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2348 typeinfo.defined != 0 ? &typeinfo : NULL);
2350 return TRUE;
2353 /* Should never be called, as .req goes between the alias and the
2354 register name, not at the beginning of the line. */
2356 static void
2357 s_req (int a ATTRIBUTE_UNUSED)
2359 as_bad (_("invalid syntax for .req directive"));
2362 static void
2363 s_dn (int a ATTRIBUTE_UNUSED)
2365 as_bad (_("invalid syntax for .dn directive"));
2368 static void
2369 s_qn (int a ATTRIBUTE_UNUSED)
2371 as_bad (_("invalid syntax for .qn directive"));
2374 /* The .unreq directive deletes an alias which was previously defined
2375 by .req. For example:
2377 my_alias .req r11
2378 .unreq my_alias */
2380 static void
2381 s_unreq (int a ATTRIBUTE_UNUSED)
2383 char * name;
2384 char saved_char;
2386 name = input_line_pointer;
2388 while (*input_line_pointer != 0
2389 && *input_line_pointer != ' '
2390 && *input_line_pointer != '\n')
2391 ++input_line_pointer;
2393 saved_char = *input_line_pointer;
2394 *input_line_pointer = 0;
2396 if (!*name)
2397 as_bad (_("invalid syntax for .unreq directive"));
2398 else
2400 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2401 name);
2403 if (!reg)
2404 as_bad (_("unknown register alias '%s'"), name);
2405 else if (reg->builtin)
2406 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2407 name);
2408 else
2410 char * p;
2411 char * nbuf;
2413 hash_delete (arm_reg_hsh, name, FALSE);
2414 free ((char *) reg->name);
2415 if (reg->neon)
2416 free (reg->neon);
2417 free (reg);
2419 /* Also locate the all upper case and all lower case versions.
2420 Do not complain if we cannot find one or the other as it
2421 was probably deleted above. */
2423 nbuf = strdup (name);
2424 for (p = nbuf; *p; p++)
2425 *p = TOUPPER (*p);
2426 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2427 if (reg)
2429 hash_delete (arm_reg_hsh, nbuf, FALSE);
2430 free ((char *) reg->name);
2431 if (reg->neon)
2432 free (reg->neon);
2433 free (reg);
2436 for (p = nbuf; *p; p++)
2437 *p = TOLOWER (*p);
2438 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2439 if (reg)
2441 hash_delete (arm_reg_hsh, nbuf, FALSE);
2442 free ((char *) reg->name);
2443 if (reg->neon)
2444 free (reg->neon);
2445 free (reg);
2448 free (nbuf);
2452 *input_line_pointer = saved_char;
2453 demand_empty_rest_of_line ();
2456 /* Directives: Instruction set selection. */
2458 #ifdef OBJ_ELF
2459 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2460 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2461 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2462 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2464 /* Create a new mapping symbol for the transition to STATE. */
2466 static void
2467 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2469 symbolS * symbolP;
2470 const char * symname;
2471 int type;
2473 switch (state)
2475 case MAP_DATA:
2476 symname = "$d";
2477 type = BSF_NO_FLAGS;
2478 break;
2479 case MAP_ARM:
2480 symname = "$a";
2481 type = BSF_NO_FLAGS;
2482 break;
2483 case MAP_THUMB:
2484 symname = "$t";
2485 type = BSF_NO_FLAGS;
2486 break;
2487 default:
2488 abort ();
2491 symbolP = symbol_new (symname, now_seg, value, frag);
2492 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2494 switch (state)
2496 case MAP_ARM:
2497 THUMB_SET_FUNC (symbolP, 0);
2498 ARM_SET_THUMB (symbolP, 0);
2499 ARM_SET_INTERWORK (symbolP, support_interwork);
2500 break;
2502 case MAP_THUMB:
2503 THUMB_SET_FUNC (symbolP, 1);
2504 ARM_SET_THUMB (symbolP, 1);
2505 ARM_SET_INTERWORK (symbolP, support_interwork);
2506 break;
2508 case MAP_DATA:
2509 default:
2510 break;
2513 /* Save the mapping symbols for future reference. Also check that
2514 we do not place two mapping symbols at the same offset within a
2515 frag. We'll handle overlap between frags in
2516 check_mapping_symbols.
2518 If .fill or other data filling directive generates zero sized data,
2519 the mapping symbol for the following code will have the same value
2520 as the one generated for the data filling directive. In this case,
2521 we replace the old symbol with the new one at the same address. */
2522 if (value == 0)
2524 if (frag->tc_frag_data.first_map != NULL)
2526 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2527 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2529 frag->tc_frag_data.first_map = symbolP;
2531 if (frag->tc_frag_data.last_map != NULL)
2533 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2534 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2535 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2537 frag->tc_frag_data.last_map = symbolP;
2540 /* We must sometimes convert a region marked as code to data during
2541 code alignment, if an odd number of bytes have to be padded. The
2542 code mapping symbol is pushed to an aligned address. */
2544 static void
2545 insert_data_mapping_symbol (enum mstate state,
2546 valueT value, fragS *frag, offsetT bytes)
2548 /* If there was already a mapping symbol, remove it. */
2549 if (frag->tc_frag_data.last_map != NULL
2550 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2552 symbolS *symp = frag->tc_frag_data.last_map;
2554 if (value == 0)
2556 know (frag->tc_frag_data.first_map == symp);
2557 frag->tc_frag_data.first_map = NULL;
2559 frag->tc_frag_data.last_map = NULL;
2560 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2563 make_mapping_symbol (MAP_DATA, value, frag);
2564 make_mapping_symbol (state, value + bytes, frag);
2567 static void mapping_state_2 (enum mstate state, int max_chars);
2569 /* Set the mapping state to STATE. Only call this when about to
2570 emit some STATE bytes to the file. */
2572 void
2573 mapping_state (enum mstate state)
2575 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2577 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2579 if (mapstate == state)
2580 /* The mapping symbol has already been emitted.
2581 There is nothing else to do. */
2582 return;
2583 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2584 /* This case will be evaluated later in the next else. */
2585 return;
2586 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2587 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2589 /* Only add the symbol if the offset is > 0:
2590 if we're at the first frag, check it's size > 0;
2591 if we're not at the first frag, then for sure
2592 the offset is > 0. */
2593 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2594 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2596 if (add_symbol)
2597 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2600 mapping_state_2 (state, 0);
2601 #undef TRANSITION
2604 /* Same as mapping_state, but MAX_CHARS bytes have already been
2605 allocated. Put the mapping symbol that far back. */
2607 static void
2608 mapping_state_2 (enum mstate state, int max_chars)
2610 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2612 if (!SEG_NORMAL (now_seg))
2613 return;
2615 if (mapstate == state)
2616 /* The mapping symbol has already been emitted.
2617 There is nothing else to do. */
2618 return;
2620 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2621 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2623 #else
2624 #define mapping_state(x) ((void)0)
2625 #define mapping_state_2(x, y) ((void)0)
2626 #endif
2628 /* Find the real, Thumb encoded start of a Thumb function. */
2630 #ifdef OBJ_COFF
2631 static symbolS *
2632 find_real_start (symbolS * symbolP)
2634 char * real_start;
2635 const char * name = S_GET_NAME (symbolP);
2636 symbolS * new_target;
2638 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2639 #define STUB_NAME ".real_start_of"
2641 if (name == NULL)
2642 abort ();
2644 /* The compiler may generate BL instructions to local labels because
2645 it needs to perform a branch to a far away location. These labels
2646 do not have a corresponding ".real_start_of" label. We check
2647 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2648 the ".real_start_of" convention for nonlocal branches. */
2649 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2650 return symbolP;
2652 real_start = ACONCAT ((STUB_NAME, name, NULL));
2653 new_target = symbol_find (real_start);
2655 if (new_target == NULL)
2657 as_warn (_("Failed to find real start of function: %s\n"), name);
2658 new_target = symbolP;
2661 return new_target;
2663 #endif
2665 static void
2666 opcode_select (int width)
2668 switch (width)
2670 case 16:
2671 if (! thumb_mode)
2673 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2674 as_bad (_("selected processor does not support THUMB opcodes"));
2676 thumb_mode = 1;
2677 /* No need to force the alignment, since we will have been
2678 coming from ARM mode, which is word-aligned. */
2679 record_alignment (now_seg, 1);
2681 break;
2683 case 32:
2684 if (thumb_mode)
2686 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2687 as_bad (_("selected processor does not support ARM opcodes"));
2689 thumb_mode = 0;
2691 if (!need_pass_2)
2692 frag_align (2, 0, 0);
2694 record_alignment (now_seg, 1);
2696 break;
2698 default:
2699 as_bad (_("invalid instruction size selected (%d)"), width);
2703 static void
2704 s_arm (int ignore ATTRIBUTE_UNUSED)
2706 opcode_select (32);
2707 demand_empty_rest_of_line ();
2710 static void
2711 s_thumb (int ignore ATTRIBUTE_UNUSED)
2713 opcode_select (16);
2714 demand_empty_rest_of_line ();
2717 static void
2718 s_code (int unused ATTRIBUTE_UNUSED)
2720 int temp;
2722 temp = get_absolute_expression ();
2723 switch (temp)
2725 case 16:
2726 case 32:
2727 opcode_select (temp);
2728 break;
2730 default:
2731 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2735 static void
2736 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2738 /* If we are not already in thumb mode go into it, EVEN if
2739 the target processor does not support thumb instructions.
2740 This is used by gcc/config/arm/lib1funcs.asm for example
2741 to compile interworking support functions even if the
2742 target processor should not support interworking. */
2743 if (! thumb_mode)
2745 thumb_mode = 2;
2746 record_alignment (now_seg, 1);
2749 demand_empty_rest_of_line ();
2752 static void
2753 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2755 s_thumb (0);
2757 /* The following label is the name/address of the start of a Thumb function.
2758 We need to know this for the interworking support. */
2759 label_is_thumb_function_name = TRUE;
2762 /* Perform a .set directive, but also mark the alias as
2763 being a thumb function. */
2765 static void
2766 s_thumb_set (int equiv)
2768 /* XXX the following is a duplicate of the code for s_set() in read.c
2769 We cannot just call that code as we need to get at the symbol that
2770 is created. */
2771 char * name;
2772 char delim;
2773 char * end_name;
2774 symbolS * symbolP;
2776 /* Especial apologies for the random logic:
2777 This just grew, and could be parsed much more simply!
2778 Dean - in haste. */
2779 name = input_line_pointer;
2780 delim = get_symbol_end ();
2781 end_name = input_line_pointer;
2782 *end_name = delim;
2784 if (*input_line_pointer != ',')
2786 *end_name = 0;
2787 as_bad (_("expected comma after name \"%s\""), name);
2788 *end_name = delim;
2789 ignore_rest_of_line ();
2790 return;
2793 input_line_pointer++;
2794 *end_name = 0;
2796 if (name[0] == '.' && name[1] == '\0')
2798 /* XXX - this should not happen to .thumb_set. */
2799 abort ();
2802 if ((symbolP = symbol_find (name)) == NULL
2803 && (symbolP = md_undefined_symbol (name)) == NULL)
2805 #ifndef NO_LISTING
2806 /* When doing symbol listings, play games with dummy fragments living
2807 outside the normal fragment chain to record the file and line info
2808 for this symbol. */
2809 if (listing & LISTING_SYMBOLS)
2811 extern struct list_info_struct * listing_tail;
2812 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2814 memset (dummy_frag, 0, sizeof (fragS));
2815 dummy_frag->fr_type = rs_fill;
2816 dummy_frag->line = listing_tail;
2817 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2818 dummy_frag->fr_symbol = symbolP;
2820 else
2821 #endif
2822 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2824 #ifdef OBJ_COFF
2825 /* "set" symbols are local unless otherwise specified. */
2826 SF_SET_LOCAL (symbolP);
2827 #endif /* OBJ_COFF */
2828 } /* Make a new symbol. */
2830 symbol_table_insert (symbolP);
2832 * end_name = delim;
2834 if (equiv
2835 && S_IS_DEFINED (symbolP)
2836 && S_GET_SEGMENT (symbolP) != reg_section)
2837 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2839 pseudo_set (symbolP);
2841 demand_empty_rest_of_line ();
2843 /* XXX Now we come to the Thumb specific bit of code. */
2845 THUMB_SET_FUNC (symbolP, 1);
2846 ARM_SET_THUMB (symbolP, 1);
2847 #if defined OBJ_ELF || defined OBJ_COFF
2848 ARM_SET_INTERWORK (symbolP, support_interwork);
2849 #endif
2852 /* Directives: Mode selection. */
2854 /* .syntax [unified|divided] - choose the new unified syntax
2855 (same for Arm and Thumb encoding, modulo slight differences in what
2856 can be represented) or the old divergent syntax for each mode. */
2857 static void
2858 s_syntax (int unused ATTRIBUTE_UNUSED)
2860 char *name, delim;
2862 name = input_line_pointer;
2863 delim = get_symbol_end ();
2865 if (!strcasecmp (name, "unified"))
2866 unified_syntax = TRUE;
2867 else if (!strcasecmp (name, "divided"))
2868 unified_syntax = FALSE;
2869 else
2871 as_bad (_("unrecognized syntax mode \"%s\""), name);
2872 return;
2874 *input_line_pointer = delim;
2875 demand_empty_rest_of_line ();
2878 /* Directives: sectioning and alignment. */
2880 /* Same as s_align_ptwo but align 0 => align 2. */
2882 static void
2883 s_align (int unused ATTRIBUTE_UNUSED)
2885 int temp;
2886 bfd_boolean fill_p;
2887 long temp_fill;
2888 long max_alignment = 15;
2890 temp = get_absolute_expression ();
2891 if (temp > max_alignment)
2892 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2893 else if (temp < 0)
2895 as_bad (_("alignment negative. 0 assumed."));
2896 temp = 0;
2899 if (*input_line_pointer == ',')
2901 input_line_pointer++;
2902 temp_fill = get_absolute_expression ();
2903 fill_p = TRUE;
2905 else
2907 fill_p = FALSE;
2908 temp_fill = 0;
2911 if (!temp)
2912 temp = 2;
2914 /* Only make a frag if we HAVE to. */
2915 if (temp && !need_pass_2)
2917 if (!fill_p && subseg_text_p (now_seg))
2918 frag_align_code (temp, 0);
2919 else
2920 frag_align (temp, (int) temp_fill, 0);
2922 demand_empty_rest_of_line ();
2924 record_alignment (now_seg, temp);
2927 static void
2928 s_bss (int ignore ATTRIBUTE_UNUSED)
2930 /* We don't support putting frags in the BSS segment, we fake it by
2931 marking in_bss, then looking at s_skip for clues. */
2932 subseg_set (bss_section, 0);
2933 demand_empty_rest_of_line ();
2935 #ifdef md_elf_section_change_hook
2936 md_elf_section_change_hook ();
2937 #endif
2940 static void
2941 s_even (int ignore ATTRIBUTE_UNUSED)
2943 /* Never make frag if expect extra pass. */
2944 if (!need_pass_2)
2945 frag_align (1, 0, 0);
2947 record_alignment (now_seg, 1);
2949 demand_empty_rest_of_line ();
2952 /* Directives: Literal pools. */
2954 static literal_pool *
2955 find_literal_pool (void)
2957 literal_pool * pool;
2959 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2961 if (pool->section == now_seg
2962 && pool->sub_section == now_subseg)
2963 break;
2966 return pool;
2969 static literal_pool *
2970 find_or_make_literal_pool (void)
2972 /* Next literal pool ID number. */
2973 static unsigned int latest_pool_num = 1;
2974 literal_pool * pool;
2976 pool = find_literal_pool ();
2978 if (pool == NULL)
2980 /* Create a new pool. */
2981 pool = (literal_pool *) xmalloc (sizeof (* pool));
2982 if (! pool)
2983 return NULL;
2985 pool->next_free_entry = 0;
2986 pool->section = now_seg;
2987 pool->sub_section = now_subseg;
2988 pool->next = list_of_pools;
2989 pool->symbol = NULL;
2991 /* Add it to the list. */
2992 list_of_pools = pool;
2995 /* New pools, and emptied pools, will have a NULL symbol. */
2996 if (pool->symbol == NULL)
2998 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2999 (valueT) 0, &zero_address_frag);
3000 pool->id = latest_pool_num ++;
3003 /* Done. */
3004 return pool;
3007 /* Add the literal in the global 'inst'
3008 structure to the relevant literal pool. */
3010 static int
3011 add_to_lit_pool (void)
3013 literal_pool * pool;
3014 unsigned int entry;
3016 pool = find_or_make_literal_pool ();
3018 /* Check if this literal value is already in the pool. */
3019 for (entry = 0; entry < pool->next_free_entry; entry ++)
3021 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3022 && (inst.reloc.exp.X_op == O_constant)
3023 && (pool->literals[entry].X_add_number
3024 == inst.reloc.exp.X_add_number)
3025 && (pool->literals[entry].X_unsigned
3026 == inst.reloc.exp.X_unsigned))
3027 break;
3029 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3030 && (inst.reloc.exp.X_op == O_symbol)
3031 && (pool->literals[entry].X_add_number
3032 == inst.reloc.exp.X_add_number)
3033 && (pool->literals[entry].X_add_symbol
3034 == inst.reloc.exp.X_add_symbol)
3035 && (pool->literals[entry].X_op_symbol
3036 == inst.reloc.exp.X_op_symbol))
3037 break;
3040 /* Do we need to create a new entry? */
3041 if (entry == pool->next_free_entry)
3043 if (entry >= MAX_LITERAL_POOL_SIZE)
3045 inst.error = _("literal pool overflow");
3046 return FAIL;
3049 pool->literals[entry] = inst.reloc.exp;
3050 pool->next_free_entry += 1;
3053 inst.reloc.exp.X_op = O_symbol;
3054 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3055 inst.reloc.exp.X_add_symbol = pool->symbol;
3057 return SUCCESS;
3060 /* Can't use symbol_new here, so have to create a symbol and then at
3061 a later date assign it a value. Thats what these functions do. */
3063 static void
3064 symbol_locate (symbolS * symbolP,
3065 const char * name, /* It is copied, the caller can modify. */
3066 segT segment, /* Segment identifier (SEG_<something>). */
3067 valueT valu, /* Symbol value. */
3068 fragS * frag) /* Associated fragment. */
3070 unsigned int name_length;
3071 char * preserved_copy_of_name;
3073 name_length = strlen (name) + 1; /* +1 for \0. */
3074 obstack_grow (&notes, name, name_length);
3075 preserved_copy_of_name = (char *) obstack_finish (&notes);
3077 #ifdef tc_canonicalize_symbol_name
3078 preserved_copy_of_name =
3079 tc_canonicalize_symbol_name (preserved_copy_of_name);
3080 #endif
3082 S_SET_NAME (symbolP, preserved_copy_of_name);
3084 S_SET_SEGMENT (symbolP, segment);
3085 S_SET_VALUE (symbolP, valu);
3086 symbol_clear_list_pointers (symbolP);
3088 symbol_set_frag (symbolP, frag);
3090 /* Link to end of symbol chain. */
3092 extern int symbol_table_frozen;
3094 if (symbol_table_frozen)
3095 abort ();
3098 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3100 obj_symbol_new_hook (symbolP);
3102 #ifdef tc_symbol_new_hook
3103 tc_symbol_new_hook (symbolP);
3104 #endif
3106 #ifdef DEBUG_SYMS
3107 verify_symbol_chain (symbol_rootP, symbol_lastP);
3108 #endif /* DEBUG_SYMS */
3112 static void
3113 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3115 unsigned int entry;
3116 literal_pool * pool;
3117 char sym_name[20];
3119 pool = find_literal_pool ();
3120 if (pool == NULL
3121 || pool->symbol == NULL
3122 || pool->next_free_entry == 0)
3123 return;
3125 mapping_state (MAP_DATA);
3127 /* Align pool as you have word accesses.
3128 Only make a frag if we have to. */
3129 if (!need_pass_2)
3130 frag_align (2, 0, 0);
3132 record_alignment (now_seg, 2);
3134 sprintf (sym_name, "$$lit_\002%x", pool->id);
3136 symbol_locate (pool->symbol, sym_name, now_seg,
3137 (valueT) frag_now_fix (), frag_now);
3138 symbol_table_insert (pool->symbol);
3140 ARM_SET_THUMB (pool->symbol, thumb_mode);
3142 #if defined OBJ_COFF || defined OBJ_ELF
3143 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3144 #endif
3146 for (entry = 0; entry < pool->next_free_entry; entry ++)
3147 /* First output the expression in the instruction to the pool. */
3148 emit_expr (&(pool->literals[entry]), 4); /* .word */
3150 /* Mark the pool as empty. */
3151 pool->next_free_entry = 0;
3152 pool->symbol = NULL;
3155 #ifdef OBJ_ELF
3156 /* Forward declarations for functions below, in the MD interface
3157 section. */
3158 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3159 static valueT create_unwind_entry (int);
3160 static void start_unwind_section (const segT, int);
3161 static void add_unwind_opcode (valueT, int);
3162 static void flush_pending_unwind (void);
3164 /* Directives: Data. */
3166 static void
3167 s_arm_elf_cons (int nbytes)
3169 expressionS exp;
3171 #ifdef md_flush_pending_output
3172 md_flush_pending_output ();
3173 #endif
3175 if (is_it_end_of_statement ())
3177 demand_empty_rest_of_line ();
3178 return;
3181 #ifdef md_cons_align
3182 md_cons_align (nbytes);
3183 #endif
3185 mapping_state (MAP_DATA);
3188 int reloc;
3189 char *base = input_line_pointer;
3191 expression (& exp);
3193 if (exp.X_op != O_symbol)
3194 emit_expr (&exp, (unsigned int) nbytes);
3195 else
3197 char *before_reloc = input_line_pointer;
3198 reloc = parse_reloc (&input_line_pointer);
3199 if (reloc == -1)
3201 as_bad (_("unrecognized relocation suffix"));
3202 ignore_rest_of_line ();
3203 return;
3205 else if (reloc == BFD_RELOC_UNUSED)
3206 emit_expr (&exp, (unsigned int) nbytes);
3207 else
3209 reloc_howto_type *howto = (reloc_howto_type *)
3210 bfd_reloc_type_lookup (stdoutput,
3211 (bfd_reloc_code_real_type) reloc);
3212 int size = bfd_get_reloc_size (howto);
3214 if (reloc == BFD_RELOC_ARM_PLT32)
3216 as_bad (_("(plt) is only valid on branch targets"));
3217 reloc = BFD_RELOC_UNUSED;
3218 size = 0;
3221 if (size > nbytes)
3222 as_bad (_("%s relocations do not fit in %d bytes"),
3223 howto->name, nbytes);
3224 else
3226 /* We've parsed an expression stopping at O_symbol.
3227 But there may be more expression left now that we
3228 have parsed the relocation marker. Parse it again.
3229 XXX Surely there is a cleaner way to do this. */
3230 char *p = input_line_pointer;
3231 int offset;
3232 char *save_buf = (char *) alloca (input_line_pointer - base);
3233 memcpy (save_buf, base, input_line_pointer - base);
3234 memmove (base + (input_line_pointer - before_reloc),
3235 base, before_reloc - base);
3237 input_line_pointer = base + (input_line_pointer-before_reloc);
3238 expression (&exp);
3239 memcpy (base, save_buf, p - base);
3241 offset = nbytes - size;
3242 p = frag_more ((int) nbytes);
3243 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3244 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3249 while (*input_line_pointer++ == ',');
3251 /* Put terminator back into stream. */
3252 input_line_pointer --;
3253 demand_empty_rest_of_line ();
3256 /* Emit an expression containing a 32-bit thumb instruction.
3257 Implementation based on put_thumb32_insn. */
3259 static void
3260 emit_thumb32_expr (expressionS * exp)
3262 expressionS exp_high = *exp;
3264 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3265 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3266 exp->X_add_number &= 0xffff;
3267 emit_expr (exp, (unsigned int) THUMB_SIZE);
3270 /* Guess the instruction size based on the opcode. */
3272 static int
3273 thumb_insn_size (int opcode)
3275 if ((unsigned int) opcode < 0xe800u)
3276 return 2;
3277 else if ((unsigned int) opcode >= 0xe8000000u)
3278 return 4;
3279 else
3280 return 0;
3283 static bfd_boolean
3284 emit_insn (expressionS *exp, int nbytes)
3286 int size = 0;
3288 if (exp->X_op == O_constant)
3290 size = nbytes;
3292 if (size == 0)
3293 size = thumb_insn_size (exp->X_add_number);
3295 if (size != 0)
3297 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3299 as_bad (_(".inst.n operand too big. "\
3300 "Use .inst.w instead"));
3301 size = 0;
3303 else
3305 if (now_it.state == AUTOMATIC_IT_BLOCK)
3306 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3307 else
3308 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3310 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3311 emit_thumb32_expr (exp);
3312 else
3313 emit_expr (exp, (unsigned int) size);
3315 it_fsm_post_encode ();
3318 else
3319 as_bad (_("cannot determine Thumb instruction size. " \
3320 "Use .inst.n/.inst.w instead"));
3322 else
3323 as_bad (_("constant expression required"));
3325 return (size != 0);
3328 /* Like s_arm_elf_cons but do not use md_cons_align and
3329 set the mapping state to MAP_ARM/MAP_THUMB. */
3331 static void
3332 s_arm_elf_inst (int nbytes)
3334 if (is_it_end_of_statement ())
3336 demand_empty_rest_of_line ();
3337 return;
3340 /* Calling mapping_state () here will not change ARM/THUMB,
3341 but will ensure not to be in DATA state. */
3343 if (thumb_mode)
3344 mapping_state (MAP_THUMB);
3345 else
3347 if (nbytes != 0)
3349 as_bad (_("width suffixes are invalid in ARM mode"));
3350 ignore_rest_of_line ();
3351 return;
3354 nbytes = 4;
3356 mapping_state (MAP_ARM);
3361 expressionS exp;
3363 expression (& exp);
3365 if (! emit_insn (& exp, nbytes))
3367 ignore_rest_of_line ();
3368 return;
3371 while (*input_line_pointer++ == ',');
3373 /* Put terminator back into stream. */
3374 input_line_pointer --;
3375 demand_empty_rest_of_line ();
3378 /* Parse a .rel31 directive. */
3380 static void
3381 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3383 expressionS exp;
3384 char *p;
3385 valueT highbit;
3387 highbit = 0;
3388 if (*input_line_pointer == '1')
3389 highbit = 0x80000000;
3390 else if (*input_line_pointer != '0')
3391 as_bad (_("expected 0 or 1"));
3393 input_line_pointer++;
3394 if (*input_line_pointer != ',')
3395 as_bad (_("missing comma"));
3396 input_line_pointer++;
3398 #ifdef md_flush_pending_output
3399 md_flush_pending_output ();
3400 #endif
3402 #ifdef md_cons_align
3403 md_cons_align (4);
3404 #endif
3406 mapping_state (MAP_DATA);
3408 expression (&exp);
3410 p = frag_more (4);
3411 md_number_to_chars (p, highbit, 4);
3412 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3413 BFD_RELOC_ARM_PREL31);
3415 demand_empty_rest_of_line ();
3418 /* Directives: AEABI stack-unwind tables. */
3420 /* Parse an unwind_fnstart directive. Simply records the current location. */
3422 static void
3423 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3425 demand_empty_rest_of_line ();
3426 if (unwind.proc_start)
3428 as_bad (_("duplicate .fnstart directive"));
3429 return;
3432 /* Mark the start of the function. */
3433 unwind.proc_start = expr_build_dot ();
3435 /* Reset the rest of the unwind info. */
3436 unwind.opcode_count = 0;
3437 unwind.table_entry = NULL;
3438 unwind.personality_routine = NULL;
3439 unwind.personality_index = -1;
3440 unwind.frame_size = 0;
3441 unwind.fp_offset = 0;
3442 unwind.fp_reg = REG_SP;
3443 unwind.fp_used = 0;
3444 unwind.sp_restored = 0;
3448 /* Parse a handlerdata directive. Creates the exception handling table entry
3449 for the function. */
3451 static void
3452 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3454 demand_empty_rest_of_line ();
3455 if (!unwind.proc_start)
3456 as_bad (MISSING_FNSTART);
3458 if (unwind.table_entry)
3459 as_bad (_("duplicate .handlerdata directive"));
3461 create_unwind_entry (1);
3464 /* Parse an unwind_fnend directive. Generates the index table entry. */
3466 static void
3467 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3469 long where;
3470 char *ptr;
3471 valueT val;
3472 unsigned int marked_pr_dependency;
3474 demand_empty_rest_of_line ();
3476 if (!unwind.proc_start)
3478 as_bad (_(".fnend directive without .fnstart"));
3479 return;
3482 /* Add eh table entry. */
3483 if (unwind.table_entry == NULL)
3484 val = create_unwind_entry (0);
3485 else
3486 val = 0;
3488 /* Add index table entry. This is two words. */
3489 start_unwind_section (unwind.saved_seg, 1);
3490 frag_align (2, 0, 0);
3491 record_alignment (now_seg, 2);
3493 ptr = frag_more (8);
3494 where = frag_now_fix () - 8;
3496 /* Self relative offset of the function start. */
3497 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3498 BFD_RELOC_ARM_PREL31);
3500 /* Indicate dependency on EHABI-defined personality routines to the
3501 linker, if it hasn't been done already. */
3502 marked_pr_dependency
3503 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3504 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3505 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3507 static const char *const name[] =
3509 "__aeabi_unwind_cpp_pr0",
3510 "__aeabi_unwind_cpp_pr1",
3511 "__aeabi_unwind_cpp_pr2"
3513 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3514 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3515 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3516 |= 1 << unwind.personality_index;
3519 if (val)
3520 /* Inline exception table entry. */
3521 md_number_to_chars (ptr + 4, val, 4);
3522 else
3523 /* Self relative offset of the table entry. */
3524 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3525 BFD_RELOC_ARM_PREL31);
3527 /* Restore the original section. */
3528 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3530 unwind.proc_start = NULL;
3534 /* Parse an unwind_cantunwind directive. */
3536 static void
3537 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3539 demand_empty_rest_of_line ();
3540 if (!unwind.proc_start)
3541 as_bad (MISSING_FNSTART);
3543 if (unwind.personality_routine || unwind.personality_index != -1)
3544 as_bad (_("personality routine specified for cantunwind frame"));
3546 unwind.personality_index = -2;
3550 /* Parse a personalityindex directive. */
3552 static void
3553 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3555 expressionS exp;
3557 if (!unwind.proc_start)
3558 as_bad (MISSING_FNSTART);
3560 if (unwind.personality_routine || unwind.personality_index != -1)
3561 as_bad (_("duplicate .personalityindex directive"));
3563 expression (&exp);
3565 if (exp.X_op != O_constant
3566 || exp.X_add_number < 0 || exp.X_add_number > 15)
3568 as_bad (_("bad personality routine number"));
3569 ignore_rest_of_line ();
3570 return;
3573 unwind.personality_index = exp.X_add_number;
3575 demand_empty_rest_of_line ();
3579 /* Parse a personality directive. */
3581 static void
3582 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3584 char *name, *p, c;
3586 if (!unwind.proc_start)
3587 as_bad (MISSING_FNSTART);
3589 if (unwind.personality_routine || unwind.personality_index != -1)
3590 as_bad (_("duplicate .personality directive"));
3592 name = input_line_pointer;
3593 c = get_symbol_end ();
3594 p = input_line_pointer;
3595 unwind.personality_routine = symbol_find_or_make (name);
3596 *p = c;
3597 demand_empty_rest_of_line ();
3601 /* Parse a directive saving core registers. */
3603 static void
3604 s_arm_unwind_save_core (void)
3606 valueT op;
3607 long range;
3608 int n;
3610 range = parse_reg_list (&input_line_pointer);
3611 if (range == FAIL)
3613 as_bad (_("expected register list"));
3614 ignore_rest_of_line ();
3615 return;
3618 demand_empty_rest_of_line ();
3620 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3621 into .unwind_save {..., sp...}. We aren't bothered about the value of
3622 ip because it is clobbered by calls. */
3623 if (unwind.sp_restored && unwind.fp_reg == 12
3624 && (range & 0x3000) == 0x1000)
3626 unwind.opcode_count--;
3627 unwind.sp_restored = 0;
3628 range = (range | 0x2000) & ~0x1000;
3629 unwind.pending_offset = 0;
3632 /* Pop r4-r15. */
3633 if (range & 0xfff0)
3635 /* See if we can use the short opcodes. These pop a block of up to 8
3636 registers starting with r4, plus maybe r14. */
3637 for (n = 0; n < 8; n++)
3639 /* Break at the first non-saved register. */
3640 if ((range & (1 << (n + 4))) == 0)
3641 break;
3643 /* See if there are any other bits set. */
3644 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3646 /* Use the long form. */
3647 op = 0x8000 | ((range >> 4) & 0xfff);
3648 add_unwind_opcode (op, 2);
3650 else
3652 /* Use the short form. */
3653 if (range & 0x4000)
3654 op = 0xa8; /* Pop r14. */
3655 else
3656 op = 0xa0; /* Do not pop r14. */
3657 op |= (n - 1);
3658 add_unwind_opcode (op, 1);
3662 /* Pop r0-r3. */
3663 if (range & 0xf)
3665 op = 0xb100 | (range & 0xf);
3666 add_unwind_opcode (op, 2);
3669 /* Record the number of bytes pushed. */
3670 for (n = 0; n < 16; n++)
3672 if (range & (1 << n))
3673 unwind.frame_size += 4;
3678 /* Parse a directive saving FPA registers. */
3680 static void
3681 s_arm_unwind_save_fpa (int reg)
3683 expressionS exp;
3684 int num_regs;
3685 valueT op;
3687 /* Get Number of registers to transfer. */
3688 if (skip_past_comma (&input_line_pointer) != FAIL)
3689 expression (&exp);
3690 else
3691 exp.X_op = O_illegal;
3693 if (exp.X_op != O_constant)
3695 as_bad (_("expected , <constant>"));
3696 ignore_rest_of_line ();
3697 return;
3700 num_regs = exp.X_add_number;
3702 if (num_regs < 1 || num_regs > 4)
3704 as_bad (_("number of registers must be in the range [1:4]"));
3705 ignore_rest_of_line ();
3706 return;
3709 demand_empty_rest_of_line ();
3711 if (reg == 4)
3713 /* Short form. */
3714 op = 0xb4 | (num_regs - 1);
3715 add_unwind_opcode (op, 1);
3717 else
3719 /* Long form. */
3720 op = 0xc800 | (reg << 4) | (num_regs - 1);
3721 add_unwind_opcode (op, 2);
3723 unwind.frame_size += num_regs * 12;
3727 /* Parse a directive saving VFP registers for ARMv6 and above. */
3729 static void
3730 s_arm_unwind_save_vfp_armv6 (void)
3732 int count;
3733 unsigned int start;
3734 valueT op;
3735 int num_vfpv3_regs = 0;
3736 int num_regs_below_16;
3738 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3739 if (count == FAIL)
3741 as_bad (_("expected register list"));
3742 ignore_rest_of_line ();
3743 return;
3746 demand_empty_rest_of_line ();
3748 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3749 than FSTMX/FLDMX-style ones). */
3751 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3752 if (start >= 16)
3753 num_vfpv3_regs = count;
3754 else if (start + count > 16)
3755 num_vfpv3_regs = start + count - 16;
3757 if (num_vfpv3_regs > 0)
3759 int start_offset = start > 16 ? start - 16 : 0;
3760 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3761 add_unwind_opcode (op, 2);
3764 /* Generate opcode for registers numbered in the range 0 .. 15. */
3765 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3766 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3767 if (num_regs_below_16 > 0)
3769 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3770 add_unwind_opcode (op, 2);
3773 unwind.frame_size += count * 8;
3777 /* Parse a directive saving VFP registers for pre-ARMv6. */
3779 static void
3780 s_arm_unwind_save_vfp (void)
3782 int count;
3783 unsigned int reg;
3784 valueT op;
3786 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3787 if (count == FAIL)
3789 as_bad (_("expected register list"));
3790 ignore_rest_of_line ();
3791 return;
3794 demand_empty_rest_of_line ();
3796 if (reg == 8)
3798 /* Short form. */
3799 op = 0xb8 | (count - 1);
3800 add_unwind_opcode (op, 1);
3802 else
3804 /* Long form. */
3805 op = 0xb300 | (reg << 4) | (count - 1);
3806 add_unwind_opcode (op, 2);
3808 unwind.frame_size += count * 8 + 4;
3812 /* Parse a directive saving iWMMXt data registers. */
3814 static void
3815 s_arm_unwind_save_mmxwr (void)
3817 int reg;
3818 int hi_reg;
3819 int i;
3820 unsigned mask = 0;
3821 valueT op;
3823 if (*input_line_pointer == '{')
3824 input_line_pointer++;
3828 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3830 if (reg == FAIL)
3832 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3833 goto error;
3836 if (mask >> reg)
3837 as_tsktsk (_("register list not in ascending order"));
3838 mask |= 1 << reg;
3840 if (*input_line_pointer == '-')
3842 input_line_pointer++;
3843 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3844 if (hi_reg == FAIL)
3846 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3847 goto error;
3849 else if (reg >= hi_reg)
3851 as_bad (_("bad register range"));
3852 goto error;
3854 for (; reg < hi_reg; reg++)
3855 mask |= 1 << reg;
3858 while (skip_past_comma (&input_line_pointer) != FAIL);
3860 if (*input_line_pointer == '}')
3861 input_line_pointer++;
3863 demand_empty_rest_of_line ();
3865 /* Generate any deferred opcodes because we're going to be looking at
3866 the list. */
3867 flush_pending_unwind ();
3869 for (i = 0; i < 16; i++)
3871 if (mask & (1 << i))
3872 unwind.frame_size += 8;
3875 /* Attempt to combine with a previous opcode. We do this because gcc
3876 likes to output separate unwind directives for a single block of
3877 registers. */
3878 if (unwind.opcode_count > 0)
3880 i = unwind.opcodes[unwind.opcode_count - 1];
3881 if ((i & 0xf8) == 0xc0)
3883 i &= 7;
3884 /* Only merge if the blocks are contiguous. */
3885 if (i < 6)
3887 if ((mask & 0xfe00) == (1 << 9))
3889 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3890 unwind.opcode_count--;
3893 else if (i == 6 && unwind.opcode_count >= 2)
3895 i = unwind.opcodes[unwind.opcode_count - 2];
3896 reg = i >> 4;
3897 i &= 0xf;
3899 op = 0xffff << (reg - 1);
3900 if (reg > 0
3901 && ((mask & op) == (1u << (reg - 1))))
3903 op = (1 << (reg + i + 1)) - 1;
3904 op &= ~((1 << reg) - 1);
3905 mask |= op;
3906 unwind.opcode_count -= 2;
3912 hi_reg = 15;
3913 /* We want to generate opcodes in the order the registers have been
3914 saved, ie. descending order. */
3915 for (reg = 15; reg >= -1; reg--)
3917 /* Save registers in blocks. */
3918 if (reg < 0
3919 || !(mask & (1 << reg)))
3921 /* We found an unsaved reg. Generate opcodes to save the
3922 preceding block. */
3923 if (reg != hi_reg)
3925 if (reg == 9)
3927 /* Short form. */
3928 op = 0xc0 | (hi_reg - 10);
3929 add_unwind_opcode (op, 1);
3931 else
3933 /* Long form. */
3934 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3935 add_unwind_opcode (op, 2);
3938 hi_reg = reg - 1;
3942 return;
3943 error:
3944 ignore_rest_of_line ();
3947 static void
3948 s_arm_unwind_save_mmxwcg (void)
3950 int reg;
3951 int hi_reg;
3952 unsigned mask = 0;
3953 valueT op;
3955 if (*input_line_pointer == '{')
3956 input_line_pointer++;
3960 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3962 if (reg == FAIL)
3964 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3965 goto error;
3968 reg -= 8;
3969 if (mask >> reg)
3970 as_tsktsk (_("register list not in ascending order"));
3971 mask |= 1 << reg;
3973 if (*input_line_pointer == '-')
3975 input_line_pointer++;
3976 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3977 if (hi_reg == FAIL)
3979 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3980 goto error;
3982 else if (reg >= hi_reg)
3984 as_bad (_("bad register range"));
3985 goto error;
3987 for (; reg < hi_reg; reg++)
3988 mask |= 1 << reg;
3991 while (skip_past_comma (&input_line_pointer) != FAIL);
3993 if (*input_line_pointer == '}')
3994 input_line_pointer++;
3996 demand_empty_rest_of_line ();
3998 /* Generate any deferred opcodes because we're going to be looking at
3999 the list. */
4000 flush_pending_unwind ();
4002 for (reg = 0; reg < 16; reg++)
4004 if (mask & (1 << reg))
4005 unwind.frame_size += 4;
4007 op = 0xc700 | mask;
4008 add_unwind_opcode (op, 2);
4009 return;
4010 error:
4011 ignore_rest_of_line ();
4015 /* Parse an unwind_save directive.
4016 If the argument is non-zero, this is a .vsave directive. */
4018 static void
4019 s_arm_unwind_save (int arch_v6)
4021 char *peek;
4022 struct reg_entry *reg;
4023 bfd_boolean had_brace = FALSE;
4025 if (!unwind.proc_start)
4026 as_bad (MISSING_FNSTART);
4028 /* Figure out what sort of save we have. */
4029 peek = input_line_pointer;
4031 if (*peek == '{')
4033 had_brace = TRUE;
4034 peek++;
4037 reg = arm_reg_parse_multi (&peek);
4039 if (!reg)
4041 as_bad (_("register expected"));
4042 ignore_rest_of_line ();
4043 return;
4046 switch (reg->type)
4048 case REG_TYPE_FN:
4049 if (had_brace)
4051 as_bad (_("FPA .unwind_save does not take a register list"));
4052 ignore_rest_of_line ();
4053 return;
4055 input_line_pointer = peek;
4056 s_arm_unwind_save_fpa (reg->number);
4057 return;
4059 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4060 case REG_TYPE_VFD:
4061 if (arch_v6)
4062 s_arm_unwind_save_vfp_armv6 ();
4063 else
4064 s_arm_unwind_save_vfp ();
4065 return;
4066 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4067 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4069 default:
4070 as_bad (_(".unwind_save does not support this kind of register"));
4071 ignore_rest_of_line ();
4076 /* Parse an unwind_movsp directive. */
4078 static void
4079 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4081 int reg;
4082 valueT op;
4083 int offset;
4085 if (!unwind.proc_start)
4086 as_bad (MISSING_FNSTART);
4088 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4089 if (reg == FAIL)
4091 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4092 ignore_rest_of_line ();
4093 return;
4096 /* Optional constant. */
4097 if (skip_past_comma (&input_line_pointer) != FAIL)
4099 if (immediate_for_directive (&offset) == FAIL)
4100 return;
4102 else
4103 offset = 0;
4105 demand_empty_rest_of_line ();
4107 if (reg == REG_SP || reg == REG_PC)
4109 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4110 return;
4113 if (unwind.fp_reg != REG_SP)
4114 as_bad (_("unexpected .unwind_movsp directive"));
4116 /* Generate opcode to restore the value. */
4117 op = 0x90 | reg;
4118 add_unwind_opcode (op, 1);
4120 /* Record the information for later. */
4121 unwind.fp_reg = reg;
4122 unwind.fp_offset = unwind.frame_size - offset;
4123 unwind.sp_restored = 1;
4126 /* Parse an unwind_pad directive. */
4128 static void
4129 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4131 int offset;
4133 if (!unwind.proc_start)
4134 as_bad (MISSING_FNSTART);
4136 if (immediate_for_directive (&offset) == FAIL)
4137 return;
4139 if (offset & 3)
4141 as_bad (_("stack increment must be multiple of 4"));
4142 ignore_rest_of_line ();
4143 return;
4146 /* Don't generate any opcodes, just record the details for later. */
4147 unwind.frame_size += offset;
4148 unwind.pending_offset += offset;
4150 demand_empty_rest_of_line ();
4153 /* Parse an unwind_setfp directive. */
4155 static void
4156 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4158 int sp_reg;
4159 int fp_reg;
4160 int offset;
4162 if (!unwind.proc_start)
4163 as_bad (MISSING_FNSTART);
4165 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4166 if (skip_past_comma (&input_line_pointer) == FAIL)
4167 sp_reg = FAIL;
4168 else
4169 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4171 if (fp_reg == FAIL || sp_reg == FAIL)
4173 as_bad (_("expected <reg>, <reg>"));
4174 ignore_rest_of_line ();
4175 return;
4178 /* Optional constant. */
4179 if (skip_past_comma (&input_line_pointer) != FAIL)
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
4184 else
4185 offset = 0;
4187 demand_empty_rest_of_line ();
4189 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4191 as_bad (_("register must be either sp or set by a previous"
4192 "unwind_movsp directive"));
4193 return;
4196 /* Don't generate any opcodes, just record the information for later. */
4197 unwind.fp_reg = fp_reg;
4198 unwind.fp_used = 1;
4199 if (sp_reg == REG_SP)
4200 unwind.fp_offset = unwind.frame_size - offset;
4201 else
4202 unwind.fp_offset -= offset;
4205 /* Parse an unwind_raw directive. */
4207 static void
4208 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4210 expressionS exp;
4211 /* This is an arbitrary limit. */
4212 unsigned char op[16];
4213 int count;
4215 if (!unwind.proc_start)
4216 as_bad (MISSING_FNSTART);
4218 expression (&exp);
4219 if (exp.X_op == O_constant
4220 && skip_past_comma (&input_line_pointer) != FAIL)
4222 unwind.frame_size += exp.X_add_number;
4223 expression (&exp);
4225 else
4226 exp.X_op = O_illegal;
4228 if (exp.X_op != O_constant)
4230 as_bad (_("expected <offset>, <opcode>"));
4231 ignore_rest_of_line ();
4232 return;
4235 count = 0;
4237 /* Parse the opcode. */
4238 for (;;)
4240 if (count >= 16)
4242 as_bad (_("unwind opcode too long"));
4243 ignore_rest_of_line ();
4245 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4247 as_bad (_("invalid unwind opcode"));
4248 ignore_rest_of_line ();
4249 return;
4251 op[count++] = exp.X_add_number;
4253 /* Parse the next byte. */
4254 if (skip_past_comma (&input_line_pointer) == FAIL)
4255 break;
4257 expression (&exp);
4260 /* Add the opcode bytes in reverse order. */
4261 while (count--)
4262 add_unwind_opcode (op[count], 1);
4264 demand_empty_rest_of_line ();
4268 /* Parse a .eabi_attribute directive. */
4270 static void
4271 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4273 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4275 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4276 attributes_set_explicitly[tag] = 1;
4279 /* Emit a tls fix for the symbol. */
4281 static void
4282 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4284 char *p;
4285 expressionS exp;
4286 #ifdef md_flush_pending_output
4287 md_flush_pending_output ();
4288 #endif
4290 #ifdef md_cons_align
4291 md_cons_align (4);
4292 #endif
4294 /* Since we're just labelling the code, there's no need to define a
4295 mapping symbol. */
4296 expression (&exp);
4297 p = obstack_next_free (&frchain_now->frch_obstack);
4298 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4299 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4300 : BFD_RELOC_ARM_TLS_DESCSEQ);
4302 #endif /* OBJ_ELF */
4304 static void s_arm_arch (int);
4305 static void s_arm_object_arch (int);
4306 static void s_arm_cpu (int);
4307 static void s_arm_fpu (int);
4308 static void s_arm_arch_extension (int);
4310 #ifdef TE_PE
4312 static void
4313 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4315 expressionS exp;
4319 expression (&exp);
4320 if (exp.X_op == O_symbol)
4321 exp.X_op = O_secrel;
4323 emit_expr (&exp, 4);
4325 while (*input_line_pointer++ == ',');
4327 input_line_pointer--;
4328 demand_empty_rest_of_line ();
4330 #endif /* TE_PE */
4332 /* This table describes all the machine specific pseudo-ops the assembler
4333 has to support. The fields are:
4334 pseudo-op name without dot
4335 function to call to execute this pseudo-op
4336 Integer arg to pass to the function. */
4338 const pseudo_typeS md_pseudo_table[] =
4340 /* Never called because '.req' does not start a line. */
4341 { "req", s_req, 0 },
4342 /* Following two are likewise never called. */
4343 { "dn", s_dn, 0 },
4344 { "qn", s_qn, 0 },
4345 { "unreq", s_unreq, 0 },
4346 { "bss", s_bss, 0 },
4347 { "align", s_align, 0 },
4348 { "arm", s_arm, 0 },
4349 { "thumb", s_thumb, 0 },
4350 { "code", s_code, 0 },
4351 { "force_thumb", s_force_thumb, 0 },
4352 { "thumb_func", s_thumb_func, 0 },
4353 { "thumb_set", s_thumb_set, 0 },
4354 { "even", s_even, 0 },
4355 { "ltorg", s_ltorg, 0 },
4356 { "pool", s_ltorg, 0 },
4357 { "syntax", s_syntax, 0 },
4358 { "cpu", s_arm_cpu, 0 },
4359 { "arch", s_arm_arch, 0 },
4360 { "object_arch", s_arm_object_arch, 0 },
4361 { "fpu", s_arm_fpu, 0 },
4362 { "arch_extension", s_arm_arch_extension, 0 },
4363 #ifdef OBJ_ELF
4364 { "word", s_arm_elf_cons, 4 },
4365 { "long", s_arm_elf_cons, 4 },
4366 { "inst.n", s_arm_elf_inst, 2 },
4367 { "inst.w", s_arm_elf_inst, 4 },
4368 { "inst", s_arm_elf_inst, 0 },
4369 { "rel31", s_arm_rel31, 0 },
4370 { "fnstart", s_arm_unwind_fnstart, 0 },
4371 { "fnend", s_arm_unwind_fnend, 0 },
4372 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4373 { "personality", s_arm_unwind_personality, 0 },
4374 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4375 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4376 { "save", s_arm_unwind_save, 0 },
4377 { "vsave", s_arm_unwind_save, 1 },
4378 { "movsp", s_arm_unwind_movsp, 0 },
4379 { "pad", s_arm_unwind_pad, 0 },
4380 { "setfp", s_arm_unwind_setfp, 0 },
4381 { "unwind_raw", s_arm_unwind_raw, 0 },
4382 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4383 { "tlsdescseq", s_arm_tls_descseq, 0 },
4384 #else
4385 { "word", cons, 4},
4387 /* These are used for dwarf. */
4388 {"2byte", cons, 2},
4389 {"4byte", cons, 4},
4390 {"8byte", cons, 8},
4391 /* These are used for dwarf2. */
4392 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4393 { "loc", dwarf2_directive_loc, 0 },
4394 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4395 #endif
4396 { "extend", float_cons, 'x' },
4397 { "ldouble", float_cons, 'x' },
4398 { "packed", float_cons, 'p' },
4399 #ifdef TE_PE
4400 {"secrel32", pe_directive_secrel, 0},
4401 #endif
4402 { 0, 0, 0 }
4405 /* Parser functions used exclusively in instruction operands. */
4407 /* Generic immediate-value read function for use in insn parsing.
4408 STR points to the beginning of the immediate (the leading #);
4409 VAL receives the value; if the value is outside [MIN, MAX]
4410 issue an error. PREFIX_OPT is true if the immediate prefix is
4411 optional. */
4413 static int
4414 parse_immediate (char **str, int *val, int min, int max,
4415 bfd_boolean prefix_opt)
4417 expressionS exp;
4418 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4419 if (exp.X_op != O_constant)
4421 inst.error = _("constant expression required");
4422 return FAIL;
4425 if (exp.X_add_number < min || exp.X_add_number > max)
4427 inst.error = _("immediate value out of range");
4428 return FAIL;
4431 *val = exp.X_add_number;
4432 return SUCCESS;
4435 /* Less-generic immediate-value read function with the possibility of loading a
4436 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4437 instructions. Puts the result directly in inst.operands[i]. */
4439 static int
4440 parse_big_immediate (char **str, int i)
4442 expressionS exp;
4443 char *ptr = *str;
4445 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4447 if (exp.X_op == O_constant)
4449 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4450 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4451 O_constant. We have to be careful not to break compilation for
4452 32-bit X_add_number, though. */
4453 if ((exp.X_add_number & ~0xffffffffl) != 0)
4455 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4456 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4457 inst.operands[i].regisimm = 1;
4460 else if (exp.X_op == O_big
4461 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4463 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4465 /* Bignums have their least significant bits in
4466 generic_bignum[0]. Make sure we put 32 bits in imm and
4467 32 bits in reg, in a (hopefully) portable way. */
4468 gas_assert (parts != 0);
4470 /* Make sure that the number is not too big.
4471 PR 11972: Bignums can now be sign-extended to the
4472 size of a .octa so check that the out of range bits
4473 are all zero or all one. */
4474 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4476 LITTLENUM_TYPE m = -1;
4478 if (generic_bignum[parts * 2] != 0
4479 && generic_bignum[parts * 2] != m)
4480 return FAIL;
4482 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4483 if (generic_bignum[j] != generic_bignum[j-1])
4484 return FAIL;
4487 inst.operands[i].imm = 0;
4488 for (j = 0; j < parts; j++, idx++)
4489 inst.operands[i].imm |= generic_bignum[idx]
4490 << (LITTLENUM_NUMBER_OF_BITS * j);
4491 inst.operands[i].reg = 0;
4492 for (j = 0; j < parts; j++, idx++)
4493 inst.operands[i].reg |= generic_bignum[idx]
4494 << (LITTLENUM_NUMBER_OF_BITS * j);
4495 inst.operands[i].regisimm = 1;
4497 else
4498 return FAIL;
4500 *str = ptr;
4502 return SUCCESS;
4505 /* Returns the pseudo-register number of an FPA immediate constant,
4506 or FAIL if there isn't a valid constant here. */
4508 static int
4509 parse_fpa_immediate (char ** str)
4511 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4512 char * save_in;
4513 expressionS exp;
4514 int i;
4515 int j;
4517 /* First try and match exact strings, this is to guarantee
4518 that some formats will work even for cross assembly. */
4520 for (i = 0; fp_const[i]; i++)
4522 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4524 char *start = *str;
4526 *str += strlen (fp_const[i]);
4527 if (is_end_of_line[(unsigned char) **str])
4528 return i + 8;
4529 *str = start;
4533 /* Just because we didn't get a match doesn't mean that the constant
4534 isn't valid, just that it is in a format that we don't
4535 automatically recognize. Try parsing it with the standard
4536 expression routines. */
4538 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4540 /* Look for a raw floating point number. */
4541 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4542 && is_end_of_line[(unsigned char) *save_in])
4544 for (i = 0; i < NUM_FLOAT_VALS; i++)
4546 for (j = 0; j < MAX_LITTLENUMS; j++)
4548 if (words[j] != fp_values[i][j])
4549 break;
4552 if (j == MAX_LITTLENUMS)
4554 *str = save_in;
4555 return i + 8;
4560 /* Try and parse a more complex expression, this will probably fail
4561 unless the code uses a floating point prefix (eg "0f"). */
4562 save_in = input_line_pointer;
4563 input_line_pointer = *str;
4564 if (expression (&exp) == absolute_section
4565 && exp.X_op == O_big
4566 && exp.X_add_number < 0)
4568 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4569 Ditto for 15. */
4570 if (gen_to_words (words, 5, (long) 15) == 0)
4572 for (i = 0; i < NUM_FLOAT_VALS; i++)
4574 for (j = 0; j < MAX_LITTLENUMS; j++)
4576 if (words[j] != fp_values[i][j])
4577 break;
4580 if (j == MAX_LITTLENUMS)
4582 *str = input_line_pointer;
4583 input_line_pointer = save_in;
4584 return i + 8;
4590 *str = input_line_pointer;
4591 input_line_pointer = save_in;
4592 inst.error = _("invalid FPA immediate expression");
4593 return FAIL;
4596 /* Returns 1 if a number has "quarter-precision" float format
4597 0baBbbbbbc defgh000 00000000 00000000. */
4599 static int
4600 is_quarter_float (unsigned imm)
4602 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4603 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4606 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4607 0baBbbbbbc defgh000 00000000 00000000.
4608 The zero and minus-zero cases need special handling, since they can't be
4609 encoded in the "quarter-precision" float format, but can nonetheless be
4610 loaded as integer constants. */
4612 static unsigned
4613 parse_qfloat_immediate (char **ccp, int *immed)
4615 char *str = *ccp;
4616 char *fpnum;
4617 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4618 int found_fpchar = 0;
4620 skip_past_char (&str, '#');
4622 /* We must not accidentally parse an integer as a floating-point number. Make
4623 sure that the value we parse is not an integer by checking for special
4624 characters '.' or 'e'.
4625 FIXME: This is a horrible hack, but doing better is tricky because type
4626 information isn't in a very usable state at parse time. */
4627 fpnum = str;
4628 skip_whitespace (fpnum);
4630 if (strncmp (fpnum, "0x", 2) == 0)
4631 return FAIL;
4632 else
4634 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4635 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4637 found_fpchar = 1;
4638 break;
4641 if (!found_fpchar)
4642 return FAIL;
4645 if ((str = atof_ieee (str, 's', words)) != NULL)
4647 unsigned fpword = 0;
4648 int i;
4650 /* Our FP word must be 32 bits (single-precision FP). */
4651 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4653 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4654 fpword |= words[i];
4657 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4658 *immed = fpword;
4659 else
4660 return FAIL;
4662 *ccp = str;
4664 return SUCCESS;
4667 return FAIL;
4670 /* Shift operands. */
4671 enum shift_kind
4673 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4676 struct asm_shift_name
4678 const char *name;
4679 enum shift_kind kind;
4682 /* Third argument to parse_shift. */
4683 enum parse_shift_mode
4685 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4686 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4687 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4688 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4689 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4692 /* Parse a <shift> specifier on an ARM data processing instruction.
4693 This has three forms:
4695 (LSL|LSR|ASL|ASR|ROR) Rs
4696 (LSL|LSR|ASL|ASR|ROR) #imm
4699 Note that ASL is assimilated to LSL in the instruction encoding, and
4700 RRX to ROR #0 (which cannot be written as such). */
4702 static int
4703 parse_shift (char **str, int i, enum parse_shift_mode mode)
4705 const struct asm_shift_name *shift_name;
4706 enum shift_kind shift;
4707 char *s = *str;
4708 char *p = s;
4709 int reg;
4711 for (p = *str; ISALPHA (*p); p++)
4714 if (p == *str)
4716 inst.error = _("shift expression expected");
4717 return FAIL;
4720 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4721 p - *str);
4723 if (shift_name == NULL)
4725 inst.error = _("shift expression expected");
4726 return FAIL;
4729 shift = shift_name->kind;
4731 switch (mode)
4733 case NO_SHIFT_RESTRICT:
4734 case SHIFT_IMMEDIATE: break;
4736 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4737 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4739 inst.error = _("'LSL' or 'ASR' required");
4740 return FAIL;
4742 break;
4744 case SHIFT_LSL_IMMEDIATE:
4745 if (shift != SHIFT_LSL)
4747 inst.error = _("'LSL' required");
4748 return FAIL;
4750 break;
4752 case SHIFT_ASR_IMMEDIATE:
4753 if (shift != SHIFT_ASR)
4755 inst.error = _("'ASR' required");
4756 return FAIL;
4758 break;
4760 default: abort ();
4763 if (shift != SHIFT_RRX)
4765 /* Whitespace can appear here if the next thing is a bare digit. */
4766 skip_whitespace (p);
4768 if (mode == NO_SHIFT_RESTRICT
4769 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4771 inst.operands[i].imm = reg;
4772 inst.operands[i].immisreg = 1;
4774 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4775 return FAIL;
4777 inst.operands[i].shift_kind = shift;
4778 inst.operands[i].shifted = 1;
4779 *str = p;
4780 return SUCCESS;
4783 /* Parse a <shifter_operand> for an ARM data processing instruction:
4785 #<immediate>
4786 #<immediate>, <rotate>
4787 <Rm>
4788 <Rm>, <shift>
4790 where <shift> is defined by parse_shift above, and <rotate> is a
4791 multiple of 2 between 0 and 30. Validation of immediate operands
4792 is deferred to md_apply_fix. */
4794 static int
4795 parse_shifter_operand (char **str, int i)
4797 int value;
4798 expressionS exp;
4800 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4802 inst.operands[i].reg = value;
4803 inst.operands[i].isreg = 1;
4805 /* parse_shift will override this if appropriate */
4806 inst.reloc.exp.X_op = O_constant;
4807 inst.reloc.exp.X_add_number = 0;
4809 if (skip_past_comma (str) == FAIL)
4810 return SUCCESS;
4812 /* Shift operation on register. */
4813 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4816 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4817 return FAIL;
4819 if (skip_past_comma (str) == SUCCESS)
4821 /* #x, y -- ie explicit rotation by Y. */
4822 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4823 return FAIL;
4825 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4827 inst.error = _("constant expression expected");
4828 return FAIL;
4831 value = exp.X_add_number;
4832 if (value < 0 || value > 30 || value % 2 != 0)
4834 inst.error = _("invalid rotation");
4835 return FAIL;
4837 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4839 inst.error = _("invalid constant");
4840 return FAIL;
4843 /* Convert to decoded value. md_apply_fix will put it back. */
4844 inst.reloc.exp.X_add_number
4845 = (((inst.reloc.exp.X_add_number << (32 - value))
4846 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4849 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4850 inst.reloc.pc_rel = 0;
4851 return SUCCESS;
4854 /* Group relocation information. Each entry in the table contains the
4855 textual name of the relocation as may appear in assembler source
4856 and must end with a colon.
4857 Along with this textual name are the relocation codes to be used if
4858 the corresponding instruction is an ALU instruction (ADD or SUB only),
4859 an LDR, an LDRS, or an LDC. */
4861 struct group_reloc_table_entry
4863 const char *name;
4864 int alu_code;
4865 int ldr_code;
4866 int ldrs_code;
4867 int ldc_code;
4870 typedef enum
4872 /* Varieties of non-ALU group relocation. */
4874 GROUP_LDR,
4875 GROUP_LDRS,
4876 GROUP_LDC
4877 } group_reloc_type;
4879 static struct group_reloc_table_entry group_reloc_table[] =
4880 { /* Program counter relative: */
4881 { "pc_g0_nc",
4882 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4883 0, /* LDR */
4884 0, /* LDRS */
4885 0 }, /* LDC */
4886 { "pc_g0",
4887 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4888 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4889 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4890 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4891 { "pc_g1_nc",
4892 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4893 0, /* LDR */
4894 0, /* LDRS */
4895 0 }, /* LDC */
4896 { "pc_g1",
4897 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4898 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4899 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4900 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4901 { "pc_g2",
4902 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4903 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4904 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4905 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4906 /* Section base relative */
4907 { "sb_g0_nc",
4908 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4909 0, /* LDR */
4910 0, /* LDRS */
4911 0 }, /* LDC */
4912 { "sb_g0",
4913 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4914 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4915 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4916 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4917 { "sb_g1_nc",
4918 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4919 0, /* LDR */
4920 0, /* LDRS */
4921 0 }, /* LDC */
4922 { "sb_g1",
4923 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4924 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4925 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4926 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4927 { "sb_g2",
4928 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4929 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4930 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4931 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4933 /* Given the address of a pointer pointing to the textual name of a group
4934 relocation as may appear in assembler source, attempt to find its details
4935 in group_reloc_table. The pointer will be updated to the character after
4936 the trailing colon. On failure, FAIL will be returned; SUCCESS
4937 otherwise. On success, *entry will be updated to point at the relevant
4938 group_reloc_table entry. */
4940 static int
4941 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4943 unsigned int i;
4944 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4946 int length = strlen (group_reloc_table[i].name);
4948 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4949 && (*str)[length] == ':')
4951 *out = &group_reloc_table[i];
4952 *str += (length + 1);
4953 return SUCCESS;
4957 return FAIL;
4960 /* Parse a <shifter_operand> for an ARM data processing instruction
4961 (as for parse_shifter_operand) where group relocations are allowed:
4963 #<immediate>
4964 #<immediate>, <rotate>
4965 #:<group_reloc>:<expression>
4966 <Rm>
4967 <Rm>, <shift>
4969 where <group_reloc> is one of the strings defined in group_reloc_table.
4970 The hashes are optional.
4972 Everything else is as for parse_shifter_operand. */
4974 static parse_operand_result
4975 parse_shifter_operand_group_reloc (char **str, int i)
4977 /* Determine if we have the sequence of characters #: or just :
4978 coming next. If we do, then we check for a group relocation.
4979 If we don't, punt the whole lot to parse_shifter_operand. */
4981 if (((*str)[0] == '#' && (*str)[1] == ':')
4982 || (*str)[0] == ':')
4984 struct group_reloc_table_entry *entry;
4986 if ((*str)[0] == '#')
4987 (*str) += 2;
4988 else
4989 (*str)++;
4991 /* Try to parse a group relocation. Anything else is an error. */
4992 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4994 inst.error = _("unknown group relocation");
4995 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4998 /* We now have the group relocation table entry corresponding to
4999 the name in the assembler source. Next, we parse the expression. */
5000 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5001 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5003 /* Record the relocation type (always the ALU variant here). */
5004 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5005 gas_assert (inst.reloc.type != 0);
5007 return PARSE_OPERAND_SUCCESS;
5009 else
5010 return parse_shifter_operand (str, i) == SUCCESS
5011 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5013 /* Never reached. */
5016 /* Parse a Neon alignment expression. Information is written to
5017 inst.operands[i]. We assume the initial ':' has been skipped.
5019 align .imm = align << 8, .immisalign=1, .preind=0 */
5020 static parse_operand_result
5021 parse_neon_alignment (char **str, int i)
5023 char *p = *str;
5024 expressionS exp;
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5028 if (exp.X_op != O_constant)
5030 inst.error = _("alignment must be constant");
5031 return PARSE_OPERAND_FAIL;
5034 inst.operands[i].imm = exp.X_add_number << 8;
5035 inst.operands[i].immisalign = 1;
5036 /* Alignments are not pre-indexes. */
5037 inst.operands[i].preind = 0;
5039 *str = p;
5040 return PARSE_OPERAND_SUCCESS;
5043 /* Parse all forms of an ARM address expression. Information is written
5044 to inst.operands[i] and/or inst.reloc.
5046 Preindexed addressing (.preind=1):
5048 [Rn, #offset] .reg=Rn .reloc.exp=offset
5049 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5050 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5051 .shift_kind=shift .reloc.exp=shift_imm
5053 These three may have a trailing ! which causes .writeback to be set also.
5055 Postindexed addressing (.postind=1, .writeback=1):
5057 [Rn], #offset .reg=Rn .reloc.exp=offset
5058 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
5062 Unindexed addressing (.preind=0, .postind=0):
5064 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5066 Other:
5068 [Rn]{!} shorthand for [Rn,#0]{!}
5069 =immediate .isreg=0 .reloc.exp=immediate
5070 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5072 It is the caller's responsibility to check for addressing modes not
5073 supported by the instruction, and to set inst.reloc.type. */
5075 static parse_operand_result
5076 parse_address_main (char **str, int i, int group_relocations,
5077 group_reloc_type group_type)
5079 char *p = *str;
5080 int reg;
5082 if (skip_past_char (&p, '[') == FAIL)
5084 if (skip_past_char (&p, '=') == FAIL)
5086 /* Bare address - translate to PC-relative offset. */
5087 inst.reloc.pc_rel = 1;
5088 inst.operands[i].reg = REG_PC;
5089 inst.operands[i].isreg = 1;
5090 inst.operands[i].preind = 1;
5092 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5094 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5095 return PARSE_OPERAND_FAIL;
5097 *str = p;
5098 return PARSE_OPERAND_SUCCESS;
5101 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5103 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5104 return PARSE_OPERAND_FAIL;
5106 inst.operands[i].reg = reg;
5107 inst.operands[i].isreg = 1;
5109 if (skip_past_comma (&p) == SUCCESS)
5111 inst.operands[i].preind = 1;
5113 if (*p == '+') p++;
5114 else if (*p == '-') p++, inst.operands[i].negative = 1;
5116 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5118 inst.operands[i].imm = reg;
5119 inst.operands[i].immisreg = 1;
5121 if (skip_past_comma (&p) == SUCCESS)
5122 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5123 return PARSE_OPERAND_FAIL;
5125 else if (skip_past_char (&p, ':') == SUCCESS)
5127 /* FIXME: '@' should be used here, but it's filtered out by generic
5128 code before we get to see it here. This may be subject to
5129 change. */
5130 parse_operand_result result = parse_neon_alignment (&p, i);
5132 if (result != PARSE_OPERAND_SUCCESS)
5133 return result;
5135 else
5137 if (inst.operands[i].negative)
5139 inst.operands[i].negative = 0;
5140 p--;
5143 if (group_relocations
5144 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5146 struct group_reloc_table_entry *entry;
5148 /* Skip over the #: or : sequence. */
5149 if (*p == '#')
5150 p += 2;
5151 else
5152 p++;
5154 /* Try to parse a group relocation. Anything else is an
5155 error. */
5156 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5158 inst.error = _("unknown group relocation");
5159 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5162 /* We now have the group relocation table entry corresponding to
5163 the name in the assembler source. Next, we parse the
5164 expression. */
5165 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5166 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5168 /* Record the relocation type. */
5169 switch (group_type)
5171 case GROUP_LDR:
5172 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5173 break;
5175 case GROUP_LDRS:
5176 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5177 break;
5179 case GROUP_LDC:
5180 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5181 break;
5183 default:
5184 gas_assert (0);
5187 if (inst.reloc.type == 0)
5189 inst.error = _("this group relocation is not allowed on this instruction");
5190 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5193 else
5194 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5195 return PARSE_OPERAND_FAIL;
5198 else if (skip_past_char (&p, ':') == SUCCESS)
5200 /* FIXME: '@' should be used here, but it's filtered out by generic code
5201 before we get to see it here. This may be subject to change. */
5202 parse_operand_result result = parse_neon_alignment (&p, i);
5204 if (result != PARSE_OPERAND_SUCCESS)
5205 return result;
5208 if (skip_past_char (&p, ']') == FAIL)
5210 inst.error = _("']' expected");
5211 return PARSE_OPERAND_FAIL;
5214 if (skip_past_char (&p, '!') == SUCCESS)
5215 inst.operands[i].writeback = 1;
5217 else if (skip_past_comma (&p) == SUCCESS)
5219 if (skip_past_char (&p, '{') == SUCCESS)
5221 /* [Rn], {expr} - unindexed, with option */
5222 if (parse_immediate (&p, &inst.operands[i].imm,
5223 0, 255, TRUE) == FAIL)
5224 return PARSE_OPERAND_FAIL;
5226 if (skip_past_char (&p, '}') == FAIL)
5228 inst.error = _("'}' expected at end of 'option' field");
5229 return PARSE_OPERAND_FAIL;
5231 if (inst.operands[i].preind)
5233 inst.error = _("cannot combine index with option");
5234 return PARSE_OPERAND_FAIL;
5236 *str = p;
5237 return PARSE_OPERAND_SUCCESS;
5239 else
5241 inst.operands[i].postind = 1;
5242 inst.operands[i].writeback = 1;
5244 if (inst.operands[i].preind)
5246 inst.error = _("cannot combine pre- and post-indexing");
5247 return PARSE_OPERAND_FAIL;
5250 if (*p == '+') p++;
5251 else if (*p == '-') p++, inst.operands[i].negative = 1;
5253 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5255 /* We might be using the immediate for alignment already. If we
5256 are, OR the register number into the low-order bits. */
5257 if (inst.operands[i].immisalign)
5258 inst.operands[i].imm |= reg;
5259 else
5260 inst.operands[i].imm = reg;
5261 inst.operands[i].immisreg = 1;
5263 if (skip_past_comma (&p) == SUCCESS)
5264 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5265 return PARSE_OPERAND_FAIL;
5267 else
5269 if (inst.operands[i].negative)
5271 inst.operands[i].negative = 0;
5272 p--;
5274 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5275 return PARSE_OPERAND_FAIL;
5280 /* If at this point neither .preind nor .postind is set, we have a
5281 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5282 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5284 inst.operands[i].preind = 1;
5285 inst.reloc.exp.X_op = O_constant;
5286 inst.reloc.exp.X_add_number = 0;
5288 *str = p;
5289 return PARSE_OPERAND_SUCCESS;
5292 static int
5293 parse_address (char **str, int i)
5295 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5296 ? SUCCESS : FAIL;
5299 static parse_operand_result
5300 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5302 return parse_address_main (str, i, 1, type);
5305 /* Parse an operand for a MOVW or MOVT instruction. */
5306 static int
5307 parse_half (char **str)
5309 char * p;
5311 p = *str;
5312 skip_past_char (&p, '#');
5313 if (strncasecmp (p, ":lower16:", 9) == 0)
5314 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5315 else if (strncasecmp (p, ":upper16:", 9) == 0)
5316 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5318 if (inst.reloc.type != BFD_RELOC_UNUSED)
5320 p += 9;
5321 skip_whitespace (p);
5324 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5325 return FAIL;
5327 if (inst.reloc.type == BFD_RELOC_UNUSED)
5329 if (inst.reloc.exp.X_op != O_constant)
5331 inst.error = _("constant expression expected");
5332 return FAIL;
5334 if (inst.reloc.exp.X_add_number < 0
5335 || inst.reloc.exp.X_add_number > 0xffff)
5337 inst.error = _("immediate value out of range");
5338 return FAIL;
5341 *str = p;
5342 return SUCCESS;
5345 /* Miscellaneous. */
5347 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5348 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5349 static int
5350 parse_psr (char **str)
5352 char *p;
5353 unsigned long psr_field;
5354 const struct asm_psr *psr;
5355 char *start;
5357 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5358 feature for ease of use and backwards compatibility. */
5359 p = *str;
5360 if (strncasecmp (p, "SPSR", 4) == 0)
5361 psr_field = SPSR_BIT;
5362 else if (strncasecmp (p, "CPSR", 4) == 0
5363 || (strncasecmp (p, "APSR", 4) == 0
5364 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)))
5365 psr_field = 0;
5366 else
5368 start = p;
5370 p++;
5371 while (ISALNUM (*p) || *p == '_');
5373 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5374 p - start);
5375 if (!psr)
5376 return FAIL;
5378 *str = p;
5379 return psr->field;
5382 p += 4;
5383 if (*p == '_')
5385 /* A suffix follows. */
5386 p++;
5387 start = p;
5390 p++;
5391 while (ISALNUM (*p) || *p == '_');
5393 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5394 p - start);
5395 if (!psr)
5396 goto error;
5398 psr_field |= psr->field;
5400 else
5402 if (ISALNUM (*p))
5403 goto error; /* Garbage after "[CS]PSR". */
5405 psr_field |= (PSR_c | PSR_f);
5407 *str = p;
5408 return psr_field;
5410 error:
5411 inst.error = _("flag for {c}psr instruction expected");
5412 return FAIL;
5415 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5416 value suitable for splatting into the AIF field of the instruction. */
5418 static int
5419 parse_cps_flags (char **str)
5421 int val = 0;
5422 int saw_a_flag = 0;
5423 char *s = *str;
5425 for (;;)
5426 switch (*s++)
5428 case '\0': case ',':
5429 goto done;
5431 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5432 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5433 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5435 default:
5436 inst.error = _("unrecognized CPS flag");
5437 return FAIL;
5440 done:
5441 if (saw_a_flag == 0)
5443 inst.error = _("missing CPS flags");
5444 return FAIL;
5447 *str = s - 1;
5448 return val;
5451 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5452 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5454 static int
5455 parse_endian_specifier (char **str)
5457 int little_endian;
5458 char *s = *str;
5460 if (strncasecmp (s, "BE", 2))
5461 little_endian = 0;
5462 else if (strncasecmp (s, "LE", 2))
5463 little_endian = 1;
5464 else
5466 inst.error = _("valid endian specifiers are be or le");
5467 return FAIL;
5470 if (ISALNUM (s[2]) || s[2] == '_')
5472 inst.error = _("valid endian specifiers are be or le");
5473 return FAIL;
5476 *str = s + 2;
5477 return little_endian;
5480 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5481 value suitable for poking into the rotate field of an sxt or sxta
5482 instruction, or FAIL on error. */
5484 static int
5485 parse_ror (char **str)
5487 int rot;
5488 char *s = *str;
5490 if (strncasecmp (s, "ROR", 3) == 0)
5491 s += 3;
5492 else
5494 inst.error = _("missing rotation field after comma");
5495 return FAIL;
5498 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5499 return FAIL;
5501 switch (rot)
5503 case 0: *str = s; return 0x0;
5504 case 8: *str = s; return 0x1;
5505 case 16: *str = s; return 0x2;
5506 case 24: *str = s; return 0x3;
5508 default:
5509 inst.error = _("rotation can only be 0, 8, 16, or 24");
5510 return FAIL;
5514 /* Parse a conditional code (from conds[] below). The value returned is in the
5515 range 0 .. 14, or FAIL. */
5516 static int
5517 parse_cond (char **str)
5519 char *q;
5520 const struct asm_cond *c;
5521 int n;
5522 /* Condition codes are always 2 characters, so matching up to
5523 3 characters is sufficient. */
5524 char cond[3];
5526 q = *str;
5527 n = 0;
5528 while (ISALPHA (*q) && n < 3)
5530 cond[n] = TOLOWER (*q);
5531 q++;
5532 n++;
5535 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5536 if (!c)
5538 inst.error = _("condition required");
5539 return FAIL;
5542 *str = q;
5543 return c->value;
5546 /* Parse an option for a barrier instruction. Returns the encoding for the
5547 option, or FAIL. */
5548 static int
5549 parse_barrier (char **str)
5551 char *p, *q;
5552 const struct asm_barrier_opt *o;
5554 p = q = *str;
5555 while (ISALPHA (*q))
5556 q++;
5558 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5559 q - p);
5560 if (!o)
5561 return FAIL;
5563 *str = q;
5564 return o->value;
5567 /* Parse the operands of a table branch instruction. Similar to a memory
5568 operand. */
5569 static int
5570 parse_tb (char **str)
5572 char * p = *str;
5573 int reg;
5575 if (skip_past_char (&p, '[') == FAIL)
5577 inst.error = _("'[' expected");
5578 return FAIL;
5581 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5583 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5584 return FAIL;
5586 inst.operands[0].reg = reg;
5588 if (skip_past_comma (&p) == FAIL)
5590 inst.error = _("',' expected");
5591 return FAIL;
5594 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5596 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5597 return FAIL;
5599 inst.operands[0].imm = reg;
5601 if (skip_past_comma (&p) == SUCCESS)
5603 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5604 return FAIL;
5605 if (inst.reloc.exp.X_add_number != 1)
5607 inst.error = _("invalid shift");
5608 return FAIL;
5610 inst.operands[0].shifted = 1;
5613 if (skip_past_char (&p, ']') == FAIL)
5615 inst.error = _("']' expected");
5616 return FAIL;
5618 *str = p;
5619 return SUCCESS;
5622 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5623 information on the types the operands can take and how they are encoded.
5624 Up to four operands may be read; this function handles setting the
5625 ".present" field for each read operand itself.
5626 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5627 else returns FAIL. */
5629 static int
5630 parse_neon_mov (char **str, int *which_operand)
5632 int i = *which_operand, val;
5633 enum arm_reg_type rtype;
5634 char *ptr = *str;
5635 struct neon_type_el optype;
5637 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5639 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5640 inst.operands[i].reg = val;
5641 inst.operands[i].isscalar = 1;
5642 inst.operands[i].vectype = optype;
5643 inst.operands[i++].present = 1;
5645 if (skip_past_comma (&ptr) == FAIL)
5646 goto wanted_comma;
5648 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5649 goto wanted_arm;
5651 inst.operands[i].reg = val;
5652 inst.operands[i].isreg = 1;
5653 inst.operands[i].present = 1;
5655 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5656 != FAIL)
5658 /* Cases 0, 1, 2, 3, 5 (D only). */
5659 if (skip_past_comma (&ptr) == FAIL)
5660 goto wanted_comma;
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5665 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5666 inst.operands[i].isvec = 1;
5667 inst.operands[i].vectype = optype;
5668 inst.operands[i++].present = 1;
5670 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5672 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5673 Case 13: VMOV <Sd>, <Rm> */
5674 inst.operands[i].reg = val;
5675 inst.operands[i].isreg = 1;
5676 inst.operands[i].present = 1;
5678 if (rtype == REG_TYPE_NQ)
5680 first_error (_("can't use Neon quad register here"));
5681 return FAIL;
5683 else if (rtype != REG_TYPE_VFS)
5685 i++;
5686 if (skip_past_comma (&ptr) == FAIL)
5687 goto wanted_comma;
5688 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5689 goto wanted_arm;
5690 inst.operands[i].reg = val;
5691 inst.operands[i].isreg = 1;
5692 inst.operands[i].present = 1;
5695 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5696 &optype)) != FAIL)
5698 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5699 Case 1: VMOV<c><q> <Dd>, <Dm>
5700 Case 8: VMOV.F32 <Sd>, <Sm>
5701 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5703 inst.operands[i].reg = val;
5704 inst.operands[i].isreg = 1;
5705 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5706 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5707 inst.operands[i].isvec = 1;
5708 inst.operands[i].vectype = optype;
5709 inst.operands[i].present = 1;
5711 if (skip_past_comma (&ptr) == SUCCESS)
5713 /* Case 15. */
5714 i++;
5716 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5717 goto wanted_arm;
5719 inst.operands[i].reg = val;
5720 inst.operands[i].isreg = 1;
5721 inst.operands[i++].present = 1;
5723 if (skip_past_comma (&ptr) == FAIL)
5724 goto wanted_comma;
5726 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5727 goto wanted_arm;
5729 inst.operands[i].reg = val;
5730 inst.operands[i].isreg = 1;
5731 inst.operands[i++].present = 1;
5734 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5735 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5736 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5737 Case 10: VMOV.F32 <Sd>, #<imm>
5738 Case 11: VMOV.F64 <Dd>, #<imm> */
5739 inst.operands[i].immisfloat = 1;
5740 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5741 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5742 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5744 else
5746 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5747 return FAIL;
5750 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5752 /* Cases 6, 7. */
5753 inst.operands[i].reg = val;
5754 inst.operands[i].isreg = 1;
5755 inst.operands[i++].present = 1;
5757 if (skip_past_comma (&ptr) == FAIL)
5758 goto wanted_comma;
5760 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5762 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5763 inst.operands[i].reg = val;
5764 inst.operands[i].isscalar = 1;
5765 inst.operands[i].present = 1;
5766 inst.operands[i].vectype = optype;
5768 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5770 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5771 inst.operands[i].reg = val;
5772 inst.operands[i].isreg = 1;
5773 inst.operands[i++].present = 1;
5775 if (skip_past_comma (&ptr) == FAIL)
5776 goto wanted_comma;
5778 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5779 == FAIL)
5781 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5782 return FAIL;
5785 inst.operands[i].reg = val;
5786 inst.operands[i].isreg = 1;
5787 inst.operands[i].isvec = 1;
5788 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5789 inst.operands[i].vectype = optype;
5790 inst.operands[i].present = 1;
5792 if (rtype == REG_TYPE_VFS)
5794 /* Case 14. */
5795 i++;
5796 if (skip_past_comma (&ptr) == FAIL)
5797 goto wanted_comma;
5798 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5799 &optype)) == FAIL)
5801 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5802 return FAIL;
5804 inst.operands[i].reg = val;
5805 inst.operands[i].isreg = 1;
5806 inst.operands[i].isvec = 1;
5807 inst.operands[i].issingle = 1;
5808 inst.operands[i].vectype = optype;
5809 inst.operands[i].present = 1;
5812 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5813 != FAIL)
5815 /* Case 13. */
5816 inst.operands[i].reg = val;
5817 inst.operands[i].isreg = 1;
5818 inst.operands[i].isvec = 1;
5819 inst.operands[i].issingle = 1;
5820 inst.operands[i].vectype = optype;
5821 inst.operands[i++].present = 1;
5824 else
5826 first_error (_("parse error"));
5827 return FAIL;
5830 /* Successfully parsed the operands. Update args. */
5831 *which_operand = i;
5832 *str = ptr;
5833 return SUCCESS;
5835 wanted_comma:
5836 first_error (_("expected comma"));
5837 return FAIL;
5839 wanted_arm:
5840 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5841 return FAIL;
5844 /* Use this macro when the operand constraints are different
5845 for ARM and THUMB (e.g. ldrd). */
5846 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5847 ((arm_operand) | ((thumb_operand) << 16))
5849 /* Matcher codes for parse_operands. */
5850 enum operand_parse_code
5852 OP_stop, /* end of line */
5854 OP_RR, /* ARM register */
5855 OP_RRnpc, /* ARM register, not r15 */
5856 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5857 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5858 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5859 optional trailing ! */
5860 OP_RRw, /* ARM register, not r15, optional trailing ! */
5861 OP_RCP, /* Coprocessor number */
5862 OP_RCN, /* Coprocessor register */
5863 OP_RF, /* FPA register */
5864 OP_RVS, /* VFP single precision register */
5865 OP_RVD, /* VFP double precision register (0..15) */
5866 OP_RND, /* Neon double precision register (0..31) */
5867 OP_RNQ, /* Neon quad precision register */
5868 OP_RVSD, /* VFP single or double precision register */
5869 OP_RNDQ, /* Neon double or quad precision register */
5870 OP_RNSDQ, /* Neon single, double or quad precision register */
5871 OP_RNSC, /* Neon scalar D[X] */
5872 OP_RVC, /* VFP control register */
5873 OP_RMF, /* Maverick F register */
5874 OP_RMD, /* Maverick D register */
5875 OP_RMFX, /* Maverick FX register */
5876 OP_RMDX, /* Maverick DX register */
5877 OP_RMAX, /* Maverick AX register */
5878 OP_RMDS, /* Maverick DSPSC register */
5879 OP_RIWR, /* iWMMXt wR register */
5880 OP_RIWC, /* iWMMXt wC register */
5881 OP_RIWG, /* iWMMXt wCG register */
5882 OP_RXA, /* XScale accumulator register */
5884 OP_REGLST, /* ARM register list */
5885 OP_VRSLST, /* VFP single-precision register list */
5886 OP_VRDLST, /* VFP double-precision register list */
5887 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5888 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5889 OP_NSTRLST, /* Neon element/structure list */
5891 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5892 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5893 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5894 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5895 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5896 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5897 OP_VMOV, /* Neon VMOV operands. */
5898 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5899 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5900 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5902 OP_I0, /* immediate zero */
5903 OP_I7, /* immediate value 0 .. 7 */
5904 OP_I15, /* 0 .. 15 */
5905 OP_I16, /* 1 .. 16 */
5906 OP_I16z, /* 0 .. 16 */
5907 OP_I31, /* 0 .. 31 */
5908 OP_I31w, /* 0 .. 31, optional trailing ! */
5909 OP_I32, /* 1 .. 32 */
5910 OP_I32z, /* 0 .. 32 */
5911 OP_I63, /* 0 .. 63 */
5912 OP_I63s, /* -64 .. 63 */
5913 OP_I64, /* 1 .. 64 */
5914 OP_I64z, /* 0 .. 64 */
5915 OP_I255, /* 0 .. 255 */
5917 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5918 OP_I7b, /* 0 .. 7 */
5919 OP_I15b, /* 0 .. 15 */
5920 OP_I31b, /* 0 .. 31 */
5922 OP_SH, /* shifter operand */
5923 OP_SHG, /* shifter operand with possible group relocation */
5924 OP_ADDR, /* Memory address expression (any mode) */
5925 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5926 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5927 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5928 OP_EXP, /* arbitrary expression */
5929 OP_EXPi, /* same, with optional immediate prefix */
5930 OP_EXPr, /* same, with optional relocation suffix */
5931 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5933 OP_CPSF, /* CPS flags */
5934 OP_ENDI, /* Endianness specifier */
5935 OP_PSR, /* CPSR/SPSR mask for msr */
5936 OP_COND, /* conditional code */
5937 OP_TB, /* Table branch. */
5939 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5940 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5942 OP_RRnpc_I0, /* ARM register or literal 0 */
5943 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5944 OP_RR_EXi, /* ARM register or expression with imm prefix */
5945 OP_RF_IF, /* FPA register or immediate */
5946 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5947 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5949 /* Optional operands. */
5950 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5951 OP_oI31b, /* 0 .. 31 */
5952 OP_oI32b, /* 1 .. 32 */
5953 OP_oIffffb, /* 0 .. 65535 */
5954 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5956 OP_oRR, /* ARM register */
5957 OP_oRRnpc, /* ARM register, not the PC */
5958 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5959 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5960 OP_oRND, /* Optional Neon double precision register */
5961 OP_oRNQ, /* Optional Neon quad precision register */
5962 OP_oRNDQ, /* Optional Neon double or quad precision register */
5963 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5964 OP_oSHll, /* LSL immediate */
5965 OP_oSHar, /* ASR immediate */
5966 OP_oSHllar, /* LSL or ASR immediate */
5967 OP_oROR, /* ROR 0/8/16/24 */
5968 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
5970 /* Some pre-defined mixed (ARM/THUMB) operands. */
5971 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5972 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5973 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5975 OP_FIRST_OPTIONAL = OP_oI7b
5978 /* Generic instruction operand parser. This does no encoding and no
5979 semantic validation; it merely squirrels values away in the inst
5980 structure. Returns SUCCESS or FAIL depending on whether the
5981 specified grammar matched. */
5982 static int
5983 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5985 unsigned const int *upat = pattern;
5986 char *backtrack_pos = 0;
5987 const char *backtrack_error = 0;
5988 int i, val, backtrack_index = 0;
5989 enum arm_reg_type rtype;
5990 parse_operand_result result;
5991 unsigned int op_parse_code;
5993 #define po_char_or_fail(chr) \
5994 do \
5996 if (skip_past_char (&str, chr) == FAIL) \
5997 goto bad_args; \
5999 while (0)
6001 #define po_reg_or_fail(regtype) \
6002 do \
6004 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6005 & inst.operands[i].vectype); \
6006 if (val == FAIL) \
6008 first_error (_(reg_expected_msgs[regtype])); \
6009 goto failure; \
6011 inst.operands[i].reg = val; \
6012 inst.operands[i].isreg = 1; \
6013 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6014 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6015 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6016 || rtype == REG_TYPE_VFD \
6017 || rtype == REG_TYPE_NQ); \
6019 while (0)
6021 #define po_reg_or_goto(regtype, label) \
6022 do \
6024 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6025 & inst.operands[i].vectype); \
6026 if (val == FAIL) \
6027 goto label; \
6029 inst.operands[i].reg = val; \
6030 inst.operands[i].isreg = 1; \
6031 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6032 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6033 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6034 || rtype == REG_TYPE_VFD \
6035 || rtype == REG_TYPE_NQ); \
6037 while (0)
6039 #define po_imm_or_fail(min, max, popt) \
6040 do \
6042 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6043 goto failure; \
6044 inst.operands[i].imm = val; \
6046 while (0)
6048 #define po_scalar_or_goto(elsz, label) \
6049 do \
6051 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6052 if (val == FAIL) \
6053 goto label; \
6054 inst.operands[i].reg = val; \
6055 inst.operands[i].isscalar = 1; \
6057 while (0)
6059 #define po_misc_or_fail(expr) \
6060 do \
6062 if (expr) \
6063 goto failure; \
6065 while (0)
6067 #define po_misc_or_fail_no_backtrack(expr) \
6068 do \
6070 result = expr; \
6071 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6072 backtrack_pos = 0; \
6073 if (result != PARSE_OPERAND_SUCCESS) \
6074 goto failure; \
6076 while (0)
6078 #define po_barrier_or_imm(str) \
6079 do \
6081 val = parse_barrier (&str); \
6082 if (val == FAIL) \
6084 if (ISALPHA (*str)) \
6085 goto failure; \
6086 else \
6087 goto immediate; \
6089 else \
6091 if ((inst.instruction & 0xf0) == 0x60 \
6092 && val != 0xf) \
6094 /* ISB can only take SY as an option. */ \
6095 inst.error = _("invalid barrier type"); \
6096 goto failure; \
6100 while (0)
6102 skip_whitespace (str);
6104 for (i = 0; upat[i] != OP_stop; i++)
6106 op_parse_code = upat[i];
6107 if (op_parse_code >= 1<<16)
6108 op_parse_code = thumb ? (op_parse_code >> 16)
6109 : (op_parse_code & ((1<<16)-1));
6111 if (op_parse_code >= OP_FIRST_OPTIONAL)
6113 /* Remember where we are in case we need to backtrack. */
6114 gas_assert (!backtrack_pos);
6115 backtrack_pos = str;
6116 backtrack_error = inst.error;
6117 backtrack_index = i;
6120 if (i > 0 && (i > 1 || inst.operands[0].present))
6121 po_char_or_fail (',');
6123 switch (op_parse_code)
6125 /* Registers */
6126 case OP_oRRnpc:
6127 case OP_oRRnpcsp:
6128 case OP_RRnpc:
6129 case OP_RRnpcsp:
6130 case OP_oRR:
6131 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6132 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6133 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6134 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6135 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6136 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6137 case OP_oRND:
6138 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6139 case OP_RVC:
6140 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6141 break;
6142 /* Also accept generic coprocessor regs for unknown registers. */
6143 coproc_reg:
6144 po_reg_or_fail (REG_TYPE_CN);
6145 break;
6146 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6147 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6148 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6149 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6150 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6151 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6152 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6153 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6154 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6155 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6156 case OP_oRNQ:
6157 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6158 case OP_oRNDQ:
6159 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6160 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6161 case OP_oRNSDQ:
6162 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6164 /* Neon scalar. Using an element size of 8 means that some invalid
6165 scalars are accepted here, so deal with those in later code. */
6166 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6168 case OP_RNDQ_I0:
6170 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6171 break;
6172 try_imm0:
6173 po_imm_or_fail (0, 0, TRUE);
6175 break;
6177 case OP_RVSD_I0:
6178 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6179 break;
6181 case OP_RR_RNSC:
6183 po_scalar_or_goto (8, try_rr);
6184 break;
6185 try_rr:
6186 po_reg_or_fail (REG_TYPE_RN);
6188 break;
6190 case OP_RNSDQ_RNSC:
6192 po_scalar_or_goto (8, try_nsdq);
6193 break;
6194 try_nsdq:
6195 po_reg_or_fail (REG_TYPE_NSDQ);
6197 break;
6199 case OP_RNDQ_RNSC:
6201 po_scalar_or_goto (8, try_ndq);
6202 break;
6203 try_ndq:
6204 po_reg_or_fail (REG_TYPE_NDQ);
6206 break;
6208 case OP_RND_RNSC:
6210 po_scalar_or_goto (8, try_vfd);
6211 break;
6212 try_vfd:
6213 po_reg_or_fail (REG_TYPE_VFD);
6215 break;
6217 case OP_VMOV:
6218 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6219 not careful then bad things might happen. */
6220 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6221 break;
6223 case OP_RNDQ_Ibig:
6225 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6226 break;
6227 try_immbig:
6228 /* There's a possibility of getting a 64-bit immediate here, so
6229 we need special handling. */
6230 if (parse_big_immediate (&str, i) == FAIL)
6232 inst.error = _("immediate value is out of range");
6233 goto failure;
6236 break;
6238 case OP_RNDQ_I63b:
6240 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6241 break;
6242 try_shimm:
6243 po_imm_or_fail (0, 63, TRUE);
6245 break;
6247 case OP_RRnpcb:
6248 po_char_or_fail ('[');
6249 po_reg_or_fail (REG_TYPE_RN);
6250 po_char_or_fail (']');
6251 break;
6253 case OP_RRnpctw:
6254 case OP_RRw:
6255 case OP_oRRw:
6256 po_reg_or_fail (REG_TYPE_RN);
6257 if (skip_past_char (&str, '!') == SUCCESS)
6258 inst.operands[i].writeback = 1;
6259 break;
6261 /* Immediates */
6262 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6263 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6264 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6265 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6266 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6267 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6268 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6269 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6270 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6271 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6272 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6273 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6275 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6276 case OP_oI7b:
6277 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6278 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6279 case OP_oI31b:
6280 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6281 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6282 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6284 /* Immediate variants */
6285 case OP_oI255c:
6286 po_char_or_fail ('{');
6287 po_imm_or_fail (0, 255, TRUE);
6288 po_char_or_fail ('}');
6289 break;
6291 case OP_I31w:
6292 /* The expression parser chokes on a trailing !, so we have
6293 to find it first and zap it. */
6295 char *s = str;
6296 while (*s && *s != ',')
6297 s++;
6298 if (s[-1] == '!')
6300 s[-1] = '\0';
6301 inst.operands[i].writeback = 1;
6303 po_imm_or_fail (0, 31, TRUE);
6304 if (str == s - 1)
6305 str = s;
6307 break;
6309 /* Expressions */
6310 case OP_EXPi: EXPi:
6311 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6312 GE_OPT_PREFIX));
6313 break;
6315 case OP_EXP:
6316 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6317 GE_NO_PREFIX));
6318 break;
6320 case OP_EXPr: EXPr:
6321 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6322 GE_NO_PREFIX));
6323 if (inst.reloc.exp.X_op == O_symbol)
6325 val = parse_reloc (&str);
6326 if (val == -1)
6328 inst.error = _("unrecognized relocation suffix");
6329 goto failure;
6331 else if (val != BFD_RELOC_UNUSED)
6333 inst.operands[i].imm = val;
6334 inst.operands[i].hasreloc = 1;
6337 break;
6339 /* Operand for MOVW or MOVT. */
6340 case OP_HALF:
6341 po_misc_or_fail (parse_half (&str));
6342 break;
6344 /* Register or expression. */
6345 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6346 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6348 /* Register or immediate. */
6349 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6350 I0: po_imm_or_fail (0, 0, FALSE); break;
6352 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6354 if (!is_immediate_prefix (*str))
6355 goto bad_args;
6356 str++;
6357 val = parse_fpa_immediate (&str);
6358 if (val == FAIL)
6359 goto failure;
6360 /* FPA immediates are encoded as registers 8-15.
6361 parse_fpa_immediate has already applied the offset. */
6362 inst.operands[i].reg = val;
6363 inst.operands[i].isreg = 1;
6364 break;
6366 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6367 I32z: po_imm_or_fail (0, 32, FALSE); break;
6369 /* Two kinds of register. */
6370 case OP_RIWR_RIWC:
6372 struct reg_entry *rege = arm_reg_parse_multi (&str);
6373 if (!rege
6374 || (rege->type != REG_TYPE_MMXWR
6375 && rege->type != REG_TYPE_MMXWC
6376 && rege->type != REG_TYPE_MMXWCG))
6378 inst.error = _("iWMMXt data or control register expected");
6379 goto failure;
6381 inst.operands[i].reg = rege->number;
6382 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6384 break;
6386 case OP_RIWC_RIWG:
6388 struct reg_entry *rege = arm_reg_parse_multi (&str);
6389 if (!rege
6390 || (rege->type != REG_TYPE_MMXWC
6391 && rege->type != REG_TYPE_MMXWCG))
6393 inst.error = _("iWMMXt control register expected");
6394 goto failure;
6396 inst.operands[i].reg = rege->number;
6397 inst.operands[i].isreg = 1;
6399 break;
6401 /* Misc */
6402 case OP_CPSF: val = parse_cps_flags (&str); break;
6403 case OP_ENDI: val = parse_endian_specifier (&str); break;
6404 case OP_oROR: val = parse_ror (&str); break;
6405 case OP_PSR: val = parse_psr (&str); break;
6406 case OP_COND: val = parse_cond (&str); break;
6407 case OP_oBARRIER_I15:
6408 po_barrier_or_imm (str); break;
6409 immediate:
6410 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6411 goto failure;
6412 break;
6414 case OP_RVC_PSR:
6415 po_reg_or_goto (REG_TYPE_VFC, try_banked_reg);
6416 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6417 break;
6418 try_banked_reg:
6419 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6420 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6422 inst.error = _("Banked registers are not available with this "
6423 "architecture.");
6424 goto failure;
6426 break;
6427 try_psr:
6428 val = parse_psr (&str);
6429 break;
6431 case OP_APSR_RR:
6432 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6433 break;
6434 try_apsr:
6435 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6436 instruction). */
6437 if (strncasecmp (str, "APSR_", 5) == 0)
6439 unsigned found = 0;
6440 str += 5;
6441 while (found < 15)
6442 switch (*str++)
6444 case 'c': found = (found & 1) ? 16 : found | 1; break;
6445 case 'n': found = (found & 2) ? 16 : found | 2; break;
6446 case 'z': found = (found & 4) ? 16 : found | 4; break;
6447 case 'v': found = (found & 8) ? 16 : found | 8; break;
6448 default: found = 16;
6450 if (found != 15)
6451 goto failure;
6452 inst.operands[i].isvec = 1;
6453 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6454 inst.operands[i].reg = REG_PC;
6456 else
6457 goto failure;
6458 break;
6460 case OP_TB:
6461 po_misc_or_fail (parse_tb (&str));
6462 break;
6464 /* Register lists. */
6465 case OP_REGLST:
6466 val = parse_reg_list (&str);
6467 if (*str == '^')
6469 inst.operands[1].writeback = 1;
6470 str++;
6472 break;
6474 case OP_VRSLST:
6475 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6476 break;
6478 case OP_VRDLST:
6479 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6480 break;
6482 case OP_VRSDLST:
6483 /* Allow Q registers too. */
6484 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6485 REGLIST_NEON_D);
6486 if (val == FAIL)
6488 inst.error = NULL;
6489 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6490 REGLIST_VFP_S);
6491 inst.operands[i].issingle = 1;
6493 break;
6495 case OP_NRDLST:
6496 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6497 REGLIST_NEON_D);
6498 break;
6500 case OP_NSTRLST:
6501 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6502 &inst.operands[i].vectype);
6503 break;
6505 /* Addressing modes */
6506 case OP_ADDR:
6507 po_misc_or_fail (parse_address (&str, i));
6508 break;
6510 case OP_ADDRGLDR:
6511 po_misc_or_fail_no_backtrack (
6512 parse_address_group_reloc (&str, i, GROUP_LDR));
6513 break;
6515 case OP_ADDRGLDRS:
6516 po_misc_or_fail_no_backtrack (
6517 parse_address_group_reloc (&str, i, GROUP_LDRS));
6518 break;
6520 case OP_ADDRGLDC:
6521 po_misc_or_fail_no_backtrack (
6522 parse_address_group_reloc (&str, i, GROUP_LDC));
6523 break;
6525 case OP_SH:
6526 po_misc_or_fail (parse_shifter_operand (&str, i));
6527 break;
6529 case OP_SHG:
6530 po_misc_or_fail_no_backtrack (
6531 parse_shifter_operand_group_reloc (&str, i));
6532 break;
6534 case OP_oSHll:
6535 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6536 break;
6538 case OP_oSHar:
6539 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6540 break;
6542 case OP_oSHllar:
6543 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6544 break;
6546 default:
6547 as_fatal (_("unhandled operand code %d"), op_parse_code);
6550 /* Various value-based sanity checks and shared operations. We
6551 do not signal immediate failures for the register constraints;
6552 this allows a syntax error to take precedence. */
6553 switch (op_parse_code)
6555 case OP_oRRnpc:
6556 case OP_RRnpc:
6557 case OP_RRnpcb:
6558 case OP_RRw:
6559 case OP_oRRw:
6560 case OP_RRnpc_I0:
6561 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6562 inst.error = BAD_PC;
6563 break;
6565 case OP_oRRnpcsp:
6566 case OP_RRnpcsp:
6567 if (inst.operands[i].isreg)
6569 if (inst.operands[i].reg == REG_PC)
6570 inst.error = BAD_PC;
6571 else if (inst.operands[i].reg == REG_SP)
6572 inst.error = BAD_SP;
6574 break;
6576 case OP_RRnpctw:
6577 if (inst.operands[i].isreg
6578 && inst.operands[i].reg == REG_PC
6579 && (inst.operands[i].writeback || thumb))
6580 inst.error = BAD_PC;
6581 break;
6583 case OP_CPSF:
6584 case OP_ENDI:
6585 case OP_oROR:
6586 case OP_PSR:
6587 case OP_RVC_PSR:
6588 case OP_COND:
6589 case OP_oBARRIER_I15:
6590 case OP_REGLST:
6591 case OP_VRSLST:
6592 case OP_VRDLST:
6593 case OP_VRSDLST:
6594 case OP_NRDLST:
6595 case OP_NSTRLST:
6596 if (val == FAIL)
6597 goto failure;
6598 inst.operands[i].imm = val;
6599 break;
6601 default:
6602 break;
6605 /* If we get here, this operand was successfully parsed. */
6606 inst.operands[i].present = 1;
6607 continue;
6609 bad_args:
6610 inst.error = BAD_ARGS;
6612 failure:
6613 if (!backtrack_pos)
6615 /* The parse routine should already have set inst.error, but set a
6616 default here just in case. */
6617 if (!inst.error)
6618 inst.error = _("syntax error");
6619 return FAIL;
6622 /* Do not backtrack over a trailing optional argument that
6623 absorbed some text. We will only fail again, with the
6624 'garbage following instruction' error message, which is
6625 probably less helpful than the current one. */
6626 if (backtrack_index == i && backtrack_pos != str
6627 && upat[i+1] == OP_stop)
6629 if (!inst.error)
6630 inst.error = _("syntax error");
6631 return FAIL;
6634 /* Try again, skipping the optional argument at backtrack_pos. */
6635 str = backtrack_pos;
6636 inst.error = backtrack_error;
6637 inst.operands[backtrack_index].present = 0;
6638 i = backtrack_index;
6639 backtrack_pos = 0;
6642 /* Check that we have parsed all the arguments. */
6643 if (*str != '\0' && !inst.error)
6644 inst.error = _("garbage following instruction");
6646 return inst.error ? FAIL : SUCCESS;
6649 #undef po_char_or_fail
6650 #undef po_reg_or_fail
6651 #undef po_reg_or_goto
6652 #undef po_imm_or_fail
6653 #undef po_scalar_or_fail
6654 #undef po_barrier_or_imm
6656 /* Shorthand macro for instruction encoding functions issuing errors. */
6657 #define constraint(expr, err) \
6658 do \
6660 if (expr) \
6662 inst.error = err; \
6663 return; \
6666 while (0)
6668 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6669 instructions are unpredictable if these registers are used. This
6670 is the BadReg predicate in ARM's Thumb-2 documentation. */
6671 #define reject_bad_reg(reg) \
6672 do \
6673 if (reg == REG_SP || reg == REG_PC) \
6675 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6676 return; \
6678 while (0)
6680 /* If REG is R13 (the stack pointer), warn that its use is
6681 deprecated. */
6682 #define warn_deprecated_sp(reg) \
6683 do \
6684 if (warn_on_deprecated && reg == REG_SP) \
6685 as_warn (_("use of r13 is deprecated")); \
6686 while (0)
6688 /* Functions for operand encoding. ARM, then Thumb. */
6690 #define rotate_left(v, n) (v << n | v >> (32 - n))
6692 /* If VAL can be encoded in the immediate field of an ARM instruction,
6693 return the encoded form. Otherwise, return FAIL. */
6695 static unsigned int
6696 encode_arm_immediate (unsigned int val)
6698 unsigned int a, i;
6700 for (i = 0; i < 32; i += 2)
6701 if ((a = rotate_left (val, i)) <= 0xff)
6702 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6704 return FAIL;
6707 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6708 return the encoded form. Otherwise, return FAIL. */
6709 static unsigned int
6710 encode_thumb32_immediate (unsigned int val)
6712 unsigned int a, i;
6714 if (val <= 0xff)
6715 return val;
6717 for (i = 1; i <= 24; i++)
6719 a = val >> i;
6720 if ((val & ~(0xff << i)) == 0)
6721 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6724 a = val & 0xff;
6725 if (val == ((a << 16) | a))
6726 return 0x100 | a;
6727 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6728 return 0x300 | a;
6730 a = val & 0xff00;
6731 if (val == ((a << 16) | a))
6732 return 0x200 | (a >> 8);
6734 return FAIL;
6736 /* Encode a VFP SP or DP register number into inst.instruction. */
6738 static void
6739 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6741 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6742 && reg > 15)
6744 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6746 if (thumb_mode)
6747 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6748 fpu_vfp_ext_d32);
6749 else
6750 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6751 fpu_vfp_ext_d32);
6753 else
6755 first_error (_("D register out of range for selected VFP version"));
6756 return;
6760 switch (pos)
6762 case VFP_REG_Sd:
6763 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6764 break;
6766 case VFP_REG_Sn:
6767 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6768 break;
6770 case VFP_REG_Sm:
6771 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6772 break;
6774 case VFP_REG_Dd:
6775 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6776 break;
6778 case VFP_REG_Dn:
6779 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6780 break;
6782 case VFP_REG_Dm:
6783 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6784 break;
6786 default:
6787 abort ();
6791 /* Encode a <shift> in an ARM-format instruction. The immediate,
6792 if any, is handled by md_apply_fix. */
6793 static void
6794 encode_arm_shift (int i)
6796 if (inst.operands[i].shift_kind == SHIFT_RRX)
6797 inst.instruction |= SHIFT_ROR << 5;
6798 else
6800 inst.instruction |= inst.operands[i].shift_kind << 5;
6801 if (inst.operands[i].immisreg)
6803 inst.instruction |= SHIFT_BY_REG;
6804 inst.instruction |= inst.operands[i].imm << 8;
6806 else
6807 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6811 static void
6812 encode_arm_shifter_operand (int i)
6814 if (inst.operands[i].isreg)
6816 inst.instruction |= inst.operands[i].reg;
6817 encode_arm_shift (i);
6819 else
6820 inst.instruction |= INST_IMMEDIATE;
6823 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6824 static void
6825 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6827 gas_assert (inst.operands[i].isreg);
6828 inst.instruction |= inst.operands[i].reg << 16;
6830 if (inst.operands[i].preind)
6832 if (is_t)
6834 inst.error = _("instruction does not accept preindexed addressing");
6835 return;
6837 inst.instruction |= PRE_INDEX;
6838 if (inst.operands[i].writeback)
6839 inst.instruction |= WRITE_BACK;
6842 else if (inst.operands[i].postind)
6844 gas_assert (inst.operands[i].writeback);
6845 if (is_t)
6846 inst.instruction |= WRITE_BACK;
6848 else /* unindexed - only for coprocessor */
6850 inst.error = _("instruction does not accept unindexed addressing");
6851 return;
6854 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6855 && (((inst.instruction & 0x000f0000) >> 16)
6856 == ((inst.instruction & 0x0000f000) >> 12)))
6857 as_warn ((inst.instruction & LOAD_BIT)
6858 ? _("destination register same as write-back base")
6859 : _("source register same as write-back base"));
6862 /* inst.operands[i] was set up by parse_address. Encode it into an
6863 ARM-format mode 2 load or store instruction. If is_t is true,
6864 reject forms that cannot be used with a T instruction (i.e. not
6865 post-indexed). */
6866 static void
6867 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6869 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6871 encode_arm_addr_mode_common (i, is_t);
6873 if (inst.operands[i].immisreg)
6875 constraint ((inst.operands[i].imm == REG_PC
6876 || (is_pc && inst.operands[i].writeback)),
6877 BAD_PC_ADDRESSING);
6878 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6879 inst.instruction |= inst.operands[i].imm;
6880 if (!inst.operands[i].negative)
6881 inst.instruction |= INDEX_UP;
6882 if (inst.operands[i].shifted)
6884 if (inst.operands[i].shift_kind == SHIFT_RRX)
6885 inst.instruction |= SHIFT_ROR << 5;
6886 else
6888 inst.instruction |= inst.operands[i].shift_kind << 5;
6889 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6893 else /* immediate offset in inst.reloc */
6895 if (is_pc && !inst.reloc.pc_rel)
6897 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6899 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6900 cannot use PC in addressing.
6901 PC cannot be used in writeback addressing, either. */
6902 constraint ((is_t || inst.operands[i].writeback),
6903 BAD_PC_ADDRESSING);
6905 /* Use of PC in str is deprecated for ARMv7. */
6906 if (warn_on_deprecated
6907 && !is_load
6908 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6909 as_warn (_("use of PC in this instruction is deprecated"));
6912 if (inst.reloc.type == BFD_RELOC_UNUSED)
6913 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6917 /* inst.operands[i] was set up by parse_address. Encode it into an
6918 ARM-format mode 3 load or store instruction. Reject forms that
6919 cannot be used with such instructions. If is_t is true, reject
6920 forms that cannot be used with a T instruction (i.e. not
6921 post-indexed). */
6922 static void
6923 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6925 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6927 inst.error = _("instruction does not accept scaled register index");
6928 return;
6931 encode_arm_addr_mode_common (i, is_t);
6933 if (inst.operands[i].immisreg)
6935 constraint ((inst.operands[i].imm == REG_PC
6936 || inst.operands[i].reg == REG_PC),
6937 BAD_PC_ADDRESSING);
6938 inst.instruction |= inst.operands[i].imm;
6939 if (!inst.operands[i].negative)
6940 inst.instruction |= INDEX_UP;
6942 else /* immediate offset in inst.reloc */
6944 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6945 && inst.operands[i].writeback),
6946 BAD_PC_WRITEBACK);
6947 inst.instruction |= HWOFFSET_IMM;
6948 if (inst.reloc.type == BFD_RELOC_UNUSED)
6949 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6953 /* inst.operands[i] was set up by parse_address. Encode it into an
6954 ARM-format instruction. Reject all forms which cannot be encoded
6955 into a coprocessor load/store instruction. If wb_ok is false,
6956 reject use of writeback; if unind_ok is false, reject use of
6957 unindexed addressing. If reloc_override is not 0, use it instead
6958 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6959 (in which case it is preserved). */
6961 static int
6962 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6964 inst.instruction |= inst.operands[i].reg << 16;
6966 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6968 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6970 gas_assert (!inst.operands[i].writeback);
6971 if (!unind_ok)
6973 inst.error = _("instruction does not support unindexed addressing");
6974 return FAIL;
6976 inst.instruction |= inst.operands[i].imm;
6977 inst.instruction |= INDEX_UP;
6978 return SUCCESS;
6981 if (inst.operands[i].preind)
6982 inst.instruction |= PRE_INDEX;
6984 if (inst.operands[i].writeback)
6986 if (inst.operands[i].reg == REG_PC)
6988 inst.error = _("pc may not be used with write-back");
6989 return FAIL;
6991 if (!wb_ok)
6993 inst.error = _("instruction does not support writeback");
6994 return FAIL;
6996 inst.instruction |= WRITE_BACK;
6999 if (reloc_override)
7000 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7001 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7002 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7003 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7005 if (thumb_mode)
7006 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7011 return SUCCESS;
7014 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7015 Determine whether it can be performed with a move instruction; if
7016 it can, convert inst.instruction to that move instruction and
7017 return TRUE; if it can't, convert inst.instruction to a literal-pool
7018 load and return FALSE. If this is not a valid thing to do in the
7019 current context, set inst.error and return TRUE.
7021 inst.operands[i] describes the destination register. */
7023 static bfd_boolean
7024 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7026 unsigned long tbit;
7028 if (thumb_p)
7029 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7030 else
7031 tbit = LOAD_BIT;
7033 if ((inst.instruction & tbit) == 0)
7035 inst.error = _("invalid pseudo operation");
7036 return TRUE;
7038 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7040 inst.error = _("constant expression expected");
7041 return TRUE;
7043 if (inst.reloc.exp.X_op == O_constant)
7045 if (thumb_p)
7047 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7049 /* This can be done with a mov(1) instruction. */
7050 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7051 inst.instruction |= inst.reloc.exp.X_add_number;
7052 return TRUE;
7055 else
7057 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7058 if (value != FAIL)
7060 /* This can be done with a mov instruction. */
7061 inst.instruction &= LITERAL_MASK;
7062 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7063 inst.instruction |= value & 0xfff;
7064 return TRUE;
7067 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7068 if (value != FAIL)
7070 /* This can be done with a mvn instruction. */
7071 inst.instruction &= LITERAL_MASK;
7072 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7073 inst.instruction |= value & 0xfff;
7074 return TRUE;
7079 if (add_to_lit_pool () == FAIL)
7081 inst.error = _("literal pool insertion failed");
7082 return TRUE;
7084 inst.operands[1].reg = REG_PC;
7085 inst.operands[1].isreg = 1;
7086 inst.operands[1].preind = 1;
7087 inst.reloc.pc_rel = 1;
7088 inst.reloc.type = (thumb_p
7089 ? BFD_RELOC_ARM_THUMB_OFFSET
7090 : (mode_3
7091 ? BFD_RELOC_ARM_HWLITERAL
7092 : BFD_RELOC_ARM_LITERAL));
7093 return FALSE;
7096 /* Functions for instruction encoding, sorted by sub-architecture.
7097 First some generics; their names are taken from the conventional
7098 bit positions for register arguments in ARM format instructions. */
7100 static void
7101 do_noargs (void)
7105 static void
7106 do_rd (void)
7108 inst.instruction |= inst.operands[0].reg << 12;
7111 static void
7112 do_rd_rm (void)
7114 inst.instruction |= inst.operands[0].reg << 12;
7115 inst.instruction |= inst.operands[1].reg;
7118 static void
7119 do_rd_rn (void)
7121 inst.instruction |= inst.operands[0].reg << 12;
7122 inst.instruction |= inst.operands[1].reg << 16;
7125 static void
7126 do_rn_rd (void)
7128 inst.instruction |= inst.operands[0].reg << 16;
7129 inst.instruction |= inst.operands[1].reg << 12;
7132 static void
7133 do_rd_rm_rn (void)
7135 unsigned Rn = inst.operands[2].reg;
7136 /* Enforce restrictions on SWP instruction. */
7137 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7139 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7140 _("Rn must not overlap other operands"));
7142 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7143 if (warn_on_deprecated
7144 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7145 as_warn (_("swp{b} use is deprecated for this architecture"));
7148 inst.instruction |= inst.operands[0].reg << 12;
7149 inst.instruction |= inst.operands[1].reg;
7150 inst.instruction |= Rn << 16;
7153 static void
7154 do_rd_rn_rm (void)
7156 inst.instruction |= inst.operands[0].reg << 12;
7157 inst.instruction |= inst.operands[1].reg << 16;
7158 inst.instruction |= inst.operands[2].reg;
7161 static void
7162 do_rm_rd_rn (void)
7164 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7165 constraint (((inst.reloc.exp.X_op != O_constant
7166 && inst.reloc.exp.X_op != O_illegal)
7167 || inst.reloc.exp.X_add_number != 0),
7168 BAD_ADDR_MODE);
7169 inst.instruction |= inst.operands[0].reg;
7170 inst.instruction |= inst.operands[1].reg << 12;
7171 inst.instruction |= inst.operands[2].reg << 16;
7174 static void
7175 do_imm0 (void)
7177 inst.instruction |= inst.operands[0].imm;
7180 static void
7181 do_rd_cpaddr (void)
7183 inst.instruction |= inst.operands[0].reg << 12;
7184 encode_arm_cp_address (1, TRUE, TRUE, 0);
7187 /* ARM instructions, in alphabetical order by function name (except
7188 that wrapper functions appear immediately after the function they
7189 wrap). */
7191 /* This is a pseudo-op of the form "adr rd, label" to be converted
7192 into a relative address of the form "add rd, pc, #label-.-8". */
7194 static void
7195 do_adr (void)
7197 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7199 /* Frag hacking will turn this into a sub instruction if the offset turns
7200 out to be negative. */
7201 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7202 inst.reloc.pc_rel = 1;
7203 inst.reloc.exp.X_add_number -= 8;
7206 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7207 into a relative address of the form:
7208 add rd, pc, #low(label-.-8)"
7209 add rd, rd, #high(label-.-8)" */
7211 static void
7212 do_adrl (void)
7214 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7216 /* Frag hacking will turn this into a sub instruction if the offset turns
7217 out to be negative. */
7218 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7219 inst.reloc.pc_rel = 1;
7220 inst.size = INSN_SIZE * 2;
7221 inst.reloc.exp.X_add_number -= 8;
7224 static void
7225 do_arit (void)
7227 if (!inst.operands[1].present)
7228 inst.operands[1].reg = inst.operands[0].reg;
7229 inst.instruction |= inst.operands[0].reg << 12;
7230 inst.instruction |= inst.operands[1].reg << 16;
7231 encode_arm_shifter_operand (2);
7234 static void
7235 do_barrier (void)
7237 if (inst.operands[0].present)
7239 constraint ((inst.instruction & 0xf0) != 0x40
7240 && inst.operands[0].imm > 0xf
7241 && inst.operands[0].imm < 0x0,
7242 _("bad barrier type"));
7243 inst.instruction |= inst.operands[0].imm;
7245 else
7246 inst.instruction |= 0xf;
7249 static void
7250 do_bfc (void)
7252 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7253 constraint (msb > 32, _("bit-field extends past end of register"));
7254 /* The instruction encoding stores the LSB and MSB,
7255 not the LSB and width. */
7256 inst.instruction |= inst.operands[0].reg << 12;
7257 inst.instruction |= inst.operands[1].imm << 7;
7258 inst.instruction |= (msb - 1) << 16;
7261 static void
7262 do_bfi (void)
7264 unsigned int msb;
7266 /* #0 in second position is alternative syntax for bfc, which is
7267 the same instruction but with REG_PC in the Rm field. */
7268 if (!inst.operands[1].isreg)
7269 inst.operands[1].reg = REG_PC;
7271 msb = inst.operands[2].imm + inst.operands[3].imm;
7272 constraint (msb > 32, _("bit-field extends past end of register"));
7273 /* The instruction encoding stores the LSB and MSB,
7274 not the LSB and width. */
7275 inst.instruction |= inst.operands[0].reg << 12;
7276 inst.instruction |= inst.operands[1].reg;
7277 inst.instruction |= inst.operands[2].imm << 7;
7278 inst.instruction |= (msb - 1) << 16;
7281 static void
7282 do_bfx (void)
7284 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7285 _("bit-field extends past end of register"));
7286 inst.instruction |= inst.operands[0].reg << 12;
7287 inst.instruction |= inst.operands[1].reg;
7288 inst.instruction |= inst.operands[2].imm << 7;
7289 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7292 /* ARM V5 breakpoint instruction (argument parse)
7293 BKPT <16 bit unsigned immediate>
7294 Instruction is not conditional.
7295 The bit pattern given in insns[] has the COND_ALWAYS condition,
7296 and it is an error if the caller tried to override that. */
7298 static void
7299 do_bkpt (void)
7301 /* Top 12 of 16 bits to bits 19:8. */
7302 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7304 /* Bottom 4 of 16 bits to bits 3:0. */
7305 inst.instruction |= inst.operands[0].imm & 0xf;
7308 static void
7309 encode_branch (int default_reloc)
7311 if (inst.operands[0].hasreloc)
7313 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7314 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7315 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7316 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7317 ? BFD_RELOC_ARM_PLT32
7318 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7320 else
7321 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7322 inst.reloc.pc_rel = 1;
7325 static void
7326 do_branch (void)
7328 #ifdef OBJ_ELF
7329 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7330 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7331 else
7332 #endif
7333 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7336 static void
7337 do_bl (void)
7339 #ifdef OBJ_ELF
7340 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7342 if (inst.cond == COND_ALWAYS)
7343 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7344 else
7345 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7347 else
7348 #endif
7349 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7352 /* ARM V5 branch-link-exchange instruction (argument parse)
7353 BLX <target_addr> ie BLX(1)
7354 BLX{<condition>} <Rm> ie BLX(2)
7355 Unfortunately, there are two different opcodes for this mnemonic.
7356 So, the insns[].value is not used, and the code here zaps values
7357 into inst.instruction.
7358 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7360 static void
7361 do_blx (void)
7363 if (inst.operands[0].isreg)
7365 /* Arg is a register; the opcode provided by insns[] is correct.
7366 It is not illegal to do "blx pc", just useless. */
7367 if (inst.operands[0].reg == REG_PC)
7368 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7370 inst.instruction |= inst.operands[0].reg;
7372 else
7374 /* Arg is an address; this instruction cannot be executed
7375 conditionally, and the opcode must be adjusted.
7376 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7377 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7378 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7379 inst.instruction = 0xfa000000;
7380 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7384 static void
7385 do_bx (void)
7387 bfd_boolean want_reloc;
7389 if (inst.operands[0].reg == REG_PC)
7390 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7392 inst.instruction |= inst.operands[0].reg;
7393 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7394 it is for ARMv4t or earlier. */
7395 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7396 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7397 want_reloc = TRUE;
7399 #ifdef OBJ_ELF
7400 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7401 #endif
7402 want_reloc = FALSE;
7404 if (want_reloc)
7405 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7409 /* ARM v5TEJ. Jump to Jazelle code. */
7411 static void
7412 do_bxj (void)
7414 if (inst.operands[0].reg == REG_PC)
7415 as_tsktsk (_("use of r15 in bxj is not really useful"));
7417 inst.instruction |= inst.operands[0].reg;
7420 /* Co-processor data operation:
7421 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7422 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7423 static void
7424 do_cdp (void)
7426 inst.instruction |= inst.operands[0].reg << 8;
7427 inst.instruction |= inst.operands[1].imm << 20;
7428 inst.instruction |= inst.operands[2].reg << 12;
7429 inst.instruction |= inst.operands[3].reg << 16;
7430 inst.instruction |= inst.operands[4].reg;
7431 inst.instruction |= inst.operands[5].imm << 5;
7434 static void
7435 do_cmp (void)
7437 inst.instruction |= inst.operands[0].reg << 16;
7438 encode_arm_shifter_operand (1);
7441 /* Transfer between coprocessor and ARM registers.
7442 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7443 MRC2
7444 MCR{cond}
7445 MCR2
7447 No special properties. */
7449 static void
7450 do_co_reg (void)
7452 unsigned Rd;
7454 Rd = inst.operands[2].reg;
7455 if (thumb_mode)
7457 if (inst.instruction == 0xee000010
7458 || inst.instruction == 0xfe000010)
7459 /* MCR, MCR2 */
7460 reject_bad_reg (Rd);
7461 else
7462 /* MRC, MRC2 */
7463 constraint (Rd == REG_SP, BAD_SP);
7465 else
7467 /* MCR */
7468 if (inst.instruction == 0xe000010)
7469 constraint (Rd == REG_PC, BAD_PC);
7473 inst.instruction |= inst.operands[0].reg << 8;
7474 inst.instruction |= inst.operands[1].imm << 21;
7475 inst.instruction |= Rd << 12;
7476 inst.instruction |= inst.operands[3].reg << 16;
7477 inst.instruction |= inst.operands[4].reg;
7478 inst.instruction |= inst.operands[5].imm << 5;
7481 /* Transfer between coprocessor register and pair of ARM registers.
7482 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7483 MCRR2
7484 MRRC{cond}
7485 MRRC2
7487 Two XScale instructions are special cases of these:
7489 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7490 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7492 Result unpredictable if Rd or Rn is R15. */
7494 static void
7495 do_co_reg2c (void)
7497 unsigned Rd, Rn;
7499 Rd = inst.operands[2].reg;
7500 Rn = inst.operands[3].reg;
7502 if (thumb_mode)
7504 reject_bad_reg (Rd);
7505 reject_bad_reg (Rn);
7507 else
7509 constraint (Rd == REG_PC, BAD_PC);
7510 constraint (Rn == REG_PC, BAD_PC);
7513 inst.instruction |= inst.operands[0].reg << 8;
7514 inst.instruction |= inst.operands[1].imm << 4;
7515 inst.instruction |= Rd << 12;
7516 inst.instruction |= Rn << 16;
7517 inst.instruction |= inst.operands[4].reg;
7520 static void
7521 do_cpsi (void)
7523 inst.instruction |= inst.operands[0].imm << 6;
7524 if (inst.operands[1].present)
7526 inst.instruction |= CPSI_MMOD;
7527 inst.instruction |= inst.operands[1].imm;
7531 static void
7532 do_dbg (void)
7534 inst.instruction |= inst.operands[0].imm;
7537 static void
7538 do_div (void)
7540 unsigned Rd, Rn, Rm;
7542 Rd = inst.operands[0].reg;
7543 Rn = (inst.operands[1].present
7544 ? inst.operands[1].reg : Rd);
7545 Rm = inst.operands[2].reg;
7547 constraint ((Rd == REG_PC), BAD_PC);
7548 constraint ((Rn == REG_PC), BAD_PC);
7549 constraint ((Rm == REG_PC), BAD_PC);
7551 inst.instruction |= Rd << 16;
7552 inst.instruction |= Rn << 0;
7553 inst.instruction |= Rm << 8;
7556 static void
7557 do_it (void)
7559 /* There is no IT instruction in ARM mode. We
7560 process it to do the validation as if in
7561 thumb mode, just in case the code gets
7562 assembled for thumb using the unified syntax. */
7564 inst.size = 0;
7565 if (unified_syntax)
7567 set_it_insn_type (IT_INSN);
7568 now_it.mask = (inst.instruction & 0xf) | 0x10;
7569 now_it.cc = inst.operands[0].imm;
7573 static void
7574 do_ldmstm (void)
7576 int base_reg = inst.operands[0].reg;
7577 int range = inst.operands[1].imm;
7579 inst.instruction |= base_reg << 16;
7580 inst.instruction |= range;
7582 if (inst.operands[1].writeback)
7583 inst.instruction |= LDM_TYPE_2_OR_3;
7585 if (inst.operands[0].writeback)
7587 inst.instruction |= WRITE_BACK;
7588 /* Check for unpredictable uses of writeback. */
7589 if (inst.instruction & LOAD_BIT)
7591 /* Not allowed in LDM type 2. */
7592 if ((inst.instruction & LDM_TYPE_2_OR_3)
7593 && ((range & (1 << REG_PC)) == 0))
7594 as_warn (_("writeback of base register is UNPREDICTABLE"));
7595 /* Only allowed if base reg not in list for other types. */
7596 else if (range & (1 << base_reg))
7597 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7599 else /* STM. */
7601 /* Not allowed for type 2. */
7602 if (inst.instruction & LDM_TYPE_2_OR_3)
7603 as_warn (_("writeback of base register is UNPREDICTABLE"));
7604 /* Only allowed if base reg not in list, or first in list. */
7605 else if ((range & (1 << base_reg))
7606 && (range & ((1 << base_reg) - 1)))
7607 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7612 /* ARMv5TE load-consecutive (argument parse)
7613 Mode is like LDRH.
7615 LDRccD R, mode
7616 STRccD R, mode. */
7618 static void
7619 do_ldrd (void)
7621 constraint (inst.operands[0].reg % 2 != 0,
7622 _("first destination register must be even"));
7623 constraint (inst.operands[1].present
7624 && inst.operands[1].reg != inst.operands[0].reg + 1,
7625 _("can only load two consecutive registers"));
7626 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7627 constraint (!inst.operands[2].isreg, _("'[' expected"));
7629 if (!inst.operands[1].present)
7630 inst.operands[1].reg = inst.operands[0].reg + 1;
7632 if (inst.instruction & LOAD_BIT)
7634 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7635 register and the first register written; we have to diagnose
7636 overlap between the base and the second register written here. */
7638 if (inst.operands[2].reg == inst.operands[1].reg
7639 && (inst.operands[2].writeback || inst.operands[2].postind))
7640 as_warn (_("base register written back, and overlaps "
7641 "second destination register"));
7643 /* For an index-register load, the index register must not overlap the
7644 destination (even if not write-back). */
7645 else if (inst.operands[2].immisreg
7646 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7647 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7648 as_warn (_("index register overlaps destination register"));
7651 inst.instruction |= inst.operands[0].reg << 12;
7652 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7655 static void
7656 do_ldrex (void)
7658 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7659 || inst.operands[1].postind || inst.operands[1].writeback
7660 || inst.operands[1].immisreg || inst.operands[1].shifted
7661 || inst.operands[1].negative
7662 /* This can arise if the programmer has written
7663 strex rN, rM, foo
7664 or if they have mistakenly used a register name as the last
7665 operand, eg:
7666 strex rN, rM, rX
7667 It is very difficult to distinguish between these two cases
7668 because "rX" might actually be a label. ie the register
7669 name has been occluded by a symbol of the same name. So we
7670 just generate a general 'bad addressing mode' type error
7671 message and leave it up to the programmer to discover the
7672 true cause and fix their mistake. */
7673 || (inst.operands[1].reg == REG_PC),
7674 BAD_ADDR_MODE);
7676 constraint (inst.reloc.exp.X_op != O_constant
7677 || inst.reloc.exp.X_add_number != 0,
7678 _("offset must be zero in ARM encoding"));
7680 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7682 inst.instruction |= inst.operands[0].reg << 12;
7683 inst.instruction |= inst.operands[1].reg << 16;
7684 inst.reloc.type = BFD_RELOC_UNUSED;
7687 static void
7688 do_ldrexd (void)
7690 constraint (inst.operands[0].reg % 2 != 0,
7691 _("even register required"));
7692 constraint (inst.operands[1].present
7693 && inst.operands[1].reg != inst.operands[0].reg + 1,
7694 _("can only load two consecutive registers"));
7695 /* If op 1 were present and equal to PC, this function wouldn't
7696 have been called in the first place. */
7697 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7699 inst.instruction |= inst.operands[0].reg << 12;
7700 inst.instruction |= inst.operands[2].reg << 16;
7703 static void
7704 do_ldst (void)
7706 inst.instruction |= inst.operands[0].reg << 12;
7707 if (!inst.operands[1].isreg)
7708 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7709 return;
7710 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7713 static void
7714 do_ldstt (void)
7716 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7717 reject [Rn,...]. */
7718 if (inst.operands[1].preind)
7720 constraint (inst.reloc.exp.X_op != O_constant
7721 || inst.reloc.exp.X_add_number != 0,
7722 _("this instruction requires a post-indexed address"));
7724 inst.operands[1].preind = 0;
7725 inst.operands[1].postind = 1;
7726 inst.operands[1].writeback = 1;
7728 inst.instruction |= inst.operands[0].reg << 12;
7729 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7732 /* Halfword and signed-byte load/store operations. */
7734 static void
7735 do_ldstv4 (void)
7737 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7738 inst.instruction |= inst.operands[0].reg << 12;
7739 if (!inst.operands[1].isreg)
7740 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7741 return;
7742 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7745 static void
7746 do_ldsttv4 (void)
7748 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7749 reject [Rn,...]. */
7750 if (inst.operands[1].preind)
7752 constraint (inst.reloc.exp.X_op != O_constant
7753 || inst.reloc.exp.X_add_number != 0,
7754 _("this instruction requires a post-indexed address"));
7756 inst.operands[1].preind = 0;
7757 inst.operands[1].postind = 1;
7758 inst.operands[1].writeback = 1;
7760 inst.instruction |= inst.operands[0].reg << 12;
7761 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7764 /* Co-processor register load/store.
7765 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7766 static void
7767 do_lstc (void)
7769 inst.instruction |= inst.operands[0].reg << 8;
7770 inst.instruction |= inst.operands[1].reg << 12;
7771 encode_arm_cp_address (2, TRUE, TRUE, 0);
7774 static void
7775 do_mlas (void)
7777 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7778 if (inst.operands[0].reg == inst.operands[1].reg
7779 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7780 && !(inst.instruction & 0x00400000))
7781 as_tsktsk (_("Rd and Rm should be different in mla"));
7783 inst.instruction |= inst.operands[0].reg << 16;
7784 inst.instruction |= inst.operands[1].reg;
7785 inst.instruction |= inst.operands[2].reg << 8;
7786 inst.instruction |= inst.operands[3].reg << 12;
7789 static void
7790 do_mov (void)
7792 inst.instruction |= inst.operands[0].reg << 12;
7793 encode_arm_shifter_operand (1);
7796 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7797 static void
7798 do_mov16 (void)
7800 bfd_vma imm;
7801 bfd_boolean top;
7803 top = (inst.instruction & 0x00400000) != 0;
7804 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7805 _(":lower16: not allowed this instruction"));
7806 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7807 _(":upper16: not allowed instruction"));
7808 inst.instruction |= inst.operands[0].reg << 12;
7809 if (inst.reloc.type == BFD_RELOC_UNUSED)
7811 imm = inst.reloc.exp.X_add_number;
7812 /* The value is in two pieces: 0:11, 16:19. */
7813 inst.instruction |= (imm & 0x00000fff);
7814 inst.instruction |= (imm & 0x0000f000) << 4;
7818 static void do_vfp_nsyn_opcode (const char *);
7820 static int
7821 do_vfp_nsyn_mrs (void)
7823 if (inst.operands[0].isvec)
7825 if (inst.operands[1].reg != 1)
7826 first_error (_("operand 1 must be FPSCR"));
7827 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7828 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7829 do_vfp_nsyn_opcode ("fmstat");
7831 else if (inst.operands[1].isvec)
7832 do_vfp_nsyn_opcode ("fmrx");
7833 else
7834 return FAIL;
7836 return SUCCESS;
7839 static int
7840 do_vfp_nsyn_msr (void)
7842 if (inst.operands[0].isvec)
7843 do_vfp_nsyn_opcode ("fmxr");
7844 else
7845 return FAIL;
7847 return SUCCESS;
7850 static void
7851 do_vmrs (void)
7853 unsigned Rt = inst.operands[0].reg;
7855 if (thumb_mode && inst.operands[0].reg == REG_SP)
7857 inst.error = BAD_SP;
7858 return;
7861 /* APSR_ sets isvec. All other refs to PC are illegal. */
7862 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7864 inst.error = BAD_PC;
7865 return;
7868 if (inst.operands[1].reg != 1)
7869 first_error (_("operand 1 must be FPSCR"));
7871 inst.instruction |= (Rt << 12);
7874 static void
7875 do_vmsr (void)
7877 unsigned Rt = inst.operands[1].reg;
7879 if (thumb_mode)
7880 reject_bad_reg (Rt);
7881 else if (Rt == REG_PC)
7883 inst.error = BAD_PC;
7884 return;
7887 if (inst.operands[0].reg != 1)
7888 first_error (_("operand 0 must be FPSCR"));
7890 inst.instruction |= (Rt << 12);
7893 static void
7894 do_mrs (void)
7896 unsigned br;
7898 if (do_vfp_nsyn_mrs () == SUCCESS)
7899 return;
7901 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7902 inst.instruction |= inst.operands[0].reg << 12;
7904 if (inst.operands[1].isreg)
7906 br = inst.operands[1].reg;
7907 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
7908 as_bad (_("bad register for mrs"));
7910 else
7912 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7913 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7914 != (PSR_c|PSR_f),
7915 _("'CPSR' or 'SPSR' expected"));
7916 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
7919 inst.instruction |= br;
7922 /* Two possible forms:
7923 "{C|S}PSR_<field>, Rm",
7924 "{C|S}PSR_f, #expression". */
7926 static void
7927 do_msr (void)
7929 if (do_vfp_nsyn_msr () == SUCCESS)
7930 return;
7932 inst.instruction |= inst.operands[0].imm;
7933 if (inst.operands[1].isreg)
7934 inst.instruction |= inst.operands[1].reg;
7935 else
7937 inst.instruction |= INST_IMMEDIATE;
7938 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7939 inst.reloc.pc_rel = 0;
7943 static void
7944 do_mul (void)
7946 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7948 if (!inst.operands[2].present)
7949 inst.operands[2].reg = inst.operands[0].reg;
7950 inst.instruction |= inst.operands[0].reg << 16;
7951 inst.instruction |= inst.operands[1].reg;
7952 inst.instruction |= inst.operands[2].reg << 8;
7954 if (inst.operands[0].reg == inst.operands[1].reg
7955 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7956 as_tsktsk (_("Rd and Rm should be different in mul"));
7959 /* Long Multiply Parser
7960 UMULL RdLo, RdHi, Rm, Rs
7961 SMULL RdLo, RdHi, Rm, Rs
7962 UMLAL RdLo, RdHi, Rm, Rs
7963 SMLAL RdLo, RdHi, Rm, Rs. */
7965 static void
7966 do_mull (void)
7968 inst.instruction |= inst.operands[0].reg << 12;
7969 inst.instruction |= inst.operands[1].reg << 16;
7970 inst.instruction |= inst.operands[2].reg;
7971 inst.instruction |= inst.operands[3].reg << 8;
7973 /* rdhi and rdlo must be different. */
7974 if (inst.operands[0].reg == inst.operands[1].reg)
7975 as_tsktsk (_("rdhi and rdlo must be different"));
7977 /* rdhi, rdlo and rm must all be different before armv6. */
7978 if ((inst.operands[0].reg == inst.operands[2].reg
7979 || inst.operands[1].reg == inst.operands[2].reg)
7980 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7981 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7984 static void
7985 do_nop (void)
7987 if (inst.operands[0].present
7988 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7990 /* Architectural NOP hints are CPSR sets with no bits selected. */
7991 inst.instruction &= 0xf0000000;
7992 inst.instruction |= 0x0320f000;
7993 if (inst.operands[0].present)
7994 inst.instruction |= inst.operands[0].imm;
7998 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7999 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8000 Condition defaults to COND_ALWAYS.
8001 Error if Rd, Rn or Rm are R15. */
8003 static void
8004 do_pkhbt (void)
8006 inst.instruction |= inst.operands[0].reg << 12;
8007 inst.instruction |= inst.operands[1].reg << 16;
8008 inst.instruction |= inst.operands[2].reg;
8009 if (inst.operands[3].present)
8010 encode_arm_shift (3);
8013 /* ARM V6 PKHTB (Argument Parse). */
8015 static void
8016 do_pkhtb (void)
8018 if (!inst.operands[3].present)
8020 /* If the shift specifier is omitted, turn the instruction
8021 into pkhbt rd, rm, rn. */
8022 inst.instruction &= 0xfff00010;
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 inst.instruction |= inst.operands[1].reg;
8025 inst.instruction |= inst.operands[2].reg << 16;
8027 else
8029 inst.instruction |= inst.operands[0].reg << 12;
8030 inst.instruction |= inst.operands[1].reg << 16;
8031 inst.instruction |= inst.operands[2].reg;
8032 encode_arm_shift (3);
8036 /* ARMv5TE: Preload-Cache
8037 MP Extensions: Preload for write
8039 PLD(W) <addr_mode>
8041 Syntactically, like LDR with B=1, W=0, L=1. */
8043 static void
8044 do_pld (void)
8046 constraint (!inst.operands[0].isreg,
8047 _("'[' expected after PLD mnemonic"));
8048 constraint (inst.operands[0].postind,
8049 _("post-indexed expression used in preload instruction"));
8050 constraint (inst.operands[0].writeback,
8051 _("writeback used in preload instruction"));
8052 constraint (!inst.operands[0].preind,
8053 _("unindexed addressing used in preload instruction"));
8054 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8057 /* ARMv7: PLI <addr_mode> */
8058 static void
8059 do_pli (void)
8061 constraint (!inst.operands[0].isreg,
8062 _("'[' expected after PLI mnemonic"));
8063 constraint (inst.operands[0].postind,
8064 _("post-indexed expression used in preload instruction"));
8065 constraint (inst.operands[0].writeback,
8066 _("writeback used in preload instruction"));
8067 constraint (!inst.operands[0].preind,
8068 _("unindexed addressing used in preload instruction"));
8069 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8070 inst.instruction &= ~PRE_INDEX;
8073 static void
8074 do_push_pop (void)
8076 inst.operands[1] = inst.operands[0];
8077 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8078 inst.operands[0].isreg = 1;
8079 inst.operands[0].writeback = 1;
8080 inst.operands[0].reg = REG_SP;
8081 do_ldmstm ();
8084 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8085 word at the specified address and the following word
8086 respectively.
8087 Unconditionally executed.
8088 Error if Rn is R15. */
8090 static void
8091 do_rfe (void)
8093 inst.instruction |= inst.operands[0].reg << 16;
8094 if (inst.operands[0].writeback)
8095 inst.instruction |= WRITE_BACK;
8098 /* ARM V6 ssat (argument parse). */
8100 static void
8101 do_ssat (void)
8103 inst.instruction |= inst.operands[0].reg << 12;
8104 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8105 inst.instruction |= inst.operands[2].reg;
8107 if (inst.operands[3].present)
8108 encode_arm_shift (3);
8111 /* ARM V6 usat (argument parse). */
8113 static void
8114 do_usat (void)
8116 inst.instruction |= inst.operands[0].reg << 12;
8117 inst.instruction |= inst.operands[1].imm << 16;
8118 inst.instruction |= inst.operands[2].reg;
8120 if (inst.operands[3].present)
8121 encode_arm_shift (3);
8124 /* ARM V6 ssat16 (argument parse). */
8126 static void
8127 do_ssat16 (void)
8129 inst.instruction |= inst.operands[0].reg << 12;
8130 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8131 inst.instruction |= inst.operands[2].reg;
8134 static void
8135 do_usat16 (void)
8137 inst.instruction |= inst.operands[0].reg << 12;
8138 inst.instruction |= inst.operands[1].imm << 16;
8139 inst.instruction |= inst.operands[2].reg;
8142 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8143 preserving the other bits.
8145 setend <endian_specifier>, where <endian_specifier> is either
8146 BE or LE. */
8148 static void
8149 do_setend (void)
8151 if (inst.operands[0].imm)
8152 inst.instruction |= 0x200;
8155 static void
8156 do_shift (void)
8158 unsigned int Rm = (inst.operands[1].present
8159 ? inst.operands[1].reg
8160 : inst.operands[0].reg);
8162 inst.instruction |= inst.operands[0].reg << 12;
8163 inst.instruction |= Rm;
8164 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8166 inst.instruction |= inst.operands[2].reg << 8;
8167 inst.instruction |= SHIFT_BY_REG;
8169 else
8170 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8173 static void
8174 do_smc (void)
8176 inst.reloc.type = BFD_RELOC_ARM_SMC;
8177 inst.reloc.pc_rel = 0;
8180 static void
8181 do_hvc (void)
8183 inst.reloc.type = BFD_RELOC_ARM_HVC;
8184 inst.reloc.pc_rel = 0;
8187 static void
8188 do_swi (void)
8190 inst.reloc.type = BFD_RELOC_ARM_SWI;
8191 inst.reloc.pc_rel = 0;
8194 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8195 SMLAxy{cond} Rd,Rm,Rs,Rn
8196 SMLAWy{cond} Rd,Rm,Rs,Rn
8197 Error if any register is R15. */
8199 static void
8200 do_smla (void)
8202 inst.instruction |= inst.operands[0].reg << 16;
8203 inst.instruction |= inst.operands[1].reg;
8204 inst.instruction |= inst.operands[2].reg << 8;
8205 inst.instruction |= inst.operands[3].reg << 12;
8208 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8209 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8210 Error if any register is R15.
8211 Warning if Rdlo == Rdhi. */
8213 static void
8214 do_smlal (void)
8216 inst.instruction |= inst.operands[0].reg << 12;
8217 inst.instruction |= inst.operands[1].reg << 16;
8218 inst.instruction |= inst.operands[2].reg;
8219 inst.instruction |= inst.operands[3].reg << 8;
8221 if (inst.operands[0].reg == inst.operands[1].reg)
8222 as_tsktsk (_("rdhi and rdlo must be different"));
8225 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8226 SMULxy{cond} Rd,Rm,Rs
8227 Error if any register is R15. */
8229 static void
8230 do_smul (void)
8232 inst.instruction |= inst.operands[0].reg << 16;
8233 inst.instruction |= inst.operands[1].reg;
8234 inst.instruction |= inst.operands[2].reg << 8;
8237 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8238 the same for both ARM and Thumb-2. */
8240 static void
8241 do_srs (void)
8243 int reg;
8245 if (inst.operands[0].present)
8247 reg = inst.operands[0].reg;
8248 constraint (reg != REG_SP, _("SRS base register must be r13"));
8250 else
8251 reg = REG_SP;
8253 inst.instruction |= reg << 16;
8254 inst.instruction |= inst.operands[1].imm;
8255 if (inst.operands[0].writeback || inst.operands[1].writeback)
8256 inst.instruction |= WRITE_BACK;
8259 /* ARM V6 strex (argument parse). */
8261 static void
8262 do_strex (void)
8264 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8265 || inst.operands[2].postind || inst.operands[2].writeback
8266 || inst.operands[2].immisreg || inst.operands[2].shifted
8267 || inst.operands[2].negative
8268 /* See comment in do_ldrex(). */
8269 || (inst.operands[2].reg == REG_PC),
8270 BAD_ADDR_MODE);
8272 constraint (inst.operands[0].reg == inst.operands[1].reg
8273 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8275 constraint (inst.reloc.exp.X_op != O_constant
8276 || inst.reloc.exp.X_add_number != 0,
8277 _("offset must be zero in ARM encoding"));
8279 inst.instruction |= inst.operands[0].reg << 12;
8280 inst.instruction |= inst.operands[1].reg;
8281 inst.instruction |= inst.operands[2].reg << 16;
8282 inst.reloc.type = BFD_RELOC_UNUSED;
8285 static void
8286 do_strexd (void)
8288 constraint (inst.operands[1].reg % 2 != 0,
8289 _("even register required"));
8290 constraint (inst.operands[2].present
8291 && inst.operands[2].reg != inst.operands[1].reg + 1,
8292 _("can only store two consecutive registers"));
8293 /* If op 2 were present and equal to PC, this function wouldn't
8294 have been called in the first place. */
8295 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8297 constraint (inst.operands[0].reg == inst.operands[1].reg
8298 || inst.operands[0].reg == inst.operands[1].reg + 1
8299 || inst.operands[0].reg == inst.operands[3].reg,
8300 BAD_OVERLAP);
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= inst.operands[1].reg;
8304 inst.instruction |= inst.operands[3].reg << 16;
8307 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8308 extends it to 32-bits, and adds the result to a value in another
8309 register. You can specify a rotation by 0, 8, 16, or 24 bits
8310 before extracting the 16-bit value.
8311 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8312 Condition defaults to COND_ALWAYS.
8313 Error if any register uses R15. */
8315 static void
8316 do_sxtah (void)
8318 inst.instruction |= inst.operands[0].reg << 12;
8319 inst.instruction |= inst.operands[1].reg << 16;
8320 inst.instruction |= inst.operands[2].reg;
8321 inst.instruction |= inst.operands[3].imm << 10;
8324 /* ARM V6 SXTH.
8326 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8327 Condition defaults to COND_ALWAYS.
8328 Error if any register uses R15. */
8330 static void
8331 do_sxth (void)
8333 inst.instruction |= inst.operands[0].reg << 12;
8334 inst.instruction |= inst.operands[1].reg;
8335 inst.instruction |= inst.operands[2].imm << 10;
8338 /* VFP instructions. In a logical order: SP variant first, monad
8339 before dyad, arithmetic then move then load/store. */
8341 static void
8342 do_vfp_sp_monadic (void)
8344 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8345 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8348 static void
8349 do_vfp_sp_dyadic (void)
8351 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8352 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8353 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8356 static void
8357 do_vfp_sp_compare_z (void)
8359 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8362 static void
8363 do_vfp_dp_sp_cvt (void)
8365 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8366 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8369 static void
8370 do_vfp_sp_dp_cvt (void)
8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8376 static void
8377 do_vfp_reg_from_sp (void)
8379 inst.instruction |= inst.operands[0].reg << 12;
8380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8383 static void
8384 do_vfp_reg2_from_sp2 (void)
8386 constraint (inst.operands[2].imm != 2,
8387 _("only two consecutive VFP SP registers allowed here"));
8388 inst.instruction |= inst.operands[0].reg << 12;
8389 inst.instruction |= inst.operands[1].reg << 16;
8390 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8393 static void
8394 do_vfp_sp_from_reg (void)
8396 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8397 inst.instruction |= inst.operands[1].reg << 12;
8400 static void
8401 do_vfp_sp2_from_reg2 (void)
8403 constraint (inst.operands[0].imm != 2,
8404 _("only two consecutive VFP SP registers allowed here"));
8405 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8406 inst.instruction |= inst.operands[1].reg << 12;
8407 inst.instruction |= inst.operands[2].reg << 16;
8410 static void
8411 do_vfp_sp_ldst (void)
8413 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8414 encode_arm_cp_address (1, FALSE, TRUE, 0);
8417 static void
8418 do_vfp_dp_ldst (void)
8420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8421 encode_arm_cp_address (1, FALSE, TRUE, 0);
8425 static void
8426 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8428 if (inst.operands[0].writeback)
8429 inst.instruction |= WRITE_BACK;
8430 else
8431 constraint (ldstm_type != VFP_LDSTMIA,
8432 _("this addressing mode requires base-register writeback"));
8433 inst.instruction |= inst.operands[0].reg << 16;
8434 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8435 inst.instruction |= inst.operands[1].imm;
8438 static void
8439 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8441 int count;
8443 if (inst.operands[0].writeback)
8444 inst.instruction |= WRITE_BACK;
8445 else
8446 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8447 _("this addressing mode requires base-register writeback"));
8449 inst.instruction |= inst.operands[0].reg << 16;
8450 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8452 count = inst.operands[1].imm << 1;
8453 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8454 count += 1;
8456 inst.instruction |= count;
8459 static void
8460 do_vfp_sp_ldstmia (void)
8462 vfp_sp_ldstm (VFP_LDSTMIA);
8465 static void
8466 do_vfp_sp_ldstmdb (void)
8468 vfp_sp_ldstm (VFP_LDSTMDB);
8471 static void
8472 do_vfp_dp_ldstmia (void)
8474 vfp_dp_ldstm (VFP_LDSTMIA);
8477 static void
8478 do_vfp_dp_ldstmdb (void)
8480 vfp_dp_ldstm (VFP_LDSTMDB);
8483 static void
8484 do_vfp_xp_ldstmia (void)
8486 vfp_dp_ldstm (VFP_LDSTMIAX);
8489 static void
8490 do_vfp_xp_ldstmdb (void)
8492 vfp_dp_ldstm (VFP_LDSTMDBX);
8495 static void
8496 do_vfp_dp_rd_rm (void)
8498 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8499 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8502 static void
8503 do_vfp_dp_rn_rd (void)
8505 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8506 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8509 static void
8510 do_vfp_dp_rd_rn (void)
8512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8516 static void
8517 do_vfp_dp_rd_rn_rm (void)
8519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8521 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8524 static void
8525 do_vfp_dp_rd (void)
8527 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8530 static void
8531 do_vfp_dp_rm_rd_rn (void)
8533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8534 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8535 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8538 /* VFPv3 instructions. */
8539 static void
8540 do_vfp_sp_const (void)
8542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8543 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8544 inst.instruction |= (inst.operands[1].imm & 0x0f);
8547 static void
8548 do_vfp_dp_const (void)
8550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8551 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8552 inst.instruction |= (inst.operands[1].imm & 0x0f);
8555 static void
8556 vfp_conv (int srcsize)
8558 unsigned immbits = srcsize - inst.operands[1].imm;
8559 inst.instruction |= (immbits & 1) << 5;
8560 inst.instruction |= (immbits >> 1);
8563 static void
8564 do_vfp_sp_conv_16 (void)
8566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8567 vfp_conv (16);
8570 static void
8571 do_vfp_dp_conv_16 (void)
8573 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8574 vfp_conv (16);
8577 static void
8578 do_vfp_sp_conv_32 (void)
8580 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8581 vfp_conv (32);
8584 static void
8585 do_vfp_dp_conv_32 (void)
8587 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8588 vfp_conv (32);
8591 /* FPA instructions. Also in a logical order. */
8593 static void
8594 do_fpa_cmp (void)
8596 inst.instruction |= inst.operands[0].reg << 16;
8597 inst.instruction |= inst.operands[1].reg;
8600 static void
8601 do_fpa_ldmstm (void)
8603 inst.instruction |= inst.operands[0].reg << 12;
8604 switch (inst.operands[1].imm)
8606 case 1: inst.instruction |= CP_T_X; break;
8607 case 2: inst.instruction |= CP_T_Y; break;
8608 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8609 case 4: break;
8610 default: abort ();
8613 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8615 /* The instruction specified "ea" or "fd", so we can only accept
8616 [Rn]{!}. The instruction does not really support stacking or
8617 unstacking, so we have to emulate these by setting appropriate
8618 bits and offsets. */
8619 constraint (inst.reloc.exp.X_op != O_constant
8620 || inst.reloc.exp.X_add_number != 0,
8621 _("this instruction does not support indexing"));
8623 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8624 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8626 if (!(inst.instruction & INDEX_UP))
8627 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8629 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8631 inst.operands[2].preind = 0;
8632 inst.operands[2].postind = 1;
8636 encode_arm_cp_address (2, TRUE, TRUE, 0);
8639 /* iWMMXt instructions: strictly in alphabetical order. */
8641 static void
8642 do_iwmmxt_tandorc (void)
8644 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8647 static void
8648 do_iwmmxt_textrc (void)
8650 inst.instruction |= inst.operands[0].reg << 12;
8651 inst.instruction |= inst.operands[1].imm;
8654 static void
8655 do_iwmmxt_textrm (void)
8657 inst.instruction |= inst.operands[0].reg << 12;
8658 inst.instruction |= inst.operands[1].reg << 16;
8659 inst.instruction |= inst.operands[2].imm;
8662 static void
8663 do_iwmmxt_tinsr (void)
8665 inst.instruction |= inst.operands[0].reg << 16;
8666 inst.instruction |= inst.operands[1].reg << 12;
8667 inst.instruction |= inst.operands[2].imm;
8670 static void
8671 do_iwmmxt_tmia (void)
8673 inst.instruction |= inst.operands[0].reg << 5;
8674 inst.instruction |= inst.operands[1].reg;
8675 inst.instruction |= inst.operands[2].reg << 12;
8678 static void
8679 do_iwmmxt_waligni (void)
8681 inst.instruction |= inst.operands[0].reg << 12;
8682 inst.instruction |= inst.operands[1].reg << 16;
8683 inst.instruction |= inst.operands[2].reg;
8684 inst.instruction |= inst.operands[3].imm << 20;
8687 static void
8688 do_iwmmxt_wmerge (void)
8690 inst.instruction |= inst.operands[0].reg << 12;
8691 inst.instruction |= inst.operands[1].reg << 16;
8692 inst.instruction |= inst.operands[2].reg;
8693 inst.instruction |= inst.operands[3].imm << 21;
8696 static void
8697 do_iwmmxt_wmov (void)
8699 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8700 inst.instruction |= inst.operands[0].reg << 12;
8701 inst.instruction |= inst.operands[1].reg << 16;
8702 inst.instruction |= inst.operands[1].reg;
8705 static void
8706 do_iwmmxt_wldstbh (void)
8708 int reloc;
8709 inst.instruction |= inst.operands[0].reg << 12;
8710 if (thumb_mode)
8711 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8712 else
8713 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8714 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8717 static void
8718 do_iwmmxt_wldstw (void)
8720 /* RIWR_RIWC clears .isreg for a control register. */
8721 if (!inst.operands[0].isreg)
8723 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8724 inst.instruction |= 0xf0000000;
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 encode_arm_cp_address (1, TRUE, TRUE, 0);
8731 static void
8732 do_iwmmxt_wldstd (void)
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8736 && inst.operands[1].immisreg)
8738 inst.instruction &= ~0x1a000ff;
8739 inst.instruction |= (0xf << 28);
8740 if (inst.operands[1].preind)
8741 inst.instruction |= PRE_INDEX;
8742 if (!inst.operands[1].negative)
8743 inst.instruction |= INDEX_UP;
8744 if (inst.operands[1].writeback)
8745 inst.instruction |= WRITE_BACK;
8746 inst.instruction |= inst.operands[1].reg << 16;
8747 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8748 inst.instruction |= inst.operands[1].imm;
8750 else
8751 encode_arm_cp_address (1, TRUE, FALSE, 0);
8754 static void
8755 do_iwmmxt_wshufh (void)
8757 inst.instruction |= inst.operands[0].reg << 12;
8758 inst.instruction |= inst.operands[1].reg << 16;
8759 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8760 inst.instruction |= (inst.operands[2].imm & 0x0f);
8763 static void
8764 do_iwmmxt_wzero (void)
8766 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8767 inst.instruction |= inst.operands[0].reg;
8768 inst.instruction |= inst.operands[0].reg << 12;
8769 inst.instruction |= inst.operands[0].reg << 16;
8772 static void
8773 do_iwmmxt_wrwrwr_or_imm5 (void)
8775 if (inst.operands[2].isreg)
8776 do_rd_rn_rm ();
8777 else {
8778 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8779 _("immediate operand requires iWMMXt2"));
8780 do_rd_rn ();
8781 if (inst.operands[2].imm == 0)
8783 switch ((inst.instruction >> 20) & 0xf)
8785 case 4:
8786 case 5:
8787 case 6:
8788 case 7:
8789 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8790 inst.operands[2].imm = 16;
8791 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8792 break;
8793 case 8:
8794 case 9:
8795 case 10:
8796 case 11:
8797 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8798 inst.operands[2].imm = 32;
8799 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8800 break;
8801 case 12:
8802 case 13:
8803 case 14:
8804 case 15:
8806 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8807 unsigned long wrn;
8808 wrn = (inst.instruction >> 16) & 0xf;
8809 inst.instruction &= 0xff0fff0f;
8810 inst.instruction |= wrn;
8811 /* Bail out here; the instruction is now assembled. */
8812 return;
8816 /* Map 32 -> 0, etc. */
8817 inst.operands[2].imm &= 0x1f;
8818 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8822 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8823 operations first, then control, shift, and load/store. */
8825 /* Insns like "foo X,Y,Z". */
8827 static void
8828 do_mav_triple (void)
8830 inst.instruction |= inst.operands[0].reg << 16;
8831 inst.instruction |= inst.operands[1].reg;
8832 inst.instruction |= inst.operands[2].reg << 12;
8835 /* Insns like "foo W,X,Y,Z".
8836 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8838 static void
8839 do_mav_quad (void)
8841 inst.instruction |= inst.operands[0].reg << 5;
8842 inst.instruction |= inst.operands[1].reg << 12;
8843 inst.instruction |= inst.operands[2].reg << 16;
8844 inst.instruction |= inst.operands[3].reg;
8847 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8848 static void
8849 do_mav_dspsc (void)
8851 inst.instruction |= inst.operands[1].reg << 12;
8854 /* Maverick shift immediate instructions.
8855 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8856 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8858 static void
8859 do_mav_shift (void)
8861 int imm = inst.operands[2].imm;
8863 inst.instruction |= inst.operands[0].reg << 12;
8864 inst.instruction |= inst.operands[1].reg << 16;
8866 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8867 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8868 Bit 4 should be 0. */
8869 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8871 inst.instruction |= imm;
8874 /* XScale instructions. Also sorted arithmetic before move. */
8876 /* Xscale multiply-accumulate (argument parse)
8877 MIAcc acc0,Rm,Rs
8878 MIAPHcc acc0,Rm,Rs
8879 MIAxycc acc0,Rm,Rs. */
8881 static void
8882 do_xsc_mia (void)
8884 inst.instruction |= inst.operands[1].reg;
8885 inst.instruction |= inst.operands[2].reg << 12;
8888 /* Xscale move-accumulator-register (argument parse)
8890 MARcc acc0,RdLo,RdHi. */
8892 static void
8893 do_xsc_mar (void)
8895 inst.instruction |= inst.operands[1].reg << 12;
8896 inst.instruction |= inst.operands[2].reg << 16;
8899 /* Xscale move-register-accumulator (argument parse)
8901 MRAcc RdLo,RdHi,acc0. */
8903 static void
8904 do_xsc_mra (void)
8906 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8907 inst.instruction |= inst.operands[0].reg << 12;
8908 inst.instruction |= inst.operands[1].reg << 16;
8911 /* Encoding functions relevant only to Thumb. */
8913 /* inst.operands[i] is a shifted-register operand; encode
8914 it into inst.instruction in the format used by Thumb32. */
8916 static void
8917 encode_thumb32_shifted_operand (int i)
8919 unsigned int value = inst.reloc.exp.X_add_number;
8920 unsigned int shift = inst.operands[i].shift_kind;
8922 constraint (inst.operands[i].immisreg,
8923 _("shift by register not allowed in thumb mode"));
8924 inst.instruction |= inst.operands[i].reg;
8925 if (shift == SHIFT_RRX)
8926 inst.instruction |= SHIFT_ROR << 4;
8927 else
8929 constraint (inst.reloc.exp.X_op != O_constant,
8930 _("expression too complex"));
8932 constraint (value > 32
8933 || (value == 32 && (shift == SHIFT_LSL
8934 || shift == SHIFT_ROR)),
8935 _("shift expression is too large"));
8937 if (value == 0)
8938 shift = SHIFT_LSL;
8939 else if (value == 32)
8940 value = 0;
8942 inst.instruction |= shift << 4;
8943 inst.instruction |= (value & 0x1c) << 10;
8944 inst.instruction |= (value & 0x03) << 6;
8949 /* inst.operands[i] was set up by parse_address. Encode it into a
8950 Thumb32 format load or store instruction. Reject forms that cannot
8951 be used with such instructions. If is_t is true, reject forms that
8952 cannot be used with a T instruction; if is_d is true, reject forms
8953 that cannot be used with a D instruction. If it is a store insn,
8954 reject PC in Rn. */
8956 static void
8957 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8959 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8961 constraint (!inst.operands[i].isreg,
8962 _("Instruction does not support =N addresses"));
8964 inst.instruction |= inst.operands[i].reg << 16;
8965 if (inst.operands[i].immisreg)
8967 constraint (is_pc, BAD_PC_ADDRESSING);
8968 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8969 constraint (inst.operands[i].negative,
8970 _("Thumb does not support negative register indexing"));
8971 constraint (inst.operands[i].postind,
8972 _("Thumb does not support register post-indexing"));
8973 constraint (inst.operands[i].writeback,
8974 _("Thumb does not support register indexing with writeback"));
8975 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8976 _("Thumb supports only LSL in shifted register indexing"));
8978 inst.instruction |= inst.operands[i].imm;
8979 if (inst.operands[i].shifted)
8981 constraint (inst.reloc.exp.X_op != O_constant,
8982 _("expression too complex"));
8983 constraint (inst.reloc.exp.X_add_number < 0
8984 || inst.reloc.exp.X_add_number > 3,
8985 _("shift out of range"));
8986 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8988 inst.reloc.type = BFD_RELOC_UNUSED;
8990 else if (inst.operands[i].preind)
8992 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8993 constraint (is_t && inst.operands[i].writeback,
8994 _("cannot use writeback with this instruction"));
8995 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8996 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8998 if (is_d)
9000 inst.instruction |= 0x01000000;
9001 if (inst.operands[i].writeback)
9002 inst.instruction |= 0x00200000;
9004 else
9006 inst.instruction |= 0x00000c00;
9007 if (inst.operands[i].writeback)
9008 inst.instruction |= 0x00000100;
9010 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9012 else if (inst.operands[i].postind)
9014 gas_assert (inst.operands[i].writeback);
9015 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9016 constraint (is_t, _("cannot use post-indexing with this instruction"));
9018 if (is_d)
9019 inst.instruction |= 0x00200000;
9020 else
9021 inst.instruction |= 0x00000900;
9022 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9024 else /* unindexed - only for coprocessor */
9025 inst.error = _("instruction does not accept unindexed addressing");
9028 /* Table of Thumb instructions which exist in both 16- and 32-bit
9029 encodings (the latter only in post-V6T2 cores). The index is the
9030 value used in the insns table below. When there is more than one
9031 possible 16-bit encoding for the instruction, this table always
9032 holds variant (1).
9033 Also contains several pseudo-instructions used during relaxation. */
9034 #define T16_32_TAB \
9035 X(_adc, 4140, eb400000), \
9036 X(_adcs, 4140, eb500000), \
9037 X(_add, 1c00, eb000000), \
9038 X(_adds, 1c00, eb100000), \
9039 X(_addi, 0000, f1000000), \
9040 X(_addis, 0000, f1100000), \
9041 X(_add_pc,000f, f20f0000), \
9042 X(_add_sp,000d, f10d0000), \
9043 X(_adr, 000f, f20f0000), \
9044 X(_and, 4000, ea000000), \
9045 X(_ands, 4000, ea100000), \
9046 X(_asr, 1000, fa40f000), \
9047 X(_asrs, 1000, fa50f000), \
9048 X(_b, e000, f000b000), \
9049 X(_bcond, d000, f0008000), \
9050 X(_bic, 4380, ea200000), \
9051 X(_bics, 4380, ea300000), \
9052 X(_cmn, 42c0, eb100f00), \
9053 X(_cmp, 2800, ebb00f00), \
9054 X(_cpsie, b660, f3af8400), \
9055 X(_cpsid, b670, f3af8600), \
9056 X(_cpy, 4600, ea4f0000), \
9057 X(_dec_sp,80dd, f1ad0d00), \
9058 X(_eor, 4040, ea800000), \
9059 X(_eors, 4040, ea900000), \
9060 X(_inc_sp,00dd, f10d0d00), \
9061 X(_ldmia, c800, e8900000), \
9062 X(_ldr, 6800, f8500000), \
9063 X(_ldrb, 7800, f8100000), \
9064 X(_ldrh, 8800, f8300000), \
9065 X(_ldrsb, 5600, f9100000), \
9066 X(_ldrsh, 5e00, f9300000), \
9067 X(_ldr_pc,4800, f85f0000), \
9068 X(_ldr_pc2,4800, f85f0000), \
9069 X(_ldr_sp,9800, f85d0000), \
9070 X(_lsl, 0000, fa00f000), \
9071 X(_lsls, 0000, fa10f000), \
9072 X(_lsr, 0800, fa20f000), \
9073 X(_lsrs, 0800, fa30f000), \
9074 X(_mov, 2000, ea4f0000), \
9075 X(_movs, 2000, ea5f0000), \
9076 X(_mul, 4340, fb00f000), \
9077 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9078 X(_mvn, 43c0, ea6f0000), \
9079 X(_mvns, 43c0, ea7f0000), \
9080 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9081 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9082 X(_orr, 4300, ea400000), \
9083 X(_orrs, 4300, ea500000), \
9084 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9085 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9086 X(_rev, ba00, fa90f080), \
9087 X(_rev16, ba40, fa90f090), \
9088 X(_revsh, bac0, fa90f0b0), \
9089 X(_ror, 41c0, fa60f000), \
9090 X(_rors, 41c0, fa70f000), \
9091 X(_sbc, 4180, eb600000), \
9092 X(_sbcs, 4180, eb700000), \
9093 X(_stmia, c000, e8800000), \
9094 X(_str, 6000, f8400000), \
9095 X(_strb, 7000, f8000000), \
9096 X(_strh, 8000, f8200000), \
9097 X(_str_sp,9000, f84d0000), \
9098 X(_sub, 1e00, eba00000), \
9099 X(_subs, 1e00, ebb00000), \
9100 X(_subi, 8000, f1a00000), \
9101 X(_subis, 8000, f1b00000), \
9102 X(_sxtb, b240, fa4ff080), \
9103 X(_sxth, b200, fa0ff080), \
9104 X(_tst, 4200, ea100f00), \
9105 X(_uxtb, b2c0, fa5ff080), \
9106 X(_uxth, b280, fa1ff080), \
9107 X(_nop, bf00, f3af8000), \
9108 X(_yield, bf10, f3af8001), \
9109 X(_wfe, bf20, f3af8002), \
9110 X(_wfi, bf30, f3af8003), \
9111 X(_sev, bf40, f3af8004),
9113 /* To catch errors in encoding functions, the codes are all offset by
9114 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9115 as 16-bit instructions. */
9116 #define X(a,b,c) T_MNEM##a
9117 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9118 #undef X
9120 #define X(a,b,c) 0x##b
9121 static const unsigned short thumb_op16[] = { T16_32_TAB };
9122 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9123 #undef X
9125 #define X(a,b,c) 0x##c
9126 static const unsigned int thumb_op32[] = { T16_32_TAB };
9127 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9128 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9129 #undef X
9130 #undef T16_32_TAB
9132 /* Thumb instruction encoders, in alphabetical order. */
9134 /* ADDW or SUBW. */
9136 static void
9137 do_t_add_sub_w (void)
9139 int Rd, Rn;
9141 Rd = inst.operands[0].reg;
9142 Rn = inst.operands[1].reg;
9144 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9145 is the SP-{plus,minus}-immediate form of the instruction. */
9146 if (Rn == REG_SP)
9147 constraint (Rd == REG_PC, BAD_PC);
9148 else
9149 reject_bad_reg (Rd);
9151 inst.instruction |= (Rn << 16) | (Rd << 8);
9152 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9155 /* Parse an add or subtract instruction. We get here with inst.instruction
9156 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9158 static void
9159 do_t_add_sub (void)
9161 int Rd, Rs, Rn;
9163 Rd = inst.operands[0].reg;
9164 Rs = (inst.operands[1].present
9165 ? inst.operands[1].reg /* Rd, Rs, foo */
9166 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9168 if (Rd == REG_PC)
9169 set_it_insn_type_last ();
9171 if (unified_syntax)
9173 bfd_boolean flags;
9174 bfd_boolean narrow;
9175 int opcode;
9177 flags = (inst.instruction == T_MNEM_adds
9178 || inst.instruction == T_MNEM_subs);
9179 if (flags)
9180 narrow = !in_it_block ();
9181 else
9182 narrow = in_it_block ();
9183 if (!inst.operands[2].isreg)
9185 int add;
9187 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9189 add = (inst.instruction == T_MNEM_add
9190 || inst.instruction == T_MNEM_adds);
9191 opcode = 0;
9192 if (inst.size_req != 4)
9194 /* Attempt to use a narrow opcode, with relaxation if
9195 appropriate. */
9196 if (Rd == REG_SP && Rs == REG_SP && !flags)
9197 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9198 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9199 opcode = T_MNEM_add_sp;
9200 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9201 opcode = T_MNEM_add_pc;
9202 else if (Rd <= 7 && Rs <= 7 && narrow)
9204 if (flags)
9205 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9206 else
9207 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9209 if (opcode)
9211 inst.instruction = THUMB_OP16(opcode);
9212 inst.instruction |= (Rd << 4) | Rs;
9213 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9214 if (inst.size_req != 2)
9215 inst.relax = opcode;
9217 else
9218 constraint (inst.size_req == 2, BAD_HIREG);
9220 if (inst.size_req == 4
9221 || (inst.size_req != 2 && !opcode))
9223 if (Rd == REG_PC)
9225 constraint (add, BAD_PC);
9226 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9227 _("only SUBS PC, LR, #const allowed"));
9228 constraint (inst.reloc.exp.X_op != O_constant,
9229 _("expression too complex"));
9230 constraint (inst.reloc.exp.X_add_number < 0
9231 || inst.reloc.exp.X_add_number > 0xff,
9232 _("immediate value out of range"));
9233 inst.instruction = T2_SUBS_PC_LR
9234 | inst.reloc.exp.X_add_number;
9235 inst.reloc.type = BFD_RELOC_UNUSED;
9236 return;
9238 else if (Rs == REG_PC)
9240 /* Always use addw/subw. */
9241 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9242 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9244 else
9246 inst.instruction = THUMB_OP32 (inst.instruction);
9247 inst.instruction = (inst.instruction & 0xe1ffffff)
9248 | 0x10000000;
9249 if (flags)
9250 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9251 else
9252 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9254 inst.instruction |= Rd << 8;
9255 inst.instruction |= Rs << 16;
9258 else
9260 Rn = inst.operands[2].reg;
9261 /* See if we can do this with a 16-bit instruction. */
9262 if (!inst.operands[2].shifted && inst.size_req != 4)
9264 if (Rd > 7 || Rs > 7 || Rn > 7)
9265 narrow = FALSE;
9267 if (narrow)
9269 inst.instruction = ((inst.instruction == T_MNEM_adds
9270 || inst.instruction == T_MNEM_add)
9271 ? T_OPCODE_ADD_R3
9272 : T_OPCODE_SUB_R3);
9273 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9274 return;
9277 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9279 /* Thumb-1 cores (except v6-M) require at least one high
9280 register in a narrow non flag setting add. */
9281 if (Rd > 7 || Rn > 7
9282 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9283 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9285 if (Rd == Rn)
9287 Rn = Rs;
9288 Rs = Rd;
9290 inst.instruction = T_OPCODE_ADD_HI;
9291 inst.instruction |= (Rd & 8) << 4;
9292 inst.instruction |= (Rd & 7);
9293 inst.instruction |= Rn << 3;
9294 return;
9299 constraint (Rd == REG_PC, BAD_PC);
9300 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9301 constraint (Rs == REG_PC, BAD_PC);
9302 reject_bad_reg (Rn);
9304 /* If we get here, it can't be done in 16 bits. */
9305 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9306 _("shift must be constant"));
9307 inst.instruction = THUMB_OP32 (inst.instruction);
9308 inst.instruction |= Rd << 8;
9309 inst.instruction |= Rs << 16;
9310 encode_thumb32_shifted_operand (2);
9313 else
9315 constraint (inst.instruction == T_MNEM_adds
9316 || inst.instruction == T_MNEM_subs,
9317 BAD_THUMB32);
9319 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9321 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9322 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9323 BAD_HIREG);
9325 inst.instruction = (inst.instruction == T_MNEM_add
9326 ? 0x0000 : 0x8000);
9327 inst.instruction |= (Rd << 4) | Rs;
9328 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9329 return;
9332 Rn = inst.operands[2].reg;
9333 constraint (inst.operands[2].shifted, _("unshifted register required"));
9335 /* We now have Rd, Rs, and Rn set to registers. */
9336 if (Rd > 7 || Rs > 7 || Rn > 7)
9338 /* Can't do this for SUB. */
9339 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9340 inst.instruction = T_OPCODE_ADD_HI;
9341 inst.instruction |= (Rd & 8) << 4;
9342 inst.instruction |= (Rd & 7);
9343 if (Rs == Rd)
9344 inst.instruction |= Rn << 3;
9345 else if (Rn == Rd)
9346 inst.instruction |= Rs << 3;
9347 else
9348 constraint (1, _("dest must overlap one source register"));
9350 else
9352 inst.instruction = (inst.instruction == T_MNEM_add
9353 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9354 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9359 static void
9360 do_t_adr (void)
9362 unsigned Rd;
9364 Rd = inst.operands[0].reg;
9365 reject_bad_reg (Rd);
9367 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9369 /* Defer to section relaxation. */
9370 inst.relax = inst.instruction;
9371 inst.instruction = THUMB_OP16 (inst.instruction);
9372 inst.instruction |= Rd << 4;
9374 else if (unified_syntax && inst.size_req != 2)
9376 /* Generate a 32-bit opcode. */
9377 inst.instruction = THUMB_OP32 (inst.instruction);
9378 inst.instruction |= Rd << 8;
9379 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9380 inst.reloc.pc_rel = 1;
9382 else
9384 /* Generate a 16-bit opcode. */
9385 inst.instruction = THUMB_OP16 (inst.instruction);
9386 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9387 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9388 inst.reloc.pc_rel = 1;
9390 inst.instruction |= Rd << 4;
9394 /* Arithmetic instructions for which there is just one 16-bit
9395 instruction encoding, and it allows only two low registers.
9396 For maximal compatibility with ARM syntax, we allow three register
9397 operands even when Thumb-32 instructions are not available, as long
9398 as the first two are identical. For instance, both "sbc r0,r1" and
9399 "sbc r0,r0,r1" are allowed. */
9400 static void
9401 do_t_arit3 (void)
9403 int Rd, Rs, Rn;
9405 Rd = inst.operands[0].reg;
9406 Rs = (inst.operands[1].present
9407 ? inst.operands[1].reg /* Rd, Rs, foo */
9408 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9409 Rn = inst.operands[2].reg;
9411 reject_bad_reg (Rd);
9412 reject_bad_reg (Rs);
9413 if (inst.operands[2].isreg)
9414 reject_bad_reg (Rn);
9416 if (unified_syntax)
9418 if (!inst.operands[2].isreg)
9420 /* For an immediate, we always generate a 32-bit opcode;
9421 section relaxation will shrink it later if possible. */
9422 inst.instruction = THUMB_OP32 (inst.instruction);
9423 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9424 inst.instruction |= Rd << 8;
9425 inst.instruction |= Rs << 16;
9426 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9428 else
9430 bfd_boolean narrow;
9432 /* See if we can do this with a 16-bit instruction. */
9433 if (THUMB_SETS_FLAGS (inst.instruction))
9434 narrow = !in_it_block ();
9435 else
9436 narrow = in_it_block ();
9438 if (Rd > 7 || Rn > 7 || Rs > 7)
9439 narrow = FALSE;
9440 if (inst.operands[2].shifted)
9441 narrow = FALSE;
9442 if (inst.size_req == 4)
9443 narrow = FALSE;
9445 if (narrow
9446 && Rd == Rs)
9448 inst.instruction = THUMB_OP16 (inst.instruction);
9449 inst.instruction |= Rd;
9450 inst.instruction |= Rn << 3;
9451 return;
9454 /* If we get here, it can't be done in 16 bits. */
9455 constraint (inst.operands[2].shifted
9456 && inst.operands[2].immisreg,
9457 _("shift must be constant"));
9458 inst.instruction = THUMB_OP32 (inst.instruction);
9459 inst.instruction |= Rd << 8;
9460 inst.instruction |= Rs << 16;
9461 encode_thumb32_shifted_operand (2);
9464 else
9466 /* On its face this is a lie - the instruction does set the
9467 flags. However, the only supported mnemonic in this mode
9468 says it doesn't. */
9469 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9471 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9472 _("unshifted register required"));
9473 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9474 constraint (Rd != Rs,
9475 _("dest and source1 must be the same register"));
9477 inst.instruction = THUMB_OP16 (inst.instruction);
9478 inst.instruction |= Rd;
9479 inst.instruction |= Rn << 3;
9483 /* Similarly, but for instructions where the arithmetic operation is
9484 commutative, so we can allow either of them to be different from
9485 the destination operand in a 16-bit instruction. For instance, all
9486 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9487 accepted. */
9488 static void
9489 do_t_arit3c (void)
9491 int Rd, Rs, Rn;
9493 Rd = inst.operands[0].reg;
9494 Rs = (inst.operands[1].present
9495 ? inst.operands[1].reg /* Rd, Rs, foo */
9496 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9497 Rn = inst.operands[2].reg;
9499 reject_bad_reg (Rd);
9500 reject_bad_reg (Rs);
9501 if (inst.operands[2].isreg)
9502 reject_bad_reg (Rn);
9504 if (unified_syntax)
9506 if (!inst.operands[2].isreg)
9508 /* For an immediate, we always generate a 32-bit opcode;
9509 section relaxation will shrink it later if possible. */
9510 inst.instruction = THUMB_OP32 (inst.instruction);
9511 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9512 inst.instruction |= Rd << 8;
9513 inst.instruction |= Rs << 16;
9514 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9516 else
9518 bfd_boolean narrow;
9520 /* See if we can do this with a 16-bit instruction. */
9521 if (THUMB_SETS_FLAGS (inst.instruction))
9522 narrow = !in_it_block ();
9523 else
9524 narrow = in_it_block ();
9526 if (Rd > 7 || Rn > 7 || Rs > 7)
9527 narrow = FALSE;
9528 if (inst.operands[2].shifted)
9529 narrow = FALSE;
9530 if (inst.size_req == 4)
9531 narrow = FALSE;
9533 if (narrow)
9535 if (Rd == Rs)
9537 inst.instruction = THUMB_OP16 (inst.instruction);
9538 inst.instruction |= Rd;
9539 inst.instruction |= Rn << 3;
9540 return;
9542 if (Rd == Rn)
9544 inst.instruction = THUMB_OP16 (inst.instruction);
9545 inst.instruction |= Rd;
9546 inst.instruction |= Rs << 3;
9547 return;
9551 /* If we get here, it can't be done in 16 bits. */
9552 constraint (inst.operands[2].shifted
9553 && inst.operands[2].immisreg,
9554 _("shift must be constant"));
9555 inst.instruction = THUMB_OP32 (inst.instruction);
9556 inst.instruction |= Rd << 8;
9557 inst.instruction |= Rs << 16;
9558 encode_thumb32_shifted_operand (2);
9561 else
9563 /* On its face this is a lie - the instruction does set the
9564 flags. However, the only supported mnemonic in this mode
9565 says it doesn't. */
9566 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9568 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9569 _("unshifted register required"));
9570 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9572 inst.instruction = THUMB_OP16 (inst.instruction);
9573 inst.instruction |= Rd;
9575 if (Rd == Rs)
9576 inst.instruction |= Rn << 3;
9577 else if (Rd == Rn)
9578 inst.instruction |= Rs << 3;
9579 else
9580 constraint (1, _("dest must overlap one source register"));
9584 static void
9585 do_t_barrier (void)
9587 if (inst.operands[0].present)
9589 constraint ((inst.instruction & 0xf0) != 0x40
9590 && inst.operands[0].imm > 0xf
9591 && inst.operands[0].imm < 0x0,
9592 _("bad barrier type"));
9593 inst.instruction |= inst.operands[0].imm;
9595 else
9596 inst.instruction |= 0xf;
9599 static void
9600 do_t_bfc (void)
9602 unsigned Rd;
9603 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9604 constraint (msb > 32, _("bit-field extends past end of register"));
9605 /* The instruction encoding stores the LSB and MSB,
9606 not the LSB and width. */
9607 Rd = inst.operands[0].reg;
9608 reject_bad_reg (Rd);
9609 inst.instruction |= Rd << 8;
9610 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9611 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9612 inst.instruction |= msb - 1;
9615 static void
9616 do_t_bfi (void)
9618 int Rd, Rn;
9619 unsigned int msb;
9621 Rd = inst.operands[0].reg;
9622 reject_bad_reg (Rd);
9624 /* #0 in second position is alternative syntax for bfc, which is
9625 the same instruction but with REG_PC in the Rm field. */
9626 if (!inst.operands[1].isreg)
9627 Rn = REG_PC;
9628 else
9630 Rn = inst.operands[1].reg;
9631 reject_bad_reg (Rn);
9634 msb = inst.operands[2].imm + inst.operands[3].imm;
9635 constraint (msb > 32, _("bit-field extends past end of register"));
9636 /* The instruction encoding stores the LSB and MSB,
9637 not the LSB and width. */
9638 inst.instruction |= Rd << 8;
9639 inst.instruction |= Rn << 16;
9640 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9641 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9642 inst.instruction |= msb - 1;
9645 static void
9646 do_t_bfx (void)
9648 unsigned Rd, Rn;
9650 Rd = inst.operands[0].reg;
9651 Rn = inst.operands[1].reg;
9653 reject_bad_reg (Rd);
9654 reject_bad_reg (Rn);
9656 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9657 _("bit-field extends past end of register"));
9658 inst.instruction |= Rd << 8;
9659 inst.instruction |= Rn << 16;
9660 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9661 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9662 inst.instruction |= inst.operands[3].imm - 1;
9665 /* ARM V5 Thumb BLX (argument parse)
9666 BLX <target_addr> which is BLX(1)
9667 BLX <Rm> which is BLX(2)
9668 Unfortunately, there are two different opcodes for this mnemonic.
9669 So, the insns[].value is not used, and the code here zaps values
9670 into inst.instruction.
9672 ??? How to take advantage of the additional two bits of displacement
9673 available in Thumb32 mode? Need new relocation? */
9675 static void
9676 do_t_blx (void)
9678 set_it_insn_type_last ();
9680 if (inst.operands[0].isreg)
9682 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9683 /* We have a register, so this is BLX(2). */
9684 inst.instruction |= inst.operands[0].reg << 3;
9686 else
9688 /* No register. This must be BLX(1). */
9689 inst.instruction = 0xf000e800;
9690 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9694 static void
9695 do_t_branch (void)
9697 int opcode;
9698 int cond;
9699 int reloc;
9701 cond = inst.cond;
9702 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9704 if (in_it_block ())
9706 /* Conditional branches inside IT blocks are encoded as unconditional
9707 branches. */
9708 cond = COND_ALWAYS;
9710 else
9711 cond = inst.cond;
9713 if (cond != COND_ALWAYS)
9714 opcode = T_MNEM_bcond;
9715 else
9716 opcode = inst.instruction;
9718 if (unified_syntax
9719 && (inst.size_req == 4
9720 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
9722 inst.instruction = THUMB_OP32(opcode);
9723 if (cond == COND_ALWAYS)
9724 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9725 else
9727 gas_assert (cond != 0xF);
9728 inst.instruction |= cond << 22;
9729 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9732 else
9734 inst.instruction = THUMB_OP16(opcode);
9735 if (cond == COND_ALWAYS)
9736 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9737 else
9739 inst.instruction |= cond << 8;
9740 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9742 /* Allow section relaxation. */
9743 if (unified_syntax && inst.size_req != 2)
9744 inst.relax = opcode;
9746 inst.reloc.type = reloc;
9747 inst.reloc.pc_rel = 1;
9750 static void
9751 do_t_bkpt (void)
9753 constraint (inst.cond != COND_ALWAYS,
9754 _("instruction is always unconditional"));
9755 if (inst.operands[0].present)
9757 constraint (inst.operands[0].imm > 255,
9758 _("immediate value out of range"));
9759 inst.instruction |= inst.operands[0].imm;
9760 set_it_insn_type (NEUTRAL_IT_INSN);
9764 static void
9765 do_t_branch23 (void)
9767 set_it_insn_type_last ();
9768 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9770 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9771 this file. We used to simply ignore the PLT reloc type here --
9772 the branch encoding is now needed to deal with TLSCALL relocs.
9773 So if we see a PLT reloc now, put it back to how it used to be to
9774 keep the preexisting behaviour. */
9775 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9776 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9778 #if defined(OBJ_COFF)
9779 /* If the destination of the branch is a defined symbol which does not have
9780 the THUMB_FUNC attribute, then we must be calling a function which has
9781 the (interfacearm) attribute. We look for the Thumb entry point to that
9782 function and change the branch to refer to that function instead. */
9783 if ( inst.reloc.exp.X_op == O_symbol
9784 && inst.reloc.exp.X_add_symbol != NULL
9785 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9786 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9787 inst.reloc.exp.X_add_symbol =
9788 find_real_start (inst.reloc.exp.X_add_symbol);
9789 #endif
9792 static void
9793 do_t_bx (void)
9795 set_it_insn_type_last ();
9796 inst.instruction |= inst.operands[0].reg << 3;
9797 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9798 should cause the alignment to be checked once it is known. This is
9799 because BX PC only works if the instruction is word aligned. */
9802 static void
9803 do_t_bxj (void)
9805 int Rm;
9807 set_it_insn_type_last ();
9808 Rm = inst.operands[0].reg;
9809 reject_bad_reg (Rm);
9810 inst.instruction |= Rm << 16;
9813 static void
9814 do_t_clz (void)
9816 unsigned Rd;
9817 unsigned Rm;
9819 Rd = inst.operands[0].reg;
9820 Rm = inst.operands[1].reg;
9822 reject_bad_reg (Rd);
9823 reject_bad_reg (Rm);
9825 inst.instruction |= Rd << 8;
9826 inst.instruction |= Rm << 16;
9827 inst.instruction |= Rm;
9830 static void
9831 do_t_cps (void)
9833 set_it_insn_type (OUTSIDE_IT_INSN);
9834 inst.instruction |= inst.operands[0].imm;
9837 static void
9838 do_t_cpsi (void)
9840 set_it_insn_type (OUTSIDE_IT_INSN);
9841 if (unified_syntax
9842 && (inst.operands[1].present || inst.size_req == 4)
9843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9845 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9846 inst.instruction = 0xf3af8000;
9847 inst.instruction |= imod << 9;
9848 inst.instruction |= inst.operands[0].imm << 5;
9849 if (inst.operands[1].present)
9850 inst.instruction |= 0x100 | inst.operands[1].imm;
9852 else
9854 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9855 && (inst.operands[0].imm & 4),
9856 _("selected processor does not support 'A' form "
9857 "of this instruction"));
9858 constraint (inst.operands[1].present || inst.size_req == 4,
9859 _("Thumb does not support the 2-argument "
9860 "form of this instruction"));
9861 inst.instruction |= inst.operands[0].imm;
9865 /* THUMB CPY instruction (argument parse). */
9867 static void
9868 do_t_cpy (void)
9870 if (inst.size_req == 4)
9872 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9873 inst.instruction |= inst.operands[0].reg << 8;
9874 inst.instruction |= inst.operands[1].reg;
9876 else
9878 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9879 inst.instruction |= (inst.operands[0].reg & 0x7);
9880 inst.instruction |= inst.operands[1].reg << 3;
9884 static void
9885 do_t_cbz (void)
9887 set_it_insn_type (OUTSIDE_IT_INSN);
9888 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9889 inst.instruction |= inst.operands[0].reg;
9890 inst.reloc.pc_rel = 1;
9891 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9894 static void
9895 do_t_dbg (void)
9897 inst.instruction |= inst.operands[0].imm;
9900 static void
9901 do_t_div (void)
9903 unsigned Rd, Rn, Rm;
9905 Rd = inst.operands[0].reg;
9906 Rn = (inst.operands[1].present
9907 ? inst.operands[1].reg : Rd);
9908 Rm = inst.operands[2].reg;
9910 reject_bad_reg (Rd);
9911 reject_bad_reg (Rn);
9912 reject_bad_reg (Rm);
9914 inst.instruction |= Rd << 8;
9915 inst.instruction |= Rn << 16;
9916 inst.instruction |= Rm;
9919 static void
9920 do_t_hint (void)
9922 if (unified_syntax && inst.size_req == 4)
9923 inst.instruction = THUMB_OP32 (inst.instruction);
9924 else
9925 inst.instruction = THUMB_OP16 (inst.instruction);
9928 static void
9929 do_t_it (void)
9931 unsigned int cond = inst.operands[0].imm;
9933 set_it_insn_type (IT_INSN);
9934 now_it.mask = (inst.instruction & 0xf) | 0x10;
9935 now_it.cc = cond;
9937 /* If the condition is a negative condition, invert the mask. */
9938 if ((cond & 0x1) == 0x0)
9940 unsigned int mask = inst.instruction & 0x000f;
9942 if ((mask & 0x7) == 0)
9943 /* no conversion needed */;
9944 else if ((mask & 0x3) == 0)
9945 mask ^= 0x8;
9946 else if ((mask & 0x1) == 0)
9947 mask ^= 0xC;
9948 else
9949 mask ^= 0xE;
9951 inst.instruction &= 0xfff0;
9952 inst.instruction |= mask;
9955 inst.instruction |= cond << 4;
9958 /* Helper function used for both push/pop and ldm/stm. */
9959 static void
9960 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9962 bfd_boolean load;
9964 load = (inst.instruction & (1 << 20)) != 0;
9966 if (mask & (1 << 13))
9967 inst.error = _("SP not allowed in register list");
9969 if ((mask & (1 << base)) != 0
9970 && writeback)
9971 inst.error = _("having the base register in the register list when "
9972 "using write back is UNPREDICTABLE");
9974 if (load)
9976 if (mask & (1 << 15))
9978 if (mask & (1 << 14))
9979 inst.error = _("LR and PC should not both be in register list");
9980 else
9981 set_it_insn_type_last ();
9984 else
9986 if (mask & (1 << 15))
9987 inst.error = _("PC not allowed in register list");
9990 if ((mask & (mask - 1)) == 0)
9992 /* Single register transfers implemented as str/ldr. */
9993 if (writeback)
9995 if (inst.instruction & (1 << 23))
9996 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9997 else
9998 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10000 else
10002 if (inst.instruction & (1 << 23))
10003 inst.instruction = 0x00800000; /* ia -> [base] */
10004 else
10005 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10008 inst.instruction |= 0xf8400000;
10009 if (load)
10010 inst.instruction |= 0x00100000;
10012 mask = ffs (mask) - 1;
10013 mask <<= 12;
10015 else if (writeback)
10016 inst.instruction |= WRITE_BACK;
10018 inst.instruction |= mask;
10019 inst.instruction |= base << 16;
10022 static void
10023 do_t_ldmstm (void)
10025 /* This really doesn't seem worth it. */
10026 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10027 _("expression too complex"));
10028 constraint (inst.operands[1].writeback,
10029 _("Thumb load/store multiple does not support {reglist}^"));
10031 if (unified_syntax)
10033 bfd_boolean narrow;
10034 unsigned mask;
10036 narrow = FALSE;
10037 /* See if we can use a 16-bit instruction. */
10038 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10039 && inst.size_req != 4
10040 && !(inst.operands[1].imm & ~0xff))
10042 mask = 1 << inst.operands[0].reg;
10044 if (inst.operands[0].reg <= 7)
10046 if (inst.instruction == T_MNEM_stmia
10047 ? inst.operands[0].writeback
10048 : (inst.operands[0].writeback
10049 == !(inst.operands[1].imm & mask)))
10051 if (inst.instruction == T_MNEM_stmia
10052 && (inst.operands[1].imm & mask)
10053 && (inst.operands[1].imm & (mask - 1)))
10054 as_warn (_("value stored for r%d is UNKNOWN"),
10055 inst.operands[0].reg);
10057 inst.instruction = THUMB_OP16 (inst.instruction);
10058 inst.instruction |= inst.operands[0].reg << 8;
10059 inst.instruction |= inst.operands[1].imm;
10060 narrow = TRUE;
10062 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10064 /* This means 1 register in reg list one of 3 situations:
10065 1. Instruction is stmia, but without writeback.
10066 2. lmdia without writeback, but with Rn not in
10067 reglist.
10068 3. ldmia with writeback, but with Rn in reglist.
10069 Case 3 is UNPREDICTABLE behaviour, so we handle
10070 case 1 and 2 which can be converted into a 16-bit
10071 str or ldr. The SP cases are handled below. */
10072 unsigned long opcode;
10073 /* First, record an error for Case 3. */
10074 if (inst.operands[1].imm & mask
10075 && inst.operands[0].writeback)
10076 inst.error =
10077 _("having the base register in the register list when "
10078 "using write back is UNPREDICTABLE");
10080 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10081 : T_MNEM_ldr);
10082 inst.instruction = THUMB_OP16 (opcode);
10083 inst.instruction |= inst.operands[0].reg << 3;
10084 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10085 narrow = TRUE;
10088 else if (inst.operands[0] .reg == REG_SP)
10090 if (inst.operands[0].writeback)
10092 inst.instruction =
10093 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10094 ? T_MNEM_push : T_MNEM_pop);
10095 inst.instruction |= inst.operands[1].imm;
10096 narrow = TRUE;
10098 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10100 inst.instruction =
10101 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10102 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10103 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10104 narrow = TRUE;
10109 if (!narrow)
10111 if (inst.instruction < 0xffff)
10112 inst.instruction = THUMB_OP32 (inst.instruction);
10114 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10115 inst.operands[0].writeback);
10118 else
10120 constraint (inst.operands[0].reg > 7
10121 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10122 constraint (inst.instruction != T_MNEM_ldmia
10123 && inst.instruction != T_MNEM_stmia,
10124 _("Thumb-2 instruction only valid in unified syntax"));
10125 if (inst.instruction == T_MNEM_stmia)
10127 if (!inst.operands[0].writeback)
10128 as_warn (_("this instruction will write back the base register"));
10129 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10130 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10131 as_warn (_("value stored for r%d is UNKNOWN"),
10132 inst.operands[0].reg);
10134 else
10136 if (!inst.operands[0].writeback
10137 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10138 as_warn (_("this instruction will write back the base register"));
10139 else if (inst.operands[0].writeback
10140 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10141 as_warn (_("this instruction will not write back the base register"));
10144 inst.instruction = THUMB_OP16 (inst.instruction);
10145 inst.instruction |= inst.operands[0].reg << 8;
10146 inst.instruction |= inst.operands[1].imm;
10150 static void
10151 do_t_ldrex (void)
10153 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10154 || inst.operands[1].postind || inst.operands[1].writeback
10155 || inst.operands[1].immisreg || inst.operands[1].shifted
10156 || inst.operands[1].negative,
10157 BAD_ADDR_MODE);
10159 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10161 inst.instruction |= inst.operands[0].reg << 12;
10162 inst.instruction |= inst.operands[1].reg << 16;
10163 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10166 static void
10167 do_t_ldrexd (void)
10169 if (!inst.operands[1].present)
10171 constraint (inst.operands[0].reg == REG_LR,
10172 _("r14 not allowed as first register "
10173 "when second register is omitted"));
10174 inst.operands[1].reg = inst.operands[0].reg + 1;
10176 constraint (inst.operands[0].reg == inst.operands[1].reg,
10177 BAD_OVERLAP);
10179 inst.instruction |= inst.operands[0].reg << 12;
10180 inst.instruction |= inst.operands[1].reg << 8;
10181 inst.instruction |= inst.operands[2].reg << 16;
10184 static void
10185 do_t_ldst (void)
10187 unsigned long opcode;
10188 int Rn;
10190 if (inst.operands[0].isreg
10191 && !inst.operands[0].preind
10192 && inst.operands[0].reg == REG_PC)
10193 set_it_insn_type_last ();
10195 opcode = inst.instruction;
10196 if (unified_syntax)
10198 if (!inst.operands[1].isreg)
10200 if (opcode <= 0xffff)
10201 inst.instruction = THUMB_OP32 (opcode);
10202 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10203 return;
10205 if (inst.operands[1].isreg
10206 && !inst.operands[1].writeback
10207 && !inst.operands[1].shifted && !inst.operands[1].postind
10208 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10209 && opcode <= 0xffff
10210 && inst.size_req != 4)
10212 /* Insn may have a 16-bit form. */
10213 Rn = inst.operands[1].reg;
10214 if (inst.operands[1].immisreg)
10216 inst.instruction = THUMB_OP16 (opcode);
10217 /* [Rn, Rik] */
10218 if (Rn <= 7 && inst.operands[1].imm <= 7)
10219 goto op16;
10220 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10221 reject_bad_reg (inst.operands[1].imm);
10223 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10224 && opcode != T_MNEM_ldrsb)
10225 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10226 || (Rn == REG_SP && opcode == T_MNEM_str))
10228 /* [Rn, #const] */
10229 if (Rn > 7)
10231 if (Rn == REG_PC)
10233 if (inst.reloc.pc_rel)
10234 opcode = T_MNEM_ldr_pc2;
10235 else
10236 opcode = T_MNEM_ldr_pc;
10238 else
10240 if (opcode == T_MNEM_ldr)
10241 opcode = T_MNEM_ldr_sp;
10242 else
10243 opcode = T_MNEM_str_sp;
10245 inst.instruction = inst.operands[0].reg << 8;
10247 else
10249 inst.instruction = inst.operands[0].reg;
10250 inst.instruction |= inst.operands[1].reg << 3;
10252 inst.instruction |= THUMB_OP16 (opcode);
10253 if (inst.size_req == 2)
10254 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10255 else
10256 inst.relax = opcode;
10257 return;
10260 /* Definitely a 32-bit variant. */
10262 /* Do some validations regarding addressing modes. */
10263 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10264 && opcode != T_MNEM_str)
10265 reject_bad_reg (inst.operands[1].imm);
10267 inst.instruction = THUMB_OP32 (opcode);
10268 inst.instruction |= inst.operands[0].reg << 12;
10269 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10270 return;
10273 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10275 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10277 /* Only [Rn,Rm] is acceptable. */
10278 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10279 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10280 || inst.operands[1].postind || inst.operands[1].shifted
10281 || inst.operands[1].negative,
10282 _("Thumb does not support this addressing mode"));
10283 inst.instruction = THUMB_OP16 (inst.instruction);
10284 goto op16;
10287 inst.instruction = THUMB_OP16 (inst.instruction);
10288 if (!inst.operands[1].isreg)
10289 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10290 return;
10292 constraint (!inst.operands[1].preind
10293 || inst.operands[1].shifted
10294 || inst.operands[1].writeback,
10295 _("Thumb does not support this addressing mode"));
10296 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10298 constraint (inst.instruction & 0x0600,
10299 _("byte or halfword not valid for base register"));
10300 constraint (inst.operands[1].reg == REG_PC
10301 && !(inst.instruction & THUMB_LOAD_BIT),
10302 _("r15 based store not allowed"));
10303 constraint (inst.operands[1].immisreg,
10304 _("invalid base register for register offset"));
10306 if (inst.operands[1].reg == REG_PC)
10307 inst.instruction = T_OPCODE_LDR_PC;
10308 else if (inst.instruction & THUMB_LOAD_BIT)
10309 inst.instruction = T_OPCODE_LDR_SP;
10310 else
10311 inst.instruction = T_OPCODE_STR_SP;
10313 inst.instruction |= inst.operands[0].reg << 8;
10314 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10315 return;
10318 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10319 if (!inst.operands[1].immisreg)
10321 /* Immediate offset. */
10322 inst.instruction |= inst.operands[0].reg;
10323 inst.instruction |= inst.operands[1].reg << 3;
10324 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10325 return;
10328 /* Register offset. */
10329 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10330 constraint (inst.operands[1].negative,
10331 _("Thumb does not support this addressing mode"));
10333 op16:
10334 switch (inst.instruction)
10336 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10337 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10338 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10339 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10340 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10341 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10342 case 0x5600 /* ldrsb */:
10343 case 0x5e00 /* ldrsh */: break;
10344 default: abort ();
10347 inst.instruction |= inst.operands[0].reg;
10348 inst.instruction |= inst.operands[1].reg << 3;
10349 inst.instruction |= inst.operands[1].imm << 6;
10352 static void
10353 do_t_ldstd (void)
10355 if (!inst.operands[1].present)
10357 inst.operands[1].reg = inst.operands[0].reg + 1;
10358 constraint (inst.operands[0].reg == REG_LR,
10359 _("r14 not allowed here"));
10361 inst.instruction |= inst.operands[0].reg << 12;
10362 inst.instruction |= inst.operands[1].reg << 8;
10363 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10366 static void
10367 do_t_ldstt (void)
10369 inst.instruction |= inst.operands[0].reg << 12;
10370 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10373 static void
10374 do_t_mla (void)
10376 unsigned Rd, Rn, Rm, Ra;
10378 Rd = inst.operands[0].reg;
10379 Rn = inst.operands[1].reg;
10380 Rm = inst.operands[2].reg;
10381 Ra = inst.operands[3].reg;
10383 reject_bad_reg (Rd);
10384 reject_bad_reg (Rn);
10385 reject_bad_reg (Rm);
10386 reject_bad_reg (Ra);
10388 inst.instruction |= Rd << 8;
10389 inst.instruction |= Rn << 16;
10390 inst.instruction |= Rm;
10391 inst.instruction |= Ra << 12;
10394 static void
10395 do_t_mlal (void)
10397 unsigned RdLo, RdHi, Rn, Rm;
10399 RdLo = inst.operands[0].reg;
10400 RdHi = inst.operands[1].reg;
10401 Rn = inst.operands[2].reg;
10402 Rm = inst.operands[3].reg;
10404 reject_bad_reg (RdLo);
10405 reject_bad_reg (RdHi);
10406 reject_bad_reg (Rn);
10407 reject_bad_reg (Rm);
10409 inst.instruction |= RdLo << 12;
10410 inst.instruction |= RdHi << 8;
10411 inst.instruction |= Rn << 16;
10412 inst.instruction |= Rm;
10415 static void
10416 do_t_mov_cmp (void)
10418 unsigned Rn, Rm;
10420 Rn = inst.operands[0].reg;
10421 Rm = inst.operands[1].reg;
10423 if (Rn == REG_PC)
10424 set_it_insn_type_last ();
10426 if (unified_syntax)
10428 int r0off = (inst.instruction == T_MNEM_mov
10429 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10430 unsigned long opcode;
10431 bfd_boolean narrow;
10432 bfd_boolean low_regs;
10434 low_regs = (Rn <= 7 && Rm <= 7);
10435 opcode = inst.instruction;
10436 if (in_it_block ())
10437 narrow = opcode != T_MNEM_movs;
10438 else
10439 narrow = opcode != T_MNEM_movs || low_regs;
10440 if (inst.size_req == 4
10441 || inst.operands[1].shifted)
10442 narrow = FALSE;
10444 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10445 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10446 && !inst.operands[1].shifted
10447 && Rn == REG_PC
10448 && Rm == REG_LR)
10450 inst.instruction = T2_SUBS_PC_LR;
10451 return;
10454 if (opcode == T_MNEM_cmp)
10456 constraint (Rn == REG_PC, BAD_PC);
10457 if (narrow)
10459 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10460 but valid. */
10461 warn_deprecated_sp (Rm);
10462 /* R15 was documented as a valid choice for Rm in ARMv6,
10463 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10464 tools reject R15, so we do too. */
10465 constraint (Rm == REG_PC, BAD_PC);
10467 else
10468 reject_bad_reg (Rm);
10470 else if (opcode == T_MNEM_mov
10471 || opcode == T_MNEM_movs)
10473 if (inst.operands[1].isreg)
10475 if (opcode == T_MNEM_movs)
10477 reject_bad_reg (Rn);
10478 reject_bad_reg (Rm);
10480 else if (narrow)
10482 /* This is mov.n. */
10483 if ((Rn == REG_SP || Rn == REG_PC)
10484 && (Rm == REG_SP || Rm == REG_PC))
10486 as_warn (_("Use of r%u as a source register is "
10487 "deprecated when r%u is the destination "
10488 "register."), Rm, Rn);
10491 else
10493 /* This is mov.w. */
10494 constraint (Rn == REG_PC, BAD_PC);
10495 constraint (Rm == REG_PC, BAD_PC);
10496 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10499 else
10500 reject_bad_reg (Rn);
10503 if (!inst.operands[1].isreg)
10505 /* Immediate operand. */
10506 if (!in_it_block () && opcode == T_MNEM_mov)
10507 narrow = 0;
10508 if (low_regs && narrow)
10510 inst.instruction = THUMB_OP16 (opcode);
10511 inst.instruction |= Rn << 8;
10512 if (inst.size_req == 2)
10513 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10514 else
10515 inst.relax = opcode;
10517 else
10519 inst.instruction = THUMB_OP32 (inst.instruction);
10520 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10521 inst.instruction |= Rn << r0off;
10522 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10525 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10526 && (inst.instruction == T_MNEM_mov
10527 || inst.instruction == T_MNEM_movs))
10529 /* Register shifts are encoded as separate shift instructions. */
10530 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10532 if (in_it_block ())
10533 narrow = !flags;
10534 else
10535 narrow = flags;
10537 if (inst.size_req == 4)
10538 narrow = FALSE;
10540 if (!low_regs || inst.operands[1].imm > 7)
10541 narrow = FALSE;
10543 if (Rn != Rm)
10544 narrow = FALSE;
10546 switch (inst.operands[1].shift_kind)
10548 case SHIFT_LSL:
10549 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10550 break;
10551 case SHIFT_ASR:
10552 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10553 break;
10554 case SHIFT_LSR:
10555 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10556 break;
10557 case SHIFT_ROR:
10558 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10559 break;
10560 default:
10561 abort ();
10564 inst.instruction = opcode;
10565 if (narrow)
10567 inst.instruction |= Rn;
10568 inst.instruction |= inst.operands[1].imm << 3;
10570 else
10572 if (flags)
10573 inst.instruction |= CONDS_BIT;
10575 inst.instruction |= Rn << 8;
10576 inst.instruction |= Rm << 16;
10577 inst.instruction |= inst.operands[1].imm;
10580 else if (!narrow)
10582 /* Some mov with immediate shift have narrow variants.
10583 Register shifts are handled above. */
10584 if (low_regs && inst.operands[1].shifted
10585 && (inst.instruction == T_MNEM_mov
10586 || inst.instruction == T_MNEM_movs))
10588 if (in_it_block ())
10589 narrow = (inst.instruction == T_MNEM_mov);
10590 else
10591 narrow = (inst.instruction == T_MNEM_movs);
10594 if (narrow)
10596 switch (inst.operands[1].shift_kind)
10598 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10599 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10600 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10601 default: narrow = FALSE; break;
10605 if (narrow)
10607 inst.instruction |= Rn;
10608 inst.instruction |= Rm << 3;
10609 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10611 else
10613 inst.instruction = THUMB_OP32 (inst.instruction);
10614 inst.instruction |= Rn << r0off;
10615 encode_thumb32_shifted_operand (1);
10618 else
10619 switch (inst.instruction)
10621 case T_MNEM_mov:
10622 inst.instruction = T_OPCODE_MOV_HR;
10623 inst.instruction |= (Rn & 0x8) << 4;
10624 inst.instruction |= (Rn & 0x7);
10625 inst.instruction |= Rm << 3;
10626 break;
10628 case T_MNEM_movs:
10629 /* We know we have low registers at this point.
10630 Generate LSLS Rd, Rs, #0. */
10631 inst.instruction = T_OPCODE_LSL_I;
10632 inst.instruction |= Rn;
10633 inst.instruction |= Rm << 3;
10634 break;
10636 case T_MNEM_cmp:
10637 if (low_regs)
10639 inst.instruction = T_OPCODE_CMP_LR;
10640 inst.instruction |= Rn;
10641 inst.instruction |= Rm << 3;
10643 else
10645 inst.instruction = T_OPCODE_CMP_HR;
10646 inst.instruction |= (Rn & 0x8) << 4;
10647 inst.instruction |= (Rn & 0x7);
10648 inst.instruction |= Rm << 3;
10650 break;
10652 return;
10655 inst.instruction = THUMB_OP16 (inst.instruction);
10657 /* PR 10443: Do not silently ignore shifted operands. */
10658 constraint (inst.operands[1].shifted,
10659 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10661 if (inst.operands[1].isreg)
10663 if (Rn < 8 && Rm < 8)
10665 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10666 since a MOV instruction produces unpredictable results. */
10667 if (inst.instruction == T_OPCODE_MOV_I8)
10668 inst.instruction = T_OPCODE_ADD_I3;
10669 else
10670 inst.instruction = T_OPCODE_CMP_LR;
10672 inst.instruction |= Rn;
10673 inst.instruction |= Rm << 3;
10675 else
10677 if (inst.instruction == T_OPCODE_MOV_I8)
10678 inst.instruction = T_OPCODE_MOV_HR;
10679 else
10680 inst.instruction = T_OPCODE_CMP_HR;
10681 do_t_cpy ();
10684 else
10686 constraint (Rn > 7,
10687 _("only lo regs allowed with immediate"));
10688 inst.instruction |= Rn << 8;
10689 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10693 static void
10694 do_t_mov16 (void)
10696 unsigned Rd;
10697 bfd_vma imm;
10698 bfd_boolean top;
10700 top = (inst.instruction & 0x00800000) != 0;
10701 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10703 constraint (top, _(":lower16: not allowed this instruction"));
10704 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10706 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10708 constraint (!top, _(":upper16: not allowed this instruction"));
10709 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10712 Rd = inst.operands[0].reg;
10713 reject_bad_reg (Rd);
10715 inst.instruction |= Rd << 8;
10716 if (inst.reloc.type == BFD_RELOC_UNUSED)
10718 imm = inst.reloc.exp.X_add_number;
10719 inst.instruction |= (imm & 0xf000) << 4;
10720 inst.instruction |= (imm & 0x0800) << 15;
10721 inst.instruction |= (imm & 0x0700) << 4;
10722 inst.instruction |= (imm & 0x00ff);
10726 static void
10727 do_t_mvn_tst (void)
10729 unsigned Rn, Rm;
10731 Rn = inst.operands[0].reg;
10732 Rm = inst.operands[1].reg;
10734 if (inst.instruction == T_MNEM_cmp
10735 || inst.instruction == T_MNEM_cmn)
10736 constraint (Rn == REG_PC, BAD_PC);
10737 else
10738 reject_bad_reg (Rn);
10739 reject_bad_reg (Rm);
10741 if (unified_syntax)
10743 int r0off = (inst.instruction == T_MNEM_mvn
10744 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10745 bfd_boolean narrow;
10747 if (inst.size_req == 4
10748 || inst.instruction > 0xffff
10749 || inst.operands[1].shifted
10750 || Rn > 7 || Rm > 7)
10751 narrow = FALSE;
10752 else if (inst.instruction == T_MNEM_cmn)
10753 narrow = TRUE;
10754 else if (THUMB_SETS_FLAGS (inst.instruction))
10755 narrow = !in_it_block ();
10756 else
10757 narrow = in_it_block ();
10759 if (!inst.operands[1].isreg)
10761 /* For an immediate, we always generate a 32-bit opcode;
10762 section relaxation will shrink it later if possible. */
10763 if (inst.instruction < 0xffff)
10764 inst.instruction = THUMB_OP32 (inst.instruction);
10765 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10766 inst.instruction |= Rn << r0off;
10767 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10769 else
10771 /* See if we can do this with a 16-bit instruction. */
10772 if (narrow)
10774 inst.instruction = THUMB_OP16 (inst.instruction);
10775 inst.instruction |= Rn;
10776 inst.instruction |= Rm << 3;
10778 else
10780 constraint (inst.operands[1].shifted
10781 && inst.operands[1].immisreg,
10782 _("shift must be constant"));
10783 if (inst.instruction < 0xffff)
10784 inst.instruction = THUMB_OP32 (inst.instruction);
10785 inst.instruction |= Rn << r0off;
10786 encode_thumb32_shifted_operand (1);
10790 else
10792 constraint (inst.instruction > 0xffff
10793 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10794 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10795 _("unshifted register required"));
10796 constraint (Rn > 7 || Rm > 7,
10797 BAD_HIREG);
10799 inst.instruction = THUMB_OP16 (inst.instruction);
10800 inst.instruction |= Rn;
10801 inst.instruction |= Rm << 3;
10805 static void
10806 do_t_mrs (void)
10808 unsigned Rd;
10810 if (do_vfp_nsyn_mrs () == SUCCESS)
10811 return;
10813 Rd = inst.operands[0].reg;
10814 reject_bad_reg (Rd);
10815 inst.instruction |= Rd << 8;
10817 if (inst.operands[1].isreg)
10819 unsigned br = inst.operands[1].reg;
10820 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10821 as_bad (_("bad register for mrs"));
10823 inst.instruction |= br & (0xf << 16);
10824 inst.instruction |= (br & 0x300) >> 4;
10825 inst.instruction |= (br & SPSR_BIT) >> 2;
10827 else
10829 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10831 if (flags == 0)
10833 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10834 _("selected processor does not support "
10835 "requested special purpose register"));
10837 else
10839 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10840 _("selected processor does not support "
10841 "requested special purpose register"));
10842 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10843 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10844 _("'CPSR' or 'SPSR' expected"));
10847 inst.instruction |= (flags & SPSR_BIT) >> 2;
10848 inst.instruction |= inst.operands[1].imm & 0xff;
10849 inst.instruction |= 0xf0000;
10853 static void
10854 do_t_msr (void)
10856 int flags;
10857 unsigned Rn;
10859 if (do_vfp_nsyn_msr () == SUCCESS)
10860 return;
10862 constraint (!inst.operands[1].isreg,
10863 _("Thumb encoding does not support an immediate here"));
10865 if (inst.operands[0].isreg)
10866 flags = (int)(inst.operands[0].reg);
10867 else
10868 flags = inst.operands[0].imm;
10870 if (flags & ~0xff)
10872 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10873 _("selected processor does not support "
10874 "requested special purpose register"));
10876 else
10878 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10879 _("selected processor does not support "
10880 "requested special purpose register"));
10881 flags |= PSR_f;
10884 Rn = inst.operands[1].reg;
10885 reject_bad_reg (Rn);
10887 inst.instruction |= (flags & SPSR_BIT) >> 2;
10888 inst.instruction |= (flags & 0xf0000) >> 8;
10889 inst.instruction |= (flags & 0x300) >> 4;
10890 inst.instruction |= (flags & 0xff);
10891 inst.instruction |= Rn << 16;
10894 static void
10895 do_t_mul (void)
10897 bfd_boolean narrow;
10898 unsigned Rd, Rn, Rm;
10900 if (!inst.operands[2].present)
10901 inst.operands[2].reg = inst.operands[0].reg;
10903 Rd = inst.operands[0].reg;
10904 Rn = inst.operands[1].reg;
10905 Rm = inst.operands[2].reg;
10907 if (unified_syntax)
10909 if (inst.size_req == 4
10910 || (Rd != Rn
10911 && Rd != Rm)
10912 || Rn > 7
10913 || Rm > 7)
10914 narrow = FALSE;
10915 else if (inst.instruction == T_MNEM_muls)
10916 narrow = !in_it_block ();
10917 else
10918 narrow = in_it_block ();
10920 else
10922 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10923 constraint (Rn > 7 || Rm > 7,
10924 BAD_HIREG);
10925 narrow = TRUE;
10928 if (narrow)
10930 /* 16-bit MULS/Conditional MUL. */
10931 inst.instruction = THUMB_OP16 (inst.instruction);
10932 inst.instruction |= Rd;
10934 if (Rd == Rn)
10935 inst.instruction |= Rm << 3;
10936 else if (Rd == Rm)
10937 inst.instruction |= Rn << 3;
10938 else
10939 constraint (1, _("dest must overlap one source register"));
10941 else
10943 constraint (inst.instruction != T_MNEM_mul,
10944 _("Thumb-2 MUL must not set flags"));
10945 /* 32-bit MUL. */
10946 inst.instruction = THUMB_OP32 (inst.instruction);
10947 inst.instruction |= Rd << 8;
10948 inst.instruction |= Rn << 16;
10949 inst.instruction |= Rm << 0;
10951 reject_bad_reg (Rd);
10952 reject_bad_reg (Rn);
10953 reject_bad_reg (Rm);
10957 static void
10958 do_t_mull (void)
10960 unsigned RdLo, RdHi, Rn, Rm;
10962 RdLo = inst.operands[0].reg;
10963 RdHi = inst.operands[1].reg;
10964 Rn = inst.operands[2].reg;
10965 Rm = inst.operands[3].reg;
10967 reject_bad_reg (RdLo);
10968 reject_bad_reg (RdHi);
10969 reject_bad_reg (Rn);
10970 reject_bad_reg (Rm);
10972 inst.instruction |= RdLo << 12;
10973 inst.instruction |= RdHi << 8;
10974 inst.instruction |= Rn << 16;
10975 inst.instruction |= Rm;
10977 if (RdLo == RdHi)
10978 as_tsktsk (_("rdhi and rdlo must be different"));
10981 static void
10982 do_t_nop (void)
10984 set_it_insn_type (NEUTRAL_IT_INSN);
10986 if (unified_syntax)
10988 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10990 inst.instruction = THUMB_OP32 (inst.instruction);
10991 inst.instruction |= inst.operands[0].imm;
10993 else
10995 /* PR9722: Check for Thumb2 availability before
10996 generating a thumb2 nop instruction. */
10997 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10999 inst.instruction = THUMB_OP16 (inst.instruction);
11000 inst.instruction |= inst.operands[0].imm << 4;
11002 else
11003 inst.instruction = 0x46c0;
11006 else
11008 constraint (inst.operands[0].present,
11009 _("Thumb does not support NOP with hints"));
11010 inst.instruction = 0x46c0;
11014 static void
11015 do_t_neg (void)
11017 if (unified_syntax)
11019 bfd_boolean narrow;
11021 if (THUMB_SETS_FLAGS (inst.instruction))
11022 narrow = !in_it_block ();
11023 else
11024 narrow = in_it_block ();
11025 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11026 narrow = FALSE;
11027 if (inst.size_req == 4)
11028 narrow = FALSE;
11030 if (!narrow)
11032 inst.instruction = THUMB_OP32 (inst.instruction);
11033 inst.instruction |= inst.operands[0].reg << 8;
11034 inst.instruction |= inst.operands[1].reg << 16;
11036 else
11038 inst.instruction = THUMB_OP16 (inst.instruction);
11039 inst.instruction |= inst.operands[0].reg;
11040 inst.instruction |= inst.operands[1].reg << 3;
11043 else
11045 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11046 BAD_HIREG);
11047 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11049 inst.instruction = THUMB_OP16 (inst.instruction);
11050 inst.instruction |= inst.operands[0].reg;
11051 inst.instruction |= inst.operands[1].reg << 3;
11055 static void
11056 do_t_orn (void)
11058 unsigned Rd, Rn;
11060 Rd = inst.operands[0].reg;
11061 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11063 reject_bad_reg (Rd);
11064 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11065 reject_bad_reg (Rn);
11067 inst.instruction |= Rd << 8;
11068 inst.instruction |= Rn << 16;
11070 if (!inst.operands[2].isreg)
11072 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11073 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11075 else
11077 unsigned Rm;
11079 Rm = inst.operands[2].reg;
11080 reject_bad_reg (Rm);
11082 constraint (inst.operands[2].shifted
11083 && inst.operands[2].immisreg,
11084 _("shift must be constant"));
11085 encode_thumb32_shifted_operand (2);
11089 static void
11090 do_t_pkhbt (void)
11092 unsigned Rd, Rn, Rm;
11094 Rd = inst.operands[0].reg;
11095 Rn = inst.operands[1].reg;
11096 Rm = inst.operands[2].reg;
11098 reject_bad_reg (Rd);
11099 reject_bad_reg (Rn);
11100 reject_bad_reg (Rm);
11102 inst.instruction |= Rd << 8;
11103 inst.instruction |= Rn << 16;
11104 inst.instruction |= Rm;
11105 if (inst.operands[3].present)
11107 unsigned int val = inst.reloc.exp.X_add_number;
11108 constraint (inst.reloc.exp.X_op != O_constant,
11109 _("expression too complex"));
11110 inst.instruction |= (val & 0x1c) << 10;
11111 inst.instruction |= (val & 0x03) << 6;
11115 static void
11116 do_t_pkhtb (void)
11118 if (!inst.operands[3].present)
11120 unsigned Rtmp;
11122 inst.instruction &= ~0x00000020;
11124 /* PR 10168. Swap the Rm and Rn registers. */
11125 Rtmp = inst.operands[1].reg;
11126 inst.operands[1].reg = inst.operands[2].reg;
11127 inst.operands[2].reg = Rtmp;
11129 do_t_pkhbt ();
11132 static void
11133 do_t_pld (void)
11135 if (inst.operands[0].immisreg)
11136 reject_bad_reg (inst.operands[0].imm);
11138 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11141 static void
11142 do_t_push_pop (void)
11144 unsigned mask;
11146 constraint (inst.operands[0].writeback,
11147 _("push/pop do not support {reglist}^"));
11148 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11149 _("expression too complex"));
11151 mask = inst.operands[0].imm;
11152 if ((mask & ~0xff) == 0)
11153 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11154 else if ((inst.instruction == T_MNEM_push
11155 && (mask & ~0xff) == 1 << REG_LR)
11156 || (inst.instruction == T_MNEM_pop
11157 && (mask & ~0xff) == 1 << REG_PC))
11159 inst.instruction = THUMB_OP16 (inst.instruction);
11160 inst.instruction |= THUMB_PP_PC_LR;
11161 inst.instruction |= mask & 0xff;
11163 else if (unified_syntax)
11165 inst.instruction = THUMB_OP32 (inst.instruction);
11166 encode_thumb2_ldmstm (13, mask, TRUE);
11168 else
11170 inst.error = _("invalid register list to push/pop instruction");
11171 return;
11175 static void
11176 do_t_rbit (void)
11178 unsigned Rd, Rm;
11180 Rd = inst.operands[0].reg;
11181 Rm = inst.operands[1].reg;
11183 reject_bad_reg (Rd);
11184 reject_bad_reg (Rm);
11186 inst.instruction |= Rd << 8;
11187 inst.instruction |= Rm << 16;
11188 inst.instruction |= Rm;
11191 static void
11192 do_t_rev (void)
11194 unsigned Rd, Rm;
11196 Rd = inst.operands[0].reg;
11197 Rm = inst.operands[1].reg;
11199 reject_bad_reg (Rd);
11200 reject_bad_reg (Rm);
11202 if (Rd <= 7 && Rm <= 7
11203 && inst.size_req != 4)
11205 inst.instruction = THUMB_OP16 (inst.instruction);
11206 inst.instruction |= Rd;
11207 inst.instruction |= Rm << 3;
11209 else if (unified_syntax)
11211 inst.instruction = THUMB_OP32 (inst.instruction);
11212 inst.instruction |= Rd << 8;
11213 inst.instruction |= Rm << 16;
11214 inst.instruction |= Rm;
11216 else
11217 inst.error = BAD_HIREG;
11220 static void
11221 do_t_rrx (void)
11223 unsigned Rd, Rm;
11225 Rd = inst.operands[0].reg;
11226 Rm = inst.operands[1].reg;
11228 reject_bad_reg (Rd);
11229 reject_bad_reg (Rm);
11231 inst.instruction |= Rd << 8;
11232 inst.instruction |= Rm;
11235 static void
11236 do_t_rsb (void)
11238 unsigned Rd, Rs;
11240 Rd = inst.operands[0].reg;
11241 Rs = (inst.operands[1].present
11242 ? inst.operands[1].reg /* Rd, Rs, foo */
11243 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11245 reject_bad_reg (Rd);
11246 reject_bad_reg (Rs);
11247 if (inst.operands[2].isreg)
11248 reject_bad_reg (inst.operands[2].reg);
11250 inst.instruction |= Rd << 8;
11251 inst.instruction |= Rs << 16;
11252 if (!inst.operands[2].isreg)
11254 bfd_boolean narrow;
11256 if ((inst.instruction & 0x00100000) != 0)
11257 narrow = !in_it_block ();
11258 else
11259 narrow = in_it_block ();
11261 if (Rd > 7 || Rs > 7)
11262 narrow = FALSE;
11264 if (inst.size_req == 4 || !unified_syntax)
11265 narrow = FALSE;
11267 if (inst.reloc.exp.X_op != O_constant
11268 || inst.reloc.exp.X_add_number != 0)
11269 narrow = FALSE;
11271 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11272 relaxation, but it doesn't seem worth the hassle. */
11273 if (narrow)
11275 inst.reloc.type = BFD_RELOC_UNUSED;
11276 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11277 inst.instruction |= Rs << 3;
11278 inst.instruction |= Rd;
11280 else
11282 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11283 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11286 else
11287 encode_thumb32_shifted_operand (2);
11290 static void
11291 do_t_setend (void)
11293 set_it_insn_type (OUTSIDE_IT_INSN);
11294 if (inst.operands[0].imm)
11295 inst.instruction |= 0x8;
11298 static void
11299 do_t_shift (void)
11301 if (!inst.operands[1].present)
11302 inst.operands[1].reg = inst.operands[0].reg;
11304 if (unified_syntax)
11306 bfd_boolean narrow;
11307 int shift_kind;
11309 switch (inst.instruction)
11311 case T_MNEM_asr:
11312 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11313 case T_MNEM_lsl:
11314 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11315 case T_MNEM_lsr:
11316 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11317 case T_MNEM_ror:
11318 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11319 default: abort ();
11322 if (THUMB_SETS_FLAGS (inst.instruction))
11323 narrow = !in_it_block ();
11324 else
11325 narrow = in_it_block ();
11326 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11327 narrow = FALSE;
11328 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11329 narrow = FALSE;
11330 if (inst.operands[2].isreg
11331 && (inst.operands[1].reg != inst.operands[0].reg
11332 || inst.operands[2].reg > 7))
11333 narrow = FALSE;
11334 if (inst.size_req == 4)
11335 narrow = FALSE;
11337 reject_bad_reg (inst.operands[0].reg);
11338 reject_bad_reg (inst.operands[1].reg);
11340 if (!narrow)
11342 if (inst.operands[2].isreg)
11344 reject_bad_reg (inst.operands[2].reg);
11345 inst.instruction = THUMB_OP32 (inst.instruction);
11346 inst.instruction |= inst.operands[0].reg << 8;
11347 inst.instruction |= inst.operands[1].reg << 16;
11348 inst.instruction |= inst.operands[2].reg;
11350 else
11352 inst.operands[1].shifted = 1;
11353 inst.operands[1].shift_kind = shift_kind;
11354 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11355 ? T_MNEM_movs : T_MNEM_mov);
11356 inst.instruction |= inst.operands[0].reg << 8;
11357 encode_thumb32_shifted_operand (1);
11358 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11359 inst.reloc.type = BFD_RELOC_UNUSED;
11362 else
11364 if (inst.operands[2].isreg)
11366 switch (shift_kind)
11368 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11369 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11370 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11371 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11372 default: abort ();
11375 inst.instruction |= inst.operands[0].reg;
11376 inst.instruction |= inst.operands[2].reg << 3;
11378 else
11380 switch (shift_kind)
11382 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11383 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11384 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11385 default: abort ();
11387 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11388 inst.instruction |= inst.operands[0].reg;
11389 inst.instruction |= inst.operands[1].reg << 3;
11393 else
11395 constraint (inst.operands[0].reg > 7
11396 || inst.operands[1].reg > 7, BAD_HIREG);
11397 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11399 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11401 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11402 constraint (inst.operands[0].reg != inst.operands[1].reg,
11403 _("source1 and dest must be same register"));
11405 switch (inst.instruction)
11407 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11408 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11409 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11410 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11411 default: abort ();
11414 inst.instruction |= inst.operands[0].reg;
11415 inst.instruction |= inst.operands[2].reg << 3;
11417 else
11419 switch (inst.instruction)
11421 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11422 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11423 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11424 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11425 default: abort ();
11427 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11428 inst.instruction |= inst.operands[0].reg;
11429 inst.instruction |= inst.operands[1].reg << 3;
11434 static void
11435 do_t_simd (void)
11437 unsigned Rd, Rn, Rm;
11439 Rd = inst.operands[0].reg;
11440 Rn = inst.operands[1].reg;
11441 Rm = inst.operands[2].reg;
11443 reject_bad_reg (Rd);
11444 reject_bad_reg (Rn);
11445 reject_bad_reg (Rm);
11447 inst.instruction |= Rd << 8;
11448 inst.instruction |= Rn << 16;
11449 inst.instruction |= Rm;
11452 static void
11453 do_t_simd2 (void)
11455 unsigned Rd, Rn, Rm;
11457 Rd = inst.operands[0].reg;
11458 Rm = inst.operands[1].reg;
11459 Rn = inst.operands[2].reg;
11461 reject_bad_reg (Rd);
11462 reject_bad_reg (Rn);
11463 reject_bad_reg (Rm);
11465 inst.instruction |= Rd << 8;
11466 inst.instruction |= Rn << 16;
11467 inst.instruction |= Rm;
11470 static void
11471 do_t_smc (void)
11473 unsigned int value = inst.reloc.exp.X_add_number;
11474 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11475 _("SMC is not permitted on this architecture"));
11476 constraint (inst.reloc.exp.X_op != O_constant,
11477 _("expression too complex"));
11478 inst.reloc.type = BFD_RELOC_UNUSED;
11479 inst.instruction |= (value & 0xf000) >> 12;
11480 inst.instruction |= (value & 0x0ff0);
11481 inst.instruction |= (value & 0x000f) << 16;
11484 static void
11485 do_t_hvc (void)
11487 unsigned int value = inst.reloc.exp.X_add_number;
11489 inst.reloc.type = BFD_RELOC_UNUSED;
11490 inst.instruction |= (value & 0x0fff);
11491 inst.instruction |= (value & 0xf000) << 4;
11494 static void
11495 do_t_ssat_usat (int bias)
11497 unsigned Rd, Rn;
11499 Rd = inst.operands[0].reg;
11500 Rn = inst.operands[2].reg;
11502 reject_bad_reg (Rd);
11503 reject_bad_reg (Rn);
11505 inst.instruction |= Rd << 8;
11506 inst.instruction |= inst.operands[1].imm - bias;
11507 inst.instruction |= Rn << 16;
11509 if (inst.operands[3].present)
11511 offsetT shift_amount = inst.reloc.exp.X_add_number;
11513 inst.reloc.type = BFD_RELOC_UNUSED;
11515 constraint (inst.reloc.exp.X_op != O_constant,
11516 _("expression too complex"));
11518 if (shift_amount != 0)
11520 constraint (shift_amount > 31,
11521 _("shift expression is too large"));
11523 if (inst.operands[3].shift_kind == SHIFT_ASR)
11524 inst.instruction |= 0x00200000; /* sh bit. */
11526 inst.instruction |= (shift_amount & 0x1c) << 10;
11527 inst.instruction |= (shift_amount & 0x03) << 6;
11532 static void
11533 do_t_ssat (void)
11535 do_t_ssat_usat (1);
11538 static void
11539 do_t_ssat16 (void)
11541 unsigned Rd, Rn;
11543 Rd = inst.operands[0].reg;
11544 Rn = inst.operands[2].reg;
11546 reject_bad_reg (Rd);
11547 reject_bad_reg (Rn);
11549 inst.instruction |= Rd << 8;
11550 inst.instruction |= inst.operands[1].imm - 1;
11551 inst.instruction |= Rn << 16;
11554 static void
11555 do_t_strex (void)
11557 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11558 || inst.operands[2].postind || inst.operands[2].writeback
11559 || inst.operands[2].immisreg || inst.operands[2].shifted
11560 || inst.operands[2].negative,
11561 BAD_ADDR_MODE);
11563 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11565 inst.instruction |= inst.operands[0].reg << 8;
11566 inst.instruction |= inst.operands[1].reg << 12;
11567 inst.instruction |= inst.operands[2].reg << 16;
11568 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11571 static void
11572 do_t_strexd (void)
11574 if (!inst.operands[2].present)
11575 inst.operands[2].reg = inst.operands[1].reg + 1;
11577 constraint (inst.operands[0].reg == inst.operands[1].reg
11578 || inst.operands[0].reg == inst.operands[2].reg
11579 || inst.operands[0].reg == inst.operands[3].reg,
11580 BAD_OVERLAP);
11582 inst.instruction |= inst.operands[0].reg;
11583 inst.instruction |= inst.operands[1].reg << 12;
11584 inst.instruction |= inst.operands[2].reg << 8;
11585 inst.instruction |= inst.operands[3].reg << 16;
11588 static void
11589 do_t_sxtah (void)
11591 unsigned Rd, Rn, Rm;
11593 Rd = inst.operands[0].reg;
11594 Rn = inst.operands[1].reg;
11595 Rm = inst.operands[2].reg;
11597 reject_bad_reg (Rd);
11598 reject_bad_reg (Rn);
11599 reject_bad_reg (Rm);
11601 inst.instruction |= Rd << 8;
11602 inst.instruction |= Rn << 16;
11603 inst.instruction |= Rm;
11604 inst.instruction |= inst.operands[3].imm << 4;
11607 static void
11608 do_t_sxth (void)
11610 unsigned Rd, Rm;
11612 Rd = inst.operands[0].reg;
11613 Rm = inst.operands[1].reg;
11615 reject_bad_reg (Rd);
11616 reject_bad_reg (Rm);
11618 if (inst.instruction <= 0xffff
11619 && inst.size_req != 4
11620 && Rd <= 7 && Rm <= 7
11621 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11623 inst.instruction = THUMB_OP16 (inst.instruction);
11624 inst.instruction |= Rd;
11625 inst.instruction |= Rm << 3;
11627 else if (unified_syntax)
11629 if (inst.instruction <= 0xffff)
11630 inst.instruction = THUMB_OP32 (inst.instruction);
11631 inst.instruction |= Rd << 8;
11632 inst.instruction |= Rm;
11633 inst.instruction |= inst.operands[2].imm << 4;
11635 else
11637 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11638 _("Thumb encoding does not support rotation"));
11639 constraint (1, BAD_HIREG);
11643 static void
11644 do_t_swi (void)
11646 /* We have to do the following check manually as ARM_EXT_OS only applies
11647 to ARM_EXT_V6M. */
11648 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11650 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os))
11651 as_bad (_("SVC is not permitted on this architecture"));
11652 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11655 inst.reloc.type = BFD_RELOC_ARM_SWI;
11658 static void
11659 do_t_tb (void)
11661 unsigned Rn, Rm;
11662 int half;
11664 half = (inst.instruction & 0x10) != 0;
11665 set_it_insn_type_last ();
11666 constraint (inst.operands[0].immisreg,
11667 _("instruction requires register index"));
11669 Rn = inst.operands[0].reg;
11670 Rm = inst.operands[0].imm;
11672 constraint (Rn == REG_SP, BAD_SP);
11673 reject_bad_reg (Rm);
11675 constraint (!half && inst.operands[0].shifted,
11676 _("instruction does not allow shifted index"));
11677 inst.instruction |= (Rn << 16) | Rm;
11680 static void
11681 do_t_usat (void)
11683 do_t_ssat_usat (0);
11686 static void
11687 do_t_usat16 (void)
11689 unsigned Rd, Rn;
11691 Rd = inst.operands[0].reg;
11692 Rn = inst.operands[2].reg;
11694 reject_bad_reg (Rd);
11695 reject_bad_reg (Rn);
11697 inst.instruction |= Rd << 8;
11698 inst.instruction |= inst.operands[1].imm;
11699 inst.instruction |= Rn << 16;
11702 /* Neon instruction encoder helpers. */
11704 /* Encodings for the different types for various Neon opcodes. */
11706 /* An "invalid" code for the following tables. */
11707 #define N_INV -1u
11709 struct neon_tab_entry
11711 unsigned integer;
11712 unsigned float_or_poly;
11713 unsigned scalar_or_imm;
11716 /* Map overloaded Neon opcodes to their respective encodings. */
11717 #define NEON_ENC_TAB \
11718 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11719 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11720 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11721 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11722 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11723 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11724 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11725 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11726 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11727 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11728 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11729 /* Register variants of the following two instructions are encoded as
11730 vcge / vcgt with the operands reversed. */ \
11731 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11732 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11733 X(vfma, N_INV, 0x0000c10, N_INV), \
11734 X(vfms, N_INV, 0x0200c10, N_INV), \
11735 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11736 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11737 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11738 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11739 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11740 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11741 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11742 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11743 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11744 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11745 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11746 X(vshl, 0x0000400, N_INV, 0x0800510), \
11747 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11748 X(vand, 0x0000110, N_INV, 0x0800030), \
11749 X(vbic, 0x0100110, N_INV, 0x0800030), \
11750 X(veor, 0x1000110, N_INV, N_INV), \
11751 X(vorn, 0x0300110, N_INV, 0x0800010), \
11752 X(vorr, 0x0200110, N_INV, 0x0800010), \
11753 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11754 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11755 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11756 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11757 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11758 X(vst1, 0x0000000, 0x0800000, N_INV), \
11759 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11760 X(vst2, 0x0000100, 0x0800100, N_INV), \
11761 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11762 X(vst3, 0x0000200, 0x0800200, N_INV), \
11763 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11764 X(vst4, 0x0000300, 0x0800300, N_INV), \
11765 X(vmovn, 0x1b20200, N_INV, N_INV), \
11766 X(vtrn, 0x1b20080, N_INV, N_INV), \
11767 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11768 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11769 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11770 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11771 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11772 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11773 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11774 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11775 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11776 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11777 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11779 enum neon_opc
11781 #define X(OPC,I,F,S) N_MNEM_##OPC
11782 NEON_ENC_TAB
11783 #undef X
11786 static const struct neon_tab_entry neon_enc_tab[] =
11788 #define X(OPC,I,F,S) { (I), (F), (S) }
11789 NEON_ENC_TAB
11790 #undef X
11793 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11794 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11795 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11796 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11797 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11798 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11799 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11800 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11801 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11802 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11803 #define NEON_ENC_SINGLE_(X) \
11804 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11805 #define NEON_ENC_DOUBLE_(X) \
11806 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11808 #define NEON_ENCODE(type, inst) \
11809 do \
11811 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11812 inst.is_neon = 1; \
11814 while (0)
11816 #define check_neon_suffixes \
11817 do \
11819 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11821 as_bad (_("invalid neon suffix for non neon instruction")); \
11822 return; \
11825 while (0)
11827 /* Define shapes for instruction operands. The following mnemonic characters
11828 are used in this table:
11830 F - VFP S<n> register
11831 D - Neon D<n> register
11832 Q - Neon Q<n> register
11833 I - Immediate
11834 S - Scalar
11835 R - ARM register
11836 L - D<n> register list
11838 This table is used to generate various data:
11839 - enumerations of the form NS_DDR to be used as arguments to
11840 neon_select_shape.
11841 - a table classifying shapes into single, double, quad, mixed.
11842 - a table used to drive neon_select_shape. */
11844 #define NEON_SHAPE_DEF \
11845 X(3, (D, D, D), DOUBLE), \
11846 X(3, (Q, Q, Q), QUAD), \
11847 X(3, (D, D, I), DOUBLE), \
11848 X(3, (Q, Q, I), QUAD), \
11849 X(3, (D, D, S), DOUBLE), \
11850 X(3, (Q, Q, S), QUAD), \
11851 X(2, (D, D), DOUBLE), \
11852 X(2, (Q, Q), QUAD), \
11853 X(2, (D, S), DOUBLE), \
11854 X(2, (Q, S), QUAD), \
11855 X(2, (D, R), DOUBLE), \
11856 X(2, (Q, R), QUAD), \
11857 X(2, (D, I), DOUBLE), \
11858 X(2, (Q, I), QUAD), \
11859 X(3, (D, L, D), DOUBLE), \
11860 X(2, (D, Q), MIXED), \
11861 X(2, (Q, D), MIXED), \
11862 X(3, (D, Q, I), MIXED), \
11863 X(3, (Q, D, I), MIXED), \
11864 X(3, (Q, D, D), MIXED), \
11865 X(3, (D, Q, Q), MIXED), \
11866 X(3, (Q, Q, D), MIXED), \
11867 X(3, (Q, D, S), MIXED), \
11868 X(3, (D, Q, S), MIXED), \
11869 X(4, (D, D, D, I), DOUBLE), \
11870 X(4, (Q, Q, Q, I), QUAD), \
11871 X(2, (F, F), SINGLE), \
11872 X(3, (F, F, F), SINGLE), \
11873 X(2, (F, I), SINGLE), \
11874 X(2, (F, D), MIXED), \
11875 X(2, (D, F), MIXED), \
11876 X(3, (F, F, I), MIXED), \
11877 X(4, (R, R, F, F), SINGLE), \
11878 X(4, (F, F, R, R), SINGLE), \
11879 X(3, (D, R, R), DOUBLE), \
11880 X(3, (R, R, D), DOUBLE), \
11881 X(2, (S, R), SINGLE), \
11882 X(2, (R, S), SINGLE), \
11883 X(2, (F, R), SINGLE), \
11884 X(2, (R, F), SINGLE)
11886 #define S2(A,B) NS_##A##B
11887 #define S3(A,B,C) NS_##A##B##C
11888 #define S4(A,B,C,D) NS_##A##B##C##D
11890 #define X(N, L, C) S##N L
11892 enum neon_shape
11894 NEON_SHAPE_DEF,
11895 NS_NULL
11898 #undef X
11899 #undef S2
11900 #undef S3
11901 #undef S4
11903 enum neon_shape_class
11905 SC_SINGLE,
11906 SC_DOUBLE,
11907 SC_QUAD,
11908 SC_MIXED
11911 #define X(N, L, C) SC_##C
11913 static enum neon_shape_class neon_shape_class[] =
11915 NEON_SHAPE_DEF
11918 #undef X
11920 enum neon_shape_el
11922 SE_F,
11923 SE_D,
11924 SE_Q,
11925 SE_I,
11926 SE_S,
11927 SE_R,
11928 SE_L
11931 /* Register widths of above. */
11932 static unsigned neon_shape_el_size[] =
11936 128,
11943 struct neon_shape_info
11945 unsigned els;
11946 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11949 #define S2(A,B) { SE_##A, SE_##B }
11950 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11951 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11953 #define X(N, L, C) { N, S##N L }
11955 static struct neon_shape_info neon_shape_tab[] =
11957 NEON_SHAPE_DEF
11960 #undef X
11961 #undef S2
11962 #undef S3
11963 #undef S4
11965 /* Bit masks used in type checking given instructions.
11966 'N_EQK' means the type must be the same as (or based on in some way) the key
11967 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11968 set, various other bits can be set as well in order to modify the meaning of
11969 the type constraint. */
11971 enum neon_type_mask
11973 N_S8 = 0x0000001,
11974 N_S16 = 0x0000002,
11975 N_S32 = 0x0000004,
11976 N_S64 = 0x0000008,
11977 N_U8 = 0x0000010,
11978 N_U16 = 0x0000020,
11979 N_U32 = 0x0000040,
11980 N_U64 = 0x0000080,
11981 N_I8 = 0x0000100,
11982 N_I16 = 0x0000200,
11983 N_I32 = 0x0000400,
11984 N_I64 = 0x0000800,
11985 N_8 = 0x0001000,
11986 N_16 = 0x0002000,
11987 N_32 = 0x0004000,
11988 N_64 = 0x0008000,
11989 N_P8 = 0x0010000,
11990 N_P16 = 0x0020000,
11991 N_F16 = 0x0040000,
11992 N_F32 = 0x0080000,
11993 N_F64 = 0x0100000,
11994 N_KEY = 0x1000000, /* Key element (main type specifier). */
11995 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11996 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11997 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11998 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11999 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12000 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12001 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12002 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12003 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12004 N_UTYP = 0,
12005 N_MAX_NONSPECIAL = N_F64
12008 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12010 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12011 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12012 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12013 #define N_SUF_32 (N_SU_32 | N_F32)
12014 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12015 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12017 /* Pass this as the first type argument to neon_check_type to ignore types
12018 altogether. */
12019 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12021 /* Select a "shape" for the current instruction (describing register types or
12022 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12023 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12024 function of operand parsing, so this function doesn't need to be called.
12025 Shapes should be listed in order of decreasing length. */
12027 static enum neon_shape
12028 neon_select_shape (enum neon_shape shape, ...)
12030 va_list ap;
12031 enum neon_shape first_shape = shape;
12033 /* Fix missing optional operands. FIXME: we don't know at this point how
12034 many arguments we should have, so this makes the assumption that we have
12035 > 1. This is true of all current Neon opcodes, I think, but may not be
12036 true in the future. */
12037 if (!inst.operands[1].present)
12038 inst.operands[1] = inst.operands[0];
12040 va_start (ap, shape);
12042 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12044 unsigned j;
12045 int matches = 1;
12047 for (j = 0; j < neon_shape_tab[shape].els; j++)
12049 if (!inst.operands[j].present)
12051 matches = 0;
12052 break;
12055 switch (neon_shape_tab[shape].el[j])
12057 case SE_F:
12058 if (!(inst.operands[j].isreg
12059 && inst.operands[j].isvec
12060 && inst.operands[j].issingle
12061 && !inst.operands[j].isquad))
12062 matches = 0;
12063 break;
12065 case SE_D:
12066 if (!(inst.operands[j].isreg
12067 && inst.operands[j].isvec
12068 && !inst.operands[j].isquad
12069 && !inst.operands[j].issingle))
12070 matches = 0;
12071 break;
12073 case SE_R:
12074 if (!(inst.operands[j].isreg
12075 && !inst.operands[j].isvec))
12076 matches = 0;
12077 break;
12079 case SE_Q:
12080 if (!(inst.operands[j].isreg
12081 && inst.operands[j].isvec
12082 && inst.operands[j].isquad
12083 && !inst.operands[j].issingle))
12084 matches = 0;
12085 break;
12087 case SE_I:
12088 if (!(!inst.operands[j].isreg
12089 && !inst.operands[j].isscalar))
12090 matches = 0;
12091 break;
12093 case SE_S:
12094 if (!(!inst.operands[j].isreg
12095 && inst.operands[j].isscalar))
12096 matches = 0;
12097 break;
12099 case SE_L:
12100 break;
12102 if (!matches)
12103 break;
12105 if (matches)
12106 break;
12109 va_end (ap);
12111 if (shape == NS_NULL && first_shape != NS_NULL)
12112 first_error (_("invalid instruction shape"));
12114 return shape;
12117 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12118 means the Q bit should be set). */
12120 static int
12121 neon_quad (enum neon_shape shape)
12123 return neon_shape_class[shape] == SC_QUAD;
12126 static void
12127 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12128 unsigned *g_size)
12130 /* Allow modification to be made to types which are constrained to be
12131 based on the key element, based on bits set alongside N_EQK. */
12132 if ((typebits & N_EQK) != 0)
12134 if ((typebits & N_HLF) != 0)
12135 *g_size /= 2;
12136 else if ((typebits & N_DBL) != 0)
12137 *g_size *= 2;
12138 if ((typebits & N_SGN) != 0)
12139 *g_type = NT_signed;
12140 else if ((typebits & N_UNS) != 0)
12141 *g_type = NT_unsigned;
12142 else if ((typebits & N_INT) != 0)
12143 *g_type = NT_integer;
12144 else if ((typebits & N_FLT) != 0)
12145 *g_type = NT_float;
12146 else if ((typebits & N_SIZ) != 0)
12147 *g_type = NT_untyped;
12151 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12152 operand type, i.e. the single type specified in a Neon instruction when it
12153 is the only one given. */
12155 static struct neon_type_el
12156 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12158 struct neon_type_el dest = *key;
12160 gas_assert ((thisarg & N_EQK) != 0);
12162 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12164 return dest;
12167 /* Convert Neon type and size into compact bitmask representation. */
12169 static enum neon_type_mask
12170 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12172 switch (type)
12174 case NT_untyped:
12175 switch (size)
12177 case 8: return N_8;
12178 case 16: return N_16;
12179 case 32: return N_32;
12180 case 64: return N_64;
12181 default: ;
12183 break;
12185 case NT_integer:
12186 switch (size)
12188 case 8: return N_I8;
12189 case 16: return N_I16;
12190 case 32: return N_I32;
12191 case 64: return N_I64;
12192 default: ;
12194 break;
12196 case NT_float:
12197 switch (size)
12199 case 16: return N_F16;
12200 case 32: return N_F32;
12201 case 64: return N_F64;
12202 default: ;
12204 break;
12206 case NT_poly:
12207 switch (size)
12209 case 8: return N_P8;
12210 case 16: return N_P16;
12211 default: ;
12213 break;
12215 case NT_signed:
12216 switch (size)
12218 case 8: return N_S8;
12219 case 16: return N_S16;
12220 case 32: return N_S32;
12221 case 64: return N_S64;
12222 default: ;
12224 break;
12226 case NT_unsigned:
12227 switch (size)
12229 case 8: return N_U8;
12230 case 16: return N_U16;
12231 case 32: return N_U32;
12232 case 64: return N_U64;
12233 default: ;
12235 break;
12237 default: ;
12240 return N_UTYP;
12243 /* Convert compact Neon bitmask type representation to a type and size. Only
12244 handles the case where a single bit is set in the mask. */
12246 static int
12247 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12248 enum neon_type_mask mask)
12250 if ((mask & N_EQK) != 0)
12251 return FAIL;
12253 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12254 *size = 8;
12255 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12256 *size = 16;
12257 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12258 *size = 32;
12259 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12260 *size = 64;
12261 else
12262 return FAIL;
12264 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12265 *type = NT_signed;
12266 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12267 *type = NT_unsigned;
12268 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12269 *type = NT_integer;
12270 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12271 *type = NT_untyped;
12272 else if ((mask & (N_P8 | N_P16)) != 0)
12273 *type = NT_poly;
12274 else if ((mask & (N_F32 | N_F64)) != 0)
12275 *type = NT_float;
12276 else
12277 return FAIL;
12279 return SUCCESS;
12282 /* Modify a bitmask of allowed types. This is only needed for type
12283 relaxation. */
12285 static unsigned
12286 modify_types_allowed (unsigned allowed, unsigned mods)
12288 unsigned size;
12289 enum neon_el_type type;
12290 unsigned destmask;
12291 int i;
12293 destmask = 0;
12295 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12297 if (el_type_of_type_chk (&type, &size,
12298 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12300 neon_modify_type_size (mods, &type, &size);
12301 destmask |= type_chk_of_el_type (type, size);
12305 return destmask;
12308 /* Check type and return type classification.
12309 The manual states (paraphrase): If one datatype is given, it indicates the
12310 type given in:
12311 - the second operand, if there is one
12312 - the operand, if there is no second operand
12313 - the result, if there are no operands.
12314 This isn't quite good enough though, so we use a concept of a "key" datatype
12315 which is set on a per-instruction basis, which is the one which matters when
12316 only one data type is written.
12317 Note: this function has side-effects (e.g. filling in missing operands). All
12318 Neon instructions should call it before performing bit encoding. */
12320 static struct neon_type_el
12321 neon_check_type (unsigned els, enum neon_shape ns, ...)
12323 va_list ap;
12324 unsigned i, pass, key_el = 0;
12325 unsigned types[NEON_MAX_TYPE_ELS];
12326 enum neon_el_type k_type = NT_invtype;
12327 unsigned k_size = -1u;
12328 struct neon_type_el badtype = {NT_invtype, -1};
12329 unsigned key_allowed = 0;
12331 /* Optional registers in Neon instructions are always (not) in operand 1.
12332 Fill in the missing operand here, if it was omitted. */
12333 if (els > 1 && !inst.operands[1].present)
12334 inst.operands[1] = inst.operands[0];
12336 /* Suck up all the varargs. */
12337 va_start (ap, ns);
12338 for (i = 0; i < els; i++)
12340 unsigned thisarg = va_arg (ap, unsigned);
12341 if (thisarg == N_IGNORE_TYPE)
12343 va_end (ap);
12344 return badtype;
12346 types[i] = thisarg;
12347 if ((thisarg & N_KEY) != 0)
12348 key_el = i;
12350 va_end (ap);
12352 if (inst.vectype.elems > 0)
12353 for (i = 0; i < els; i++)
12354 if (inst.operands[i].vectype.type != NT_invtype)
12356 first_error (_("types specified in both the mnemonic and operands"));
12357 return badtype;
12360 /* Duplicate inst.vectype elements here as necessary.
12361 FIXME: No idea if this is exactly the same as the ARM assembler,
12362 particularly when an insn takes one register and one non-register
12363 operand. */
12364 if (inst.vectype.elems == 1 && els > 1)
12366 unsigned j;
12367 inst.vectype.elems = els;
12368 inst.vectype.el[key_el] = inst.vectype.el[0];
12369 for (j = 0; j < els; j++)
12370 if (j != key_el)
12371 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12372 types[j]);
12374 else if (inst.vectype.elems == 0 && els > 0)
12376 unsigned j;
12377 /* No types were given after the mnemonic, so look for types specified
12378 after each operand. We allow some flexibility here; as long as the
12379 "key" operand has a type, we can infer the others. */
12380 for (j = 0; j < els; j++)
12381 if (inst.operands[j].vectype.type != NT_invtype)
12382 inst.vectype.el[j] = inst.operands[j].vectype;
12384 if (inst.operands[key_el].vectype.type != NT_invtype)
12386 for (j = 0; j < els; j++)
12387 if (inst.operands[j].vectype.type == NT_invtype)
12388 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12389 types[j]);
12391 else
12393 first_error (_("operand types can't be inferred"));
12394 return badtype;
12397 else if (inst.vectype.elems != els)
12399 first_error (_("type specifier has the wrong number of parts"));
12400 return badtype;
12403 for (pass = 0; pass < 2; pass++)
12405 for (i = 0; i < els; i++)
12407 unsigned thisarg = types[i];
12408 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12409 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12410 enum neon_el_type g_type = inst.vectype.el[i].type;
12411 unsigned g_size = inst.vectype.el[i].size;
12413 /* Decay more-specific signed & unsigned types to sign-insensitive
12414 integer types if sign-specific variants are unavailable. */
12415 if ((g_type == NT_signed || g_type == NT_unsigned)
12416 && (types_allowed & N_SU_ALL) == 0)
12417 g_type = NT_integer;
12419 /* If only untyped args are allowed, decay any more specific types to
12420 them. Some instructions only care about signs for some element
12421 sizes, so handle that properly. */
12422 if ((g_size == 8 && (types_allowed & N_8) != 0)
12423 || (g_size == 16 && (types_allowed & N_16) != 0)
12424 || (g_size == 32 && (types_allowed & N_32) != 0)
12425 || (g_size == 64 && (types_allowed & N_64) != 0))
12426 g_type = NT_untyped;
12428 if (pass == 0)
12430 if ((thisarg & N_KEY) != 0)
12432 k_type = g_type;
12433 k_size = g_size;
12434 key_allowed = thisarg & ~N_KEY;
12437 else
12439 if ((thisarg & N_VFP) != 0)
12441 enum neon_shape_el regshape;
12442 unsigned regwidth, match;
12444 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12445 if (ns == NS_NULL)
12447 first_error (_("invalid instruction shape"));
12448 return badtype;
12450 regshape = neon_shape_tab[ns].el[i];
12451 regwidth = neon_shape_el_size[regshape];
12453 /* In VFP mode, operands must match register widths. If we
12454 have a key operand, use its width, else use the width of
12455 the current operand. */
12456 if (k_size != -1u)
12457 match = k_size;
12458 else
12459 match = g_size;
12461 if (regwidth != match)
12463 first_error (_("operand size must match register width"));
12464 return badtype;
12468 if ((thisarg & N_EQK) == 0)
12470 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12472 if ((given_type & types_allowed) == 0)
12474 first_error (_("bad type in Neon instruction"));
12475 return badtype;
12478 else
12480 enum neon_el_type mod_k_type = k_type;
12481 unsigned mod_k_size = k_size;
12482 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12483 if (g_type != mod_k_type || g_size != mod_k_size)
12485 first_error (_("inconsistent types in Neon instruction"));
12486 return badtype;
12493 return inst.vectype.el[key_el];
12496 /* Neon-style VFP instruction forwarding. */
12498 /* Thumb VFP instructions have 0xE in the condition field. */
12500 static void
12501 do_vfp_cond_or_thumb (void)
12503 inst.is_neon = 1;
12505 if (thumb_mode)
12506 inst.instruction |= 0xe0000000;
12507 else
12508 inst.instruction |= inst.cond << 28;
12511 /* Look up and encode a simple mnemonic, for use as a helper function for the
12512 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12513 etc. It is assumed that operand parsing has already been done, and that the
12514 operands are in the form expected by the given opcode (this isn't necessarily
12515 the same as the form in which they were parsed, hence some massaging must
12516 take place before this function is called).
12517 Checks current arch version against that in the looked-up opcode. */
12519 static void
12520 do_vfp_nsyn_opcode (const char *opname)
12522 const struct asm_opcode *opcode;
12524 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12526 if (!opcode)
12527 abort ();
12529 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12530 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12531 _(BAD_FPU));
12533 inst.is_neon = 1;
12535 if (thumb_mode)
12537 inst.instruction = opcode->tvalue;
12538 opcode->tencode ();
12540 else
12542 inst.instruction = (inst.cond << 28) | opcode->avalue;
12543 opcode->aencode ();
12547 static void
12548 do_vfp_nsyn_add_sub (enum neon_shape rs)
12550 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12552 if (rs == NS_FFF)
12554 if (is_add)
12555 do_vfp_nsyn_opcode ("fadds");
12556 else
12557 do_vfp_nsyn_opcode ("fsubs");
12559 else
12561 if (is_add)
12562 do_vfp_nsyn_opcode ("faddd");
12563 else
12564 do_vfp_nsyn_opcode ("fsubd");
12568 /* Check operand types to see if this is a VFP instruction, and if so call
12569 PFN (). */
12571 static int
12572 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12574 enum neon_shape rs;
12575 struct neon_type_el et;
12577 switch (args)
12579 case 2:
12580 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12581 et = neon_check_type (2, rs,
12582 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12583 break;
12585 case 3:
12586 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12587 et = neon_check_type (3, rs,
12588 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12589 break;
12591 default:
12592 abort ();
12595 if (et.type != NT_invtype)
12597 pfn (rs);
12598 return SUCCESS;
12601 inst.error = NULL;
12602 return FAIL;
12605 static void
12606 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12608 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12610 if (rs == NS_FFF)
12612 if (is_mla)
12613 do_vfp_nsyn_opcode ("fmacs");
12614 else
12615 do_vfp_nsyn_opcode ("fnmacs");
12617 else
12619 if (is_mla)
12620 do_vfp_nsyn_opcode ("fmacd");
12621 else
12622 do_vfp_nsyn_opcode ("fnmacd");
12626 static void
12627 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12629 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12631 if (rs == NS_FFF)
12633 if (is_fma)
12634 do_vfp_nsyn_opcode ("ffmas");
12635 else
12636 do_vfp_nsyn_opcode ("ffnmas");
12638 else
12640 if (is_fma)
12641 do_vfp_nsyn_opcode ("ffmad");
12642 else
12643 do_vfp_nsyn_opcode ("ffnmad");
12647 static void
12648 do_vfp_nsyn_mul (enum neon_shape rs)
12650 if (rs == NS_FFF)
12651 do_vfp_nsyn_opcode ("fmuls");
12652 else
12653 do_vfp_nsyn_opcode ("fmuld");
12656 static void
12657 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12659 int is_neg = (inst.instruction & 0x80) != 0;
12660 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12662 if (rs == NS_FF)
12664 if (is_neg)
12665 do_vfp_nsyn_opcode ("fnegs");
12666 else
12667 do_vfp_nsyn_opcode ("fabss");
12669 else
12671 if (is_neg)
12672 do_vfp_nsyn_opcode ("fnegd");
12673 else
12674 do_vfp_nsyn_opcode ("fabsd");
12678 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12679 insns belong to Neon, and are handled elsewhere. */
12681 static void
12682 do_vfp_nsyn_ldm_stm (int is_dbmode)
12684 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12685 if (is_ldm)
12687 if (is_dbmode)
12688 do_vfp_nsyn_opcode ("fldmdbs");
12689 else
12690 do_vfp_nsyn_opcode ("fldmias");
12692 else
12694 if (is_dbmode)
12695 do_vfp_nsyn_opcode ("fstmdbs");
12696 else
12697 do_vfp_nsyn_opcode ("fstmias");
12701 static void
12702 do_vfp_nsyn_sqrt (void)
12704 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12705 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12707 if (rs == NS_FF)
12708 do_vfp_nsyn_opcode ("fsqrts");
12709 else
12710 do_vfp_nsyn_opcode ("fsqrtd");
12713 static void
12714 do_vfp_nsyn_div (void)
12716 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12717 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12718 N_F32 | N_F64 | N_KEY | N_VFP);
12720 if (rs == NS_FFF)
12721 do_vfp_nsyn_opcode ("fdivs");
12722 else
12723 do_vfp_nsyn_opcode ("fdivd");
12726 static void
12727 do_vfp_nsyn_nmul (void)
12729 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12730 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12731 N_F32 | N_F64 | N_KEY | N_VFP);
12733 if (rs == NS_FFF)
12735 NEON_ENCODE (SINGLE, inst);
12736 do_vfp_sp_dyadic ();
12738 else
12740 NEON_ENCODE (DOUBLE, inst);
12741 do_vfp_dp_rd_rn_rm ();
12743 do_vfp_cond_or_thumb ();
12746 static void
12747 do_vfp_nsyn_cmp (void)
12749 if (inst.operands[1].isreg)
12751 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12752 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12754 if (rs == NS_FF)
12756 NEON_ENCODE (SINGLE, inst);
12757 do_vfp_sp_monadic ();
12759 else
12761 NEON_ENCODE (DOUBLE, inst);
12762 do_vfp_dp_rd_rm ();
12765 else
12767 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12768 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12770 switch (inst.instruction & 0x0fffffff)
12772 case N_MNEM_vcmp:
12773 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12774 break;
12775 case N_MNEM_vcmpe:
12776 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12777 break;
12778 default:
12779 abort ();
12782 if (rs == NS_FI)
12784 NEON_ENCODE (SINGLE, inst);
12785 do_vfp_sp_compare_z ();
12787 else
12789 NEON_ENCODE (DOUBLE, inst);
12790 do_vfp_dp_rd ();
12793 do_vfp_cond_or_thumb ();
12796 static void
12797 nsyn_insert_sp (void)
12799 inst.operands[1] = inst.operands[0];
12800 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12801 inst.operands[0].reg = REG_SP;
12802 inst.operands[0].isreg = 1;
12803 inst.operands[0].writeback = 1;
12804 inst.operands[0].present = 1;
12807 static void
12808 do_vfp_nsyn_push (void)
12810 nsyn_insert_sp ();
12811 if (inst.operands[1].issingle)
12812 do_vfp_nsyn_opcode ("fstmdbs");
12813 else
12814 do_vfp_nsyn_opcode ("fstmdbd");
12817 static void
12818 do_vfp_nsyn_pop (void)
12820 nsyn_insert_sp ();
12821 if (inst.operands[1].issingle)
12822 do_vfp_nsyn_opcode ("fldmias");
12823 else
12824 do_vfp_nsyn_opcode ("fldmiad");
12827 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12828 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12830 static void
12831 neon_dp_fixup (struct arm_it* insn)
12833 unsigned int i = insn->instruction;
12834 insn->is_neon = 1;
12836 if (thumb_mode)
12838 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12839 if (i & (1 << 24))
12840 i |= 1 << 28;
12842 i &= ~(1 << 24);
12844 i |= 0xef000000;
12846 else
12847 i |= 0xf2000000;
12849 insn->instruction = i;
12852 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12853 (0, 1, 2, 3). */
12855 static unsigned
12856 neon_logbits (unsigned x)
12858 return ffs (x) - 4;
12861 #define LOW4(R) ((R) & 0xf)
12862 #define HI1(R) (((R) >> 4) & 1)
12864 /* Encode insns with bit pattern:
12866 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12867 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12869 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12870 different meaning for some instruction. */
12872 static void
12873 neon_three_same (int isquad, int ubit, int size)
12875 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12876 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12877 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12878 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12879 inst.instruction |= LOW4 (inst.operands[2].reg);
12880 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12881 inst.instruction |= (isquad != 0) << 6;
12882 inst.instruction |= (ubit != 0) << 24;
12883 if (size != -1)
12884 inst.instruction |= neon_logbits (size) << 20;
12886 neon_dp_fixup (&inst);
12889 /* Encode instructions of the form:
12891 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12892 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12894 Don't write size if SIZE == -1. */
12896 static void
12897 neon_two_same (int qbit, int ubit, int size)
12899 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12900 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12901 inst.instruction |= LOW4 (inst.operands[1].reg);
12902 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12903 inst.instruction |= (qbit != 0) << 6;
12904 inst.instruction |= (ubit != 0) << 24;
12906 if (size != -1)
12907 inst.instruction |= neon_logbits (size) << 18;
12909 neon_dp_fixup (&inst);
12912 /* Neon instruction encoders, in approximate order of appearance. */
12914 static void
12915 do_neon_dyadic_i_su (void)
12917 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12918 struct neon_type_el et = neon_check_type (3, rs,
12919 N_EQK, N_EQK, N_SU_32 | N_KEY);
12920 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12923 static void
12924 do_neon_dyadic_i64_su (void)
12926 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12927 struct neon_type_el et = neon_check_type (3, rs,
12928 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12929 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12932 static void
12933 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12934 unsigned immbits)
12936 unsigned size = et.size >> 3;
12937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12939 inst.instruction |= LOW4 (inst.operands[1].reg);
12940 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12941 inst.instruction |= (isquad != 0) << 6;
12942 inst.instruction |= immbits << 16;
12943 inst.instruction |= (size >> 3) << 7;
12944 inst.instruction |= (size & 0x7) << 19;
12945 if (write_ubit)
12946 inst.instruction |= (uval != 0) << 24;
12948 neon_dp_fixup (&inst);
12951 static void
12952 do_neon_shl_imm (void)
12954 if (!inst.operands[2].isreg)
12956 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12957 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12958 NEON_ENCODE (IMMED, inst);
12959 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12961 else
12963 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12964 struct neon_type_el et = neon_check_type (3, rs,
12965 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12966 unsigned int tmp;
12968 /* VSHL/VQSHL 3-register variants have syntax such as:
12969 vshl.xx Dd, Dm, Dn
12970 whereas other 3-register operations encoded by neon_three_same have
12971 syntax like:
12972 vadd.xx Dd, Dn, Dm
12973 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12974 here. */
12975 tmp = inst.operands[2].reg;
12976 inst.operands[2].reg = inst.operands[1].reg;
12977 inst.operands[1].reg = tmp;
12978 NEON_ENCODE (INTEGER, inst);
12979 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12983 static void
12984 do_neon_qshl_imm (void)
12986 if (!inst.operands[2].isreg)
12988 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12989 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12991 NEON_ENCODE (IMMED, inst);
12992 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12993 inst.operands[2].imm);
12995 else
12997 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12998 struct neon_type_el et = neon_check_type (3, rs,
12999 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13000 unsigned int tmp;
13002 /* See note in do_neon_shl_imm. */
13003 tmp = inst.operands[2].reg;
13004 inst.operands[2].reg = inst.operands[1].reg;
13005 inst.operands[1].reg = tmp;
13006 NEON_ENCODE (INTEGER, inst);
13007 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13011 static void
13012 do_neon_rshl (void)
13014 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13015 struct neon_type_el et = neon_check_type (3, rs,
13016 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13017 unsigned int tmp;
13019 tmp = inst.operands[2].reg;
13020 inst.operands[2].reg = inst.operands[1].reg;
13021 inst.operands[1].reg = tmp;
13022 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13025 static int
13026 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13028 /* Handle .I8 pseudo-instructions. */
13029 if (size == 8)
13031 /* Unfortunately, this will make everything apart from zero out-of-range.
13032 FIXME is this the intended semantics? There doesn't seem much point in
13033 accepting .I8 if so. */
13034 immediate |= immediate << 8;
13035 size = 16;
13038 if (size >= 32)
13040 if (immediate == (immediate & 0x000000ff))
13042 *immbits = immediate;
13043 return 0x1;
13045 else if (immediate == (immediate & 0x0000ff00))
13047 *immbits = immediate >> 8;
13048 return 0x3;
13050 else if (immediate == (immediate & 0x00ff0000))
13052 *immbits = immediate >> 16;
13053 return 0x5;
13055 else if (immediate == (immediate & 0xff000000))
13057 *immbits = immediate >> 24;
13058 return 0x7;
13060 if ((immediate & 0xffff) != (immediate >> 16))
13061 goto bad_immediate;
13062 immediate &= 0xffff;
13065 if (immediate == (immediate & 0x000000ff))
13067 *immbits = immediate;
13068 return 0x9;
13070 else if (immediate == (immediate & 0x0000ff00))
13072 *immbits = immediate >> 8;
13073 return 0xb;
13076 bad_immediate:
13077 first_error (_("immediate value out of range"));
13078 return FAIL;
13081 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13082 A, B, C, D. */
13084 static int
13085 neon_bits_same_in_bytes (unsigned imm)
13087 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13088 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13089 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13090 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13093 /* For immediate of above form, return 0bABCD. */
13095 static unsigned
13096 neon_squash_bits (unsigned imm)
13098 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13099 | ((imm & 0x01000000) >> 21);
13102 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13104 static unsigned
13105 neon_qfloat_bits (unsigned imm)
13107 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13110 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13111 the instruction. *OP is passed as the initial value of the op field, and
13112 may be set to a different value depending on the constant (i.e.
13113 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13114 MVN). If the immediate looks like a repeated pattern then also
13115 try smaller element sizes. */
13117 static int
13118 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13119 unsigned *immbits, int *op, int size,
13120 enum neon_el_type type)
13122 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13123 float. */
13124 if (type == NT_float && !float_p)
13125 return FAIL;
13127 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13129 if (size != 32 || *op == 1)
13130 return FAIL;
13131 *immbits = neon_qfloat_bits (immlo);
13132 return 0xf;
13135 if (size == 64)
13137 if (neon_bits_same_in_bytes (immhi)
13138 && neon_bits_same_in_bytes (immlo))
13140 if (*op == 1)
13141 return FAIL;
13142 *immbits = (neon_squash_bits (immhi) << 4)
13143 | neon_squash_bits (immlo);
13144 *op = 1;
13145 return 0xe;
13148 if (immhi != immlo)
13149 return FAIL;
13152 if (size >= 32)
13154 if (immlo == (immlo & 0x000000ff))
13156 *immbits = immlo;
13157 return 0x0;
13159 else if (immlo == (immlo & 0x0000ff00))
13161 *immbits = immlo >> 8;
13162 return 0x2;
13164 else if (immlo == (immlo & 0x00ff0000))
13166 *immbits = immlo >> 16;
13167 return 0x4;
13169 else if (immlo == (immlo & 0xff000000))
13171 *immbits = immlo >> 24;
13172 return 0x6;
13174 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13176 *immbits = (immlo >> 8) & 0xff;
13177 return 0xc;
13179 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13181 *immbits = (immlo >> 16) & 0xff;
13182 return 0xd;
13185 if ((immlo & 0xffff) != (immlo >> 16))
13186 return FAIL;
13187 immlo &= 0xffff;
13190 if (size >= 16)
13192 if (immlo == (immlo & 0x000000ff))
13194 *immbits = immlo;
13195 return 0x8;
13197 else if (immlo == (immlo & 0x0000ff00))
13199 *immbits = immlo >> 8;
13200 return 0xa;
13203 if ((immlo & 0xff) != (immlo >> 8))
13204 return FAIL;
13205 immlo &= 0xff;
13208 if (immlo == (immlo & 0x000000ff))
13210 /* Don't allow MVN with 8-bit immediate. */
13211 if (*op == 1)
13212 return FAIL;
13213 *immbits = immlo;
13214 return 0xe;
13217 return FAIL;
13220 /* Write immediate bits [7:0] to the following locations:
13222 |28/24|23 19|18 16|15 4|3 0|
13223 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13225 This function is used by VMOV/VMVN/VORR/VBIC. */
13227 static void
13228 neon_write_immbits (unsigned immbits)
13230 inst.instruction |= immbits & 0xf;
13231 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13232 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13235 /* Invert low-order SIZE bits of XHI:XLO. */
13237 static void
13238 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13240 unsigned immlo = xlo ? *xlo : 0;
13241 unsigned immhi = xhi ? *xhi : 0;
13243 switch (size)
13245 case 8:
13246 immlo = (~immlo) & 0xff;
13247 break;
13249 case 16:
13250 immlo = (~immlo) & 0xffff;
13251 break;
13253 case 64:
13254 immhi = (~immhi) & 0xffffffff;
13255 /* fall through. */
13257 case 32:
13258 immlo = (~immlo) & 0xffffffff;
13259 break;
13261 default:
13262 abort ();
13265 if (xlo)
13266 *xlo = immlo;
13268 if (xhi)
13269 *xhi = immhi;
13272 static void
13273 do_neon_logic (void)
13275 if (inst.operands[2].present && inst.operands[2].isreg)
13277 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13278 neon_check_type (3, rs, N_IGNORE_TYPE);
13279 /* U bit and size field were set as part of the bitmask. */
13280 NEON_ENCODE (INTEGER, inst);
13281 neon_three_same (neon_quad (rs), 0, -1);
13283 else
13285 const int three_ops_form = (inst.operands[2].present
13286 && !inst.operands[2].isreg);
13287 const int immoperand = (three_ops_form ? 2 : 1);
13288 enum neon_shape rs = (three_ops_form
13289 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13290 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13291 struct neon_type_el et = neon_check_type (2, rs,
13292 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13293 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13294 unsigned immbits;
13295 int cmode;
13297 if (et.type == NT_invtype)
13298 return;
13300 if (three_ops_form)
13301 constraint (inst.operands[0].reg != inst.operands[1].reg,
13302 _("first and second operands shall be the same register"));
13304 NEON_ENCODE (IMMED, inst);
13306 immbits = inst.operands[immoperand].imm;
13307 if (et.size == 64)
13309 /* .i64 is a pseudo-op, so the immediate must be a repeating
13310 pattern. */
13311 if (immbits != (inst.operands[immoperand].regisimm ?
13312 inst.operands[immoperand].reg : 0))
13314 /* Set immbits to an invalid constant. */
13315 immbits = 0xdeadbeef;
13319 switch (opcode)
13321 case N_MNEM_vbic:
13322 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13323 break;
13325 case N_MNEM_vorr:
13326 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13327 break;
13329 case N_MNEM_vand:
13330 /* Pseudo-instruction for VBIC. */
13331 neon_invert_size (&immbits, 0, et.size);
13332 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13333 break;
13335 case N_MNEM_vorn:
13336 /* Pseudo-instruction for VORR. */
13337 neon_invert_size (&immbits, 0, et.size);
13338 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13339 break;
13341 default:
13342 abort ();
13345 if (cmode == FAIL)
13346 return;
13348 inst.instruction |= neon_quad (rs) << 6;
13349 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13350 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13351 inst.instruction |= cmode << 8;
13352 neon_write_immbits (immbits);
13354 neon_dp_fixup (&inst);
13358 static void
13359 do_neon_bitfield (void)
13361 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13362 neon_check_type (3, rs, N_IGNORE_TYPE);
13363 neon_three_same (neon_quad (rs), 0, -1);
13366 static void
13367 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13368 unsigned destbits)
13370 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13371 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13372 types | N_KEY);
13373 if (et.type == NT_float)
13375 NEON_ENCODE (FLOAT, inst);
13376 neon_three_same (neon_quad (rs), 0, -1);
13378 else
13380 NEON_ENCODE (INTEGER, inst);
13381 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13385 static void
13386 do_neon_dyadic_if_su (void)
13388 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13391 static void
13392 do_neon_dyadic_if_su_d (void)
13394 /* This version only allow D registers, but that constraint is enforced during
13395 operand parsing so we don't need to do anything extra here. */
13396 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13399 static void
13400 do_neon_dyadic_if_i_d (void)
13402 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13403 affected if we specify unsigned args. */
13404 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13407 enum vfp_or_neon_is_neon_bits
13409 NEON_CHECK_CC = 1,
13410 NEON_CHECK_ARCH = 2
13413 /* Call this function if an instruction which may have belonged to the VFP or
13414 Neon instruction sets, but turned out to be a Neon instruction (due to the
13415 operand types involved, etc.). We have to check and/or fix-up a couple of
13416 things:
13418 - Make sure the user hasn't attempted to make a Neon instruction
13419 conditional.
13420 - Alter the value in the condition code field if necessary.
13421 - Make sure that the arch supports Neon instructions.
13423 Which of these operations take place depends on bits from enum
13424 vfp_or_neon_is_neon_bits.
13426 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13427 current instruction's condition is COND_ALWAYS, the condition field is
13428 changed to inst.uncond_value. This is necessary because instructions shared
13429 between VFP and Neon may be conditional for the VFP variants only, and the
13430 unconditional Neon version must have, e.g., 0xF in the condition field. */
13432 static int
13433 vfp_or_neon_is_neon (unsigned check)
13435 /* Conditions are always legal in Thumb mode (IT blocks). */
13436 if (!thumb_mode && (check & NEON_CHECK_CC))
13438 if (inst.cond != COND_ALWAYS)
13440 first_error (_(BAD_COND));
13441 return FAIL;
13443 if (inst.uncond_value != -1)
13444 inst.instruction |= inst.uncond_value << 28;
13447 if ((check & NEON_CHECK_ARCH)
13448 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13450 first_error (_(BAD_FPU));
13451 return FAIL;
13454 return SUCCESS;
13457 static void
13458 do_neon_addsub_if_i (void)
13460 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13461 return;
13463 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13464 return;
13466 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13467 affected if we specify unsigned args. */
13468 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13471 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13472 result to be:
13473 V<op> A,B (A is operand 0, B is operand 2)
13474 to mean:
13475 V<op> A,B,A
13476 not:
13477 V<op> A,B,B
13478 so handle that case specially. */
13480 static void
13481 neon_exchange_operands (void)
13483 void *scratch = alloca (sizeof (inst.operands[0]));
13484 if (inst.operands[1].present)
13486 /* Swap operands[1] and operands[2]. */
13487 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13488 inst.operands[1] = inst.operands[2];
13489 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13491 else
13493 inst.operands[1] = inst.operands[2];
13494 inst.operands[2] = inst.operands[0];
13498 static void
13499 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13501 if (inst.operands[2].isreg)
13503 if (invert)
13504 neon_exchange_operands ();
13505 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13507 else
13509 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13510 struct neon_type_el et = neon_check_type (2, rs,
13511 N_EQK | N_SIZ, immtypes | N_KEY);
13513 NEON_ENCODE (IMMED, inst);
13514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13516 inst.instruction |= LOW4 (inst.operands[1].reg);
13517 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13518 inst.instruction |= neon_quad (rs) << 6;
13519 inst.instruction |= (et.type == NT_float) << 10;
13520 inst.instruction |= neon_logbits (et.size) << 18;
13522 neon_dp_fixup (&inst);
13526 static void
13527 do_neon_cmp (void)
13529 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13532 static void
13533 do_neon_cmp_inv (void)
13535 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13538 static void
13539 do_neon_ceq (void)
13541 neon_compare (N_IF_32, N_IF_32, FALSE);
13544 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13545 scalars, which are encoded in 5 bits, M : Rm.
13546 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13547 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13548 index in M. */
13550 static unsigned
13551 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13553 unsigned regno = NEON_SCALAR_REG (scalar);
13554 unsigned elno = NEON_SCALAR_INDEX (scalar);
13556 switch (elsize)
13558 case 16:
13559 if (regno > 7 || elno > 3)
13560 goto bad_scalar;
13561 return regno | (elno << 3);
13563 case 32:
13564 if (regno > 15 || elno > 1)
13565 goto bad_scalar;
13566 return regno | (elno << 4);
13568 default:
13569 bad_scalar:
13570 first_error (_("scalar out of range for multiply instruction"));
13573 return 0;
13576 /* Encode multiply / multiply-accumulate scalar instructions. */
13578 static void
13579 neon_mul_mac (struct neon_type_el et, int ubit)
13581 unsigned scalar;
13583 /* Give a more helpful error message if we have an invalid type. */
13584 if (et.type == NT_invtype)
13585 return;
13587 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13588 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13589 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13590 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13591 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13592 inst.instruction |= LOW4 (scalar);
13593 inst.instruction |= HI1 (scalar) << 5;
13594 inst.instruction |= (et.type == NT_float) << 8;
13595 inst.instruction |= neon_logbits (et.size) << 20;
13596 inst.instruction |= (ubit != 0) << 24;
13598 neon_dp_fixup (&inst);
13601 static void
13602 do_neon_mac_maybe_scalar (void)
13604 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13605 return;
13607 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13608 return;
13610 if (inst.operands[2].isscalar)
13612 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13613 struct neon_type_el et = neon_check_type (3, rs,
13614 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13615 NEON_ENCODE (SCALAR, inst);
13616 neon_mul_mac (et, neon_quad (rs));
13618 else
13620 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13621 affected if we specify unsigned args. */
13622 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13626 static void
13627 do_neon_fmac (void)
13629 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13630 return;
13632 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13633 return;
13635 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13638 static void
13639 do_neon_tst (void)
13641 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13642 struct neon_type_el et = neon_check_type (3, rs,
13643 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13644 neon_three_same (neon_quad (rs), 0, et.size);
13647 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13648 same types as the MAC equivalents. The polynomial type for this instruction
13649 is encoded the same as the integer type. */
13651 static void
13652 do_neon_mul (void)
13654 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13655 return;
13657 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13658 return;
13660 if (inst.operands[2].isscalar)
13661 do_neon_mac_maybe_scalar ();
13662 else
13663 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13666 static void
13667 do_neon_qdmulh (void)
13669 if (inst.operands[2].isscalar)
13671 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13672 struct neon_type_el et = neon_check_type (3, rs,
13673 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13674 NEON_ENCODE (SCALAR, inst);
13675 neon_mul_mac (et, neon_quad (rs));
13677 else
13679 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13680 struct neon_type_el et = neon_check_type (3, rs,
13681 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13682 NEON_ENCODE (INTEGER, inst);
13683 /* The U bit (rounding) comes from bit mask. */
13684 neon_three_same (neon_quad (rs), 0, et.size);
13688 static void
13689 do_neon_fcmp_absolute (void)
13691 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13692 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13693 /* Size field comes from bit mask. */
13694 neon_three_same (neon_quad (rs), 1, -1);
13697 static void
13698 do_neon_fcmp_absolute_inv (void)
13700 neon_exchange_operands ();
13701 do_neon_fcmp_absolute ();
13704 static void
13705 do_neon_step (void)
13707 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13708 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13709 neon_three_same (neon_quad (rs), 0, -1);
13712 static void
13713 do_neon_abs_neg (void)
13715 enum neon_shape rs;
13716 struct neon_type_el et;
13718 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13719 return;
13721 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13722 return;
13724 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13725 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13727 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13729 inst.instruction |= LOW4 (inst.operands[1].reg);
13730 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13731 inst.instruction |= neon_quad (rs) << 6;
13732 inst.instruction |= (et.type == NT_float) << 10;
13733 inst.instruction |= neon_logbits (et.size) << 18;
13735 neon_dp_fixup (&inst);
13738 static void
13739 do_neon_sli (void)
13741 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13742 struct neon_type_el et = neon_check_type (2, rs,
13743 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13744 int imm = inst.operands[2].imm;
13745 constraint (imm < 0 || (unsigned)imm >= et.size,
13746 _("immediate out of range for insert"));
13747 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13750 static void
13751 do_neon_sri (void)
13753 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13754 struct neon_type_el et = neon_check_type (2, rs,
13755 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13756 int imm = inst.operands[2].imm;
13757 constraint (imm < 1 || (unsigned)imm > et.size,
13758 _("immediate out of range for insert"));
13759 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13762 static void
13763 do_neon_qshlu_imm (void)
13765 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13766 struct neon_type_el et = neon_check_type (2, rs,
13767 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13768 int imm = inst.operands[2].imm;
13769 constraint (imm < 0 || (unsigned)imm >= et.size,
13770 _("immediate out of range for shift"));
13771 /* Only encodes the 'U present' variant of the instruction.
13772 In this case, signed types have OP (bit 8) set to 0.
13773 Unsigned types have OP set to 1. */
13774 inst.instruction |= (et.type == NT_unsigned) << 8;
13775 /* The rest of the bits are the same as other immediate shifts. */
13776 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13779 static void
13780 do_neon_qmovn (void)
13782 struct neon_type_el et = neon_check_type (2, NS_DQ,
13783 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13784 /* Saturating move where operands can be signed or unsigned, and the
13785 destination has the same signedness. */
13786 NEON_ENCODE (INTEGER, inst);
13787 if (et.type == NT_unsigned)
13788 inst.instruction |= 0xc0;
13789 else
13790 inst.instruction |= 0x80;
13791 neon_two_same (0, 1, et.size / 2);
13794 static void
13795 do_neon_qmovun (void)
13797 struct neon_type_el et = neon_check_type (2, NS_DQ,
13798 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13799 /* Saturating move with unsigned results. Operands must be signed. */
13800 NEON_ENCODE (INTEGER, inst);
13801 neon_two_same (0, 1, et.size / 2);
13804 static void
13805 do_neon_rshift_sat_narrow (void)
13807 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13808 or unsigned. If operands are unsigned, results must also be unsigned. */
13809 struct neon_type_el et = neon_check_type (2, NS_DQI,
13810 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13811 int imm = inst.operands[2].imm;
13812 /* This gets the bounds check, size encoding and immediate bits calculation
13813 right. */
13814 et.size /= 2;
13816 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13817 VQMOVN.I<size> <Dd>, <Qm>. */
13818 if (imm == 0)
13820 inst.operands[2].present = 0;
13821 inst.instruction = N_MNEM_vqmovn;
13822 do_neon_qmovn ();
13823 return;
13826 constraint (imm < 1 || (unsigned)imm > et.size,
13827 _("immediate out of range"));
13828 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13831 static void
13832 do_neon_rshift_sat_narrow_u (void)
13834 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13835 or unsigned. If operands are unsigned, results must also be unsigned. */
13836 struct neon_type_el et = neon_check_type (2, NS_DQI,
13837 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13838 int imm = inst.operands[2].imm;
13839 /* This gets the bounds check, size encoding and immediate bits calculation
13840 right. */
13841 et.size /= 2;
13843 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13844 VQMOVUN.I<size> <Dd>, <Qm>. */
13845 if (imm == 0)
13847 inst.operands[2].present = 0;
13848 inst.instruction = N_MNEM_vqmovun;
13849 do_neon_qmovun ();
13850 return;
13853 constraint (imm < 1 || (unsigned)imm > et.size,
13854 _("immediate out of range"));
13855 /* FIXME: The manual is kind of unclear about what value U should have in
13856 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13857 must be 1. */
13858 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13861 static void
13862 do_neon_movn (void)
13864 struct neon_type_el et = neon_check_type (2, NS_DQ,
13865 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13866 NEON_ENCODE (INTEGER, inst);
13867 neon_two_same (0, 1, et.size / 2);
13870 static void
13871 do_neon_rshift_narrow (void)
13873 struct neon_type_el et = neon_check_type (2, NS_DQI,
13874 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13875 int imm = inst.operands[2].imm;
13876 /* This gets the bounds check, size encoding and immediate bits calculation
13877 right. */
13878 et.size /= 2;
13880 /* If immediate is zero then we are a pseudo-instruction for
13881 VMOVN.I<size> <Dd>, <Qm> */
13882 if (imm == 0)
13884 inst.operands[2].present = 0;
13885 inst.instruction = N_MNEM_vmovn;
13886 do_neon_movn ();
13887 return;
13890 constraint (imm < 1 || (unsigned)imm > et.size,
13891 _("immediate out of range for narrowing operation"));
13892 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13895 static void
13896 do_neon_shll (void)
13898 /* FIXME: Type checking when lengthening. */
13899 struct neon_type_el et = neon_check_type (2, NS_QDI,
13900 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13901 unsigned imm = inst.operands[2].imm;
13903 if (imm == et.size)
13905 /* Maximum shift variant. */
13906 NEON_ENCODE (INTEGER, inst);
13907 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13908 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13909 inst.instruction |= LOW4 (inst.operands[1].reg);
13910 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13911 inst.instruction |= neon_logbits (et.size) << 18;
13913 neon_dp_fixup (&inst);
13915 else
13917 /* A more-specific type check for non-max versions. */
13918 et = neon_check_type (2, NS_QDI,
13919 N_EQK | N_DBL, N_SU_32 | N_KEY);
13920 NEON_ENCODE (IMMED, inst);
13921 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13925 /* Check the various types for the VCVT instruction, and return which version
13926 the current instruction is. */
13928 static int
13929 neon_cvt_flavour (enum neon_shape rs)
13931 #define CVT_VAR(C,X,Y) \
13932 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13933 if (et.type != NT_invtype) \
13935 inst.error = NULL; \
13936 return (C); \
13938 struct neon_type_el et;
13939 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13940 || rs == NS_FF) ? N_VFP : 0;
13941 /* The instruction versions which take an immediate take one register
13942 argument, which is extended to the width of the full register. Thus the
13943 "source" and "destination" registers must have the same width. Hack that
13944 here by making the size equal to the key (wider, in this case) operand. */
13945 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13947 CVT_VAR (0, N_S32, N_F32);
13948 CVT_VAR (1, N_U32, N_F32);
13949 CVT_VAR (2, N_F32, N_S32);
13950 CVT_VAR (3, N_F32, N_U32);
13951 /* Half-precision conversions. */
13952 CVT_VAR (4, N_F32, N_F16);
13953 CVT_VAR (5, N_F16, N_F32);
13955 whole_reg = N_VFP;
13957 /* VFP instructions. */
13958 CVT_VAR (6, N_F32, N_F64);
13959 CVT_VAR (7, N_F64, N_F32);
13960 CVT_VAR (8, N_S32, N_F64 | key);
13961 CVT_VAR (9, N_U32, N_F64 | key);
13962 CVT_VAR (10, N_F64 | key, N_S32);
13963 CVT_VAR (11, N_F64 | key, N_U32);
13964 /* VFP instructions with bitshift. */
13965 CVT_VAR (12, N_F32 | key, N_S16);
13966 CVT_VAR (13, N_F32 | key, N_U16);
13967 CVT_VAR (14, N_F64 | key, N_S16);
13968 CVT_VAR (15, N_F64 | key, N_U16);
13969 CVT_VAR (16, N_S16, N_F32 | key);
13970 CVT_VAR (17, N_U16, N_F32 | key);
13971 CVT_VAR (18, N_S16, N_F64 | key);
13972 CVT_VAR (19, N_U16, N_F64 | key);
13974 return -1;
13975 #undef CVT_VAR
13978 /* Neon-syntax VFP conversions. */
13980 static void
13981 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13983 const char *opname = 0;
13985 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13987 /* Conversions with immediate bitshift. */
13988 const char *enc[] =
13990 "ftosls",
13991 "ftouls",
13992 "fsltos",
13993 "fultos",
13994 NULL,
13995 NULL,
13996 NULL,
13997 NULL,
13998 "ftosld",
13999 "ftould",
14000 "fsltod",
14001 "fultod",
14002 "fshtos",
14003 "fuhtos",
14004 "fshtod",
14005 "fuhtod",
14006 "ftoshs",
14007 "ftouhs",
14008 "ftoshd",
14009 "ftouhd"
14012 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14014 opname = enc[flavour];
14015 constraint (inst.operands[0].reg != inst.operands[1].reg,
14016 _("operands 0 and 1 must be the same register"));
14017 inst.operands[1] = inst.operands[2];
14018 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14021 else
14023 /* Conversions without bitshift. */
14024 const char *enc[] =
14026 "ftosis",
14027 "ftouis",
14028 "fsitos",
14029 "fuitos",
14030 "NULL",
14031 "NULL",
14032 "fcvtsd",
14033 "fcvtds",
14034 "ftosid",
14035 "ftouid",
14036 "fsitod",
14037 "fuitod"
14040 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14041 opname = enc[flavour];
14044 if (opname)
14045 do_vfp_nsyn_opcode (opname);
14048 static void
14049 do_vfp_nsyn_cvtz (void)
14051 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14052 int flavour = neon_cvt_flavour (rs);
14053 const char *enc[] =
14055 "ftosizs",
14056 "ftouizs",
14057 NULL,
14058 NULL,
14059 NULL,
14060 NULL,
14061 NULL,
14062 NULL,
14063 "ftosizd",
14064 "ftouizd"
14067 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14068 do_vfp_nsyn_opcode (enc[flavour]);
14071 static void
14072 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14074 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14075 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14076 int flavour = neon_cvt_flavour (rs);
14078 /* PR11109: Handle round-to-zero for VCVT conversions. */
14079 if (round_to_zero
14080 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14081 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14082 && (rs == NS_FD || rs == NS_FF))
14084 do_vfp_nsyn_cvtz ();
14085 return;
14088 /* VFP rather than Neon conversions. */
14089 if (flavour >= 6)
14091 do_vfp_nsyn_cvt (rs, flavour);
14092 return;
14095 switch (rs)
14097 case NS_DDI:
14098 case NS_QQI:
14100 unsigned immbits;
14101 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14103 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14104 return;
14106 /* Fixed-point conversion with #0 immediate is encoded as an
14107 integer conversion. */
14108 if (inst.operands[2].present && inst.operands[2].imm == 0)
14109 goto int_encode;
14110 immbits = 32 - inst.operands[2].imm;
14111 NEON_ENCODE (IMMED, inst);
14112 if (flavour != -1)
14113 inst.instruction |= enctab[flavour];
14114 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14115 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14116 inst.instruction |= LOW4 (inst.operands[1].reg);
14117 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14118 inst.instruction |= neon_quad (rs) << 6;
14119 inst.instruction |= 1 << 21;
14120 inst.instruction |= immbits << 16;
14122 neon_dp_fixup (&inst);
14124 break;
14126 case NS_DD:
14127 case NS_QQ:
14128 int_encode:
14130 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14132 NEON_ENCODE (INTEGER, inst);
14134 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14135 return;
14137 if (flavour != -1)
14138 inst.instruction |= enctab[flavour];
14140 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14141 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14142 inst.instruction |= LOW4 (inst.operands[1].reg);
14143 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14144 inst.instruction |= neon_quad (rs) << 6;
14145 inst.instruction |= 2 << 18;
14147 neon_dp_fixup (&inst);
14149 break;
14151 /* Half-precision conversions for Advanced SIMD -- neon. */
14152 case NS_QD:
14153 case NS_DQ:
14155 if ((rs == NS_DQ)
14156 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14158 as_bad (_("operand size must match register width"));
14159 break;
14162 if ((rs == NS_QD)
14163 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14165 as_bad (_("operand size must match register width"));
14166 break;
14169 if (rs == NS_DQ)
14170 inst.instruction = 0x3b60600;
14171 else
14172 inst.instruction = 0x3b60700;
14174 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14175 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14176 inst.instruction |= LOW4 (inst.operands[1].reg);
14177 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14178 neon_dp_fixup (&inst);
14179 break;
14181 default:
14182 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14183 do_vfp_nsyn_cvt (rs, flavour);
14187 static void
14188 do_neon_cvtr (void)
14190 do_neon_cvt_1 (FALSE);
14193 static void
14194 do_neon_cvt (void)
14196 do_neon_cvt_1 (TRUE);
14199 static void
14200 do_neon_cvtb (void)
14202 inst.instruction = 0xeb20a40;
14204 /* The sizes are attached to the mnemonic. */
14205 if (inst.vectype.el[0].type != NT_invtype
14206 && inst.vectype.el[0].size == 16)
14207 inst.instruction |= 0x00010000;
14209 /* Programmer's syntax: the sizes are attached to the operands. */
14210 else if (inst.operands[0].vectype.type != NT_invtype
14211 && inst.operands[0].vectype.size == 16)
14212 inst.instruction |= 0x00010000;
14214 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14215 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14216 do_vfp_cond_or_thumb ();
14220 static void
14221 do_neon_cvtt (void)
14223 do_neon_cvtb ();
14224 inst.instruction |= 0x80;
14227 static void
14228 neon_move_immediate (void)
14230 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14231 struct neon_type_el et = neon_check_type (2, rs,
14232 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14233 unsigned immlo, immhi = 0, immbits;
14234 int op, cmode, float_p;
14236 constraint (et.type == NT_invtype,
14237 _("operand size must be specified for immediate VMOV"));
14239 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14240 op = (inst.instruction & (1 << 5)) != 0;
14242 immlo = inst.operands[1].imm;
14243 if (inst.operands[1].regisimm)
14244 immhi = inst.operands[1].reg;
14246 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14247 _("immediate has bits set outside the operand size"));
14249 float_p = inst.operands[1].immisfloat;
14251 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14252 et.size, et.type)) == FAIL)
14254 /* Invert relevant bits only. */
14255 neon_invert_size (&immlo, &immhi, et.size);
14256 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14257 with one or the other; those cases are caught by
14258 neon_cmode_for_move_imm. */
14259 op = !op;
14260 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14261 &op, et.size, et.type)) == FAIL)
14263 first_error (_("immediate out of range"));
14264 return;
14268 inst.instruction &= ~(1 << 5);
14269 inst.instruction |= op << 5;
14271 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14273 inst.instruction |= neon_quad (rs) << 6;
14274 inst.instruction |= cmode << 8;
14276 neon_write_immbits (immbits);
14279 static void
14280 do_neon_mvn (void)
14282 if (inst.operands[1].isreg)
14284 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14286 NEON_ENCODE (INTEGER, inst);
14287 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14288 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14289 inst.instruction |= LOW4 (inst.operands[1].reg);
14290 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14291 inst.instruction |= neon_quad (rs) << 6;
14293 else
14295 NEON_ENCODE (IMMED, inst);
14296 neon_move_immediate ();
14299 neon_dp_fixup (&inst);
14302 /* Encode instructions of form:
14304 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14305 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14307 static void
14308 neon_mixed_length (struct neon_type_el et, unsigned size)
14310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14312 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14313 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14314 inst.instruction |= LOW4 (inst.operands[2].reg);
14315 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14316 inst.instruction |= (et.type == NT_unsigned) << 24;
14317 inst.instruction |= neon_logbits (size) << 20;
14319 neon_dp_fixup (&inst);
14322 static void
14323 do_neon_dyadic_long (void)
14325 /* FIXME: Type checking for lengthening op. */
14326 struct neon_type_el et = neon_check_type (3, NS_QDD,
14327 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14328 neon_mixed_length (et, et.size);
14331 static void
14332 do_neon_abal (void)
14334 struct neon_type_el et = neon_check_type (3, NS_QDD,
14335 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14336 neon_mixed_length (et, et.size);
14339 static void
14340 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14342 if (inst.operands[2].isscalar)
14344 struct neon_type_el et = neon_check_type (3, NS_QDS,
14345 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14346 NEON_ENCODE (SCALAR, inst);
14347 neon_mul_mac (et, et.type == NT_unsigned);
14349 else
14351 struct neon_type_el et = neon_check_type (3, NS_QDD,
14352 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14353 NEON_ENCODE (INTEGER, inst);
14354 neon_mixed_length (et, et.size);
14358 static void
14359 do_neon_mac_maybe_scalar_long (void)
14361 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14364 static void
14365 do_neon_dyadic_wide (void)
14367 struct neon_type_el et = neon_check_type (3, NS_QQD,
14368 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14369 neon_mixed_length (et, et.size);
14372 static void
14373 do_neon_dyadic_narrow (void)
14375 struct neon_type_el et = neon_check_type (3, NS_QDD,
14376 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14377 /* Operand sign is unimportant, and the U bit is part of the opcode,
14378 so force the operand type to integer. */
14379 et.type = NT_integer;
14380 neon_mixed_length (et, et.size / 2);
14383 static void
14384 do_neon_mul_sat_scalar_long (void)
14386 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14389 static void
14390 do_neon_vmull (void)
14392 if (inst.operands[2].isscalar)
14393 do_neon_mac_maybe_scalar_long ();
14394 else
14396 struct neon_type_el et = neon_check_type (3, NS_QDD,
14397 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14398 if (et.type == NT_poly)
14399 NEON_ENCODE (POLY, inst);
14400 else
14401 NEON_ENCODE (INTEGER, inst);
14402 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14403 zero. Should be OK as-is. */
14404 neon_mixed_length (et, et.size);
14408 static void
14409 do_neon_ext (void)
14411 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14412 struct neon_type_el et = neon_check_type (3, rs,
14413 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14414 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14416 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14417 _("shift out of range"));
14418 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14419 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14420 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14421 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14422 inst.instruction |= LOW4 (inst.operands[2].reg);
14423 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14424 inst.instruction |= neon_quad (rs) << 6;
14425 inst.instruction |= imm << 8;
14427 neon_dp_fixup (&inst);
14430 static void
14431 do_neon_rev (void)
14433 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14434 struct neon_type_el et = neon_check_type (2, rs,
14435 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14436 unsigned op = (inst.instruction >> 7) & 3;
14437 /* N (width of reversed regions) is encoded as part of the bitmask. We
14438 extract it here to check the elements to be reversed are smaller.
14439 Otherwise we'd get a reserved instruction. */
14440 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14441 gas_assert (elsize != 0);
14442 constraint (et.size >= elsize,
14443 _("elements must be smaller than reversal region"));
14444 neon_two_same (neon_quad (rs), 1, et.size);
14447 static void
14448 do_neon_dup (void)
14450 if (inst.operands[1].isscalar)
14452 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14453 struct neon_type_el et = neon_check_type (2, rs,
14454 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14455 unsigned sizebits = et.size >> 3;
14456 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14457 int logsize = neon_logbits (et.size);
14458 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14460 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14461 return;
14463 NEON_ENCODE (SCALAR, inst);
14464 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14465 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14466 inst.instruction |= LOW4 (dm);
14467 inst.instruction |= HI1 (dm) << 5;
14468 inst.instruction |= neon_quad (rs) << 6;
14469 inst.instruction |= x << 17;
14470 inst.instruction |= sizebits << 16;
14472 neon_dp_fixup (&inst);
14474 else
14476 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14477 struct neon_type_el et = neon_check_type (2, rs,
14478 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14479 /* Duplicate ARM register to lanes of vector. */
14480 NEON_ENCODE (ARMREG, inst);
14481 switch (et.size)
14483 case 8: inst.instruction |= 0x400000; break;
14484 case 16: inst.instruction |= 0x000020; break;
14485 case 32: inst.instruction |= 0x000000; break;
14486 default: break;
14488 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14489 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14490 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14491 inst.instruction |= neon_quad (rs) << 21;
14492 /* The encoding for this instruction is identical for the ARM and Thumb
14493 variants, except for the condition field. */
14494 do_vfp_cond_or_thumb ();
14498 /* VMOV has particularly many variations. It can be one of:
14499 0. VMOV<c><q> <Qd>, <Qm>
14500 1. VMOV<c><q> <Dd>, <Dm>
14501 (Register operations, which are VORR with Rm = Rn.)
14502 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14503 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14504 (Immediate loads.)
14505 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14506 (ARM register to scalar.)
14507 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14508 (Two ARM registers to vector.)
14509 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14510 (Scalar to ARM register.)
14511 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14512 (Vector to two ARM registers.)
14513 8. VMOV.F32 <Sd>, <Sm>
14514 9. VMOV.F64 <Dd>, <Dm>
14515 (VFP register moves.)
14516 10. VMOV.F32 <Sd>, #imm
14517 11. VMOV.F64 <Dd>, #imm
14518 (VFP float immediate load.)
14519 12. VMOV <Rd>, <Sm>
14520 (VFP single to ARM reg.)
14521 13. VMOV <Sd>, <Rm>
14522 (ARM reg to VFP single.)
14523 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14524 (Two ARM regs to two VFP singles.)
14525 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14526 (Two VFP singles to two ARM regs.)
14528 These cases can be disambiguated using neon_select_shape, except cases 1/9
14529 and 3/11 which depend on the operand type too.
14531 All the encoded bits are hardcoded by this function.
14533 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14534 Cases 5, 7 may be used with VFPv2 and above.
14536 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14537 can specify a type where it doesn't make sense to, and is ignored). */
14539 static void
14540 do_neon_mov (void)
14542 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14543 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14544 NS_NULL);
14545 struct neon_type_el et;
14546 const char *ldconst = 0;
14548 switch (rs)
14550 case NS_DD: /* case 1/9. */
14551 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14552 /* It is not an error here if no type is given. */
14553 inst.error = NULL;
14554 if (et.type == NT_float && et.size == 64)
14556 do_vfp_nsyn_opcode ("fcpyd");
14557 break;
14559 /* fall through. */
14561 case NS_QQ: /* case 0/1. */
14563 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14564 return;
14565 /* The architecture manual I have doesn't explicitly state which
14566 value the U bit should have for register->register moves, but
14567 the equivalent VORR instruction has U = 0, so do that. */
14568 inst.instruction = 0x0200110;
14569 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14570 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14571 inst.instruction |= LOW4 (inst.operands[1].reg);
14572 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14573 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14574 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14575 inst.instruction |= neon_quad (rs) << 6;
14577 neon_dp_fixup (&inst);
14579 break;
14581 case NS_DI: /* case 3/11. */
14582 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14583 inst.error = NULL;
14584 if (et.type == NT_float && et.size == 64)
14586 /* case 11 (fconstd). */
14587 ldconst = "fconstd";
14588 goto encode_fconstd;
14590 /* fall through. */
14592 case NS_QI: /* case 2/3. */
14593 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14594 return;
14595 inst.instruction = 0x0800010;
14596 neon_move_immediate ();
14597 neon_dp_fixup (&inst);
14598 break;
14600 case NS_SR: /* case 4. */
14602 unsigned bcdebits = 0;
14603 int logsize;
14604 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14605 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14607 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14608 logsize = neon_logbits (et.size);
14610 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14611 _(BAD_FPU));
14612 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14613 && et.size != 32, _(BAD_FPU));
14614 constraint (et.type == NT_invtype, _("bad type for scalar"));
14615 constraint (x >= 64 / et.size, _("scalar index out of range"));
14617 switch (et.size)
14619 case 8: bcdebits = 0x8; break;
14620 case 16: bcdebits = 0x1; break;
14621 case 32: bcdebits = 0x0; break;
14622 default: ;
14625 bcdebits |= x << logsize;
14627 inst.instruction = 0xe000b10;
14628 do_vfp_cond_or_thumb ();
14629 inst.instruction |= LOW4 (dn) << 16;
14630 inst.instruction |= HI1 (dn) << 7;
14631 inst.instruction |= inst.operands[1].reg << 12;
14632 inst.instruction |= (bcdebits & 3) << 5;
14633 inst.instruction |= (bcdebits >> 2) << 21;
14635 break;
14637 case NS_DRR: /* case 5 (fmdrr). */
14638 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14639 _(BAD_FPU));
14641 inst.instruction = 0xc400b10;
14642 do_vfp_cond_or_thumb ();
14643 inst.instruction |= LOW4 (inst.operands[0].reg);
14644 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14645 inst.instruction |= inst.operands[1].reg << 12;
14646 inst.instruction |= inst.operands[2].reg << 16;
14647 break;
14649 case NS_RS: /* case 6. */
14651 unsigned logsize;
14652 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14653 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14654 unsigned abcdebits = 0;
14656 et = neon_check_type (2, NS_NULL,
14657 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14658 logsize = neon_logbits (et.size);
14660 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14661 _(BAD_FPU));
14662 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14663 && et.size != 32, _(BAD_FPU));
14664 constraint (et.type == NT_invtype, _("bad type for scalar"));
14665 constraint (x >= 64 / et.size, _("scalar index out of range"));
14667 switch (et.size)
14669 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14670 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14671 case 32: abcdebits = 0x00; break;
14672 default: ;
14675 abcdebits |= x << logsize;
14676 inst.instruction = 0xe100b10;
14677 do_vfp_cond_or_thumb ();
14678 inst.instruction |= LOW4 (dn) << 16;
14679 inst.instruction |= HI1 (dn) << 7;
14680 inst.instruction |= inst.operands[0].reg << 12;
14681 inst.instruction |= (abcdebits & 3) << 5;
14682 inst.instruction |= (abcdebits >> 2) << 21;
14684 break;
14686 case NS_RRD: /* case 7 (fmrrd). */
14687 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14688 _(BAD_FPU));
14690 inst.instruction = 0xc500b10;
14691 do_vfp_cond_or_thumb ();
14692 inst.instruction |= inst.operands[0].reg << 12;
14693 inst.instruction |= inst.operands[1].reg << 16;
14694 inst.instruction |= LOW4 (inst.operands[2].reg);
14695 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14696 break;
14698 case NS_FF: /* case 8 (fcpys). */
14699 do_vfp_nsyn_opcode ("fcpys");
14700 break;
14702 case NS_FI: /* case 10 (fconsts). */
14703 ldconst = "fconsts";
14704 encode_fconstd:
14705 if (is_quarter_float (inst.operands[1].imm))
14707 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14708 do_vfp_nsyn_opcode (ldconst);
14710 else
14711 first_error (_("immediate out of range"));
14712 break;
14714 case NS_RF: /* case 12 (fmrs). */
14715 do_vfp_nsyn_opcode ("fmrs");
14716 break;
14718 case NS_FR: /* case 13 (fmsr). */
14719 do_vfp_nsyn_opcode ("fmsr");
14720 break;
14722 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14723 (one of which is a list), but we have parsed four. Do some fiddling to
14724 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14725 expect. */
14726 case NS_RRFF: /* case 14 (fmrrs). */
14727 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14728 _("VFP registers must be adjacent"));
14729 inst.operands[2].imm = 2;
14730 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14731 do_vfp_nsyn_opcode ("fmrrs");
14732 break;
14734 case NS_FFRR: /* case 15 (fmsrr). */
14735 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14736 _("VFP registers must be adjacent"));
14737 inst.operands[1] = inst.operands[2];
14738 inst.operands[2] = inst.operands[3];
14739 inst.operands[0].imm = 2;
14740 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14741 do_vfp_nsyn_opcode ("fmsrr");
14742 break;
14744 default:
14745 abort ();
14749 static void
14750 do_neon_rshift_round_imm (void)
14752 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14753 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14754 int imm = inst.operands[2].imm;
14756 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14757 if (imm == 0)
14759 inst.operands[2].present = 0;
14760 do_neon_mov ();
14761 return;
14764 constraint (imm < 1 || (unsigned)imm > et.size,
14765 _("immediate out of range for shift"));
14766 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14767 et.size - imm);
14770 static void
14771 do_neon_movl (void)
14773 struct neon_type_el et = neon_check_type (2, NS_QD,
14774 N_EQK | N_DBL, N_SU_32 | N_KEY);
14775 unsigned sizebits = et.size >> 3;
14776 inst.instruction |= sizebits << 19;
14777 neon_two_same (0, et.type == NT_unsigned, -1);
14780 static void
14781 do_neon_trn (void)
14783 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14784 struct neon_type_el et = neon_check_type (2, rs,
14785 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14786 NEON_ENCODE (INTEGER, inst);
14787 neon_two_same (neon_quad (rs), 1, et.size);
14790 static void
14791 do_neon_zip_uzp (void)
14793 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14794 struct neon_type_el et = neon_check_type (2, rs,
14795 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14796 if (rs == NS_DD && et.size == 32)
14798 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14799 inst.instruction = N_MNEM_vtrn;
14800 do_neon_trn ();
14801 return;
14803 neon_two_same (neon_quad (rs), 1, et.size);
14806 static void
14807 do_neon_sat_abs_neg (void)
14809 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14810 struct neon_type_el et = neon_check_type (2, rs,
14811 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14812 neon_two_same (neon_quad (rs), 1, et.size);
14815 static void
14816 do_neon_pair_long (void)
14818 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14819 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14820 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14821 inst.instruction |= (et.type == NT_unsigned) << 7;
14822 neon_two_same (neon_quad (rs), 1, et.size);
14825 static void
14826 do_neon_recip_est (void)
14828 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14829 struct neon_type_el et = neon_check_type (2, rs,
14830 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14831 inst.instruction |= (et.type == NT_float) << 8;
14832 neon_two_same (neon_quad (rs), 1, et.size);
14835 static void
14836 do_neon_cls (void)
14838 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14839 struct neon_type_el et = neon_check_type (2, rs,
14840 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14841 neon_two_same (neon_quad (rs), 1, et.size);
14844 static void
14845 do_neon_clz (void)
14847 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14848 struct neon_type_el et = neon_check_type (2, rs,
14849 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14850 neon_two_same (neon_quad (rs), 1, et.size);
14853 static void
14854 do_neon_cnt (void)
14856 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14857 struct neon_type_el et = neon_check_type (2, rs,
14858 N_EQK | N_INT, N_8 | N_KEY);
14859 neon_two_same (neon_quad (rs), 1, et.size);
14862 static void
14863 do_neon_swp (void)
14865 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14866 neon_two_same (neon_quad (rs), 1, -1);
14869 static void
14870 do_neon_tbl_tbx (void)
14872 unsigned listlenbits;
14873 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14875 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14877 first_error (_("bad list length for table lookup"));
14878 return;
14881 listlenbits = inst.operands[1].imm - 1;
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14885 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14886 inst.instruction |= LOW4 (inst.operands[2].reg);
14887 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14888 inst.instruction |= listlenbits << 8;
14890 neon_dp_fixup (&inst);
14893 static void
14894 do_neon_ldm_stm (void)
14896 /* P, U and L bits are part of bitmask. */
14897 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14898 unsigned offsetbits = inst.operands[1].imm * 2;
14900 if (inst.operands[1].issingle)
14902 do_vfp_nsyn_ldm_stm (is_dbmode);
14903 return;
14906 constraint (is_dbmode && !inst.operands[0].writeback,
14907 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14909 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14910 _("register list must contain at least 1 and at most 16 "
14911 "registers"));
14913 inst.instruction |= inst.operands[0].reg << 16;
14914 inst.instruction |= inst.operands[0].writeback << 21;
14915 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14916 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14918 inst.instruction |= offsetbits;
14920 do_vfp_cond_or_thumb ();
14923 static void
14924 do_neon_ldr_str (void)
14926 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14928 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
14929 And is UNPREDICTABLE in thumb mode. */
14930 if (!is_ldr
14931 && inst.operands[1].reg == REG_PC
14932 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
14934 if (!thumb_mode && warn_on_deprecated)
14935 as_warn (_("Use of PC here is deprecated"));
14936 else
14937 inst.error = _("Use of PC here is UNPREDICTABLE");
14940 if (inst.operands[0].issingle)
14942 if (is_ldr)
14943 do_vfp_nsyn_opcode ("flds");
14944 else
14945 do_vfp_nsyn_opcode ("fsts");
14947 else
14949 if (is_ldr)
14950 do_vfp_nsyn_opcode ("fldd");
14951 else
14952 do_vfp_nsyn_opcode ("fstd");
14956 /* "interleave" version also handles non-interleaving register VLD1/VST1
14957 instructions. */
14959 static void
14960 do_neon_ld_st_interleave (void)
14962 struct neon_type_el et = neon_check_type (1, NS_NULL,
14963 N_8 | N_16 | N_32 | N_64);
14964 unsigned alignbits = 0;
14965 unsigned idx;
14966 /* The bits in this table go:
14967 0: register stride of one (0) or two (1)
14968 1,2: register list length, minus one (1, 2, 3, 4).
14969 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14970 We use -1 for invalid entries. */
14971 const int typetable[] =
14973 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14974 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14975 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14976 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14978 int typebits;
14980 if (et.type == NT_invtype)
14981 return;
14983 if (inst.operands[1].immisalign)
14984 switch (inst.operands[1].imm >> 8)
14986 case 64: alignbits = 1; break;
14987 case 128:
14988 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14989 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14990 goto bad_alignment;
14991 alignbits = 2;
14992 break;
14993 case 256:
14994 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14995 goto bad_alignment;
14996 alignbits = 3;
14997 break;
14998 default:
14999 bad_alignment:
15000 first_error (_("bad alignment"));
15001 return;
15004 inst.instruction |= alignbits << 4;
15005 inst.instruction |= neon_logbits (et.size) << 6;
15007 /* Bits [4:6] of the immediate in a list specifier encode register stride
15008 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15009 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15010 up the right value for "type" in a table based on this value and the given
15011 list style, then stick it back. */
15012 idx = ((inst.operands[0].imm >> 4) & 7)
15013 | (((inst.instruction >> 8) & 3) << 3);
15015 typebits = typetable[idx];
15017 constraint (typebits == -1, _("bad list type for instruction"));
15019 inst.instruction &= ~0xf00;
15020 inst.instruction |= typebits << 8;
15023 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15024 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15025 otherwise. The variable arguments are a list of pairs of legal (size, align)
15026 values, terminated with -1. */
15028 static int
15029 neon_alignment_bit (int size, int align, int *do_align, ...)
15031 va_list ap;
15032 int result = FAIL, thissize, thisalign;
15034 if (!inst.operands[1].immisalign)
15036 *do_align = 0;
15037 return SUCCESS;
15040 va_start (ap, do_align);
15044 thissize = va_arg (ap, int);
15045 if (thissize == -1)
15046 break;
15047 thisalign = va_arg (ap, int);
15049 if (size == thissize && align == thisalign)
15050 result = SUCCESS;
15052 while (result != SUCCESS);
15054 va_end (ap);
15056 if (result == SUCCESS)
15057 *do_align = 1;
15058 else
15059 first_error (_("unsupported alignment for instruction"));
15061 return result;
15064 static void
15065 do_neon_ld_st_lane (void)
15067 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15068 int align_good, do_align = 0;
15069 int logsize = neon_logbits (et.size);
15070 int align = inst.operands[1].imm >> 8;
15071 int n = (inst.instruction >> 8) & 3;
15072 int max_el = 64 / et.size;
15074 if (et.type == NT_invtype)
15075 return;
15077 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15078 _("bad list length"));
15079 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15080 _("scalar index out of range"));
15081 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15082 && et.size == 8,
15083 _("stride of 2 unavailable when element size is 8"));
15085 switch (n)
15087 case 0: /* VLD1 / VST1. */
15088 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15089 32, 32, -1);
15090 if (align_good == FAIL)
15091 return;
15092 if (do_align)
15094 unsigned alignbits = 0;
15095 switch (et.size)
15097 case 16: alignbits = 0x1; break;
15098 case 32: alignbits = 0x3; break;
15099 default: ;
15101 inst.instruction |= alignbits << 4;
15103 break;
15105 case 1: /* VLD2 / VST2. */
15106 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15107 32, 64, -1);
15108 if (align_good == FAIL)
15109 return;
15110 if (do_align)
15111 inst.instruction |= 1 << 4;
15112 break;
15114 case 2: /* VLD3 / VST3. */
15115 constraint (inst.operands[1].immisalign,
15116 _("can't use alignment with this instruction"));
15117 break;
15119 case 3: /* VLD4 / VST4. */
15120 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15121 16, 64, 32, 64, 32, 128, -1);
15122 if (align_good == FAIL)
15123 return;
15124 if (do_align)
15126 unsigned alignbits = 0;
15127 switch (et.size)
15129 case 8: alignbits = 0x1; break;
15130 case 16: alignbits = 0x1; break;
15131 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15132 default: ;
15134 inst.instruction |= alignbits << 4;
15136 break;
15138 default: ;
15141 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15142 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15143 inst.instruction |= 1 << (4 + logsize);
15145 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15146 inst.instruction |= logsize << 10;
15149 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15151 static void
15152 do_neon_ld_dup (void)
15154 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15155 int align_good, do_align = 0;
15157 if (et.type == NT_invtype)
15158 return;
15160 switch ((inst.instruction >> 8) & 3)
15162 case 0: /* VLD1. */
15163 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15164 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15165 &do_align, 16, 16, 32, 32, -1);
15166 if (align_good == FAIL)
15167 return;
15168 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15170 case 1: break;
15171 case 2: inst.instruction |= 1 << 5; break;
15172 default: first_error (_("bad list length")); return;
15174 inst.instruction |= neon_logbits (et.size) << 6;
15175 break;
15177 case 1: /* VLD2. */
15178 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15179 &do_align, 8, 16, 16, 32, 32, 64, -1);
15180 if (align_good == FAIL)
15181 return;
15182 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15183 _("bad list length"));
15184 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15185 inst.instruction |= 1 << 5;
15186 inst.instruction |= neon_logbits (et.size) << 6;
15187 break;
15189 case 2: /* VLD3. */
15190 constraint (inst.operands[1].immisalign,
15191 _("can't use alignment with this instruction"));
15192 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15193 _("bad list length"));
15194 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15195 inst.instruction |= 1 << 5;
15196 inst.instruction |= neon_logbits (et.size) << 6;
15197 break;
15199 case 3: /* VLD4. */
15201 int align = inst.operands[1].imm >> 8;
15202 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15203 16, 64, 32, 64, 32, 128, -1);
15204 if (align_good == FAIL)
15205 return;
15206 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15207 _("bad list length"));
15208 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15209 inst.instruction |= 1 << 5;
15210 if (et.size == 32 && align == 128)
15211 inst.instruction |= 0x3 << 6;
15212 else
15213 inst.instruction |= neon_logbits (et.size) << 6;
15215 break;
15217 default: ;
15220 inst.instruction |= do_align << 4;
15223 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15224 apart from bits [11:4]. */
15226 static void
15227 do_neon_ldx_stx (void)
15229 if (inst.operands[1].isreg)
15230 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15232 switch (NEON_LANE (inst.operands[0].imm))
15234 case NEON_INTERLEAVE_LANES:
15235 NEON_ENCODE (INTERLV, inst);
15236 do_neon_ld_st_interleave ();
15237 break;
15239 case NEON_ALL_LANES:
15240 NEON_ENCODE (DUP, inst);
15241 do_neon_ld_dup ();
15242 break;
15244 default:
15245 NEON_ENCODE (LANE, inst);
15246 do_neon_ld_st_lane ();
15249 /* L bit comes from bit mask. */
15250 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15252 inst.instruction |= inst.operands[1].reg << 16;
15254 if (inst.operands[1].postind)
15256 int postreg = inst.operands[1].imm & 0xf;
15257 constraint (!inst.operands[1].immisreg,
15258 _("post-index must be a register"));
15259 constraint (postreg == 0xd || postreg == 0xf,
15260 _("bad register for post-index"));
15261 inst.instruction |= postreg;
15263 else if (inst.operands[1].writeback)
15265 inst.instruction |= 0xd;
15267 else
15268 inst.instruction |= 0xf;
15270 if (thumb_mode)
15271 inst.instruction |= 0xf9000000;
15272 else
15273 inst.instruction |= 0xf4000000;
15276 /* Overall per-instruction processing. */
15278 /* We need to be able to fix up arbitrary expressions in some statements.
15279 This is so that we can handle symbols that are an arbitrary distance from
15280 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15281 which returns part of an address in a form which will be valid for
15282 a data instruction. We do this by pushing the expression into a symbol
15283 in the expr_section, and creating a fix for that. */
15285 static void
15286 fix_new_arm (fragS * frag,
15287 int where,
15288 short int size,
15289 expressionS * exp,
15290 int pc_rel,
15291 int reloc)
15293 fixS * new_fix;
15295 switch (exp->X_op)
15297 case O_constant:
15298 case O_symbol:
15299 case O_add:
15300 case O_subtract:
15301 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15302 (enum bfd_reloc_code_real) reloc);
15303 break;
15305 default:
15306 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15307 pc_rel, (enum bfd_reloc_code_real) reloc);
15308 break;
15311 /* Mark whether the fix is to a THUMB instruction, or an ARM
15312 instruction. */
15313 new_fix->tc_fix_data = thumb_mode;
15316 /* Create a frg for an instruction requiring relaxation. */
15317 static void
15318 output_relax_insn (void)
15320 char * to;
15321 symbolS *sym;
15322 int offset;
15324 /* The size of the instruction is unknown, so tie the debug info to the
15325 start of the instruction. */
15326 dwarf2_emit_insn (0);
15328 switch (inst.reloc.exp.X_op)
15330 case O_symbol:
15331 sym = inst.reloc.exp.X_add_symbol;
15332 offset = inst.reloc.exp.X_add_number;
15333 break;
15334 case O_constant:
15335 sym = NULL;
15336 offset = inst.reloc.exp.X_add_number;
15337 break;
15338 default:
15339 sym = make_expr_symbol (&inst.reloc.exp);
15340 offset = 0;
15341 break;
15343 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15344 inst.relax, sym, offset, NULL/*offset, opcode*/);
15345 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15348 /* Write a 32-bit thumb instruction to buf. */
15349 static void
15350 put_thumb32_insn (char * buf, unsigned long insn)
15352 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15353 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15356 static void
15357 output_inst (const char * str)
15359 char * to = NULL;
15361 if (inst.error)
15363 as_bad ("%s -- `%s'", inst.error, str);
15364 return;
15366 if (inst.relax)
15368 output_relax_insn ();
15369 return;
15371 if (inst.size == 0)
15372 return;
15374 to = frag_more (inst.size);
15375 /* PR 9814: Record the thumb mode into the current frag so that we know
15376 what type of NOP padding to use, if necessary. We override any previous
15377 setting so that if the mode has changed then the NOPS that we use will
15378 match the encoding of the last instruction in the frag. */
15379 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15381 if (thumb_mode && (inst.size > THUMB_SIZE))
15383 gas_assert (inst.size == (2 * THUMB_SIZE));
15384 put_thumb32_insn (to, inst.instruction);
15386 else if (inst.size > INSN_SIZE)
15388 gas_assert (inst.size == (2 * INSN_SIZE));
15389 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15390 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15392 else
15393 md_number_to_chars (to, inst.instruction, inst.size);
15395 if (inst.reloc.type != BFD_RELOC_UNUSED)
15396 fix_new_arm (frag_now, to - frag_now->fr_literal,
15397 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15398 inst.reloc.type);
15400 dwarf2_emit_insn (inst.size);
15403 static char *
15404 output_it_inst (int cond, int mask, char * to)
15406 unsigned long instruction = 0xbf00;
15408 mask &= 0xf;
15409 instruction |= mask;
15410 instruction |= cond << 4;
15412 if (to == NULL)
15414 to = frag_more (2);
15415 #ifdef OBJ_ELF
15416 dwarf2_emit_insn (2);
15417 #endif
15420 md_number_to_chars (to, instruction, 2);
15422 return to;
15425 /* Tag values used in struct asm_opcode's tag field. */
15426 enum opcode_tag
15428 OT_unconditional, /* Instruction cannot be conditionalized.
15429 The ARM condition field is still 0xE. */
15430 OT_unconditionalF, /* Instruction cannot be conditionalized
15431 and carries 0xF in its ARM condition field. */
15432 OT_csuffix, /* Instruction takes a conditional suffix. */
15433 OT_csuffixF, /* Some forms of the instruction take a conditional
15434 suffix, others place 0xF where the condition field
15435 would be. */
15436 OT_cinfix3, /* Instruction takes a conditional infix,
15437 beginning at character index 3. (In
15438 unified mode, it becomes a suffix.) */
15439 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15440 tsts, cmps, cmns, and teqs. */
15441 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15442 character index 3, even in unified mode. Used for
15443 legacy instructions where suffix and infix forms
15444 may be ambiguous. */
15445 OT_csuf_or_in3, /* Instruction takes either a conditional
15446 suffix or an infix at character index 3. */
15447 OT_odd_infix_unc, /* This is the unconditional variant of an
15448 instruction that takes a conditional infix
15449 at an unusual position. In unified mode,
15450 this variant will accept a suffix. */
15451 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15452 are the conditional variants of instructions that
15453 take conditional infixes in unusual positions.
15454 The infix appears at character index
15455 (tag - OT_odd_infix_0). These are not accepted
15456 in unified mode. */
15459 /* Subroutine of md_assemble, responsible for looking up the primary
15460 opcode from the mnemonic the user wrote. STR points to the
15461 beginning of the mnemonic.
15463 This is not simply a hash table lookup, because of conditional
15464 variants. Most instructions have conditional variants, which are
15465 expressed with a _conditional affix_ to the mnemonic. If we were
15466 to encode each conditional variant as a literal string in the opcode
15467 table, it would have approximately 20,000 entries.
15469 Most mnemonics take this affix as a suffix, and in unified syntax,
15470 'most' is upgraded to 'all'. However, in the divided syntax, some
15471 instructions take the affix as an infix, notably the s-variants of
15472 the arithmetic instructions. Of those instructions, all but six
15473 have the infix appear after the third character of the mnemonic.
15475 Accordingly, the algorithm for looking up primary opcodes given
15476 an identifier is:
15478 1. Look up the identifier in the opcode table.
15479 If we find a match, go to step U.
15481 2. Look up the last two characters of the identifier in the
15482 conditions table. If we find a match, look up the first N-2
15483 characters of the identifier in the opcode table. If we
15484 find a match, go to step CE.
15486 3. Look up the fourth and fifth characters of the identifier in
15487 the conditions table. If we find a match, extract those
15488 characters from the identifier, and look up the remaining
15489 characters in the opcode table. If we find a match, go
15490 to step CM.
15492 4. Fail.
15494 U. Examine the tag field of the opcode structure, in case this is
15495 one of the six instructions with its conditional infix in an
15496 unusual place. If it is, the tag tells us where to find the
15497 infix; look it up in the conditions table and set inst.cond
15498 accordingly. Otherwise, this is an unconditional instruction.
15499 Again set inst.cond accordingly. Return the opcode structure.
15501 CE. Examine the tag field to make sure this is an instruction that
15502 should receive a conditional suffix. If it is not, fail.
15503 Otherwise, set inst.cond from the suffix we already looked up,
15504 and return the opcode structure.
15506 CM. Examine the tag field to make sure this is an instruction that
15507 should receive a conditional infix after the third character.
15508 If it is not, fail. Otherwise, undo the edits to the current
15509 line of input and proceed as for case CE. */
15511 static const struct asm_opcode *
15512 opcode_lookup (char **str)
15514 char *end, *base;
15515 char *affix;
15516 const struct asm_opcode *opcode;
15517 const struct asm_cond *cond;
15518 char save[2];
15520 /* Scan up to the end of the mnemonic, which must end in white space,
15521 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15522 for (base = end = *str; *end != '\0'; end++)
15523 if (*end == ' ' || *end == '.')
15524 break;
15526 if (end == base)
15527 return NULL;
15529 /* Handle a possible width suffix and/or Neon type suffix. */
15530 if (end[0] == '.')
15532 int offset = 2;
15534 /* The .w and .n suffixes are only valid if the unified syntax is in
15535 use. */
15536 if (unified_syntax && end[1] == 'w')
15537 inst.size_req = 4;
15538 else if (unified_syntax && end[1] == 'n')
15539 inst.size_req = 2;
15540 else
15541 offset = 0;
15543 inst.vectype.elems = 0;
15545 *str = end + offset;
15547 if (end[offset] == '.')
15549 /* See if we have a Neon type suffix (possible in either unified or
15550 non-unified ARM syntax mode). */
15551 if (parse_neon_type (&inst.vectype, str) == FAIL)
15552 return NULL;
15554 else if (end[offset] != '\0' && end[offset] != ' ')
15555 return NULL;
15557 else
15558 *str = end;
15560 /* Look for unaffixed or special-case affixed mnemonic. */
15561 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15562 end - base);
15563 if (opcode)
15565 /* step U */
15566 if (opcode->tag < OT_odd_infix_0)
15568 inst.cond = COND_ALWAYS;
15569 return opcode;
15572 if (warn_on_deprecated && unified_syntax)
15573 as_warn (_("conditional infixes are deprecated in unified syntax"));
15574 affix = base + (opcode->tag - OT_odd_infix_0);
15575 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15576 gas_assert (cond);
15578 inst.cond = cond->value;
15579 return opcode;
15582 /* Cannot have a conditional suffix on a mnemonic of less than two
15583 characters. */
15584 if (end - base < 3)
15585 return NULL;
15587 /* Look for suffixed mnemonic. */
15588 affix = end - 2;
15589 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15590 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15591 affix - base);
15592 if (opcode && cond)
15594 /* step CE */
15595 switch (opcode->tag)
15597 case OT_cinfix3_legacy:
15598 /* Ignore conditional suffixes matched on infix only mnemonics. */
15599 break;
15601 case OT_cinfix3:
15602 case OT_cinfix3_deprecated:
15603 case OT_odd_infix_unc:
15604 if (!unified_syntax)
15605 return 0;
15606 /* else fall through */
15608 case OT_csuffix:
15609 case OT_csuffixF:
15610 case OT_csuf_or_in3:
15611 inst.cond = cond->value;
15612 return opcode;
15614 case OT_unconditional:
15615 case OT_unconditionalF:
15616 if (thumb_mode)
15617 inst.cond = cond->value;
15618 else
15620 /* Delayed diagnostic. */
15621 inst.error = BAD_COND;
15622 inst.cond = COND_ALWAYS;
15624 return opcode;
15626 default:
15627 return NULL;
15631 /* Cannot have a usual-position infix on a mnemonic of less than
15632 six characters (five would be a suffix). */
15633 if (end - base < 6)
15634 return NULL;
15636 /* Look for infixed mnemonic in the usual position. */
15637 affix = base + 3;
15638 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15639 if (!cond)
15640 return NULL;
15642 memcpy (save, affix, 2);
15643 memmove (affix, affix + 2, (end - affix) - 2);
15644 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15645 (end - base) - 2);
15646 memmove (affix + 2, affix, (end - affix) - 2);
15647 memcpy (affix, save, 2);
15649 if (opcode
15650 && (opcode->tag == OT_cinfix3
15651 || opcode->tag == OT_cinfix3_deprecated
15652 || opcode->tag == OT_csuf_or_in3
15653 || opcode->tag == OT_cinfix3_legacy))
15655 /* Step CM. */
15656 if (warn_on_deprecated && unified_syntax
15657 && (opcode->tag == OT_cinfix3
15658 || opcode->tag == OT_cinfix3_deprecated))
15659 as_warn (_("conditional infixes are deprecated in unified syntax"));
15661 inst.cond = cond->value;
15662 return opcode;
15665 return NULL;
15668 /* This function generates an initial IT instruction, leaving its block
15669 virtually open for the new instructions. Eventually,
15670 the mask will be updated by now_it_add_mask () each time
15671 a new instruction needs to be included in the IT block.
15672 Finally, the block is closed with close_automatic_it_block ().
15673 The block closure can be requested either from md_assemble (),
15674 a tencode (), or due to a label hook. */
15676 static void
15677 new_automatic_it_block (int cond)
15679 now_it.state = AUTOMATIC_IT_BLOCK;
15680 now_it.mask = 0x18;
15681 now_it.cc = cond;
15682 now_it.block_length = 1;
15683 mapping_state (MAP_THUMB);
15684 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15687 /* Close an automatic IT block.
15688 See comments in new_automatic_it_block (). */
15690 static void
15691 close_automatic_it_block (void)
15693 now_it.mask = 0x10;
15694 now_it.block_length = 0;
15697 /* Update the mask of the current automatically-generated IT
15698 instruction. See comments in new_automatic_it_block (). */
15700 static void
15701 now_it_add_mask (int cond)
15703 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15704 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15705 | ((bitvalue) << (nbit)))
15706 const int resulting_bit = (cond & 1);
15708 now_it.mask &= 0xf;
15709 now_it.mask = SET_BIT_VALUE (now_it.mask,
15710 resulting_bit,
15711 (5 - now_it.block_length));
15712 now_it.mask = SET_BIT_VALUE (now_it.mask,
15714 ((5 - now_it.block_length) - 1) );
15715 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15717 #undef CLEAR_BIT
15718 #undef SET_BIT_VALUE
15721 /* The IT blocks handling machinery is accessed through the these functions:
15722 it_fsm_pre_encode () from md_assemble ()
15723 set_it_insn_type () optional, from the tencode functions
15724 set_it_insn_type_last () ditto
15725 in_it_block () ditto
15726 it_fsm_post_encode () from md_assemble ()
15727 force_automatic_it_block_close () from label habdling functions
15729 Rationale:
15730 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15731 initializing the IT insn type with a generic initial value depending
15732 on the inst.condition.
15733 2) During the tencode function, two things may happen:
15734 a) The tencode function overrides the IT insn type by
15735 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15736 b) The tencode function queries the IT block state by
15737 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15739 Both set_it_insn_type and in_it_block run the internal FSM state
15740 handling function (handle_it_state), because: a) setting the IT insn
15741 type may incur in an invalid state (exiting the function),
15742 and b) querying the state requires the FSM to be updated.
15743 Specifically we want to avoid creating an IT block for conditional
15744 branches, so it_fsm_pre_encode is actually a guess and we can't
15745 determine whether an IT block is required until the tencode () routine
15746 has decided what type of instruction this actually it.
15747 Because of this, if set_it_insn_type and in_it_block have to be used,
15748 set_it_insn_type has to be called first.
15750 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15751 determines the insn IT type depending on the inst.cond code.
15752 When a tencode () routine encodes an instruction that can be
15753 either outside an IT block, or, in the case of being inside, has to be
15754 the last one, set_it_insn_type_last () will determine the proper
15755 IT instruction type based on the inst.cond code. Otherwise,
15756 set_it_insn_type can be called for overriding that logic or
15757 for covering other cases.
15759 Calling handle_it_state () may not transition the IT block state to
15760 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15761 still queried. Instead, if the FSM determines that the state should
15762 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15763 after the tencode () function: that's what it_fsm_post_encode () does.
15765 Since in_it_block () calls the state handling function to get an
15766 updated state, an error may occur (due to invalid insns combination).
15767 In that case, inst.error is set.
15768 Therefore, inst.error has to be checked after the execution of
15769 the tencode () routine.
15771 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15772 any pending state change (if any) that didn't take place in
15773 handle_it_state () as explained above. */
15775 static void
15776 it_fsm_pre_encode (void)
15778 if (inst.cond != COND_ALWAYS)
15779 inst.it_insn_type = INSIDE_IT_INSN;
15780 else
15781 inst.it_insn_type = OUTSIDE_IT_INSN;
15783 now_it.state_handled = 0;
15786 /* IT state FSM handling function. */
15788 static int
15789 handle_it_state (void)
15791 now_it.state_handled = 1;
15793 switch (now_it.state)
15795 case OUTSIDE_IT_BLOCK:
15796 switch (inst.it_insn_type)
15798 case OUTSIDE_IT_INSN:
15799 break;
15801 case INSIDE_IT_INSN:
15802 case INSIDE_IT_LAST_INSN:
15803 if (thumb_mode == 0)
15805 if (unified_syntax
15806 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15807 as_tsktsk (_("Warning: conditional outside an IT block"\
15808 " for Thumb."));
15810 else
15812 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15813 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15815 /* Automatically generate the IT instruction. */
15816 new_automatic_it_block (inst.cond);
15817 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15818 close_automatic_it_block ();
15820 else
15822 inst.error = BAD_OUT_IT;
15823 return FAIL;
15826 break;
15828 case IF_INSIDE_IT_LAST_INSN:
15829 case NEUTRAL_IT_INSN:
15830 break;
15832 case IT_INSN:
15833 now_it.state = MANUAL_IT_BLOCK;
15834 now_it.block_length = 0;
15835 break;
15837 break;
15839 case AUTOMATIC_IT_BLOCK:
15840 /* Three things may happen now:
15841 a) We should increment current it block size;
15842 b) We should close current it block (closing insn or 4 insns);
15843 c) We should close current it block and start a new one (due
15844 to incompatible conditions or
15845 4 insns-length block reached). */
15847 switch (inst.it_insn_type)
15849 case OUTSIDE_IT_INSN:
15850 /* The closure of the block shall happen immediatelly,
15851 so any in_it_block () call reports the block as closed. */
15852 force_automatic_it_block_close ();
15853 break;
15855 case INSIDE_IT_INSN:
15856 case INSIDE_IT_LAST_INSN:
15857 case IF_INSIDE_IT_LAST_INSN:
15858 now_it.block_length++;
15860 if (now_it.block_length > 4
15861 || !now_it_compatible (inst.cond))
15863 force_automatic_it_block_close ();
15864 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15865 new_automatic_it_block (inst.cond);
15867 else
15869 now_it_add_mask (inst.cond);
15872 if (now_it.state == AUTOMATIC_IT_BLOCK
15873 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15874 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15875 close_automatic_it_block ();
15876 break;
15878 case NEUTRAL_IT_INSN:
15879 now_it.block_length++;
15881 if (now_it.block_length > 4)
15882 force_automatic_it_block_close ();
15883 else
15884 now_it_add_mask (now_it.cc & 1);
15885 break;
15887 case IT_INSN:
15888 close_automatic_it_block ();
15889 now_it.state = MANUAL_IT_BLOCK;
15890 break;
15892 break;
15894 case MANUAL_IT_BLOCK:
15896 /* Check conditional suffixes. */
15897 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15898 int is_last;
15899 now_it.mask <<= 1;
15900 now_it.mask &= 0x1f;
15901 is_last = (now_it.mask == 0x10);
15903 switch (inst.it_insn_type)
15905 case OUTSIDE_IT_INSN:
15906 inst.error = BAD_NOT_IT;
15907 return FAIL;
15909 case INSIDE_IT_INSN:
15910 if (cond != inst.cond)
15912 inst.error = BAD_IT_COND;
15913 return FAIL;
15915 break;
15917 case INSIDE_IT_LAST_INSN:
15918 case IF_INSIDE_IT_LAST_INSN:
15919 if (cond != inst.cond)
15921 inst.error = BAD_IT_COND;
15922 return FAIL;
15924 if (!is_last)
15926 inst.error = BAD_BRANCH;
15927 return FAIL;
15929 break;
15931 case NEUTRAL_IT_INSN:
15932 /* The BKPT instruction is unconditional even in an IT block. */
15933 break;
15935 case IT_INSN:
15936 inst.error = BAD_IT_IT;
15937 return FAIL;
15940 break;
15943 return SUCCESS;
15946 static void
15947 it_fsm_post_encode (void)
15949 int is_last;
15951 if (!now_it.state_handled)
15952 handle_it_state ();
15954 is_last = (now_it.mask == 0x10);
15955 if (is_last)
15957 now_it.state = OUTSIDE_IT_BLOCK;
15958 now_it.mask = 0;
15962 static void
15963 force_automatic_it_block_close (void)
15965 if (now_it.state == AUTOMATIC_IT_BLOCK)
15967 close_automatic_it_block ();
15968 now_it.state = OUTSIDE_IT_BLOCK;
15969 now_it.mask = 0;
15973 static int
15974 in_it_block (void)
15976 if (!now_it.state_handled)
15977 handle_it_state ();
15979 return now_it.state != OUTSIDE_IT_BLOCK;
15982 void
15983 md_assemble (char *str)
15985 char *p = str;
15986 const struct asm_opcode * opcode;
15988 /* Align the previous label if needed. */
15989 if (last_label_seen != NULL)
15991 symbol_set_frag (last_label_seen, frag_now);
15992 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15993 S_SET_SEGMENT (last_label_seen, now_seg);
15996 memset (&inst, '\0', sizeof (inst));
15997 inst.reloc.type = BFD_RELOC_UNUSED;
15999 opcode = opcode_lookup (&p);
16000 if (!opcode)
16002 /* It wasn't an instruction, but it might be a register alias of
16003 the form alias .req reg, or a Neon .dn/.qn directive. */
16004 if (! create_register_alias (str, p)
16005 && ! create_neon_reg_alias (str, p))
16006 as_bad (_("bad instruction `%s'"), str);
16008 return;
16011 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16012 as_warn (_("s suffix on comparison instruction is deprecated"));
16014 /* The value which unconditional instructions should have in place of the
16015 condition field. */
16016 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16018 if (thumb_mode)
16020 arm_feature_set variant;
16022 variant = cpu_variant;
16023 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16024 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16025 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16026 /* Check that this instruction is supported for this CPU. */
16027 if (!opcode->tvariant
16028 || (thumb_mode == 1
16029 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16031 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16032 return;
16034 if (inst.cond != COND_ALWAYS && !unified_syntax
16035 && opcode->tencode != do_t_branch)
16037 as_bad (_("Thumb does not support conditional execution"));
16038 return;
16041 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16043 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16044 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16045 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16047 /* Two things are addressed here.
16048 1) Implicit require narrow instructions on Thumb-1.
16049 This avoids relaxation accidentally introducing Thumb-2
16050 instructions.
16051 2) Reject wide instructions in non Thumb-2 cores. */
16052 if (inst.size_req == 0)
16053 inst.size_req = 2;
16054 else if (inst.size_req == 4)
16056 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16057 return;
16062 inst.instruction = opcode->tvalue;
16064 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16066 /* Prepare the it_insn_type for those encodings that don't set
16067 it. */
16068 it_fsm_pre_encode ();
16070 opcode->tencode ();
16072 it_fsm_post_encode ();
16075 if (!(inst.error || inst.relax))
16077 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16078 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16079 if (inst.size_req && inst.size_req != inst.size)
16081 as_bad (_("cannot honor width suffix -- `%s'"), str);
16082 return;
16086 /* Something has gone badly wrong if we try to relax a fixed size
16087 instruction. */
16088 gas_assert (inst.size_req == 0 || !inst.relax);
16090 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16091 *opcode->tvariant);
16092 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16093 set those bits when Thumb-2 32-bit instructions are seen. ie.
16094 anything other than bl/blx and v6-M instructions.
16095 This is overly pessimistic for relaxable instructions. */
16096 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16097 || inst.relax)
16098 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16099 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16100 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16101 arm_ext_v6t2);
16103 check_neon_suffixes;
16105 if (!inst.error)
16107 mapping_state (MAP_THUMB);
16110 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16112 bfd_boolean is_bx;
16114 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16115 is_bx = (opcode->aencode == do_bx);
16117 /* Check that this instruction is supported for this CPU. */
16118 if (!(is_bx && fix_v4bx)
16119 && !(opcode->avariant &&
16120 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16122 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16123 return;
16125 if (inst.size_req)
16127 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16128 return;
16131 inst.instruction = opcode->avalue;
16132 if (opcode->tag == OT_unconditionalF)
16133 inst.instruction |= 0xF << 28;
16134 else
16135 inst.instruction |= inst.cond << 28;
16136 inst.size = INSN_SIZE;
16137 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16139 it_fsm_pre_encode ();
16140 opcode->aencode ();
16141 it_fsm_post_encode ();
16143 /* Arm mode bx is marked as both v4T and v5 because it's still required
16144 on a hypothetical non-thumb v5 core. */
16145 if (is_bx)
16146 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16147 else
16148 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16149 *opcode->avariant);
16151 check_neon_suffixes;
16153 if (!inst.error)
16155 mapping_state (MAP_ARM);
16158 else
16160 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16161 "-- `%s'"), str);
16162 return;
16164 output_inst (str);
16167 static void
16168 check_it_blocks_finished (void)
16170 #ifdef OBJ_ELF
16171 asection *sect;
16173 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16174 if (seg_info (sect)->tc_segment_info_data.current_it.state
16175 == MANUAL_IT_BLOCK)
16177 as_warn (_("section '%s' finished with an open IT block."),
16178 sect->name);
16180 #else
16181 if (now_it.state == MANUAL_IT_BLOCK)
16182 as_warn (_("file finished with an open IT block."));
16183 #endif
16186 /* Various frobbings of labels and their addresses. */
16188 void
16189 arm_start_line_hook (void)
16191 last_label_seen = NULL;
16194 void
16195 arm_frob_label (symbolS * sym)
16197 last_label_seen = sym;
16199 ARM_SET_THUMB (sym, thumb_mode);
16201 #if defined OBJ_COFF || defined OBJ_ELF
16202 ARM_SET_INTERWORK (sym, support_interwork);
16203 #endif
16205 force_automatic_it_block_close ();
16207 /* Note - do not allow local symbols (.Lxxx) to be labelled
16208 as Thumb functions. This is because these labels, whilst
16209 they exist inside Thumb code, are not the entry points for
16210 possible ARM->Thumb calls. Also, these labels can be used
16211 as part of a computed goto or switch statement. eg gcc
16212 can generate code that looks like this:
16214 ldr r2, [pc, .Laaa]
16215 lsl r3, r3, #2
16216 ldr r2, [r3, r2]
16217 mov pc, r2
16219 .Lbbb: .word .Lxxx
16220 .Lccc: .word .Lyyy
16221 ..etc...
16222 .Laaa: .word Lbbb
16224 The first instruction loads the address of the jump table.
16225 The second instruction converts a table index into a byte offset.
16226 The third instruction gets the jump address out of the table.
16227 The fourth instruction performs the jump.
16229 If the address stored at .Laaa is that of a symbol which has the
16230 Thumb_Func bit set, then the linker will arrange for this address
16231 to have the bottom bit set, which in turn would mean that the
16232 address computation performed by the third instruction would end
16233 up with the bottom bit set. Since the ARM is capable of unaligned
16234 word loads, the instruction would then load the incorrect address
16235 out of the jump table, and chaos would ensue. */
16236 if (label_is_thumb_function_name
16237 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16238 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16240 /* When the address of a Thumb function is taken the bottom
16241 bit of that address should be set. This will allow
16242 interworking between Arm and Thumb functions to work
16243 correctly. */
16245 THUMB_SET_FUNC (sym, 1);
16247 label_is_thumb_function_name = FALSE;
16250 dwarf2_emit_label (sym);
16253 bfd_boolean
16254 arm_data_in_code (void)
16256 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16258 *input_line_pointer = '/';
16259 input_line_pointer += 5;
16260 *input_line_pointer = 0;
16261 return TRUE;
16264 return FALSE;
16267 char *
16268 arm_canonicalize_symbol_name (char * name)
16270 int len;
16272 if (thumb_mode && (len = strlen (name)) > 5
16273 && streq (name + len - 5, "/data"))
16274 *(name + len - 5) = 0;
16276 return name;
16279 /* Table of all register names defined by default. The user can
16280 define additional names with .req. Note that all register names
16281 should appear in both upper and lowercase variants. Some registers
16282 also have mixed-case names. */
16284 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16285 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16286 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16287 #define REGSET(p,t) \
16288 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16289 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16290 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16291 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16292 #define REGSETH(p,t) \
16293 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16294 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16295 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16296 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16297 #define REGSET2(p,t) \
16298 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16299 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16300 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16301 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16302 #define SPLRBANK(base,bank,t) \
16303 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16304 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16305 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16306 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16307 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16308 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16310 static const struct reg_entry reg_names[] =
16312 /* ARM integer registers. */
16313 REGSET(r, RN), REGSET(R, RN),
16315 /* ATPCS synonyms. */
16316 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16317 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16318 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16320 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16321 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16322 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16324 /* Well-known aliases. */
16325 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16326 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16328 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16329 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16331 /* Coprocessor numbers. */
16332 REGSET(p, CP), REGSET(P, CP),
16334 /* Coprocessor register numbers. The "cr" variants are for backward
16335 compatibility. */
16336 REGSET(c, CN), REGSET(C, CN),
16337 REGSET(cr, CN), REGSET(CR, CN),
16339 /* ARM banked registers. */
16340 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16341 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16342 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16343 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16344 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16345 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16346 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16348 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16349 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16350 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16351 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16352 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16353 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16354 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16355 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16357 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16358 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16359 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16360 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16361 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16362 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16363 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16364 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16365 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16367 /* FPA registers. */
16368 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16369 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16371 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16372 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16374 /* VFP SP registers. */
16375 REGSET(s,VFS), REGSET(S,VFS),
16376 REGSETH(s,VFS), REGSETH(S,VFS),
16378 /* VFP DP Registers. */
16379 REGSET(d,VFD), REGSET(D,VFD),
16380 /* Extra Neon DP registers. */
16381 REGSETH(d,VFD), REGSETH(D,VFD),
16383 /* Neon QP registers. */
16384 REGSET2(q,NQ), REGSET2(Q,NQ),
16386 /* VFP control registers. */
16387 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16388 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16389 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16390 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16391 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16392 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16394 /* Maverick DSP coprocessor registers. */
16395 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16396 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16398 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16399 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16400 REGDEF(dspsc,0,DSPSC),
16402 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16403 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16404 REGDEF(DSPSC,0,DSPSC),
16406 /* iWMMXt data registers - p0, c0-15. */
16407 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16409 /* iWMMXt control registers - p1, c0-3. */
16410 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16411 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16412 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16413 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16415 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16416 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16417 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16418 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16419 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16421 /* XScale accumulator registers. */
16422 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16424 #undef REGDEF
16425 #undef REGNUM
16426 #undef REGSET
16428 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16429 within psr_required_here. */
16430 static const struct asm_psr psrs[] =
16432 /* Backward compatibility notation. Note that "all" is no longer
16433 truly all possible PSR bits. */
16434 {"all", PSR_c | PSR_f},
16435 {"flg", PSR_f},
16436 {"ctl", PSR_c},
16438 /* Individual flags. */
16439 {"f", PSR_f},
16440 {"c", PSR_c},
16441 {"x", PSR_x},
16442 {"s", PSR_s},
16443 {"g", PSR_s},
16445 /* Combinations of flags. */
16446 {"fs", PSR_f | PSR_s},
16447 {"fx", PSR_f | PSR_x},
16448 {"fc", PSR_f | PSR_c},
16449 {"sf", PSR_s | PSR_f},
16450 {"sx", PSR_s | PSR_x},
16451 {"sc", PSR_s | PSR_c},
16452 {"xf", PSR_x | PSR_f},
16453 {"xs", PSR_x | PSR_s},
16454 {"xc", PSR_x | PSR_c},
16455 {"cf", PSR_c | PSR_f},
16456 {"cs", PSR_c | PSR_s},
16457 {"cx", PSR_c | PSR_x},
16458 {"fsx", PSR_f | PSR_s | PSR_x},
16459 {"fsc", PSR_f | PSR_s | PSR_c},
16460 {"fxs", PSR_f | PSR_x | PSR_s},
16461 {"fxc", PSR_f | PSR_x | PSR_c},
16462 {"fcs", PSR_f | PSR_c | PSR_s},
16463 {"fcx", PSR_f | PSR_c | PSR_x},
16464 {"sfx", PSR_s | PSR_f | PSR_x},
16465 {"sfc", PSR_s | PSR_f | PSR_c},
16466 {"sxf", PSR_s | PSR_x | PSR_f},
16467 {"sxc", PSR_s | PSR_x | PSR_c},
16468 {"scf", PSR_s | PSR_c | PSR_f},
16469 {"scx", PSR_s | PSR_c | PSR_x},
16470 {"xfs", PSR_x | PSR_f | PSR_s},
16471 {"xfc", PSR_x | PSR_f | PSR_c},
16472 {"xsf", PSR_x | PSR_s | PSR_f},
16473 {"xsc", PSR_x | PSR_s | PSR_c},
16474 {"xcf", PSR_x | PSR_c | PSR_f},
16475 {"xcs", PSR_x | PSR_c | PSR_s},
16476 {"cfs", PSR_c | PSR_f | PSR_s},
16477 {"cfx", PSR_c | PSR_f | PSR_x},
16478 {"csf", PSR_c | PSR_s | PSR_f},
16479 {"csx", PSR_c | PSR_s | PSR_x},
16480 {"cxf", PSR_c | PSR_x | PSR_f},
16481 {"cxs", PSR_c | PSR_x | PSR_s},
16482 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16483 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16484 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16485 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16486 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16487 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16488 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16489 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16490 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16491 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16492 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16493 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16494 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16495 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16496 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16497 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16498 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16499 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16500 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16501 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16502 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16503 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16504 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16505 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16507 /* APSR flags */
16508 {"nzcvq", PSR_f},
16509 {"nzcvqg", PSR_s | PSR_f}
16512 /* Table of V7M psr names. */
16513 static const struct asm_psr v7m_psrs[] =
16515 {"apsr", 0 }, {"APSR", 0 },
16516 {"iapsr", 1 }, {"IAPSR", 1 },
16517 {"eapsr", 2 }, {"EAPSR", 2 },
16518 {"psr", 3 }, {"PSR", 3 },
16519 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16520 {"ipsr", 5 }, {"IPSR", 5 },
16521 {"epsr", 6 }, {"EPSR", 6 },
16522 {"iepsr", 7 }, {"IEPSR", 7 },
16523 {"msp", 8 }, {"MSP", 8 },
16524 {"psp", 9 }, {"PSP", 9 },
16525 {"primask", 16}, {"PRIMASK", 16},
16526 {"basepri", 17}, {"BASEPRI", 17},
16527 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16528 {"faultmask", 19}, {"FAULTMASK", 19},
16529 {"control", 20}, {"CONTROL", 20}
16532 /* Table of all shift-in-operand names. */
16533 static const struct asm_shift_name shift_names [] =
16535 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16536 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16537 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16538 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16539 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16540 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16543 /* Table of all explicit relocation names. */
16544 #ifdef OBJ_ELF
16545 static struct reloc_entry reloc_names[] =
16547 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16548 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16549 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16550 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16551 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16552 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16553 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16554 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16555 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16556 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16557 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16558 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16559 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16560 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16561 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16562 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16563 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16564 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16566 #endif
16568 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16569 static const struct asm_cond conds[] =
16571 {"eq", 0x0},
16572 {"ne", 0x1},
16573 {"cs", 0x2}, {"hs", 0x2},
16574 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16575 {"mi", 0x4},
16576 {"pl", 0x5},
16577 {"vs", 0x6},
16578 {"vc", 0x7},
16579 {"hi", 0x8},
16580 {"ls", 0x9},
16581 {"ge", 0xa},
16582 {"lt", 0xb},
16583 {"gt", 0xc},
16584 {"le", 0xd},
16585 {"al", 0xe}
16588 static struct asm_barrier_opt barrier_opt_names[] =
16590 { "sy", 0xf }, { "SY", 0xf },
16591 { "un", 0x7 }, { "UN", 0x7 },
16592 { "st", 0xe }, { "ST", 0xe },
16593 { "unst", 0x6 }, { "UNST", 0x6 },
16594 { "ish", 0xb }, { "ISH", 0xb },
16595 { "sh", 0xb }, { "SH", 0xb },
16596 { "ishst", 0xa }, { "ISHST", 0xa },
16597 { "shst", 0xa }, { "SHST", 0xa },
16598 { "nsh", 0x7 }, { "NSH", 0x7 },
16599 { "nshst", 0x6 }, { "NSHST", 0x6 },
16600 { "osh", 0x3 }, { "OSH", 0x3 },
16601 { "oshst", 0x2 }, { "OSHST", 0x2 }
16604 /* Table of ARM-format instructions. */
16606 /* Macros for gluing together operand strings. N.B. In all cases
16607 other than OPS0, the trailing OP_stop comes from default
16608 zero-initialization of the unspecified elements of the array. */
16609 #define OPS0() { OP_stop, }
16610 #define OPS1(a) { OP_##a, }
16611 #define OPS2(a,b) { OP_##a,OP_##b, }
16612 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16613 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16614 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16615 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16617 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16618 This is useful when mixing operands for ARM and THUMB, i.e. using the
16619 MIX_ARM_THUMB_OPERANDS macro.
16620 In order to use these macros, prefix the number of operands with _
16621 e.g. _3. */
16622 #define OPS_1(a) { a, }
16623 #define OPS_2(a,b) { a,b, }
16624 #define OPS_3(a,b,c) { a,b,c, }
16625 #define OPS_4(a,b,c,d) { a,b,c,d, }
16626 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16627 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16629 /* These macros abstract out the exact format of the mnemonic table and
16630 save some repeated characters. */
16632 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16633 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16634 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16635 THUMB_VARIANT, do_##ae, do_##te }
16637 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16638 a T_MNEM_xyz enumerator. */
16639 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16640 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16641 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16642 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16644 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16645 infix after the third character. */
16646 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16647 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16648 THUMB_VARIANT, do_##ae, do_##te }
16649 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16650 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16651 THUMB_VARIANT, do_##ae, do_##te }
16652 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16653 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16654 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16655 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16656 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16657 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16658 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16659 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16661 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16662 appear in the condition table. */
16663 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16664 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16665 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16667 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16668 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16669 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16670 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16671 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16672 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16673 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16674 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16675 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16676 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16677 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16678 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16679 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16680 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16681 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16682 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16683 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16684 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16685 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16686 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16688 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16689 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16690 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16691 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16693 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16694 field is still 0xE. Many of the Thumb variants can be executed
16695 conditionally, so this is checked separately. */
16696 #define TUE(mnem, op, top, nops, ops, ae, te) \
16697 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16698 THUMB_VARIANT, do_##ae, do_##te }
16700 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16701 condition code field. */
16702 #define TUF(mnem, op, top, nops, ops, ae, te) \
16703 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16704 THUMB_VARIANT, do_##ae, do_##te }
16706 /* ARM-only variants of all the above. */
16707 #define CE(mnem, op, nops, ops, ae) \
16708 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16710 #define C3(mnem, op, nops, ops, ae) \
16711 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16713 /* Legacy mnemonics that always have conditional infix after the third
16714 character. */
16715 #define CL(mnem, op, nops, ops, ae) \
16716 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16717 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16719 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16720 #define cCE(mnem, op, nops, ops, ae) \
16721 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16723 /* Legacy coprocessor instructions where conditional infix and conditional
16724 suffix are ambiguous. For consistency this includes all FPA instructions,
16725 not just the potentially ambiguous ones. */
16726 #define cCL(mnem, op, nops, ops, ae) \
16727 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16728 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16730 /* Coprocessor, takes either a suffix or a position-3 infix
16731 (for an FPA corner case). */
16732 #define C3E(mnem, op, nops, ops, ae) \
16733 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16734 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16736 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16737 { m1 #m2 m3, OPS##nops ops, \
16738 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16739 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16741 #define CM(m1, m2, op, nops, ops, ae) \
16742 xCM_ (m1, , m2, op, nops, ops, ae), \
16743 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16744 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16745 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16746 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16747 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16748 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16749 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16750 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16751 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16752 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16753 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16754 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16755 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16756 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16757 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16758 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16759 xCM_ (m1, le, m2, op, nops, ops, ae), \
16760 xCM_ (m1, al, m2, op, nops, ops, ae)
16762 #define UE(mnem, op, nops, ops, ae) \
16763 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16765 #define UF(mnem, op, nops, ops, ae) \
16766 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16768 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16769 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16770 use the same encoding function for each. */
16771 #define NUF(mnem, op, nops, ops, enc) \
16772 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16773 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16775 /* Neon data processing, version which indirects through neon_enc_tab for
16776 the various overloaded versions of opcodes. */
16777 #define nUF(mnem, op, nops, ops, enc) \
16778 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16779 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16781 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16782 version. */
16783 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16784 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16785 THUMB_VARIANT, do_##enc, do_##enc }
16787 #define NCE(mnem, op, nops, ops, enc) \
16788 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16790 #define NCEF(mnem, op, nops, ops, enc) \
16791 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16793 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16794 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16795 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16796 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16798 #define nCE(mnem, op, nops, ops, enc) \
16799 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16801 #define nCEF(mnem, op, nops, ops, enc) \
16802 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16804 #define do_0 0
16806 static const struct asm_opcode insns[] =
16808 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16809 #define THUMB_VARIANT &arm_ext_v4t
16810 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16811 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16812 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16813 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16814 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16815 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16816 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16817 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16818 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16819 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16820 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16821 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16822 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16823 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16824 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16825 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16827 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16828 for setting PSR flag bits. They are obsolete in V6 and do not
16829 have Thumb equivalents. */
16830 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16831 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16832 CL("tstp", 110f000, 2, (RR, SH), cmp),
16833 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16834 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16835 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16836 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16837 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16838 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16840 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16841 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16842 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16843 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16845 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16846 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16847 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16848 OP_RRnpc),
16849 OP_ADDRGLDR),ldst, t_ldst),
16850 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16852 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16853 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16854 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16855 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16856 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16857 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16859 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16860 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16861 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16862 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16864 /* Pseudo ops. */
16865 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16866 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16867 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16869 /* Thumb-compatibility pseudo ops. */
16870 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16871 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16872 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16873 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16874 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16875 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16876 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16877 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16878 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16879 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16880 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16881 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16883 /* These may simplify to neg. */
16884 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16885 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16887 #undef THUMB_VARIANT
16888 #define THUMB_VARIANT & arm_ext_v6
16890 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16892 /* V1 instructions with no Thumb analogue prior to V6T2. */
16893 #undef THUMB_VARIANT
16894 #define THUMB_VARIANT & arm_ext_v6t2
16896 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16897 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16898 CL("teqp", 130f000, 2, (RR, SH), cmp),
16900 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16901 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16902 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16903 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16905 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16906 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16908 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16909 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16911 /* V1 instructions with no Thumb analogue at all. */
16912 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16913 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16915 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16916 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16917 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16918 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16919 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16920 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16921 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16922 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16924 #undef ARM_VARIANT
16925 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16926 #undef THUMB_VARIANT
16927 #define THUMB_VARIANT & arm_ext_v4t
16929 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16930 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16932 #undef THUMB_VARIANT
16933 #define THUMB_VARIANT & arm_ext_v6t2
16935 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16936 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16938 /* Generic coprocessor instructions. */
16939 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16940 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16941 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16942 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16943 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16944 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16945 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
16947 #undef ARM_VARIANT
16948 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16950 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16951 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16953 #undef ARM_VARIANT
16954 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16955 #undef THUMB_VARIANT
16956 #define THUMB_VARIANT & arm_ext_msr
16958 TCE("mrs", 1000000, f3e08000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16959 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16961 #undef ARM_VARIANT
16962 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16963 #undef THUMB_VARIANT
16964 #define THUMB_VARIANT & arm_ext_v6t2
16966 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16967 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16968 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16969 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16970 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16971 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16972 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16973 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16975 #undef ARM_VARIANT
16976 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16977 #undef THUMB_VARIANT
16978 #define THUMB_VARIANT & arm_ext_v4t
16980 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16981 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16982 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16983 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16984 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16985 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16987 #undef ARM_VARIANT
16988 #define ARM_VARIANT & arm_ext_v4t_5
16990 /* ARM Architecture 4T. */
16991 /* Note: bx (and blx) are required on V5, even if the processor does
16992 not support Thumb. */
16993 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16995 #undef ARM_VARIANT
16996 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16997 #undef THUMB_VARIANT
16998 #define THUMB_VARIANT & arm_ext_v5t
17000 /* Note: blx has 2 variants; the .value coded here is for
17001 BLX(2). Only this variant has conditional execution. */
17002 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17003 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17005 #undef THUMB_VARIANT
17006 #define THUMB_VARIANT & arm_ext_v6t2
17008 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17009 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17010 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17011 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17012 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17013 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17014 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17015 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17017 #undef ARM_VARIANT
17018 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17019 #undef THUMB_VARIANT
17020 #define THUMB_VARIANT &arm_ext_v5exp
17022 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17023 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17024 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17025 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17027 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17028 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17030 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17031 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17032 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17033 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17035 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17036 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17037 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17038 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17040 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17041 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17043 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17044 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17045 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17046 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17048 #undef ARM_VARIANT
17049 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17050 #undef THUMB_VARIANT
17051 #define THUMB_VARIANT &arm_ext_v6t2
17053 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17054 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17055 ldrd, t_ldstd),
17056 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17057 ADDRGLDRS), ldrd, t_ldstd),
17059 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17060 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17062 #undef ARM_VARIANT
17063 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17065 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17067 #undef ARM_VARIANT
17068 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17069 #undef THUMB_VARIANT
17070 #define THUMB_VARIANT & arm_ext_v6
17072 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17073 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17074 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17075 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17076 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17077 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17078 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17079 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17080 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17081 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17083 #undef THUMB_VARIANT
17084 #define THUMB_VARIANT & arm_ext_v6t2
17086 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17087 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17088 strex, t_strex),
17089 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17090 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17092 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17093 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17095 /* ARM V6 not included in V7M. */
17096 #undef THUMB_VARIANT
17097 #define THUMB_VARIANT & arm_ext_v6_notm
17098 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17099 UF(rfeib, 9900a00, 1, (RRw), rfe),
17100 UF(rfeda, 8100a00, 1, (RRw), rfe),
17101 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17102 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17103 UF(rfefa, 9900a00, 1, (RRw), rfe),
17104 UF(rfeea, 8100a00, 1, (RRw), rfe),
17105 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17106 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17107 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17108 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17109 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17111 /* ARM V6 not included in V7M (eg. integer SIMD). */
17112 #undef THUMB_VARIANT
17113 #define THUMB_VARIANT & arm_ext_v6_dsp
17114 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17115 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17116 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17117 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17118 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17119 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17120 /* Old name for QASX. */
17121 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17122 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17123 /* Old name for QSAX. */
17124 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17125 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17126 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17127 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17128 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17129 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17130 /* Old name for SASX. */
17131 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17132 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17133 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17134 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17135 /* Old name for SHASX. */
17136 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17137 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17138 /* Old name for SHSAX. */
17139 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17140 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17141 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17142 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17143 /* Old name for SSAX. */
17144 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17145 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17146 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17147 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17148 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17149 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17150 /* Old name for UASX. */
17151 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17152 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17153 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17154 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17155 /* Old name for UHASX. */
17156 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17157 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17158 /* Old name for UHSAX. */
17159 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17160 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17161 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17162 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17163 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17164 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17165 /* Old name for UQASX. */
17166 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17167 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17168 /* Old name for UQSAX. */
17169 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17170 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17171 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17172 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17173 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17174 /* Old name for USAX. */
17175 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17176 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17177 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17178 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17179 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17180 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17181 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17182 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17183 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17184 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17185 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17186 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17187 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17188 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17189 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17190 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17191 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17192 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17193 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17194 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17195 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17196 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17197 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17198 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17199 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17200 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17201 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17202 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17203 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17204 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17205 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17206 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17207 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17208 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17210 #undef ARM_VARIANT
17211 #define ARM_VARIANT & arm_ext_v6k
17212 #undef THUMB_VARIANT
17213 #define THUMB_VARIANT & arm_ext_v6k
17215 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17216 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17217 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17218 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17220 #undef THUMB_VARIANT
17221 #define THUMB_VARIANT & arm_ext_v6_notm
17222 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17223 ldrexd, t_ldrexd),
17224 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17225 RRnpcb), strexd, t_strexd),
17227 #undef THUMB_VARIANT
17228 #define THUMB_VARIANT & arm_ext_v6t2
17229 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17230 rd_rn, rd_rn),
17231 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17232 rd_rn, rd_rn),
17233 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17234 strex, rm_rd_rn),
17235 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17236 strex, rm_rd_rn),
17237 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17239 #undef ARM_VARIANT
17240 #define ARM_VARIANT & arm_ext_sec
17241 #undef THUMB_VARIANT
17242 #define THUMB_VARIANT & arm_ext_sec
17244 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17246 #undef ARM_VARIANT
17247 #define ARM_VARIANT & arm_ext_virt
17248 #undef THUMB_VARIANT
17249 #define THUMB_VARIANT & arm_ext_virt
17251 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17252 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17254 #undef ARM_VARIANT
17255 #define ARM_VARIANT & arm_ext_v6t2
17256 #undef THUMB_VARIANT
17257 #define THUMB_VARIANT & arm_ext_v6t2
17259 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17260 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17261 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17262 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17264 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17265 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17266 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17267 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17269 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17270 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17271 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17272 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17274 /* Thumb-only instructions. */
17275 #undef ARM_VARIANT
17276 #define ARM_VARIANT NULL
17277 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17278 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17280 /* ARM does not really have an IT instruction, so always allow it.
17281 The opcode is copied from Thumb in order to allow warnings in
17282 -mimplicit-it=[never | arm] modes. */
17283 #undef ARM_VARIANT
17284 #define ARM_VARIANT & arm_ext_v1
17286 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17287 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17288 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17289 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17290 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17291 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17292 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17293 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17294 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17295 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17296 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17297 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17298 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17299 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17300 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17301 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17302 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17303 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17305 /* Thumb2 only instructions. */
17306 #undef ARM_VARIANT
17307 #define ARM_VARIANT NULL
17309 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17310 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17311 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17312 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17313 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17314 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17316 /* Hardware division instructions. */
17317 #undef ARM_VARIANT
17318 #define ARM_VARIANT & arm_ext_adiv
17319 #undef THUMB_VARIANT
17320 #define THUMB_VARIANT & arm_ext_div
17322 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17323 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17325 /* ARM V6M/V7 instructions. */
17326 #undef ARM_VARIANT
17327 #define ARM_VARIANT & arm_ext_barrier
17328 #undef THUMB_VARIANT
17329 #define THUMB_VARIANT & arm_ext_barrier
17331 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17332 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17333 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17335 /* ARM V7 instructions. */
17336 #undef ARM_VARIANT
17337 #define ARM_VARIANT & arm_ext_v7
17338 #undef THUMB_VARIANT
17339 #define THUMB_VARIANT & arm_ext_v7
17341 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17342 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17344 #undef ARM_VARIANT
17345 #define ARM_VARIANT & arm_ext_mp
17346 #undef THUMB_VARIANT
17347 #define THUMB_VARIANT & arm_ext_mp
17349 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17351 #undef ARM_VARIANT
17352 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17354 cCE("wfs", e200110, 1, (RR), rd),
17355 cCE("rfs", e300110, 1, (RR), rd),
17356 cCE("wfc", e400110, 1, (RR), rd),
17357 cCE("rfc", e500110, 1, (RR), rd),
17359 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17360 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17361 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17362 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17364 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17365 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17366 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17367 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17369 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17370 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17371 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17372 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17373 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17374 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17375 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17376 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17377 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17378 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17379 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17380 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17382 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17383 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17384 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17385 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17386 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17387 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17388 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17389 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17390 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17391 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17392 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17393 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17395 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17396 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17397 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17398 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17399 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17400 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17401 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17402 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17403 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17404 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17405 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17406 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17408 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17409 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17410 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17411 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17412 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17413 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17414 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17415 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17416 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17417 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17418 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17419 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17421 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17422 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17423 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17424 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17425 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17426 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17427 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17428 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17429 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17430 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17431 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17432 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17434 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17435 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17436 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17437 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17438 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17439 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17440 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17441 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17442 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17443 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17444 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17445 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17447 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17448 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17449 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17450 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17451 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17452 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17453 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17454 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17455 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17456 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17457 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17458 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17460 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17461 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17462 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17463 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17464 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17465 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17466 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17467 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17468 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17469 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17470 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17471 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17473 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17474 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17475 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17476 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17477 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17478 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17479 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17480 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17481 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17482 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17483 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17484 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17486 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17487 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17488 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17489 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17490 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17491 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17492 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17493 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17494 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17495 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17496 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17497 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17499 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17500 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17501 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17502 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17503 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17504 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17505 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17506 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17507 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17508 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17509 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17510 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17512 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17513 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17514 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17515 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17516 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17517 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17518 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17519 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17520 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17521 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17522 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17523 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17525 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17526 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17527 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17528 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17529 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17530 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17531 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17532 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17533 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17534 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17535 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17536 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17538 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17539 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17540 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17541 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17542 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17543 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17544 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17545 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17546 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17547 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17548 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17549 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17551 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17552 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17553 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17554 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17555 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17556 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17557 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17558 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17559 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17560 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17561 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17562 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17564 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17565 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17566 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17567 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17568 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17569 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17570 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17571 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17572 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17573 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17574 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17575 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17577 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17578 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17579 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17580 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17581 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17582 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17583 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17584 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17585 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17586 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17587 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17588 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17590 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17591 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17592 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17593 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17594 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17595 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17596 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17597 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17598 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17599 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17600 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17601 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17603 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17604 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17605 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17606 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17607 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17608 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17609 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17610 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17611 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17612 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17613 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17614 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17616 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17617 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17618 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17619 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17620 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17621 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17622 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17623 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17624 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17625 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17626 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17627 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17629 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17630 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17631 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17632 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17633 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17634 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17635 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17636 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17637 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17638 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17639 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17640 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17642 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17643 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17644 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17645 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17646 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17647 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17648 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17649 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17650 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17651 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17652 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17653 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17655 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17656 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17657 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17658 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17659 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17660 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17661 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17662 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17663 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17664 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17665 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17666 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17668 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17669 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17670 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17671 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17672 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17673 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17674 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17675 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17676 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17677 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17678 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17679 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17681 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17682 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17683 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17684 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17685 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17686 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17687 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17688 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17699 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17700 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17701 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17702 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17703 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17704 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17705 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17707 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17708 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17709 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17710 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17711 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17712 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17713 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17714 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17715 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17716 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17717 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17718 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17720 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17721 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17722 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17723 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17724 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17725 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17726 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17727 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17728 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17729 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17730 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17731 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17733 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17734 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17735 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17736 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17737 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17738 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17739 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17740 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17741 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17742 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17743 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17744 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17746 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17747 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17748 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17749 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17751 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17752 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17753 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17754 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17755 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17756 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17757 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17758 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17759 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17760 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17761 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17762 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17764 /* The implementation of the FIX instruction is broken on some
17765 assemblers, in that it accepts a precision specifier as well as a
17766 rounding specifier, despite the fact that this is meaningless.
17767 To be more compatible, we accept it as well, though of course it
17768 does not set any bits. */
17769 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17770 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17771 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17772 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17773 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17774 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17775 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17776 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17777 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17778 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17779 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17780 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17781 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17783 /* Instructions that were new with the real FPA, call them V2. */
17784 #undef ARM_VARIANT
17785 #define ARM_VARIANT & fpu_fpa_ext_v2
17787 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17788 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17789 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17790 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17791 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17792 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17794 #undef ARM_VARIANT
17795 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17797 /* Moves and type conversions. */
17798 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17799 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17800 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17801 cCE("fmstat", ef1fa10, 0, (), noargs),
17802 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17803 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17804 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17805 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17806 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17807 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17808 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17809 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17810 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17811 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17813 /* Memory operations. */
17814 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17815 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17816 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17817 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17818 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17819 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17820 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17821 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17822 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17823 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17824 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17825 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17826 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17827 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17828 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17829 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17830 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17831 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17833 /* Monadic operations. */
17834 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17835 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17836 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17838 /* Dyadic operations. */
17839 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17840 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17841 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17842 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17843 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17844 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17845 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17846 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17847 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17849 /* Comparisons. */
17850 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17851 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17852 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17853 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17855 /* Double precision load/store are still present on single precision
17856 implementations. */
17857 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17858 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17859 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17860 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17861 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17862 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17863 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17864 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17865 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17866 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17868 #undef ARM_VARIANT
17869 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17871 /* Moves and type conversions. */
17872 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17873 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17874 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17875 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17876 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17877 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17878 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17879 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17880 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17881 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17882 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17883 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17884 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17886 /* Monadic operations. */
17887 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17888 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17889 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17891 /* Dyadic operations. */
17892 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17893 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17894 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17895 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17896 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17897 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17898 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17899 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17900 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17902 /* Comparisons. */
17903 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17904 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17905 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17906 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17908 #undef ARM_VARIANT
17909 #define ARM_VARIANT & fpu_vfp_ext_v2
17911 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17912 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17913 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17914 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17916 /* Instructions which may belong to either the Neon or VFP instruction sets.
17917 Individual encoder functions perform additional architecture checks. */
17918 #undef ARM_VARIANT
17919 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17920 #undef THUMB_VARIANT
17921 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17923 /* These mnemonics are unique to VFP. */
17924 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17925 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17926 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17927 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17928 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17929 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17930 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17931 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17932 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17933 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17935 /* Mnemonics shared by Neon and VFP. */
17936 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17937 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17938 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17940 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17941 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17943 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17944 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17946 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17947 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17948 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17949 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17950 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17951 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17952 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17953 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17955 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17956 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17957 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17958 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17961 /* NOTE: All VMOV encoding is special-cased! */
17962 NCE(vmov, 0, 1, (VMOV), neon_mov),
17963 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17965 #undef THUMB_VARIANT
17966 #define THUMB_VARIANT & fpu_neon_ext_v1
17967 #undef ARM_VARIANT
17968 #define ARM_VARIANT & fpu_neon_ext_v1
17970 /* Data processing with three registers of the same length. */
17971 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17972 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17973 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17974 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17975 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17976 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17977 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17978 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17979 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17980 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17981 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17982 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17983 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17984 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17985 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17986 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17987 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17988 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17989 /* If not immediate, fall back to neon_dyadic_i64_su.
17990 shl_imm should accept I8 I16 I32 I64,
17991 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17992 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17993 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17994 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17995 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17996 /* Logic ops, types optional & ignored. */
17997 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17998 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17999 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18000 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18001 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18002 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18003 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18004 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18005 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18006 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18007 /* Bitfield ops, untyped. */
18008 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18009 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18010 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18011 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18012 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18013 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18014 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18015 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18016 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18017 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18018 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18019 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18020 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18021 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18022 back to neon_dyadic_if_su. */
18023 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18024 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18025 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18026 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18027 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18028 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18029 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18030 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18031 /* Comparison. Type I8 I16 I32 F32. */
18032 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18033 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18034 /* As above, D registers only. */
18035 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18036 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18037 /* Int and float variants, signedness unimportant. */
18038 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18039 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18040 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18041 /* Add/sub take types I8 I16 I32 I64 F32. */
18042 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18043 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18044 /* vtst takes sizes 8, 16, 32. */
18045 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18046 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18047 /* VMUL takes I8 I16 I32 F32 P8. */
18048 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18049 /* VQD{R}MULH takes S16 S32. */
18050 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18051 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18052 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18053 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18054 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18055 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18056 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18057 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18058 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18059 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18060 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18061 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18062 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18063 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18064 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18065 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18067 /* Two address, int/float. Types S8 S16 S32 F32. */
18068 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18069 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18071 /* Data processing with two registers and a shift amount. */
18072 /* Right shifts, and variants with rounding.
18073 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18074 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18075 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18076 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18077 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18078 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18079 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18080 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18081 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18082 /* Shift and insert. Sizes accepted 8 16 32 64. */
18083 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18084 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18085 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18086 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18087 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18088 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18089 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18090 /* Right shift immediate, saturating & narrowing, with rounding variants.
18091 Types accepted S16 S32 S64 U16 U32 U64. */
18092 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18093 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18094 /* As above, unsigned. Types accepted S16 S32 S64. */
18095 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18096 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18097 /* Right shift narrowing. Types accepted I16 I32 I64. */
18098 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18099 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18100 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18101 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18102 /* CVT with optional immediate for fixed-point variant. */
18103 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18105 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18106 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18108 /* Data processing, three registers of different lengths. */
18109 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18110 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18111 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18112 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18113 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18114 /* If not scalar, fall back to neon_dyadic_long.
18115 Vector types as above, scalar types S16 S32 U16 U32. */
18116 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18117 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18118 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18119 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18120 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18121 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18122 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18123 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18124 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18125 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18126 /* Saturating doubling multiplies. Types S16 S32. */
18127 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18128 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18129 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18130 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18131 S16 S32 U16 U32. */
18132 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18134 /* Extract. Size 8. */
18135 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18136 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18138 /* Two registers, miscellaneous. */
18139 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18140 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18141 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18142 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18143 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18144 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18145 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18146 /* Vector replicate. Sizes 8 16 32. */
18147 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18148 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18149 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18150 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18151 /* VMOVN. Types I16 I32 I64. */
18152 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18153 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18154 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18155 /* VQMOVUN. Types S16 S32 S64. */
18156 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18157 /* VZIP / VUZP. Sizes 8 16 32. */
18158 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18159 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18160 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18161 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18162 /* VQABS / VQNEG. Types S8 S16 S32. */
18163 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18164 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18165 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18166 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18167 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18168 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18169 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18170 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18171 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18172 /* Reciprocal estimates. Types U32 F32. */
18173 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18174 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18175 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18176 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18177 /* VCLS. Types S8 S16 S32. */
18178 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18179 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18180 /* VCLZ. Types I8 I16 I32. */
18181 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18182 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18183 /* VCNT. Size 8. */
18184 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18185 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18186 /* Two address, untyped. */
18187 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18188 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18189 /* VTRN. Sizes 8 16 32. */
18190 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18191 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18193 /* Table lookup. Size 8. */
18194 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18195 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18197 #undef THUMB_VARIANT
18198 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18199 #undef ARM_VARIANT
18200 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18202 /* Neon element/structure load/store. */
18203 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18204 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18205 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18206 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18207 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18208 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18209 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18210 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18212 #undef THUMB_VARIANT
18213 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18214 #undef ARM_VARIANT
18215 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18216 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18217 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18218 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18219 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18220 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18221 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18222 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18223 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18224 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18226 #undef THUMB_VARIANT
18227 #define THUMB_VARIANT & fpu_vfp_ext_v3
18228 #undef ARM_VARIANT
18229 #define ARM_VARIANT & fpu_vfp_ext_v3
18231 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18232 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18233 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18234 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18235 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18236 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18237 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18238 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18239 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18241 #undef ARM_VARIANT
18242 #define ARM_VARIANT &fpu_vfp_ext_fma
18243 #undef THUMB_VARIANT
18244 #define THUMB_VARIANT &fpu_vfp_ext_fma
18245 /* Mnemonics shared by Neon and VFP. These are included in the
18246 VFP FMA variant; NEON and VFP FMA always includes the NEON
18247 FMA instructions. */
18248 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18249 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18250 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18251 the v form should always be used. */
18252 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18253 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18254 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18255 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18256 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18257 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18259 #undef THUMB_VARIANT
18260 #undef ARM_VARIANT
18261 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18263 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18264 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18265 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18266 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18267 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18268 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18269 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18270 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18272 #undef ARM_VARIANT
18273 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18275 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18276 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18277 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18278 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18279 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18280 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18281 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18282 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18283 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18284 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18285 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18286 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18287 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18288 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18289 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18290 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18291 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18292 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18293 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18294 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18295 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18296 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18297 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18298 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18299 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18300 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18301 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18302 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18303 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18304 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18305 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18306 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18307 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18308 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18309 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18310 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18311 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18312 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18313 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18314 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18315 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18316 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18317 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18318 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18319 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18320 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18321 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18322 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18323 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18324 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18325 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18326 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18327 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18328 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18329 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18330 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18331 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18332 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18333 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18334 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18335 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18336 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18337 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18338 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18339 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18340 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18341 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18342 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18343 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18344 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18345 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18346 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18347 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18348 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18349 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18350 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18351 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18352 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18353 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18354 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18355 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18356 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18357 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18358 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18359 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18360 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18361 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18362 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18363 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18364 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18365 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18366 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18367 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18368 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18369 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18370 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18371 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18372 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18373 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18374 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18375 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18376 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18377 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18378 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18379 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18380 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18381 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18382 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18383 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18384 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18385 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18386 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18387 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18388 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18389 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18390 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18391 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18392 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18393 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18394 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18395 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18396 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18397 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18398 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18399 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18400 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18401 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18402 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18403 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18404 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18405 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18406 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18407 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18408 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18409 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18410 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18411 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18412 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18413 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18414 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18415 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18416 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18417 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18418 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18419 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18420 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18421 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18422 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18423 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18427 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18428 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18429 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18430 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18431 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18432 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18433 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18438 #undef ARM_VARIANT
18439 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18441 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18442 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18443 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18444 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18445 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18446 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18447 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18453 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18454 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18455 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18456 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18457 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18458 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18459 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18460 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18461 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18462 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18463 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18464 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18465 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18466 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18467 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18468 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18469 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18470 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18471 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18472 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18473 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18474 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18475 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18476 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18477 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18478 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18479 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18480 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18481 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18482 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18483 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18484 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18485 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18486 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18487 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18488 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18489 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18490 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18491 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18492 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18493 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18494 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18495 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18496 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18497 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18499 #undef ARM_VARIANT
18500 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18502 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18503 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18504 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18505 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18506 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18507 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18508 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18509 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18510 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18511 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18512 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18513 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18514 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18515 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18516 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18517 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18518 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18519 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18520 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18521 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18522 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18523 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18524 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18525 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18526 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18527 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18528 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18529 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18530 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18531 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18532 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18533 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18534 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18535 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18536 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18537 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18538 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18539 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18540 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18541 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18542 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18543 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18544 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18545 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18546 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18547 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18548 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18549 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18550 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18551 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18552 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18553 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18554 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18555 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18556 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18557 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18558 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18559 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18560 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18561 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18562 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18563 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18564 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18565 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18566 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18567 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18568 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18569 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18570 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18571 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18572 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18573 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18574 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18575 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18576 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18577 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18579 #undef ARM_VARIANT
18580 #undef THUMB_VARIANT
18581 #undef TCE
18582 #undef TCM
18583 #undef TUE
18584 #undef TUF
18585 #undef TCC
18586 #undef cCE
18587 #undef cCL
18588 #undef C3E
18589 #undef CE
18590 #undef CM
18591 #undef UE
18592 #undef UF
18593 #undef UT
18594 #undef NUF
18595 #undef nUF
18596 #undef NCE
18597 #undef nCE
18598 #undef OPS0
18599 #undef OPS1
18600 #undef OPS2
18601 #undef OPS3
18602 #undef OPS4
18603 #undef OPS5
18604 #undef OPS6
18605 #undef do_0
18607 /* MD interface: bits in the object file. */
18609 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18610 for use in the a.out file, and stores them in the array pointed to by buf.
18611 This knows about the endian-ness of the target machine and does
18612 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18613 2 (short) and 4 (long) Floating numbers are put out as a series of
18614 LITTLENUMS (shorts, here at least). */
18616 void
18617 md_number_to_chars (char * buf, valueT val, int n)
18619 if (target_big_endian)
18620 number_to_chars_bigendian (buf, val, n);
18621 else
18622 number_to_chars_littleendian (buf, val, n);
18625 static valueT
18626 md_chars_to_number (char * buf, int n)
18628 valueT result = 0;
18629 unsigned char * where = (unsigned char *) buf;
18631 if (target_big_endian)
18633 while (n--)
18635 result <<= 8;
18636 result |= (*where++ & 255);
18639 else
18641 while (n--)
18643 result <<= 8;
18644 result |= (where[n] & 255);
18648 return result;
18651 /* MD interface: Sections. */
18653 /* Estimate the size of a frag before relaxing. Assume everything fits in
18654 2 bytes. */
18657 md_estimate_size_before_relax (fragS * fragp,
18658 segT segtype ATTRIBUTE_UNUSED)
18660 fragp->fr_var = 2;
18661 return 2;
18664 /* Convert a machine dependent frag. */
18666 void
18667 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18669 unsigned long insn;
18670 unsigned long old_op;
18671 char *buf;
18672 expressionS exp;
18673 fixS *fixp;
18674 int reloc_type;
18675 int pc_rel;
18676 int opcode;
18678 buf = fragp->fr_literal + fragp->fr_fix;
18680 old_op = bfd_get_16(abfd, buf);
18681 if (fragp->fr_symbol)
18683 exp.X_op = O_symbol;
18684 exp.X_add_symbol = fragp->fr_symbol;
18686 else
18688 exp.X_op = O_constant;
18690 exp.X_add_number = fragp->fr_offset;
18691 opcode = fragp->fr_subtype;
18692 switch (opcode)
18694 case T_MNEM_ldr_pc:
18695 case T_MNEM_ldr_pc2:
18696 case T_MNEM_ldr_sp:
18697 case T_MNEM_str_sp:
18698 case T_MNEM_ldr:
18699 case T_MNEM_ldrb:
18700 case T_MNEM_ldrh:
18701 case T_MNEM_str:
18702 case T_MNEM_strb:
18703 case T_MNEM_strh:
18704 if (fragp->fr_var == 4)
18706 insn = THUMB_OP32 (opcode);
18707 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18709 insn |= (old_op & 0x700) << 4;
18711 else
18713 insn |= (old_op & 7) << 12;
18714 insn |= (old_op & 0x38) << 13;
18716 insn |= 0x00000c00;
18717 put_thumb32_insn (buf, insn);
18718 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18720 else
18722 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18724 pc_rel = (opcode == T_MNEM_ldr_pc2);
18725 break;
18726 case T_MNEM_adr:
18727 if (fragp->fr_var == 4)
18729 insn = THUMB_OP32 (opcode);
18730 insn |= (old_op & 0xf0) << 4;
18731 put_thumb32_insn (buf, insn);
18732 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18734 else
18736 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18737 exp.X_add_number -= 4;
18739 pc_rel = 1;
18740 break;
18741 case T_MNEM_mov:
18742 case T_MNEM_movs:
18743 case T_MNEM_cmp:
18744 case T_MNEM_cmn:
18745 if (fragp->fr_var == 4)
18747 int r0off = (opcode == T_MNEM_mov
18748 || opcode == T_MNEM_movs) ? 0 : 8;
18749 insn = THUMB_OP32 (opcode);
18750 insn = (insn & 0xe1ffffff) | 0x10000000;
18751 insn |= (old_op & 0x700) << r0off;
18752 put_thumb32_insn (buf, insn);
18753 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18755 else
18757 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18759 pc_rel = 0;
18760 break;
18761 case T_MNEM_b:
18762 if (fragp->fr_var == 4)
18764 insn = THUMB_OP32(opcode);
18765 put_thumb32_insn (buf, insn);
18766 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18768 else
18769 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18770 pc_rel = 1;
18771 break;
18772 case T_MNEM_bcond:
18773 if (fragp->fr_var == 4)
18775 insn = THUMB_OP32(opcode);
18776 insn |= (old_op & 0xf00) << 14;
18777 put_thumb32_insn (buf, insn);
18778 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18780 else
18781 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18782 pc_rel = 1;
18783 break;
18784 case T_MNEM_add_sp:
18785 case T_MNEM_add_pc:
18786 case T_MNEM_inc_sp:
18787 case T_MNEM_dec_sp:
18788 if (fragp->fr_var == 4)
18790 /* ??? Choose between add and addw. */
18791 insn = THUMB_OP32 (opcode);
18792 insn |= (old_op & 0xf0) << 4;
18793 put_thumb32_insn (buf, insn);
18794 if (opcode == T_MNEM_add_pc)
18795 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18796 else
18797 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18799 else
18800 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18801 pc_rel = 0;
18802 break;
18804 case T_MNEM_addi:
18805 case T_MNEM_addis:
18806 case T_MNEM_subi:
18807 case T_MNEM_subis:
18808 if (fragp->fr_var == 4)
18810 insn = THUMB_OP32 (opcode);
18811 insn |= (old_op & 0xf0) << 4;
18812 insn |= (old_op & 0xf) << 16;
18813 put_thumb32_insn (buf, insn);
18814 if (insn & (1 << 20))
18815 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18816 else
18817 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18819 else
18820 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18821 pc_rel = 0;
18822 break;
18823 default:
18824 abort ();
18826 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18827 (enum bfd_reloc_code_real) reloc_type);
18828 fixp->fx_file = fragp->fr_file;
18829 fixp->fx_line = fragp->fr_line;
18830 fragp->fr_fix += fragp->fr_var;
18833 /* Return the size of a relaxable immediate operand instruction.
18834 SHIFT and SIZE specify the form of the allowable immediate. */
18835 static int
18836 relax_immediate (fragS *fragp, int size, int shift)
18838 offsetT offset;
18839 offsetT mask;
18840 offsetT low;
18842 /* ??? Should be able to do better than this. */
18843 if (fragp->fr_symbol)
18844 return 4;
18846 low = (1 << shift) - 1;
18847 mask = (1 << (shift + size)) - (1 << shift);
18848 offset = fragp->fr_offset;
18849 /* Force misaligned offsets to 32-bit variant. */
18850 if (offset & low)
18851 return 4;
18852 if (offset & ~mask)
18853 return 4;
18854 return 2;
18857 /* Get the address of a symbol during relaxation. */
18858 static addressT
18859 relaxed_symbol_addr (fragS *fragp, long stretch)
18861 fragS *sym_frag;
18862 addressT addr;
18863 symbolS *sym;
18865 sym = fragp->fr_symbol;
18866 sym_frag = symbol_get_frag (sym);
18867 know (S_GET_SEGMENT (sym) != absolute_section
18868 || sym_frag == &zero_address_frag);
18869 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18871 /* If frag has yet to be reached on this pass, assume it will
18872 move by STRETCH just as we did. If this is not so, it will
18873 be because some frag between grows, and that will force
18874 another pass. */
18876 if (stretch != 0
18877 && sym_frag->relax_marker != fragp->relax_marker)
18879 fragS *f;
18881 /* Adjust stretch for any alignment frag. Note that if have
18882 been expanding the earlier code, the symbol may be
18883 defined in what appears to be an earlier frag. FIXME:
18884 This doesn't handle the fr_subtype field, which specifies
18885 a maximum number of bytes to skip when doing an
18886 alignment. */
18887 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18889 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18891 if (stretch < 0)
18892 stretch = - ((- stretch)
18893 & ~ ((1 << (int) f->fr_offset) - 1));
18894 else
18895 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18896 if (stretch == 0)
18897 break;
18900 if (f != NULL)
18901 addr += stretch;
18904 return addr;
18907 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18908 load. */
18909 static int
18910 relax_adr (fragS *fragp, asection *sec, long stretch)
18912 addressT addr;
18913 offsetT val;
18915 /* Assume worst case for symbols not known to be in the same section. */
18916 if (fragp->fr_symbol == NULL
18917 || !S_IS_DEFINED (fragp->fr_symbol)
18918 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18919 || S_IS_WEAK (fragp->fr_symbol))
18920 return 4;
18922 val = relaxed_symbol_addr (fragp, stretch);
18923 addr = fragp->fr_address + fragp->fr_fix;
18924 addr = (addr + 4) & ~3;
18925 /* Force misaligned targets to 32-bit variant. */
18926 if (val & 3)
18927 return 4;
18928 val -= addr;
18929 if (val < 0 || val > 1020)
18930 return 4;
18931 return 2;
18934 /* Return the size of a relaxable add/sub immediate instruction. */
18935 static int
18936 relax_addsub (fragS *fragp, asection *sec)
18938 char *buf;
18939 int op;
18941 buf = fragp->fr_literal + fragp->fr_fix;
18942 op = bfd_get_16(sec->owner, buf);
18943 if ((op & 0xf) == ((op >> 4) & 0xf))
18944 return relax_immediate (fragp, 8, 0);
18945 else
18946 return relax_immediate (fragp, 3, 0);
18950 /* Return the size of a relaxable branch instruction. BITS is the
18951 size of the offset field in the narrow instruction. */
18953 static int
18954 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18956 addressT addr;
18957 offsetT val;
18958 offsetT limit;
18960 /* Assume worst case for symbols not known to be in the same section. */
18961 if (!S_IS_DEFINED (fragp->fr_symbol)
18962 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18963 || S_IS_WEAK (fragp->fr_symbol))
18964 return 4;
18966 #ifdef OBJ_ELF
18967 if (S_IS_DEFINED (fragp->fr_symbol)
18968 && ARM_IS_FUNC (fragp->fr_symbol))
18969 return 4;
18970 #endif
18972 val = relaxed_symbol_addr (fragp, stretch);
18973 addr = fragp->fr_address + fragp->fr_fix + 4;
18974 val -= addr;
18976 /* Offset is a signed value *2 */
18977 limit = 1 << bits;
18978 if (val >= limit || val < -limit)
18979 return 4;
18980 return 2;
18984 /* Relax a machine dependent frag. This returns the amount by which
18985 the current size of the frag should change. */
18988 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18990 int oldsize;
18991 int newsize;
18993 oldsize = fragp->fr_var;
18994 switch (fragp->fr_subtype)
18996 case T_MNEM_ldr_pc2:
18997 newsize = relax_adr (fragp, sec, stretch);
18998 break;
18999 case T_MNEM_ldr_pc:
19000 case T_MNEM_ldr_sp:
19001 case T_MNEM_str_sp:
19002 newsize = relax_immediate (fragp, 8, 2);
19003 break;
19004 case T_MNEM_ldr:
19005 case T_MNEM_str:
19006 newsize = relax_immediate (fragp, 5, 2);
19007 break;
19008 case T_MNEM_ldrh:
19009 case T_MNEM_strh:
19010 newsize = relax_immediate (fragp, 5, 1);
19011 break;
19012 case T_MNEM_ldrb:
19013 case T_MNEM_strb:
19014 newsize = relax_immediate (fragp, 5, 0);
19015 break;
19016 case T_MNEM_adr:
19017 newsize = relax_adr (fragp, sec, stretch);
19018 break;
19019 case T_MNEM_mov:
19020 case T_MNEM_movs:
19021 case T_MNEM_cmp:
19022 case T_MNEM_cmn:
19023 newsize = relax_immediate (fragp, 8, 0);
19024 break;
19025 case T_MNEM_b:
19026 newsize = relax_branch (fragp, sec, 11, stretch);
19027 break;
19028 case T_MNEM_bcond:
19029 newsize = relax_branch (fragp, sec, 8, stretch);
19030 break;
19031 case T_MNEM_add_sp:
19032 case T_MNEM_add_pc:
19033 newsize = relax_immediate (fragp, 8, 2);
19034 break;
19035 case T_MNEM_inc_sp:
19036 case T_MNEM_dec_sp:
19037 newsize = relax_immediate (fragp, 7, 2);
19038 break;
19039 case T_MNEM_addi:
19040 case T_MNEM_addis:
19041 case T_MNEM_subi:
19042 case T_MNEM_subis:
19043 newsize = relax_addsub (fragp, sec);
19044 break;
19045 default:
19046 abort ();
19049 fragp->fr_var = newsize;
19050 /* Freeze wide instructions that are at or before the same location as
19051 in the previous pass. This avoids infinite loops.
19052 Don't freeze them unconditionally because targets may be artificially
19053 misaligned by the expansion of preceding frags. */
19054 if (stretch <= 0 && newsize > 2)
19056 md_convert_frag (sec->owner, sec, fragp);
19057 frag_wane (fragp);
19060 return newsize - oldsize;
19063 /* Round up a section size to the appropriate boundary. */
19065 valueT
19066 md_section_align (segT segment ATTRIBUTE_UNUSED,
19067 valueT size)
19069 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19070 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19072 /* For a.out, force the section size to be aligned. If we don't do
19073 this, BFD will align it for us, but it will not write out the
19074 final bytes of the section. This may be a bug in BFD, but it is
19075 easier to fix it here since that is how the other a.out targets
19076 work. */
19077 int align;
19079 align = bfd_get_section_alignment (stdoutput, segment);
19080 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19082 #endif
19084 return size;
19087 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19088 of an rs_align_code fragment. */
19090 void
19091 arm_handle_align (fragS * fragP)
19093 static char const arm_noop[2][2][4] =
19095 { /* ARMv1 */
19096 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19097 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19099 { /* ARMv6k */
19100 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19101 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19104 static char const thumb_noop[2][2][2] =
19106 { /* Thumb-1 */
19107 {0xc0, 0x46}, /* LE */
19108 {0x46, 0xc0}, /* BE */
19110 { /* Thumb-2 */
19111 {0x00, 0xbf}, /* LE */
19112 {0xbf, 0x00} /* BE */
19115 static char const wide_thumb_noop[2][4] =
19116 { /* Wide Thumb-2 */
19117 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19118 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19121 unsigned bytes, fix, noop_size;
19122 char * p;
19123 const char * noop;
19124 const char *narrow_noop = NULL;
19125 #ifdef OBJ_ELF
19126 enum mstate state;
19127 #endif
19129 if (fragP->fr_type != rs_align_code)
19130 return;
19132 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19133 p = fragP->fr_literal + fragP->fr_fix;
19134 fix = 0;
19136 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19137 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19139 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19141 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19143 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19145 narrow_noop = thumb_noop[1][target_big_endian];
19146 noop = wide_thumb_noop[target_big_endian];
19148 else
19149 noop = thumb_noop[0][target_big_endian];
19150 noop_size = 2;
19151 #ifdef OBJ_ELF
19152 state = MAP_THUMB;
19153 #endif
19155 else
19157 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19158 [target_big_endian];
19159 noop_size = 4;
19160 #ifdef OBJ_ELF
19161 state = MAP_ARM;
19162 #endif
19165 fragP->fr_var = noop_size;
19167 if (bytes & (noop_size - 1))
19169 fix = bytes & (noop_size - 1);
19170 #ifdef OBJ_ELF
19171 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19172 #endif
19173 memset (p, 0, fix);
19174 p += fix;
19175 bytes -= fix;
19178 if (narrow_noop)
19180 if (bytes & noop_size)
19182 /* Insert a narrow noop. */
19183 memcpy (p, narrow_noop, noop_size);
19184 p += noop_size;
19185 bytes -= noop_size;
19186 fix += noop_size;
19189 /* Use wide noops for the remainder */
19190 noop_size = 4;
19193 while (bytes >= noop_size)
19195 memcpy (p, noop, noop_size);
19196 p += noop_size;
19197 bytes -= noop_size;
19198 fix += noop_size;
19201 fragP->fr_fix += fix;
19204 /* Called from md_do_align. Used to create an alignment
19205 frag in a code section. */
19207 void
19208 arm_frag_align_code (int n, int max)
19210 char * p;
19212 /* We assume that there will never be a requirement
19213 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19214 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19216 char err_msg[128];
19218 sprintf (err_msg,
19219 _("alignments greater than %d bytes not supported in .text sections."),
19220 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19221 as_fatal ("%s", err_msg);
19224 p = frag_var (rs_align_code,
19225 MAX_MEM_FOR_RS_ALIGN_CODE,
19227 (relax_substateT) max,
19228 (symbolS *) NULL,
19229 (offsetT) n,
19230 (char *) NULL);
19231 *p = 0;
19234 /* Perform target specific initialisation of a frag.
19235 Note - despite the name this initialisation is not done when the frag
19236 is created, but only when its type is assigned. A frag can be created
19237 and used a long time before its type is set, so beware of assuming that
19238 this initialisationis performed first. */
19240 #ifndef OBJ_ELF
19241 void
19242 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19244 /* Record whether this frag is in an ARM or a THUMB area. */
19245 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19248 #else /* OBJ_ELF is defined. */
19249 void
19250 arm_init_frag (fragS * fragP, int max_chars)
19252 /* If the current ARM vs THUMB mode has not already
19253 been recorded into this frag then do so now. */
19254 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19256 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19258 /* Record a mapping symbol for alignment frags. We will delete this
19259 later if the alignment ends up empty. */
19260 switch (fragP->fr_type)
19262 case rs_align:
19263 case rs_align_test:
19264 case rs_fill:
19265 mapping_state_2 (MAP_DATA, max_chars);
19266 break;
19267 case rs_align_code:
19268 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19269 break;
19270 default:
19271 break;
19276 /* When we change sections we need to issue a new mapping symbol. */
19278 void
19279 arm_elf_change_section (void)
19281 /* Link an unlinked unwind index table section to the .text section. */
19282 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19283 && elf_linked_to_section (now_seg) == NULL)
19284 elf_linked_to_section (now_seg) = text_section;
19288 arm_elf_section_type (const char * str, size_t len)
19290 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19291 return SHT_ARM_EXIDX;
19293 return -1;
19296 /* Code to deal with unwinding tables. */
19298 static void add_unwind_adjustsp (offsetT);
19300 /* Generate any deferred unwind frame offset. */
19302 static void
19303 flush_pending_unwind (void)
19305 offsetT offset;
19307 offset = unwind.pending_offset;
19308 unwind.pending_offset = 0;
19309 if (offset != 0)
19310 add_unwind_adjustsp (offset);
19313 /* Add an opcode to this list for this function. Two-byte opcodes should
19314 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19315 order. */
19317 static void
19318 add_unwind_opcode (valueT op, int length)
19320 /* Add any deferred stack adjustment. */
19321 if (unwind.pending_offset)
19322 flush_pending_unwind ();
19324 unwind.sp_restored = 0;
19326 if (unwind.opcode_count + length > unwind.opcode_alloc)
19328 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19329 if (unwind.opcodes)
19330 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19331 unwind.opcode_alloc);
19332 else
19333 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19335 while (length > 0)
19337 length--;
19338 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19339 op >>= 8;
19340 unwind.opcode_count++;
19344 /* Add unwind opcodes to adjust the stack pointer. */
19346 static void
19347 add_unwind_adjustsp (offsetT offset)
19349 valueT op;
19351 if (offset > 0x200)
19353 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19354 char bytes[5];
19355 int n;
19356 valueT o;
19358 /* Long form: 0xb2, uleb128. */
19359 /* This might not fit in a word so add the individual bytes,
19360 remembering the list is built in reverse order. */
19361 o = (valueT) ((offset - 0x204) >> 2);
19362 if (o == 0)
19363 add_unwind_opcode (0, 1);
19365 /* Calculate the uleb128 encoding of the offset. */
19366 n = 0;
19367 while (o)
19369 bytes[n] = o & 0x7f;
19370 o >>= 7;
19371 if (o)
19372 bytes[n] |= 0x80;
19373 n++;
19375 /* Add the insn. */
19376 for (; n; n--)
19377 add_unwind_opcode (bytes[n - 1], 1);
19378 add_unwind_opcode (0xb2, 1);
19380 else if (offset > 0x100)
19382 /* Two short opcodes. */
19383 add_unwind_opcode (0x3f, 1);
19384 op = (offset - 0x104) >> 2;
19385 add_unwind_opcode (op, 1);
19387 else if (offset > 0)
19389 /* Short opcode. */
19390 op = (offset - 4) >> 2;
19391 add_unwind_opcode (op, 1);
19393 else if (offset < 0)
19395 offset = -offset;
19396 while (offset > 0x100)
19398 add_unwind_opcode (0x7f, 1);
19399 offset -= 0x100;
19401 op = ((offset - 4) >> 2) | 0x40;
19402 add_unwind_opcode (op, 1);
19406 /* Finish the list of unwind opcodes for this function. */
19407 static void
19408 finish_unwind_opcodes (void)
19410 valueT op;
19412 if (unwind.fp_used)
19414 /* Adjust sp as necessary. */
19415 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19416 flush_pending_unwind ();
19418 /* After restoring sp from the frame pointer. */
19419 op = 0x90 | unwind.fp_reg;
19420 add_unwind_opcode (op, 1);
19422 else
19423 flush_pending_unwind ();
19427 /* Start an exception table entry. If idx is nonzero this is an index table
19428 entry. */
19430 static void
19431 start_unwind_section (const segT text_seg, int idx)
19433 const char * text_name;
19434 const char * prefix;
19435 const char * prefix_once;
19436 const char * group_name;
19437 size_t prefix_len;
19438 size_t text_len;
19439 char * sec_name;
19440 size_t sec_name_len;
19441 int type;
19442 int flags;
19443 int linkonce;
19445 if (idx)
19447 prefix = ELF_STRING_ARM_unwind;
19448 prefix_once = ELF_STRING_ARM_unwind_once;
19449 type = SHT_ARM_EXIDX;
19451 else
19453 prefix = ELF_STRING_ARM_unwind_info;
19454 prefix_once = ELF_STRING_ARM_unwind_info_once;
19455 type = SHT_PROGBITS;
19458 text_name = segment_name (text_seg);
19459 if (streq (text_name, ".text"))
19460 text_name = "";
19462 if (strncmp (text_name, ".gnu.linkonce.t.",
19463 strlen (".gnu.linkonce.t.")) == 0)
19465 prefix = prefix_once;
19466 text_name += strlen (".gnu.linkonce.t.");
19469 prefix_len = strlen (prefix);
19470 text_len = strlen (text_name);
19471 sec_name_len = prefix_len + text_len;
19472 sec_name = (char *) xmalloc (sec_name_len + 1);
19473 memcpy (sec_name, prefix, prefix_len);
19474 memcpy (sec_name + prefix_len, text_name, text_len);
19475 sec_name[prefix_len + text_len] = '\0';
19477 flags = SHF_ALLOC;
19478 linkonce = 0;
19479 group_name = 0;
19481 /* Handle COMDAT group. */
19482 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19484 group_name = elf_group_name (text_seg);
19485 if (group_name == NULL)
19487 as_bad (_("Group section `%s' has no group signature"),
19488 segment_name (text_seg));
19489 ignore_rest_of_line ();
19490 return;
19492 flags |= SHF_GROUP;
19493 linkonce = 1;
19496 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19498 /* Set the section link for index tables. */
19499 if (idx)
19500 elf_linked_to_section (now_seg) = text_seg;
19504 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19505 personality routine data. Returns zero, or the index table value for
19506 and inline entry. */
19508 static valueT
19509 create_unwind_entry (int have_data)
19511 int size;
19512 addressT where;
19513 char *ptr;
19514 /* The current word of data. */
19515 valueT data;
19516 /* The number of bytes left in this word. */
19517 int n;
19519 finish_unwind_opcodes ();
19521 /* Remember the current text section. */
19522 unwind.saved_seg = now_seg;
19523 unwind.saved_subseg = now_subseg;
19525 start_unwind_section (now_seg, 0);
19527 if (unwind.personality_routine == NULL)
19529 if (unwind.personality_index == -2)
19531 if (have_data)
19532 as_bad (_("handlerdata in cantunwind frame"));
19533 return 1; /* EXIDX_CANTUNWIND. */
19536 /* Use a default personality routine if none is specified. */
19537 if (unwind.personality_index == -1)
19539 if (unwind.opcode_count > 3)
19540 unwind.personality_index = 1;
19541 else
19542 unwind.personality_index = 0;
19545 /* Space for the personality routine entry. */
19546 if (unwind.personality_index == 0)
19548 if (unwind.opcode_count > 3)
19549 as_bad (_("too many unwind opcodes for personality routine 0"));
19551 if (!have_data)
19553 /* All the data is inline in the index table. */
19554 data = 0x80;
19555 n = 3;
19556 while (unwind.opcode_count > 0)
19558 unwind.opcode_count--;
19559 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19560 n--;
19563 /* Pad with "finish" opcodes. */
19564 while (n--)
19565 data = (data << 8) | 0xb0;
19567 return data;
19569 size = 0;
19571 else
19572 /* We get two opcodes "free" in the first word. */
19573 size = unwind.opcode_count - 2;
19575 else
19576 /* An extra byte is required for the opcode count. */
19577 size = unwind.opcode_count + 1;
19579 size = (size + 3) >> 2;
19580 if (size > 0xff)
19581 as_bad (_("too many unwind opcodes"));
19583 frag_align (2, 0, 0);
19584 record_alignment (now_seg, 2);
19585 unwind.table_entry = expr_build_dot ();
19587 /* Allocate the table entry. */
19588 ptr = frag_more ((size << 2) + 4);
19589 where = frag_now_fix () - ((size << 2) + 4);
19591 switch (unwind.personality_index)
19593 case -1:
19594 /* ??? Should this be a PLT generating relocation? */
19595 /* Custom personality routine. */
19596 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19597 BFD_RELOC_ARM_PREL31);
19599 where += 4;
19600 ptr += 4;
19602 /* Set the first byte to the number of additional words. */
19603 data = size - 1;
19604 n = 3;
19605 break;
19607 /* ABI defined personality routines. */
19608 case 0:
19609 /* Three opcodes bytes are packed into the first word. */
19610 data = 0x80;
19611 n = 3;
19612 break;
19614 case 1:
19615 case 2:
19616 /* The size and first two opcode bytes go in the first word. */
19617 data = ((0x80 + unwind.personality_index) << 8) | size;
19618 n = 2;
19619 break;
19621 default:
19622 /* Should never happen. */
19623 abort ();
19626 /* Pack the opcodes into words (MSB first), reversing the list at the same
19627 time. */
19628 while (unwind.opcode_count > 0)
19630 if (n == 0)
19632 md_number_to_chars (ptr, data, 4);
19633 ptr += 4;
19634 n = 4;
19635 data = 0;
19637 unwind.opcode_count--;
19638 n--;
19639 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19642 /* Finish off the last word. */
19643 if (n < 4)
19645 /* Pad with "finish" opcodes. */
19646 while (n--)
19647 data = (data << 8) | 0xb0;
19649 md_number_to_chars (ptr, data, 4);
19652 if (!have_data)
19654 /* Add an empty descriptor if there is no user-specified data. */
19655 ptr = frag_more (4);
19656 md_number_to_chars (ptr, 0, 4);
19659 return 0;
19663 /* Initialize the DWARF-2 unwind information for this procedure. */
19665 void
19666 tc_arm_frame_initial_instructions (void)
19668 cfi_add_CFA_def_cfa (REG_SP, 0);
19670 #endif /* OBJ_ELF */
19672 /* Convert REGNAME to a DWARF-2 register number. */
19675 tc_arm_regname_to_dw2regnum (char *regname)
19677 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19679 if (reg == FAIL)
19680 return -1;
19682 return reg;
19685 #ifdef TE_PE
19686 void
19687 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19689 expressionS exp;
19691 exp.X_op = O_secrel;
19692 exp.X_add_symbol = symbol;
19693 exp.X_add_number = 0;
19694 emit_expr (&exp, size);
19696 #endif
19698 /* MD interface: Symbol and relocation handling. */
19700 /* Return the address within the segment that a PC-relative fixup is
19701 relative to. For ARM, PC-relative fixups applied to instructions
19702 are generally relative to the location of the fixup plus 8 bytes.
19703 Thumb branches are offset by 4, and Thumb loads relative to PC
19704 require special handling. */
19706 long
19707 md_pcrel_from_section (fixS * fixP, segT seg)
19709 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19711 /* If this is pc-relative and we are going to emit a relocation
19712 then we just want to put out any pipeline compensation that the linker
19713 will need. Otherwise we want to use the calculated base.
19714 For WinCE we skip the bias for externals as well, since this
19715 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19716 if (fixP->fx_pcrel
19717 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19718 || (arm_force_relocation (fixP)
19719 #ifdef TE_WINCE
19720 && !S_IS_EXTERNAL (fixP->fx_addsy)
19721 #endif
19723 base = 0;
19726 switch (fixP->fx_r_type)
19728 /* PC relative addressing on the Thumb is slightly odd as the
19729 bottom two bits of the PC are forced to zero for the
19730 calculation. This happens *after* application of the
19731 pipeline offset. However, Thumb adrl already adjusts for
19732 this, so we need not do it again. */
19733 case BFD_RELOC_ARM_THUMB_ADD:
19734 return base & ~3;
19736 case BFD_RELOC_ARM_THUMB_OFFSET:
19737 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19738 case BFD_RELOC_ARM_T32_ADD_PC12:
19739 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19740 return (base + 4) & ~3;
19742 /* Thumb branches are simply offset by +4. */
19743 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19744 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19745 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19746 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19747 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19748 return base + 4;
19750 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19751 if (fixP->fx_addsy
19752 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19753 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19754 && ARM_IS_FUNC (fixP->fx_addsy)
19755 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19756 base = fixP->fx_where + fixP->fx_frag->fr_address;
19757 return base + 4;
19759 /* BLX is like branches above, but forces the low two bits of PC to
19760 zero. */
19761 case BFD_RELOC_THUMB_PCREL_BLX:
19762 if (fixP->fx_addsy
19763 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19764 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19765 && THUMB_IS_FUNC (fixP->fx_addsy)
19766 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19767 base = fixP->fx_where + fixP->fx_frag->fr_address;
19768 return (base + 4) & ~3;
19770 /* ARM mode branches are offset by +8. However, the Windows CE
19771 loader expects the relocation not to take this into account. */
19772 case BFD_RELOC_ARM_PCREL_BLX:
19773 if (fixP->fx_addsy
19774 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19775 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19776 && ARM_IS_FUNC (fixP->fx_addsy)
19777 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19778 base = fixP->fx_where + fixP->fx_frag->fr_address;
19779 return base + 8;
19781 case BFD_RELOC_ARM_PCREL_CALL:
19782 if (fixP->fx_addsy
19783 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19784 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19785 && THUMB_IS_FUNC (fixP->fx_addsy)
19786 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19787 base = fixP->fx_where + fixP->fx_frag->fr_address;
19788 return base + 8;
19790 case BFD_RELOC_ARM_PCREL_BRANCH:
19791 case BFD_RELOC_ARM_PCREL_JUMP:
19792 case BFD_RELOC_ARM_PLT32:
19793 #ifdef TE_WINCE
19794 /* When handling fixups immediately, because we have already
19795 discovered the value of a symbol, or the address of the frag involved
19796 we must account for the offset by +8, as the OS loader will never see the reloc.
19797 see fixup_segment() in write.c
19798 The S_IS_EXTERNAL test handles the case of global symbols.
19799 Those need the calculated base, not just the pipe compensation the linker will need. */
19800 if (fixP->fx_pcrel
19801 && fixP->fx_addsy != NULL
19802 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19803 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19804 return base + 8;
19805 return base;
19806 #else
19807 return base + 8;
19808 #endif
19811 /* ARM mode loads relative to PC are also offset by +8. Unlike
19812 branches, the Windows CE loader *does* expect the relocation
19813 to take this into account. */
19814 case BFD_RELOC_ARM_OFFSET_IMM:
19815 case BFD_RELOC_ARM_OFFSET_IMM8:
19816 case BFD_RELOC_ARM_HWLITERAL:
19817 case BFD_RELOC_ARM_LITERAL:
19818 case BFD_RELOC_ARM_CP_OFF_IMM:
19819 return base + 8;
19822 /* Other PC-relative relocations are un-offset. */
19823 default:
19824 return base;
19828 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19829 Otherwise we have no need to default values of symbols. */
19831 symbolS *
19832 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19834 #ifdef OBJ_ELF
19835 if (name[0] == '_' && name[1] == 'G'
19836 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19838 if (!GOT_symbol)
19840 if (symbol_find (name))
19841 as_bad (_("GOT already in the symbol table"));
19843 GOT_symbol = symbol_new (name, undefined_section,
19844 (valueT) 0, & zero_address_frag);
19847 return GOT_symbol;
19849 #endif
19851 return NULL;
19854 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19855 computed as two separate immediate values, added together. We
19856 already know that this value cannot be computed by just one ARM
19857 instruction. */
19859 static unsigned int
19860 validate_immediate_twopart (unsigned int val,
19861 unsigned int * highpart)
19863 unsigned int a;
19864 unsigned int i;
19866 for (i = 0; i < 32; i += 2)
19867 if (((a = rotate_left (val, i)) & 0xff) != 0)
19869 if (a & 0xff00)
19871 if (a & ~ 0xffff)
19872 continue;
19873 * highpart = (a >> 8) | ((i + 24) << 7);
19875 else if (a & 0xff0000)
19877 if (a & 0xff000000)
19878 continue;
19879 * highpart = (a >> 16) | ((i + 16) << 7);
19881 else
19883 gas_assert (a & 0xff000000);
19884 * highpart = (a >> 24) | ((i + 8) << 7);
19887 return (a & 0xff) | (i << 7);
19890 return FAIL;
19893 static int
19894 validate_offset_imm (unsigned int val, int hwse)
19896 if ((hwse && val > 255) || val > 4095)
19897 return FAIL;
19898 return val;
19901 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19902 negative immediate constant by altering the instruction. A bit of
19903 a hack really.
19904 MOV <-> MVN
19905 AND <-> BIC
19906 ADC <-> SBC
19907 by inverting the second operand, and
19908 ADD <-> SUB
19909 CMP <-> CMN
19910 by negating the second operand. */
19912 static int
19913 negate_data_op (unsigned long * instruction,
19914 unsigned long value)
19916 int op, new_inst;
19917 unsigned long negated, inverted;
19919 negated = encode_arm_immediate (-value);
19920 inverted = encode_arm_immediate (~value);
19922 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19923 switch (op)
19925 /* First negates. */
19926 case OPCODE_SUB: /* ADD <-> SUB */
19927 new_inst = OPCODE_ADD;
19928 value = negated;
19929 break;
19931 case OPCODE_ADD:
19932 new_inst = OPCODE_SUB;
19933 value = negated;
19934 break;
19936 case OPCODE_CMP: /* CMP <-> CMN */
19937 new_inst = OPCODE_CMN;
19938 value = negated;
19939 break;
19941 case OPCODE_CMN:
19942 new_inst = OPCODE_CMP;
19943 value = negated;
19944 break;
19946 /* Now Inverted ops. */
19947 case OPCODE_MOV: /* MOV <-> MVN */
19948 new_inst = OPCODE_MVN;
19949 value = inverted;
19950 break;
19952 case OPCODE_MVN:
19953 new_inst = OPCODE_MOV;
19954 value = inverted;
19955 break;
19957 case OPCODE_AND: /* AND <-> BIC */
19958 new_inst = OPCODE_BIC;
19959 value = inverted;
19960 break;
19962 case OPCODE_BIC:
19963 new_inst = OPCODE_AND;
19964 value = inverted;
19965 break;
19967 case OPCODE_ADC: /* ADC <-> SBC */
19968 new_inst = OPCODE_SBC;
19969 value = inverted;
19970 break;
19972 case OPCODE_SBC:
19973 new_inst = OPCODE_ADC;
19974 value = inverted;
19975 break;
19977 /* We cannot do anything. */
19978 default:
19979 return FAIL;
19982 if (value == (unsigned) FAIL)
19983 return FAIL;
19985 *instruction &= OPCODE_MASK;
19986 *instruction |= new_inst << DATA_OP_SHIFT;
19987 return value;
19990 /* Like negate_data_op, but for Thumb-2. */
19992 static unsigned int
19993 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19995 int op, new_inst;
19996 int rd;
19997 unsigned int negated, inverted;
19999 negated = encode_thumb32_immediate (-value);
20000 inverted = encode_thumb32_immediate (~value);
20002 rd = (*instruction >> 8) & 0xf;
20003 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20004 switch (op)
20006 /* ADD <-> SUB. Includes CMP <-> CMN. */
20007 case T2_OPCODE_SUB:
20008 new_inst = T2_OPCODE_ADD;
20009 value = negated;
20010 break;
20012 case T2_OPCODE_ADD:
20013 new_inst = T2_OPCODE_SUB;
20014 value = negated;
20015 break;
20017 /* ORR <-> ORN. Includes MOV <-> MVN. */
20018 case T2_OPCODE_ORR:
20019 new_inst = T2_OPCODE_ORN;
20020 value = inverted;
20021 break;
20023 case T2_OPCODE_ORN:
20024 new_inst = T2_OPCODE_ORR;
20025 value = inverted;
20026 break;
20028 /* AND <-> BIC. TST has no inverted equivalent. */
20029 case T2_OPCODE_AND:
20030 new_inst = T2_OPCODE_BIC;
20031 if (rd == 15)
20032 value = FAIL;
20033 else
20034 value = inverted;
20035 break;
20037 case T2_OPCODE_BIC:
20038 new_inst = T2_OPCODE_AND;
20039 value = inverted;
20040 break;
20042 /* ADC <-> SBC */
20043 case T2_OPCODE_ADC:
20044 new_inst = T2_OPCODE_SBC;
20045 value = inverted;
20046 break;
20048 case T2_OPCODE_SBC:
20049 new_inst = T2_OPCODE_ADC;
20050 value = inverted;
20051 break;
20053 /* We cannot do anything. */
20054 default:
20055 return FAIL;
20058 if (value == (unsigned int)FAIL)
20059 return FAIL;
20061 *instruction &= T2_OPCODE_MASK;
20062 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20063 return value;
20066 /* Read a 32-bit thumb instruction from buf. */
20067 static unsigned long
20068 get_thumb32_insn (char * buf)
20070 unsigned long insn;
20071 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20072 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20074 return insn;
20078 /* We usually want to set the low bit on the address of thumb function
20079 symbols. In particular .word foo - . should have the low bit set.
20080 Generic code tries to fold the difference of two symbols to
20081 a constant. Prevent this and force a relocation when the first symbols
20082 is a thumb function. */
20084 bfd_boolean
20085 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20087 if (op == O_subtract
20088 && l->X_op == O_symbol
20089 && r->X_op == O_symbol
20090 && THUMB_IS_FUNC (l->X_add_symbol))
20092 l->X_op = O_subtract;
20093 l->X_op_symbol = r->X_add_symbol;
20094 l->X_add_number -= r->X_add_number;
20095 return TRUE;
20098 /* Process as normal. */
20099 return FALSE;
20102 /* Encode Thumb2 unconditional branches and calls. The encoding
20103 for the 2 are identical for the immediate values. */
20105 static void
20106 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20108 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20109 offsetT newval;
20110 offsetT newval2;
20111 addressT S, I1, I2, lo, hi;
20113 S = (value >> 24) & 0x01;
20114 I1 = (value >> 23) & 0x01;
20115 I2 = (value >> 22) & 0x01;
20116 hi = (value >> 12) & 0x3ff;
20117 lo = (value >> 1) & 0x7ff;
20118 newval = md_chars_to_number (buf, THUMB_SIZE);
20119 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20120 newval |= (S << 10) | hi;
20121 newval2 &= ~T2I1I2MASK;
20122 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20123 md_number_to_chars (buf, newval, THUMB_SIZE);
20124 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20127 void
20128 md_apply_fix (fixS * fixP,
20129 valueT * valP,
20130 segT seg)
20132 offsetT value = * valP;
20133 offsetT newval;
20134 unsigned int newimm;
20135 unsigned long temp;
20136 int sign;
20137 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20139 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20141 /* Note whether this will delete the relocation. */
20143 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20144 fixP->fx_done = 1;
20146 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20147 consistency with the behaviour on 32-bit hosts. Remember value
20148 for emit_reloc. */
20149 value &= 0xffffffff;
20150 value ^= 0x80000000;
20151 value -= 0x80000000;
20153 *valP = value;
20154 fixP->fx_addnumber = value;
20156 /* Same treatment for fixP->fx_offset. */
20157 fixP->fx_offset &= 0xffffffff;
20158 fixP->fx_offset ^= 0x80000000;
20159 fixP->fx_offset -= 0x80000000;
20161 switch (fixP->fx_r_type)
20163 case BFD_RELOC_NONE:
20164 /* This will need to go in the object file. */
20165 fixP->fx_done = 0;
20166 break;
20168 case BFD_RELOC_ARM_IMMEDIATE:
20169 /* We claim that this fixup has been processed here,
20170 even if in fact we generate an error because we do
20171 not have a reloc for it, so tc_gen_reloc will reject it. */
20172 fixP->fx_done = 1;
20174 if (fixP->fx_addsy)
20176 const char *msg = 0;
20178 if (! S_IS_DEFINED (fixP->fx_addsy))
20179 msg = _("undefined symbol %s used as an immediate value");
20180 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20181 msg = _("symbol %s is in a different section");
20182 else if (S_IS_WEAK (fixP->fx_addsy))
20183 msg = _("symbol %s is weak and may be overridden later");
20185 if (msg)
20187 as_bad_where (fixP->fx_file, fixP->fx_line,
20188 msg, S_GET_NAME (fixP->fx_addsy));
20189 break;
20193 newimm = encode_arm_immediate (value);
20194 temp = md_chars_to_number (buf, INSN_SIZE);
20196 /* If the instruction will fail, see if we can fix things up by
20197 changing the opcode. */
20198 if (newimm == (unsigned int) FAIL
20199 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20201 as_bad_where (fixP->fx_file, fixP->fx_line,
20202 _("invalid constant (%lx) after fixup"),
20203 (unsigned long) value);
20204 break;
20207 newimm |= (temp & 0xfffff000);
20208 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20209 break;
20211 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20213 unsigned int highpart = 0;
20214 unsigned int newinsn = 0xe1a00000; /* nop. */
20216 if (fixP->fx_addsy)
20218 const char *msg = 0;
20220 if (! S_IS_DEFINED (fixP->fx_addsy))
20221 msg = _("undefined symbol %s used as an immediate value");
20222 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20223 msg = _("symbol %s is in a different section");
20224 else if (S_IS_WEAK (fixP->fx_addsy))
20225 msg = _("symbol %s is weak and may be overridden later");
20227 if (msg)
20229 as_bad_where (fixP->fx_file, fixP->fx_line,
20230 msg, S_GET_NAME (fixP->fx_addsy));
20231 break;
20235 newimm = encode_arm_immediate (value);
20236 temp = md_chars_to_number (buf, INSN_SIZE);
20238 /* If the instruction will fail, see if we can fix things up by
20239 changing the opcode. */
20240 if (newimm == (unsigned int) FAIL
20241 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20243 /* No ? OK - try using two ADD instructions to generate
20244 the value. */
20245 newimm = validate_immediate_twopart (value, & highpart);
20247 /* Yes - then make sure that the second instruction is
20248 also an add. */
20249 if (newimm != (unsigned int) FAIL)
20250 newinsn = temp;
20251 /* Still No ? Try using a negated value. */
20252 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20253 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20254 /* Otherwise - give up. */
20255 else
20257 as_bad_where (fixP->fx_file, fixP->fx_line,
20258 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20259 (long) value);
20260 break;
20263 /* Replace the first operand in the 2nd instruction (which
20264 is the PC) with the destination register. We have
20265 already added in the PC in the first instruction and we
20266 do not want to do it again. */
20267 newinsn &= ~ 0xf0000;
20268 newinsn |= ((newinsn & 0x0f000) << 4);
20271 newimm |= (temp & 0xfffff000);
20272 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20274 highpart |= (newinsn & 0xfffff000);
20275 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20277 break;
20279 case BFD_RELOC_ARM_OFFSET_IMM:
20280 if (!fixP->fx_done && seg->use_rela_p)
20281 value = 0;
20283 case BFD_RELOC_ARM_LITERAL:
20284 sign = value >= 0;
20286 if (value < 0)
20287 value = - value;
20289 if (validate_offset_imm (value, 0) == FAIL)
20291 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20292 as_bad_where (fixP->fx_file, fixP->fx_line,
20293 _("invalid literal constant: pool needs to be closer"));
20294 else
20295 as_bad_where (fixP->fx_file, fixP->fx_line,
20296 _("bad immediate value for offset (%ld)"),
20297 (long) value);
20298 break;
20301 newval = md_chars_to_number (buf, INSN_SIZE);
20302 newval &= 0xff7ff000;
20303 newval |= value | (sign ? INDEX_UP : 0);
20304 md_number_to_chars (buf, newval, INSN_SIZE);
20305 break;
20307 case BFD_RELOC_ARM_OFFSET_IMM8:
20308 case BFD_RELOC_ARM_HWLITERAL:
20309 sign = value >= 0;
20311 if (value < 0)
20312 value = - value;
20314 if (validate_offset_imm (value, 1) == FAIL)
20316 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20317 as_bad_where (fixP->fx_file, fixP->fx_line,
20318 _("invalid literal constant: pool needs to be closer"));
20319 else
20320 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20321 (long) value);
20322 break;
20325 newval = md_chars_to_number (buf, INSN_SIZE);
20326 newval &= 0xff7ff0f0;
20327 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20328 md_number_to_chars (buf, newval, INSN_SIZE);
20329 break;
20331 case BFD_RELOC_ARM_T32_OFFSET_U8:
20332 if (value < 0 || value > 1020 || value % 4 != 0)
20333 as_bad_where (fixP->fx_file, fixP->fx_line,
20334 _("bad immediate value for offset (%ld)"), (long) value);
20335 value /= 4;
20337 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20338 newval |= value;
20339 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20340 break;
20342 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20343 /* This is a complicated relocation used for all varieties of Thumb32
20344 load/store instruction with immediate offset:
20346 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20347 *4, optional writeback(W)
20348 (doubleword load/store)
20350 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20351 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20352 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20353 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20354 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20356 Uppercase letters indicate bits that are already encoded at
20357 this point. Lowercase letters are our problem. For the
20358 second block of instructions, the secondary opcode nybble
20359 (bits 8..11) is present, and bit 23 is zero, even if this is
20360 a PC-relative operation. */
20361 newval = md_chars_to_number (buf, THUMB_SIZE);
20362 newval <<= 16;
20363 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20365 if ((newval & 0xf0000000) == 0xe0000000)
20367 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20368 if (value >= 0)
20369 newval |= (1 << 23);
20370 else
20371 value = -value;
20372 if (value % 4 != 0)
20374 as_bad_where (fixP->fx_file, fixP->fx_line,
20375 _("offset not a multiple of 4"));
20376 break;
20378 value /= 4;
20379 if (value > 0xff)
20381 as_bad_where (fixP->fx_file, fixP->fx_line,
20382 _("offset out of range"));
20383 break;
20385 newval &= ~0xff;
20387 else if ((newval & 0x000f0000) == 0x000f0000)
20389 /* PC-relative, 12-bit offset. */
20390 if (value >= 0)
20391 newval |= (1 << 23);
20392 else
20393 value = -value;
20394 if (value > 0xfff)
20396 as_bad_where (fixP->fx_file, fixP->fx_line,
20397 _("offset out of range"));
20398 break;
20400 newval &= ~0xfff;
20402 else if ((newval & 0x00000100) == 0x00000100)
20404 /* Writeback: 8-bit, +/- offset. */
20405 if (value >= 0)
20406 newval |= (1 << 9);
20407 else
20408 value = -value;
20409 if (value > 0xff)
20411 as_bad_where (fixP->fx_file, fixP->fx_line,
20412 _("offset out of range"));
20413 break;
20415 newval &= ~0xff;
20417 else if ((newval & 0x00000f00) == 0x00000e00)
20419 /* T-instruction: positive 8-bit offset. */
20420 if (value < 0 || value > 0xff)
20422 as_bad_where (fixP->fx_file, fixP->fx_line,
20423 _("offset out of range"));
20424 break;
20426 newval &= ~0xff;
20427 newval |= value;
20429 else
20431 /* Positive 12-bit or negative 8-bit offset. */
20432 int limit;
20433 if (value >= 0)
20435 newval |= (1 << 23);
20436 limit = 0xfff;
20438 else
20440 value = -value;
20441 limit = 0xff;
20443 if (value > limit)
20445 as_bad_where (fixP->fx_file, fixP->fx_line,
20446 _("offset out of range"));
20447 break;
20449 newval &= ~limit;
20452 newval |= value;
20453 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20454 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20455 break;
20457 case BFD_RELOC_ARM_SHIFT_IMM:
20458 newval = md_chars_to_number (buf, INSN_SIZE);
20459 if (((unsigned long) value) > 32
20460 || (value == 32
20461 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20463 as_bad_where (fixP->fx_file, fixP->fx_line,
20464 _("shift expression is too large"));
20465 break;
20468 if (value == 0)
20469 /* Shifts of zero must be done as lsl. */
20470 newval &= ~0x60;
20471 else if (value == 32)
20472 value = 0;
20473 newval &= 0xfffff07f;
20474 newval |= (value & 0x1f) << 7;
20475 md_number_to_chars (buf, newval, INSN_SIZE);
20476 break;
20478 case BFD_RELOC_ARM_T32_IMMEDIATE:
20479 case BFD_RELOC_ARM_T32_ADD_IMM:
20480 case BFD_RELOC_ARM_T32_IMM12:
20481 case BFD_RELOC_ARM_T32_ADD_PC12:
20482 /* We claim that this fixup has been processed here,
20483 even if in fact we generate an error because we do
20484 not have a reloc for it, so tc_gen_reloc will reject it. */
20485 fixP->fx_done = 1;
20487 if (fixP->fx_addsy
20488 && ! S_IS_DEFINED (fixP->fx_addsy))
20490 as_bad_where (fixP->fx_file, fixP->fx_line,
20491 _("undefined symbol %s used as an immediate value"),
20492 S_GET_NAME (fixP->fx_addsy));
20493 break;
20496 newval = md_chars_to_number (buf, THUMB_SIZE);
20497 newval <<= 16;
20498 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20500 newimm = FAIL;
20501 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20502 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20504 newimm = encode_thumb32_immediate (value);
20505 if (newimm == (unsigned int) FAIL)
20506 newimm = thumb32_negate_data_op (&newval, value);
20508 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20509 && newimm == (unsigned int) FAIL)
20511 /* Turn add/sum into addw/subw. */
20512 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20513 newval = (newval & 0xfeffffff) | 0x02000000;
20514 /* No flat 12-bit imm encoding for addsw/subsw. */
20515 if ((newval & 0x00100000) == 0)
20517 /* 12 bit immediate for addw/subw. */
20518 if (value < 0)
20520 value = -value;
20521 newval ^= 0x00a00000;
20523 if (value > 0xfff)
20524 newimm = (unsigned int) FAIL;
20525 else
20526 newimm = value;
20530 if (newimm == (unsigned int)FAIL)
20532 as_bad_where (fixP->fx_file, fixP->fx_line,
20533 _("invalid constant (%lx) after fixup"),
20534 (unsigned long) value);
20535 break;
20538 newval |= (newimm & 0x800) << 15;
20539 newval |= (newimm & 0x700) << 4;
20540 newval |= (newimm & 0x0ff);
20542 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20543 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20544 break;
20546 case BFD_RELOC_ARM_SMC:
20547 if (((unsigned long) value) > 0xffff)
20548 as_bad_where (fixP->fx_file, fixP->fx_line,
20549 _("invalid smc expression"));
20550 newval = md_chars_to_number (buf, INSN_SIZE);
20551 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20552 md_number_to_chars (buf, newval, INSN_SIZE);
20553 break;
20555 case BFD_RELOC_ARM_HVC:
20556 if (((unsigned long) value) > 0xffff)
20557 as_bad_where (fixP->fx_file, fixP->fx_line,
20558 _("invalid hvc expression"));
20559 newval = md_chars_to_number (buf, INSN_SIZE);
20560 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20561 md_number_to_chars (buf, newval, INSN_SIZE);
20562 break;
20564 case BFD_RELOC_ARM_SWI:
20565 if (fixP->tc_fix_data != 0)
20567 if (((unsigned long) value) > 0xff)
20568 as_bad_where (fixP->fx_file, fixP->fx_line,
20569 _("invalid swi expression"));
20570 newval = md_chars_to_number (buf, THUMB_SIZE);
20571 newval |= value;
20572 md_number_to_chars (buf, newval, THUMB_SIZE);
20574 else
20576 if (((unsigned long) value) > 0x00ffffff)
20577 as_bad_where (fixP->fx_file, fixP->fx_line,
20578 _("invalid swi expression"));
20579 newval = md_chars_to_number (buf, INSN_SIZE);
20580 newval |= value;
20581 md_number_to_chars (buf, newval, INSN_SIZE);
20583 break;
20585 case BFD_RELOC_ARM_MULTI:
20586 if (((unsigned long) value) > 0xffff)
20587 as_bad_where (fixP->fx_file, fixP->fx_line,
20588 _("invalid expression in load/store multiple"));
20589 newval = value | md_chars_to_number (buf, INSN_SIZE);
20590 md_number_to_chars (buf, newval, INSN_SIZE);
20591 break;
20593 #ifdef OBJ_ELF
20594 case BFD_RELOC_ARM_PCREL_CALL:
20596 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20597 && fixP->fx_addsy
20598 && !S_IS_EXTERNAL (fixP->fx_addsy)
20599 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20600 && THUMB_IS_FUNC (fixP->fx_addsy))
20601 /* Flip the bl to blx. This is a simple flip
20602 bit here because we generate PCREL_CALL for
20603 unconditional bls. */
20605 newval = md_chars_to_number (buf, INSN_SIZE);
20606 newval = newval | 0x10000000;
20607 md_number_to_chars (buf, newval, INSN_SIZE);
20608 temp = 1;
20609 fixP->fx_done = 1;
20611 else
20612 temp = 3;
20613 goto arm_branch_common;
20615 case BFD_RELOC_ARM_PCREL_JUMP:
20616 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20617 && fixP->fx_addsy
20618 && !S_IS_EXTERNAL (fixP->fx_addsy)
20619 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20620 && THUMB_IS_FUNC (fixP->fx_addsy))
20622 /* This would map to a bl<cond>, b<cond>,
20623 b<always> to a Thumb function. We
20624 need to force a relocation for this particular
20625 case. */
20626 newval = md_chars_to_number (buf, INSN_SIZE);
20627 fixP->fx_done = 0;
20630 case BFD_RELOC_ARM_PLT32:
20631 #endif
20632 case BFD_RELOC_ARM_PCREL_BRANCH:
20633 temp = 3;
20634 goto arm_branch_common;
20636 case BFD_RELOC_ARM_PCREL_BLX:
20638 temp = 1;
20639 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20640 && fixP->fx_addsy
20641 && !S_IS_EXTERNAL (fixP->fx_addsy)
20642 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20643 && ARM_IS_FUNC (fixP->fx_addsy))
20645 /* Flip the blx to a bl and warn. */
20646 const char *name = S_GET_NAME (fixP->fx_addsy);
20647 newval = 0xeb000000;
20648 as_warn_where (fixP->fx_file, fixP->fx_line,
20649 _("blx to '%s' an ARM ISA state function changed to bl"),
20650 name);
20651 md_number_to_chars (buf, newval, INSN_SIZE);
20652 temp = 3;
20653 fixP->fx_done = 1;
20656 #ifdef OBJ_ELF
20657 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20658 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20659 #endif
20661 arm_branch_common:
20662 /* We are going to store value (shifted right by two) in the
20663 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20664 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20665 also be be clear. */
20666 if (value & temp)
20667 as_bad_where (fixP->fx_file, fixP->fx_line,
20668 _("misaligned branch destination"));
20669 if ((value & (offsetT)0xfe000000) != (offsetT)0
20670 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20671 as_bad_where (fixP->fx_file, fixP->fx_line,
20672 _("branch out of range"));
20674 if (fixP->fx_done || !seg->use_rela_p)
20676 newval = md_chars_to_number (buf, INSN_SIZE);
20677 newval |= (value >> 2) & 0x00ffffff;
20678 /* Set the H bit on BLX instructions. */
20679 if (temp == 1)
20681 if (value & 2)
20682 newval |= 0x01000000;
20683 else
20684 newval &= ~0x01000000;
20686 md_number_to_chars (buf, newval, INSN_SIZE);
20688 break;
20690 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20691 /* CBZ can only branch forward. */
20693 /* Attempts to use CBZ to branch to the next instruction
20694 (which, strictly speaking, are prohibited) will be turned into
20695 no-ops.
20697 FIXME: It may be better to remove the instruction completely and
20698 perform relaxation. */
20699 if (value == -2)
20701 newval = md_chars_to_number (buf, THUMB_SIZE);
20702 newval = 0xbf00; /* NOP encoding T1 */
20703 md_number_to_chars (buf, newval, THUMB_SIZE);
20705 else
20707 if (value & ~0x7e)
20708 as_bad_where (fixP->fx_file, fixP->fx_line,
20709 _("branch out of range"));
20711 if (fixP->fx_done || !seg->use_rela_p)
20713 newval = md_chars_to_number (buf, THUMB_SIZE);
20714 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20715 md_number_to_chars (buf, newval, THUMB_SIZE);
20718 break;
20720 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20721 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20722 as_bad_where (fixP->fx_file, fixP->fx_line,
20723 _("branch out of range"));
20725 if (fixP->fx_done || !seg->use_rela_p)
20727 newval = md_chars_to_number (buf, THUMB_SIZE);
20728 newval |= (value & 0x1ff) >> 1;
20729 md_number_to_chars (buf, newval, THUMB_SIZE);
20731 break;
20733 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20734 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20735 as_bad_where (fixP->fx_file, fixP->fx_line,
20736 _("branch out of range"));
20738 if (fixP->fx_done || !seg->use_rela_p)
20740 newval = md_chars_to_number (buf, THUMB_SIZE);
20741 newval |= (value & 0xfff) >> 1;
20742 md_number_to_chars (buf, newval, THUMB_SIZE);
20744 break;
20746 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20747 if (fixP->fx_addsy
20748 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20749 && !S_IS_EXTERNAL (fixP->fx_addsy)
20750 && S_IS_DEFINED (fixP->fx_addsy)
20751 && ARM_IS_FUNC (fixP->fx_addsy)
20752 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20754 /* Force a relocation for a branch 20 bits wide. */
20755 fixP->fx_done = 0;
20757 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20758 as_bad_where (fixP->fx_file, fixP->fx_line,
20759 _("conditional branch out of range"));
20761 if (fixP->fx_done || !seg->use_rela_p)
20763 offsetT newval2;
20764 addressT S, J1, J2, lo, hi;
20766 S = (value & 0x00100000) >> 20;
20767 J2 = (value & 0x00080000) >> 19;
20768 J1 = (value & 0x00040000) >> 18;
20769 hi = (value & 0x0003f000) >> 12;
20770 lo = (value & 0x00000ffe) >> 1;
20772 newval = md_chars_to_number (buf, THUMB_SIZE);
20773 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20774 newval |= (S << 10) | hi;
20775 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20776 md_number_to_chars (buf, newval, THUMB_SIZE);
20777 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20779 break;
20781 case BFD_RELOC_THUMB_PCREL_BLX:
20783 /* If there is a blx from a thumb state function to
20784 another thumb function flip this to a bl and warn
20785 about it. */
20787 if (fixP->fx_addsy
20788 && S_IS_DEFINED (fixP->fx_addsy)
20789 && !S_IS_EXTERNAL (fixP->fx_addsy)
20790 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20791 && THUMB_IS_FUNC (fixP->fx_addsy))
20793 const char *name = S_GET_NAME (fixP->fx_addsy);
20794 as_warn_where (fixP->fx_file, fixP->fx_line,
20795 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20796 name);
20797 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20798 newval = newval | 0x1000;
20799 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20800 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20801 fixP->fx_done = 1;
20805 goto thumb_bl_common;
20807 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20809 /* A bl from Thumb state ISA to an internal ARM state function
20810 is converted to a blx. */
20811 if (fixP->fx_addsy
20812 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20813 && !S_IS_EXTERNAL (fixP->fx_addsy)
20814 && S_IS_DEFINED (fixP->fx_addsy)
20815 && ARM_IS_FUNC (fixP->fx_addsy)
20816 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20818 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20819 newval = newval & ~0x1000;
20820 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20821 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20822 fixP->fx_done = 1;
20825 thumb_bl_common:
20827 #ifdef OBJ_ELF
20828 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20829 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20830 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20831 #endif
20833 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20834 /* For a BLX instruction, make sure that the relocation is rounded up
20835 to a word boundary. This follows the semantics of the instruction
20836 which specifies that bit 1 of the target address will come from bit
20837 1 of the base address. */
20838 value = (value + 1) & ~ 1;
20841 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20843 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20845 as_bad_where (fixP->fx_file, fixP->fx_line,
20846 _("branch out of range"));
20848 else if ((value & ~0x1ffffff)
20849 && ((value & ~0x1ffffff) != ~0x1ffffff))
20851 as_bad_where (fixP->fx_file, fixP->fx_line,
20852 _("Thumb2 branch out of range"));
20856 if (fixP->fx_done || !seg->use_rela_p)
20857 encode_thumb2_b_bl_offset (buf, value);
20859 break;
20861 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20862 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20863 as_bad_where (fixP->fx_file, fixP->fx_line,
20864 _("branch out of range"));
20866 if (fixP->fx_done || !seg->use_rela_p)
20867 encode_thumb2_b_bl_offset (buf, value);
20869 break;
20871 case BFD_RELOC_8:
20872 if (fixP->fx_done || !seg->use_rela_p)
20873 md_number_to_chars (buf, value, 1);
20874 break;
20876 case BFD_RELOC_16:
20877 if (fixP->fx_done || !seg->use_rela_p)
20878 md_number_to_chars (buf, value, 2);
20879 break;
20881 #ifdef OBJ_ELF
20882 case BFD_RELOC_ARM_TLS_CALL:
20883 case BFD_RELOC_ARM_THM_TLS_CALL:
20884 case BFD_RELOC_ARM_TLS_DESCSEQ:
20885 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
20886 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20887 break;
20889 case BFD_RELOC_ARM_TLS_GOTDESC:
20890 case BFD_RELOC_ARM_TLS_GD32:
20891 case BFD_RELOC_ARM_TLS_LE32:
20892 case BFD_RELOC_ARM_TLS_IE32:
20893 case BFD_RELOC_ARM_TLS_LDM32:
20894 case BFD_RELOC_ARM_TLS_LDO32:
20895 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20896 /* fall through */
20898 case BFD_RELOC_ARM_GOT32:
20899 case BFD_RELOC_ARM_GOTOFF:
20900 if (fixP->fx_done || !seg->use_rela_p)
20901 md_number_to_chars (buf, 0, 4);
20902 break;
20904 case BFD_RELOC_ARM_GOT_PREL:
20905 if (fixP->fx_done || !seg->use_rela_p)
20906 md_number_to_chars (buf, value, 4);
20907 break;
20909 case BFD_RELOC_ARM_TARGET2:
20910 /* TARGET2 is not partial-inplace, so we need to write the
20911 addend here for REL targets, because it won't be written out
20912 during reloc processing later. */
20913 if (fixP->fx_done || !seg->use_rela_p)
20914 md_number_to_chars (buf, fixP->fx_offset, 4);
20915 break;
20916 #endif
20918 case BFD_RELOC_RVA:
20919 case BFD_RELOC_32:
20920 case BFD_RELOC_ARM_TARGET1:
20921 case BFD_RELOC_ARM_ROSEGREL32:
20922 case BFD_RELOC_ARM_SBREL32:
20923 case BFD_RELOC_32_PCREL:
20924 #ifdef TE_PE
20925 case BFD_RELOC_32_SECREL:
20926 #endif
20927 if (fixP->fx_done || !seg->use_rela_p)
20928 #ifdef TE_WINCE
20929 /* For WinCE we only do this for pcrel fixups. */
20930 if (fixP->fx_done || fixP->fx_pcrel)
20931 #endif
20932 md_number_to_chars (buf, value, 4);
20933 break;
20935 #ifdef OBJ_ELF
20936 case BFD_RELOC_ARM_PREL31:
20937 if (fixP->fx_done || !seg->use_rela_p)
20939 newval = md_chars_to_number (buf, 4) & 0x80000000;
20940 if ((value ^ (value >> 1)) & 0x40000000)
20942 as_bad_where (fixP->fx_file, fixP->fx_line,
20943 _("rel31 relocation overflow"));
20945 newval |= value & 0x7fffffff;
20946 md_number_to_chars (buf, newval, 4);
20948 break;
20949 #endif
20951 case BFD_RELOC_ARM_CP_OFF_IMM:
20952 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20953 if (value < -1023 || value > 1023 || (value & 3))
20954 as_bad_where (fixP->fx_file, fixP->fx_line,
20955 _("co-processor offset out of range"));
20956 cp_off_common:
20957 sign = value >= 0;
20958 if (value < 0)
20959 value = -value;
20960 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20961 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20962 newval = md_chars_to_number (buf, INSN_SIZE);
20963 else
20964 newval = get_thumb32_insn (buf);
20965 newval &= 0xff7fff00;
20966 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20967 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20968 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20969 md_number_to_chars (buf, newval, INSN_SIZE);
20970 else
20971 put_thumb32_insn (buf, newval);
20972 break;
20974 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20975 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20976 if (value < -255 || value > 255)
20977 as_bad_where (fixP->fx_file, fixP->fx_line,
20978 _("co-processor offset out of range"));
20979 value *= 4;
20980 goto cp_off_common;
20982 case BFD_RELOC_ARM_THUMB_OFFSET:
20983 newval = md_chars_to_number (buf, THUMB_SIZE);
20984 /* Exactly what ranges, and where the offset is inserted depends
20985 on the type of instruction, we can establish this from the
20986 top 4 bits. */
20987 switch (newval >> 12)
20989 case 4: /* PC load. */
20990 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20991 forced to zero for these loads; md_pcrel_from has already
20992 compensated for this. */
20993 if (value & 3)
20994 as_bad_where (fixP->fx_file, fixP->fx_line,
20995 _("invalid offset, target not word aligned (0x%08lX)"),
20996 (((unsigned long) fixP->fx_frag->fr_address
20997 + (unsigned long) fixP->fx_where) & ~3)
20998 + (unsigned long) value);
21000 if (value & ~0x3fc)
21001 as_bad_where (fixP->fx_file, fixP->fx_line,
21002 _("invalid offset, value too big (0x%08lX)"),
21003 (long) value);
21005 newval |= value >> 2;
21006 break;
21008 case 9: /* SP load/store. */
21009 if (value & ~0x3fc)
21010 as_bad_where (fixP->fx_file, fixP->fx_line,
21011 _("invalid offset, value too big (0x%08lX)"),
21012 (long) value);
21013 newval |= value >> 2;
21014 break;
21016 case 6: /* Word load/store. */
21017 if (value & ~0x7c)
21018 as_bad_where (fixP->fx_file, fixP->fx_line,
21019 _("invalid offset, value too big (0x%08lX)"),
21020 (long) value);
21021 newval |= value << 4; /* 6 - 2. */
21022 break;
21024 case 7: /* Byte load/store. */
21025 if (value & ~0x1f)
21026 as_bad_where (fixP->fx_file, fixP->fx_line,
21027 _("invalid offset, value too big (0x%08lX)"),
21028 (long) value);
21029 newval |= value << 6;
21030 break;
21032 case 8: /* Halfword load/store. */
21033 if (value & ~0x3e)
21034 as_bad_where (fixP->fx_file, fixP->fx_line,
21035 _("invalid offset, value too big (0x%08lX)"),
21036 (long) value);
21037 newval |= value << 5; /* 6 - 1. */
21038 break;
21040 default:
21041 as_bad_where (fixP->fx_file, fixP->fx_line,
21042 "Unable to process relocation for thumb opcode: %lx",
21043 (unsigned long) newval);
21044 break;
21046 md_number_to_chars (buf, newval, THUMB_SIZE);
21047 break;
21049 case BFD_RELOC_ARM_THUMB_ADD:
21050 /* This is a complicated relocation, since we use it for all of
21051 the following immediate relocations:
21053 3bit ADD/SUB
21054 8bit ADD/SUB
21055 9bit ADD/SUB SP word-aligned
21056 10bit ADD PC/SP word-aligned
21058 The type of instruction being processed is encoded in the
21059 instruction field:
21061 0x8000 SUB
21062 0x00F0 Rd
21063 0x000F Rs
21065 newval = md_chars_to_number (buf, THUMB_SIZE);
21067 int rd = (newval >> 4) & 0xf;
21068 int rs = newval & 0xf;
21069 int subtract = !!(newval & 0x8000);
21071 /* Check for HI regs, only very restricted cases allowed:
21072 Adjusting SP, and using PC or SP to get an address. */
21073 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21074 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21075 as_bad_where (fixP->fx_file, fixP->fx_line,
21076 _("invalid Hi register with immediate"));
21078 /* If value is negative, choose the opposite instruction. */
21079 if (value < 0)
21081 value = -value;
21082 subtract = !subtract;
21083 if (value < 0)
21084 as_bad_where (fixP->fx_file, fixP->fx_line,
21085 _("immediate value out of range"));
21088 if (rd == REG_SP)
21090 if (value & ~0x1fc)
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("invalid immediate for stack address calculation"));
21093 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21094 newval |= value >> 2;
21096 else if (rs == REG_PC || rs == REG_SP)
21098 if (subtract || value & ~0x3fc)
21099 as_bad_where (fixP->fx_file, fixP->fx_line,
21100 _("invalid immediate for address calculation (value = 0x%08lX)"),
21101 (unsigned long) value);
21102 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21103 newval |= rd << 8;
21104 newval |= value >> 2;
21106 else if (rs == rd)
21108 if (value & ~0xff)
21109 as_bad_where (fixP->fx_file, fixP->fx_line,
21110 _("immediate value out of range"));
21111 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21112 newval |= (rd << 8) | value;
21114 else
21116 if (value & ~0x7)
21117 as_bad_where (fixP->fx_file, fixP->fx_line,
21118 _("immediate value out of range"));
21119 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21120 newval |= rd | (rs << 3) | (value << 6);
21123 md_number_to_chars (buf, newval, THUMB_SIZE);
21124 break;
21126 case BFD_RELOC_ARM_THUMB_IMM:
21127 newval = md_chars_to_number (buf, THUMB_SIZE);
21128 if (value < 0 || value > 255)
21129 as_bad_where (fixP->fx_file, fixP->fx_line,
21130 _("invalid immediate: %ld is out of range"),
21131 (long) value);
21132 newval |= value;
21133 md_number_to_chars (buf, newval, THUMB_SIZE);
21134 break;
21136 case BFD_RELOC_ARM_THUMB_SHIFT:
21137 /* 5bit shift value (0..32). LSL cannot take 32. */
21138 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21139 temp = newval & 0xf800;
21140 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21141 as_bad_where (fixP->fx_file, fixP->fx_line,
21142 _("invalid shift value: %ld"), (long) value);
21143 /* Shifts of zero must be encoded as LSL. */
21144 if (value == 0)
21145 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21146 /* Shifts of 32 are encoded as zero. */
21147 else if (value == 32)
21148 value = 0;
21149 newval |= value << 6;
21150 md_number_to_chars (buf, newval, THUMB_SIZE);
21151 break;
21153 case BFD_RELOC_VTABLE_INHERIT:
21154 case BFD_RELOC_VTABLE_ENTRY:
21155 fixP->fx_done = 0;
21156 return;
21158 case BFD_RELOC_ARM_MOVW:
21159 case BFD_RELOC_ARM_MOVT:
21160 case BFD_RELOC_ARM_THUMB_MOVW:
21161 case BFD_RELOC_ARM_THUMB_MOVT:
21162 if (fixP->fx_done || !seg->use_rela_p)
21164 /* REL format relocations are limited to a 16-bit addend. */
21165 if (!fixP->fx_done)
21167 if (value < -0x8000 || value > 0x7fff)
21168 as_bad_where (fixP->fx_file, fixP->fx_line,
21169 _("offset out of range"));
21171 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21172 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21174 value >>= 16;
21177 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21178 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21180 newval = get_thumb32_insn (buf);
21181 newval &= 0xfbf08f00;
21182 newval |= (value & 0xf000) << 4;
21183 newval |= (value & 0x0800) << 15;
21184 newval |= (value & 0x0700) << 4;
21185 newval |= (value & 0x00ff);
21186 put_thumb32_insn (buf, newval);
21188 else
21190 newval = md_chars_to_number (buf, 4);
21191 newval &= 0xfff0f000;
21192 newval |= value & 0x0fff;
21193 newval |= (value & 0xf000) << 4;
21194 md_number_to_chars (buf, newval, 4);
21197 return;
21199 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21200 case BFD_RELOC_ARM_ALU_PC_G0:
21201 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21202 case BFD_RELOC_ARM_ALU_PC_G1:
21203 case BFD_RELOC_ARM_ALU_PC_G2:
21204 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21205 case BFD_RELOC_ARM_ALU_SB_G0:
21206 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21207 case BFD_RELOC_ARM_ALU_SB_G1:
21208 case BFD_RELOC_ARM_ALU_SB_G2:
21209 gas_assert (!fixP->fx_done);
21210 if (!seg->use_rela_p)
21212 bfd_vma insn;
21213 bfd_vma encoded_addend;
21214 bfd_vma addend_abs = abs (value);
21216 /* Check that the absolute value of the addend can be
21217 expressed as an 8-bit constant plus a rotation. */
21218 encoded_addend = encode_arm_immediate (addend_abs);
21219 if (encoded_addend == (unsigned int) FAIL)
21220 as_bad_where (fixP->fx_file, fixP->fx_line,
21221 _("the offset 0x%08lX is not representable"),
21222 (unsigned long) addend_abs);
21224 /* Extract the instruction. */
21225 insn = md_chars_to_number (buf, INSN_SIZE);
21227 /* If the addend is positive, use an ADD instruction.
21228 Otherwise use a SUB. Take care not to destroy the S bit. */
21229 insn &= 0xff1fffff;
21230 if (value < 0)
21231 insn |= 1 << 22;
21232 else
21233 insn |= 1 << 23;
21235 /* Place the encoded addend into the first 12 bits of the
21236 instruction. */
21237 insn &= 0xfffff000;
21238 insn |= encoded_addend;
21240 /* Update the instruction. */
21241 md_number_to_chars (buf, insn, INSN_SIZE);
21243 break;
21245 case BFD_RELOC_ARM_LDR_PC_G0:
21246 case BFD_RELOC_ARM_LDR_PC_G1:
21247 case BFD_RELOC_ARM_LDR_PC_G2:
21248 case BFD_RELOC_ARM_LDR_SB_G0:
21249 case BFD_RELOC_ARM_LDR_SB_G1:
21250 case BFD_RELOC_ARM_LDR_SB_G2:
21251 gas_assert (!fixP->fx_done);
21252 if (!seg->use_rela_p)
21254 bfd_vma insn;
21255 bfd_vma addend_abs = abs (value);
21257 /* Check that the absolute value of the addend can be
21258 encoded in 12 bits. */
21259 if (addend_abs >= 0x1000)
21260 as_bad_where (fixP->fx_file, fixP->fx_line,
21261 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21262 (unsigned long) addend_abs);
21264 /* Extract the instruction. */
21265 insn = md_chars_to_number (buf, INSN_SIZE);
21267 /* If the addend is negative, clear bit 23 of the instruction.
21268 Otherwise set it. */
21269 if (value < 0)
21270 insn &= ~(1 << 23);
21271 else
21272 insn |= 1 << 23;
21274 /* Place the absolute value of the addend into the first 12 bits
21275 of the instruction. */
21276 insn &= 0xfffff000;
21277 insn |= addend_abs;
21279 /* Update the instruction. */
21280 md_number_to_chars (buf, insn, INSN_SIZE);
21282 break;
21284 case BFD_RELOC_ARM_LDRS_PC_G0:
21285 case BFD_RELOC_ARM_LDRS_PC_G1:
21286 case BFD_RELOC_ARM_LDRS_PC_G2:
21287 case BFD_RELOC_ARM_LDRS_SB_G0:
21288 case BFD_RELOC_ARM_LDRS_SB_G1:
21289 case BFD_RELOC_ARM_LDRS_SB_G2:
21290 gas_assert (!fixP->fx_done);
21291 if (!seg->use_rela_p)
21293 bfd_vma insn;
21294 bfd_vma addend_abs = abs (value);
21296 /* Check that the absolute value of the addend can be
21297 encoded in 8 bits. */
21298 if (addend_abs >= 0x100)
21299 as_bad_where (fixP->fx_file, fixP->fx_line,
21300 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21301 (unsigned long) addend_abs);
21303 /* Extract the instruction. */
21304 insn = md_chars_to_number (buf, INSN_SIZE);
21306 /* If the addend is negative, clear bit 23 of the instruction.
21307 Otherwise set it. */
21308 if (value < 0)
21309 insn &= ~(1 << 23);
21310 else
21311 insn |= 1 << 23;
21313 /* Place the first four bits of the absolute value of the addend
21314 into the first 4 bits of the instruction, and the remaining
21315 four into bits 8 .. 11. */
21316 insn &= 0xfffff0f0;
21317 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21319 /* Update the instruction. */
21320 md_number_to_chars (buf, insn, INSN_SIZE);
21322 break;
21324 case BFD_RELOC_ARM_LDC_PC_G0:
21325 case BFD_RELOC_ARM_LDC_PC_G1:
21326 case BFD_RELOC_ARM_LDC_PC_G2:
21327 case BFD_RELOC_ARM_LDC_SB_G0:
21328 case BFD_RELOC_ARM_LDC_SB_G1:
21329 case BFD_RELOC_ARM_LDC_SB_G2:
21330 gas_assert (!fixP->fx_done);
21331 if (!seg->use_rela_p)
21333 bfd_vma insn;
21334 bfd_vma addend_abs = abs (value);
21336 /* Check that the absolute value of the addend is a multiple of
21337 four and, when divided by four, fits in 8 bits. */
21338 if (addend_abs & 0x3)
21339 as_bad_where (fixP->fx_file, fixP->fx_line,
21340 _("bad offset 0x%08lX (must be word-aligned)"),
21341 (unsigned long) addend_abs);
21343 if ((addend_abs >> 2) > 0xff)
21344 as_bad_where (fixP->fx_file, fixP->fx_line,
21345 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21346 (unsigned long) addend_abs);
21348 /* Extract the instruction. */
21349 insn = md_chars_to_number (buf, INSN_SIZE);
21351 /* If the addend is negative, clear bit 23 of the instruction.
21352 Otherwise set it. */
21353 if (value < 0)
21354 insn &= ~(1 << 23);
21355 else
21356 insn |= 1 << 23;
21358 /* Place the addend (divided by four) into the first eight
21359 bits of the instruction. */
21360 insn &= 0xfffffff0;
21361 insn |= addend_abs >> 2;
21363 /* Update the instruction. */
21364 md_number_to_chars (buf, insn, INSN_SIZE);
21366 break;
21368 case BFD_RELOC_ARM_V4BX:
21369 /* This will need to go in the object file. */
21370 fixP->fx_done = 0;
21371 break;
21373 case BFD_RELOC_UNUSED:
21374 default:
21375 as_bad_where (fixP->fx_file, fixP->fx_line,
21376 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21380 /* Translate internal representation of relocation info to BFD target
21381 format. */
21383 arelent *
21384 tc_gen_reloc (asection *section, fixS *fixp)
21386 arelent * reloc;
21387 bfd_reloc_code_real_type code;
21389 reloc = (arelent *) xmalloc (sizeof (arelent));
21391 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21392 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21393 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21395 if (fixp->fx_pcrel)
21397 if (section->use_rela_p)
21398 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21399 else
21400 fixp->fx_offset = reloc->address;
21402 reloc->addend = fixp->fx_offset;
21404 switch (fixp->fx_r_type)
21406 case BFD_RELOC_8:
21407 if (fixp->fx_pcrel)
21409 code = BFD_RELOC_8_PCREL;
21410 break;
21413 case BFD_RELOC_16:
21414 if (fixp->fx_pcrel)
21416 code = BFD_RELOC_16_PCREL;
21417 break;
21420 case BFD_RELOC_32:
21421 if (fixp->fx_pcrel)
21423 code = BFD_RELOC_32_PCREL;
21424 break;
21427 case BFD_RELOC_ARM_MOVW:
21428 if (fixp->fx_pcrel)
21430 code = BFD_RELOC_ARM_MOVW_PCREL;
21431 break;
21434 case BFD_RELOC_ARM_MOVT:
21435 if (fixp->fx_pcrel)
21437 code = BFD_RELOC_ARM_MOVT_PCREL;
21438 break;
21441 case BFD_RELOC_ARM_THUMB_MOVW:
21442 if (fixp->fx_pcrel)
21444 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21445 break;
21448 case BFD_RELOC_ARM_THUMB_MOVT:
21449 if (fixp->fx_pcrel)
21451 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21452 break;
21455 case BFD_RELOC_NONE:
21456 case BFD_RELOC_ARM_PCREL_BRANCH:
21457 case BFD_RELOC_ARM_PCREL_BLX:
21458 case BFD_RELOC_RVA:
21459 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21460 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21461 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21462 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21463 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21465 case BFD_RELOC_VTABLE_ENTRY:
21466 case BFD_RELOC_VTABLE_INHERIT:
21467 #ifdef TE_PE
21468 case BFD_RELOC_32_SECREL:
21469 #endif
21470 code = fixp->fx_r_type;
21471 break;
21473 case BFD_RELOC_THUMB_PCREL_BLX:
21474 #ifdef OBJ_ELF
21475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21476 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21477 else
21478 #endif
21479 code = BFD_RELOC_THUMB_PCREL_BLX;
21480 break;
21482 case BFD_RELOC_ARM_LITERAL:
21483 case BFD_RELOC_ARM_HWLITERAL:
21484 /* If this is called then the a literal has
21485 been referenced across a section boundary. */
21486 as_bad_where (fixp->fx_file, fixp->fx_line,
21487 _("literal referenced across section boundary"));
21488 return NULL;
21490 #ifdef OBJ_ELF
21491 case BFD_RELOC_ARM_TLS_CALL:
21492 case BFD_RELOC_ARM_THM_TLS_CALL:
21493 case BFD_RELOC_ARM_TLS_DESCSEQ:
21494 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21495 case BFD_RELOC_ARM_GOT32:
21496 case BFD_RELOC_ARM_GOTOFF:
21497 case BFD_RELOC_ARM_GOT_PREL:
21498 case BFD_RELOC_ARM_PLT32:
21499 case BFD_RELOC_ARM_TARGET1:
21500 case BFD_RELOC_ARM_ROSEGREL32:
21501 case BFD_RELOC_ARM_SBREL32:
21502 case BFD_RELOC_ARM_PREL31:
21503 case BFD_RELOC_ARM_TARGET2:
21504 case BFD_RELOC_ARM_TLS_LE32:
21505 case BFD_RELOC_ARM_TLS_LDO32:
21506 case BFD_RELOC_ARM_PCREL_CALL:
21507 case BFD_RELOC_ARM_PCREL_JUMP:
21508 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21509 case BFD_RELOC_ARM_ALU_PC_G0:
21510 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21511 case BFD_RELOC_ARM_ALU_PC_G1:
21512 case BFD_RELOC_ARM_ALU_PC_G2:
21513 case BFD_RELOC_ARM_LDR_PC_G0:
21514 case BFD_RELOC_ARM_LDR_PC_G1:
21515 case BFD_RELOC_ARM_LDR_PC_G2:
21516 case BFD_RELOC_ARM_LDRS_PC_G0:
21517 case BFD_RELOC_ARM_LDRS_PC_G1:
21518 case BFD_RELOC_ARM_LDRS_PC_G2:
21519 case BFD_RELOC_ARM_LDC_PC_G0:
21520 case BFD_RELOC_ARM_LDC_PC_G1:
21521 case BFD_RELOC_ARM_LDC_PC_G2:
21522 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21523 case BFD_RELOC_ARM_ALU_SB_G0:
21524 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21525 case BFD_RELOC_ARM_ALU_SB_G1:
21526 case BFD_RELOC_ARM_ALU_SB_G2:
21527 case BFD_RELOC_ARM_LDR_SB_G0:
21528 case BFD_RELOC_ARM_LDR_SB_G1:
21529 case BFD_RELOC_ARM_LDR_SB_G2:
21530 case BFD_RELOC_ARM_LDRS_SB_G0:
21531 case BFD_RELOC_ARM_LDRS_SB_G1:
21532 case BFD_RELOC_ARM_LDRS_SB_G2:
21533 case BFD_RELOC_ARM_LDC_SB_G0:
21534 case BFD_RELOC_ARM_LDC_SB_G1:
21535 case BFD_RELOC_ARM_LDC_SB_G2:
21536 case BFD_RELOC_ARM_V4BX:
21537 code = fixp->fx_r_type;
21538 break;
21540 case BFD_RELOC_ARM_TLS_GOTDESC:
21541 case BFD_RELOC_ARM_TLS_GD32:
21542 case BFD_RELOC_ARM_TLS_IE32:
21543 case BFD_RELOC_ARM_TLS_LDM32:
21544 /* BFD will include the symbol's address in the addend.
21545 But we don't want that, so subtract it out again here. */
21546 if (!S_IS_COMMON (fixp->fx_addsy))
21547 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21548 code = fixp->fx_r_type;
21549 break;
21550 #endif
21552 case BFD_RELOC_ARM_IMMEDIATE:
21553 as_bad_where (fixp->fx_file, fixp->fx_line,
21554 _("internal relocation (type: IMMEDIATE) not fixed up"));
21555 return NULL;
21557 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21558 as_bad_where (fixp->fx_file, fixp->fx_line,
21559 _("ADRL used for a symbol not defined in the same file"));
21560 return NULL;
21562 case BFD_RELOC_ARM_OFFSET_IMM:
21563 if (section->use_rela_p)
21565 code = fixp->fx_r_type;
21566 break;
21569 if (fixp->fx_addsy != NULL
21570 && !S_IS_DEFINED (fixp->fx_addsy)
21571 && S_IS_LOCAL (fixp->fx_addsy))
21573 as_bad_where (fixp->fx_file, fixp->fx_line,
21574 _("undefined local label `%s'"),
21575 S_GET_NAME (fixp->fx_addsy));
21576 return NULL;
21579 as_bad_where (fixp->fx_file, fixp->fx_line,
21580 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21581 return NULL;
21583 default:
21585 char * type;
21587 switch (fixp->fx_r_type)
21589 case BFD_RELOC_NONE: type = "NONE"; break;
21590 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21591 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21592 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21593 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21594 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21595 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21596 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21597 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21598 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21599 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21600 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21601 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21602 default: type = _("<unknown>"); break;
21604 as_bad_where (fixp->fx_file, fixp->fx_line,
21605 _("cannot represent %s relocation in this object file format"),
21606 type);
21607 return NULL;
21611 #ifdef OBJ_ELF
21612 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21613 && GOT_symbol
21614 && fixp->fx_addsy == GOT_symbol)
21616 code = BFD_RELOC_ARM_GOTPC;
21617 reloc->addend = fixp->fx_offset = reloc->address;
21619 #endif
21621 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21623 if (reloc->howto == NULL)
21625 as_bad_where (fixp->fx_file, fixp->fx_line,
21626 _("cannot represent %s relocation in this object file format"),
21627 bfd_get_reloc_code_name (code));
21628 return NULL;
21631 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21632 vtable entry to be used in the relocation's section offset. */
21633 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21634 reloc->address = fixp->fx_offset;
21636 return reloc;
21639 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21641 void
21642 cons_fix_new_arm (fragS * frag,
21643 int where,
21644 int size,
21645 expressionS * exp)
21647 bfd_reloc_code_real_type type;
21648 int pcrel = 0;
21650 /* Pick a reloc.
21651 FIXME: @@ Should look at CPU word size. */
21652 switch (size)
21654 case 1:
21655 type = BFD_RELOC_8;
21656 break;
21657 case 2:
21658 type = BFD_RELOC_16;
21659 break;
21660 case 4:
21661 default:
21662 type = BFD_RELOC_32;
21663 break;
21664 case 8:
21665 type = BFD_RELOC_64;
21666 break;
21669 #ifdef TE_PE
21670 if (exp->X_op == O_secrel)
21672 exp->X_op = O_symbol;
21673 type = BFD_RELOC_32_SECREL;
21675 #endif
21677 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21680 #if defined (OBJ_COFF)
21681 void
21682 arm_validate_fix (fixS * fixP)
21684 /* If the destination of the branch is a defined symbol which does not have
21685 the THUMB_FUNC attribute, then we must be calling a function which has
21686 the (interfacearm) attribute. We look for the Thumb entry point to that
21687 function and change the branch to refer to that function instead. */
21688 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21689 && fixP->fx_addsy != NULL
21690 && S_IS_DEFINED (fixP->fx_addsy)
21691 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21693 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21696 #endif
21700 arm_force_relocation (struct fix * fixp)
21702 #if defined (OBJ_COFF) && defined (TE_PE)
21703 if (fixp->fx_r_type == BFD_RELOC_RVA)
21704 return 1;
21705 #endif
21707 /* In case we have a call or a branch to a function in ARM ISA mode from
21708 a thumb function or vice-versa force the relocation. These relocations
21709 are cleared off for some cores that might have blx and simple transformations
21710 are possible. */
21712 #ifdef OBJ_ELF
21713 switch (fixp->fx_r_type)
21715 case BFD_RELOC_ARM_PCREL_JUMP:
21716 case BFD_RELOC_ARM_PCREL_CALL:
21717 case BFD_RELOC_THUMB_PCREL_BLX:
21718 if (THUMB_IS_FUNC (fixp->fx_addsy))
21719 return 1;
21720 break;
21722 case BFD_RELOC_ARM_PCREL_BLX:
21723 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21724 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21725 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21726 if (ARM_IS_FUNC (fixp->fx_addsy))
21727 return 1;
21728 break;
21730 default:
21731 break;
21733 #endif
21735 /* Resolve these relocations even if the symbol is extern or weak. */
21736 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21737 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21738 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21739 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21740 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21741 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21742 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21743 return 0;
21745 /* Always leave these relocations for the linker. */
21746 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21747 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21748 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21749 return 1;
21751 /* Always generate relocations against function symbols. */
21752 if (fixp->fx_r_type == BFD_RELOC_32
21753 && fixp->fx_addsy
21754 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21755 return 1;
21757 return generic_force_reloc (fixp);
21760 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21761 /* Relocations against function names must be left unadjusted,
21762 so that the linker can use this information to generate interworking
21763 stubs. The MIPS version of this function
21764 also prevents relocations that are mips-16 specific, but I do not
21765 know why it does this.
21767 FIXME:
21768 There is one other problem that ought to be addressed here, but
21769 which currently is not: Taking the address of a label (rather
21770 than a function) and then later jumping to that address. Such
21771 addresses also ought to have their bottom bit set (assuming that
21772 they reside in Thumb code), but at the moment they will not. */
21774 bfd_boolean
21775 arm_fix_adjustable (fixS * fixP)
21777 if (fixP->fx_addsy == NULL)
21778 return 1;
21780 /* Preserve relocations against symbols with function type. */
21781 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21782 return FALSE;
21784 if (THUMB_IS_FUNC (fixP->fx_addsy)
21785 && fixP->fx_subsy == NULL)
21786 return FALSE;
21788 /* We need the symbol name for the VTABLE entries. */
21789 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21790 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21791 return FALSE;
21793 /* Don't allow symbols to be discarded on GOT related relocs. */
21794 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21795 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21796 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21797 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21798 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21799 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21800 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21801 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21802 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
21803 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
21804 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
21805 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
21806 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
21807 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21808 return FALSE;
21810 /* Similarly for group relocations. */
21811 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21812 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21813 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21814 return FALSE;
21816 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21817 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21818 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21819 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21820 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21821 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21822 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21823 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21824 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21825 return FALSE;
21827 return TRUE;
21829 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21831 #ifdef OBJ_ELF
21833 const char *
21834 elf32_arm_target_format (void)
21836 #ifdef TE_SYMBIAN
21837 return (target_big_endian
21838 ? "elf32-bigarm-symbian"
21839 : "elf32-littlearm-symbian");
21840 #elif defined (TE_VXWORKS)
21841 return (target_big_endian
21842 ? "elf32-bigarm-vxworks"
21843 : "elf32-littlearm-vxworks");
21844 #else
21845 if (target_big_endian)
21846 return "elf32-bigarm";
21847 else
21848 return "elf32-littlearm";
21849 #endif
21852 void
21853 armelf_frob_symbol (symbolS * symp,
21854 int * puntp)
21856 elf_frob_symbol (symp, puntp);
21858 #endif
21860 /* MD interface: Finalization. */
21862 void
21863 arm_cleanup (void)
21865 literal_pool * pool;
21867 /* Ensure that all the IT blocks are properly closed. */
21868 check_it_blocks_finished ();
21870 for (pool = list_of_pools; pool; pool = pool->next)
21872 /* Put it at the end of the relevant section. */
21873 subseg_set (pool->section, pool->sub_section);
21874 #ifdef OBJ_ELF
21875 arm_elf_change_section ();
21876 #endif
21877 s_ltorg (0);
21881 #ifdef OBJ_ELF
21882 /* Remove any excess mapping symbols generated for alignment frags in
21883 SEC. We may have created a mapping symbol before a zero byte
21884 alignment; remove it if there's a mapping symbol after the
21885 alignment. */
21886 static void
21887 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21888 void *dummy ATTRIBUTE_UNUSED)
21890 segment_info_type *seginfo = seg_info (sec);
21891 fragS *fragp;
21893 if (seginfo == NULL || seginfo->frchainP == NULL)
21894 return;
21896 for (fragp = seginfo->frchainP->frch_root;
21897 fragp != NULL;
21898 fragp = fragp->fr_next)
21900 symbolS *sym = fragp->tc_frag_data.last_map;
21901 fragS *next = fragp->fr_next;
21903 /* Variable-sized frags have been converted to fixed size by
21904 this point. But if this was variable-sized to start with,
21905 there will be a fixed-size frag after it. So don't handle
21906 next == NULL. */
21907 if (sym == NULL || next == NULL)
21908 continue;
21910 if (S_GET_VALUE (sym) < next->fr_address)
21911 /* Not at the end of this frag. */
21912 continue;
21913 know (S_GET_VALUE (sym) == next->fr_address);
21917 if (next->tc_frag_data.first_map != NULL)
21919 /* Next frag starts with a mapping symbol. Discard this
21920 one. */
21921 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21922 break;
21925 if (next->fr_next == NULL)
21927 /* This mapping symbol is at the end of the section. Discard
21928 it. */
21929 know (next->fr_fix == 0 && next->fr_var == 0);
21930 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21931 break;
21934 /* As long as we have empty frags without any mapping symbols,
21935 keep looking. */
21936 /* If the next frag is non-empty and does not start with a
21937 mapping symbol, then this mapping symbol is required. */
21938 if (next->fr_address != next->fr_next->fr_address)
21939 break;
21941 next = next->fr_next;
21943 while (next != NULL);
21946 #endif
21948 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21949 ARM ones. */
21951 void
21952 arm_adjust_symtab (void)
21954 #ifdef OBJ_COFF
21955 symbolS * sym;
21957 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21959 if (ARM_IS_THUMB (sym))
21961 if (THUMB_IS_FUNC (sym))
21963 /* Mark the symbol as a Thumb function. */
21964 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21965 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21966 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21968 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21969 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21970 else
21971 as_bad (_("%s: unexpected function type: %d"),
21972 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21974 else switch (S_GET_STORAGE_CLASS (sym))
21976 case C_EXT:
21977 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21978 break;
21979 case C_STAT:
21980 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21981 break;
21982 case C_LABEL:
21983 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21984 break;
21985 default:
21986 /* Do nothing. */
21987 break;
21991 if (ARM_IS_INTERWORK (sym))
21992 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21994 #endif
21995 #ifdef OBJ_ELF
21996 symbolS * sym;
21997 char bind;
21999 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22001 if (ARM_IS_THUMB (sym))
22003 elf_symbol_type * elf_sym;
22005 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22006 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22008 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22009 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22011 /* If it's a .thumb_func, declare it as so,
22012 otherwise tag label as .code 16. */
22013 if (THUMB_IS_FUNC (sym))
22014 elf_sym->internal_elf_sym.st_info =
22015 ELF_ST_INFO (bind, STT_ARM_TFUNC);
22016 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22017 elf_sym->internal_elf_sym.st_info =
22018 ELF_ST_INFO (bind, STT_ARM_16BIT);
22023 /* Remove any overlapping mapping symbols generated by alignment frags. */
22024 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22025 /* Now do generic ELF adjustments. */
22026 elf_adjust_symtab ();
22027 #endif
22030 /* MD interface: Initialization. */
22032 static void
22033 set_constant_flonums (void)
22035 int i;
22037 for (i = 0; i < NUM_FLOAT_VALS; i++)
22038 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22039 abort ();
22042 /* Auto-select Thumb mode if it's the only available instruction set for the
22043 given architecture. */
22045 static void
22046 autoselect_thumb_from_cpu_variant (void)
22048 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22049 opcode_select (16);
22052 void
22053 md_begin (void)
22055 unsigned mach;
22056 unsigned int i;
22058 if ( (arm_ops_hsh = hash_new ()) == NULL
22059 || (arm_cond_hsh = hash_new ()) == NULL
22060 || (arm_shift_hsh = hash_new ()) == NULL
22061 || (arm_psr_hsh = hash_new ()) == NULL
22062 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22063 || (arm_reg_hsh = hash_new ()) == NULL
22064 || (arm_reloc_hsh = hash_new ()) == NULL
22065 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22066 as_fatal (_("virtual memory exhausted"));
22068 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22069 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22070 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22071 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22072 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22073 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22074 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22075 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22076 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22077 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22078 (void *) (v7m_psrs + i));
22079 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22080 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22081 for (i = 0;
22082 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22083 i++)
22084 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22085 (void *) (barrier_opt_names + i));
22086 #ifdef OBJ_ELF
22087 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22088 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22089 #endif
22091 set_constant_flonums ();
22093 /* Set the cpu variant based on the command-line options. We prefer
22094 -mcpu= over -march= if both are set (as for GCC); and we prefer
22095 -mfpu= over any other way of setting the floating point unit.
22096 Use of legacy options with new options are faulted. */
22097 if (legacy_cpu)
22099 if (mcpu_cpu_opt || march_cpu_opt)
22100 as_bad (_("use of old and new-style options to set CPU type"));
22102 mcpu_cpu_opt = legacy_cpu;
22104 else if (!mcpu_cpu_opt)
22105 mcpu_cpu_opt = march_cpu_opt;
22107 if (legacy_fpu)
22109 if (mfpu_opt)
22110 as_bad (_("use of old and new-style options to set FPU type"));
22112 mfpu_opt = legacy_fpu;
22114 else if (!mfpu_opt)
22116 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22117 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22118 /* Some environments specify a default FPU. If they don't, infer it
22119 from the processor. */
22120 if (mcpu_fpu_opt)
22121 mfpu_opt = mcpu_fpu_opt;
22122 else
22123 mfpu_opt = march_fpu_opt;
22124 #else
22125 mfpu_opt = &fpu_default;
22126 #endif
22129 if (!mfpu_opt)
22131 if (mcpu_cpu_opt != NULL)
22132 mfpu_opt = &fpu_default;
22133 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22134 mfpu_opt = &fpu_arch_vfp_v2;
22135 else
22136 mfpu_opt = &fpu_arch_fpa;
22139 #ifdef CPU_DEFAULT
22140 if (!mcpu_cpu_opt)
22142 mcpu_cpu_opt = &cpu_default;
22143 selected_cpu = cpu_default;
22145 #else
22146 if (mcpu_cpu_opt)
22147 selected_cpu = *mcpu_cpu_opt;
22148 else
22149 mcpu_cpu_opt = &arm_arch_any;
22150 #endif
22152 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22154 autoselect_thumb_from_cpu_variant ();
22156 arm_arch_used = thumb_arch_used = arm_arch_none;
22158 #if defined OBJ_COFF || defined OBJ_ELF
22160 unsigned int flags = 0;
22162 #if defined OBJ_ELF
22163 flags = meabi_flags;
22165 switch (meabi_flags)
22167 case EF_ARM_EABI_UNKNOWN:
22168 #endif
22169 /* Set the flags in the private structure. */
22170 if (uses_apcs_26) flags |= F_APCS26;
22171 if (support_interwork) flags |= F_INTERWORK;
22172 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22173 if (pic_code) flags |= F_PIC;
22174 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22175 flags |= F_SOFT_FLOAT;
22177 switch (mfloat_abi_opt)
22179 case ARM_FLOAT_ABI_SOFT:
22180 case ARM_FLOAT_ABI_SOFTFP:
22181 flags |= F_SOFT_FLOAT;
22182 break;
22184 case ARM_FLOAT_ABI_HARD:
22185 if (flags & F_SOFT_FLOAT)
22186 as_bad (_("hard-float conflicts with specified fpu"));
22187 break;
22190 /* Using pure-endian doubles (even if soft-float). */
22191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22192 flags |= F_VFP_FLOAT;
22194 #if defined OBJ_ELF
22195 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22196 flags |= EF_ARM_MAVERICK_FLOAT;
22197 break;
22199 case EF_ARM_EABI_VER4:
22200 case EF_ARM_EABI_VER5:
22201 /* No additional flags to set. */
22202 break;
22204 default:
22205 abort ();
22207 #endif
22208 bfd_set_private_flags (stdoutput, flags);
22210 /* We have run out flags in the COFF header to encode the
22211 status of ATPCS support, so instead we create a dummy,
22212 empty, debug section called .arm.atpcs. */
22213 if (atpcs)
22215 asection * sec;
22217 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22219 if (sec != NULL)
22221 bfd_set_section_flags
22222 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22223 bfd_set_section_size (stdoutput, sec, 0);
22224 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22228 #endif
22230 /* Record the CPU type as well. */
22231 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22232 mach = bfd_mach_arm_iWMMXt2;
22233 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22234 mach = bfd_mach_arm_iWMMXt;
22235 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22236 mach = bfd_mach_arm_XScale;
22237 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22238 mach = bfd_mach_arm_ep9312;
22239 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22240 mach = bfd_mach_arm_5TE;
22241 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22243 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22244 mach = bfd_mach_arm_5T;
22245 else
22246 mach = bfd_mach_arm_5;
22248 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22250 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22251 mach = bfd_mach_arm_4T;
22252 else
22253 mach = bfd_mach_arm_4;
22255 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22256 mach = bfd_mach_arm_3M;
22257 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22258 mach = bfd_mach_arm_3;
22259 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22260 mach = bfd_mach_arm_2a;
22261 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22262 mach = bfd_mach_arm_2;
22263 else
22264 mach = bfd_mach_arm_unknown;
22266 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22269 /* Command line processing. */
22271 /* md_parse_option
22272 Invocation line includes a switch not recognized by the base assembler.
22273 See if it's a processor-specific option.
22275 This routine is somewhat complicated by the need for backwards
22276 compatibility (since older releases of gcc can't be changed).
22277 The new options try to make the interface as compatible as
22278 possible with GCC.
22280 New options (supported) are:
22282 -mcpu=<cpu name> Assemble for selected processor
22283 -march=<architecture name> Assemble for selected architecture
22284 -mfpu=<fpu architecture> Assemble for selected FPU.
22285 -EB/-mbig-endian Big-endian
22286 -EL/-mlittle-endian Little-endian
22287 -k Generate PIC code
22288 -mthumb Start in Thumb mode
22289 -mthumb-interwork Code supports ARM/Thumb interworking
22291 -m[no-]warn-deprecated Warn about deprecated features
22293 For now we will also provide support for:
22295 -mapcs-32 32-bit Program counter
22296 -mapcs-26 26-bit Program counter
22297 -macps-float Floats passed in FP registers
22298 -mapcs-reentrant Reentrant code
22299 -matpcs
22300 (sometime these will probably be replaced with -mapcs=<list of options>
22301 and -matpcs=<list of options>)
22303 The remaining options are only supported for back-wards compatibility.
22304 Cpu variants, the arm part is optional:
22305 -m[arm]1 Currently not supported.
22306 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22307 -m[arm]3 Arm 3 processor
22308 -m[arm]6[xx], Arm 6 processors
22309 -m[arm]7[xx][t][[d]m] Arm 7 processors
22310 -m[arm]8[10] Arm 8 processors
22311 -m[arm]9[20][tdmi] Arm 9 processors
22312 -mstrongarm[110[0]] StrongARM processors
22313 -mxscale XScale processors
22314 -m[arm]v[2345[t[e]]] Arm architectures
22315 -mall All (except the ARM1)
22316 FP variants:
22317 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22318 -mfpe-old (No float load/store multiples)
22319 -mvfpxd VFP Single precision
22320 -mvfp All VFP
22321 -mno-fpu Disable all floating point instructions
22323 The following CPU names are recognized:
22324 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22325 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22326 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22327 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22328 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22329 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22330 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22334 const char * md_shortopts = "m:k";
22336 #ifdef ARM_BI_ENDIAN
22337 #define OPTION_EB (OPTION_MD_BASE + 0)
22338 #define OPTION_EL (OPTION_MD_BASE + 1)
22339 #else
22340 #if TARGET_BYTES_BIG_ENDIAN
22341 #define OPTION_EB (OPTION_MD_BASE + 0)
22342 #else
22343 #define OPTION_EL (OPTION_MD_BASE + 1)
22344 #endif
22345 #endif
22346 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22348 struct option md_longopts[] =
22350 #ifdef OPTION_EB
22351 {"EB", no_argument, NULL, OPTION_EB},
22352 #endif
22353 #ifdef OPTION_EL
22354 {"EL", no_argument, NULL, OPTION_EL},
22355 #endif
22356 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22357 {NULL, no_argument, NULL, 0}
22360 size_t md_longopts_size = sizeof (md_longopts);
22362 struct arm_option_table
22364 char *option; /* Option name to match. */
22365 char *help; /* Help information. */
22366 int *var; /* Variable to change. */
22367 int value; /* What to change it to. */
22368 char *deprecated; /* If non-null, print this message. */
22371 struct arm_option_table arm_opts[] =
22373 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22374 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22375 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22376 &support_interwork, 1, NULL},
22377 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22378 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22379 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22380 1, NULL},
22381 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22382 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22383 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22384 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22385 NULL},
22387 /* These are recognized by the assembler, but have no affect on code. */
22388 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22389 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22391 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22392 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22393 &warn_on_deprecated, 0, NULL},
22394 {NULL, NULL, NULL, 0, NULL}
22397 struct arm_legacy_option_table
22399 char *option; /* Option name to match. */
22400 const arm_feature_set **var; /* Variable to change. */
22401 const arm_feature_set value; /* What to change it to. */
22402 char *deprecated; /* If non-null, print this message. */
22405 const struct arm_legacy_option_table arm_legacy_opts[] =
22407 /* DON'T add any new processors to this list -- we want the whole list
22408 to go away... Add them to the processors table instead. */
22409 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22410 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22411 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22412 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22413 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22414 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22415 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22416 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22417 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22418 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22419 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22420 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22421 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22422 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22423 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22424 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22425 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22426 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22427 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22428 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22429 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22430 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22431 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22432 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22433 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22434 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22435 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22436 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22437 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22438 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22439 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22440 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22441 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22442 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22443 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22444 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22445 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22446 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22447 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22448 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22449 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22450 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22451 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22452 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22453 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22454 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22455 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22456 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22457 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22458 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22459 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22460 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22461 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22462 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22463 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22464 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22465 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22466 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22467 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22468 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22469 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22470 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22471 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22472 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22473 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22474 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22475 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22476 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22477 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22478 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22479 N_("use -mcpu=strongarm110")},
22480 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22481 N_("use -mcpu=strongarm1100")},
22482 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22483 N_("use -mcpu=strongarm1110")},
22484 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22485 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22486 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22488 /* Architecture variants -- don't add any more to this list either. */
22489 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22490 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22491 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22492 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22493 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22494 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22495 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22496 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22497 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22498 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22499 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22500 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22501 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22502 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22503 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22504 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22505 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22506 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22508 /* Floating point variants -- don't add any more to this list either. */
22509 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22510 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22511 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22512 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22513 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22515 {NULL, NULL, ARM_ARCH_NONE, NULL}
22518 struct arm_cpu_option_table
22520 char *name;
22521 const arm_feature_set value;
22522 /* For some CPUs we assume an FPU unless the user explicitly sets
22523 -mfpu=... */
22524 const arm_feature_set default_fpu;
22525 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22526 case. */
22527 const char *canonical_name;
22530 /* This list should, at a minimum, contain all the cpu names
22531 recognized by GCC. */
22532 static const struct arm_cpu_option_table arm_cpus[] =
22534 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22535 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22536 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22537 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22538 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22539 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22540 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22541 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22542 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22543 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22544 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22545 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22546 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22547 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22548 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22549 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22550 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22551 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22552 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22553 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22554 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22555 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22556 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22557 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22558 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22559 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22560 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22561 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22562 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22563 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22564 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22565 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22566 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22567 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22568 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22569 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22570 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22571 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22572 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22573 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22574 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22575 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22576 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22577 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22578 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22579 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22580 /* For V5 or later processors we default to using VFP; but the user
22581 should really set the FPU type explicitly. */
22582 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22583 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22584 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22585 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22586 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22587 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22588 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22589 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22590 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22591 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22592 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22593 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22594 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22595 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22596 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22597 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22598 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22599 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22600 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22601 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22602 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22603 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22604 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22605 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22606 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22607 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22608 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22609 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22610 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22611 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22612 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22613 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22614 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22615 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22616 FPU_NONE, "Cortex-A5"},
22617 {"cortex-a8", ARM_ARCH_V7A_SEC,
22618 ARM_FEATURE (0, FPU_VFP_V3
22619 | FPU_NEON_EXT_V1),
22620 "Cortex-A8"},
22621 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22622 ARM_FEATURE (0, FPU_VFP_V3
22623 | FPU_NEON_EXT_V1),
22624 "Cortex-A9"},
22625 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22626 FPU_ARCH_NEON_VFP_V4,
22627 "Cortex-A15"},
22628 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22629 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22630 "Cortex-R4F"},
22631 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22632 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22633 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22634 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22635 /* ??? XSCALE is really an architecture. */
22636 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22637 /* ??? iwmmxt is not a processor. */
22638 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22639 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22640 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22641 /* Maverick */
22642 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22643 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22646 struct arm_arch_option_table
22648 char *name;
22649 const arm_feature_set value;
22650 const arm_feature_set default_fpu;
22653 /* This list should, at a minimum, contain all the architecture names
22654 recognized by GCC. */
22655 static const struct arm_arch_option_table arm_archs[] =
22657 {"all", ARM_ANY, FPU_ARCH_FPA},
22658 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22659 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22660 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22661 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22662 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22663 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22664 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22665 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22666 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22667 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22668 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22669 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22670 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22671 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22672 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22673 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22674 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22675 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22676 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22677 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22678 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22679 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22680 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22681 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22682 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22683 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22684 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22685 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22686 /* The official spelling of the ARMv7 profile variants is the dashed form.
22687 Accept the non-dashed form for compatibility with old toolchains. */
22688 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22689 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22690 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22691 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22692 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22693 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22694 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22695 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22696 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22697 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22698 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22701 /* ISA extensions in the co-processor and main instruction set space. */
22702 struct arm_option_extension_value_table
22704 char *name;
22705 const arm_feature_set value;
22706 const arm_feature_set allowed_archs;
22709 /* The following table must be in alphabetical order with a NULL last entry.
22711 static const struct arm_option_extension_value_table arm_extensions[] =
22713 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22714 ARM_FEATURE (ARM_EXT_V7A, 0)},
22715 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22716 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22717 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22718 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22719 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22720 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22721 ARM_FEATURE (ARM_EXT_V6M, 0)},
22722 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22723 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22724 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22725 ARM_FEATURE (ARM_EXT_V7A, 0)},
22726 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22727 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22730 /* ISA floating-point and Advanced SIMD extensions. */
22731 struct arm_option_fpu_value_table
22733 char *name;
22734 const arm_feature_set value;
22737 /* This list should, at a minimum, contain all the fpu names
22738 recognized by GCC. */
22739 static const struct arm_option_fpu_value_table arm_fpus[] =
22741 {"softfpa", FPU_NONE},
22742 {"fpe", FPU_ARCH_FPE},
22743 {"fpe2", FPU_ARCH_FPE},
22744 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22745 {"fpa", FPU_ARCH_FPA},
22746 {"fpa10", FPU_ARCH_FPA},
22747 {"fpa11", FPU_ARCH_FPA},
22748 {"arm7500fe", FPU_ARCH_FPA},
22749 {"softvfp", FPU_ARCH_VFP},
22750 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22751 {"vfp", FPU_ARCH_VFP_V2},
22752 {"vfp9", FPU_ARCH_VFP_V2},
22753 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22754 {"vfp10", FPU_ARCH_VFP_V2},
22755 {"vfp10-r0", FPU_ARCH_VFP_V1},
22756 {"vfpxd", FPU_ARCH_VFP_V1xD},
22757 {"vfpv2", FPU_ARCH_VFP_V2},
22758 {"vfpv3", FPU_ARCH_VFP_V3},
22759 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22760 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22761 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22762 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22763 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22764 {"arm1020t", FPU_ARCH_VFP_V1},
22765 {"arm1020e", FPU_ARCH_VFP_V2},
22766 {"arm1136jfs", FPU_ARCH_VFP_V2},
22767 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22768 {"maverick", FPU_ARCH_MAVERICK},
22769 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22770 {"neon-fp16", FPU_ARCH_NEON_FP16},
22771 {"vfpv4", FPU_ARCH_VFP_V4},
22772 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22773 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22774 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22775 {NULL, ARM_ARCH_NONE}
22778 struct arm_option_value_table
22780 char *name;
22781 long value;
22784 static const struct arm_option_value_table arm_float_abis[] =
22786 {"hard", ARM_FLOAT_ABI_HARD},
22787 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22788 {"soft", ARM_FLOAT_ABI_SOFT},
22789 {NULL, 0}
22792 #ifdef OBJ_ELF
22793 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22794 static const struct arm_option_value_table arm_eabis[] =
22796 {"gnu", EF_ARM_EABI_UNKNOWN},
22797 {"4", EF_ARM_EABI_VER4},
22798 {"5", EF_ARM_EABI_VER5},
22799 {NULL, 0}
22801 #endif
22803 struct arm_long_option_table
22805 char * option; /* Substring to match. */
22806 char * help; /* Help information. */
22807 int (* func) (char * subopt); /* Function to decode sub-option. */
22808 char * deprecated; /* If non-null, print this message. */
22811 static bfd_boolean
22812 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22814 arm_feature_set *ext_set = (arm_feature_set *)
22815 xmalloc (sizeof (arm_feature_set));
22817 /* We insist on extensions being specified in alphabetical order, and with
22818 extensions being added before being removed. We achieve this by having
22819 the global ARM_EXTENSIONS table in alphabetical order, and using the
22820 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22821 or removing it (0) and only allowing it to change in the order
22822 -1 -> 1 -> 0. */
22823 const struct arm_option_extension_value_table * opt = NULL;
22824 int adding_value = -1;
22826 /* Copy the feature set, so that we can modify it. */
22827 *ext_set = **opt_p;
22828 *opt_p = ext_set;
22830 while (str != NULL && *str != 0)
22832 char * ext;
22833 size_t optlen;
22835 if (*str != '+')
22837 as_bad (_("invalid architectural extension"));
22838 return FALSE;
22841 str++;
22842 ext = strchr (str, '+');
22844 if (ext != NULL)
22845 optlen = ext - str;
22846 else
22847 optlen = strlen (str);
22849 if (optlen >= 2
22850 && strncmp (str, "no", 2) == 0)
22852 if (adding_value != 0)
22854 adding_value = 0;
22855 opt = arm_extensions;
22858 optlen -= 2;
22859 str += 2;
22861 else if (optlen > 0)
22863 if (adding_value == -1)
22865 adding_value = 1;
22866 opt = arm_extensions;
22868 else if (adding_value != 1)
22870 as_bad (_("must specify extensions to add before specifying "
22871 "those to remove"));
22872 return FALSE;
22876 if (optlen == 0)
22878 as_bad (_("missing architectural extension"));
22879 return FALSE;
22882 gas_assert (adding_value != -1);
22883 gas_assert (opt != NULL);
22885 /* Scan over the options table trying to find an exact match. */
22886 for (; opt->name != NULL; opt++)
22887 if (strncmp (opt->name, str, optlen) == 0
22888 && strlen (opt->name) == optlen)
22890 /* Check we can apply the extension to this architecture. */
22891 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
22893 as_bad (_("extension does not apply to the base architecture"));
22894 return FALSE;
22897 /* Add or remove the extension. */
22898 if (adding_value)
22899 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22900 else
22901 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
22903 break;
22906 if (opt->name == NULL)
22908 /* Did we fail to find an extension because it wasn't specified in
22909 alphabetical order, or because it does not exist? */
22911 for (opt = arm_extensions; opt->name != NULL; opt++)
22912 if (strncmp (opt->name, str, optlen) == 0)
22913 break;
22915 if (opt->name == NULL)
22916 as_bad (_("unknown architectural extension `%s'"), str);
22917 else
22918 as_bad (_("architectural extensions must be specified in "
22919 "alphabetical order"));
22921 return FALSE;
22923 else
22925 /* We should skip the extension we've just matched the next time
22926 round. */
22927 opt++;
22930 str = ext;
22933 return TRUE;
22936 static bfd_boolean
22937 arm_parse_cpu (char * str)
22939 const struct arm_cpu_option_table * opt;
22940 char * ext = strchr (str, '+');
22941 int optlen;
22943 if (ext != NULL)
22944 optlen = ext - str;
22945 else
22946 optlen = strlen (str);
22948 if (optlen == 0)
22950 as_bad (_("missing cpu name `%s'"), str);
22951 return FALSE;
22954 for (opt = arm_cpus; opt->name != NULL; opt++)
22955 if (strncmp (opt->name, str, optlen) == 0)
22957 mcpu_cpu_opt = &opt->value;
22958 mcpu_fpu_opt = &opt->default_fpu;
22959 if (opt->canonical_name)
22960 strcpy (selected_cpu_name, opt->canonical_name);
22961 else
22963 int i;
22965 for (i = 0; i < optlen; i++)
22966 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22967 selected_cpu_name[i] = 0;
22970 if (ext != NULL)
22971 return arm_parse_extension (ext, &mcpu_cpu_opt);
22973 return TRUE;
22976 as_bad (_("unknown cpu `%s'"), str);
22977 return FALSE;
22980 static bfd_boolean
22981 arm_parse_arch (char * str)
22983 const struct arm_arch_option_table *opt;
22984 char *ext = strchr (str, '+');
22985 int optlen;
22987 if (ext != NULL)
22988 optlen = ext - str;
22989 else
22990 optlen = strlen (str);
22992 if (optlen == 0)
22994 as_bad (_("missing architecture name `%s'"), str);
22995 return FALSE;
22998 for (opt = arm_archs; opt->name != NULL; opt++)
22999 if (strncmp (opt->name, str, optlen) == 0)
23001 march_cpu_opt = &opt->value;
23002 march_fpu_opt = &opt->default_fpu;
23003 strcpy (selected_cpu_name, opt->name);
23005 if (ext != NULL)
23006 return arm_parse_extension (ext, &march_cpu_opt);
23008 return TRUE;
23011 as_bad (_("unknown architecture `%s'\n"), str);
23012 return FALSE;
23015 static bfd_boolean
23016 arm_parse_fpu (char * str)
23018 const struct arm_option_fpu_value_table * opt;
23020 for (opt = arm_fpus; opt->name != NULL; opt++)
23021 if (streq (opt->name, str))
23023 mfpu_opt = &opt->value;
23024 return TRUE;
23027 as_bad (_("unknown floating point format `%s'\n"), str);
23028 return FALSE;
23031 static bfd_boolean
23032 arm_parse_float_abi (char * str)
23034 const struct arm_option_value_table * opt;
23036 for (opt = arm_float_abis; opt->name != NULL; opt++)
23037 if (streq (opt->name, str))
23039 mfloat_abi_opt = opt->value;
23040 return TRUE;
23043 as_bad (_("unknown floating point abi `%s'\n"), str);
23044 return FALSE;
23047 #ifdef OBJ_ELF
23048 static bfd_boolean
23049 arm_parse_eabi (char * str)
23051 const struct arm_option_value_table *opt;
23053 for (opt = arm_eabis; opt->name != NULL; opt++)
23054 if (streq (opt->name, str))
23056 meabi_flags = opt->value;
23057 return TRUE;
23059 as_bad (_("unknown EABI `%s'\n"), str);
23060 return FALSE;
23062 #endif
23064 static bfd_boolean
23065 arm_parse_it_mode (char * str)
23067 bfd_boolean ret = TRUE;
23069 if (streq ("arm", str))
23070 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23071 else if (streq ("thumb", str))
23072 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23073 else if (streq ("always", str))
23074 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23075 else if (streq ("never", str))
23076 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23077 else
23079 as_bad (_("unknown implicit IT mode `%s', should be "\
23080 "arm, thumb, always, or never."), str);
23081 ret = FALSE;
23084 return ret;
23087 struct arm_long_option_table arm_long_opts[] =
23089 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23090 arm_parse_cpu, NULL},
23091 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23092 arm_parse_arch, NULL},
23093 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23094 arm_parse_fpu, NULL},
23095 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23096 arm_parse_float_abi, NULL},
23097 #ifdef OBJ_ELF
23098 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23099 arm_parse_eabi, NULL},
23100 #endif
23101 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23102 arm_parse_it_mode, NULL},
23103 {NULL, NULL, 0, NULL}
23107 md_parse_option (int c, char * arg)
23109 struct arm_option_table *opt;
23110 const struct arm_legacy_option_table *fopt;
23111 struct arm_long_option_table *lopt;
23113 switch (c)
23115 #ifdef OPTION_EB
23116 case OPTION_EB:
23117 target_big_endian = 1;
23118 break;
23119 #endif
23121 #ifdef OPTION_EL
23122 case OPTION_EL:
23123 target_big_endian = 0;
23124 break;
23125 #endif
23127 case OPTION_FIX_V4BX:
23128 fix_v4bx = TRUE;
23129 break;
23131 case 'a':
23132 /* Listing option. Just ignore these, we don't support additional
23133 ones. */
23134 return 0;
23136 default:
23137 for (opt = arm_opts; opt->option != NULL; opt++)
23139 if (c == opt->option[0]
23140 && ((arg == NULL && opt->option[1] == 0)
23141 || streq (arg, opt->option + 1)))
23143 /* If the option is deprecated, tell the user. */
23144 if (warn_on_deprecated && opt->deprecated != NULL)
23145 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23146 arg ? arg : "", _(opt->deprecated));
23148 if (opt->var != NULL)
23149 *opt->var = opt->value;
23151 return 1;
23155 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23157 if (c == fopt->option[0]
23158 && ((arg == NULL && fopt->option[1] == 0)
23159 || streq (arg, fopt->option + 1)))
23161 /* If the option is deprecated, tell the user. */
23162 if (warn_on_deprecated && fopt->deprecated != NULL)
23163 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23164 arg ? arg : "", _(fopt->deprecated));
23166 if (fopt->var != NULL)
23167 *fopt->var = &fopt->value;
23169 return 1;
23173 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23175 /* These options are expected to have an argument. */
23176 if (c == lopt->option[0]
23177 && arg != NULL
23178 && strncmp (arg, lopt->option + 1,
23179 strlen (lopt->option + 1)) == 0)
23181 /* If the option is deprecated, tell the user. */
23182 if (warn_on_deprecated && lopt->deprecated != NULL)
23183 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23184 _(lopt->deprecated));
23186 /* Call the sup-option parser. */
23187 return lopt->func (arg + strlen (lopt->option) - 1);
23191 return 0;
23194 return 1;
23197 void
23198 md_show_usage (FILE * fp)
23200 struct arm_option_table *opt;
23201 struct arm_long_option_table *lopt;
23203 fprintf (fp, _(" ARM-specific assembler options:\n"));
23205 for (opt = arm_opts; opt->option != NULL; opt++)
23206 if (opt->help != NULL)
23207 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23209 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23210 if (lopt->help != NULL)
23211 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23213 #ifdef OPTION_EB
23214 fprintf (fp, _("\
23215 -EB assemble code for a big-endian cpu\n"));
23216 #endif
23218 #ifdef OPTION_EL
23219 fprintf (fp, _("\
23220 -EL assemble code for a little-endian cpu\n"));
23221 #endif
23223 fprintf (fp, _("\
23224 --fix-v4bx Allow BX in ARMv4 code\n"));
23228 #ifdef OBJ_ELF
23229 typedef struct
23231 int val;
23232 arm_feature_set flags;
23233 } cpu_arch_ver_table;
23235 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23236 least features first. */
23237 static const cpu_arch_ver_table cpu_arch_ver[] =
23239 {1, ARM_ARCH_V4},
23240 {2, ARM_ARCH_V4T},
23241 {3, ARM_ARCH_V5},
23242 {3, ARM_ARCH_V5T},
23243 {4, ARM_ARCH_V5TE},
23244 {5, ARM_ARCH_V5TEJ},
23245 {6, ARM_ARCH_V6},
23246 {9, ARM_ARCH_V6K},
23247 {7, ARM_ARCH_V6Z},
23248 {11, ARM_ARCH_V6M},
23249 {12, ARM_ARCH_V6SM},
23250 {8, ARM_ARCH_V6T2},
23251 {10, ARM_ARCH_V7A},
23252 {10, ARM_ARCH_V7R},
23253 {10, ARM_ARCH_V7M},
23254 {0, ARM_ARCH_NONE}
23257 /* Set an attribute if it has not already been set by the user. */
23258 static void
23259 aeabi_set_attribute_int (int tag, int value)
23261 if (tag < 1
23262 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23263 || !attributes_set_explicitly[tag])
23264 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23267 static void
23268 aeabi_set_attribute_string (int tag, const char *value)
23270 if (tag < 1
23271 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23272 || !attributes_set_explicitly[tag])
23273 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23276 /* Set the public EABI object attributes. */
23277 static void
23278 aeabi_set_public_attributes (void)
23280 int arch;
23281 int virt_sec = 0;
23282 arm_feature_set flags;
23283 arm_feature_set tmp;
23284 const cpu_arch_ver_table *p;
23286 /* Choose the architecture based on the capabilities of the requested cpu
23287 (if any) and/or the instructions actually used. */
23288 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23289 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23290 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23291 /*Allow the user to override the reported architecture. */
23292 if (object_arch)
23294 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23295 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23298 /* We need to make sure that the attributes do not identify us as v6S-M
23299 when the only v6S-M feature in use is the Operating System Extensions. */
23300 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23301 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23302 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23304 tmp = flags;
23305 arch = 0;
23306 for (p = cpu_arch_ver; p->val; p++)
23308 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23310 arch = p->val;
23311 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23315 /* The table lookup above finds the last architecture to contribute
23316 a new feature. Unfortunately, Tag13 is a subset of the union of
23317 v6T2 and v7-M, so it is never seen as contributing a new feature.
23318 We can not search for the last entry which is entirely used,
23319 because if no CPU is specified we build up only those flags
23320 actually used. Perhaps we should separate out the specified
23321 and implicit cases. Avoid taking this path for -march=all by
23322 checking for contradictory v7-A / v7-M features. */
23323 if (arch == 10
23324 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23325 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23326 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23327 arch = 13;
23329 /* Tag_CPU_name. */
23330 if (selected_cpu_name[0])
23332 char *q;
23334 q = selected_cpu_name;
23335 if (strncmp (q, "armv", 4) == 0)
23337 int i;
23339 q += 4;
23340 for (i = 0; q[i]; i++)
23341 q[i] = TOUPPER (q[i]);
23343 aeabi_set_attribute_string (Tag_CPU_name, q);
23346 /* Tag_CPU_arch. */
23347 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23349 /* Tag_CPU_arch_profile. */
23350 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23351 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23352 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23353 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23354 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23355 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23357 /* Tag_ARM_ISA_use. */
23358 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23359 || arch == 0)
23360 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23362 /* Tag_THUMB_ISA_use. */
23363 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23364 || arch == 0)
23365 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23366 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23368 /* Tag_VFP_arch. */
23369 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23370 aeabi_set_attribute_int (Tag_VFP_arch,
23371 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23372 ? 5 : 6);
23373 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23374 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23375 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23376 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23377 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23378 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23379 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23380 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23381 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23383 /* Tag_ABI_HardFP_use. */
23384 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23385 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23386 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23388 /* Tag_WMMX_arch. */
23389 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23390 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23391 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23392 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23394 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23395 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23396 aeabi_set_attribute_int
23397 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23398 ? 2 : 1));
23400 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23401 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23402 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23404 /* Tag_DIV_use. */
23405 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23406 aeabi_set_attribute_int (Tag_DIV_use, 2);
23407 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23408 aeabi_set_attribute_int (Tag_DIV_use, 0);
23409 else
23410 aeabi_set_attribute_int (Tag_DIV_use, 1);
23412 /* Tag_MP_extension_use. */
23413 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23414 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23416 /* Tag Virtualization_use. */
23417 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23418 virt_sec |= 1;
23419 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23420 virt_sec |= 2;
23421 if (virt_sec != 0)
23422 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23425 /* Add the default contents for the .ARM.attributes section. */
23426 void
23427 arm_md_end (void)
23429 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23430 return;
23432 aeabi_set_public_attributes ();
23434 #endif /* OBJ_ELF */
23437 /* Parse a .cpu directive. */
23439 static void
23440 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23442 const struct arm_cpu_option_table *opt;
23443 char *name;
23444 char saved_char;
23446 name = input_line_pointer;
23447 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23448 input_line_pointer++;
23449 saved_char = *input_line_pointer;
23450 *input_line_pointer = 0;
23452 /* Skip the first "all" entry. */
23453 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23454 if (streq (opt->name, name))
23456 mcpu_cpu_opt = &opt->value;
23457 selected_cpu = opt->value;
23458 if (opt->canonical_name)
23459 strcpy (selected_cpu_name, opt->canonical_name);
23460 else
23462 int i;
23463 for (i = 0; opt->name[i]; i++)
23464 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23465 selected_cpu_name[i] = 0;
23467 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23468 *input_line_pointer = saved_char;
23469 demand_empty_rest_of_line ();
23470 return;
23472 as_bad (_("unknown cpu `%s'"), name);
23473 *input_line_pointer = saved_char;
23474 ignore_rest_of_line ();
23478 /* Parse a .arch directive. */
23480 static void
23481 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23483 const struct arm_arch_option_table *opt;
23484 char saved_char;
23485 char *name;
23487 name = input_line_pointer;
23488 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23489 input_line_pointer++;
23490 saved_char = *input_line_pointer;
23491 *input_line_pointer = 0;
23493 /* Skip the first "all" entry. */
23494 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23495 if (streq (opt->name, name))
23497 mcpu_cpu_opt = &opt->value;
23498 selected_cpu = opt->value;
23499 strcpy (selected_cpu_name, opt->name);
23500 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23501 *input_line_pointer = saved_char;
23502 demand_empty_rest_of_line ();
23503 return;
23506 as_bad (_("unknown architecture `%s'\n"), name);
23507 *input_line_pointer = saved_char;
23508 ignore_rest_of_line ();
23512 /* Parse a .object_arch directive. */
23514 static void
23515 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23517 const struct arm_arch_option_table *opt;
23518 char saved_char;
23519 char *name;
23521 name = input_line_pointer;
23522 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23523 input_line_pointer++;
23524 saved_char = *input_line_pointer;
23525 *input_line_pointer = 0;
23527 /* Skip the first "all" entry. */
23528 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23529 if (streq (opt->name, name))
23531 object_arch = &opt->value;
23532 *input_line_pointer = saved_char;
23533 demand_empty_rest_of_line ();
23534 return;
23537 as_bad (_("unknown architecture `%s'\n"), name);
23538 *input_line_pointer = saved_char;
23539 ignore_rest_of_line ();
23542 /* Parse a .arch_extension directive. */
23544 static void
23545 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23547 const struct arm_option_extension_value_table *opt;
23548 char saved_char;
23549 char *name;
23550 int adding_value = 1;
23552 name = input_line_pointer;
23553 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23554 input_line_pointer++;
23555 saved_char = *input_line_pointer;
23556 *input_line_pointer = 0;
23558 if (strlen (name) >= 2
23559 && strncmp (name, "no", 2) == 0)
23561 adding_value = 0;
23562 name += 2;
23565 for (opt = arm_extensions; opt->name != NULL; opt++)
23566 if (streq (opt->name, name))
23568 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23570 as_bad (_("architectural extension `%s' is not allowed for the "
23571 "current base architecture"), name);
23572 break;
23575 if (adding_value)
23576 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23577 else
23578 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23580 mcpu_cpu_opt = &selected_cpu;
23581 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23582 *input_line_pointer = saved_char;
23583 demand_empty_rest_of_line ();
23584 return;
23587 if (opt->name == NULL)
23588 as_bad (_("unknown architecture `%s'\n"), name);
23590 *input_line_pointer = saved_char;
23591 ignore_rest_of_line ();
23594 /* Parse a .fpu directive. */
23596 static void
23597 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23599 const struct arm_option_fpu_value_table *opt;
23600 char saved_char;
23601 char *name;
23603 name = input_line_pointer;
23604 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23605 input_line_pointer++;
23606 saved_char = *input_line_pointer;
23607 *input_line_pointer = 0;
23609 for (opt = arm_fpus; opt->name != NULL; opt++)
23610 if (streq (opt->name, name))
23612 mfpu_opt = &opt->value;
23613 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23614 *input_line_pointer = saved_char;
23615 demand_empty_rest_of_line ();
23616 return;
23619 as_bad (_("unknown floating point format `%s'\n"), name);
23620 *input_line_pointer = saved_char;
23621 ignore_rest_of_line ();
23624 /* Copy symbol information. */
23626 void
23627 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23629 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23632 #ifdef OBJ_ELF
23633 /* Given a symbolic attribute NAME, return the proper integer value.
23634 Returns -1 if the attribute is not known. */
23637 arm_convert_symbolic_attribute (const char *name)
23639 static const struct
23641 const char * name;
23642 const int tag;
23644 attribute_table[] =
23646 /* When you modify this table you should
23647 also modify the list in doc/c-arm.texi. */
23648 #define T(tag) {#tag, tag}
23649 T (Tag_CPU_raw_name),
23650 T (Tag_CPU_name),
23651 T (Tag_CPU_arch),
23652 T (Tag_CPU_arch_profile),
23653 T (Tag_ARM_ISA_use),
23654 T (Tag_THUMB_ISA_use),
23655 T (Tag_FP_arch),
23656 T (Tag_VFP_arch),
23657 T (Tag_WMMX_arch),
23658 T (Tag_Advanced_SIMD_arch),
23659 T (Tag_PCS_config),
23660 T (Tag_ABI_PCS_R9_use),
23661 T (Tag_ABI_PCS_RW_data),
23662 T (Tag_ABI_PCS_RO_data),
23663 T (Tag_ABI_PCS_GOT_use),
23664 T (Tag_ABI_PCS_wchar_t),
23665 T (Tag_ABI_FP_rounding),
23666 T (Tag_ABI_FP_denormal),
23667 T (Tag_ABI_FP_exceptions),
23668 T (Tag_ABI_FP_user_exceptions),
23669 T (Tag_ABI_FP_number_model),
23670 T (Tag_ABI_align_needed),
23671 T (Tag_ABI_align8_needed),
23672 T (Tag_ABI_align_preserved),
23673 T (Tag_ABI_align8_preserved),
23674 T (Tag_ABI_enum_size),
23675 T (Tag_ABI_HardFP_use),
23676 T (Tag_ABI_VFP_args),
23677 T (Tag_ABI_WMMX_args),
23678 T (Tag_ABI_optimization_goals),
23679 T (Tag_ABI_FP_optimization_goals),
23680 T (Tag_compatibility),
23681 T (Tag_CPU_unaligned_access),
23682 T (Tag_FP_HP_extension),
23683 T (Tag_VFP_HP_extension),
23684 T (Tag_ABI_FP_16bit_format),
23685 T (Tag_MPextension_use),
23686 T (Tag_DIV_use),
23687 T (Tag_nodefaults),
23688 T (Tag_also_compatible_with),
23689 T (Tag_conformance),
23690 T (Tag_T2EE_use),
23691 T (Tag_Virtualization_use),
23692 /* We deliberately do not include Tag_MPextension_use_legacy. */
23693 #undef T
23695 unsigned int i;
23697 if (name == NULL)
23698 return -1;
23700 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23701 if (streq (name, attribute_table[i].name))
23702 return attribute_table[i].tag;
23704 return -1;
23708 /* Apply sym value for relocations only in the case that
23709 they are for local symbols and you have the respective
23710 architectural feature for blx and simple switches. */
23712 arm_apply_sym_value (struct fix * fixP)
23714 if (fixP->fx_addsy
23715 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23716 && !S_IS_EXTERNAL (fixP->fx_addsy))
23718 switch (fixP->fx_r_type)
23720 case BFD_RELOC_ARM_PCREL_BLX:
23721 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23722 if (ARM_IS_FUNC (fixP->fx_addsy))
23723 return 1;
23724 break;
23726 case BFD_RELOC_ARM_PCREL_CALL:
23727 case BFD_RELOC_THUMB_PCREL_BLX:
23728 if (THUMB_IS_FUNC (fixP->fx_addsy))
23729 return 1;
23730 break;
23732 default:
23733 break;
23737 return 0;
23739 #endif /* OBJ_ELF */