* emultempl/pe.em (debug_section_p): New bfd_map_over_sections hook.
[binutils.git] / bfd / elflink.c
blobd0e4534894acdc9742c2f6d3eef0c969b4770a71
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 int ptralign;
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
111 switch (bed->s->arch_size)
113 case 32:
114 ptralign = 2;
115 break;
117 case 64:
118 ptralign = 3;
119 break;
121 default:
122 bfd_set_error (bfd_error_bad_value);
123 return FALSE;
126 flags = bed->dynamic_sec_flags;
128 s = bfd_make_section_with_flags (abfd, ".got", flags);
129 if (s == NULL
130 || !bfd_set_section_alignment (abfd, s, ptralign))
131 return FALSE;
133 if (bed->want_got_plt)
135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
136 if (s == NULL
137 || !bfd_set_section_alignment (abfd, s, ptralign))
138 return FALSE;
141 if (bed->want_got_sym)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
153 /* The first bit of the global offset table is the header. */
154 s->size += bed->got_header_size;
156 return TRUE;
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
175 return TRUE;
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 flagword flags;
189 register asection *s;
190 const struct elf_backend_data *bed;
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
261 if (info->emit_hash)
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
294 return TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
329 if (bed->want_plt_sym)
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
338 s = bfd_make_section_with_flags (abfd,
339 (bed->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
346 if (! _bfd_elf_create_got_section (abfd, info))
347 return FALSE;
349 if (bed->want_dynbss)
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
361 return FALSE;
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
374 if (! info->shared)
376 s = bfd_make_section_with_flags (abfd,
377 (bed->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
380 if (s == NULL
381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
382 return FALSE;
386 return TRUE;
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
397 bfd_boolean
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
401 if (h->dynindx == -1)
403 struct elf_strtab_hash *dynstr;
404 char *p;
405 const char *name;
406 bfd_size_type indx;
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
414 case STV_INTERNAL:
415 case STV_HIDDEN:
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
419 h->forced_local = 1;
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
424 default:
425 break;
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
436 if (dynstr == NULL)
437 return FALSE;
440 /* We don't put any version information in the dynamic string
441 table. */
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
454 if (p != NULL)
455 *p = ELF_VER_CHR;
457 if (indx == (bfd_size_type) -1)
458 return FALSE;
459 h->dynstr_index = indx;
462 return TRUE;
465 /* Mark a symbol dynamic. */
467 static void
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
476 return;
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
482 || (d != NULL
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
485 h->dynamic = 1;
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
491 bfd_boolean
492 bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
494 const char *name,
495 bfd_boolean provide,
496 bfd_boolean hidden)
498 struct elf_link_hash_entry *h, *hv;
499 struct elf_link_hash_table *htab;
500 const struct elf_backend_data *bed;
502 if (!is_elf_hash_table (info->hash))
503 return TRUE;
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
507 if (h == NULL)
508 return provide;
510 switch (h->root.type)
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h->root.type = bfd_link_hash_new;
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
524 break;
525 case bfd_link_hash_new:
526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
527 h->non_elf = 0;
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
554 && h->def_dynamic
555 && !h->def_regular)
556 h->root.type = bfd_link_hash_undefined;
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
563 && h->def_dynamic
564 && !h->def_regular)
565 h->verinfo.verdef = NULL;
567 h->def_regular = 1;
569 if (provide && hidden)
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
585 if ((h->def_dynamic
586 || h->ref_dynamic
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
589 && h->dynindx == -1)
591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
592 return FALSE;
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
601 return FALSE;
605 return TRUE;
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
626 if (! is_elf_hash_table (info->hash))
627 return 0;
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
634 amt = sizeof (*entry);
635 entry = bfd_alloc (input_bfd, amt);
636 if (entry == NULL)
637 return 0;
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
641 1, input_indx, &entry->isym, esym, &eshndx))
643 bfd_release (input_bfd, entry);
644 return 0;
647 if (entry->isym.st_shndx != SHN_UNDEF
648 && entry->isym.st_shndx < SHN_LORESERVE)
650 asection *s;
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
680 eht = elf_hash_table (info);
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692 /* The dynindx will be set at the end of size_dynamic_sections. */
694 return 1;
697 /* Return the dynindex of a local dynamic symbol. */
699 long
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
704 struct elf_link_local_dynamic_entry *e;
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
716 static bfd_boolean
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
720 size_t *count = data;
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725 if (h->forced_local)
726 return TRUE;
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
731 return TRUE;
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
742 size_t *count = data;
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747 if (!h->forced_local)
748 return TRUE;
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
753 return TRUE;
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
763 struct elf_link_hash_table *htab;
765 switch (elf_section_data (p)->this_hdr.sh_type)
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
783 asection *ip;
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
791 return FALSE;
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
811 unsigned long dynsymcount = 0;
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
825 *section_sym_count = dynsymcount;
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
831 if (elf_hash_table (info)->dynlocal)
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
852 /* Merge st_other field. */
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 unsigned char hvis, symvis, other, nvis;
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
896 h->other = other | nvis;
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
912 bfd_boolean
913 _bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
919 unsigned int *pold_alignment,
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
935 *skip = FALSE;
936 *override = FALSE;
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 *skip = TRUE;
947 return TRUE;
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
959 bed = get_elf_backend_data (abfd);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
966 /* For merging, we only care about real symbols. */
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
981 if (h->root.type == bfd_link_hash_new)
983 h->non_elf = 0;
984 return TRUE;
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
990 switch (h->root.type)
992 default:
993 oldbfd = NULL;
994 oldsec = NULL;
995 break;
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
1000 oldsec = NULL;
1001 break;
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
1006 oldsec = h->root.u.def.section;
1007 break;
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
1011 oldsec = h->root.u.c.p->section;
1012 break;
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
1023 || !h->def_regular))
1024 return TRUE;
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1031 olddyn = FALSE;
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1034 else if (oldsec != NULL)
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1076 *skip = TRUE;
1077 return TRUE;
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1090 if (h->type == STT_TLS)
1092 ntbfd = abfd;
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1099 else
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn && !h->dynamic_def)
1135 if (!bfd_is_und_section (sec))
1136 h->dynamic_def = 1;
1137 else
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h->ref_dynamic)
1144 if (bind == STB_WEAK)
1145 h->dynamic_weak = 1;
1147 else if (bind != STB_WEAK)
1148 h->dynamic_weak = 0;
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1156 && !bfd_is_und_section (sec))
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
1160 h->ref_dynamic = 1;
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1166 return bfd_elf_link_record_dynamic_symbol (info, h);
1167 else
1168 return TRUE;
1170 else if (!newdyn
1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1172 && h->def_dynamic)
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1199 else
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1208 h = vh;
1210 else
1211 h = *sym_hash;
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1226 else
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1232 if (h->def_dynamic)
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1260 if (newdef && !newdyn && olddyn)
1261 newweak = FALSE;
1262 if (olddef && newdyn)
1263 oldweak = FALSE;
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc && oldfunc)
1267 *type_change_ok = TRUE;
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1309 if (newdyn
1310 && newdef
1311 && !newweak
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
1315 && !newfunc)
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
1323 && h->def_dynamic
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
1327 && !oldfunc)
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
1366 *size_change_ok = TRUE;
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1383 if (newdyn
1384 && newdef
1385 && (olddef
1386 || (h->root.type == bfd_link_hash_common
1387 && (newweak || newfunc))))
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
1419 *psec = sec = bed->common_section (oldsec);
1420 *size_change_ok = TRUE;
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef && olddef && newweak)
1426 *skip = TRUE;
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1452 flip = NULL;
1453 if (!newdyn
1454 && (newdef
1455 || (bfd_is_com_section (sec)
1456 && (oldweak || oldfunc)))
1457 && olddyn
1458 && olddef
1459 && h->def_dynamic)
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1475 if (bfd_is_com_section (sec))
1477 if (oldfunc)
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1485 *type_change_ok = TRUE;
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1541 if (flip != NULL)
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1547 flip->root.type = h->root.type;
1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1552 if (h->def_dynamic)
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
1559 return TRUE;
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1567 static bfd_boolean
1568 _bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
1576 bfd_boolean override)
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
1584 const struct elf_backend_data *bed;
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1599 if (override)
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
1638 return FALSE;
1640 if (skip)
1641 goto nondefault;
1643 if (! override)
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1648 0, name, FALSE, collect, &bh)))
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1652 else
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 if (h->def_dynamic)
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1686 return FALSE;
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1703 if (hi->root.type == bfd_link_hash_indirect)
1705 struct elf_link_hash_entry *ht;
1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1714 if (! dynamic)
1716 if (info->shared
1717 || hi->ref_dynamic)
1718 *dynsym = TRUE;
1720 else
1722 if (hi->ref_regular)
1723 *dynsym = TRUE;
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1731 nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
1746 return FALSE;
1748 if (skip)
1749 return TRUE;
1751 if (override)
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
1762 else
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1775 if (hi->root.type == bfd_link_hash_indirect)
1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1783 if (! dynamic)
1785 if (info->shared
1786 || hi->ref_dynamic)
1787 *dynsym = TRUE;
1789 else
1791 if (hi->ref_regular)
1792 *dynsym = TRUE;
1798 return TRUE;
1801 static struct bfd_elf_version_tree *
1802 find_version_for_sym (struct bfd_elf_version_tree *verdefs,
1803 const char *sym_name,
1804 bfd_boolean *hide)
1806 struct bfd_elf_version_tree *t;
1807 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
1809 local_ver = NULL;
1810 global_ver = NULL;
1811 exist_ver = NULL;
1812 for (t = verdefs; t != NULL; t = t->next)
1814 if (t->globals.list != NULL)
1816 struct bfd_elf_version_expr *d = NULL;
1818 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
1820 global_ver = t;
1821 if (d->symver)
1822 exist_ver = t;
1823 d->script = 1;
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1826 if (d->literal)
1827 break;
1830 if (d != NULL)
1831 break;
1834 if (t->locals.list != NULL)
1836 struct bfd_elf_version_expr *d = NULL;
1838 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
1840 local_ver = t;
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1843 if (d->literal)
1845 /* An exact match overrides a global wildcard. */
1846 global_ver = NULL;
1847 break;
1851 if (d != NULL)
1852 break;
1856 if (global_ver != NULL)
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide = exist_ver == global_ver;
1863 return global_ver;
1866 if (local_ver != NULL)
1868 *hide = TRUE;
1869 return local_ver;
1872 return NULL;
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1878 static bfd_boolean
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1881 struct elf_info_failed *eif = data;
1883 /* Ignore this if we won't export it. */
1884 if (!eif->info->export_dynamic && !h->dynamic)
1885 return TRUE;
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h->root.type == bfd_link_hash_indirect)
1889 return TRUE;
1891 if (h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1894 if (h->dynindx == -1
1895 && (h->def_regular
1896 || h->ref_regular))
1898 bfd_boolean hide;
1900 if (eif->verdefs == NULL
1901 || (find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1902 && !hide))
1904 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1906 eif->failed = TRUE;
1907 return FALSE;
1912 return TRUE;
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1920 static bfd_boolean
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1922 void *data)
1924 struct elf_find_verdep_info *rinfo = data;
1925 Elf_Internal_Verneed *t;
1926 Elf_Internal_Vernaux *a;
1927 bfd_size_type amt;
1929 if (h->root.type == bfd_link_hash_warning)
1930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1932 /* We only care about symbols defined in shared objects with version
1933 information. */
1934 if (!h->def_dynamic
1935 || h->def_regular
1936 || h->dynindx == -1
1937 || h->verinfo.verdef == NULL)
1938 return TRUE;
1940 /* See if we already know about this version. */
1941 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1942 t != NULL;
1943 t = t->vn_nextref)
1945 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1946 continue;
1948 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1949 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1950 return TRUE;
1952 break;
1955 /* This is a new version. Add it to tree we are building. */
1957 if (t == NULL)
1959 amt = sizeof *t;
1960 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1961 if (t == NULL)
1963 rinfo->failed = TRUE;
1964 return FALSE;
1967 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1968 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1969 elf_tdata (rinfo->info->output_bfd)->verref = t;
1972 amt = sizeof *a;
1973 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1974 if (a == NULL)
1976 rinfo->failed = TRUE;
1977 return FALSE;
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1983 fixed. */
1984 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1986 a->vna_flags = h->verinfo.verdef->vd_flags;
1987 a->vna_nextptr = t->vn_auxptr;
1989 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1990 ++rinfo->vers;
1992 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1994 t->vn_auxptr = a;
1996 return TRUE;
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2004 static bfd_boolean
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2007 struct elf_info_failed *sinfo;
2008 struct bfd_link_info *info;
2009 const struct elf_backend_data *bed;
2010 struct elf_info_failed eif;
2011 char *p;
2012 bfd_size_type amt;
2014 sinfo = data;
2015 info = sinfo->info;
2017 if (h->root.type == bfd_link_hash_warning)
2018 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2020 /* Fix the symbol flags. */
2021 eif.failed = FALSE;
2022 eif.info = info;
2023 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2025 if (eif.failed)
2026 sinfo->failed = TRUE;
2027 return FALSE;
2030 /* We only need version numbers for symbols defined in regular
2031 objects. */
2032 if (!h->def_regular)
2033 return TRUE;
2035 bed = get_elf_backend_data (info->output_bfd);
2036 p = strchr (h->root.root.string, ELF_VER_CHR);
2037 if (p != NULL && h->verinfo.vertree == NULL)
2039 struct bfd_elf_version_tree *t;
2040 bfd_boolean hidden;
2042 hidden = TRUE;
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2046 ++p;
2047 if (*p == ELF_VER_CHR)
2049 hidden = FALSE;
2050 ++p;
2053 /* If there is no version string, we can just return out. */
2054 if (*p == '\0')
2056 if (hidden)
2057 h->hidden = 1;
2058 return TRUE;
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t = sinfo->verdefs; t != NULL; t = t->next)
2064 if (strcmp (t->name, p) == 0)
2066 size_t len;
2067 char *alc;
2068 struct bfd_elf_version_expr *d;
2070 len = p - h->root.root.string;
2071 alc = bfd_malloc (len);
2072 if (alc == NULL)
2074 sinfo->failed = TRUE;
2075 return FALSE;
2077 memcpy (alc, h->root.root.string, len - 1);
2078 alc[len - 1] = '\0';
2079 if (alc[len - 2] == ELF_VER_CHR)
2080 alc[len - 2] = '\0';
2082 h->verinfo.vertree = t;
2083 t->used = TRUE;
2084 d = NULL;
2086 if (t->globals.list != NULL)
2087 d = (*t->match) (&t->globals, NULL, alc);
2089 /* See if there is anything to force this symbol to
2090 local scope. */
2091 if (d == NULL && t->locals.list != NULL)
2093 d = (*t->match) (&t->locals, NULL, alc);
2094 if (d != NULL
2095 && h->dynindx != -1
2096 && ! info->export_dynamic)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 free (alc);
2101 break;
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t == NULL && info->executable)
2109 struct bfd_elf_version_tree **pp;
2110 int version_index;
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h->dynindx == -1)
2115 return TRUE;
2117 amt = sizeof *t;
2118 t = bfd_zalloc (info->output_bfd, amt);
2119 if (t == NULL)
2121 sinfo->failed = TRUE;
2122 return FALSE;
2125 t->name = p;
2126 t->name_indx = (unsigned int) -1;
2127 t->used = TRUE;
2129 version_index = 1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2132 version_index = 0;
2133 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2134 ++version_index;
2135 t->vernum = version_index;
2137 *pp = t;
2139 h->verinfo.vertree = t;
2141 else if (t == NULL)
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler)
2146 (_("%B: version node not found for symbol %s"),
2147 info->output_bfd, h->root.root.string);
2148 bfd_set_error (bfd_error_bad_value);
2149 sinfo->failed = TRUE;
2150 return FALSE;
2153 if (hidden)
2154 h->hidden = 1;
2157 /* If we don't have a version for this symbol, see if we can find
2158 something. */
2159 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2161 bfd_boolean hide;
2163 h->verinfo.vertree = find_version_for_sym (sinfo->verdefs,
2164 h->root.root.string, &hide);
2165 if (h->verinfo.vertree != NULL && hide)
2166 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2169 return TRUE;
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2179 Returns FALSE if something goes wrong. */
2181 static bfd_boolean
2182 elf_link_read_relocs_from_section (bfd *abfd,
2183 asection *sec,
2184 Elf_Internal_Shdr *shdr,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs)
2188 const struct elf_backend_data *bed;
2189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2190 const bfd_byte *erela;
2191 const bfd_byte *erelaend;
2192 Elf_Internal_Rela *irela;
2193 Elf_Internal_Shdr *symtab_hdr;
2194 size_t nsyms;
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2198 return FALSE;
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2202 return FALSE;
2204 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2205 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2207 bed = get_elf_backend_data (abfd);
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr->sh_entsize == bed->s->sizeof_rel)
2211 swap_in = bed->s->swap_reloc_in;
2212 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2213 swap_in = bed->s->swap_reloca_in;
2214 else
2216 bfd_set_error (bfd_error_wrong_format);
2217 return FALSE;
2220 erela = external_relocs;
2221 erelaend = erela + shdr->sh_size;
2222 irela = internal_relocs;
2223 while (erela < erelaend)
2225 bfd_vma r_symndx;
2227 (*swap_in) (abfd, erela, irela);
2228 r_symndx = ELF32_R_SYM (irela->r_info);
2229 if (bed->s->arch_size == 64)
2230 r_symndx >>= 24;
2231 if ((size_t) r_symndx >= nsyms)
2233 (*_bfd_error_handler)
2234 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2235 " for offset 0x%lx in section `%A'"),
2236 abfd, sec,
2237 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2238 bfd_set_error (bfd_error_bad_value);
2239 return FALSE;
2241 irela += bed->s->int_rels_per_ext_rel;
2242 erela += shdr->sh_entsize;
2245 return TRUE;
2248 /* Read and swap the relocs for a section O. They may have been
2249 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2250 not NULL, they are used as buffers to read into. They are known to
2251 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2252 the return value is allocated using either malloc or bfd_alloc,
2253 according to the KEEP_MEMORY argument. If O has two relocation
2254 sections (both REL and RELA relocations), then the REL_HDR
2255 relocations will appear first in INTERNAL_RELOCS, followed by the
2256 REL_HDR2 relocations. */
2258 Elf_Internal_Rela *
2259 _bfd_elf_link_read_relocs (bfd *abfd,
2260 asection *o,
2261 void *external_relocs,
2262 Elf_Internal_Rela *internal_relocs,
2263 bfd_boolean keep_memory)
2265 Elf_Internal_Shdr *rel_hdr;
2266 void *alloc1 = NULL;
2267 Elf_Internal_Rela *alloc2 = NULL;
2268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2270 if (elf_section_data (o)->relocs != NULL)
2271 return elf_section_data (o)->relocs;
2273 if (o->reloc_count == 0)
2274 return NULL;
2276 rel_hdr = &elf_section_data (o)->rel_hdr;
2278 if (internal_relocs == NULL)
2280 bfd_size_type size;
2282 size = o->reloc_count;
2283 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2284 if (keep_memory)
2285 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2286 else
2287 internal_relocs = alloc2 = bfd_malloc (size);
2288 if (internal_relocs == NULL)
2289 goto error_return;
2292 if (external_relocs == NULL)
2294 bfd_size_type size = rel_hdr->sh_size;
2296 if (elf_section_data (o)->rel_hdr2)
2297 size += elf_section_data (o)->rel_hdr2->sh_size;
2298 alloc1 = bfd_malloc (size);
2299 if (alloc1 == NULL)
2300 goto error_return;
2301 external_relocs = alloc1;
2304 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2305 external_relocs,
2306 internal_relocs))
2307 goto error_return;
2308 if (elf_section_data (o)->rel_hdr2
2309 && (!elf_link_read_relocs_from_section
2310 (abfd, o,
2311 elf_section_data (o)->rel_hdr2,
2312 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2313 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2314 * bed->s->int_rels_per_ext_rel))))
2315 goto error_return;
2317 /* Cache the results for next time, if we can. */
2318 if (keep_memory)
2319 elf_section_data (o)->relocs = internal_relocs;
2321 if (alloc1 != NULL)
2322 free (alloc1);
2324 /* Don't free alloc2, since if it was allocated we are passing it
2325 back (under the name of internal_relocs). */
2327 return internal_relocs;
2329 error_return:
2330 if (alloc1 != NULL)
2331 free (alloc1);
2332 if (alloc2 != NULL)
2334 if (keep_memory)
2335 bfd_release (abfd, alloc2);
2336 else
2337 free (alloc2);
2339 return NULL;
2342 /* Compute the size of, and allocate space for, REL_HDR which is the
2343 section header for a section containing relocations for O. */
2345 static bfd_boolean
2346 _bfd_elf_link_size_reloc_section (bfd *abfd,
2347 Elf_Internal_Shdr *rel_hdr,
2348 asection *o)
2350 bfd_size_type reloc_count;
2351 bfd_size_type num_rel_hashes;
2353 /* Figure out how many relocations there will be. */
2354 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2355 reloc_count = elf_section_data (o)->rel_count;
2356 else
2357 reloc_count = elf_section_data (o)->rel_count2;
2359 num_rel_hashes = o->reloc_count;
2360 if (num_rel_hashes < reloc_count)
2361 num_rel_hashes = reloc_count;
2363 /* That allows us to calculate the size of the section. */
2364 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2366 /* The contents field must last into write_object_contents, so we
2367 allocate it with bfd_alloc rather than malloc. Also since we
2368 cannot be sure that the contents will actually be filled in,
2369 we zero the allocated space. */
2370 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2371 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2372 return FALSE;
2374 /* We only allocate one set of hash entries, so we only do it the
2375 first time we are called. */
2376 if (elf_section_data (o)->rel_hashes == NULL
2377 && num_rel_hashes)
2379 struct elf_link_hash_entry **p;
2381 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2382 if (p == NULL)
2383 return FALSE;
2385 elf_section_data (o)->rel_hashes = p;
2388 return TRUE;
2391 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2392 originated from the section given by INPUT_REL_HDR) to the
2393 OUTPUT_BFD. */
2395 bfd_boolean
2396 _bfd_elf_link_output_relocs (bfd *output_bfd,
2397 asection *input_section,
2398 Elf_Internal_Shdr *input_rel_hdr,
2399 Elf_Internal_Rela *internal_relocs,
2400 struct elf_link_hash_entry **rel_hash
2401 ATTRIBUTE_UNUSED)
2403 Elf_Internal_Rela *irela;
2404 Elf_Internal_Rela *irelaend;
2405 bfd_byte *erel;
2406 Elf_Internal_Shdr *output_rel_hdr;
2407 asection *output_section;
2408 unsigned int *rel_countp = NULL;
2409 const struct elf_backend_data *bed;
2410 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2412 output_section = input_section->output_section;
2413 output_rel_hdr = NULL;
2415 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2416 == input_rel_hdr->sh_entsize)
2418 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2419 rel_countp = &elf_section_data (output_section)->rel_count;
2421 else if (elf_section_data (output_section)->rel_hdr2
2422 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2423 == input_rel_hdr->sh_entsize))
2425 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2426 rel_countp = &elf_section_data (output_section)->rel_count2;
2428 else
2430 (*_bfd_error_handler)
2431 (_("%B: relocation size mismatch in %B section %A"),
2432 output_bfd, input_section->owner, input_section);
2433 bfd_set_error (bfd_error_wrong_format);
2434 return FALSE;
2437 bed = get_elf_backend_data (output_bfd);
2438 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2439 swap_out = bed->s->swap_reloc_out;
2440 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2441 swap_out = bed->s->swap_reloca_out;
2442 else
2443 abort ();
2445 erel = output_rel_hdr->contents;
2446 erel += *rel_countp * input_rel_hdr->sh_entsize;
2447 irela = internal_relocs;
2448 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2449 * bed->s->int_rels_per_ext_rel);
2450 while (irela < irelaend)
2452 (*swap_out) (output_bfd, irela, erel);
2453 irela += bed->s->int_rels_per_ext_rel;
2454 erel += input_rel_hdr->sh_entsize;
2457 /* Bump the counter, so that we know where to add the next set of
2458 relocations. */
2459 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2461 return TRUE;
2464 /* Make weak undefined symbols in PIE dynamic. */
2466 bfd_boolean
2467 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2468 struct elf_link_hash_entry *h)
2470 if (info->pie
2471 && h->dynindx == -1
2472 && h->root.type == bfd_link_hash_undefweak)
2473 return bfd_elf_link_record_dynamic_symbol (info, h);
2475 return TRUE;
2478 /* Fix up the flags for a symbol. This handles various cases which
2479 can only be fixed after all the input files are seen. This is
2480 currently called by both adjust_dynamic_symbol and
2481 assign_sym_version, which is unnecessary but perhaps more robust in
2482 the face of future changes. */
2484 static bfd_boolean
2485 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2486 struct elf_info_failed *eif)
2488 const struct elf_backend_data *bed;
2490 /* If this symbol was mentioned in a non-ELF file, try to set
2491 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2492 permit a non-ELF file to correctly refer to a symbol defined in
2493 an ELF dynamic object. */
2494 if (h->non_elf)
2496 while (h->root.type == bfd_link_hash_indirect)
2497 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2499 if (h->root.type != bfd_link_hash_defined
2500 && h->root.type != bfd_link_hash_defweak)
2502 h->ref_regular = 1;
2503 h->ref_regular_nonweak = 1;
2505 else
2507 if (h->root.u.def.section->owner != NULL
2508 && (bfd_get_flavour (h->root.u.def.section->owner)
2509 == bfd_target_elf_flavour))
2511 h->ref_regular = 1;
2512 h->ref_regular_nonweak = 1;
2514 else
2515 h->def_regular = 1;
2518 if (h->dynindx == -1
2519 && (h->def_dynamic
2520 || h->ref_dynamic))
2522 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2524 eif->failed = TRUE;
2525 return FALSE;
2529 else
2531 /* Unfortunately, NON_ELF is only correct if the symbol
2532 was first seen in a non-ELF file. Fortunately, if the symbol
2533 was first seen in an ELF file, we're probably OK unless the
2534 symbol was defined in a non-ELF file. Catch that case here.
2535 FIXME: We're still in trouble if the symbol was first seen in
2536 a dynamic object, and then later in a non-ELF regular object. */
2537 if ((h->root.type == bfd_link_hash_defined
2538 || h->root.type == bfd_link_hash_defweak)
2539 && !h->def_regular
2540 && (h->root.u.def.section->owner != NULL
2541 ? (bfd_get_flavour (h->root.u.def.section->owner)
2542 != bfd_target_elf_flavour)
2543 : (bfd_is_abs_section (h->root.u.def.section)
2544 && !h->def_dynamic)))
2545 h->def_regular = 1;
2548 /* Backend specific symbol fixup. */
2549 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2550 if (bed->elf_backend_fixup_symbol
2551 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2552 return FALSE;
2554 /* If this is a final link, and the symbol was defined as a common
2555 symbol in a regular object file, and there was no definition in
2556 any dynamic object, then the linker will have allocated space for
2557 the symbol in a common section but the DEF_REGULAR
2558 flag will not have been set. */
2559 if (h->root.type == bfd_link_hash_defined
2560 && !h->def_regular
2561 && h->ref_regular
2562 && !h->def_dynamic
2563 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2564 h->def_regular = 1;
2566 /* If -Bsymbolic was used (which means to bind references to global
2567 symbols to the definition within the shared object), and this
2568 symbol was defined in a regular object, then it actually doesn't
2569 need a PLT entry. Likewise, if the symbol has non-default
2570 visibility. If the symbol has hidden or internal visibility, we
2571 will force it local. */
2572 if (h->needs_plt
2573 && eif->info->shared
2574 && is_elf_hash_table (eif->info->hash)
2575 && (SYMBOLIC_BIND (eif->info, h)
2576 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2577 && h->def_regular)
2579 bfd_boolean force_local;
2581 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2582 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2583 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2586 /* If a weak undefined symbol has non-default visibility, we also
2587 hide it from the dynamic linker. */
2588 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2589 && h->root.type == bfd_link_hash_undefweak)
2590 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2592 /* If this is a weak defined symbol in a dynamic object, and we know
2593 the real definition in the dynamic object, copy interesting flags
2594 over to the real definition. */
2595 if (h->u.weakdef != NULL)
2597 struct elf_link_hash_entry *weakdef;
2599 weakdef = h->u.weakdef;
2600 if (h->root.type == bfd_link_hash_indirect)
2601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2603 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2604 || h->root.type == bfd_link_hash_defweak);
2605 BFD_ASSERT (weakdef->def_dynamic);
2607 /* If the real definition is defined by a regular object file,
2608 don't do anything special. See the longer description in
2609 _bfd_elf_adjust_dynamic_symbol, below. */
2610 if (weakdef->def_regular)
2611 h->u.weakdef = NULL;
2612 else
2614 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2615 || weakdef->root.type == bfd_link_hash_defweak);
2616 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2620 return TRUE;
2623 /* Make the backend pick a good value for a dynamic symbol. This is
2624 called via elf_link_hash_traverse, and also calls itself
2625 recursively. */
2627 static bfd_boolean
2628 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2630 struct elf_info_failed *eif = data;
2631 bfd *dynobj;
2632 const struct elf_backend_data *bed;
2634 if (! is_elf_hash_table (eif->info->hash))
2635 return FALSE;
2637 if (h->root.type == bfd_link_hash_warning)
2639 h->got = elf_hash_table (eif->info)->init_got_offset;
2640 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2642 /* When warning symbols are created, they **replace** the "real"
2643 entry in the hash table, thus we never get to see the real
2644 symbol in a hash traversal. So look at it now. */
2645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2648 /* Ignore indirect symbols. These are added by the versioning code. */
2649 if (h->root.type == bfd_link_hash_indirect)
2650 return TRUE;
2652 /* Fix the symbol flags. */
2653 if (! _bfd_elf_fix_symbol_flags (h, eif))
2654 return FALSE;
2656 /* If this symbol does not require a PLT entry, and it is not
2657 defined by a dynamic object, or is not referenced by a regular
2658 object, ignore it. We do have to handle a weak defined symbol,
2659 even if no regular object refers to it, if we decided to add it
2660 to the dynamic symbol table. FIXME: Do we normally need to worry
2661 about symbols which are defined by one dynamic object and
2662 referenced by another one? */
2663 if (!h->needs_plt
2664 && (h->def_regular
2665 || !h->def_dynamic
2666 || (!h->ref_regular
2667 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2669 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2670 return TRUE;
2673 /* If we've already adjusted this symbol, don't do it again. This
2674 can happen via a recursive call. */
2675 if (h->dynamic_adjusted)
2676 return TRUE;
2678 /* Don't look at this symbol again. Note that we must set this
2679 after checking the above conditions, because we may look at a
2680 symbol once, decide not to do anything, and then get called
2681 recursively later after REF_REGULAR is set below. */
2682 h->dynamic_adjusted = 1;
2684 /* If this is a weak definition, and we know a real definition, and
2685 the real symbol is not itself defined by a regular object file,
2686 then get a good value for the real definition. We handle the
2687 real symbol first, for the convenience of the backend routine.
2689 Note that there is a confusing case here. If the real definition
2690 is defined by a regular object file, we don't get the real symbol
2691 from the dynamic object, but we do get the weak symbol. If the
2692 processor backend uses a COPY reloc, then if some routine in the
2693 dynamic object changes the real symbol, we will not see that
2694 change in the corresponding weak symbol. This is the way other
2695 ELF linkers work as well, and seems to be a result of the shared
2696 library model.
2698 I will clarify this issue. Most SVR4 shared libraries define the
2699 variable _timezone and define timezone as a weak synonym. The
2700 tzset call changes _timezone. If you write
2701 extern int timezone;
2702 int _timezone = 5;
2703 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2704 you might expect that, since timezone is a synonym for _timezone,
2705 the same number will print both times. However, if the processor
2706 backend uses a COPY reloc, then actually timezone will be copied
2707 into your process image, and, since you define _timezone
2708 yourself, _timezone will not. Thus timezone and _timezone will
2709 wind up at different memory locations. The tzset call will set
2710 _timezone, leaving timezone unchanged. */
2712 if (h->u.weakdef != NULL)
2714 /* If we get to this point, we know there is an implicit
2715 reference by a regular object file via the weak symbol H.
2716 FIXME: Is this really true? What if the traversal finds
2717 H->U.WEAKDEF before it finds H? */
2718 h->u.weakdef->ref_regular = 1;
2720 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2721 return FALSE;
2724 /* If a symbol has no type and no size and does not require a PLT
2725 entry, then we are probably about to do the wrong thing here: we
2726 are probably going to create a COPY reloc for an empty object.
2727 This case can arise when a shared object is built with assembly
2728 code, and the assembly code fails to set the symbol type. */
2729 if (h->size == 0
2730 && h->type == STT_NOTYPE
2731 && !h->needs_plt)
2732 (*_bfd_error_handler)
2733 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2734 h->root.root.string);
2736 dynobj = elf_hash_table (eif->info)->dynobj;
2737 bed = get_elf_backend_data (dynobj);
2739 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2741 eif->failed = TRUE;
2742 return FALSE;
2745 return TRUE;
2748 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2749 DYNBSS. */
2751 bfd_boolean
2752 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2753 asection *dynbss)
2755 unsigned int power_of_two;
2756 bfd_vma mask;
2757 asection *sec = h->root.u.def.section;
2759 /* The section aligment of definition is the maximum alignment
2760 requirement of symbols defined in the section. Since we don't
2761 know the symbol alignment requirement, we start with the
2762 maximum alignment and check low bits of the symbol address
2763 for the minimum alignment. */
2764 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2765 mask = ((bfd_vma) 1 << power_of_two) - 1;
2766 while ((h->root.u.def.value & mask) != 0)
2768 mask >>= 1;
2769 --power_of_two;
2772 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2773 dynbss))
2775 /* Adjust the section alignment if needed. */
2776 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2777 power_of_two))
2778 return FALSE;
2781 /* We make sure that the symbol will be aligned properly. */
2782 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2784 /* Define the symbol as being at this point in DYNBSS. */
2785 h->root.u.def.section = dynbss;
2786 h->root.u.def.value = dynbss->size;
2788 /* Increment the size of DYNBSS to make room for the symbol. */
2789 dynbss->size += h->size;
2791 return TRUE;
2794 /* Adjust all external symbols pointing into SEC_MERGE sections
2795 to reflect the object merging within the sections. */
2797 static bfd_boolean
2798 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2800 asection *sec;
2802 if (h->root.type == bfd_link_hash_warning)
2803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2805 if ((h->root.type == bfd_link_hash_defined
2806 || h->root.type == bfd_link_hash_defweak)
2807 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2808 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2810 bfd *output_bfd = data;
2812 h->root.u.def.value =
2813 _bfd_merged_section_offset (output_bfd,
2814 &h->root.u.def.section,
2815 elf_section_data (sec)->sec_info,
2816 h->root.u.def.value);
2819 return TRUE;
2822 /* Returns false if the symbol referred to by H should be considered
2823 to resolve local to the current module, and true if it should be
2824 considered to bind dynamically. */
2826 bfd_boolean
2827 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2828 struct bfd_link_info *info,
2829 bfd_boolean ignore_protected)
2831 bfd_boolean binding_stays_local_p;
2832 const struct elf_backend_data *bed;
2833 struct elf_link_hash_table *hash_table;
2835 if (h == NULL)
2836 return FALSE;
2838 while (h->root.type == bfd_link_hash_indirect
2839 || h->root.type == bfd_link_hash_warning)
2840 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2842 /* If it was forced local, then clearly it's not dynamic. */
2843 if (h->dynindx == -1)
2844 return FALSE;
2845 if (h->forced_local)
2846 return FALSE;
2848 /* Identify the cases where name binding rules say that a
2849 visible symbol resolves locally. */
2850 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2852 switch (ELF_ST_VISIBILITY (h->other))
2854 case STV_INTERNAL:
2855 case STV_HIDDEN:
2856 return FALSE;
2858 case STV_PROTECTED:
2859 hash_table = elf_hash_table (info);
2860 if (!is_elf_hash_table (hash_table))
2861 return FALSE;
2863 bed = get_elf_backend_data (hash_table->dynobj);
2865 /* Proper resolution for function pointer equality may require
2866 that these symbols perhaps be resolved dynamically, even though
2867 we should be resolving them to the current module. */
2868 if (!ignore_protected || !bed->is_function_type (h->type))
2869 binding_stays_local_p = TRUE;
2870 break;
2872 default:
2873 break;
2876 /* If it isn't defined locally, then clearly it's dynamic. */
2877 if (!h->def_regular)
2878 return TRUE;
2880 /* Otherwise, the symbol is dynamic if binding rules don't tell
2881 us that it remains local. */
2882 return !binding_stays_local_p;
2885 /* Return true if the symbol referred to by H should be considered
2886 to resolve local to the current module, and false otherwise. Differs
2887 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2888 undefined symbols and weak symbols. */
2890 bfd_boolean
2891 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2892 struct bfd_link_info *info,
2893 bfd_boolean local_protected)
2895 const struct elf_backend_data *bed;
2896 struct elf_link_hash_table *hash_table;
2898 /* If it's a local sym, of course we resolve locally. */
2899 if (h == NULL)
2900 return TRUE;
2902 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2903 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2904 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2905 return TRUE;
2907 /* Common symbols that become definitions don't get the DEF_REGULAR
2908 flag set, so test it first, and don't bail out. */
2909 if (ELF_COMMON_DEF_P (h))
2910 /* Do nothing. */;
2911 /* If we don't have a definition in a regular file, then we can't
2912 resolve locally. The sym is either undefined or dynamic. */
2913 else if (!h->def_regular)
2914 return FALSE;
2916 /* Forced local symbols resolve locally. */
2917 if (h->forced_local)
2918 return TRUE;
2920 /* As do non-dynamic symbols. */
2921 if (h->dynindx == -1)
2922 return TRUE;
2924 /* At this point, we know the symbol is defined and dynamic. In an
2925 executable it must resolve locally, likewise when building symbolic
2926 shared libraries. */
2927 if (info->executable || SYMBOLIC_BIND (info, h))
2928 return TRUE;
2930 /* Now deal with defined dynamic symbols in shared libraries. Ones
2931 with default visibility might not resolve locally. */
2932 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2933 return FALSE;
2935 hash_table = elf_hash_table (info);
2936 if (!is_elf_hash_table (hash_table))
2937 return TRUE;
2939 bed = get_elf_backend_data (hash_table->dynobj);
2941 /* STV_PROTECTED non-function symbols are local. */
2942 if (!bed->is_function_type (h->type))
2943 return TRUE;
2945 /* Function pointer equality tests may require that STV_PROTECTED
2946 symbols be treated as dynamic symbols, even when we know that the
2947 dynamic linker will resolve them locally. */
2948 return local_protected;
2951 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2952 aligned. Returns the first TLS output section. */
2954 struct bfd_section *
2955 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2957 struct bfd_section *sec, *tls;
2958 unsigned int align = 0;
2960 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2961 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2962 break;
2963 tls = sec;
2965 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2966 if (sec->alignment_power > align)
2967 align = sec->alignment_power;
2969 elf_hash_table (info)->tls_sec = tls;
2971 /* Ensure the alignment of the first section is the largest alignment,
2972 so that the tls segment starts aligned. */
2973 if (tls != NULL)
2974 tls->alignment_power = align;
2976 return tls;
2979 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2980 static bfd_boolean
2981 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2982 Elf_Internal_Sym *sym)
2984 const struct elf_backend_data *bed;
2986 /* Local symbols do not count, but target specific ones might. */
2987 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2988 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2989 return FALSE;
2991 bed = get_elf_backend_data (abfd);
2992 /* Function symbols do not count. */
2993 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2994 return FALSE;
2996 /* If the section is undefined, then so is the symbol. */
2997 if (sym->st_shndx == SHN_UNDEF)
2998 return FALSE;
3000 /* If the symbol is defined in the common section, then
3001 it is a common definition and so does not count. */
3002 if (bed->common_definition (sym))
3003 return FALSE;
3005 /* If the symbol is in a target specific section then we
3006 must rely upon the backend to tell us what it is. */
3007 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3008 /* FIXME - this function is not coded yet:
3010 return _bfd_is_global_symbol_definition (abfd, sym);
3012 Instead for now assume that the definition is not global,
3013 Even if this is wrong, at least the linker will behave
3014 in the same way that it used to do. */
3015 return FALSE;
3017 return TRUE;
3020 /* Search the symbol table of the archive element of the archive ABFD
3021 whose archive map contains a mention of SYMDEF, and determine if
3022 the symbol is defined in this element. */
3023 static bfd_boolean
3024 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3026 Elf_Internal_Shdr * hdr;
3027 bfd_size_type symcount;
3028 bfd_size_type extsymcount;
3029 bfd_size_type extsymoff;
3030 Elf_Internal_Sym *isymbuf;
3031 Elf_Internal_Sym *isym;
3032 Elf_Internal_Sym *isymend;
3033 bfd_boolean result;
3035 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3036 if (abfd == NULL)
3037 return FALSE;
3039 if (! bfd_check_format (abfd, bfd_object))
3040 return FALSE;
3042 /* If we have already included the element containing this symbol in the
3043 link then we do not need to include it again. Just claim that any symbol
3044 it contains is not a definition, so that our caller will not decide to
3045 (re)include this element. */
3046 if (abfd->archive_pass)
3047 return FALSE;
3049 /* Select the appropriate symbol table. */
3050 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3051 hdr = &elf_tdata (abfd)->symtab_hdr;
3052 else
3053 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3055 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3057 /* The sh_info field of the symtab header tells us where the
3058 external symbols start. We don't care about the local symbols. */
3059 if (elf_bad_symtab (abfd))
3061 extsymcount = symcount;
3062 extsymoff = 0;
3064 else
3066 extsymcount = symcount - hdr->sh_info;
3067 extsymoff = hdr->sh_info;
3070 if (extsymcount == 0)
3071 return FALSE;
3073 /* Read in the symbol table. */
3074 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3075 NULL, NULL, NULL);
3076 if (isymbuf == NULL)
3077 return FALSE;
3079 /* Scan the symbol table looking for SYMDEF. */
3080 result = FALSE;
3081 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3083 const char *name;
3085 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3086 isym->st_name);
3087 if (name == NULL)
3088 break;
3090 if (strcmp (name, symdef->name) == 0)
3092 result = is_global_data_symbol_definition (abfd, isym);
3093 break;
3097 free (isymbuf);
3099 return result;
3102 /* Add an entry to the .dynamic table. */
3104 bfd_boolean
3105 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3106 bfd_vma tag,
3107 bfd_vma val)
3109 struct elf_link_hash_table *hash_table;
3110 const struct elf_backend_data *bed;
3111 asection *s;
3112 bfd_size_type newsize;
3113 bfd_byte *newcontents;
3114 Elf_Internal_Dyn dyn;
3116 hash_table = elf_hash_table (info);
3117 if (! is_elf_hash_table (hash_table))
3118 return FALSE;
3120 bed = get_elf_backend_data (hash_table->dynobj);
3121 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3122 BFD_ASSERT (s != NULL);
3124 newsize = s->size + bed->s->sizeof_dyn;
3125 newcontents = bfd_realloc (s->contents, newsize);
3126 if (newcontents == NULL)
3127 return FALSE;
3129 dyn.d_tag = tag;
3130 dyn.d_un.d_val = val;
3131 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3133 s->size = newsize;
3134 s->contents = newcontents;
3136 return TRUE;
3139 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3140 otherwise just check whether one already exists. Returns -1 on error,
3141 1 if a DT_NEEDED tag already exists, and 0 on success. */
3143 static int
3144 elf_add_dt_needed_tag (bfd *abfd,
3145 struct bfd_link_info *info,
3146 const char *soname,
3147 bfd_boolean do_it)
3149 struct elf_link_hash_table *hash_table;
3150 bfd_size_type oldsize;
3151 bfd_size_type strindex;
3153 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3154 return -1;
3156 hash_table = elf_hash_table (info);
3157 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3158 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3159 if (strindex == (bfd_size_type) -1)
3160 return -1;
3162 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3164 asection *sdyn;
3165 const struct elf_backend_data *bed;
3166 bfd_byte *extdyn;
3168 bed = get_elf_backend_data (hash_table->dynobj);
3169 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3170 if (sdyn != NULL)
3171 for (extdyn = sdyn->contents;
3172 extdyn < sdyn->contents + sdyn->size;
3173 extdyn += bed->s->sizeof_dyn)
3175 Elf_Internal_Dyn dyn;
3177 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3178 if (dyn.d_tag == DT_NEEDED
3179 && dyn.d_un.d_val == strindex)
3181 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3182 return 1;
3187 if (do_it)
3189 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3190 return -1;
3192 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3193 return -1;
3195 else
3196 /* We were just checking for existence of the tag. */
3197 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3199 return 0;
3202 static bfd_boolean
3203 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3205 for (; needed != NULL; needed = needed->next)
3206 if (strcmp (soname, needed->name) == 0)
3207 return TRUE;
3209 return FALSE;
3212 /* Sort symbol by value and section. */
3213 static int
3214 elf_sort_symbol (const void *arg1, const void *arg2)
3216 const struct elf_link_hash_entry *h1;
3217 const struct elf_link_hash_entry *h2;
3218 bfd_signed_vma vdiff;
3220 h1 = *(const struct elf_link_hash_entry **) arg1;
3221 h2 = *(const struct elf_link_hash_entry **) arg2;
3222 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3223 if (vdiff != 0)
3224 return vdiff > 0 ? 1 : -1;
3225 else
3227 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3228 if (sdiff != 0)
3229 return sdiff > 0 ? 1 : -1;
3231 return 0;
3234 /* This function is used to adjust offsets into .dynstr for
3235 dynamic symbols. This is called via elf_link_hash_traverse. */
3237 static bfd_boolean
3238 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3240 struct elf_strtab_hash *dynstr = data;
3242 if (h->root.type == bfd_link_hash_warning)
3243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3245 if (h->dynindx != -1)
3246 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3247 return TRUE;
3250 /* Assign string offsets in .dynstr, update all structures referencing
3251 them. */
3253 static bfd_boolean
3254 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3256 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3257 struct elf_link_local_dynamic_entry *entry;
3258 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3259 bfd *dynobj = hash_table->dynobj;
3260 asection *sdyn;
3261 bfd_size_type size;
3262 const struct elf_backend_data *bed;
3263 bfd_byte *extdyn;
3265 _bfd_elf_strtab_finalize (dynstr);
3266 size = _bfd_elf_strtab_size (dynstr);
3268 bed = get_elf_backend_data (dynobj);
3269 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3270 BFD_ASSERT (sdyn != NULL);
3272 /* Update all .dynamic entries referencing .dynstr strings. */
3273 for (extdyn = sdyn->contents;
3274 extdyn < sdyn->contents + sdyn->size;
3275 extdyn += bed->s->sizeof_dyn)
3277 Elf_Internal_Dyn dyn;
3279 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3280 switch (dyn.d_tag)
3282 case DT_STRSZ:
3283 dyn.d_un.d_val = size;
3284 break;
3285 case DT_NEEDED:
3286 case DT_SONAME:
3287 case DT_RPATH:
3288 case DT_RUNPATH:
3289 case DT_FILTER:
3290 case DT_AUXILIARY:
3291 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3292 break;
3293 default:
3294 continue;
3296 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3299 /* Now update local dynamic symbols. */
3300 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3301 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3302 entry->isym.st_name);
3304 /* And the rest of dynamic symbols. */
3305 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3307 /* Adjust version definitions. */
3308 if (elf_tdata (output_bfd)->cverdefs)
3310 asection *s;
3311 bfd_byte *p;
3312 bfd_size_type i;
3313 Elf_Internal_Verdef def;
3314 Elf_Internal_Verdaux defaux;
3316 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3317 p = s->contents;
3320 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3321 &def);
3322 p += sizeof (Elf_External_Verdef);
3323 if (def.vd_aux != sizeof (Elf_External_Verdef))
3324 continue;
3325 for (i = 0; i < def.vd_cnt; ++i)
3327 _bfd_elf_swap_verdaux_in (output_bfd,
3328 (Elf_External_Verdaux *) p, &defaux);
3329 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3330 defaux.vda_name);
3331 _bfd_elf_swap_verdaux_out (output_bfd,
3332 &defaux, (Elf_External_Verdaux *) p);
3333 p += sizeof (Elf_External_Verdaux);
3336 while (def.vd_next);
3339 /* Adjust version references. */
3340 if (elf_tdata (output_bfd)->verref)
3342 asection *s;
3343 bfd_byte *p;
3344 bfd_size_type i;
3345 Elf_Internal_Verneed need;
3346 Elf_Internal_Vernaux needaux;
3348 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3349 p = s->contents;
3352 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3353 &need);
3354 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3355 _bfd_elf_swap_verneed_out (output_bfd, &need,
3356 (Elf_External_Verneed *) p);
3357 p += sizeof (Elf_External_Verneed);
3358 for (i = 0; i < need.vn_cnt; ++i)
3360 _bfd_elf_swap_vernaux_in (output_bfd,
3361 (Elf_External_Vernaux *) p, &needaux);
3362 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3363 needaux.vna_name);
3364 _bfd_elf_swap_vernaux_out (output_bfd,
3365 &needaux,
3366 (Elf_External_Vernaux *) p);
3367 p += sizeof (Elf_External_Vernaux);
3370 while (need.vn_next);
3373 return TRUE;
3376 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3377 The default is to only match when the INPUT and OUTPUT are exactly
3378 the same target. */
3380 bfd_boolean
3381 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3382 const bfd_target *output)
3384 return input == output;
3387 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3388 This version is used when different targets for the same architecture
3389 are virtually identical. */
3391 bfd_boolean
3392 _bfd_elf_relocs_compatible (const bfd_target *input,
3393 const bfd_target *output)
3395 const struct elf_backend_data *obed, *ibed;
3397 if (input == output)
3398 return TRUE;
3400 ibed = xvec_get_elf_backend_data (input);
3401 obed = xvec_get_elf_backend_data (output);
3403 if (ibed->arch != obed->arch)
3404 return FALSE;
3406 /* If both backends are using this function, deem them compatible. */
3407 return ibed->relocs_compatible == obed->relocs_compatible;
3410 /* Add symbols from an ELF object file to the linker hash table. */
3412 static bfd_boolean
3413 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3415 Elf_Internal_Shdr *hdr;
3416 bfd_size_type symcount;
3417 bfd_size_type extsymcount;
3418 bfd_size_type extsymoff;
3419 struct elf_link_hash_entry **sym_hash;
3420 bfd_boolean dynamic;
3421 Elf_External_Versym *extversym = NULL;
3422 Elf_External_Versym *ever;
3423 struct elf_link_hash_entry *weaks;
3424 struct elf_link_hash_entry **nondeflt_vers = NULL;
3425 bfd_size_type nondeflt_vers_cnt = 0;
3426 Elf_Internal_Sym *isymbuf = NULL;
3427 Elf_Internal_Sym *isym;
3428 Elf_Internal_Sym *isymend;
3429 const struct elf_backend_data *bed;
3430 bfd_boolean add_needed;
3431 struct elf_link_hash_table *htab;
3432 bfd_size_type amt;
3433 void *alloc_mark = NULL;
3434 struct bfd_hash_entry **old_table = NULL;
3435 unsigned int old_size = 0;
3436 unsigned int old_count = 0;
3437 void *old_tab = NULL;
3438 void *old_hash;
3439 void *old_ent;
3440 struct bfd_link_hash_entry *old_undefs = NULL;
3441 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3442 long old_dynsymcount = 0;
3443 size_t tabsize = 0;
3444 size_t hashsize = 0;
3446 htab = elf_hash_table (info);
3447 bed = get_elf_backend_data (abfd);
3449 if ((abfd->flags & DYNAMIC) == 0)
3450 dynamic = FALSE;
3451 else
3453 dynamic = TRUE;
3455 /* You can't use -r against a dynamic object. Also, there's no
3456 hope of using a dynamic object which does not exactly match
3457 the format of the output file. */
3458 if (info->relocatable
3459 || !is_elf_hash_table (htab)
3460 || info->output_bfd->xvec != abfd->xvec)
3462 if (info->relocatable)
3463 bfd_set_error (bfd_error_invalid_operation);
3464 else
3465 bfd_set_error (bfd_error_wrong_format);
3466 goto error_return;
3470 /* As a GNU extension, any input sections which are named
3471 .gnu.warning.SYMBOL are treated as warning symbols for the given
3472 symbol. This differs from .gnu.warning sections, which generate
3473 warnings when they are included in an output file. */
3474 if (info->executable)
3476 asection *s;
3478 for (s = abfd->sections; s != NULL; s = s->next)
3480 const char *name;
3482 name = bfd_get_section_name (abfd, s);
3483 if (CONST_STRNEQ (name, ".gnu.warning."))
3485 char *msg;
3486 bfd_size_type sz;
3488 name += sizeof ".gnu.warning." - 1;
3490 /* If this is a shared object, then look up the symbol
3491 in the hash table. If it is there, and it is already
3492 been defined, then we will not be using the entry
3493 from this shared object, so we don't need to warn.
3494 FIXME: If we see the definition in a regular object
3495 later on, we will warn, but we shouldn't. The only
3496 fix is to keep track of what warnings we are supposed
3497 to emit, and then handle them all at the end of the
3498 link. */
3499 if (dynamic)
3501 struct elf_link_hash_entry *h;
3503 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3505 /* FIXME: What about bfd_link_hash_common? */
3506 if (h != NULL
3507 && (h->root.type == bfd_link_hash_defined
3508 || h->root.type == bfd_link_hash_defweak))
3510 /* We don't want to issue this warning. Clobber
3511 the section size so that the warning does not
3512 get copied into the output file. */
3513 s->size = 0;
3514 continue;
3518 sz = s->size;
3519 msg = bfd_alloc (abfd, sz + 1);
3520 if (msg == NULL)
3521 goto error_return;
3523 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3524 goto error_return;
3526 msg[sz] = '\0';
3528 if (! (_bfd_generic_link_add_one_symbol
3529 (info, abfd, name, BSF_WARNING, s, 0, msg,
3530 FALSE, bed->collect, NULL)))
3531 goto error_return;
3533 if (! info->relocatable)
3535 /* Clobber the section size so that the warning does
3536 not get copied into the output file. */
3537 s->size = 0;
3539 /* Also set SEC_EXCLUDE, so that symbols defined in
3540 the warning section don't get copied to the output. */
3541 s->flags |= SEC_EXCLUDE;
3547 add_needed = TRUE;
3548 if (! dynamic)
3550 /* If we are creating a shared library, create all the dynamic
3551 sections immediately. We need to attach them to something,
3552 so we attach them to this BFD, provided it is the right
3553 format. FIXME: If there are no input BFD's of the same
3554 format as the output, we can't make a shared library. */
3555 if (info->shared
3556 && is_elf_hash_table (htab)
3557 && info->output_bfd->xvec == abfd->xvec
3558 && !htab->dynamic_sections_created)
3560 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3561 goto error_return;
3564 else if (!is_elf_hash_table (htab))
3565 goto error_return;
3566 else
3568 asection *s;
3569 const char *soname = NULL;
3570 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3571 int ret;
3573 /* ld --just-symbols and dynamic objects don't mix very well.
3574 ld shouldn't allow it. */
3575 if ((s = abfd->sections) != NULL
3576 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3577 abort ();
3579 /* If this dynamic lib was specified on the command line with
3580 --as-needed in effect, then we don't want to add a DT_NEEDED
3581 tag unless the lib is actually used. Similary for libs brought
3582 in by another lib's DT_NEEDED. When --no-add-needed is used
3583 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3584 any dynamic library in DT_NEEDED tags in the dynamic lib at
3585 all. */
3586 add_needed = (elf_dyn_lib_class (abfd)
3587 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3588 | DYN_NO_NEEDED)) == 0;
3590 s = bfd_get_section_by_name (abfd, ".dynamic");
3591 if (s != NULL)
3593 bfd_byte *dynbuf;
3594 bfd_byte *extdyn;
3595 unsigned int elfsec;
3596 unsigned long shlink;
3598 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3599 goto error_free_dyn;
3601 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3602 if (elfsec == SHN_BAD)
3603 goto error_free_dyn;
3604 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3606 for (extdyn = dynbuf;
3607 extdyn < dynbuf + s->size;
3608 extdyn += bed->s->sizeof_dyn)
3610 Elf_Internal_Dyn dyn;
3612 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3613 if (dyn.d_tag == DT_SONAME)
3615 unsigned int tagv = dyn.d_un.d_val;
3616 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (soname == NULL)
3618 goto error_free_dyn;
3620 if (dyn.d_tag == DT_NEEDED)
3622 struct bfd_link_needed_list *n, **pn;
3623 char *fnm, *anm;
3624 unsigned int tagv = dyn.d_un.d_val;
3626 amt = sizeof (struct bfd_link_needed_list);
3627 n = bfd_alloc (abfd, amt);
3628 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3629 if (n == NULL || fnm == NULL)
3630 goto error_free_dyn;
3631 amt = strlen (fnm) + 1;
3632 anm = bfd_alloc (abfd, amt);
3633 if (anm == NULL)
3634 goto error_free_dyn;
3635 memcpy (anm, fnm, amt);
3636 n->name = anm;
3637 n->by = abfd;
3638 n->next = NULL;
3639 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3641 *pn = n;
3643 if (dyn.d_tag == DT_RUNPATH)
3645 struct bfd_link_needed_list *n, **pn;
3646 char *fnm, *anm;
3647 unsigned int tagv = dyn.d_un.d_val;
3649 amt = sizeof (struct bfd_link_needed_list);
3650 n = bfd_alloc (abfd, amt);
3651 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3652 if (n == NULL || fnm == NULL)
3653 goto error_free_dyn;
3654 amt = strlen (fnm) + 1;
3655 anm = bfd_alloc (abfd, amt);
3656 if (anm == NULL)
3657 goto error_free_dyn;
3658 memcpy (anm, fnm, amt);
3659 n->name = anm;
3660 n->by = abfd;
3661 n->next = NULL;
3662 for (pn = & runpath;
3663 *pn != NULL;
3664 pn = &(*pn)->next)
3666 *pn = n;
3668 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3669 if (!runpath && dyn.d_tag == DT_RPATH)
3671 struct bfd_link_needed_list *n, **pn;
3672 char *fnm, *anm;
3673 unsigned int tagv = dyn.d_un.d_val;
3675 amt = sizeof (struct bfd_link_needed_list);
3676 n = bfd_alloc (abfd, amt);
3677 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3678 if (n == NULL || fnm == NULL)
3679 goto error_free_dyn;
3680 amt = strlen (fnm) + 1;
3681 anm = bfd_alloc (abfd, amt);
3682 if (anm == NULL)
3684 error_free_dyn:
3685 free (dynbuf);
3686 goto error_return;
3688 memcpy (anm, fnm, amt);
3689 n->name = anm;
3690 n->by = abfd;
3691 n->next = NULL;
3692 for (pn = & rpath;
3693 *pn != NULL;
3694 pn = &(*pn)->next)
3696 *pn = n;
3700 free (dynbuf);
3703 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3704 frees all more recently bfd_alloc'd blocks as well. */
3705 if (runpath)
3706 rpath = runpath;
3708 if (rpath)
3710 struct bfd_link_needed_list **pn;
3711 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3713 *pn = rpath;
3716 /* We do not want to include any of the sections in a dynamic
3717 object in the output file. We hack by simply clobbering the
3718 list of sections in the BFD. This could be handled more
3719 cleanly by, say, a new section flag; the existing
3720 SEC_NEVER_LOAD flag is not the one we want, because that one
3721 still implies that the section takes up space in the output
3722 file. */
3723 bfd_section_list_clear (abfd);
3725 /* Find the name to use in a DT_NEEDED entry that refers to this
3726 object. If the object has a DT_SONAME entry, we use it.
3727 Otherwise, if the generic linker stuck something in
3728 elf_dt_name, we use that. Otherwise, we just use the file
3729 name. */
3730 if (soname == NULL || *soname == '\0')
3732 soname = elf_dt_name (abfd);
3733 if (soname == NULL || *soname == '\0')
3734 soname = bfd_get_filename (abfd);
3737 /* Save the SONAME because sometimes the linker emulation code
3738 will need to know it. */
3739 elf_dt_name (abfd) = soname;
3741 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3742 if (ret < 0)
3743 goto error_return;
3745 /* If we have already included this dynamic object in the
3746 link, just ignore it. There is no reason to include a
3747 particular dynamic object more than once. */
3748 if (ret > 0)
3749 return TRUE;
3752 /* If this is a dynamic object, we always link against the .dynsym
3753 symbol table, not the .symtab symbol table. The dynamic linker
3754 will only see the .dynsym symbol table, so there is no reason to
3755 look at .symtab for a dynamic object. */
3757 if (! dynamic || elf_dynsymtab (abfd) == 0)
3758 hdr = &elf_tdata (abfd)->symtab_hdr;
3759 else
3760 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3762 symcount = hdr->sh_size / bed->s->sizeof_sym;
3764 /* The sh_info field of the symtab header tells us where the
3765 external symbols start. We don't care about the local symbols at
3766 this point. */
3767 if (elf_bad_symtab (abfd))
3769 extsymcount = symcount;
3770 extsymoff = 0;
3772 else
3774 extsymcount = symcount - hdr->sh_info;
3775 extsymoff = hdr->sh_info;
3778 sym_hash = NULL;
3779 if (extsymcount != 0)
3781 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3782 NULL, NULL, NULL);
3783 if (isymbuf == NULL)
3784 goto error_return;
3786 /* We store a pointer to the hash table entry for each external
3787 symbol. */
3788 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3789 sym_hash = bfd_alloc (abfd, amt);
3790 if (sym_hash == NULL)
3791 goto error_free_sym;
3792 elf_sym_hashes (abfd) = sym_hash;
3795 if (dynamic)
3797 /* Read in any version definitions. */
3798 if (!_bfd_elf_slurp_version_tables (abfd,
3799 info->default_imported_symver))
3800 goto error_free_sym;
3802 /* Read in the symbol versions, but don't bother to convert them
3803 to internal format. */
3804 if (elf_dynversym (abfd) != 0)
3806 Elf_Internal_Shdr *versymhdr;
3808 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3809 extversym = bfd_malloc (versymhdr->sh_size);
3810 if (extversym == NULL)
3811 goto error_free_sym;
3812 amt = versymhdr->sh_size;
3813 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3814 || bfd_bread (extversym, amt, abfd) != amt)
3815 goto error_free_vers;
3819 /* If we are loading an as-needed shared lib, save the symbol table
3820 state before we start adding symbols. If the lib turns out
3821 to be unneeded, restore the state. */
3822 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3824 unsigned int i;
3825 size_t entsize;
3827 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3829 struct bfd_hash_entry *p;
3830 struct elf_link_hash_entry *h;
3832 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3834 h = (struct elf_link_hash_entry *) p;
3835 entsize += htab->root.table.entsize;
3836 if (h->root.type == bfd_link_hash_warning)
3837 entsize += htab->root.table.entsize;
3841 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3842 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3843 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3844 if (old_tab == NULL)
3845 goto error_free_vers;
3847 /* Remember the current objalloc pointer, so that all mem for
3848 symbols added can later be reclaimed. */
3849 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3850 if (alloc_mark == NULL)
3851 goto error_free_vers;
3853 /* Make a special call to the linker "notice" function to
3854 tell it that we are about to handle an as-needed lib. */
3855 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3856 notice_as_needed))
3857 goto error_free_vers;
3859 /* Clone the symbol table and sym hashes. Remember some
3860 pointers into the symbol table, and dynamic symbol count. */
3861 old_hash = (char *) old_tab + tabsize;
3862 old_ent = (char *) old_hash + hashsize;
3863 memcpy (old_tab, htab->root.table.table, tabsize);
3864 memcpy (old_hash, sym_hash, hashsize);
3865 old_undefs = htab->root.undefs;
3866 old_undefs_tail = htab->root.undefs_tail;
3867 old_table = htab->root.table.table;
3868 old_size = htab->root.table.size;
3869 old_count = htab->root.table.count;
3870 old_dynsymcount = htab->dynsymcount;
3872 for (i = 0; i < htab->root.table.size; i++)
3874 struct bfd_hash_entry *p;
3875 struct elf_link_hash_entry *h;
3877 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3879 memcpy (old_ent, p, htab->root.table.entsize);
3880 old_ent = (char *) old_ent + htab->root.table.entsize;
3881 h = (struct elf_link_hash_entry *) p;
3882 if (h->root.type == bfd_link_hash_warning)
3884 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3885 old_ent = (char *) old_ent + htab->root.table.entsize;
3891 weaks = NULL;
3892 ever = extversym != NULL ? extversym + extsymoff : NULL;
3893 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3894 isym < isymend;
3895 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3897 int bind;
3898 bfd_vma value;
3899 asection *sec, *new_sec;
3900 flagword flags;
3901 const char *name;
3902 struct elf_link_hash_entry *h;
3903 bfd_boolean definition;
3904 bfd_boolean size_change_ok;
3905 bfd_boolean type_change_ok;
3906 bfd_boolean new_weakdef;
3907 bfd_boolean override;
3908 bfd_boolean common;
3909 unsigned int old_alignment;
3910 bfd *old_bfd;
3912 override = FALSE;
3914 flags = BSF_NO_FLAGS;
3915 sec = NULL;
3916 value = isym->st_value;
3917 *sym_hash = NULL;
3918 common = bed->common_definition (isym);
3920 bind = ELF_ST_BIND (isym->st_info);
3921 if (bind == STB_LOCAL)
3923 /* This should be impossible, since ELF requires that all
3924 global symbols follow all local symbols, and that sh_info
3925 point to the first global symbol. Unfortunately, Irix 5
3926 screws this up. */
3927 continue;
3929 else if (bind == STB_GLOBAL)
3931 if (isym->st_shndx != SHN_UNDEF && !common)
3932 flags = BSF_GLOBAL;
3934 else if (bind == STB_WEAK)
3935 flags = BSF_WEAK;
3936 else
3938 /* Leave it up to the processor backend. */
3941 if (isym->st_shndx == SHN_UNDEF)
3942 sec = bfd_und_section_ptr;
3943 else if (isym->st_shndx == SHN_ABS)
3944 sec = bfd_abs_section_ptr;
3945 else if (isym->st_shndx == SHN_COMMON)
3947 sec = bfd_com_section_ptr;
3948 /* What ELF calls the size we call the value. What ELF
3949 calls the value we call the alignment. */
3950 value = isym->st_size;
3952 else
3954 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3955 if (sec == NULL)
3956 sec = bfd_abs_section_ptr;
3957 else if (sec->kept_section)
3959 /* Symbols from discarded section are undefined. We keep
3960 its visibility. */
3961 sec = bfd_und_section_ptr;
3962 isym->st_shndx = SHN_UNDEF;
3964 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3965 value -= sec->vma;
3968 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3969 isym->st_name);
3970 if (name == NULL)
3971 goto error_free_vers;
3973 if (isym->st_shndx == SHN_COMMON
3974 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3975 && !info->relocatable)
3977 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3979 if (tcomm == NULL)
3981 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3982 (SEC_ALLOC
3983 | SEC_IS_COMMON
3984 | SEC_LINKER_CREATED
3985 | SEC_THREAD_LOCAL));
3986 if (tcomm == NULL)
3987 goto error_free_vers;
3989 sec = tcomm;
3991 else if (bed->elf_add_symbol_hook)
3993 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3994 &sec, &value))
3995 goto error_free_vers;
3997 /* The hook function sets the name to NULL if this symbol
3998 should be skipped for some reason. */
3999 if (name == NULL)
4000 continue;
4003 /* Sanity check that all possibilities were handled. */
4004 if (sec == NULL)
4006 bfd_set_error (bfd_error_bad_value);
4007 goto error_free_vers;
4010 if (bfd_is_und_section (sec)
4011 || bfd_is_com_section (sec))
4012 definition = FALSE;
4013 else
4014 definition = TRUE;
4016 size_change_ok = FALSE;
4017 type_change_ok = bed->type_change_ok;
4018 old_alignment = 0;
4019 old_bfd = NULL;
4020 new_sec = sec;
4022 if (is_elf_hash_table (htab))
4024 Elf_Internal_Versym iver;
4025 unsigned int vernum = 0;
4026 bfd_boolean skip;
4028 if (ever == NULL)
4030 if (info->default_imported_symver)
4031 /* Use the default symbol version created earlier. */
4032 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4033 else
4034 iver.vs_vers = 0;
4036 else
4037 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4039 vernum = iver.vs_vers & VERSYM_VERSION;
4041 /* If this is a hidden symbol, or if it is not version
4042 1, we append the version name to the symbol name.
4043 However, we do not modify a non-hidden absolute symbol
4044 if it is not a function, because it might be the version
4045 symbol itself. FIXME: What if it isn't? */
4046 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4047 || (vernum > 1
4048 && (!bfd_is_abs_section (sec)
4049 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4051 const char *verstr;
4052 size_t namelen, verlen, newlen;
4053 char *newname, *p;
4055 if (isym->st_shndx != SHN_UNDEF)
4057 if (vernum > elf_tdata (abfd)->cverdefs)
4058 verstr = NULL;
4059 else if (vernum > 1)
4060 verstr =
4061 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4062 else
4063 verstr = "";
4065 if (verstr == NULL)
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid version %u (max %d)"),
4069 abfd, name, vernum,
4070 elf_tdata (abfd)->cverdefs);
4071 bfd_set_error (bfd_error_bad_value);
4072 goto error_free_vers;
4075 else
4077 /* We cannot simply test for the number of
4078 entries in the VERNEED section since the
4079 numbers for the needed versions do not start
4080 at 0. */
4081 Elf_Internal_Verneed *t;
4083 verstr = NULL;
4084 for (t = elf_tdata (abfd)->verref;
4085 t != NULL;
4086 t = t->vn_nextref)
4088 Elf_Internal_Vernaux *a;
4090 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4092 if (a->vna_other == vernum)
4094 verstr = a->vna_nodename;
4095 break;
4098 if (a != NULL)
4099 break;
4101 if (verstr == NULL)
4103 (*_bfd_error_handler)
4104 (_("%B: %s: invalid needed version %d"),
4105 abfd, name, vernum);
4106 bfd_set_error (bfd_error_bad_value);
4107 goto error_free_vers;
4111 namelen = strlen (name);
4112 verlen = strlen (verstr);
4113 newlen = namelen + verlen + 2;
4114 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4115 && isym->st_shndx != SHN_UNDEF)
4116 ++newlen;
4118 newname = bfd_hash_allocate (&htab->root.table, newlen);
4119 if (newname == NULL)
4120 goto error_free_vers;
4121 memcpy (newname, name, namelen);
4122 p = newname + namelen;
4123 *p++ = ELF_VER_CHR;
4124 /* If this is a defined non-hidden version symbol,
4125 we add another @ to the name. This indicates the
4126 default version of the symbol. */
4127 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4128 && isym->st_shndx != SHN_UNDEF)
4129 *p++ = ELF_VER_CHR;
4130 memcpy (p, verstr, verlen + 1);
4132 name = newname;
4135 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4136 &value, &old_alignment,
4137 sym_hash, &skip, &override,
4138 &type_change_ok, &size_change_ok))
4139 goto error_free_vers;
4141 if (skip)
4142 continue;
4144 if (override)
4145 definition = FALSE;
4147 h = *sym_hash;
4148 while (h->root.type == bfd_link_hash_indirect
4149 || h->root.type == bfd_link_hash_warning)
4150 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4152 /* Remember the old alignment if this is a common symbol, so
4153 that we don't reduce the alignment later on. We can't
4154 check later, because _bfd_generic_link_add_one_symbol
4155 will set a default for the alignment which we want to
4156 override. We also remember the old bfd where the existing
4157 definition comes from. */
4158 switch (h->root.type)
4160 default:
4161 break;
4163 case bfd_link_hash_defined:
4164 case bfd_link_hash_defweak:
4165 old_bfd = h->root.u.def.section->owner;
4166 break;
4168 case bfd_link_hash_common:
4169 old_bfd = h->root.u.c.p->section->owner;
4170 old_alignment = h->root.u.c.p->alignment_power;
4171 break;
4174 if (elf_tdata (abfd)->verdef != NULL
4175 && ! override
4176 && vernum > 1
4177 && definition)
4178 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 if (! (_bfd_generic_link_add_one_symbol
4182 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4183 (struct bfd_link_hash_entry **) sym_hash)))
4184 goto error_free_vers;
4186 h = *sym_hash;
4187 while (h->root.type == bfd_link_hash_indirect
4188 || h->root.type == bfd_link_hash_warning)
4189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4190 *sym_hash = h;
4192 new_weakdef = FALSE;
4193 if (dynamic
4194 && definition
4195 && (flags & BSF_WEAK) != 0
4196 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4197 && is_elf_hash_table (htab)
4198 && h->u.weakdef == NULL)
4200 /* Keep a list of all weak defined non function symbols from
4201 a dynamic object, using the weakdef field. Later in this
4202 function we will set the weakdef field to the correct
4203 value. We only put non-function symbols from dynamic
4204 objects on this list, because that happens to be the only
4205 time we need to know the normal symbol corresponding to a
4206 weak symbol, and the information is time consuming to
4207 figure out. If the weakdef field is not already NULL,
4208 then this symbol was already defined by some previous
4209 dynamic object, and we will be using that previous
4210 definition anyhow. */
4212 h->u.weakdef = weaks;
4213 weaks = h;
4214 new_weakdef = TRUE;
4217 /* Set the alignment of a common symbol. */
4218 if ((common || bfd_is_com_section (sec))
4219 && h->root.type == bfd_link_hash_common)
4221 unsigned int align;
4223 if (common)
4224 align = bfd_log2 (isym->st_value);
4225 else
4227 /* The new symbol is a common symbol in a shared object.
4228 We need to get the alignment from the section. */
4229 align = new_sec->alignment_power;
4231 if (align > old_alignment
4232 /* Permit an alignment power of zero if an alignment of one
4233 is specified and no other alignments have been specified. */
4234 || (isym->st_value == 1 && old_alignment == 0))
4235 h->root.u.c.p->alignment_power = align;
4236 else
4237 h->root.u.c.p->alignment_power = old_alignment;
4240 if (is_elf_hash_table (htab))
4242 bfd_boolean dynsym;
4244 /* Check the alignment when a common symbol is involved. This
4245 can change when a common symbol is overridden by a normal
4246 definition or a common symbol is ignored due to the old
4247 normal definition. We need to make sure the maximum
4248 alignment is maintained. */
4249 if ((old_alignment || common)
4250 && h->root.type != bfd_link_hash_common)
4252 unsigned int common_align;
4253 unsigned int normal_align;
4254 unsigned int symbol_align;
4255 bfd *normal_bfd;
4256 bfd *common_bfd;
4258 symbol_align = ffs (h->root.u.def.value) - 1;
4259 if (h->root.u.def.section->owner != NULL
4260 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4262 normal_align = h->root.u.def.section->alignment_power;
4263 if (normal_align > symbol_align)
4264 normal_align = symbol_align;
4266 else
4267 normal_align = symbol_align;
4269 if (old_alignment)
4271 common_align = old_alignment;
4272 common_bfd = old_bfd;
4273 normal_bfd = abfd;
4275 else
4277 common_align = bfd_log2 (isym->st_value);
4278 common_bfd = abfd;
4279 normal_bfd = old_bfd;
4282 if (normal_align < common_align)
4284 /* PR binutils/2735 */
4285 if (normal_bfd == NULL)
4286 (*_bfd_error_handler)
4287 (_("Warning: alignment %u of common symbol `%s' in %B"
4288 " is greater than the alignment (%u) of its section %A"),
4289 common_bfd, h->root.u.def.section,
4290 1 << common_align, name, 1 << normal_align);
4291 else
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of symbol `%s' in %B"
4294 " is smaller than %u in %B"),
4295 normal_bfd, common_bfd,
4296 1 << normal_align, name, 1 << common_align);
4300 /* Remember the symbol size if it isn't undefined. */
4301 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4302 && (definition || h->size == 0))
4304 if (h->size != 0
4305 && h->size != isym->st_size
4306 && ! size_change_ok)
4307 (*_bfd_error_handler)
4308 (_("Warning: size of symbol `%s' changed"
4309 " from %lu in %B to %lu in %B"),
4310 old_bfd, abfd,
4311 name, (unsigned long) h->size,
4312 (unsigned long) isym->st_size);
4314 h->size = isym->st_size;
4317 /* If this is a common symbol, then we always want H->SIZE
4318 to be the size of the common symbol. The code just above
4319 won't fix the size if a common symbol becomes larger. We
4320 don't warn about a size change here, because that is
4321 covered by --warn-common. Allow changed between different
4322 function types. */
4323 if (h->root.type == bfd_link_hash_common)
4324 h->size = h->root.u.c.size;
4326 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4327 && (definition || h->type == STT_NOTYPE))
4329 if (h->type != STT_NOTYPE
4330 && h->type != ELF_ST_TYPE (isym->st_info)
4331 && ! type_change_ok)
4332 (*_bfd_error_handler)
4333 (_("Warning: type of symbol `%s' changed"
4334 " from %d to %d in %B"),
4335 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4337 h->type = ELF_ST_TYPE (isym->st_info);
4340 /* Merge st_other field. */
4341 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4343 /* Set a flag in the hash table entry indicating the type of
4344 reference or definition we just found. Keep a count of
4345 the number of dynamic symbols we find. A dynamic symbol
4346 is one which is referenced or defined by both a regular
4347 object and a shared object. */
4348 dynsym = FALSE;
4349 if (! dynamic)
4351 if (! definition)
4353 h->ref_regular = 1;
4354 if (bind != STB_WEAK)
4355 h->ref_regular_nonweak = 1;
4357 else
4359 h->def_regular = 1;
4360 if (h->def_dynamic)
4362 h->def_dynamic = 0;
4363 h->ref_dynamic = 1;
4364 h->dynamic_def = 1;
4367 if (! info->executable
4368 || h->def_dynamic
4369 || h->ref_dynamic)
4370 dynsym = TRUE;
4372 else
4374 if (! definition)
4375 h->ref_dynamic = 1;
4376 else
4377 h->def_dynamic = 1;
4378 if (h->def_regular
4379 || h->ref_regular
4380 || (h->u.weakdef != NULL
4381 && ! new_weakdef
4382 && h->u.weakdef->dynindx != -1))
4383 dynsym = TRUE;
4386 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4388 /* We don't want to make debug symbol dynamic. */
4389 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4390 dynsym = FALSE;
4393 /* Check to see if we need to add an indirect symbol for
4394 the default name. */
4395 if (definition || h->root.type == bfd_link_hash_common)
4396 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4397 &sec, &value, &dynsym,
4398 override))
4399 goto error_free_vers;
4401 if (definition && !dynamic)
4403 char *p = strchr (name, ELF_VER_CHR);
4404 if (p != NULL && p[1] != ELF_VER_CHR)
4406 /* Queue non-default versions so that .symver x, x@FOO
4407 aliases can be checked. */
4408 if (!nondeflt_vers)
4410 amt = ((isymend - isym + 1)
4411 * sizeof (struct elf_link_hash_entry *));
4412 nondeflt_vers = bfd_malloc (amt);
4413 if (!nondeflt_vers)
4414 goto error_free_vers;
4416 nondeflt_vers[nondeflt_vers_cnt++] = h;
4420 if (dynsym && h->dynindx == -1)
4422 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4423 goto error_free_vers;
4424 if (h->u.weakdef != NULL
4425 && ! new_weakdef
4426 && h->u.weakdef->dynindx == -1)
4428 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4429 goto error_free_vers;
4432 else if (dynsym && h->dynindx != -1)
4433 /* If the symbol already has a dynamic index, but
4434 visibility says it should not be visible, turn it into
4435 a local symbol. */
4436 switch (ELF_ST_VISIBILITY (h->other))
4438 case STV_INTERNAL:
4439 case STV_HIDDEN:
4440 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4441 dynsym = FALSE;
4442 break;
4445 if (!add_needed
4446 && definition
4447 && ((dynsym
4448 && h->ref_regular)
4449 || (h->ref_dynamic
4450 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4451 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4453 int ret;
4454 const char *soname = elf_dt_name (abfd);
4456 /* A symbol from a library loaded via DT_NEEDED of some
4457 other library is referenced by a regular object.
4458 Add a DT_NEEDED entry for it. Issue an error if
4459 --no-add-needed is used. */
4460 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4462 (*_bfd_error_handler)
4463 (_("%s: invalid DSO for symbol `%s' definition"),
4464 abfd, name);
4465 bfd_set_error (bfd_error_bad_value);
4466 goto error_free_vers;
4469 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4471 add_needed = TRUE;
4472 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4473 if (ret < 0)
4474 goto error_free_vers;
4476 BFD_ASSERT (ret == 0);
4481 if (extversym != NULL)
4483 free (extversym);
4484 extversym = NULL;
4487 if (isymbuf != NULL)
4489 free (isymbuf);
4490 isymbuf = NULL;
4493 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4495 unsigned int i;
4497 /* Restore the symbol table. */
4498 if (bed->as_needed_cleanup)
4499 (*bed->as_needed_cleanup) (abfd, info);
4500 old_hash = (char *) old_tab + tabsize;
4501 old_ent = (char *) old_hash + hashsize;
4502 sym_hash = elf_sym_hashes (abfd);
4503 htab->root.table.table = old_table;
4504 htab->root.table.size = old_size;
4505 htab->root.table.count = old_count;
4506 memcpy (htab->root.table.table, old_tab, tabsize);
4507 memcpy (sym_hash, old_hash, hashsize);
4508 htab->root.undefs = old_undefs;
4509 htab->root.undefs_tail = old_undefs_tail;
4510 for (i = 0; i < htab->root.table.size; i++)
4512 struct bfd_hash_entry *p;
4513 struct elf_link_hash_entry *h;
4515 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4517 h = (struct elf_link_hash_entry *) p;
4518 if (h->root.type == bfd_link_hash_warning)
4519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4520 if (h->dynindx >= old_dynsymcount)
4521 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4523 memcpy (p, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) p;
4526 if (h->root.type == bfd_link_hash_warning)
4528 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4534 /* Make a special call to the linker "notice" function to
4535 tell it that symbols added for crefs may need to be removed. */
4536 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4537 notice_not_needed))
4538 goto error_free_vers;
4540 free (old_tab);
4541 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4542 alloc_mark);
4543 if (nondeflt_vers != NULL)
4544 free (nondeflt_vers);
4545 return TRUE;
4548 if (old_tab != NULL)
4550 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4551 notice_needed))
4552 goto error_free_vers;
4553 free (old_tab);
4554 old_tab = NULL;
4557 /* Now that all the symbols from this input file are created, handle
4558 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4559 if (nondeflt_vers != NULL)
4561 bfd_size_type cnt, symidx;
4563 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4565 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4566 char *shortname, *p;
4568 p = strchr (h->root.root.string, ELF_VER_CHR);
4569 if (p == NULL
4570 || (h->root.type != bfd_link_hash_defined
4571 && h->root.type != bfd_link_hash_defweak))
4572 continue;
4574 amt = p - h->root.root.string;
4575 shortname = bfd_malloc (amt + 1);
4576 if (!shortname)
4577 goto error_free_vers;
4578 memcpy (shortname, h->root.root.string, amt);
4579 shortname[amt] = '\0';
4581 hi = (struct elf_link_hash_entry *)
4582 bfd_link_hash_lookup (&htab->root, shortname,
4583 FALSE, FALSE, FALSE);
4584 if (hi != NULL
4585 && hi->root.type == h->root.type
4586 && hi->root.u.def.value == h->root.u.def.value
4587 && hi->root.u.def.section == h->root.u.def.section)
4589 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4590 hi->root.type = bfd_link_hash_indirect;
4591 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4592 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4593 sym_hash = elf_sym_hashes (abfd);
4594 if (sym_hash)
4595 for (symidx = 0; symidx < extsymcount; ++symidx)
4596 if (sym_hash[symidx] == hi)
4598 sym_hash[symidx] = h;
4599 break;
4602 free (shortname);
4604 free (nondeflt_vers);
4605 nondeflt_vers = NULL;
4608 /* Now set the weakdefs field correctly for all the weak defined
4609 symbols we found. The only way to do this is to search all the
4610 symbols. Since we only need the information for non functions in
4611 dynamic objects, that's the only time we actually put anything on
4612 the list WEAKS. We need this information so that if a regular
4613 object refers to a symbol defined weakly in a dynamic object, the
4614 real symbol in the dynamic object is also put in the dynamic
4615 symbols; we also must arrange for both symbols to point to the
4616 same memory location. We could handle the general case of symbol
4617 aliasing, but a general symbol alias can only be generated in
4618 assembler code, handling it correctly would be very time
4619 consuming, and other ELF linkers don't handle general aliasing
4620 either. */
4621 if (weaks != NULL)
4623 struct elf_link_hash_entry **hpp;
4624 struct elf_link_hash_entry **hppend;
4625 struct elf_link_hash_entry **sorted_sym_hash;
4626 struct elf_link_hash_entry *h;
4627 size_t sym_count;
4629 /* Since we have to search the whole symbol list for each weak
4630 defined symbol, search time for N weak defined symbols will be
4631 O(N^2). Binary search will cut it down to O(NlogN). */
4632 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4633 sorted_sym_hash = bfd_malloc (amt);
4634 if (sorted_sym_hash == NULL)
4635 goto error_return;
4636 sym_hash = sorted_sym_hash;
4637 hpp = elf_sym_hashes (abfd);
4638 hppend = hpp + extsymcount;
4639 sym_count = 0;
4640 for (; hpp < hppend; hpp++)
4642 h = *hpp;
4643 if (h != NULL
4644 && h->root.type == bfd_link_hash_defined
4645 && !bed->is_function_type (h->type))
4647 *sym_hash = h;
4648 sym_hash++;
4649 sym_count++;
4653 qsort (sorted_sym_hash, sym_count,
4654 sizeof (struct elf_link_hash_entry *),
4655 elf_sort_symbol);
4657 while (weaks != NULL)
4659 struct elf_link_hash_entry *hlook;
4660 asection *slook;
4661 bfd_vma vlook;
4662 long ilook;
4663 size_t i, j, idx;
4665 hlook = weaks;
4666 weaks = hlook->u.weakdef;
4667 hlook->u.weakdef = NULL;
4669 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4670 || hlook->root.type == bfd_link_hash_defweak
4671 || hlook->root.type == bfd_link_hash_common
4672 || hlook->root.type == bfd_link_hash_indirect);
4673 slook = hlook->root.u.def.section;
4674 vlook = hlook->root.u.def.value;
4676 ilook = -1;
4677 i = 0;
4678 j = sym_count;
4679 while (i < j)
4681 bfd_signed_vma vdiff;
4682 idx = (i + j) / 2;
4683 h = sorted_sym_hash [idx];
4684 vdiff = vlook - h->root.u.def.value;
4685 if (vdiff < 0)
4686 j = idx;
4687 else if (vdiff > 0)
4688 i = idx + 1;
4689 else
4691 long sdiff = slook->id - h->root.u.def.section->id;
4692 if (sdiff < 0)
4693 j = idx;
4694 else if (sdiff > 0)
4695 i = idx + 1;
4696 else
4698 ilook = idx;
4699 break;
4704 /* We didn't find a value/section match. */
4705 if (ilook == -1)
4706 continue;
4708 for (i = ilook; i < sym_count; i++)
4710 h = sorted_sym_hash [i];
4712 /* Stop if value or section doesn't match. */
4713 if (h->root.u.def.value != vlook
4714 || h->root.u.def.section != slook)
4715 break;
4716 else if (h != hlook)
4718 hlook->u.weakdef = h;
4720 /* If the weak definition is in the list of dynamic
4721 symbols, make sure the real definition is put
4722 there as well. */
4723 if (hlook->dynindx != -1 && h->dynindx == -1)
4725 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4727 err_free_sym_hash:
4728 free (sorted_sym_hash);
4729 goto error_return;
4733 /* If the real definition is in the list of dynamic
4734 symbols, make sure the weak definition is put
4735 there as well. If we don't do this, then the
4736 dynamic loader might not merge the entries for the
4737 real definition and the weak definition. */
4738 if (h->dynindx != -1 && hlook->dynindx == -1)
4740 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4741 goto err_free_sym_hash;
4743 break;
4748 free (sorted_sym_hash);
4751 if (bed->check_directives
4752 && !(*bed->check_directives) (abfd, info))
4753 return FALSE;
4755 /* If this object is the same format as the output object, and it is
4756 not a shared library, then let the backend look through the
4757 relocs.
4759 This is required to build global offset table entries and to
4760 arrange for dynamic relocs. It is not required for the
4761 particular common case of linking non PIC code, even when linking
4762 against shared libraries, but unfortunately there is no way of
4763 knowing whether an object file has been compiled PIC or not.
4764 Looking through the relocs is not particularly time consuming.
4765 The problem is that we must either (1) keep the relocs in memory,
4766 which causes the linker to require additional runtime memory or
4767 (2) read the relocs twice from the input file, which wastes time.
4768 This would be a good case for using mmap.
4770 I have no idea how to handle linking PIC code into a file of a
4771 different format. It probably can't be done. */
4772 if (! dynamic
4773 && is_elf_hash_table (htab)
4774 && bed->check_relocs != NULL
4775 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4777 asection *o;
4779 for (o = abfd->sections; o != NULL; o = o->next)
4781 Elf_Internal_Rela *internal_relocs;
4782 bfd_boolean ok;
4784 if ((o->flags & SEC_RELOC) == 0
4785 || o->reloc_count == 0
4786 || ((info->strip == strip_all || info->strip == strip_debugger)
4787 && (o->flags & SEC_DEBUGGING) != 0)
4788 || bfd_is_abs_section (o->output_section))
4789 continue;
4791 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4792 info->keep_memory);
4793 if (internal_relocs == NULL)
4794 goto error_return;
4796 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4798 if (elf_section_data (o)->relocs != internal_relocs)
4799 free (internal_relocs);
4801 if (! ok)
4802 goto error_return;
4806 /* If this is a non-traditional link, try to optimize the handling
4807 of the .stab/.stabstr sections. */
4808 if (! dynamic
4809 && ! info->traditional_format
4810 && is_elf_hash_table (htab)
4811 && (info->strip != strip_all && info->strip != strip_debugger))
4813 asection *stabstr;
4815 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4816 if (stabstr != NULL)
4818 bfd_size_type string_offset = 0;
4819 asection *stab;
4821 for (stab = abfd->sections; stab; stab = stab->next)
4822 if (CONST_STRNEQ (stab->name, ".stab")
4823 && (!stab->name[5] ||
4824 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4825 && (stab->flags & SEC_MERGE) == 0
4826 && !bfd_is_abs_section (stab->output_section))
4828 struct bfd_elf_section_data *secdata;
4830 secdata = elf_section_data (stab);
4831 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4832 stabstr, &secdata->sec_info,
4833 &string_offset))
4834 goto error_return;
4835 if (secdata->sec_info)
4836 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4841 if (is_elf_hash_table (htab) && add_needed)
4843 /* Add this bfd to the loaded list. */
4844 struct elf_link_loaded_list *n;
4846 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4847 if (n == NULL)
4848 goto error_return;
4849 n->abfd = abfd;
4850 n->next = htab->loaded;
4851 htab->loaded = n;
4854 return TRUE;
4856 error_free_vers:
4857 if (old_tab != NULL)
4858 free (old_tab);
4859 if (nondeflt_vers != NULL)
4860 free (nondeflt_vers);
4861 if (extversym != NULL)
4862 free (extversym);
4863 error_free_sym:
4864 if (isymbuf != NULL)
4865 free (isymbuf);
4866 error_return:
4867 return FALSE;
4870 /* Return the linker hash table entry of a symbol that might be
4871 satisfied by an archive symbol. Return -1 on error. */
4873 struct elf_link_hash_entry *
4874 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4875 struct bfd_link_info *info,
4876 const char *name)
4878 struct elf_link_hash_entry *h;
4879 char *p, *copy;
4880 size_t len, first;
4882 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4883 if (h != NULL)
4884 return h;
4886 /* If this is a default version (the name contains @@), look up the
4887 symbol again with only one `@' as well as without the version.
4888 The effect is that references to the symbol with and without the
4889 version will be matched by the default symbol in the archive. */
4891 p = strchr (name, ELF_VER_CHR);
4892 if (p == NULL || p[1] != ELF_VER_CHR)
4893 return h;
4895 /* First check with only one `@'. */
4896 len = strlen (name);
4897 copy = bfd_alloc (abfd, len);
4898 if (copy == NULL)
4899 return (struct elf_link_hash_entry *) 0 - 1;
4901 first = p - name + 1;
4902 memcpy (copy, name, first);
4903 memcpy (copy + first, name + first + 1, len - first);
4905 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4906 if (h == NULL)
4908 /* We also need to check references to the symbol without the
4909 version. */
4910 copy[first - 1] = '\0';
4911 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4912 FALSE, FALSE, FALSE);
4915 bfd_release (abfd, copy);
4916 return h;
4919 /* Add symbols from an ELF archive file to the linker hash table. We
4920 don't use _bfd_generic_link_add_archive_symbols because of a
4921 problem which arises on UnixWare. The UnixWare libc.so is an
4922 archive which includes an entry libc.so.1 which defines a bunch of
4923 symbols. The libc.so archive also includes a number of other
4924 object files, which also define symbols, some of which are the same
4925 as those defined in libc.so.1. Correct linking requires that we
4926 consider each object file in turn, and include it if it defines any
4927 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4928 this; it looks through the list of undefined symbols, and includes
4929 any object file which defines them. When this algorithm is used on
4930 UnixWare, it winds up pulling in libc.so.1 early and defining a
4931 bunch of symbols. This means that some of the other objects in the
4932 archive are not included in the link, which is incorrect since they
4933 precede libc.so.1 in the archive.
4935 Fortunately, ELF archive handling is simpler than that done by
4936 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4937 oddities. In ELF, if we find a symbol in the archive map, and the
4938 symbol is currently undefined, we know that we must pull in that
4939 object file.
4941 Unfortunately, we do have to make multiple passes over the symbol
4942 table until nothing further is resolved. */
4944 static bfd_boolean
4945 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4947 symindex c;
4948 bfd_boolean *defined = NULL;
4949 bfd_boolean *included = NULL;
4950 carsym *symdefs;
4951 bfd_boolean loop;
4952 bfd_size_type amt;
4953 const struct elf_backend_data *bed;
4954 struct elf_link_hash_entry * (*archive_symbol_lookup)
4955 (bfd *, struct bfd_link_info *, const char *);
4957 if (! bfd_has_map (abfd))
4959 /* An empty archive is a special case. */
4960 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4961 return TRUE;
4962 bfd_set_error (bfd_error_no_armap);
4963 return FALSE;
4966 /* Keep track of all symbols we know to be already defined, and all
4967 files we know to be already included. This is to speed up the
4968 second and subsequent passes. */
4969 c = bfd_ardata (abfd)->symdef_count;
4970 if (c == 0)
4971 return TRUE;
4972 amt = c;
4973 amt *= sizeof (bfd_boolean);
4974 defined = bfd_zmalloc (amt);
4975 included = bfd_zmalloc (amt);
4976 if (defined == NULL || included == NULL)
4977 goto error_return;
4979 symdefs = bfd_ardata (abfd)->symdefs;
4980 bed = get_elf_backend_data (abfd);
4981 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4985 file_ptr last;
4986 symindex i;
4987 carsym *symdef;
4988 carsym *symdefend;
4990 loop = FALSE;
4991 last = -1;
4993 symdef = symdefs;
4994 symdefend = symdef + c;
4995 for (i = 0; symdef < symdefend; symdef++, i++)
4997 struct elf_link_hash_entry *h;
4998 bfd *element;
4999 struct bfd_link_hash_entry *undefs_tail;
5000 symindex mark;
5002 if (defined[i] || included[i])
5003 continue;
5004 if (symdef->file_offset == last)
5006 included[i] = TRUE;
5007 continue;
5010 h = archive_symbol_lookup (abfd, info, symdef->name);
5011 if (h == (struct elf_link_hash_entry *) 0 - 1)
5012 goto error_return;
5014 if (h == NULL)
5015 continue;
5017 if (h->root.type == bfd_link_hash_common)
5019 /* We currently have a common symbol. The archive map contains
5020 a reference to this symbol, so we may want to include it. We
5021 only want to include it however, if this archive element
5022 contains a definition of the symbol, not just another common
5023 declaration of it.
5025 Unfortunately some archivers (including GNU ar) will put
5026 declarations of common symbols into their archive maps, as
5027 well as real definitions, so we cannot just go by the archive
5028 map alone. Instead we must read in the element's symbol
5029 table and check that to see what kind of symbol definition
5030 this is. */
5031 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5032 continue;
5034 else if (h->root.type != bfd_link_hash_undefined)
5036 if (h->root.type != bfd_link_hash_undefweak)
5037 defined[i] = TRUE;
5038 continue;
5041 /* We need to include this archive member. */
5042 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5043 if (element == NULL)
5044 goto error_return;
5046 if (! bfd_check_format (element, bfd_object))
5047 goto error_return;
5049 /* Doublecheck that we have not included this object
5050 already--it should be impossible, but there may be
5051 something wrong with the archive. */
5052 if (element->archive_pass != 0)
5054 bfd_set_error (bfd_error_bad_value);
5055 goto error_return;
5057 element->archive_pass = 1;
5059 undefs_tail = info->hash->undefs_tail;
5061 if (! (*info->callbacks->add_archive_element) (info, element,
5062 symdef->name))
5063 goto error_return;
5064 if (! bfd_link_add_symbols (element, info))
5065 goto error_return;
5067 /* If there are any new undefined symbols, we need to make
5068 another pass through the archive in order to see whether
5069 they can be defined. FIXME: This isn't perfect, because
5070 common symbols wind up on undefs_tail and because an
5071 undefined symbol which is defined later on in this pass
5072 does not require another pass. This isn't a bug, but it
5073 does make the code less efficient than it could be. */
5074 if (undefs_tail != info->hash->undefs_tail)
5075 loop = TRUE;
5077 /* Look backward to mark all symbols from this object file
5078 which we have already seen in this pass. */
5079 mark = i;
5082 included[mark] = TRUE;
5083 if (mark == 0)
5084 break;
5085 --mark;
5087 while (symdefs[mark].file_offset == symdef->file_offset);
5089 /* We mark subsequent symbols from this object file as we go
5090 on through the loop. */
5091 last = symdef->file_offset;
5094 while (loop);
5096 free (defined);
5097 free (included);
5099 return TRUE;
5101 error_return:
5102 if (defined != NULL)
5103 free (defined);
5104 if (included != NULL)
5105 free (included);
5106 return FALSE;
5109 /* Given an ELF BFD, add symbols to the global hash table as
5110 appropriate. */
5112 bfd_boolean
5113 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5115 switch (bfd_get_format (abfd))
5117 case bfd_object:
5118 return elf_link_add_object_symbols (abfd, info);
5119 case bfd_archive:
5120 return elf_link_add_archive_symbols (abfd, info);
5121 default:
5122 bfd_set_error (bfd_error_wrong_format);
5123 return FALSE;
5127 struct hash_codes_info
5129 unsigned long *hashcodes;
5130 bfd_boolean error;
5133 /* This function will be called though elf_link_hash_traverse to store
5134 all hash value of the exported symbols in an array. */
5136 static bfd_boolean
5137 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5139 struct hash_codes_info *inf = data;
5140 const char *name;
5141 char *p;
5142 unsigned long ha;
5143 char *alc = NULL;
5145 if (h->root.type == bfd_link_hash_warning)
5146 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5148 /* Ignore indirect symbols. These are added by the versioning code. */
5149 if (h->dynindx == -1)
5150 return TRUE;
5152 name = h->root.root.string;
5153 p = strchr (name, ELF_VER_CHR);
5154 if (p != NULL)
5156 alc = bfd_malloc (p - name + 1);
5157 if (alc == NULL)
5159 inf->error = TRUE;
5160 return FALSE;
5162 memcpy (alc, name, p - name);
5163 alc[p - name] = '\0';
5164 name = alc;
5167 /* Compute the hash value. */
5168 ha = bfd_elf_hash (name);
5170 /* Store the found hash value in the array given as the argument. */
5171 *(inf->hashcodes)++ = ha;
5173 /* And store it in the struct so that we can put it in the hash table
5174 later. */
5175 h->u.elf_hash_value = ha;
5177 if (alc != NULL)
5178 free (alc);
5180 return TRUE;
5183 struct collect_gnu_hash_codes
5185 bfd *output_bfd;
5186 const struct elf_backend_data *bed;
5187 unsigned long int nsyms;
5188 unsigned long int maskbits;
5189 unsigned long int *hashcodes;
5190 unsigned long int *hashval;
5191 unsigned long int *indx;
5192 unsigned long int *counts;
5193 bfd_vma *bitmask;
5194 bfd_byte *contents;
5195 long int min_dynindx;
5196 unsigned long int bucketcount;
5197 unsigned long int symindx;
5198 long int local_indx;
5199 long int shift1, shift2;
5200 unsigned long int mask;
5201 bfd_boolean error;
5204 /* This function will be called though elf_link_hash_traverse to store
5205 all hash value of the exported symbols in an array. */
5207 static bfd_boolean
5208 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5210 struct collect_gnu_hash_codes *s = data;
5211 const char *name;
5212 char *p;
5213 unsigned long ha;
5214 char *alc = NULL;
5216 if (h->root.type == bfd_link_hash_warning)
5217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5219 /* Ignore indirect symbols. These are added by the versioning code. */
5220 if (h->dynindx == -1)
5221 return TRUE;
5223 /* Ignore also local symbols and undefined symbols. */
5224 if (! (*s->bed->elf_hash_symbol) (h))
5225 return TRUE;
5227 name = h->root.root.string;
5228 p = strchr (name, ELF_VER_CHR);
5229 if (p != NULL)
5231 alc = bfd_malloc (p - name + 1);
5232 if (alc == NULL)
5234 s->error = TRUE;
5235 return FALSE;
5237 memcpy (alc, name, p - name);
5238 alc[p - name] = '\0';
5239 name = alc;
5242 /* Compute the hash value. */
5243 ha = bfd_elf_gnu_hash (name);
5245 /* Store the found hash value in the array for compute_bucket_count,
5246 and also for .dynsym reordering purposes. */
5247 s->hashcodes[s->nsyms] = ha;
5248 s->hashval[h->dynindx] = ha;
5249 ++s->nsyms;
5250 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5251 s->min_dynindx = h->dynindx;
5253 if (alc != NULL)
5254 free (alc);
5256 return TRUE;
5259 /* This function will be called though elf_link_hash_traverse to do
5260 final dynaminc symbol renumbering. */
5262 static bfd_boolean
5263 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5265 struct collect_gnu_hash_codes *s = data;
5266 unsigned long int bucket;
5267 unsigned long int val;
5269 if (h->root.type == bfd_link_hash_warning)
5270 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5272 /* Ignore indirect symbols. */
5273 if (h->dynindx == -1)
5274 return TRUE;
5276 /* Ignore also local symbols and undefined symbols. */
5277 if (! (*s->bed->elf_hash_symbol) (h))
5279 if (h->dynindx >= s->min_dynindx)
5280 h->dynindx = s->local_indx++;
5281 return TRUE;
5284 bucket = s->hashval[h->dynindx] % s->bucketcount;
5285 val = (s->hashval[h->dynindx] >> s->shift1)
5286 & ((s->maskbits >> s->shift1) - 1);
5287 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5288 s->bitmask[val]
5289 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5290 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5291 if (s->counts[bucket] == 1)
5292 /* Last element terminates the chain. */
5293 val |= 1;
5294 bfd_put_32 (s->output_bfd, val,
5295 s->contents + (s->indx[bucket] - s->symindx) * 4);
5296 --s->counts[bucket];
5297 h->dynindx = s->indx[bucket]++;
5298 return TRUE;
5301 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5303 bfd_boolean
5304 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5306 return !(h->forced_local
5307 || h->root.type == bfd_link_hash_undefined
5308 || h->root.type == bfd_link_hash_undefweak
5309 || ((h->root.type == bfd_link_hash_defined
5310 || h->root.type == bfd_link_hash_defweak)
5311 && h->root.u.def.section->output_section == NULL));
5314 /* Array used to determine the number of hash table buckets to use
5315 based on the number of symbols there are. If there are fewer than
5316 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5317 fewer than 37 we use 17 buckets, and so forth. We never use more
5318 than 32771 buckets. */
5320 static const size_t elf_buckets[] =
5322 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5323 16411, 32771, 0
5326 /* Compute bucket count for hashing table. We do not use a static set
5327 of possible tables sizes anymore. Instead we determine for all
5328 possible reasonable sizes of the table the outcome (i.e., the
5329 number of collisions etc) and choose the best solution. The
5330 weighting functions are not too simple to allow the table to grow
5331 without bounds. Instead one of the weighting factors is the size.
5332 Therefore the result is always a good payoff between few collisions
5333 (= short chain lengths) and table size. */
5334 static size_t
5335 compute_bucket_count (struct bfd_link_info *info,
5336 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5337 unsigned long int nsyms,
5338 int gnu_hash)
5340 size_t best_size = 0;
5341 unsigned long int i;
5343 /* We have a problem here. The following code to optimize the table
5344 size requires an integer type with more the 32 bits. If
5345 BFD_HOST_U_64_BIT is set we know about such a type. */
5346 #ifdef BFD_HOST_U_64_BIT
5347 if (info->optimize)
5349 size_t minsize;
5350 size_t maxsize;
5351 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5352 bfd *dynobj = elf_hash_table (info)->dynobj;
5353 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5354 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5355 unsigned long int *counts;
5356 bfd_size_type amt;
5358 /* Possible optimization parameters: if we have NSYMS symbols we say
5359 that the hashing table must at least have NSYMS/4 and at most
5360 2*NSYMS buckets. */
5361 minsize = nsyms / 4;
5362 if (minsize == 0)
5363 minsize = 1;
5364 best_size = maxsize = nsyms * 2;
5365 if (gnu_hash)
5367 if (minsize < 2)
5368 minsize = 2;
5369 if ((best_size & 31) == 0)
5370 ++best_size;
5373 /* Create array where we count the collisions in. We must use bfd_malloc
5374 since the size could be large. */
5375 amt = maxsize;
5376 amt *= sizeof (unsigned long int);
5377 counts = bfd_malloc (amt);
5378 if (counts == NULL)
5379 return 0;
5381 /* Compute the "optimal" size for the hash table. The criteria is a
5382 minimal chain length. The minor criteria is (of course) the size
5383 of the table. */
5384 for (i = minsize; i < maxsize; ++i)
5386 /* Walk through the array of hashcodes and count the collisions. */
5387 BFD_HOST_U_64_BIT max;
5388 unsigned long int j;
5389 unsigned long int fact;
5391 if (gnu_hash && (i & 31) == 0)
5392 continue;
5394 memset (counts, '\0', i * sizeof (unsigned long int));
5396 /* Determine how often each hash bucket is used. */
5397 for (j = 0; j < nsyms; ++j)
5398 ++counts[hashcodes[j] % i];
5400 /* For the weight function we need some information about the
5401 pagesize on the target. This is information need not be 100%
5402 accurate. Since this information is not available (so far) we
5403 define it here to a reasonable default value. If it is crucial
5404 to have a better value some day simply define this value. */
5405 # ifndef BFD_TARGET_PAGESIZE
5406 # define BFD_TARGET_PAGESIZE (4096)
5407 # endif
5409 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5410 and the chains. */
5411 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5413 # if 1
5414 /* Variant 1: optimize for short chains. We add the squares
5415 of all the chain lengths (which favors many small chain
5416 over a few long chains). */
5417 for (j = 0; j < i; ++j)
5418 max += counts[j] * counts[j];
5420 /* This adds penalties for the overall size of the table. */
5421 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5422 max *= fact * fact;
5423 # else
5424 /* Variant 2: Optimize a lot more for small table. Here we
5425 also add squares of the size but we also add penalties for
5426 empty slots (the +1 term). */
5427 for (j = 0; j < i; ++j)
5428 max += (1 + counts[j]) * (1 + counts[j]);
5430 /* The overall size of the table is considered, but not as
5431 strong as in variant 1, where it is squared. */
5432 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5433 max *= fact;
5434 # endif
5436 /* Compare with current best results. */
5437 if (max < best_chlen)
5439 best_chlen = max;
5440 best_size = i;
5444 free (counts);
5446 else
5447 #endif /* defined (BFD_HOST_U_64_BIT) */
5449 /* This is the fallback solution if no 64bit type is available or if we
5450 are not supposed to spend much time on optimizations. We select the
5451 bucket count using a fixed set of numbers. */
5452 for (i = 0; elf_buckets[i] != 0; i++)
5454 best_size = elf_buckets[i];
5455 if (nsyms < elf_buckets[i + 1])
5456 break;
5458 if (gnu_hash && best_size < 2)
5459 best_size = 2;
5462 return best_size;
5465 /* Set up the sizes and contents of the ELF dynamic sections. This is
5466 called by the ELF linker emulation before_allocation routine. We
5467 must set the sizes of the sections before the linker sets the
5468 addresses of the various sections. */
5470 bfd_boolean
5471 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5472 const char *soname,
5473 const char *rpath,
5474 const char *filter_shlib,
5475 const char * const *auxiliary_filters,
5476 struct bfd_link_info *info,
5477 asection **sinterpptr,
5478 struct bfd_elf_version_tree *verdefs)
5480 bfd_size_type soname_indx;
5481 bfd *dynobj;
5482 const struct elf_backend_data *bed;
5483 struct elf_info_failed asvinfo;
5485 *sinterpptr = NULL;
5487 soname_indx = (bfd_size_type) -1;
5489 if (!is_elf_hash_table (info->hash))
5490 return TRUE;
5492 bed = get_elf_backend_data (output_bfd);
5493 if (info->execstack)
5494 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5495 else if (info->noexecstack)
5496 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5497 else
5499 bfd *inputobj;
5500 asection *notesec = NULL;
5501 int exec = 0;
5503 for (inputobj = info->input_bfds;
5504 inputobj;
5505 inputobj = inputobj->link_next)
5507 asection *s;
5509 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5510 continue;
5511 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5512 if (s)
5514 if (s->flags & SEC_CODE)
5515 exec = PF_X;
5516 notesec = s;
5518 else if (bed->default_execstack)
5519 exec = PF_X;
5521 if (notesec)
5523 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5524 if (exec && info->relocatable
5525 && notesec->output_section != bfd_abs_section_ptr)
5526 notesec->output_section->flags |= SEC_CODE;
5530 /* Any syms created from now on start with -1 in
5531 got.refcount/offset and plt.refcount/offset. */
5532 elf_hash_table (info)->init_got_refcount
5533 = elf_hash_table (info)->init_got_offset;
5534 elf_hash_table (info)->init_plt_refcount
5535 = elf_hash_table (info)->init_plt_offset;
5537 /* The backend may have to create some sections regardless of whether
5538 we're dynamic or not. */
5539 if (bed->elf_backend_always_size_sections
5540 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5541 return FALSE;
5543 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5544 return FALSE;
5546 dynobj = elf_hash_table (info)->dynobj;
5548 /* If there were no dynamic objects in the link, there is nothing to
5549 do here. */
5550 if (dynobj == NULL)
5551 return TRUE;
5553 if (elf_hash_table (info)->dynamic_sections_created)
5555 struct elf_info_failed eif;
5556 struct elf_link_hash_entry *h;
5557 asection *dynstr;
5558 struct bfd_elf_version_tree *t;
5559 struct bfd_elf_version_expr *d;
5560 asection *s;
5561 bfd_boolean all_defined;
5563 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5564 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5566 if (soname != NULL)
5568 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5569 soname, TRUE);
5570 if (soname_indx == (bfd_size_type) -1
5571 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5572 return FALSE;
5575 if (info->symbolic)
5577 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5578 return FALSE;
5579 info->flags |= DF_SYMBOLIC;
5582 if (rpath != NULL)
5584 bfd_size_type indx;
5586 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5587 TRUE);
5588 if (indx == (bfd_size_type) -1
5589 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5590 return FALSE;
5592 if (info->new_dtags)
5594 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5595 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5596 return FALSE;
5600 if (filter_shlib != NULL)
5602 bfd_size_type indx;
5604 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5605 filter_shlib, TRUE);
5606 if (indx == (bfd_size_type) -1
5607 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5608 return FALSE;
5611 if (auxiliary_filters != NULL)
5613 const char * const *p;
5615 for (p = auxiliary_filters; *p != NULL; p++)
5617 bfd_size_type indx;
5619 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5620 *p, TRUE);
5621 if (indx == (bfd_size_type) -1
5622 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5623 return FALSE;
5627 eif.info = info;
5628 eif.verdefs = verdefs;
5629 eif.failed = FALSE;
5631 /* If we are supposed to export all symbols into the dynamic symbol
5632 table (this is not the normal case), then do so. */
5633 if (info->export_dynamic
5634 || (info->executable && info->dynamic))
5636 elf_link_hash_traverse (elf_hash_table (info),
5637 _bfd_elf_export_symbol,
5638 &eif);
5639 if (eif.failed)
5640 return FALSE;
5643 /* Make all global versions with definition. */
5644 for (t = verdefs; t != NULL; t = t->next)
5645 for (d = t->globals.list; d != NULL; d = d->next)
5646 if (!d->symver && d->literal)
5648 const char *verstr, *name;
5649 size_t namelen, verlen, newlen;
5650 char *newname, *p;
5651 struct elf_link_hash_entry *newh;
5653 name = d->pattern;
5654 namelen = strlen (name);
5655 verstr = t->name;
5656 verlen = strlen (verstr);
5657 newlen = namelen + verlen + 3;
5659 newname = bfd_malloc (newlen);
5660 if (newname == NULL)
5661 return FALSE;
5662 memcpy (newname, name, namelen);
5664 /* Check the hidden versioned definition. */
5665 p = newname + namelen;
5666 *p++ = ELF_VER_CHR;
5667 memcpy (p, verstr, verlen + 1);
5668 newh = elf_link_hash_lookup (elf_hash_table (info),
5669 newname, FALSE, FALSE,
5670 FALSE);
5671 if (newh == NULL
5672 || (newh->root.type != bfd_link_hash_defined
5673 && newh->root.type != bfd_link_hash_defweak))
5675 /* Check the default versioned definition. */
5676 *p++ = ELF_VER_CHR;
5677 memcpy (p, verstr, verlen + 1);
5678 newh = elf_link_hash_lookup (elf_hash_table (info),
5679 newname, FALSE, FALSE,
5680 FALSE);
5682 free (newname);
5684 /* Mark this version if there is a definition and it is
5685 not defined in a shared object. */
5686 if (newh != NULL
5687 && !newh->def_dynamic
5688 && (newh->root.type == bfd_link_hash_defined
5689 || newh->root.type == bfd_link_hash_defweak))
5690 d->symver = 1;
5693 /* Attach all the symbols to their version information. */
5694 asvinfo.info = info;
5695 asvinfo.verdefs = verdefs;
5696 asvinfo.failed = FALSE;
5698 elf_link_hash_traverse (elf_hash_table (info),
5699 _bfd_elf_link_assign_sym_version,
5700 &asvinfo);
5701 if (asvinfo.failed)
5702 return FALSE;
5704 if (!info->allow_undefined_version)
5706 /* Check if all global versions have a definition. */
5707 all_defined = TRUE;
5708 for (t = verdefs; t != NULL; t = t->next)
5709 for (d = t->globals.list; d != NULL; d = d->next)
5710 if (d->literal && !d->symver && !d->script)
5712 (*_bfd_error_handler)
5713 (_("%s: undefined version: %s"),
5714 d->pattern, t->name);
5715 all_defined = FALSE;
5718 if (!all_defined)
5720 bfd_set_error (bfd_error_bad_value);
5721 return FALSE;
5725 /* Find all symbols which were defined in a dynamic object and make
5726 the backend pick a reasonable value for them. */
5727 elf_link_hash_traverse (elf_hash_table (info),
5728 _bfd_elf_adjust_dynamic_symbol,
5729 &eif);
5730 if (eif.failed)
5731 return FALSE;
5733 /* Add some entries to the .dynamic section. We fill in some of the
5734 values later, in bfd_elf_final_link, but we must add the entries
5735 now so that we know the final size of the .dynamic section. */
5737 /* If there are initialization and/or finalization functions to
5738 call then add the corresponding DT_INIT/DT_FINI entries. */
5739 h = (info->init_function
5740 ? elf_link_hash_lookup (elf_hash_table (info),
5741 info->init_function, FALSE,
5742 FALSE, FALSE)
5743 : NULL);
5744 if (h != NULL
5745 && (h->ref_regular
5746 || h->def_regular))
5748 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5749 return FALSE;
5751 h = (info->fini_function
5752 ? elf_link_hash_lookup (elf_hash_table (info),
5753 info->fini_function, FALSE,
5754 FALSE, FALSE)
5755 : NULL);
5756 if (h != NULL
5757 && (h->ref_regular
5758 || h->def_regular))
5760 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5761 return FALSE;
5764 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5765 if (s != NULL && s->linker_has_input)
5767 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5768 if (! info->executable)
5770 bfd *sub;
5771 asection *o;
5773 for (sub = info->input_bfds; sub != NULL;
5774 sub = sub->link_next)
5775 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5776 for (o = sub->sections; o != NULL; o = o->next)
5777 if (elf_section_data (o)->this_hdr.sh_type
5778 == SHT_PREINIT_ARRAY)
5780 (*_bfd_error_handler)
5781 (_("%B: .preinit_array section is not allowed in DSO"),
5782 sub);
5783 break;
5786 bfd_set_error (bfd_error_nonrepresentable_section);
5787 return FALSE;
5790 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5791 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5792 return FALSE;
5794 s = bfd_get_section_by_name (output_bfd, ".init_array");
5795 if (s != NULL && s->linker_has_input)
5797 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5798 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5799 return FALSE;
5801 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5802 if (s != NULL && s->linker_has_input)
5804 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5805 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5806 return FALSE;
5809 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5810 /* If .dynstr is excluded from the link, we don't want any of
5811 these tags. Strictly, we should be checking each section
5812 individually; This quick check covers for the case where
5813 someone does a /DISCARD/ : { *(*) }. */
5814 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5816 bfd_size_type strsize;
5818 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5819 if ((info->emit_hash
5820 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5821 || (info->emit_gnu_hash
5822 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5823 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5824 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5825 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5826 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5827 bed->s->sizeof_sym))
5828 return FALSE;
5832 /* The backend must work out the sizes of all the other dynamic
5833 sections. */
5834 if (bed->elf_backend_size_dynamic_sections
5835 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5836 return FALSE;
5838 if (elf_hash_table (info)->dynamic_sections_created)
5840 unsigned long section_sym_count;
5841 asection *s;
5843 /* Set up the version definition section. */
5844 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5845 BFD_ASSERT (s != NULL);
5847 /* We may have created additional version definitions if we are
5848 just linking a regular application. */
5849 verdefs = asvinfo.verdefs;
5851 /* Skip anonymous version tag. */
5852 if (verdefs != NULL && verdefs->vernum == 0)
5853 verdefs = verdefs->next;
5855 if (verdefs == NULL && !info->create_default_symver)
5856 s->flags |= SEC_EXCLUDE;
5857 else
5859 unsigned int cdefs;
5860 bfd_size_type size;
5861 struct bfd_elf_version_tree *t;
5862 bfd_byte *p;
5863 Elf_Internal_Verdef def;
5864 Elf_Internal_Verdaux defaux;
5865 struct bfd_link_hash_entry *bh;
5866 struct elf_link_hash_entry *h;
5867 const char *name;
5869 cdefs = 0;
5870 size = 0;
5872 /* Make space for the base version. */
5873 size += sizeof (Elf_External_Verdef);
5874 size += sizeof (Elf_External_Verdaux);
5875 ++cdefs;
5877 /* Make space for the default version. */
5878 if (info->create_default_symver)
5880 size += sizeof (Elf_External_Verdef);
5881 ++cdefs;
5884 for (t = verdefs; t != NULL; t = t->next)
5886 struct bfd_elf_version_deps *n;
5888 size += sizeof (Elf_External_Verdef);
5889 size += sizeof (Elf_External_Verdaux);
5890 ++cdefs;
5892 for (n = t->deps; n != NULL; n = n->next)
5893 size += sizeof (Elf_External_Verdaux);
5896 s->size = size;
5897 s->contents = bfd_alloc (output_bfd, s->size);
5898 if (s->contents == NULL && s->size != 0)
5899 return FALSE;
5901 /* Fill in the version definition section. */
5903 p = s->contents;
5905 def.vd_version = VER_DEF_CURRENT;
5906 def.vd_flags = VER_FLG_BASE;
5907 def.vd_ndx = 1;
5908 def.vd_cnt = 1;
5909 if (info->create_default_symver)
5911 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5912 def.vd_next = sizeof (Elf_External_Verdef);
5914 else
5916 def.vd_aux = sizeof (Elf_External_Verdef);
5917 def.vd_next = (sizeof (Elf_External_Verdef)
5918 + sizeof (Elf_External_Verdaux));
5921 if (soname_indx != (bfd_size_type) -1)
5923 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5924 soname_indx);
5925 def.vd_hash = bfd_elf_hash (soname);
5926 defaux.vda_name = soname_indx;
5927 name = soname;
5929 else
5931 bfd_size_type indx;
5933 name = lbasename (output_bfd->filename);
5934 def.vd_hash = bfd_elf_hash (name);
5935 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5936 name, FALSE);
5937 if (indx == (bfd_size_type) -1)
5938 return FALSE;
5939 defaux.vda_name = indx;
5941 defaux.vda_next = 0;
5943 _bfd_elf_swap_verdef_out (output_bfd, &def,
5944 (Elf_External_Verdef *) p);
5945 p += sizeof (Elf_External_Verdef);
5946 if (info->create_default_symver)
5948 /* Add a symbol representing this version. */
5949 bh = NULL;
5950 if (! (_bfd_generic_link_add_one_symbol
5951 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5952 0, NULL, FALSE,
5953 get_elf_backend_data (dynobj)->collect, &bh)))
5954 return FALSE;
5955 h = (struct elf_link_hash_entry *) bh;
5956 h->non_elf = 0;
5957 h->def_regular = 1;
5958 h->type = STT_OBJECT;
5959 h->verinfo.vertree = NULL;
5961 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5962 return FALSE;
5964 /* Create a duplicate of the base version with the same
5965 aux block, but different flags. */
5966 def.vd_flags = 0;
5967 def.vd_ndx = 2;
5968 def.vd_aux = sizeof (Elf_External_Verdef);
5969 if (verdefs)
5970 def.vd_next = (sizeof (Elf_External_Verdef)
5971 + sizeof (Elf_External_Verdaux));
5972 else
5973 def.vd_next = 0;
5974 _bfd_elf_swap_verdef_out (output_bfd, &def,
5975 (Elf_External_Verdef *) p);
5976 p += sizeof (Elf_External_Verdef);
5978 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5979 (Elf_External_Verdaux *) p);
5980 p += sizeof (Elf_External_Verdaux);
5982 for (t = verdefs; t != NULL; t = t->next)
5984 unsigned int cdeps;
5985 struct bfd_elf_version_deps *n;
5987 cdeps = 0;
5988 for (n = t->deps; n != NULL; n = n->next)
5989 ++cdeps;
5991 /* Add a symbol representing this version. */
5992 bh = NULL;
5993 if (! (_bfd_generic_link_add_one_symbol
5994 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5995 0, NULL, FALSE,
5996 get_elf_backend_data (dynobj)->collect, &bh)))
5997 return FALSE;
5998 h = (struct elf_link_hash_entry *) bh;
5999 h->non_elf = 0;
6000 h->def_regular = 1;
6001 h->type = STT_OBJECT;
6002 h->verinfo.vertree = t;
6004 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6005 return FALSE;
6007 def.vd_version = VER_DEF_CURRENT;
6008 def.vd_flags = 0;
6009 if (t->globals.list == NULL
6010 && t->locals.list == NULL
6011 && ! t->used)
6012 def.vd_flags |= VER_FLG_WEAK;
6013 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6014 def.vd_cnt = cdeps + 1;
6015 def.vd_hash = bfd_elf_hash (t->name);
6016 def.vd_aux = sizeof (Elf_External_Verdef);
6017 def.vd_next = 0;
6018 if (t->next != NULL)
6019 def.vd_next = (sizeof (Elf_External_Verdef)
6020 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6022 _bfd_elf_swap_verdef_out (output_bfd, &def,
6023 (Elf_External_Verdef *) p);
6024 p += sizeof (Elf_External_Verdef);
6026 defaux.vda_name = h->dynstr_index;
6027 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6028 h->dynstr_index);
6029 defaux.vda_next = 0;
6030 if (t->deps != NULL)
6031 defaux.vda_next = sizeof (Elf_External_Verdaux);
6032 t->name_indx = defaux.vda_name;
6034 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6035 (Elf_External_Verdaux *) p);
6036 p += sizeof (Elf_External_Verdaux);
6038 for (n = t->deps; n != NULL; n = n->next)
6040 if (n->version_needed == NULL)
6042 /* This can happen if there was an error in the
6043 version script. */
6044 defaux.vda_name = 0;
6046 else
6048 defaux.vda_name = n->version_needed->name_indx;
6049 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6050 defaux.vda_name);
6052 if (n->next == NULL)
6053 defaux.vda_next = 0;
6054 else
6055 defaux.vda_next = sizeof (Elf_External_Verdaux);
6057 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6058 (Elf_External_Verdaux *) p);
6059 p += sizeof (Elf_External_Verdaux);
6063 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6064 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6065 return FALSE;
6067 elf_tdata (output_bfd)->cverdefs = cdefs;
6070 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6072 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6073 return FALSE;
6075 else if (info->flags & DF_BIND_NOW)
6077 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6078 return FALSE;
6081 if (info->flags_1)
6083 if (info->executable)
6084 info->flags_1 &= ~ (DF_1_INITFIRST
6085 | DF_1_NODELETE
6086 | DF_1_NOOPEN);
6087 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6088 return FALSE;
6091 /* Work out the size of the version reference section. */
6093 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6094 BFD_ASSERT (s != NULL);
6096 struct elf_find_verdep_info sinfo;
6098 sinfo.info = info;
6099 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6100 if (sinfo.vers == 0)
6101 sinfo.vers = 1;
6102 sinfo.failed = FALSE;
6104 elf_link_hash_traverse (elf_hash_table (info),
6105 _bfd_elf_link_find_version_dependencies,
6106 &sinfo);
6107 if (sinfo.failed)
6108 return FALSE;
6110 if (elf_tdata (output_bfd)->verref == NULL)
6111 s->flags |= SEC_EXCLUDE;
6112 else
6114 Elf_Internal_Verneed *t;
6115 unsigned int size;
6116 unsigned int crefs;
6117 bfd_byte *p;
6119 /* Build the version definition section. */
6120 size = 0;
6121 crefs = 0;
6122 for (t = elf_tdata (output_bfd)->verref;
6123 t != NULL;
6124 t = t->vn_nextref)
6126 Elf_Internal_Vernaux *a;
6128 size += sizeof (Elf_External_Verneed);
6129 ++crefs;
6130 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6131 size += sizeof (Elf_External_Vernaux);
6134 s->size = size;
6135 s->contents = bfd_alloc (output_bfd, s->size);
6136 if (s->contents == NULL)
6137 return FALSE;
6139 p = s->contents;
6140 for (t = elf_tdata (output_bfd)->verref;
6141 t != NULL;
6142 t = t->vn_nextref)
6144 unsigned int caux;
6145 Elf_Internal_Vernaux *a;
6146 bfd_size_type indx;
6148 caux = 0;
6149 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6150 ++caux;
6152 t->vn_version = VER_NEED_CURRENT;
6153 t->vn_cnt = caux;
6154 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6155 elf_dt_name (t->vn_bfd) != NULL
6156 ? elf_dt_name (t->vn_bfd)
6157 : lbasename (t->vn_bfd->filename),
6158 FALSE);
6159 if (indx == (bfd_size_type) -1)
6160 return FALSE;
6161 t->vn_file = indx;
6162 t->vn_aux = sizeof (Elf_External_Verneed);
6163 if (t->vn_nextref == NULL)
6164 t->vn_next = 0;
6165 else
6166 t->vn_next = (sizeof (Elf_External_Verneed)
6167 + caux * sizeof (Elf_External_Vernaux));
6169 _bfd_elf_swap_verneed_out (output_bfd, t,
6170 (Elf_External_Verneed *) p);
6171 p += sizeof (Elf_External_Verneed);
6173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6175 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6176 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6177 a->vna_nodename, FALSE);
6178 if (indx == (bfd_size_type) -1)
6179 return FALSE;
6180 a->vna_name = indx;
6181 if (a->vna_nextptr == NULL)
6182 a->vna_next = 0;
6183 else
6184 a->vna_next = sizeof (Elf_External_Vernaux);
6186 _bfd_elf_swap_vernaux_out (output_bfd, a,
6187 (Elf_External_Vernaux *) p);
6188 p += sizeof (Elf_External_Vernaux);
6192 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6193 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6194 return FALSE;
6196 elf_tdata (output_bfd)->cverrefs = crefs;
6200 if ((elf_tdata (output_bfd)->cverrefs == 0
6201 && elf_tdata (output_bfd)->cverdefs == 0)
6202 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6203 &section_sym_count) == 0)
6205 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6206 s->flags |= SEC_EXCLUDE;
6209 return TRUE;
6212 /* Find the first non-excluded output section. We'll use its
6213 section symbol for some emitted relocs. */
6214 void
6215 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6217 asection *s;
6219 for (s = output_bfd->sections; s != NULL; s = s->next)
6220 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6221 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6223 elf_hash_table (info)->text_index_section = s;
6224 break;
6228 /* Find two non-excluded output sections, one for code, one for data.
6229 We'll use their section symbols for some emitted relocs. */
6230 void
6231 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6233 asection *s;
6235 /* Data first, since setting text_index_section changes
6236 _bfd_elf_link_omit_section_dynsym. */
6237 for (s = output_bfd->sections; s != NULL; s = s->next)
6238 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6239 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6241 elf_hash_table (info)->data_index_section = s;
6242 break;
6245 for (s = output_bfd->sections; s != NULL; s = s->next)
6246 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6247 == (SEC_ALLOC | SEC_READONLY))
6248 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6250 elf_hash_table (info)->text_index_section = s;
6251 break;
6254 if (elf_hash_table (info)->text_index_section == NULL)
6255 elf_hash_table (info)->text_index_section
6256 = elf_hash_table (info)->data_index_section;
6259 bfd_boolean
6260 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6262 const struct elf_backend_data *bed;
6264 if (!is_elf_hash_table (info->hash))
6265 return TRUE;
6267 bed = get_elf_backend_data (output_bfd);
6268 (*bed->elf_backend_init_index_section) (output_bfd, info);
6270 if (elf_hash_table (info)->dynamic_sections_created)
6272 bfd *dynobj;
6273 asection *s;
6274 bfd_size_type dynsymcount;
6275 unsigned long section_sym_count;
6276 unsigned int dtagcount;
6278 dynobj = elf_hash_table (info)->dynobj;
6280 /* Assign dynsym indicies. In a shared library we generate a
6281 section symbol for each output section, which come first.
6282 Next come all of the back-end allocated local dynamic syms,
6283 followed by the rest of the global symbols. */
6285 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6286 &section_sym_count);
6288 /* Work out the size of the symbol version section. */
6289 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6290 BFD_ASSERT (s != NULL);
6291 if (dynsymcount != 0
6292 && (s->flags & SEC_EXCLUDE) == 0)
6294 s->size = dynsymcount * sizeof (Elf_External_Versym);
6295 s->contents = bfd_zalloc (output_bfd, s->size);
6296 if (s->contents == NULL)
6297 return FALSE;
6299 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6300 return FALSE;
6303 /* Set the size of the .dynsym and .hash sections. We counted
6304 the number of dynamic symbols in elf_link_add_object_symbols.
6305 We will build the contents of .dynsym and .hash when we build
6306 the final symbol table, because until then we do not know the
6307 correct value to give the symbols. We built the .dynstr
6308 section as we went along in elf_link_add_object_symbols. */
6309 s = bfd_get_section_by_name (dynobj, ".dynsym");
6310 BFD_ASSERT (s != NULL);
6311 s->size = dynsymcount * bed->s->sizeof_sym;
6313 if (dynsymcount != 0)
6315 s->contents = bfd_alloc (output_bfd, s->size);
6316 if (s->contents == NULL)
6317 return FALSE;
6319 /* The first entry in .dynsym is a dummy symbol.
6320 Clear all the section syms, in case we don't output them all. */
6321 ++section_sym_count;
6322 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6325 elf_hash_table (info)->bucketcount = 0;
6327 /* Compute the size of the hashing table. As a side effect this
6328 computes the hash values for all the names we export. */
6329 if (info->emit_hash)
6331 unsigned long int *hashcodes;
6332 struct hash_codes_info hashinf;
6333 bfd_size_type amt;
6334 unsigned long int nsyms;
6335 size_t bucketcount;
6336 size_t hash_entry_size;
6338 /* Compute the hash values for all exported symbols. At the same
6339 time store the values in an array so that we could use them for
6340 optimizations. */
6341 amt = dynsymcount * sizeof (unsigned long int);
6342 hashcodes = bfd_malloc (amt);
6343 if (hashcodes == NULL)
6344 return FALSE;
6345 hashinf.hashcodes = hashcodes;
6346 hashinf.error = FALSE;
6348 /* Put all hash values in HASHCODES. */
6349 elf_link_hash_traverse (elf_hash_table (info),
6350 elf_collect_hash_codes, &hashinf);
6351 if (hashinf.error)
6353 free (hashcodes);
6354 return FALSE;
6357 nsyms = hashinf.hashcodes - hashcodes;
6358 bucketcount
6359 = compute_bucket_count (info, hashcodes, nsyms, 0);
6360 free (hashcodes);
6362 if (bucketcount == 0)
6363 return FALSE;
6365 elf_hash_table (info)->bucketcount = bucketcount;
6367 s = bfd_get_section_by_name (dynobj, ".hash");
6368 BFD_ASSERT (s != NULL);
6369 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6370 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6371 s->contents = bfd_zalloc (output_bfd, s->size);
6372 if (s->contents == NULL)
6373 return FALSE;
6375 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6376 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6377 s->contents + hash_entry_size);
6380 if (info->emit_gnu_hash)
6382 size_t i, cnt;
6383 unsigned char *contents;
6384 struct collect_gnu_hash_codes cinfo;
6385 bfd_size_type amt;
6386 size_t bucketcount;
6388 memset (&cinfo, 0, sizeof (cinfo));
6390 /* Compute the hash values for all exported symbols. At the same
6391 time store the values in an array so that we could use them for
6392 optimizations. */
6393 amt = dynsymcount * 2 * sizeof (unsigned long int);
6394 cinfo.hashcodes = bfd_malloc (amt);
6395 if (cinfo.hashcodes == NULL)
6396 return FALSE;
6398 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6399 cinfo.min_dynindx = -1;
6400 cinfo.output_bfd = output_bfd;
6401 cinfo.bed = bed;
6403 /* Put all hash values in HASHCODES. */
6404 elf_link_hash_traverse (elf_hash_table (info),
6405 elf_collect_gnu_hash_codes, &cinfo);
6406 if (cinfo.error)
6408 free (cinfo.hashcodes);
6409 return FALSE;
6412 bucketcount
6413 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6415 if (bucketcount == 0)
6417 free (cinfo.hashcodes);
6418 return FALSE;
6421 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6422 BFD_ASSERT (s != NULL);
6424 if (cinfo.nsyms == 0)
6426 /* Empty .gnu.hash section is special. */
6427 BFD_ASSERT (cinfo.min_dynindx == -1);
6428 free (cinfo.hashcodes);
6429 s->size = 5 * 4 + bed->s->arch_size / 8;
6430 contents = bfd_zalloc (output_bfd, s->size);
6431 if (contents == NULL)
6432 return FALSE;
6433 s->contents = contents;
6434 /* 1 empty bucket. */
6435 bfd_put_32 (output_bfd, 1, contents);
6436 /* SYMIDX above the special symbol 0. */
6437 bfd_put_32 (output_bfd, 1, contents + 4);
6438 /* Just one word for bitmask. */
6439 bfd_put_32 (output_bfd, 1, contents + 8);
6440 /* Only hash fn bloom filter. */
6441 bfd_put_32 (output_bfd, 0, contents + 12);
6442 /* No hashes are valid - empty bitmask. */
6443 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6444 /* No hashes in the only bucket. */
6445 bfd_put_32 (output_bfd, 0,
6446 contents + 16 + bed->s->arch_size / 8);
6448 else
6450 unsigned long int maskwords, maskbitslog2;
6451 BFD_ASSERT (cinfo.min_dynindx != -1);
6453 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6454 if (maskbitslog2 < 3)
6455 maskbitslog2 = 5;
6456 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6457 maskbitslog2 = maskbitslog2 + 3;
6458 else
6459 maskbitslog2 = maskbitslog2 + 2;
6460 if (bed->s->arch_size == 64)
6462 if (maskbitslog2 == 5)
6463 maskbitslog2 = 6;
6464 cinfo.shift1 = 6;
6466 else
6467 cinfo.shift1 = 5;
6468 cinfo.mask = (1 << cinfo.shift1) - 1;
6469 cinfo.shift2 = maskbitslog2;
6470 cinfo.maskbits = 1 << maskbitslog2;
6471 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6472 amt = bucketcount * sizeof (unsigned long int) * 2;
6473 amt += maskwords * sizeof (bfd_vma);
6474 cinfo.bitmask = bfd_malloc (amt);
6475 if (cinfo.bitmask == NULL)
6477 free (cinfo.hashcodes);
6478 return FALSE;
6481 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6482 cinfo.indx = cinfo.counts + bucketcount;
6483 cinfo.symindx = dynsymcount - cinfo.nsyms;
6484 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6486 /* Determine how often each hash bucket is used. */
6487 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6488 for (i = 0; i < cinfo.nsyms; ++i)
6489 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6491 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6492 if (cinfo.counts[i] != 0)
6494 cinfo.indx[i] = cnt;
6495 cnt += cinfo.counts[i];
6497 BFD_ASSERT (cnt == dynsymcount);
6498 cinfo.bucketcount = bucketcount;
6499 cinfo.local_indx = cinfo.min_dynindx;
6501 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6502 s->size += cinfo.maskbits / 8;
6503 contents = bfd_zalloc (output_bfd, s->size);
6504 if (contents == NULL)
6506 free (cinfo.bitmask);
6507 free (cinfo.hashcodes);
6508 return FALSE;
6511 s->contents = contents;
6512 bfd_put_32 (output_bfd, bucketcount, contents);
6513 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6514 bfd_put_32 (output_bfd, maskwords, contents + 8);
6515 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6516 contents += 16 + cinfo.maskbits / 8;
6518 for (i = 0; i < bucketcount; ++i)
6520 if (cinfo.counts[i] == 0)
6521 bfd_put_32 (output_bfd, 0, contents);
6522 else
6523 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6524 contents += 4;
6527 cinfo.contents = contents;
6529 /* Renumber dynamic symbols, populate .gnu.hash section. */
6530 elf_link_hash_traverse (elf_hash_table (info),
6531 elf_renumber_gnu_hash_syms, &cinfo);
6533 contents = s->contents + 16;
6534 for (i = 0; i < maskwords; ++i)
6536 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6537 contents);
6538 contents += bed->s->arch_size / 8;
6541 free (cinfo.bitmask);
6542 free (cinfo.hashcodes);
6546 s = bfd_get_section_by_name (dynobj, ".dynstr");
6547 BFD_ASSERT (s != NULL);
6549 elf_finalize_dynstr (output_bfd, info);
6551 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6553 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6554 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6555 return FALSE;
6558 return TRUE;
6561 /* Indicate that we are only retrieving symbol values from this
6562 section. */
6564 void
6565 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6567 if (is_elf_hash_table (info->hash))
6568 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6569 _bfd_generic_link_just_syms (sec, info);
6572 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6574 static void
6575 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6576 asection *sec)
6578 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6579 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6582 /* Finish SHF_MERGE section merging. */
6584 bfd_boolean
6585 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6587 bfd *ibfd;
6588 asection *sec;
6590 if (!is_elf_hash_table (info->hash))
6591 return FALSE;
6593 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6594 if ((ibfd->flags & DYNAMIC) == 0)
6595 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6596 if ((sec->flags & SEC_MERGE) != 0
6597 && !bfd_is_abs_section (sec->output_section))
6599 struct bfd_elf_section_data *secdata;
6601 secdata = elf_section_data (sec);
6602 if (! _bfd_add_merge_section (abfd,
6603 &elf_hash_table (info)->merge_info,
6604 sec, &secdata->sec_info))
6605 return FALSE;
6606 else if (secdata->sec_info)
6607 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6610 if (elf_hash_table (info)->merge_info != NULL)
6611 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6612 merge_sections_remove_hook);
6613 return TRUE;
6616 /* Create an entry in an ELF linker hash table. */
6618 struct bfd_hash_entry *
6619 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6620 struct bfd_hash_table *table,
6621 const char *string)
6623 /* Allocate the structure if it has not already been allocated by a
6624 subclass. */
6625 if (entry == NULL)
6627 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6628 if (entry == NULL)
6629 return entry;
6632 /* Call the allocation method of the superclass. */
6633 entry = _bfd_link_hash_newfunc (entry, table, string);
6634 if (entry != NULL)
6636 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6637 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6639 /* Set local fields. */
6640 ret->indx = -1;
6641 ret->dynindx = -1;
6642 ret->got = htab->init_got_refcount;
6643 ret->plt = htab->init_plt_refcount;
6644 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6645 - offsetof (struct elf_link_hash_entry, size)));
6646 /* Assume that we have been called by a non-ELF symbol reader.
6647 This flag is then reset by the code which reads an ELF input
6648 file. This ensures that a symbol created by a non-ELF symbol
6649 reader will have the flag set correctly. */
6650 ret->non_elf = 1;
6653 return entry;
6656 /* Copy data from an indirect symbol to its direct symbol, hiding the
6657 old indirect symbol. Also used for copying flags to a weakdef. */
6659 void
6660 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6661 struct elf_link_hash_entry *dir,
6662 struct elf_link_hash_entry *ind)
6664 struct elf_link_hash_table *htab;
6666 /* Copy down any references that we may have already seen to the
6667 symbol which just became indirect. */
6669 dir->ref_dynamic |= ind->ref_dynamic;
6670 dir->ref_regular |= ind->ref_regular;
6671 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6672 dir->non_got_ref |= ind->non_got_ref;
6673 dir->needs_plt |= ind->needs_plt;
6674 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6676 if (ind->root.type != bfd_link_hash_indirect)
6677 return;
6679 /* Copy over the global and procedure linkage table refcount entries.
6680 These may have been already set up by a check_relocs routine. */
6681 htab = elf_hash_table (info);
6682 if (ind->got.refcount > htab->init_got_refcount.refcount)
6684 if (dir->got.refcount < 0)
6685 dir->got.refcount = 0;
6686 dir->got.refcount += ind->got.refcount;
6687 ind->got.refcount = htab->init_got_refcount.refcount;
6690 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6692 if (dir->plt.refcount < 0)
6693 dir->plt.refcount = 0;
6694 dir->plt.refcount += ind->plt.refcount;
6695 ind->plt.refcount = htab->init_plt_refcount.refcount;
6698 if (ind->dynindx != -1)
6700 if (dir->dynindx != -1)
6701 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6702 dir->dynindx = ind->dynindx;
6703 dir->dynstr_index = ind->dynstr_index;
6704 ind->dynindx = -1;
6705 ind->dynstr_index = 0;
6709 void
6710 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6711 struct elf_link_hash_entry *h,
6712 bfd_boolean force_local)
6714 h->plt = elf_hash_table (info)->init_plt_offset;
6715 h->needs_plt = 0;
6716 if (force_local)
6718 h->forced_local = 1;
6719 if (h->dynindx != -1)
6721 h->dynindx = -1;
6722 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6723 h->dynstr_index);
6728 /* Initialize an ELF linker hash table. */
6730 bfd_boolean
6731 _bfd_elf_link_hash_table_init
6732 (struct elf_link_hash_table *table,
6733 bfd *abfd,
6734 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6735 struct bfd_hash_table *,
6736 const char *),
6737 unsigned int entsize)
6739 bfd_boolean ret;
6740 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6742 memset (table, 0, sizeof * table);
6743 table->init_got_refcount.refcount = can_refcount - 1;
6744 table->init_plt_refcount.refcount = can_refcount - 1;
6745 table->init_got_offset.offset = -(bfd_vma) 1;
6746 table->init_plt_offset.offset = -(bfd_vma) 1;
6747 /* The first dynamic symbol is a dummy. */
6748 table->dynsymcount = 1;
6750 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6751 table->root.type = bfd_link_elf_hash_table;
6753 return ret;
6756 /* Create an ELF linker hash table. */
6758 struct bfd_link_hash_table *
6759 _bfd_elf_link_hash_table_create (bfd *abfd)
6761 struct elf_link_hash_table *ret;
6762 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6764 ret = bfd_malloc (amt);
6765 if (ret == NULL)
6766 return NULL;
6768 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6769 sizeof (struct elf_link_hash_entry)))
6771 free (ret);
6772 return NULL;
6775 return &ret->root;
6778 /* This is a hook for the ELF emulation code in the generic linker to
6779 tell the backend linker what file name to use for the DT_NEEDED
6780 entry for a dynamic object. */
6782 void
6783 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6785 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6786 && bfd_get_format (abfd) == bfd_object)
6787 elf_dt_name (abfd) = name;
6791 bfd_elf_get_dyn_lib_class (bfd *abfd)
6793 int lib_class;
6794 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6795 && bfd_get_format (abfd) == bfd_object)
6796 lib_class = elf_dyn_lib_class (abfd);
6797 else
6798 lib_class = 0;
6799 return lib_class;
6802 void
6803 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6805 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6806 && bfd_get_format (abfd) == bfd_object)
6807 elf_dyn_lib_class (abfd) = lib_class;
6810 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6811 the linker ELF emulation code. */
6813 struct bfd_link_needed_list *
6814 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6815 struct bfd_link_info *info)
6817 if (! is_elf_hash_table (info->hash))
6818 return NULL;
6819 return elf_hash_table (info)->needed;
6822 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6823 hook for the linker ELF emulation code. */
6825 struct bfd_link_needed_list *
6826 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6827 struct bfd_link_info *info)
6829 if (! is_elf_hash_table (info->hash))
6830 return NULL;
6831 return elf_hash_table (info)->runpath;
6834 /* Get the name actually used for a dynamic object for a link. This
6835 is the SONAME entry if there is one. Otherwise, it is the string
6836 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6838 const char *
6839 bfd_elf_get_dt_soname (bfd *abfd)
6841 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6842 && bfd_get_format (abfd) == bfd_object)
6843 return elf_dt_name (abfd);
6844 return NULL;
6847 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6848 the ELF linker emulation code. */
6850 bfd_boolean
6851 bfd_elf_get_bfd_needed_list (bfd *abfd,
6852 struct bfd_link_needed_list **pneeded)
6854 asection *s;
6855 bfd_byte *dynbuf = NULL;
6856 unsigned int elfsec;
6857 unsigned long shlink;
6858 bfd_byte *extdyn, *extdynend;
6859 size_t extdynsize;
6860 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6862 *pneeded = NULL;
6864 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6865 || bfd_get_format (abfd) != bfd_object)
6866 return TRUE;
6868 s = bfd_get_section_by_name (abfd, ".dynamic");
6869 if (s == NULL || s->size == 0)
6870 return TRUE;
6872 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6873 goto error_return;
6875 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6876 if (elfsec == SHN_BAD)
6877 goto error_return;
6879 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6881 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6882 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6884 extdyn = dynbuf;
6885 extdynend = extdyn + s->size;
6886 for (; extdyn < extdynend; extdyn += extdynsize)
6888 Elf_Internal_Dyn dyn;
6890 (*swap_dyn_in) (abfd, extdyn, &dyn);
6892 if (dyn.d_tag == DT_NULL)
6893 break;
6895 if (dyn.d_tag == DT_NEEDED)
6897 const char *string;
6898 struct bfd_link_needed_list *l;
6899 unsigned int tagv = dyn.d_un.d_val;
6900 bfd_size_type amt;
6902 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6903 if (string == NULL)
6904 goto error_return;
6906 amt = sizeof *l;
6907 l = bfd_alloc (abfd, amt);
6908 if (l == NULL)
6909 goto error_return;
6911 l->by = abfd;
6912 l->name = string;
6913 l->next = *pneeded;
6914 *pneeded = l;
6918 free (dynbuf);
6920 return TRUE;
6922 error_return:
6923 if (dynbuf != NULL)
6924 free (dynbuf);
6925 return FALSE;
6928 struct elf_symbuf_symbol
6930 unsigned long st_name; /* Symbol name, index in string tbl */
6931 unsigned char st_info; /* Type and binding attributes */
6932 unsigned char st_other; /* Visibilty, and target specific */
6935 struct elf_symbuf_head
6937 struct elf_symbuf_symbol *ssym;
6938 bfd_size_type count;
6939 unsigned int st_shndx;
6942 struct elf_symbol
6944 union
6946 Elf_Internal_Sym *isym;
6947 struct elf_symbuf_symbol *ssym;
6948 } u;
6949 const char *name;
6952 /* Sort references to symbols by ascending section number. */
6954 static int
6955 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6957 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6958 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6960 return s1->st_shndx - s2->st_shndx;
6963 static int
6964 elf_sym_name_compare (const void *arg1, const void *arg2)
6966 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6967 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6968 return strcmp (s1->name, s2->name);
6971 static struct elf_symbuf_head *
6972 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6974 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6975 struct elf_symbuf_symbol *ssym;
6976 struct elf_symbuf_head *ssymbuf, *ssymhead;
6977 bfd_size_type i, shndx_count, total_size;
6979 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6980 if (indbuf == NULL)
6981 return NULL;
6983 for (ind = indbuf, i = 0; i < symcount; i++)
6984 if (isymbuf[i].st_shndx != SHN_UNDEF)
6985 *ind++ = &isymbuf[i];
6986 indbufend = ind;
6988 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6989 elf_sort_elf_symbol);
6991 shndx_count = 0;
6992 if (indbufend > indbuf)
6993 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6994 if (ind[0]->st_shndx != ind[1]->st_shndx)
6995 shndx_count++;
6997 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6998 + (indbufend - indbuf) * sizeof (*ssym));
6999 ssymbuf = bfd_malloc (total_size);
7000 if (ssymbuf == NULL)
7002 free (indbuf);
7003 return NULL;
7006 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7007 ssymbuf->ssym = NULL;
7008 ssymbuf->count = shndx_count;
7009 ssymbuf->st_shndx = 0;
7010 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7012 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7014 ssymhead++;
7015 ssymhead->ssym = ssym;
7016 ssymhead->count = 0;
7017 ssymhead->st_shndx = (*ind)->st_shndx;
7019 ssym->st_name = (*ind)->st_name;
7020 ssym->st_info = (*ind)->st_info;
7021 ssym->st_other = (*ind)->st_other;
7022 ssymhead->count++;
7024 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7025 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7026 == total_size));
7028 free (indbuf);
7029 return ssymbuf;
7032 /* Check if 2 sections define the same set of local and global
7033 symbols. */
7035 static bfd_boolean
7036 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7037 struct bfd_link_info *info)
7039 bfd *bfd1, *bfd2;
7040 const struct elf_backend_data *bed1, *bed2;
7041 Elf_Internal_Shdr *hdr1, *hdr2;
7042 bfd_size_type symcount1, symcount2;
7043 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7044 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7045 Elf_Internal_Sym *isym, *isymend;
7046 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7047 bfd_size_type count1, count2, i;
7048 unsigned int shndx1, shndx2;
7049 bfd_boolean result;
7051 bfd1 = sec1->owner;
7052 bfd2 = sec2->owner;
7054 /* Both sections have to be in ELF. */
7055 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7056 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7057 return FALSE;
7059 if (elf_section_type (sec1) != elf_section_type (sec2))
7060 return FALSE;
7062 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7063 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7064 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7065 return FALSE;
7067 bed1 = get_elf_backend_data (bfd1);
7068 bed2 = get_elf_backend_data (bfd2);
7069 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7070 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7071 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7072 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7074 if (symcount1 == 0 || symcount2 == 0)
7075 return FALSE;
7077 result = FALSE;
7078 isymbuf1 = NULL;
7079 isymbuf2 = NULL;
7080 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7081 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7083 if (ssymbuf1 == NULL)
7085 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7086 NULL, NULL, NULL);
7087 if (isymbuf1 == NULL)
7088 goto done;
7090 if (!info->reduce_memory_overheads)
7091 elf_tdata (bfd1)->symbuf = ssymbuf1
7092 = elf_create_symbuf (symcount1, isymbuf1);
7095 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7097 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7098 NULL, NULL, NULL);
7099 if (isymbuf2 == NULL)
7100 goto done;
7102 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7103 elf_tdata (bfd2)->symbuf = ssymbuf2
7104 = elf_create_symbuf (symcount2, isymbuf2);
7107 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7109 /* Optimized faster version. */
7110 bfd_size_type lo, hi, mid;
7111 struct elf_symbol *symp;
7112 struct elf_symbuf_symbol *ssym, *ssymend;
7114 lo = 0;
7115 hi = ssymbuf1->count;
7116 ssymbuf1++;
7117 count1 = 0;
7118 while (lo < hi)
7120 mid = (lo + hi) / 2;
7121 if (shndx1 < ssymbuf1[mid].st_shndx)
7122 hi = mid;
7123 else if (shndx1 > ssymbuf1[mid].st_shndx)
7124 lo = mid + 1;
7125 else
7127 count1 = ssymbuf1[mid].count;
7128 ssymbuf1 += mid;
7129 break;
7133 lo = 0;
7134 hi = ssymbuf2->count;
7135 ssymbuf2++;
7136 count2 = 0;
7137 while (lo < hi)
7139 mid = (lo + hi) / 2;
7140 if (shndx2 < ssymbuf2[mid].st_shndx)
7141 hi = mid;
7142 else if (shndx2 > ssymbuf2[mid].st_shndx)
7143 lo = mid + 1;
7144 else
7146 count2 = ssymbuf2[mid].count;
7147 ssymbuf2 += mid;
7148 break;
7152 if (count1 == 0 || count2 == 0 || count1 != count2)
7153 goto done;
7155 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7156 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7157 if (symtable1 == NULL || symtable2 == NULL)
7158 goto done;
7160 symp = symtable1;
7161 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7162 ssym < ssymend; ssym++, symp++)
7164 symp->u.ssym = ssym;
7165 symp->name = bfd_elf_string_from_elf_section (bfd1,
7166 hdr1->sh_link,
7167 ssym->st_name);
7170 symp = symtable2;
7171 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7172 ssym < ssymend; ssym++, symp++)
7174 symp->u.ssym = ssym;
7175 symp->name = bfd_elf_string_from_elf_section (bfd2,
7176 hdr2->sh_link,
7177 ssym->st_name);
7180 /* Sort symbol by name. */
7181 qsort (symtable1, count1, sizeof (struct elf_symbol),
7182 elf_sym_name_compare);
7183 qsort (symtable2, count1, sizeof (struct elf_symbol),
7184 elf_sym_name_compare);
7186 for (i = 0; i < count1; i++)
7187 /* Two symbols must have the same binding, type and name. */
7188 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7189 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7190 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7191 goto done;
7193 result = TRUE;
7194 goto done;
7197 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7198 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7199 if (symtable1 == NULL || symtable2 == NULL)
7200 goto done;
7202 /* Count definitions in the section. */
7203 count1 = 0;
7204 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7205 if (isym->st_shndx == shndx1)
7206 symtable1[count1++].u.isym = isym;
7208 count2 = 0;
7209 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7210 if (isym->st_shndx == shndx2)
7211 symtable2[count2++].u.isym = isym;
7213 if (count1 == 0 || count2 == 0 || count1 != count2)
7214 goto done;
7216 for (i = 0; i < count1; i++)
7217 symtable1[i].name
7218 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7219 symtable1[i].u.isym->st_name);
7221 for (i = 0; i < count2; i++)
7222 symtable2[i].name
7223 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7224 symtable2[i].u.isym->st_name);
7226 /* Sort symbol by name. */
7227 qsort (symtable1, count1, sizeof (struct elf_symbol),
7228 elf_sym_name_compare);
7229 qsort (symtable2, count1, sizeof (struct elf_symbol),
7230 elf_sym_name_compare);
7232 for (i = 0; i < count1; i++)
7233 /* Two symbols must have the same binding, type and name. */
7234 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7235 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7236 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7237 goto done;
7239 result = TRUE;
7241 done:
7242 if (symtable1)
7243 free (symtable1);
7244 if (symtable2)
7245 free (symtable2);
7246 if (isymbuf1)
7247 free (isymbuf1);
7248 if (isymbuf2)
7249 free (isymbuf2);
7251 return result;
7254 /* Return TRUE if 2 section types are compatible. */
7256 bfd_boolean
7257 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7258 bfd *bbfd, const asection *bsec)
7260 if (asec == NULL
7261 || bsec == NULL
7262 || abfd->xvec->flavour != bfd_target_elf_flavour
7263 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7264 return TRUE;
7266 return elf_section_type (asec) == elf_section_type (bsec);
7269 /* Final phase of ELF linker. */
7271 /* A structure we use to avoid passing large numbers of arguments. */
7273 struct elf_final_link_info
7275 /* General link information. */
7276 struct bfd_link_info *info;
7277 /* Output BFD. */
7278 bfd *output_bfd;
7279 /* Symbol string table. */
7280 struct bfd_strtab_hash *symstrtab;
7281 /* .dynsym section. */
7282 asection *dynsym_sec;
7283 /* .hash section. */
7284 asection *hash_sec;
7285 /* symbol version section (.gnu.version). */
7286 asection *symver_sec;
7287 /* Buffer large enough to hold contents of any section. */
7288 bfd_byte *contents;
7289 /* Buffer large enough to hold external relocs of any section. */
7290 void *external_relocs;
7291 /* Buffer large enough to hold internal relocs of any section. */
7292 Elf_Internal_Rela *internal_relocs;
7293 /* Buffer large enough to hold external local symbols of any input
7294 BFD. */
7295 bfd_byte *external_syms;
7296 /* And a buffer for symbol section indices. */
7297 Elf_External_Sym_Shndx *locsym_shndx;
7298 /* Buffer large enough to hold internal local symbols of any input
7299 BFD. */
7300 Elf_Internal_Sym *internal_syms;
7301 /* Array large enough to hold a symbol index for each local symbol
7302 of any input BFD. */
7303 long *indices;
7304 /* Array large enough to hold a section pointer for each local
7305 symbol of any input BFD. */
7306 asection **sections;
7307 /* Buffer to hold swapped out symbols. */
7308 bfd_byte *symbuf;
7309 /* And one for symbol section indices. */
7310 Elf_External_Sym_Shndx *symshndxbuf;
7311 /* Number of swapped out symbols in buffer. */
7312 size_t symbuf_count;
7313 /* Number of symbols which fit in symbuf. */
7314 size_t symbuf_size;
7315 /* And same for symshndxbuf. */
7316 size_t shndxbuf_size;
7319 /* This struct is used to pass information to elf_link_output_extsym. */
7321 struct elf_outext_info
7323 bfd_boolean failed;
7324 bfd_boolean localsyms;
7325 struct elf_final_link_info *finfo;
7329 /* Support for evaluating a complex relocation.
7331 Complex relocations are generalized, self-describing relocations. The
7332 implementation of them consists of two parts: complex symbols, and the
7333 relocations themselves.
7335 The relocations are use a reserved elf-wide relocation type code (R_RELC
7336 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7337 information (start bit, end bit, word width, etc) into the addend. This
7338 information is extracted from CGEN-generated operand tables within gas.
7340 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7341 internal) representing prefix-notation expressions, including but not
7342 limited to those sorts of expressions normally encoded as addends in the
7343 addend field. The symbol mangling format is:
7345 <node> := <literal>
7346 | <unary-operator> ':' <node>
7347 | <binary-operator> ':' <node> ':' <node>
7350 <literal> := 's' <digits=N> ':' <N character symbol name>
7351 | 'S' <digits=N> ':' <N character section name>
7352 | '#' <hexdigits>
7355 <binary-operator> := as in C
7356 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7358 static void
7359 set_symbol_value (bfd *bfd_with_globals,
7360 Elf_Internal_Sym *isymbuf,
7361 size_t locsymcount,
7362 size_t symidx,
7363 bfd_vma val)
7365 struct elf_link_hash_entry **sym_hashes;
7366 struct elf_link_hash_entry *h;
7367 size_t extsymoff = locsymcount;
7369 if (symidx < locsymcount)
7371 Elf_Internal_Sym *sym;
7373 sym = isymbuf + symidx;
7374 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7376 /* It is a local symbol: move it to the
7377 "absolute" section and give it a value. */
7378 sym->st_shndx = SHN_ABS;
7379 sym->st_value = val;
7380 return;
7382 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7383 extsymoff = 0;
7386 /* It is a global symbol: set its link type
7387 to "defined" and give it a value. */
7389 sym_hashes = elf_sym_hashes (bfd_with_globals);
7390 h = sym_hashes [symidx - extsymoff];
7391 while (h->root.type == bfd_link_hash_indirect
7392 || h->root.type == bfd_link_hash_warning)
7393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7394 h->root.type = bfd_link_hash_defined;
7395 h->root.u.def.value = val;
7396 h->root.u.def.section = bfd_abs_section_ptr;
7399 static bfd_boolean
7400 resolve_symbol (const char *name,
7401 bfd *input_bfd,
7402 struct elf_final_link_info *finfo,
7403 bfd_vma *result,
7404 Elf_Internal_Sym *isymbuf,
7405 size_t locsymcount)
7407 Elf_Internal_Sym *sym;
7408 struct bfd_link_hash_entry *global_entry;
7409 const char *candidate = NULL;
7410 Elf_Internal_Shdr *symtab_hdr;
7411 size_t i;
7413 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7415 for (i = 0; i < locsymcount; ++ i)
7417 sym = isymbuf + i;
7419 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7420 continue;
7422 candidate = bfd_elf_string_from_elf_section (input_bfd,
7423 symtab_hdr->sh_link,
7424 sym->st_name);
7425 #ifdef DEBUG
7426 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7427 name, candidate, (unsigned long) sym->st_value);
7428 #endif
7429 if (candidate && strcmp (candidate, name) == 0)
7431 asection *sec = finfo->sections [i];
7433 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7434 *result += sec->output_offset + sec->output_section->vma;
7435 #ifdef DEBUG
7436 printf ("Found symbol with value %8.8lx\n",
7437 (unsigned long) *result);
7438 #endif
7439 return TRUE;
7443 /* Hmm, haven't found it yet. perhaps it is a global. */
7444 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7445 FALSE, FALSE, TRUE);
7446 if (!global_entry)
7447 return FALSE;
7449 if (global_entry->type == bfd_link_hash_defined
7450 || global_entry->type == bfd_link_hash_defweak)
7452 *result = (global_entry->u.def.value
7453 + global_entry->u.def.section->output_section->vma
7454 + global_entry->u.def.section->output_offset);
7455 #ifdef DEBUG
7456 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7457 global_entry->root.string, (unsigned long) *result);
7458 #endif
7459 return TRUE;
7462 return FALSE;
7465 static bfd_boolean
7466 resolve_section (const char *name,
7467 asection *sections,
7468 bfd_vma *result)
7470 asection *curr;
7471 unsigned int len;
7473 for (curr = sections; curr; curr = curr->next)
7474 if (strcmp (curr->name, name) == 0)
7476 *result = curr->vma;
7477 return TRUE;
7480 /* Hmm. still haven't found it. try pseudo-section names. */
7481 for (curr = sections; curr; curr = curr->next)
7483 len = strlen (curr->name);
7484 if (len > strlen (name))
7485 continue;
7487 if (strncmp (curr->name, name, len) == 0)
7489 if (strncmp (".end", name + len, 4) == 0)
7491 *result = curr->vma + curr->size;
7492 return TRUE;
7495 /* Insert more pseudo-section names here, if you like. */
7499 return FALSE;
7502 static void
7503 undefined_reference (const char *reftype, const char *name)
7505 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7506 reftype, name);
7509 static bfd_boolean
7510 eval_symbol (bfd_vma *result,
7511 const char **symp,
7512 bfd *input_bfd,
7513 struct elf_final_link_info *finfo,
7514 bfd_vma dot,
7515 Elf_Internal_Sym *isymbuf,
7516 size_t locsymcount,
7517 int signed_p)
7519 size_t len;
7520 size_t symlen;
7521 bfd_vma a;
7522 bfd_vma b;
7523 char symbuf[4096];
7524 const char *sym = *symp;
7525 const char *symend;
7526 bfd_boolean symbol_is_section = FALSE;
7528 len = strlen (sym);
7529 symend = sym + len;
7531 if (len < 1 || len > sizeof (symbuf))
7533 bfd_set_error (bfd_error_invalid_operation);
7534 return FALSE;
7537 switch (* sym)
7539 case '.':
7540 *result = dot;
7541 *symp = sym + 1;
7542 return TRUE;
7544 case '#':
7545 ++sym;
7546 *result = strtoul (sym, (char **) symp, 16);
7547 return TRUE;
7549 case 'S':
7550 symbol_is_section = TRUE;
7551 case 's':
7552 ++sym;
7553 symlen = strtol (sym, (char **) symp, 10);
7554 sym = *symp + 1; /* Skip the trailing ':'. */
7556 if (symend < sym || symlen + 1 > sizeof (symbuf))
7558 bfd_set_error (bfd_error_invalid_operation);
7559 return FALSE;
7562 memcpy (symbuf, sym, symlen);
7563 symbuf[symlen] = '\0';
7564 *symp = sym + symlen;
7566 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7567 the symbol as a section, or vice-versa. so we're pretty liberal in our
7568 interpretation here; section means "try section first", not "must be a
7569 section", and likewise with symbol. */
7571 if (symbol_is_section)
7573 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7574 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7575 isymbuf, locsymcount))
7577 undefined_reference ("section", symbuf);
7578 return FALSE;
7581 else
7583 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7584 isymbuf, locsymcount)
7585 && !resolve_section (symbuf, finfo->output_bfd->sections,
7586 result))
7588 undefined_reference ("symbol", symbuf);
7589 return FALSE;
7593 return TRUE;
7595 /* All that remains are operators. */
7597 #define UNARY_OP(op) \
7598 if (strncmp (sym, #op, strlen (#op)) == 0) \
7600 sym += strlen (#op); \
7601 if (*sym == ':') \
7602 ++sym; \
7603 *symp = sym; \
7604 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7605 isymbuf, locsymcount, signed_p)) \
7606 return FALSE; \
7607 if (signed_p) \
7608 *result = op ((bfd_signed_vma) a); \
7609 else \
7610 *result = op a; \
7611 return TRUE; \
7614 #define BINARY_OP(op) \
7615 if (strncmp (sym, #op, strlen (#op)) == 0) \
7617 sym += strlen (#op); \
7618 if (*sym == ':') \
7619 ++sym; \
7620 *symp = sym; \
7621 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7622 isymbuf, locsymcount, signed_p)) \
7623 return FALSE; \
7624 ++*symp; \
7625 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7626 isymbuf, locsymcount, signed_p)) \
7627 return FALSE; \
7628 if (signed_p) \
7629 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7630 else \
7631 *result = a op b; \
7632 return TRUE; \
7635 default:
7636 UNARY_OP (0-);
7637 BINARY_OP (<<);
7638 BINARY_OP (>>);
7639 BINARY_OP (==);
7640 BINARY_OP (!=);
7641 BINARY_OP (<=);
7642 BINARY_OP (>=);
7643 BINARY_OP (&&);
7644 BINARY_OP (||);
7645 UNARY_OP (~);
7646 UNARY_OP (!);
7647 BINARY_OP (*);
7648 BINARY_OP (/);
7649 BINARY_OP (%);
7650 BINARY_OP (^);
7651 BINARY_OP (|);
7652 BINARY_OP (&);
7653 BINARY_OP (+);
7654 BINARY_OP (-);
7655 BINARY_OP (<);
7656 BINARY_OP (>);
7657 #undef UNARY_OP
7658 #undef BINARY_OP
7659 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7660 bfd_set_error (bfd_error_invalid_operation);
7661 return FALSE;
7665 static void
7666 put_value (bfd_vma size,
7667 unsigned long chunksz,
7668 bfd *input_bfd,
7669 bfd_vma x,
7670 bfd_byte *location)
7672 location += (size - chunksz);
7674 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7676 switch (chunksz)
7678 default:
7679 case 0:
7680 abort ();
7681 case 1:
7682 bfd_put_8 (input_bfd, x, location);
7683 break;
7684 case 2:
7685 bfd_put_16 (input_bfd, x, location);
7686 break;
7687 case 4:
7688 bfd_put_32 (input_bfd, x, location);
7689 break;
7690 case 8:
7691 #ifdef BFD64
7692 bfd_put_64 (input_bfd, x, location);
7693 #else
7694 abort ();
7695 #endif
7696 break;
7701 static bfd_vma
7702 get_value (bfd_vma size,
7703 unsigned long chunksz,
7704 bfd *input_bfd,
7705 bfd_byte *location)
7707 bfd_vma x = 0;
7709 for (; size; size -= chunksz, location += chunksz)
7711 switch (chunksz)
7713 default:
7714 case 0:
7715 abort ();
7716 case 1:
7717 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7718 break;
7719 case 2:
7720 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7721 break;
7722 case 4:
7723 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7724 break;
7725 case 8:
7726 #ifdef BFD64
7727 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7728 #else
7729 abort ();
7730 #endif
7731 break;
7734 return x;
7737 static void
7738 decode_complex_addend (unsigned long *start, /* in bits */
7739 unsigned long *oplen, /* in bits */
7740 unsigned long *len, /* in bits */
7741 unsigned long *wordsz, /* in bytes */
7742 unsigned long *chunksz, /* in bytes */
7743 unsigned long *lsb0_p,
7744 unsigned long *signed_p,
7745 unsigned long *trunc_p,
7746 unsigned long encoded)
7748 * start = encoded & 0x3F;
7749 * len = (encoded >> 6) & 0x3F;
7750 * oplen = (encoded >> 12) & 0x3F;
7751 * wordsz = (encoded >> 18) & 0xF;
7752 * chunksz = (encoded >> 22) & 0xF;
7753 * lsb0_p = (encoded >> 27) & 1;
7754 * signed_p = (encoded >> 28) & 1;
7755 * trunc_p = (encoded >> 29) & 1;
7758 bfd_reloc_status_type
7759 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7760 asection *input_section ATTRIBUTE_UNUSED,
7761 bfd_byte *contents,
7762 Elf_Internal_Rela *rel,
7763 bfd_vma relocation)
7765 bfd_vma shift, x, mask;
7766 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7767 bfd_reloc_status_type r;
7769 /* Perform this reloc, since it is complex.
7770 (this is not to say that it necessarily refers to a complex
7771 symbol; merely that it is a self-describing CGEN based reloc.
7772 i.e. the addend has the complete reloc information (bit start, end,
7773 word size, etc) encoded within it.). */
7775 decode_complex_addend (&start, &oplen, &len, &wordsz,
7776 &chunksz, &lsb0_p, &signed_p,
7777 &trunc_p, rel->r_addend);
7779 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7781 if (lsb0_p)
7782 shift = (start + 1) - len;
7783 else
7784 shift = (8 * wordsz) - (start + len);
7786 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7788 #ifdef DEBUG
7789 printf ("Doing complex reloc: "
7790 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7791 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7792 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7793 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7794 oplen, x, mask, relocation);
7795 #endif
7797 r = bfd_reloc_ok;
7798 if (! trunc_p)
7799 /* Now do an overflow check. */
7800 r = bfd_check_overflow ((signed_p
7801 ? complain_overflow_signed
7802 : complain_overflow_unsigned),
7803 len, 0, (8 * wordsz),
7804 relocation);
7806 /* Do the deed. */
7807 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7809 #ifdef DEBUG
7810 printf (" relocation: %8.8lx\n"
7811 " shifted mask: %8.8lx\n"
7812 " shifted/masked reloc: %8.8lx\n"
7813 " result: %8.8lx\n",
7814 relocation, (mask << shift),
7815 ((relocation & mask) << shift), x);
7816 #endif
7817 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7818 return r;
7821 /* When performing a relocatable link, the input relocations are
7822 preserved. But, if they reference global symbols, the indices
7823 referenced must be updated. Update all the relocations in
7824 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7826 static void
7827 elf_link_adjust_relocs (bfd *abfd,
7828 Elf_Internal_Shdr *rel_hdr,
7829 unsigned int count,
7830 struct elf_link_hash_entry **rel_hash)
7832 unsigned int i;
7833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7834 bfd_byte *erela;
7835 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7836 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7837 bfd_vma r_type_mask;
7838 int r_sym_shift;
7840 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7842 swap_in = bed->s->swap_reloc_in;
7843 swap_out = bed->s->swap_reloc_out;
7845 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7847 swap_in = bed->s->swap_reloca_in;
7848 swap_out = bed->s->swap_reloca_out;
7850 else
7851 abort ();
7853 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7854 abort ();
7856 if (bed->s->arch_size == 32)
7858 r_type_mask = 0xff;
7859 r_sym_shift = 8;
7861 else
7863 r_type_mask = 0xffffffff;
7864 r_sym_shift = 32;
7867 erela = rel_hdr->contents;
7868 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7870 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7871 unsigned int j;
7873 if (*rel_hash == NULL)
7874 continue;
7876 BFD_ASSERT ((*rel_hash)->indx >= 0);
7878 (*swap_in) (abfd, erela, irela);
7879 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7880 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7881 | (irela[j].r_info & r_type_mask));
7882 (*swap_out) (abfd, irela, erela);
7886 struct elf_link_sort_rela
7888 union {
7889 bfd_vma offset;
7890 bfd_vma sym_mask;
7891 } u;
7892 enum elf_reloc_type_class type;
7893 /* We use this as an array of size int_rels_per_ext_rel. */
7894 Elf_Internal_Rela rela[1];
7897 static int
7898 elf_link_sort_cmp1 (const void *A, const void *B)
7900 const struct elf_link_sort_rela *a = A;
7901 const struct elf_link_sort_rela *b = B;
7902 int relativea, relativeb;
7904 relativea = a->type == reloc_class_relative;
7905 relativeb = b->type == reloc_class_relative;
7907 if (relativea < relativeb)
7908 return 1;
7909 if (relativea > relativeb)
7910 return -1;
7911 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7912 return -1;
7913 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7914 return 1;
7915 if (a->rela->r_offset < b->rela->r_offset)
7916 return -1;
7917 if (a->rela->r_offset > b->rela->r_offset)
7918 return 1;
7919 return 0;
7922 static int
7923 elf_link_sort_cmp2 (const void *A, const void *B)
7925 const struct elf_link_sort_rela *a = A;
7926 const struct elf_link_sort_rela *b = B;
7927 int copya, copyb;
7929 if (a->u.offset < b->u.offset)
7930 return -1;
7931 if (a->u.offset > b->u.offset)
7932 return 1;
7933 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7934 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7935 if (copya < copyb)
7936 return -1;
7937 if (copya > copyb)
7938 return 1;
7939 if (a->rela->r_offset < b->rela->r_offset)
7940 return -1;
7941 if (a->rela->r_offset > b->rela->r_offset)
7942 return 1;
7943 return 0;
7946 static size_t
7947 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7949 asection *dynamic_relocs;
7950 asection *rela_dyn;
7951 asection *rel_dyn;
7952 bfd_size_type count, size;
7953 size_t i, ret, sort_elt, ext_size;
7954 bfd_byte *sort, *s_non_relative, *p;
7955 struct elf_link_sort_rela *sq;
7956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7957 int i2e = bed->s->int_rels_per_ext_rel;
7958 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7959 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7960 struct bfd_link_order *lo;
7961 bfd_vma r_sym_mask;
7962 bfd_boolean use_rela;
7964 /* Find a dynamic reloc section. */
7965 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7966 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7967 if (rela_dyn != NULL && rela_dyn->size > 0
7968 && rel_dyn != NULL && rel_dyn->size > 0)
7970 bfd_boolean use_rela_initialised = FALSE;
7972 /* This is just here to stop gcc from complaining.
7973 It's initialization checking code is not perfect. */
7974 use_rela = TRUE;
7976 /* Both sections are present. Examine the sizes
7977 of the indirect sections to help us choose. */
7978 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7979 if (lo->type == bfd_indirect_link_order)
7981 asection *o = lo->u.indirect.section;
7983 if ((o->size % bed->s->sizeof_rela) == 0)
7985 if ((o->size % bed->s->sizeof_rel) == 0)
7986 /* Section size is divisible by both rel and rela sizes.
7987 It is of no help to us. */
7989 else
7991 /* Section size is only divisible by rela. */
7992 if (use_rela_initialised && (use_rela == FALSE))
7994 _bfd_error_handler
7995 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7996 bfd_set_error (bfd_error_invalid_operation);
7997 return 0;
7999 else
8001 use_rela = TRUE;
8002 use_rela_initialised = TRUE;
8006 else if ((o->size % bed->s->sizeof_rel) == 0)
8008 /* Section size is only divisible by rel. */
8009 if (use_rela_initialised && (use_rela == TRUE))
8011 _bfd_error_handler
8012 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8013 bfd_set_error (bfd_error_invalid_operation);
8014 return 0;
8016 else
8018 use_rela = FALSE;
8019 use_rela_initialised = TRUE;
8022 else
8024 /* The section size is not divisible by either - something is wrong. */
8025 _bfd_error_handler
8026 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8027 bfd_set_error (bfd_error_invalid_operation);
8028 return 0;
8032 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8033 if (lo->type == bfd_indirect_link_order)
8035 asection *o = lo->u.indirect.section;
8037 if ((o->size % bed->s->sizeof_rela) == 0)
8039 if ((o->size % bed->s->sizeof_rel) == 0)
8040 /* Section size is divisible by both rel and rela sizes.
8041 It is of no help to us. */
8043 else
8045 /* Section size is only divisible by rela. */
8046 if (use_rela_initialised && (use_rela == FALSE))
8048 _bfd_error_handler
8049 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8050 bfd_set_error (bfd_error_invalid_operation);
8051 return 0;
8053 else
8055 use_rela = TRUE;
8056 use_rela_initialised = TRUE;
8060 else if ((o->size % bed->s->sizeof_rel) == 0)
8062 /* Section size is only divisible by rel. */
8063 if (use_rela_initialised && (use_rela == TRUE))
8065 _bfd_error_handler
8066 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8067 bfd_set_error (bfd_error_invalid_operation);
8068 return 0;
8070 else
8072 use_rela = FALSE;
8073 use_rela_initialised = TRUE;
8076 else
8078 /* The section size is not divisible by either - something is wrong. */
8079 _bfd_error_handler
8080 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8081 bfd_set_error (bfd_error_invalid_operation);
8082 return 0;
8086 if (! use_rela_initialised)
8087 /* Make a guess. */
8088 use_rela = TRUE;
8090 else if (rela_dyn != NULL && rela_dyn->size > 0)
8091 use_rela = TRUE;
8092 else if (rel_dyn != NULL && rel_dyn->size > 0)
8093 use_rela = FALSE;
8094 else
8095 return 0;
8097 if (use_rela)
8099 dynamic_relocs = rela_dyn;
8100 ext_size = bed->s->sizeof_rela;
8101 swap_in = bed->s->swap_reloca_in;
8102 swap_out = bed->s->swap_reloca_out;
8104 else
8106 dynamic_relocs = rel_dyn;
8107 ext_size = bed->s->sizeof_rel;
8108 swap_in = bed->s->swap_reloc_in;
8109 swap_out = bed->s->swap_reloc_out;
8112 size = 0;
8113 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8114 if (lo->type == bfd_indirect_link_order)
8115 size += lo->u.indirect.section->size;
8117 if (size != dynamic_relocs->size)
8118 return 0;
8120 sort_elt = (sizeof (struct elf_link_sort_rela)
8121 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8123 count = dynamic_relocs->size / ext_size;
8124 sort = bfd_zmalloc (sort_elt * count);
8126 if (sort == NULL)
8128 (*info->callbacks->warning)
8129 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8130 return 0;
8133 if (bed->s->arch_size == 32)
8134 r_sym_mask = ~(bfd_vma) 0xff;
8135 else
8136 r_sym_mask = ~(bfd_vma) 0xffffffff;
8138 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8139 if (lo->type == bfd_indirect_link_order)
8141 bfd_byte *erel, *erelend;
8142 asection *o = lo->u.indirect.section;
8144 if (o->contents == NULL && o->size != 0)
8146 /* This is a reloc section that is being handled as a normal
8147 section. See bfd_section_from_shdr. We can't combine
8148 relocs in this case. */
8149 free (sort);
8150 return 0;
8152 erel = o->contents;
8153 erelend = o->contents + o->size;
8154 p = sort + o->output_offset / ext_size * sort_elt;
8156 while (erel < erelend)
8158 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8160 (*swap_in) (abfd, erel, s->rela);
8161 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8162 s->u.sym_mask = r_sym_mask;
8163 p += sort_elt;
8164 erel += ext_size;
8168 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8170 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8172 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8173 if (s->type != reloc_class_relative)
8174 break;
8176 ret = i;
8177 s_non_relative = p;
8179 sq = (struct elf_link_sort_rela *) s_non_relative;
8180 for (; i < count; i++, p += sort_elt)
8182 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8183 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8184 sq = sp;
8185 sp->u.offset = sq->rela->r_offset;
8188 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8190 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8191 if (lo->type == bfd_indirect_link_order)
8193 bfd_byte *erel, *erelend;
8194 asection *o = lo->u.indirect.section;
8196 erel = o->contents;
8197 erelend = o->contents + o->size;
8198 p = sort + o->output_offset / ext_size * sort_elt;
8199 while (erel < erelend)
8201 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8202 (*swap_out) (abfd, s->rela, erel);
8203 p += sort_elt;
8204 erel += ext_size;
8208 free (sort);
8209 *psec = dynamic_relocs;
8210 return ret;
8213 /* Flush the output symbols to the file. */
8215 static bfd_boolean
8216 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8217 const struct elf_backend_data *bed)
8219 if (finfo->symbuf_count > 0)
8221 Elf_Internal_Shdr *hdr;
8222 file_ptr pos;
8223 bfd_size_type amt;
8225 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8226 pos = hdr->sh_offset + hdr->sh_size;
8227 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8228 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8229 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8230 return FALSE;
8232 hdr->sh_size += amt;
8233 finfo->symbuf_count = 0;
8236 return TRUE;
8239 /* Add a symbol to the output symbol table. */
8241 static bfd_boolean
8242 elf_link_output_sym (struct elf_final_link_info *finfo,
8243 const char *name,
8244 Elf_Internal_Sym *elfsym,
8245 asection *input_sec,
8246 struct elf_link_hash_entry *h)
8248 bfd_byte *dest;
8249 Elf_External_Sym_Shndx *destshndx;
8250 bfd_boolean (*output_symbol_hook)
8251 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8252 struct elf_link_hash_entry *);
8253 const struct elf_backend_data *bed;
8255 bed = get_elf_backend_data (finfo->output_bfd);
8256 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8257 if (output_symbol_hook != NULL)
8259 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8260 return FALSE;
8263 if (name == NULL || *name == '\0')
8264 elfsym->st_name = 0;
8265 else if (input_sec->flags & SEC_EXCLUDE)
8266 elfsym->st_name = 0;
8267 else
8269 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8270 name, TRUE, FALSE);
8271 if (elfsym->st_name == (unsigned long) -1)
8272 return FALSE;
8275 if (finfo->symbuf_count >= finfo->symbuf_size)
8277 if (! elf_link_flush_output_syms (finfo, bed))
8278 return FALSE;
8281 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8282 destshndx = finfo->symshndxbuf;
8283 if (destshndx != NULL)
8285 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8287 bfd_size_type amt;
8289 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8290 destshndx = bfd_realloc (destshndx, amt * 2);
8291 if (destshndx == NULL)
8292 return FALSE;
8293 finfo->symshndxbuf = destshndx;
8294 memset ((char *) destshndx + amt, 0, amt);
8295 finfo->shndxbuf_size *= 2;
8297 destshndx += bfd_get_symcount (finfo->output_bfd);
8300 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8301 finfo->symbuf_count += 1;
8302 bfd_get_symcount (finfo->output_bfd) += 1;
8304 return TRUE;
8307 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8309 static bfd_boolean
8310 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8312 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8313 && sym->st_shndx < SHN_LORESERVE)
8315 /* The gABI doesn't support dynamic symbols in output sections
8316 beyond 64k. */
8317 (*_bfd_error_handler)
8318 (_("%B: Too many sections: %d (>= %d)"),
8319 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8320 bfd_set_error (bfd_error_nonrepresentable_section);
8321 return FALSE;
8323 return TRUE;
8326 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8327 allowing an unsatisfied unversioned symbol in the DSO to match a
8328 versioned symbol that would normally require an explicit version.
8329 We also handle the case that a DSO references a hidden symbol
8330 which may be satisfied by a versioned symbol in another DSO. */
8332 static bfd_boolean
8333 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8334 const struct elf_backend_data *bed,
8335 struct elf_link_hash_entry *h)
8337 bfd *abfd;
8338 struct elf_link_loaded_list *loaded;
8340 if (!is_elf_hash_table (info->hash))
8341 return FALSE;
8343 switch (h->root.type)
8345 default:
8346 abfd = NULL;
8347 break;
8349 case bfd_link_hash_undefined:
8350 case bfd_link_hash_undefweak:
8351 abfd = h->root.u.undef.abfd;
8352 if ((abfd->flags & DYNAMIC) == 0
8353 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8354 return FALSE;
8355 break;
8357 case bfd_link_hash_defined:
8358 case bfd_link_hash_defweak:
8359 abfd = h->root.u.def.section->owner;
8360 break;
8362 case bfd_link_hash_common:
8363 abfd = h->root.u.c.p->section->owner;
8364 break;
8366 BFD_ASSERT (abfd != NULL);
8368 for (loaded = elf_hash_table (info)->loaded;
8369 loaded != NULL;
8370 loaded = loaded->next)
8372 bfd *input;
8373 Elf_Internal_Shdr *hdr;
8374 bfd_size_type symcount;
8375 bfd_size_type extsymcount;
8376 bfd_size_type extsymoff;
8377 Elf_Internal_Shdr *versymhdr;
8378 Elf_Internal_Sym *isym;
8379 Elf_Internal_Sym *isymend;
8380 Elf_Internal_Sym *isymbuf;
8381 Elf_External_Versym *ever;
8382 Elf_External_Versym *extversym;
8384 input = loaded->abfd;
8386 /* We check each DSO for a possible hidden versioned definition. */
8387 if (input == abfd
8388 || (input->flags & DYNAMIC) == 0
8389 || elf_dynversym (input) == 0)
8390 continue;
8392 hdr = &elf_tdata (input)->dynsymtab_hdr;
8394 symcount = hdr->sh_size / bed->s->sizeof_sym;
8395 if (elf_bad_symtab (input))
8397 extsymcount = symcount;
8398 extsymoff = 0;
8400 else
8402 extsymcount = symcount - hdr->sh_info;
8403 extsymoff = hdr->sh_info;
8406 if (extsymcount == 0)
8407 continue;
8409 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8410 NULL, NULL, NULL);
8411 if (isymbuf == NULL)
8412 return FALSE;
8414 /* Read in any version definitions. */
8415 versymhdr = &elf_tdata (input)->dynversym_hdr;
8416 extversym = bfd_malloc (versymhdr->sh_size);
8417 if (extversym == NULL)
8418 goto error_ret;
8420 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8421 || (bfd_bread (extversym, versymhdr->sh_size, input)
8422 != versymhdr->sh_size))
8424 free (extversym);
8425 error_ret:
8426 free (isymbuf);
8427 return FALSE;
8430 ever = extversym + extsymoff;
8431 isymend = isymbuf + extsymcount;
8432 for (isym = isymbuf; isym < isymend; isym++, ever++)
8434 const char *name;
8435 Elf_Internal_Versym iver;
8436 unsigned short version_index;
8438 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8439 || isym->st_shndx == SHN_UNDEF)
8440 continue;
8442 name = bfd_elf_string_from_elf_section (input,
8443 hdr->sh_link,
8444 isym->st_name);
8445 if (strcmp (name, h->root.root.string) != 0)
8446 continue;
8448 _bfd_elf_swap_versym_in (input, ever, &iver);
8450 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8452 /* If we have a non-hidden versioned sym, then it should
8453 have provided a definition for the undefined sym. */
8454 abort ();
8457 version_index = iver.vs_vers & VERSYM_VERSION;
8458 if (version_index == 1 || version_index == 2)
8460 /* This is the base or first version. We can use it. */
8461 free (extversym);
8462 free (isymbuf);
8463 return TRUE;
8467 free (extversym);
8468 free (isymbuf);
8471 return FALSE;
8474 /* Add an external symbol to the symbol table. This is called from
8475 the hash table traversal routine. When generating a shared object,
8476 we go through the symbol table twice. The first time we output
8477 anything that might have been forced to local scope in a version
8478 script. The second time we output the symbols that are still
8479 global symbols. */
8481 static bfd_boolean
8482 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8484 struct elf_outext_info *eoinfo = data;
8485 struct elf_final_link_info *finfo = eoinfo->finfo;
8486 bfd_boolean strip;
8487 Elf_Internal_Sym sym;
8488 asection *input_sec;
8489 const struct elf_backend_data *bed;
8491 if (h->root.type == bfd_link_hash_warning)
8493 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8494 if (h->root.type == bfd_link_hash_new)
8495 return TRUE;
8498 /* Decide whether to output this symbol in this pass. */
8499 if (eoinfo->localsyms)
8501 if (!h->forced_local)
8502 return TRUE;
8504 else
8506 if (h->forced_local)
8507 return TRUE;
8510 bed = get_elf_backend_data (finfo->output_bfd);
8512 if (h->root.type == bfd_link_hash_undefined)
8514 /* If we have an undefined symbol reference here then it must have
8515 come from a shared library that is being linked in. (Undefined
8516 references in regular files have already been handled). */
8517 bfd_boolean ignore_undef = FALSE;
8519 /* Some symbols may be special in that the fact that they're
8520 undefined can be safely ignored - let backend determine that. */
8521 if (bed->elf_backend_ignore_undef_symbol)
8522 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8524 /* If we are reporting errors for this situation then do so now. */
8525 if (ignore_undef == FALSE
8526 && h->ref_dynamic
8527 && ! h->ref_regular
8528 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8529 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8531 if (! (finfo->info->callbacks->undefined_symbol
8532 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8533 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8535 eoinfo->failed = TRUE;
8536 return FALSE;
8541 /* We should also warn if a forced local symbol is referenced from
8542 shared libraries. */
8543 if (! finfo->info->relocatable
8544 && (! finfo->info->shared)
8545 && h->forced_local
8546 && h->ref_dynamic
8547 && !h->dynamic_def
8548 && !h->dynamic_weak
8549 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8551 (*_bfd_error_handler)
8552 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8553 finfo->output_bfd,
8554 h->root.u.def.section == bfd_abs_section_ptr
8555 ? finfo->output_bfd : h->root.u.def.section->owner,
8556 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8557 ? "internal"
8558 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8559 ? "hidden" : "local",
8560 h->root.root.string);
8561 eoinfo->failed = TRUE;
8562 return FALSE;
8565 /* We don't want to output symbols that have never been mentioned by
8566 a regular file, or that we have been told to strip. However, if
8567 h->indx is set to -2, the symbol is used by a reloc and we must
8568 output it. */
8569 if (h->indx == -2)
8570 strip = FALSE;
8571 else if ((h->def_dynamic
8572 || h->ref_dynamic
8573 || h->root.type == bfd_link_hash_new)
8574 && !h->def_regular
8575 && !h->ref_regular)
8576 strip = TRUE;
8577 else if (finfo->info->strip == strip_all)
8578 strip = TRUE;
8579 else if (finfo->info->strip == strip_some
8580 && bfd_hash_lookup (finfo->info->keep_hash,
8581 h->root.root.string, FALSE, FALSE) == NULL)
8582 strip = TRUE;
8583 else if (finfo->info->strip_discarded
8584 && (h->root.type == bfd_link_hash_defined
8585 || h->root.type == bfd_link_hash_defweak)
8586 && elf_discarded_section (h->root.u.def.section))
8587 strip = TRUE;
8588 else
8589 strip = FALSE;
8591 /* If we're stripping it, and it's not a dynamic symbol, there's
8592 nothing else to do unless it is a forced local symbol. */
8593 if (strip
8594 && h->dynindx == -1
8595 && !h->forced_local)
8596 return TRUE;
8598 sym.st_value = 0;
8599 sym.st_size = h->size;
8600 sym.st_other = h->other;
8601 if (h->forced_local)
8602 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8603 else if (h->root.type == bfd_link_hash_undefweak
8604 || h->root.type == bfd_link_hash_defweak)
8605 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8606 else
8607 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8609 switch (h->root.type)
8611 default:
8612 case bfd_link_hash_new:
8613 case bfd_link_hash_warning:
8614 abort ();
8615 return FALSE;
8617 case bfd_link_hash_undefined:
8618 case bfd_link_hash_undefweak:
8619 input_sec = bfd_und_section_ptr;
8620 sym.st_shndx = SHN_UNDEF;
8621 break;
8623 case bfd_link_hash_defined:
8624 case bfd_link_hash_defweak:
8626 input_sec = h->root.u.def.section;
8627 if (input_sec->output_section != NULL)
8629 sym.st_shndx =
8630 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8631 input_sec->output_section);
8632 if (sym.st_shndx == SHN_BAD)
8634 (*_bfd_error_handler)
8635 (_("%B: could not find output section %A for input section %A"),
8636 finfo->output_bfd, input_sec->output_section, input_sec);
8637 eoinfo->failed = TRUE;
8638 return FALSE;
8641 /* ELF symbols in relocatable files are section relative,
8642 but in nonrelocatable files they are virtual
8643 addresses. */
8644 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8645 if (! finfo->info->relocatable)
8647 sym.st_value += input_sec->output_section->vma;
8648 if (h->type == STT_TLS)
8650 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8651 if (tls_sec != NULL)
8652 sym.st_value -= tls_sec->vma;
8653 else
8655 /* The TLS section may have been garbage collected. */
8656 BFD_ASSERT (finfo->info->gc_sections
8657 && !input_sec->gc_mark);
8662 else
8664 BFD_ASSERT (input_sec->owner == NULL
8665 || (input_sec->owner->flags & DYNAMIC) != 0);
8666 sym.st_shndx = SHN_UNDEF;
8667 input_sec = bfd_und_section_ptr;
8670 break;
8672 case bfd_link_hash_common:
8673 input_sec = h->root.u.c.p->section;
8674 sym.st_shndx = bed->common_section_index (input_sec);
8675 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8676 break;
8678 case bfd_link_hash_indirect:
8679 /* These symbols are created by symbol versioning. They point
8680 to the decorated version of the name. For example, if the
8681 symbol foo@@GNU_1.2 is the default, which should be used when
8682 foo is used with no version, then we add an indirect symbol
8683 foo which points to foo@@GNU_1.2. We ignore these symbols,
8684 since the indirected symbol is already in the hash table. */
8685 return TRUE;
8688 /* Give the processor backend a chance to tweak the symbol value,
8689 and also to finish up anything that needs to be done for this
8690 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8691 forced local syms when non-shared is due to a historical quirk. */
8692 if ((h->dynindx != -1
8693 || h->forced_local)
8694 && ((finfo->info->shared
8695 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8696 || h->root.type != bfd_link_hash_undefweak))
8697 || !h->forced_local)
8698 && elf_hash_table (finfo->info)->dynamic_sections_created)
8700 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8701 (finfo->output_bfd, finfo->info, h, &sym)))
8703 eoinfo->failed = TRUE;
8704 return FALSE;
8708 /* If we are marking the symbol as undefined, and there are no
8709 non-weak references to this symbol from a regular object, then
8710 mark the symbol as weak undefined; if there are non-weak
8711 references, mark the symbol as strong. We can't do this earlier,
8712 because it might not be marked as undefined until the
8713 finish_dynamic_symbol routine gets through with it. */
8714 if (sym.st_shndx == SHN_UNDEF
8715 && h->ref_regular
8716 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8717 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8719 int bindtype;
8721 if (h->ref_regular_nonweak)
8722 bindtype = STB_GLOBAL;
8723 else
8724 bindtype = STB_WEAK;
8725 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8728 /* If this is a symbol defined in a dynamic library, don't use the
8729 symbol size from the dynamic library. Relinking an executable
8730 against a new library may introduce gratuitous changes in the
8731 executable's symbols if we keep the size. */
8732 if (sym.st_shndx == SHN_UNDEF
8733 && !h->def_regular
8734 && h->def_dynamic)
8735 sym.st_size = 0;
8737 /* If a non-weak symbol with non-default visibility is not defined
8738 locally, it is a fatal error. */
8739 if (! finfo->info->relocatable
8740 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8741 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8742 && h->root.type == bfd_link_hash_undefined
8743 && !h->def_regular)
8745 (*_bfd_error_handler)
8746 (_("%B: %s symbol `%s' isn't defined"),
8747 finfo->output_bfd,
8748 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8749 ? "protected"
8750 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8751 ? "internal" : "hidden",
8752 h->root.root.string);
8753 eoinfo->failed = TRUE;
8754 return FALSE;
8757 /* If this symbol should be put in the .dynsym section, then put it
8758 there now. We already know the symbol index. We also fill in
8759 the entry in the .hash section. */
8760 if (h->dynindx != -1
8761 && elf_hash_table (finfo->info)->dynamic_sections_created)
8763 bfd_byte *esym;
8765 sym.st_name = h->dynstr_index;
8766 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8767 if (! check_dynsym (finfo->output_bfd, &sym))
8769 eoinfo->failed = TRUE;
8770 return FALSE;
8772 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8774 if (finfo->hash_sec != NULL)
8776 size_t hash_entry_size;
8777 bfd_byte *bucketpos;
8778 bfd_vma chain;
8779 size_t bucketcount;
8780 size_t bucket;
8782 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8783 bucket = h->u.elf_hash_value % bucketcount;
8785 hash_entry_size
8786 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8787 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8788 + (bucket + 2) * hash_entry_size);
8789 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8790 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8791 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8792 ((bfd_byte *) finfo->hash_sec->contents
8793 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8796 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8798 Elf_Internal_Versym iversym;
8799 Elf_External_Versym *eversym;
8801 if (!h->def_regular)
8803 if (h->verinfo.verdef == NULL)
8804 iversym.vs_vers = 0;
8805 else
8806 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8808 else
8810 if (h->verinfo.vertree == NULL)
8811 iversym.vs_vers = 1;
8812 else
8813 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8814 if (finfo->info->create_default_symver)
8815 iversym.vs_vers++;
8818 if (h->hidden)
8819 iversym.vs_vers |= VERSYM_HIDDEN;
8821 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8822 eversym += h->dynindx;
8823 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8827 /* If we're stripping it, then it was just a dynamic symbol, and
8828 there's nothing else to do. */
8829 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8830 return TRUE;
8832 h->indx = bfd_get_symcount (finfo->output_bfd);
8834 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8836 eoinfo->failed = TRUE;
8837 return FALSE;
8840 return TRUE;
8843 /* Return TRUE if special handling is done for relocs in SEC against
8844 symbols defined in discarded sections. */
8846 static bfd_boolean
8847 elf_section_ignore_discarded_relocs (asection *sec)
8849 const struct elf_backend_data *bed;
8851 switch (sec->sec_info_type)
8853 case ELF_INFO_TYPE_STABS:
8854 case ELF_INFO_TYPE_EH_FRAME:
8855 return TRUE;
8856 default:
8857 break;
8860 bed = get_elf_backend_data (sec->owner);
8861 if (bed->elf_backend_ignore_discarded_relocs != NULL
8862 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8863 return TRUE;
8865 return FALSE;
8868 /* Return a mask saying how ld should treat relocations in SEC against
8869 symbols defined in discarded sections. If this function returns
8870 COMPLAIN set, ld will issue a warning message. If this function
8871 returns PRETEND set, and the discarded section was link-once and the
8872 same size as the kept link-once section, ld will pretend that the
8873 symbol was actually defined in the kept section. Otherwise ld will
8874 zero the reloc (at least that is the intent, but some cooperation by
8875 the target dependent code is needed, particularly for REL targets). */
8877 unsigned int
8878 _bfd_elf_default_action_discarded (asection *sec)
8880 if (sec->flags & SEC_DEBUGGING)
8881 return PRETEND;
8883 if (strcmp (".eh_frame", sec->name) == 0)
8884 return 0;
8886 if (strcmp (".gcc_except_table", sec->name) == 0)
8887 return 0;
8889 return COMPLAIN | PRETEND;
8892 /* Find a match between a section and a member of a section group. */
8894 static asection *
8895 match_group_member (asection *sec, asection *group,
8896 struct bfd_link_info *info)
8898 asection *first = elf_next_in_group (group);
8899 asection *s = first;
8901 while (s != NULL)
8903 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8904 return s;
8906 s = elf_next_in_group (s);
8907 if (s == first)
8908 break;
8911 return NULL;
8914 /* Check if the kept section of a discarded section SEC can be used
8915 to replace it. Return the replacement if it is OK. Otherwise return
8916 NULL. */
8918 asection *
8919 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8921 asection *kept;
8923 kept = sec->kept_section;
8924 if (kept != NULL)
8926 if ((kept->flags & SEC_GROUP) != 0)
8927 kept = match_group_member (sec, kept, info);
8928 if (kept != NULL
8929 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8930 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8931 kept = NULL;
8932 sec->kept_section = kept;
8934 return kept;
8937 /* Link an input file into the linker output file. This function
8938 handles all the sections and relocations of the input file at once.
8939 This is so that we only have to read the local symbols once, and
8940 don't have to keep them in memory. */
8942 static bfd_boolean
8943 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8945 int (*relocate_section)
8946 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8947 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8948 bfd *output_bfd;
8949 Elf_Internal_Shdr *symtab_hdr;
8950 size_t locsymcount;
8951 size_t extsymoff;
8952 Elf_Internal_Sym *isymbuf;
8953 Elf_Internal_Sym *isym;
8954 Elf_Internal_Sym *isymend;
8955 long *pindex;
8956 asection **ppsection;
8957 asection *o;
8958 const struct elf_backend_data *bed;
8959 struct elf_link_hash_entry **sym_hashes;
8961 output_bfd = finfo->output_bfd;
8962 bed = get_elf_backend_data (output_bfd);
8963 relocate_section = bed->elf_backend_relocate_section;
8965 /* If this is a dynamic object, we don't want to do anything here:
8966 we don't want the local symbols, and we don't want the section
8967 contents. */
8968 if ((input_bfd->flags & DYNAMIC) != 0)
8969 return TRUE;
8971 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8972 if (elf_bad_symtab (input_bfd))
8974 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8975 extsymoff = 0;
8977 else
8979 locsymcount = symtab_hdr->sh_info;
8980 extsymoff = symtab_hdr->sh_info;
8983 /* Read the local symbols. */
8984 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8985 if (isymbuf == NULL && locsymcount != 0)
8987 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8988 finfo->internal_syms,
8989 finfo->external_syms,
8990 finfo->locsym_shndx);
8991 if (isymbuf == NULL)
8992 return FALSE;
8995 /* Find local symbol sections and adjust values of symbols in
8996 SEC_MERGE sections. Write out those local symbols we know are
8997 going into the output file. */
8998 isymend = isymbuf + locsymcount;
8999 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9000 isym < isymend;
9001 isym++, pindex++, ppsection++)
9003 asection *isec;
9004 const char *name;
9005 Elf_Internal_Sym osym;
9007 *pindex = -1;
9009 if (elf_bad_symtab (input_bfd))
9011 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9013 *ppsection = NULL;
9014 continue;
9018 if (isym->st_shndx == SHN_UNDEF)
9019 isec = bfd_und_section_ptr;
9020 else if (isym->st_shndx == SHN_ABS)
9021 isec = bfd_abs_section_ptr;
9022 else if (isym->st_shndx == SHN_COMMON)
9023 isec = bfd_com_section_ptr;
9024 else
9026 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9027 if (isec == NULL)
9029 /* Don't attempt to output symbols with st_shnx in the
9030 reserved range other than SHN_ABS and SHN_COMMON. */
9031 *ppsection = NULL;
9032 continue;
9034 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9035 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9036 isym->st_value =
9037 _bfd_merged_section_offset (output_bfd, &isec,
9038 elf_section_data (isec)->sec_info,
9039 isym->st_value);
9042 *ppsection = isec;
9044 /* Don't output the first, undefined, symbol. */
9045 if (ppsection == finfo->sections)
9046 continue;
9048 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9050 /* We never output section symbols. Instead, we use the
9051 section symbol of the corresponding section in the output
9052 file. */
9053 continue;
9056 /* If we are stripping all symbols, we don't want to output this
9057 one. */
9058 if (finfo->info->strip == strip_all)
9059 continue;
9061 /* If we are discarding all local symbols, we don't want to
9062 output this one. If we are generating a relocatable output
9063 file, then some of the local symbols may be required by
9064 relocs; we output them below as we discover that they are
9065 needed. */
9066 if (finfo->info->discard == discard_all)
9067 continue;
9069 /* If this symbol is defined in a section which we are
9070 discarding, we don't need to keep it. */
9071 if (isym->st_shndx != SHN_UNDEF
9072 && isym->st_shndx < SHN_LORESERVE
9073 && bfd_section_removed_from_list (output_bfd,
9074 isec->output_section))
9075 continue;
9077 /* Get the name of the symbol. */
9078 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9079 isym->st_name);
9080 if (name == NULL)
9081 return FALSE;
9083 /* See if we are discarding symbols with this name. */
9084 if ((finfo->info->strip == strip_some
9085 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9086 == NULL))
9087 || (((finfo->info->discard == discard_sec_merge
9088 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9089 || finfo->info->discard == discard_l)
9090 && bfd_is_local_label_name (input_bfd, name)))
9091 continue;
9093 /* If we get here, we are going to output this symbol. */
9095 osym = *isym;
9097 /* Adjust the section index for the output file. */
9098 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9099 isec->output_section);
9100 if (osym.st_shndx == SHN_BAD)
9101 return FALSE;
9103 *pindex = bfd_get_symcount (output_bfd);
9105 /* ELF symbols in relocatable files are section relative, but
9106 in executable files they are virtual addresses. Note that
9107 this code assumes that all ELF sections have an associated
9108 BFD section with a reasonable value for output_offset; below
9109 we assume that they also have a reasonable value for
9110 output_section. Any special sections must be set up to meet
9111 these requirements. */
9112 osym.st_value += isec->output_offset;
9113 if (! finfo->info->relocatable)
9115 osym.st_value += isec->output_section->vma;
9116 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9118 /* STT_TLS symbols are relative to PT_TLS segment base. */
9119 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9120 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9124 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9125 return FALSE;
9128 /* Relocate the contents of each section. */
9129 sym_hashes = elf_sym_hashes (input_bfd);
9130 for (o = input_bfd->sections; o != NULL; o = o->next)
9132 bfd_byte *contents;
9134 if (! o->linker_mark)
9136 /* This section was omitted from the link. */
9137 continue;
9140 if (finfo->info->relocatable
9141 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9143 /* Deal with the group signature symbol. */
9144 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9145 unsigned long symndx = sec_data->this_hdr.sh_info;
9146 asection *osec = o->output_section;
9148 if (symndx >= locsymcount
9149 || (elf_bad_symtab (input_bfd)
9150 && finfo->sections[symndx] == NULL))
9152 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9153 while (h->root.type == bfd_link_hash_indirect
9154 || h->root.type == bfd_link_hash_warning)
9155 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9156 /* Arrange for symbol to be output. */
9157 h->indx = -2;
9158 elf_section_data (osec)->this_hdr.sh_info = -2;
9160 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9162 /* We'll use the output section target_index. */
9163 asection *sec = finfo->sections[symndx]->output_section;
9164 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9166 else
9168 if (finfo->indices[symndx] == -1)
9170 /* Otherwise output the local symbol now. */
9171 Elf_Internal_Sym sym = isymbuf[symndx];
9172 asection *sec = finfo->sections[symndx]->output_section;
9173 const char *name;
9175 name = bfd_elf_string_from_elf_section (input_bfd,
9176 symtab_hdr->sh_link,
9177 sym.st_name);
9178 if (name == NULL)
9179 return FALSE;
9181 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9182 sec);
9183 if (sym.st_shndx == SHN_BAD)
9184 return FALSE;
9186 sym.st_value += o->output_offset;
9188 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9189 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9190 return FALSE;
9192 elf_section_data (osec)->this_hdr.sh_info
9193 = finfo->indices[symndx];
9197 if ((o->flags & SEC_HAS_CONTENTS) == 0
9198 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9199 continue;
9201 if ((o->flags & SEC_LINKER_CREATED) != 0)
9203 /* Section was created by _bfd_elf_link_create_dynamic_sections
9204 or somesuch. */
9205 continue;
9208 /* Get the contents of the section. They have been cached by a
9209 relaxation routine. Note that o is a section in an input
9210 file, so the contents field will not have been set by any of
9211 the routines which work on output files. */
9212 if (elf_section_data (o)->this_hdr.contents != NULL)
9213 contents = elf_section_data (o)->this_hdr.contents;
9214 else
9216 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9218 contents = finfo->contents;
9219 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9220 return FALSE;
9223 if ((o->flags & SEC_RELOC) != 0)
9225 Elf_Internal_Rela *internal_relocs;
9226 Elf_Internal_Rela *rel, *relend;
9227 bfd_vma r_type_mask;
9228 int r_sym_shift;
9229 int action_discarded;
9230 int ret;
9232 /* Get the swapped relocs. */
9233 internal_relocs
9234 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9235 finfo->internal_relocs, FALSE);
9236 if (internal_relocs == NULL
9237 && o->reloc_count > 0)
9238 return FALSE;
9240 if (bed->s->arch_size == 32)
9242 r_type_mask = 0xff;
9243 r_sym_shift = 8;
9245 else
9247 r_type_mask = 0xffffffff;
9248 r_sym_shift = 32;
9251 action_discarded = -1;
9252 if (!elf_section_ignore_discarded_relocs (o))
9253 action_discarded = (*bed->action_discarded) (o);
9255 /* Run through the relocs evaluating complex reloc symbols and
9256 looking for relocs against symbols from discarded sections
9257 or section symbols from removed link-once sections.
9258 Complain about relocs against discarded sections. Zero
9259 relocs against removed link-once sections. */
9261 rel = internal_relocs;
9262 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9263 for ( ; rel < relend; rel++)
9265 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9266 unsigned int s_type;
9267 asection **ps, *sec;
9268 struct elf_link_hash_entry *h = NULL;
9269 const char *sym_name;
9271 if (r_symndx == STN_UNDEF)
9272 continue;
9274 if (r_symndx >= locsymcount
9275 || (elf_bad_symtab (input_bfd)
9276 && finfo->sections[r_symndx] == NULL))
9278 h = sym_hashes[r_symndx - extsymoff];
9280 /* Badly formatted input files can contain relocs that
9281 reference non-existant symbols. Check here so that
9282 we do not seg fault. */
9283 if (h == NULL)
9285 char buffer [32];
9287 sprintf_vma (buffer, rel->r_info);
9288 (*_bfd_error_handler)
9289 (_("error: %B contains a reloc (0x%s) for section %A "
9290 "that references a non-existent global symbol"),
9291 input_bfd, o, buffer);
9292 bfd_set_error (bfd_error_bad_value);
9293 return FALSE;
9296 while (h->root.type == bfd_link_hash_indirect
9297 || h->root.type == bfd_link_hash_warning)
9298 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9300 s_type = h->type;
9302 ps = NULL;
9303 if (h->root.type == bfd_link_hash_defined
9304 || h->root.type == bfd_link_hash_defweak)
9305 ps = &h->root.u.def.section;
9307 sym_name = h->root.root.string;
9309 else
9311 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9313 s_type = ELF_ST_TYPE (sym->st_info);
9314 ps = &finfo->sections[r_symndx];
9315 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9316 sym, *ps);
9319 if (s_type == STT_RELC || s_type == STT_SRELC)
9321 bfd_vma val;
9322 bfd_vma dot = (rel->r_offset
9323 + o->output_offset + o->output_section->vma);
9324 #ifdef DEBUG
9325 printf ("Encountered a complex symbol!");
9326 printf (" (input_bfd %s, section %s, reloc %ld\n",
9327 input_bfd->filename, o->name, rel - internal_relocs);
9328 printf (" symbol: idx %8.8lx, name %s\n",
9329 r_symndx, sym_name);
9330 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9331 (unsigned long) rel->r_info,
9332 (unsigned long) rel->r_offset);
9333 #endif
9334 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9335 isymbuf, locsymcount, s_type == STT_SRELC))
9336 return FALSE;
9338 /* Symbol evaluated OK. Update to absolute value. */
9339 set_symbol_value (input_bfd, isymbuf, locsymcount,
9340 r_symndx, val);
9341 continue;
9344 if (action_discarded != -1 && ps != NULL)
9346 /* Complain if the definition comes from a
9347 discarded section. */
9348 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9350 BFD_ASSERT (r_symndx != 0);
9351 if (action_discarded & COMPLAIN)
9352 (*finfo->info->callbacks->einfo)
9353 (_("%X`%s' referenced in section `%A' of %B: "
9354 "defined in discarded section `%A' of %B\n"),
9355 sym_name, o, input_bfd, sec, sec->owner);
9357 /* Try to do the best we can to support buggy old
9358 versions of gcc. Pretend that the symbol is
9359 really defined in the kept linkonce section.
9360 FIXME: This is quite broken. Modifying the
9361 symbol here means we will be changing all later
9362 uses of the symbol, not just in this section. */
9363 if (action_discarded & PRETEND)
9365 asection *kept;
9367 kept = _bfd_elf_check_kept_section (sec,
9368 finfo->info);
9369 if (kept != NULL)
9371 *ps = kept;
9372 continue;
9379 /* Relocate the section by invoking a back end routine.
9381 The back end routine is responsible for adjusting the
9382 section contents as necessary, and (if using Rela relocs
9383 and generating a relocatable output file) adjusting the
9384 reloc addend as necessary.
9386 The back end routine does not have to worry about setting
9387 the reloc address or the reloc symbol index.
9389 The back end routine is given a pointer to the swapped in
9390 internal symbols, and can access the hash table entries
9391 for the external symbols via elf_sym_hashes (input_bfd).
9393 When generating relocatable output, the back end routine
9394 must handle STB_LOCAL/STT_SECTION symbols specially. The
9395 output symbol is going to be a section symbol
9396 corresponding to the output section, which will require
9397 the addend to be adjusted. */
9399 ret = (*relocate_section) (output_bfd, finfo->info,
9400 input_bfd, o, contents,
9401 internal_relocs,
9402 isymbuf,
9403 finfo->sections);
9404 if (!ret)
9405 return FALSE;
9407 if (ret == 2
9408 || finfo->info->relocatable
9409 || finfo->info->emitrelocations)
9411 Elf_Internal_Rela *irela;
9412 Elf_Internal_Rela *irelaend;
9413 bfd_vma last_offset;
9414 struct elf_link_hash_entry **rel_hash;
9415 struct elf_link_hash_entry **rel_hash_list;
9416 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9417 unsigned int next_erel;
9418 bfd_boolean rela_normal;
9420 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9421 rela_normal = (bed->rela_normal
9422 && (input_rel_hdr->sh_entsize
9423 == bed->s->sizeof_rela));
9425 /* Adjust the reloc addresses and symbol indices. */
9427 irela = internal_relocs;
9428 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9429 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9430 + elf_section_data (o->output_section)->rel_count
9431 + elf_section_data (o->output_section)->rel_count2);
9432 rel_hash_list = rel_hash;
9433 last_offset = o->output_offset;
9434 if (!finfo->info->relocatable)
9435 last_offset += o->output_section->vma;
9436 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9438 unsigned long r_symndx;
9439 asection *sec;
9440 Elf_Internal_Sym sym;
9442 if (next_erel == bed->s->int_rels_per_ext_rel)
9444 rel_hash++;
9445 next_erel = 0;
9448 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9449 finfo->info, o,
9450 irela->r_offset);
9451 if (irela->r_offset >= (bfd_vma) -2)
9453 /* This is a reloc for a deleted entry or somesuch.
9454 Turn it into an R_*_NONE reloc, at the same
9455 offset as the last reloc. elf_eh_frame.c and
9456 bfd_elf_discard_info rely on reloc offsets
9457 being ordered. */
9458 irela->r_offset = last_offset;
9459 irela->r_info = 0;
9460 irela->r_addend = 0;
9461 continue;
9464 irela->r_offset += o->output_offset;
9466 /* Relocs in an executable have to be virtual addresses. */
9467 if (!finfo->info->relocatable)
9468 irela->r_offset += o->output_section->vma;
9470 last_offset = irela->r_offset;
9472 r_symndx = irela->r_info >> r_sym_shift;
9473 if (r_symndx == STN_UNDEF)
9474 continue;
9476 if (r_symndx >= locsymcount
9477 || (elf_bad_symtab (input_bfd)
9478 && finfo->sections[r_symndx] == NULL))
9480 struct elf_link_hash_entry *rh;
9481 unsigned long indx;
9483 /* This is a reloc against a global symbol. We
9484 have not yet output all the local symbols, so
9485 we do not know the symbol index of any global
9486 symbol. We set the rel_hash entry for this
9487 reloc to point to the global hash table entry
9488 for this symbol. The symbol index is then
9489 set at the end of bfd_elf_final_link. */
9490 indx = r_symndx - extsymoff;
9491 rh = elf_sym_hashes (input_bfd)[indx];
9492 while (rh->root.type == bfd_link_hash_indirect
9493 || rh->root.type == bfd_link_hash_warning)
9494 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9496 /* Setting the index to -2 tells
9497 elf_link_output_extsym that this symbol is
9498 used by a reloc. */
9499 BFD_ASSERT (rh->indx < 0);
9500 rh->indx = -2;
9502 *rel_hash = rh;
9504 continue;
9507 /* This is a reloc against a local symbol. */
9509 *rel_hash = NULL;
9510 sym = isymbuf[r_symndx];
9511 sec = finfo->sections[r_symndx];
9512 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9514 /* I suppose the backend ought to fill in the
9515 section of any STT_SECTION symbol against a
9516 processor specific section. */
9517 r_symndx = 0;
9518 if (bfd_is_abs_section (sec))
9520 else if (sec == NULL || sec->owner == NULL)
9522 bfd_set_error (bfd_error_bad_value);
9523 return FALSE;
9525 else
9527 asection *osec = sec->output_section;
9529 /* If we have discarded a section, the output
9530 section will be the absolute section. In
9531 case of discarded SEC_MERGE sections, use
9532 the kept section. relocate_section should
9533 have already handled discarded linkonce
9534 sections. */
9535 if (bfd_is_abs_section (osec)
9536 && sec->kept_section != NULL
9537 && sec->kept_section->output_section != NULL)
9539 osec = sec->kept_section->output_section;
9540 irela->r_addend -= osec->vma;
9543 if (!bfd_is_abs_section (osec))
9545 r_symndx = osec->target_index;
9546 if (r_symndx == 0)
9548 struct elf_link_hash_table *htab;
9549 asection *oi;
9551 htab = elf_hash_table (finfo->info);
9552 oi = htab->text_index_section;
9553 if ((osec->flags & SEC_READONLY) == 0
9554 && htab->data_index_section != NULL)
9555 oi = htab->data_index_section;
9557 if (oi != NULL)
9559 irela->r_addend += osec->vma - oi->vma;
9560 r_symndx = oi->target_index;
9564 BFD_ASSERT (r_symndx != 0);
9568 /* Adjust the addend according to where the
9569 section winds up in the output section. */
9570 if (rela_normal)
9571 irela->r_addend += sec->output_offset;
9573 else
9575 if (finfo->indices[r_symndx] == -1)
9577 unsigned long shlink;
9578 const char *name;
9579 asection *osec;
9581 if (finfo->info->strip == strip_all)
9583 /* You can't do ld -r -s. */
9584 bfd_set_error (bfd_error_invalid_operation);
9585 return FALSE;
9588 /* This symbol was skipped earlier, but
9589 since it is needed by a reloc, we
9590 must output it now. */
9591 shlink = symtab_hdr->sh_link;
9592 name = (bfd_elf_string_from_elf_section
9593 (input_bfd, shlink, sym.st_name));
9594 if (name == NULL)
9595 return FALSE;
9597 osec = sec->output_section;
9598 sym.st_shndx =
9599 _bfd_elf_section_from_bfd_section (output_bfd,
9600 osec);
9601 if (sym.st_shndx == SHN_BAD)
9602 return FALSE;
9604 sym.st_value += sec->output_offset;
9605 if (! finfo->info->relocatable)
9607 sym.st_value += osec->vma;
9608 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9610 /* STT_TLS symbols are relative to PT_TLS
9611 segment base. */
9612 BFD_ASSERT (elf_hash_table (finfo->info)
9613 ->tls_sec != NULL);
9614 sym.st_value -= (elf_hash_table (finfo->info)
9615 ->tls_sec->vma);
9619 finfo->indices[r_symndx]
9620 = bfd_get_symcount (output_bfd);
9622 if (! elf_link_output_sym (finfo, name, &sym, sec,
9623 NULL))
9624 return FALSE;
9627 r_symndx = finfo->indices[r_symndx];
9630 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9631 | (irela->r_info & r_type_mask));
9634 /* Swap out the relocs. */
9635 if (input_rel_hdr->sh_size != 0
9636 && !bed->elf_backend_emit_relocs (output_bfd, o,
9637 input_rel_hdr,
9638 internal_relocs,
9639 rel_hash_list))
9640 return FALSE;
9642 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9643 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9645 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9646 * bed->s->int_rels_per_ext_rel);
9647 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9648 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9649 input_rel_hdr2,
9650 internal_relocs,
9651 rel_hash_list))
9652 return FALSE;
9657 /* Write out the modified section contents. */
9658 if (bed->elf_backend_write_section
9659 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9660 contents))
9662 /* Section written out. */
9664 else switch (o->sec_info_type)
9666 case ELF_INFO_TYPE_STABS:
9667 if (! (_bfd_write_section_stabs
9668 (output_bfd,
9669 &elf_hash_table (finfo->info)->stab_info,
9670 o, &elf_section_data (o)->sec_info, contents)))
9671 return FALSE;
9672 break;
9673 case ELF_INFO_TYPE_MERGE:
9674 if (! _bfd_write_merged_section (output_bfd, o,
9675 elf_section_data (o)->sec_info))
9676 return FALSE;
9677 break;
9678 case ELF_INFO_TYPE_EH_FRAME:
9680 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9681 o, contents))
9682 return FALSE;
9684 break;
9685 default:
9687 if (! (o->flags & SEC_EXCLUDE)
9688 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9689 && ! bfd_set_section_contents (output_bfd, o->output_section,
9690 contents,
9691 (file_ptr) o->output_offset,
9692 o->size))
9693 return FALSE;
9695 break;
9699 return TRUE;
9702 /* Generate a reloc when linking an ELF file. This is a reloc
9703 requested by the linker, and does not come from any input file. This
9704 is used to build constructor and destructor tables when linking
9705 with -Ur. */
9707 static bfd_boolean
9708 elf_reloc_link_order (bfd *output_bfd,
9709 struct bfd_link_info *info,
9710 asection *output_section,
9711 struct bfd_link_order *link_order)
9713 reloc_howto_type *howto;
9714 long indx;
9715 bfd_vma offset;
9716 bfd_vma addend;
9717 struct elf_link_hash_entry **rel_hash_ptr;
9718 Elf_Internal_Shdr *rel_hdr;
9719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9720 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9721 bfd_byte *erel;
9722 unsigned int i;
9724 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9725 if (howto == NULL)
9727 bfd_set_error (bfd_error_bad_value);
9728 return FALSE;
9731 addend = link_order->u.reloc.p->addend;
9733 /* Figure out the symbol index. */
9734 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9735 + elf_section_data (output_section)->rel_count
9736 + elf_section_data (output_section)->rel_count2);
9737 if (link_order->type == bfd_section_reloc_link_order)
9739 indx = link_order->u.reloc.p->u.section->target_index;
9740 BFD_ASSERT (indx != 0);
9741 *rel_hash_ptr = NULL;
9743 else
9745 struct elf_link_hash_entry *h;
9747 /* Treat a reloc against a defined symbol as though it were
9748 actually against the section. */
9749 h = ((struct elf_link_hash_entry *)
9750 bfd_wrapped_link_hash_lookup (output_bfd, info,
9751 link_order->u.reloc.p->u.name,
9752 FALSE, FALSE, TRUE));
9753 if (h != NULL
9754 && (h->root.type == bfd_link_hash_defined
9755 || h->root.type == bfd_link_hash_defweak))
9757 asection *section;
9759 section = h->root.u.def.section;
9760 indx = section->output_section->target_index;
9761 *rel_hash_ptr = NULL;
9762 /* It seems that we ought to add the symbol value to the
9763 addend here, but in practice it has already been added
9764 because it was passed to constructor_callback. */
9765 addend += section->output_section->vma + section->output_offset;
9767 else if (h != NULL)
9769 /* Setting the index to -2 tells elf_link_output_extsym that
9770 this symbol is used by a reloc. */
9771 h->indx = -2;
9772 *rel_hash_ptr = h;
9773 indx = 0;
9775 else
9777 if (! ((*info->callbacks->unattached_reloc)
9778 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9779 return FALSE;
9780 indx = 0;
9784 /* If this is an inplace reloc, we must write the addend into the
9785 object file. */
9786 if (howto->partial_inplace && addend != 0)
9788 bfd_size_type size;
9789 bfd_reloc_status_type rstat;
9790 bfd_byte *buf;
9791 bfd_boolean ok;
9792 const char *sym_name;
9794 size = bfd_get_reloc_size (howto);
9795 buf = bfd_zmalloc (size);
9796 if (buf == NULL)
9797 return FALSE;
9798 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9799 switch (rstat)
9801 case bfd_reloc_ok:
9802 break;
9804 default:
9805 case bfd_reloc_outofrange:
9806 abort ();
9808 case bfd_reloc_overflow:
9809 if (link_order->type == bfd_section_reloc_link_order)
9810 sym_name = bfd_section_name (output_bfd,
9811 link_order->u.reloc.p->u.section);
9812 else
9813 sym_name = link_order->u.reloc.p->u.name;
9814 if (! ((*info->callbacks->reloc_overflow)
9815 (info, NULL, sym_name, howto->name, addend, NULL,
9816 NULL, (bfd_vma) 0)))
9818 free (buf);
9819 return FALSE;
9821 break;
9823 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9824 link_order->offset, size);
9825 free (buf);
9826 if (! ok)
9827 return FALSE;
9830 /* The address of a reloc is relative to the section in a
9831 relocatable file, and is a virtual address in an executable
9832 file. */
9833 offset = link_order->offset;
9834 if (! info->relocatable)
9835 offset += output_section->vma;
9837 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9839 irel[i].r_offset = offset;
9840 irel[i].r_info = 0;
9841 irel[i].r_addend = 0;
9843 if (bed->s->arch_size == 32)
9844 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9845 else
9846 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9848 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9849 erel = rel_hdr->contents;
9850 if (rel_hdr->sh_type == SHT_REL)
9852 erel += (elf_section_data (output_section)->rel_count
9853 * bed->s->sizeof_rel);
9854 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9856 else
9858 irel[0].r_addend = addend;
9859 erel += (elf_section_data (output_section)->rel_count
9860 * bed->s->sizeof_rela);
9861 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9864 ++elf_section_data (output_section)->rel_count;
9866 return TRUE;
9870 /* Get the output vma of the section pointed to by the sh_link field. */
9872 static bfd_vma
9873 elf_get_linked_section_vma (struct bfd_link_order *p)
9875 Elf_Internal_Shdr **elf_shdrp;
9876 asection *s;
9877 int elfsec;
9879 s = p->u.indirect.section;
9880 elf_shdrp = elf_elfsections (s->owner);
9881 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9882 elfsec = elf_shdrp[elfsec]->sh_link;
9883 /* PR 290:
9884 The Intel C compiler generates SHT_IA_64_UNWIND with
9885 SHF_LINK_ORDER. But it doesn't set the sh_link or
9886 sh_info fields. Hence we could get the situation
9887 where elfsec is 0. */
9888 if (elfsec == 0)
9890 const struct elf_backend_data *bed
9891 = get_elf_backend_data (s->owner);
9892 if (bed->link_order_error_handler)
9893 bed->link_order_error_handler
9894 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9895 return 0;
9897 else
9899 s = elf_shdrp[elfsec]->bfd_section;
9900 return s->output_section->vma + s->output_offset;
9905 /* Compare two sections based on the locations of the sections they are
9906 linked to. Used by elf_fixup_link_order. */
9908 static int
9909 compare_link_order (const void * a, const void * b)
9911 bfd_vma apos;
9912 bfd_vma bpos;
9914 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9915 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9916 if (apos < bpos)
9917 return -1;
9918 return apos > bpos;
9922 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9923 order as their linked sections. Returns false if this could not be done
9924 because an output section includes both ordered and unordered
9925 sections. Ideally we'd do this in the linker proper. */
9927 static bfd_boolean
9928 elf_fixup_link_order (bfd *abfd, asection *o)
9930 int seen_linkorder;
9931 int seen_other;
9932 int n;
9933 struct bfd_link_order *p;
9934 bfd *sub;
9935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9936 unsigned elfsec;
9937 struct bfd_link_order **sections;
9938 asection *s, *other_sec, *linkorder_sec;
9939 bfd_vma offset;
9941 other_sec = NULL;
9942 linkorder_sec = NULL;
9943 seen_other = 0;
9944 seen_linkorder = 0;
9945 for (p = o->map_head.link_order; p != NULL; p = p->next)
9947 if (p->type == bfd_indirect_link_order)
9949 s = p->u.indirect.section;
9950 sub = s->owner;
9951 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9952 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9953 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9954 && elfsec < elf_numsections (sub)
9955 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9956 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9958 seen_linkorder++;
9959 linkorder_sec = s;
9961 else
9963 seen_other++;
9964 other_sec = s;
9967 else
9968 seen_other++;
9970 if (seen_other && seen_linkorder)
9972 if (other_sec && linkorder_sec)
9973 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9974 o, linkorder_sec,
9975 linkorder_sec->owner, other_sec,
9976 other_sec->owner);
9977 else
9978 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9980 bfd_set_error (bfd_error_bad_value);
9981 return FALSE;
9985 if (!seen_linkorder)
9986 return TRUE;
9988 sections = (struct bfd_link_order **)
9989 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9990 if (sections == NULL)
9991 return FALSE;
9992 seen_linkorder = 0;
9994 for (p = o->map_head.link_order; p != NULL; p = p->next)
9996 sections[seen_linkorder++] = p;
9998 /* Sort the input sections in the order of their linked section. */
9999 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10000 compare_link_order);
10002 /* Change the offsets of the sections. */
10003 offset = 0;
10004 for (n = 0; n < seen_linkorder; n++)
10006 s = sections[n]->u.indirect.section;
10007 offset &= ~(bfd_vma) 0 << s->alignment_power;
10008 s->output_offset = offset;
10009 sections[n]->offset = offset;
10010 offset += sections[n]->size;
10013 free (sections);
10014 return TRUE;
10018 /* Do the final step of an ELF link. */
10020 bfd_boolean
10021 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10023 bfd_boolean dynamic;
10024 bfd_boolean emit_relocs;
10025 bfd *dynobj;
10026 struct elf_final_link_info finfo;
10027 register asection *o;
10028 register struct bfd_link_order *p;
10029 register bfd *sub;
10030 bfd_size_type max_contents_size;
10031 bfd_size_type max_external_reloc_size;
10032 bfd_size_type max_internal_reloc_count;
10033 bfd_size_type max_sym_count;
10034 bfd_size_type max_sym_shndx_count;
10035 file_ptr off;
10036 Elf_Internal_Sym elfsym;
10037 unsigned int i;
10038 Elf_Internal_Shdr *symtab_hdr;
10039 Elf_Internal_Shdr *symtab_shndx_hdr;
10040 Elf_Internal_Shdr *symstrtab_hdr;
10041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10042 struct elf_outext_info eoinfo;
10043 bfd_boolean merged;
10044 size_t relativecount = 0;
10045 asection *reldyn = 0;
10046 bfd_size_type amt;
10047 asection *attr_section = NULL;
10048 bfd_vma attr_size = 0;
10049 const char *std_attrs_section;
10051 if (! is_elf_hash_table (info->hash))
10052 return FALSE;
10054 if (info->shared)
10055 abfd->flags |= DYNAMIC;
10057 dynamic = elf_hash_table (info)->dynamic_sections_created;
10058 dynobj = elf_hash_table (info)->dynobj;
10060 emit_relocs = (info->relocatable
10061 || info->emitrelocations);
10063 finfo.info = info;
10064 finfo.output_bfd = abfd;
10065 finfo.symstrtab = _bfd_elf_stringtab_init ();
10066 if (finfo.symstrtab == NULL)
10067 return FALSE;
10069 if (! dynamic)
10071 finfo.dynsym_sec = NULL;
10072 finfo.hash_sec = NULL;
10073 finfo.symver_sec = NULL;
10075 else
10077 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10078 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10079 BFD_ASSERT (finfo.dynsym_sec != NULL);
10080 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10081 /* Note that it is OK if symver_sec is NULL. */
10084 finfo.contents = NULL;
10085 finfo.external_relocs = NULL;
10086 finfo.internal_relocs = NULL;
10087 finfo.external_syms = NULL;
10088 finfo.locsym_shndx = NULL;
10089 finfo.internal_syms = NULL;
10090 finfo.indices = NULL;
10091 finfo.sections = NULL;
10092 finfo.symbuf = NULL;
10093 finfo.symshndxbuf = NULL;
10094 finfo.symbuf_count = 0;
10095 finfo.shndxbuf_size = 0;
10097 /* The object attributes have been merged. Remove the input
10098 sections from the link, and set the contents of the output
10099 secton. */
10100 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10101 for (o = abfd->sections; o != NULL; o = o->next)
10103 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10104 || strcmp (o->name, ".gnu.attributes") == 0)
10106 for (p = o->map_head.link_order; p != NULL; p = p->next)
10108 asection *input_section;
10110 if (p->type != bfd_indirect_link_order)
10111 continue;
10112 input_section = p->u.indirect.section;
10113 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10114 elf_link_input_bfd ignores this section. */
10115 input_section->flags &= ~SEC_HAS_CONTENTS;
10118 attr_size = bfd_elf_obj_attr_size (abfd);
10119 if (attr_size)
10121 bfd_set_section_size (abfd, o, attr_size);
10122 attr_section = o;
10123 /* Skip this section later on. */
10124 o->map_head.link_order = NULL;
10126 else
10127 o->flags |= SEC_EXCLUDE;
10131 /* Count up the number of relocations we will output for each output
10132 section, so that we know the sizes of the reloc sections. We
10133 also figure out some maximum sizes. */
10134 max_contents_size = 0;
10135 max_external_reloc_size = 0;
10136 max_internal_reloc_count = 0;
10137 max_sym_count = 0;
10138 max_sym_shndx_count = 0;
10139 merged = FALSE;
10140 for (o = abfd->sections; o != NULL; o = o->next)
10142 struct bfd_elf_section_data *esdo = elf_section_data (o);
10143 o->reloc_count = 0;
10145 for (p = o->map_head.link_order; p != NULL; p = p->next)
10147 unsigned int reloc_count = 0;
10148 struct bfd_elf_section_data *esdi = NULL;
10149 unsigned int *rel_count1;
10151 if (p->type == bfd_section_reloc_link_order
10152 || p->type == bfd_symbol_reloc_link_order)
10153 reloc_count = 1;
10154 else if (p->type == bfd_indirect_link_order)
10156 asection *sec;
10158 sec = p->u.indirect.section;
10159 esdi = elf_section_data (sec);
10161 /* Mark all sections which are to be included in the
10162 link. This will normally be every section. We need
10163 to do this so that we can identify any sections which
10164 the linker has decided to not include. */
10165 sec->linker_mark = TRUE;
10167 if (sec->flags & SEC_MERGE)
10168 merged = TRUE;
10170 if (info->relocatable || info->emitrelocations)
10171 reloc_count = sec->reloc_count;
10172 else if (bed->elf_backend_count_relocs)
10173 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10175 if (sec->rawsize > max_contents_size)
10176 max_contents_size = sec->rawsize;
10177 if (sec->size > max_contents_size)
10178 max_contents_size = sec->size;
10180 /* We are interested in just local symbols, not all
10181 symbols. */
10182 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10183 && (sec->owner->flags & DYNAMIC) == 0)
10185 size_t sym_count;
10187 if (elf_bad_symtab (sec->owner))
10188 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10189 / bed->s->sizeof_sym);
10190 else
10191 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10193 if (sym_count > max_sym_count)
10194 max_sym_count = sym_count;
10196 if (sym_count > max_sym_shndx_count
10197 && elf_symtab_shndx (sec->owner) != 0)
10198 max_sym_shndx_count = sym_count;
10200 if ((sec->flags & SEC_RELOC) != 0)
10202 size_t ext_size;
10204 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10205 if (ext_size > max_external_reloc_size)
10206 max_external_reloc_size = ext_size;
10207 if (sec->reloc_count > max_internal_reloc_count)
10208 max_internal_reloc_count = sec->reloc_count;
10213 if (reloc_count == 0)
10214 continue;
10216 o->reloc_count += reloc_count;
10218 /* MIPS may have a mix of REL and RELA relocs on sections.
10219 To support this curious ABI we keep reloc counts in
10220 elf_section_data too. We must be careful to add the
10221 relocations from the input section to the right output
10222 count. FIXME: Get rid of one count. We have
10223 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10224 rel_count1 = &esdo->rel_count;
10225 if (esdi != NULL)
10227 bfd_boolean same_size;
10228 bfd_size_type entsize1;
10230 entsize1 = esdi->rel_hdr.sh_entsize;
10231 /* PR 9827: If the header size has not been set yet then
10232 assume that it will match the output section's reloc type. */
10233 if (entsize1 == 0)
10234 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10235 else
10236 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10237 || entsize1 == bed->s->sizeof_rela);
10238 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10240 if (!same_size)
10241 rel_count1 = &esdo->rel_count2;
10243 if (esdi->rel_hdr2 != NULL)
10245 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10246 unsigned int alt_count;
10247 unsigned int *rel_count2;
10249 BFD_ASSERT (entsize2 != entsize1
10250 && (entsize2 == bed->s->sizeof_rel
10251 || entsize2 == bed->s->sizeof_rela));
10253 rel_count2 = &esdo->rel_count2;
10254 if (!same_size)
10255 rel_count2 = &esdo->rel_count;
10257 /* The following is probably too simplistic if the
10258 backend counts output relocs unusually. */
10259 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10260 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10261 *rel_count2 += alt_count;
10262 reloc_count -= alt_count;
10265 *rel_count1 += reloc_count;
10268 if (o->reloc_count > 0)
10269 o->flags |= SEC_RELOC;
10270 else
10272 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10273 set it (this is probably a bug) and if it is set
10274 assign_section_numbers will create a reloc section. */
10275 o->flags &=~ SEC_RELOC;
10278 /* If the SEC_ALLOC flag is not set, force the section VMA to
10279 zero. This is done in elf_fake_sections as well, but forcing
10280 the VMA to 0 here will ensure that relocs against these
10281 sections are handled correctly. */
10282 if ((o->flags & SEC_ALLOC) == 0
10283 && ! o->user_set_vma)
10284 o->vma = 0;
10287 if (! info->relocatable && merged)
10288 elf_link_hash_traverse (elf_hash_table (info),
10289 _bfd_elf_link_sec_merge_syms, abfd);
10291 /* Figure out the file positions for everything but the symbol table
10292 and the relocs. We set symcount to force assign_section_numbers
10293 to create a symbol table. */
10294 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10295 BFD_ASSERT (! abfd->output_has_begun);
10296 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10297 goto error_return;
10299 /* Set sizes, and assign file positions for reloc sections. */
10300 for (o = abfd->sections; o != NULL; o = o->next)
10302 if ((o->flags & SEC_RELOC) != 0)
10304 if (!(_bfd_elf_link_size_reloc_section
10305 (abfd, &elf_section_data (o)->rel_hdr, o)))
10306 goto error_return;
10308 if (elf_section_data (o)->rel_hdr2
10309 && !(_bfd_elf_link_size_reloc_section
10310 (abfd, elf_section_data (o)->rel_hdr2, o)))
10311 goto error_return;
10314 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10315 to count upwards while actually outputting the relocations. */
10316 elf_section_data (o)->rel_count = 0;
10317 elf_section_data (o)->rel_count2 = 0;
10320 _bfd_elf_assign_file_positions_for_relocs (abfd);
10322 /* We have now assigned file positions for all the sections except
10323 .symtab and .strtab. We start the .symtab section at the current
10324 file position, and write directly to it. We build the .strtab
10325 section in memory. */
10326 bfd_get_symcount (abfd) = 0;
10327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10328 /* sh_name is set in prep_headers. */
10329 symtab_hdr->sh_type = SHT_SYMTAB;
10330 /* sh_flags, sh_addr and sh_size all start off zero. */
10331 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10332 /* sh_link is set in assign_section_numbers. */
10333 /* sh_info is set below. */
10334 /* sh_offset is set just below. */
10335 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10337 off = elf_tdata (abfd)->next_file_pos;
10338 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10340 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10341 incorrect. We do not yet know the size of the .symtab section.
10342 We correct next_file_pos below, after we do know the size. */
10344 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10345 continuously seeking to the right position in the file. */
10346 if (! info->keep_memory || max_sym_count < 20)
10347 finfo.symbuf_size = 20;
10348 else
10349 finfo.symbuf_size = max_sym_count;
10350 amt = finfo.symbuf_size;
10351 amt *= bed->s->sizeof_sym;
10352 finfo.symbuf = bfd_malloc (amt);
10353 if (finfo.symbuf == NULL)
10354 goto error_return;
10355 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10357 /* Wild guess at number of output symbols. realloc'd as needed. */
10358 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10359 finfo.shndxbuf_size = amt;
10360 amt *= sizeof (Elf_External_Sym_Shndx);
10361 finfo.symshndxbuf = bfd_zmalloc (amt);
10362 if (finfo.symshndxbuf == NULL)
10363 goto error_return;
10366 /* Start writing out the symbol table. The first symbol is always a
10367 dummy symbol. */
10368 if (info->strip != strip_all
10369 || emit_relocs)
10371 elfsym.st_value = 0;
10372 elfsym.st_size = 0;
10373 elfsym.st_info = 0;
10374 elfsym.st_other = 0;
10375 elfsym.st_shndx = SHN_UNDEF;
10376 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10377 NULL))
10378 goto error_return;
10381 /* Output a symbol for each section. We output these even if we are
10382 discarding local symbols, since they are used for relocs. These
10383 symbols have no names. We store the index of each one in the
10384 index field of the section, so that we can find it again when
10385 outputting relocs. */
10386 if (info->strip != strip_all
10387 || emit_relocs)
10389 elfsym.st_size = 0;
10390 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10391 elfsym.st_other = 0;
10392 elfsym.st_value = 0;
10393 for (i = 1; i < elf_numsections (abfd); i++)
10395 o = bfd_section_from_elf_index (abfd, i);
10396 if (o != NULL)
10398 o->target_index = bfd_get_symcount (abfd);
10399 elfsym.st_shndx = i;
10400 if (!info->relocatable)
10401 elfsym.st_value = o->vma;
10402 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10403 goto error_return;
10408 /* Allocate some memory to hold information read in from the input
10409 files. */
10410 if (max_contents_size != 0)
10412 finfo.contents = bfd_malloc (max_contents_size);
10413 if (finfo.contents == NULL)
10414 goto error_return;
10417 if (max_external_reloc_size != 0)
10419 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10420 if (finfo.external_relocs == NULL)
10421 goto error_return;
10424 if (max_internal_reloc_count != 0)
10426 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10427 amt *= sizeof (Elf_Internal_Rela);
10428 finfo.internal_relocs = bfd_malloc (amt);
10429 if (finfo.internal_relocs == NULL)
10430 goto error_return;
10433 if (max_sym_count != 0)
10435 amt = max_sym_count * bed->s->sizeof_sym;
10436 finfo.external_syms = bfd_malloc (amt);
10437 if (finfo.external_syms == NULL)
10438 goto error_return;
10440 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10441 finfo.internal_syms = bfd_malloc (amt);
10442 if (finfo.internal_syms == NULL)
10443 goto error_return;
10445 amt = max_sym_count * sizeof (long);
10446 finfo.indices = bfd_malloc (amt);
10447 if (finfo.indices == NULL)
10448 goto error_return;
10450 amt = max_sym_count * sizeof (asection *);
10451 finfo.sections = bfd_malloc (amt);
10452 if (finfo.sections == NULL)
10453 goto error_return;
10456 if (max_sym_shndx_count != 0)
10458 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10459 finfo.locsym_shndx = bfd_malloc (amt);
10460 if (finfo.locsym_shndx == NULL)
10461 goto error_return;
10464 if (elf_hash_table (info)->tls_sec)
10466 bfd_vma base, end = 0;
10467 asection *sec;
10469 for (sec = elf_hash_table (info)->tls_sec;
10470 sec && (sec->flags & SEC_THREAD_LOCAL);
10471 sec = sec->next)
10473 bfd_size_type size = sec->size;
10475 if (size == 0
10476 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10478 struct bfd_link_order *o = sec->map_tail.link_order;
10479 if (o != NULL)
10480 size = o->offset + o->size;
10482 end = sec->vma + size;
10484 base = elf_hash_table (info)->tls_sec->vma;
10485 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10486 elf_hash_table (info)->tls_size = end - base;
10489 /* Reorder SHF_LINK_ORDER sections. */
10490 for (o = abfd->sections; o != NULL; o = o->next)
10492 if (!elf_fixup_link_order (abfd, o))
10493 return FALSE;
10496 /* Since ELF permits relocations to be against local symbols, we
10497 must have the local symbols available when we do the relocations.
10498 Since we would rather only read the local symbols once, and we
10499 would rather not keep them in memory, we handle all the
10500 relocations for a single input file at the same time.
10502 Unfortunately, there is no way to know the total number of local
10503 symbols until we have seen all of them, and the local symbol
10504 indices precede the global symbol indices. This means that when
10505 we are generating relocatable output, and we see a reloc against
10506 a global symbol, we can not know the symbol index until we have
10507 finished examining all the local symbols to see which ones we are
10508 going to output. To deal with this, we keep the relocations in
10509 memory, and don't output them until the end of the link. This is
10510 an unfortunate waste of memory, but I don't see a good way around
10511 it. Fortunately, it only happens when performing a relocatable
10512 link, which is not the common case. FIXME: If keep_memory is set
10513 we could write the relocs out and then read them again; I don't
10514 know how bad the memory loss will be. */
10516 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10517 sub->output_has_begun = FALSE;
10518 for (o = abfd->sections; o != NULL; o = o->next)
10520 for (p = o->map_head.link_order; p != NULL; p = p->next)
10522 if (p->type == bfd_indirect_link_order
10523 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10524 == bfd_target_elf_flavour)
10525 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10527 if (! sub->output_has_begun)
10529 if (! elf_link_input_bfd (&finfo, sub))
10530 goto error_return;
10531 sub->output_has_begun = TRUE;
10534 else if (p->type == bfd_section_reloc_link_order
10535 || p->type == bfd_symbol_reloc_link_order)
10537 if (! elf_reloc_link_order (abfd, info, o, p))
10538 goto error_return;
10540 else
10542 if (! _bfd_default_link_order (abfd, info, o, p))
10543 goto error_return;
10548 /* Free symbol buffer if needed. */
10549 if (!info->reduce_memory_overheads)
10551 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10552 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10553 && elf_tdata (sub)->symbuf)
10555 free (elf_tdata (sub)->symbuf);
10556 elf_tdata (sub)->symbuf = NULL;
10560 /* Output any global symbols that got converted to local in a
10561 version script or due to symbol visibility. We do this in a
10562 separate step since ELF requires all local symbols to appear
10563 prior to any global symbols. FIXME: We should only do this if
10564 some global symbols were, in fact, converted to become local.
10565 FIXME: Will this work correctly with the Irix 5 linker? */
10566 eoinfo.failed = FALSE;
10567 eoinfo.finfo = &finfo;
10568 eoinfo.localsyms = TRUE;
10569 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10570 &eoinfo);
10571 if (eoinfo.failed)
10572 return FALSE;
10574 /* If backend needs to output some local symbols not present in the hash
10575 table, do it now. */
10576 if (bed->elf_backend_output_arch_local_syms)
10578 typedef bfd_boolean (*out_sym_func)
10579 (void *, const char *, Elf_Internal_Sym *, asection *,
10580 struct elf_link_hash_entry *);
10582 if (! ((*bed->elf_backend_output_arch_local_syms)
10583 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10584 return FALSE;
10587 /* That wrote out all the local symbols. Finish up the symbol table
10588 with the global symbols. Even if we want to strip everything we
10589 can, we still need to deal with those global symbols that got
10590 converted to local in a version script. */
10592 /* The sh_info field records the index of the first non local symbol. */
10593 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10595 if (dynamic
10596 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10598 Elf_Internal_Sym sym;
10599 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10600 long last_local = 0;
10602 /* Write out the section symbols for the output sections. */
10603 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10605 asection *s;
10607 sym.st_size = 0;
10608 sym.st_name = 0;
10609 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10610 sym.st_other = 0;
10612 for (s = abfd->sections; s != NULL; s = s->next)
10614 int indx;
10615 bfd_byte *dest;
10616 long dynindx;
10618 dynindx = elf_section_data (s)->dynindx;
10619 if (dynindx <= 0)
10620 continue;
10621 indx = elf_section_data (s)->this_idx;
10622 BFD_ASSERT (indx > 0);
10623 sym.st_shndx = indx;
10624 if (! check_dynsym (abfd, &sym))
10625 return FALSE;
10626 sym.st_value = s->vma;
10627 dest = dynsym + dynindx * bed->s->sizeof_sym;
10628 if (last_local < dynindx)
10629 last_local = dynindx;
10630 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10634 /* Write out the local dynsyms. */
10635 if (elf_hash_table (info)->dynlocal)
10637 struct elf_link_local_dynamic_entry *e;
10638 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10640 asection *s;
10641 bfd_byte *dest;
10643 sym.st_size = e->isym.st_size;
10644 sym.st_other = e->isym.st_other;
10646 /* Copy the internal symbol as is.
10647 Note that we saved a word of storage and overwrote
10648 the original st_name with the dynstr_index. */
10649 sym = e->isym;
10651 s = bfd_section_from_elf_index (e->input_bfd,
10652 e->isym.st_shndx);
10653 if (s != NULL)
10655 sym.st_shndx =
10656 elf_section_data (s->output_section)->this_idx;
10657 if (! check_dynsym (abfd, &sym))
10658 return FALSE;
10659 sym.st_value = (s->output_section->vma
10660 + s->output_offset
10661 + e->isym.st_value);
10664 if (last_local < e->dynindx)
10665 last_local = e->dynindx;
10667 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10668 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10672 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10673 last_local + 1;
10676 /* We get the global symbols from the hash table. */
10677 eoinfo.failed = FALSE;
10678 eoinfo.localsyms = FALSE;
10679 eoinfo.finfo = &finfo;
10680 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10681 &eoinfo);
10682 if (eoinfo.failed)
10683 return FALSE;
10685 /* If backend needs to output some symbols not present in the hash
10686 table, do it now. */
10687 if (bed->elf_backend_output_arch_syms)
10689 typedef bfd_boolean (*out_sym_func)
10690 (void *, const char *, Elf_Internal_Sym *, asection *,
10691 struct elf_link_hash_entry *);
10693 if (! ((*bed->elf_backend_output_arch_syms)
10694 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10695 return FALSE;
10698 /* Flush all symbols to the file. */
10699 if (! elf_link_flush_output_syms (&finfo, bed))
10700 return FALSE;
10702 /* Now we know the size of the symtab section. */
10703 off += symtab_hdr->sh_size;
10705 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10706 if (symtab_shndx_hdr->sh_name != 0)
10708 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10709 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10710 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10711 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10712 symtab_shndx_hdr->sh_size = amt;
10714 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10715 off, TRUE);
10717 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10718 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10719 return FALSE;
10723 /* Finish up and write out the symbol string table (.strtab)
10724 section. */
10725 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10726 /* sh_name was set in prep_headers. */
10727 symstrtab_hdr->sh_type = SHT_STRTAB;
10728 symstrtab_hdr->sh_flags = 0;
10729 symstrtab_hdr->sh_addr = 0;
10730 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10731 symstrtab_hdr->sh_entsize = 0;
10732 symstrtab_hdr->sh_link = 0;
10733 symstrtab_hdr->sh_info = 0;
10734 /* sh_offset is set just below. */
10735 symstrtab_hdr->sh_addralign = 1;
10737 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10738 elf_tdata (abfd)->next_file_pos = off;
10740 if (bfd_get_symcount (abfd) > 0)
10742 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10743 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10744 return FALSE;
10747 /* Adjust the relocs to have the correct symbol indices. */
10748 for (o = abfd->sections; o != NULL; o = o->next)
10750 if ((o->flags & SEC_RELOC) == 0)
10751 continue;
10753 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10754 elf_section_data (o)->rel_count,
10755 elf_section_data (o)->rel_hashes);
10756 if (elf_section_data (o)->rel_hdr2 != NULL)
10757 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10758 elf_section_data (o)->rel_count2,
10759 (elf_section_data (o)->rel_hashes
10760 + elf_section_data (o)->rel_count));
10762 /* Set the reloc_count field to 0 to prevent write_relocs from
10763 trying to swap the relocs out itself. */
10764 o->reloc_count = 0;
10767 if (dynamic && info->combreloc && dynobj != NULL)
10768 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10770 /* If we are linking against a dynamic object, or generating a
10771 shared library, finish up the dynamic linking information. */
10772 if (dynamic)
10774 bfd_byte *dyncon, *dynconend;
10776 /* Fix up .dynamic entries. */
10777 o = bfd_get_section_by_name (dynobj, ".dynamic");
10778 BFD_ASSERT (o != NULL);
10780 dyncon = o->contents;
10781 dynconend = o->contents + o->size;
10782 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10784 Elf_Internal_Dyn dyn;
10785 const char *name;
10786 unsigned int type;
10788 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10790 switch (dyn.d_tag)
10792 default:
10793 continue;
10794 case DT_NULL:
10795 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10797 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10799 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10800 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10801 default: continue;
10803 dyn.d_un.d_val = relativecount;
10804 relativecount = 0;
10805 break;
10807 continue;
10809 case DT_INIT:
10810 name = info->init_function;
10811 goto get_sym;
10812 case DT_FINI:
10813 name = info->fini_function;
10814 get_sym:
10816 struct elf_link_hash_entry *h;
10818 h = elf_link_hash_lookup (elf_hash_table (info), name,
10819 FALSE, FALSE, TRUE);
10820 if (h != NULL
10821 && (h->root.type == bfd_link_hash_defined
10822 || h->root.type == bfd_link_hash_defweak))
10824 dyn.d_un.d_ptr = h->root.u.def.value;
10825 o = h->root.u.def.section;
10826 if (o->output_section != NULL)
10827 dyn.d_un.d_ptr += (o->output_section->vma
10828 + o->output_offset);
10829 else
10831 /* The symbol is imported from another shared
10832 library and does not apply to this one. */
10833 dyn.d_un.d_ptr = 0;
10835 break;
10838 continue;
10840 case DT_PREINIT_ARRAYSZ:
10841 name = ".preinit_array";
10842 goto get_size;
10843 case DT_INIT_ARRAYSZ:
10844 name = ".init_array";
10845 goto get_size;
10846 case DT_FINI_ARRAYSZ:
10847 name = ".fini_array";
10848 get_size:
10849 o = bfd_get_section_by_name (abfd, name);
10850 if (o == NULL)
10852 (*_bfd_error_handler)
10853 (_("%B: could not find output section %s"), abfd, name);
10854 goto error_return;
10856 if (o->size == 0)
10857 (*_bfd_error_handler)
10858 (_("warning: %s section has zero size"), name);
10859 dyn.d_un.d_val = o->size;
10860 break;
10862 case DT_PREINIT_ARRAY:
10863 name = ".preinit_array";
10864 goto get_vma;
10865 case DT_INIT_ARRAY:
10866 name = ".init_array";
10867 goto get_vma;
10868 case DT_FINI_ARRAY:
10869 name = ".fini_array";
10870 goto get_vma;
10872 case DT_HASH:
10873 name = ".hash";
10874 goto get_vma;
10875 case DT_GNU_HASH:
10876 name = ".gnu.hash";
10877 goto get_vma;
10878 case DT_STRTAB:
10879 name = ".dynstr";
10880 goto get_vma;
10881 case DT_SYMTAB:
10882 name = ".dynsym";
10883 goto get_vma;
10884 case DT_VERDEF:
10885 name = ".gnu.version_d";
10886 goto get_vma;
10887 case DT_VERNEED:
10888 name = ".gnu.version_r";
10889 goto get_vma;
10890 case DT_VERSYM:
10891 name = ".gnu.version";
10892 get_vma:
10893 o = bfd_get_section_by_name (abfd, name);
10894 if (o == NULL)
10896 (*_bfd_error_handler)
10897 (_("%B: could not find output section %s"), abfd, name);
10898 goto error_return;
10900 dyn.d_un.d_ptr = o->vma;
10901 break;
10903 case DT_REL:
10904 case DT_RELA:
10905 case DT_RELSZ:
10906 case DT_RELASZ:
10907 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10908 type = SHT_REL;
10909 else
10910 type = SHT_RELA;
10911 dyn.d_un.d_val = 0;
10912 dyn.d_un.d_ptr = 0;
10913 for (i = 1; i < elf_numsections (abfd); i++)
10915 Elf_Internal_Shdr *hdr;
10917 hdr = elf_elfsections (abfd)[i];
10918 if (hdr->sh_type == type
10919 && (hdr->sh_flags & SHF_ALLOC) != 0)
10921 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10922 dyn.d_un.d_val += hdr->sh_size;
10923 else
10925 if (dyn.d_un.d_ptr == 0
10926 || hdr->sh_addr < dyn.d_un.d_ptr)
10927 dyn.d_un.d_ptr = hdr->sh_addr;
10931 break;
10933 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10937 /* If we have created any dynamic sections, then output them. */
10938 if (dynobj != NULL)
10940 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10941 goto error_return;
10943 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10944 if (info->warn_shared_textrel && info->shared)
10946 bfd_byte *dyncon, *dynconend;
10948 /* Fix up .dynamic entries. */
10949 o = bfd_get_section_by_name (dynobj, ".dynamic");
10950 BFD_ASSERT (o != NULL);
10952 dyncon = o->contents;
10953 dynconend = o->contents + o->size;
10954 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10956 Elf_Internal_Dyn dyn;
10958 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10960 if (dyn.d_tag == DT_TEXTREL)
10962 info->callbacks->einfo
10963 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10964 break;
10969 for (o = dynobj->sections; o != NULL; o = o->next)
10971 if ((o->flags & SEC_HAS_CONTENTS) == 0
10972 || o->size == 0
10973 || o->output_section == bfd_abs_section_ptr)
10974 continue;
10975 if ((o->flags & SEC_LINKER_CREATED) == 0)
10977 /* At this point, we are only interested in sections
10978 created by _bfd_elf_link_create_dynamic_sections. */
10979 continue;
10981 if (elf_hash_table (info)->stab_info.stabstr == o)
10982 continue;
10983 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10984 continue;
10985 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10986 != SHT_STRTAB)
10987 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10989 if (! bfd_set_section_contents (abfd, o->output_section,
10990 o->contents,
10991 (file_ptr) o->output_offset,
10992 o->size))
10993 goto error_return;
10995 else
10997 /* The contents of the .dynstr section are actually in a
10998 stringtab. */
10999 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11000 if (bfd_seek (abfd, off, SEEK_SET) != 0
11001 || ! _bfd_elf_strtab_emit (abfd,
11002 elf_hash_table (info)->dynstr))
11003 goto error_return;
11008 if (info->relocatable)
11010 bfd_boolean failed = FALSE;
11012 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11013 if (failed)
11014 goto error_return;
11017 /* If we have optimized stabs strings, output them. */
11018 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11020 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11021 goto error_return;
11024 if (info->eh_frame_hdr)
11026 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11027 goto error_return;
11030 if (finfo.symstrtab != NULL)
11031 _bfd_stringtab_free (finfo.symstrtab);
11032 if (finfo.contents != NULL)
11033 free (finfo.contents);
11034 if (finfo.external_relocs != NULL)
11035 free (finfo.external_relocs);
11036 if (finfo.internal_relocs != NULL)
11037 free (finfo.internal_relocs);
11038 if (finfo.external_syms != NULL)
11039 free (finfo.external_syms);
11040 if (finfo.locsym_shndx != NULL)
11041 free (finfo.locsym_shndx);
11042 if (finfo.internal_syms != NULL)
11043 free (finfo.internal_syms);
11044 if (finfo.indices != NULL)
11045 free (finfo.indices);
11046 if (finfo.sections != NULL)
11047 free (finfo.sections);
11048 if (finfo.symbuf != NULL)
11049 free (finfo.symbuf);
11050 if (finfo.symshndxbuf != NULL)
11051 free (finfo.symshndxbuf);
11052 for (o = abfd->sections; o != NULL; o = o->next)
11054 if ((o->flags & SEC_RELOC) != 0
11055 && elf_section_data (o)->rel_hashes != NULL)
11056 free (elf_section_data (o)->rel_hashes);
11059 elf_tdata (abfd)->linker = TRUE;
11061 if (attr_section)
11063 bfd_byte *contents = bfd_malloc (attr_size);
11064 if (contents == NULL)
11065 return FALSE; /* Bail out and fail. */
11066 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11067 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11068 free (contents);
11071 return TRUE;
11073 error_return:
11074 if (finfo.symstrtab != NULL)
11075 _bfd_stringtab_free (finfo.symstrtab);
11076 if (finfo.contents != NULL)
11077 free (finfo.contents);
11078 if (finfo.external_relocs != NULL)
11079 free (finfo.external_relocs);
11080 if (finfo.internal_relocs != NULL)
11081 free (finfo.internal_relocs);
11082 if (finfo.external_syms != NULL)
11083 free (finfo.external_syms);
11084 if (finfo.locsym_shndx != NULL)
11085 free (finfo.locsym_shndx);
11086 if (finfo.internal_syms != NULL)
11087 free (finfo.internal_syms);
11088 if (finfo.indices != NULL)
11089 free (finfo.indices);
11090 if (finfo.sections != NULL)
11091 free (finfo.sections);
11092 if (finfo.symbuf != NULL)
11093 free (finfo.symbuf);
11094 if (finfo.symshndxbuf != NULL)
11095 free (finfo.symshndxbuf);
11096 for (o = abfd->sections; o != NULL; o = o->next)
11098 if ((o->flags & SEC_RELOC) != 0
11099 && elf_section_data (o)->rel_hashes != NULL)
11100 free (elf_section_data (o)->rel_hashes);
11103 return FALSE;
11106 /* Initialize COOKIE for input bfd ABFD. */
11108 static bfd_boolean
11109 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11110 struct bfd_link_info *info, bfd *abfd)
11112 Elf_Internal_Shdr *symtab_hdr;
11113 const struct elf_backend_data *bed;
11115 bed = get_elf_backend_data (abfd);
11116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11118 cookie->abfd = abfd;
11119 cookie->sym_hashes = elf_sym_hashes (abfd);
11120 cookie->bad_symtab = elf_bad_symtab (abfd);
11121 if (cookie->bad_symtab)
11123 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11124 cookie->extsymoff = 0;
11126 else
11128 cookie->locsymcount = symtab_hdr->sh_info;
11129 cookie->extsymoff = symtab_hdr->sh_info;
11132 if (bed->s->arch_size == 32)
11133 cookie->r_sym_shift = 8;
11134 else
11135 cookie->r_sym_shift = 32;
11137 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11138 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11140 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11141 cookie->locsymcount, 0,
11142 NULL, NULL, NULL);
11143 if (cookie->locsyms == NULL)
11145 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11146 return FALSE;
11148 if (info->keep_memory)
11149 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11151 return TRUE;
11154 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11156 static void
11157 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11159 Elf_Internal_Shdr *symtab_hdr;
11161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11162 if (cookie->locsyms != NULL
11163 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11164 free (cookie->locsyms);
11167 /* Initialize the relocation information in COOKIE for input section SEC
11168 of input bfd ABFD. */
11170 static bfd_boolean
11171 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11172 struct bfd_link_info *info, bfd *abfd,
11173 asection *sec)
11175 const struct elf_backend_data *bed;
11177 if (sec->reloc_count == 0)
11179 cookie->rels = NULL;
11180 cookie->relend = NULL;
11182 else
11184 bed = get_elf_backend_data (abfd);
11186 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11187 info->keep_memory);
11188 if (cookie->rels == NULL)
11189 return FALSE;
11190 cookie->rel = cookie->rels;
11191 cookie->relend = (cookie->rels
11192 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11194 cookie->rel = cookie->rels;
11195 return TRUE;
11198 /* Free the memory allocated by init_reloc_cookie_rels,
11199 if appropriate. */
11201 static void
11202 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11203 asection *sec)
11205 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11206 free (cookie->rels);
11209 /* Initialize the whole of COOKIE for input section SEC. */
11211 static bfd_boolean
11212 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11213 struct bfd_link_info *info,
11214 asection *sec)
11216 if (!init_reloc_cookie (cookie, info, sec->owner))
11217 goto error1;
11218 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11219 goto error2;
11220 return TRUE;
11222 error2:
11223 fini_reloc_cookie (cookie, sec->owner);
11224 error1:
11225 return FALSE;
11228 /* Free the memory allocated by init_reloc_cookie_for_section,
11229 if appropriate. */
11231 static void
11232 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11233 asection *sec)
11235 fini_reloc_cookie_rels (cookie, sec);
11236 fini_reloc_cookie (cookie, sec->owner);
11239 /* Garbage collect unused sections. */
11241 /* Default gc_mark_hook. */
11243 asection *
11244 _bfd_elf_gc_mark_hook (asection *sec,
11245 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11246 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11247 struct elf_link_hash_entry *h,
11248 Elf_Internal_Sym *sym)
11250 if (h != NULL)
11252 switch (h->root.type)
11254 case bfd_link_hash_defined:
11255 case bfd_link_hash_defweak:
11256 return h->root.u.def.section;
11258 case bfd_link_hash_common:
11259 return h->root.u.c.p->section;
11261 default:
11262 break;
11265 else
11266 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11268 return NULL;
11271 /* COOKIE->rel describes a relocation against section SEC, which is
11272 a section we've decided to keep. Return the section that contains
11273 the relocation symbol, or NULL if no section contains it. */
11275 asection *
11276 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11277 elf_gc_mark_hook_fn gc_mark_hook,
11278 struct elf_reloc_cookie *cookie)
11280 unsigned long r_symndx;
11281 struct elf_link_hash_entry *h;
11283 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11284 if (r_symndx == 0)
11285 return NULL;
11287 if (r_symndx >= cookie->locsymcount
11288 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11290 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11291 while (h->root.type == bfd_link_hash_indirect
11292 || h->root.type == bfd_link_hash_warning)
11293 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11294 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11297 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11298 &cookie->locsyms[r_symndx]);
11301 /* COOKIE->rel describes a relocation against section SEC, which is
11302 a section we've decided to keep. Mark the section that contains
11303 the relocation symbol. */
11305 bfd_boolean
11306 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11307 asection *sec,
11308 elf_gc_mark_hook_fn gc_mark_hook,
11309 struct elf_reloc_cookie *cookie)
11311 asection *rsec;
11313 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11314 if (rsec && !rsec->gc_mark)
11316 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11317 rsec->gc_mark = 1;
11318 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11319 return FALSE;
11321 return TRUE;
11324 /* The mark phase of garbage collection. For a given section, mark
11325 it and any sections in this section's group, and all the sections
11326 which define symbols to which it refers. */
11328 bfd_boolean
11329 _bfd_elf_gc_mark (struct bfd_link_info *info,
11330 asection *sec,
11331 elf_gc_mark_hook_fn gc_mark_hook)
11333 bfd_boolean ret;
11334 asection *group_sec, *eh_frame;
11336 sec->gc_mark = 1;
11338 /* Mark all the sections in the group. */
11339 group_sec = elf_section_data (sec)->next_in_group;
11340 if (group_sec && !group_sec->gc_mark)
11341 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11342 return FALSE;
11344 /* Look through the section relocs. */
11345 ret = TRUE;
11346 eh_frame = elf_eh_frame_section (sec->owner);
11347 if ((sec->flags & SEC_RELOC) != 0
11348 && sec->reloc_count > 0
11349 && sec != eh_frame)
11351 struct elf_reloc_cookie cookie;
11353 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11354 ret = FALSE;
11355 else
11357 for (; cookie.rel < cookie.relend; cookie.rel++)
11358 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11360 ret = FALSE;
11361 break;
11363 fini_reloc_cookie_for_section (&cookie, sec);
11367 if (ret && eh_frame && elf_fde_list (sec))
11369 struct elf_reloc_cookie cookie;
11371 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11372 ret = FALSE;
11373 else
11375 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11376 gc_mark_hook, &cookie))
11377 ret = FALSE;
11378 fini_reloc_cookie_for_section (&cookie, eh_frame);
11382 return ret;
11385 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11387 struct elf_gc_sweep_symbol_info
11389 struct bfd_link_info *info;
11390 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11391 bfd_boolean);
11394 static bfd_boolean
11395 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11397 if (h->root.type == bfd_link_hash_warning)
11398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11400 if ((h->root.type == bfd_link_hash_defined
11401 || h->root.type == bfd_link_hash_defweak)
11402 && !h->root.u.def.section->gc_mark
11403 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11405 struct elf_gc_sweep_symbol_info *inf = data;
11406 (*inf->hide_symbol) (inf->info, h, TRUE);
11409 return TRUE;
11412 /* The sweep phase of garbage collection. Remove all garbage sections. */
11414 typedef bfd_boolean (*gc_sweep_hook_fn)
11415 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11417 static bfd_boolean
11418 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11420 bfd *sub;
11421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11422 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11423 unsigned long section_sym_count;
11424 struct elf_gc_sweep_symbol_info sweep_info;
11426 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11428 asection *o;
11430 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11431 continue;
11433 for (o = sub->sections; o != NULL; o = o->next)
11435 /* When any section in a section group is kept, we keep all
11436 sections in the section group. If the first member of
11437 the section group is excluded, we will also exclude the
11438 group section. */
11439 if (o->flags & SEC_GROUP)
11441 asection *first = elf_next_in_group (o);
11442 o->gc_mark = first->gc_mark;
11444 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11445 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11447 /* Keep debug and special sections. */
11448 o->gc_mark = 1;
11451 if (o->gc_mark)
11452 continue;
11454 /* Skip sweeping sections already excluded. */
11455 if (o->flags & SEC_EXCLUDE)
11456 continue;
11458 /* Since this is early in the link process, it is simple
11459 to remove a section from the output. */
11460 o->flags |= SEC_EXCLUDE;
11462 if (info->print_gc_sections && o->size != 0)
11463 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11465 /* But we also have to update some of the relocation
11466 info we collected before. */
11467 if (gc_sweep_hook
11468 && (o->flags & SEC_RELOC) != 0
11469 && o->reloc_count > 0
11470 && !bfd_is_abs_section (o->output_section))
11472 Elf_Internal_Rela *internal_relocs;
11473 bfd_boolean r;
11475 internal_relocs
11476 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11477 info->keep_memory);
11478 if (internal_relocs == NULL)
11479 return FALSE;
11481 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11483 if (elf_section_data (o)->relocs != internal_relocs)
11484 free (internal_relocs);
11486 if (!r)
11487 return FALSE;
11492 /* Remove the symbols that were in the swept sections from the dynamic
11493 symbol table. GCFIXME: Anyone know how to get them out of the
11494 static symbol table as well? */
11495 sweep_info.info = info;
11496 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11497 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11498 &sweep_info);
11500 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11501 return TRUE;
11504 /* Propagate collected vtable information. This is called through
11505 elf_link_hash_traverse. */
11507 static bfd_boolean
11508 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11510 if (h->root.type == bfd_link_hash_warning)
11511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11513 /* Those that are not vtables. */
11514 if (h->vtable == NULL || h->vtable->parent == NULL)
11515 return TRUE;
11517 /* Those vtables that do not have parents, we cannot merge. */
11518 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11519 return TRUE;
11521 /* If we've already been done, exit. */
11522 if (h->vtable->used && h->vtable->used[-1])
11523 return TRUE;
11525 /* Make sure the parent's table is up to date. */
11526 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11528 if (h->vtable->used == NULL)
11530 /* None of this table's entries were referenced. Re-use the
11531 parent's table. */
11532 h->vtable->used = h->vtable->parent->vtable->used;
11533 h->vtable->size = h->vtable->parent->vtable->size;
11535 else
11537 size_t n;
11538 bfd_boolean *cu, *pu;
11540 /* Or the parent's entries into ours. */
11541 cu = h->vtable->used;
11542 cu[-1] = TRUE;
11543 pu = h->vtable->parent->vtable->used;
11544 if (pu != NULL)
11546 const struct elf_backend_data *bed;
11547 unsigned int log_file_align;
11549 bed = get_elf_backend_data (h->root.u.def.section->owner);
11550 log_file_align = bed->s->log_file_align;
11551 n = h->vtable->parent->vtable->size >> log_file_align;
11552 while (n--)
11554 if (*pu)
11555 *cu = TRUE;
11556 pu++;
11557 cu++;
11562 return TRUE;
11565 static bfd_boolean
11566 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11568 asection *sec;
11569 bfd_vma hstart, hend;
11570 Elf_Internal_Rela *relstart, *relend, *rel;
11571 const struct elf_backend_data *bed;
11572 unsigned int log_file_align;
11574 if (h->root.type == bfd_link_hash_warning)
11575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11577 /* Take care of both those symbols that do not describe vtables as
11578 well as those that are not loaded. */
11579 if (h->vtable == NULL || h->vtable->parent == NULL)
11580 return TRUE;
11582 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11583 || h->root.type == bfd_link_hash_defweak);
11585 sec = h->root.u.def.section;
11586 hstart = h->root.u.def.value;
11587 hend = hstart + h->size;
11589 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11590 if (!relstart)
11591 return *(bfd_boolean *) okp = FALSE;
11592 bed = get_elf_backend_data (sec->owner);
11593 log_file_align = bed->s->log_file_align;
11595 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11597 for (rel = relstart; rel < relend; ++rel)
11598 if (rel->r_offset >= hstart && rel->r_offset < hend)
11600 /* If the entry is in use, do nothing. */
11601 if (h->vtable->used
11602 && (rel->r_offset - hstart) < h->vtable->size)
11604 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11605 if (h->vtable->used[entry])
11606 continue;
11608 /* Otherwise, kill it. */
11609 rel->r_offset = rel->r_info = rel->r_addend = 0;
11612 return TRUE;
11615 /* Mark sections containing dynamically referenced symbols. When
11616 building shared libraries, we must assume that any visible symbol is
11617 referenced. */
11619 bfd_boolean
11620 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11622 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11624 if (h->root.type == bfd_link_hash_warning)
11625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11627 if ((h->root.type == bfd_link_hash_defined
11628 || h->root.type == bfd_link_hash_defweak)
11629 && (h->ref_dynamic
11630 || (!info->executable
11631 && h->def_regular
11632 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11633 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11634 h->root.u.def.section->flags |= SEC_KEEP;
11636 return TRUE;
11639 /* Keep all sections containing symbols undefined on the command-line,
11640 and the section containing the entry symbol. */
11642 void
11643 _bfd_elf_gc_keep (struct bfd_link_info *info)
11645 struct bfd_sym_chain *sym;
11647 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11649 struct elf_link_hash_entry *h;
11651 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11652 FALSE, FALSE, FALSE);
11654 if (h != NULL
11655 && (h->root.type == bfd_link_hash_defined
11656 || h->root.type == bfd_link_hash_defweak)
11657 && !bfd_is_abs_section (h->root.u.def.section))
11658 h->root.u.def.section->flags |= SEC_KEEP;
11662 /* Do mark and sweep of unused sections. */
11664 bfd_boolean
11665 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11667 bfd_boolean ok = TRUE;
11668 bfd *sub;
11669 elf_gc_mark_hook_fn gc_mark_hook;
11670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11672 if (!bed->can_gc_sections
11673 || !is_elf_hash_table (info->hash))
11675 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11676 return TRUE;
11679 bed->gc_keep (info);
11681 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11682 at the .eh_frame section if we can mark the FDEs individually. */
11683 _bfd_elf_begin_eh_frame_parsing (info);
11684 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11686 asection *sec;
11687 struct elf_reloc_cookie cookie;
11689 sec = bfd_get_section_by_name (sub, ".eh_frame");
11690 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11692 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11693 if (elf_section_data (sec)->sec_info)
11694 elf_eh_frame_section (sub) = sec;
11695 fini_reloc_cookie_for_section (&cookie, sec);
11698 _bfd_elf_end_eh_frame_parsing (info);
11700 /* Apply transitive closure to the vtable entry usage info. */
11701 elf_link_hash_traverse (elf_hash_table (info),
11702 elf_gc_propagate_vtable_entries_used,
11703 &ok);
11704 if (!ok)
11705 return FALSE;
11707 /* Kill the vtable relocations that were not used. */
11708 elf_link_hash_traverse (elf_hash_table (info),
11709 elf_gc_smash_unused_vtentry_relocs,
11710 &ok);
11711 if (!ok)
11712 return FALSE;
11714 /* Mark dynamically referenced symbols. */
11715 if (elf_hash_table (info)->dynamic_sections_created)
11716 elf_link_hash_traverse (elf_hash_table (info),
11717 bed->gc_mark_dynamic_ref,
11718 info);
11720 /* Grovel through relocs to find out who stays ... */
11721 gc_mark_hook = bed->gc_mark_hook;
11722 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11724 asection *o;
11726 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11727 continue;
11729 for (o = sub->sections; o != NULL; o = o->next)
11730 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11731 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11732 return FALSE;
11735 /* Allow the backend to mark additional target specific sections. */
11736 if (bed->gc_mark_extra_sections)
11737 bed->gc_mark_extra_sections (info, gc_mark_hook);
11739 /* ... and mark SEC_EXCLUDE for those that go. */
11740 return elf_gc_sweep (abfd, info);
11743 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11745 bfd_boolean
11746 bfd_elf_gc_record_vtinherit (bfd *abfd,
11747 asection *sec,
11748 struct elf_link_hash_entry *h,
11749 bfd_vma offset)
11751 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11752 struct elf_link_hash_entry **search, *child;
11753 bfd_size_type extsymcount;
11754 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11756 /* The sh_info field of the symtab header tells us where the
11757 external symbols start. We don't care about the local symbols at
11758 this point. */
11759 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11760 if (!elf_bad_symtab (abfd))
11761 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11763 sym_hashes = elf_sym_hashes (abfd);
11764 sym_hashes_end = sym_hashes + extsymcount;
11766 /* Hunt down the child symbol, which is in this section at the same
11767 offset as the relocation. */
11768 for (search = sym_hashes; search != sym_hashes_end; ++search)
11770 if ((child = *search) != NULL
11771 && (child->root.type == bfd_link_hash_defined
11772 || child->root.type == bfd_link_hash_defweak)
11773 && child->root.u.def.section == sec
11774 && child->root.u.def.value == offset)
11775 goto win;
11778 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11779 abfd, sec, (unsigned long) offset);
11780 bfd_set_error (bfd_error_invalid_operation);
11781 return FALSE;
11783 win:
11784 if (!child->vtable)
11786 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11787 if (!child->vtable)
11788 return FALSE;
11790 if (!h)
11792 /* This *should* only be the absolute section. It could potentially
11793 be that someone has defined a non-global vtable though, which
11794 would be bad. It isn't worth paging in the local symbols to be
11795 sure though; that case should simply be handled by the assembler. */
11797 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11799 else
11800 child->vtable->parent = h;
11802 return TRUE;
11805 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11807 bfd_boolean
11808 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11809 asection *sec ATTRIBUTE_UNUSED,
11810 struct elf_link_hash_entry *h,
11811 bfd_vma addend)
11813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11814 unsigned int log_file_align = bed->s->log_file_align;
11816 if (!h->vtable)
11818 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11819 if (!h->vtable)
11820 return FALSE;
11823 if (addend >= h->vtable->size)
11825 size_t size, bytes, file_align;
11826 bfd_boolean *ptr = h->vtable->used;
11828 /* While the symbol is undefined, we have to be prepared to handle
11829 a zero size. */
11830 file_align = 1 << log_file_align;
11831 if (h->root.type == bfd_link_hash_undefined)
11832 size = addend + file_align;
11833 else
11835 size = h->size;
11836 if (addend >= size)
11838 /* Oops! We've got a reference past the defined end of
11839 the table. This is probably a bug -- shall we warn? */
11840 size = addend + file_align;
11843 size = (size + file_align - 1) & -file_align;
11845 /* Allocate one extra entry for use as a "done" flag for the
11846 consolidation pass. */
11847 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11849 if (ptr)
11851 ptr = bfd_realloc (ptr - 1, bytes);
11853 if (ptr != NULL)
11855 size_t oldbytes;
11857 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11858 * sizeof (bfd_boolean));
11859 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11862 else
11863 ptr = bfd_zmalloc (bytes);
11865 if (ptr == NULL)
11866 return FALSE;
11868 /* And arrange for that done flag to be at index -1. */
11869 h->vtable->used = ptr + 1;
11870 h->vtable->size = size;
11873 h->vtable->used[addend >> log_file_align] = TRUE;
11875 return TRUE;
11878 struct alloc_got_off_arg {
11879 bfd_vma gotoff;
11880 struct bfd_link_info *info;
11883 /* We need a special top-level link routine to convert got reference counts
11884 to real got offsets. */
11886 static bfd_boolean
11887 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11889 struct alloc_got_off_arg *gofarg = arg;
11890 bfd *obfd = gofarg->info->output_bfd;
11891 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11893 if (h->root.type == bfd_link_hash_warning)
11894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11896 if (h->got.refcount > 0)
11898 h->got.offset = gofarg->gotoff;
11899 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11901 else
11902 h->got.offset = (bfd_vma) -1;
11904 return TRUE;
11907 /* And an accompanying bit to work out final got entry offsets once
11908 we're done. Should be called from final_link. */
11910 bfd_boolean
11911 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11912 struct bfd_link_info *info)
11914 bfd *i;
11915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11916 bfd_vma gotoff;
11917 struct alloc_got_off_arg gofarg;
11919 BFD_ASSERT (abfd == info->output_bfd);
11921 if (! is_elf_hash_table (info->hash))
11922 return FALSE;
11924 /* The GOT offset is relative to the .got section, but the GOT header is
11925 put into the .got.plt section, if the backend uses it. */
11926 if (bed->want_got_plt)
11927 gotoff = 0;
11928 else
11929 gotoff = bed->got_header_size;
11931 /* Do the local .got entries first. */
11932 for (i = info->input_bfds; i; i = i->link_next)
11934 bfd_signed_vma *local_got;
11935 bfd_size_type j, locsymcount;
11936 Elf_Internal_Shdr *symtab_hdr;
11938 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11939 continue;
11941 local_got = elf_local_got_refcounts (i);
11942 if (!local_got)
11943 continue;
11945 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11946 if (elf_bad_symtab (i))
11947 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11948 else
11949 locsymcount = symtab_hdr->sh_info;
11951 for (j = 0; j < locsymcount; ++j)
11953 if (local_got[j] > 0)
11955 local_got[j] = gotoff;
11956 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11958 else
11959 local_got[j] = (bfd_vma) -1;
11963 /* Then the global .got entries. .plt refcounts are handled by
11964 adjust_dynamic_symbol */
11965 gofarg.gotoff = gotoff;
11966 gofarg.info = info;
11967 elf_link_hash_traverse (elf_hash_table (info),
11968 elf_gc_allocate_got_offsets,
11969 &gofarg);
11970 return TRUE;
11973 /* Many folk need no more in the way of final link than this, once
11974 got entry reference counting is enabled. */
11976 bfd_boolean
11977 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11979 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11980 return FALSE;
11982 /* Invoke the regular ELF backend linker to do all the work. */
11983 return bfd_elf_final_link (abfd, info);
11986 bfd_boolean
11987 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11989 struct elf_reloc_cookie *rcookie = cookie;
11991 if (rcookie->bad_symtab)
11992 rcookie->rel = rcookie->rels;
11994 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11996 unsigned long r_symndx;
11998 if (! rcookie->bad_symtab)
11999 if (rcookie->rel->r_offset > offset)
12000 return FALSE;
12001 if (rcookie->rel->r_offset != offset)
12002 continue;
12004 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12005 if (r_symndx == SHN_UNDEF)
12006 return TRUE;
12008 if (r_symndx >= rcookie->locsymcount
12009 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12011 struct elf_link_hash_entry *h;
12013 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12015 while (h->root.type == bfd_link_hash_indirect
12016 || h->root.type == bfd_link_hash_warning)
12017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12019 if ((h->root.type == bfd_link_hash_defined
12020 || h->root.type == bfd_link_hash_defweak)
12021 && elf_discarded_section (h->root.u.def.section))
12022 return TRUE;
12023 else
12024 return FALSE;
12026 else
12028 /* It's not a relocation against a global symbol,
12029 but it could be a relocation against a local
12030 symbol for a discarded section. */
12031 asection *isec;
12032 Elf_Internal_Sym *isym;
12034 /* Need to: get the symbol; get the section. */
12035 isym = &rcookie->locsyms[r_symndx];
12036 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12037 if (isec != NULL && elf_discarded_section (isec))
12038 return TRUE;
12040 return FALSE;
12042 return FALSE;
12045 /* Discard unneeded references to discarded sections.
12046 Returns TRUE if any section's size was changed. */
12047 /* This function assumes that the relocations are in sorted order,
12048 which is true for all known assemblers. */
12050 bfd_boolean
12051 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12053 struct elf_reloc_cookie cookie;
12054 asection *stab, *eh;
12055 const struct elf_backend_data *bed;
12056 bfd *abfd;
12057 bfd_boolean ret = FALSE;
12059 if (info->traditional_format
12060 || !is_elf_hash_table (info->hash))
12061 return FALSE;
12063 _bfd_elf_begin_eh_frame_parsing (info);
12064 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12066 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12067 continue;
12069 bed = get_elf_backend_data (abfd);
12071 if ((abfd->flags & DYNAMIC) != 0)
12072 continue;
12074 eh = NULL;
12075 if (!info->relocatable)
12077 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12078 if (eh != NULL
12079 && (eh->size == 0
12080 || bfd_is_abs_section (eh->output_section)))
12081 eh = NULL;
12084 stab = bfd_get_section_by_name (abfd, ".stab");
12085 if (stab != NULL
12086 && (stab->size == 0
12087 || bfd_is_abs_section (stab->output_section)
12088 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12089 stab = NULL;
12091 if (stab == NULL
12092 && eh == NULL
12093 && bed->elf_backend_discard_info == NULL)
12094 continue;
12096 if (!init_reloc_cookie (&cookie, info, abfd))
12097 return FALSE;
12099 if (stab != NULL
12100 && stab->reloc_count > 0
12101 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12103 if (_bfd_discard_section_stabs (abfd, stab,
12104 elf_section_data (stab)->sec_info,
12105 bfd_elf_reloc_symbol_deleted_p,
12106 &cookie))
12107 ret = TRUE;
12108 fini_reloc_cookie_rels (&cookie, stab);
12111 if (eh != NULL
12112 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12114 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12115 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12116 bfd_elf_reloc_symbol_deleted_p,
12117 &cookie))
12118 ret = TRUE;
12119 fini_reloc_cookie_rels (&cookie, eh);
12122 if (bed->elf_backend_discard_info != NULL
12123 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12124 ret = TRUE;
12126 fini_reloc_cookie (&cookie, abfd);
12128 _bfd_elf_end_eh_frame_parsing (info);
12130 if (info->eh_frame_hdr
12131 && !info->relocatable
12132 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12133 ret = TRUE;
12135 return ret;
12138 /* For a SHT_GROUP section, return the group signature. For other
12139 sections, return the normal section name. */
12141 static const char *
12142 section_signature (asection *sec)
12144 if ((sec->flags & SEC_GROUP) != 0
12145 && elf_next_in_group (sec) != NULL
12146 && elf_group_name (elf_next_in_group (sec)) != NULL)
12147 return elf_group_name (elf_next_in_group (sec));
12148 return sec->name;
12151 void
12152 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12153 struct bfd_link_info *info)
12155 flagword flags;
12156 const char *name, *p;
12157 struct bfd_section_already_linked *l;
12158 struct bfd_section_already_linked_hash_entry *already_linked_list;
12160 if (sec->output_section == bfd_abs_section_ptr)
12161 return;
12163 flags = sec->flags;
12165 /* Return if it isn't a linkonce section. A comdat group section
12166 also has SEC_LINK_ONCE set. */
12167 if ((flags & SEC_LINK_ONCE) == 0)
12168 return;
12170 /* Don't put group member sections on our list of already linked
12171 sections. They are handled as a group via their group section. */
12172 if (elf_sec_group (sec) != NULL)
12173 return;
12175 /* FIXME: When doing a relocatable link, we may have trouble
12176 copying relocations in other sections that refer to local symbols
12177 in the section being discarded. Those relocations will have to
12178 be converted somehow; as of this writing I'm not sure that any of
12179 the backends handle that correctly.
12181 It is tempting to instead not discard link once sections when
12182 doing a relocatable link (technically, they should be discarded
12183 whenever we are building constructors). However, that fails,
12184 because the linker winds up combining all the link once sections
12185 into a single large link once section, which defeats the purpose
12186 of having link once sections in the first place.
12188 Also, not merging link once sections in a relocatable link
12189 causes trouble for MIPS ELF, which relies on link once semantics
12190 to handle the .reginfo section correctly. */
12192 name = section_signature (sec);
12194 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12195 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12196 p++;
12197 else
12198 p = name;
12200 already_linked_list = bfd_section_already_linked_table_lookup (p);
12202 for (l = already_linked_list->entry; l != NULL; l = l->next)
12204 /* We may have 2 different types of sections on the list: group
12205 sections and linkonce sections. Match like sections. */
12206 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12207 && strcmp (name, section_signature (l->sec)) == 0
12208 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12210 /* The section has already been linked. See if we should
12211 issue a warning. */
12212 switch (flags & SEC_LINK_DUPLICATES)
12214 default:
12215 abort ();
12217 case SEC_LINK_DUPLICATES_DISCARD:
12218 break;
12220 case SEC_LINK_DUPLICATES_ONE_ONLY:
12221 (*_bfd_error_handler)
12222 (_("%B: ignoring duplicate section `%A'"),
12223 abfd, sec);
12224 break;
12226 case SEC_LINK_DUPLICATES_SAME_SIZE:
12227 if (sec->size != l->sec->size)
12228 (*_bfd_error_handler)
12229 (_("%B: duplicate section `%A' has different size"),
12230 abfd, sec);
12231 break;
12233 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12234 if (sec->size != l->sec->size)
12235 (*_bfd_error_handler)
12236 (_("%B: duplicate section `%A' has different size"),
12237 abfd, sec);
12238 else if (sec->size != 0)
12240 bfd_byte *sec_contents, *l_sec_contents;
12242 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12243 (*_bfd_error_handler)
12244 (_("%B: warning: could not read contents of section `%A'"),
12245 abfd, sec);
12246 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12247 &l_sec_contents))
12248 (*_bfd_error_handler)
12249 (_("%B: warning: could not read contents of section `%A'"),
12250 l->sec->owner, l->sec);
12251 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12252 (*_bfd_error_handler)
12253 (_("%B: warning: duplicate section `%A' has different contents"),
12254 abfd, sec);
12256 if (sec_contents)
12257 free (sec_contents);
12258 if (l_sec_contents)
12259 free (l_sec_contents);
12261 break;
12264 /* Set the output_section field so that lang_add_section
12265 does not create a lang_input_section structure for this
12266 section. Since there might be a symbol in the section
12267 being discarded, we must retain a pointer to the section
12268 which we are really going to use. */
12269 sec->output_section = bfd_abs_section_ptr;
12270 sec->kept_section = l->sec;
12272 if (flags & SEC_GROUP)
12274 asection *first = elf_next_in_group (sec);
12275 asection *s = first;
12277 while (s != NULL)
12279 s->output_section = bfd_abs_section_ptr;
12280 /* Record which group discards it. */
12281 s->kept_section = l->sec;
12282 s = elf_next_in_group (s);
12283 /* These lists are circular. */
12284 if (s == first)
12285 break;
12289 return;
12293 /* A single member comdat group section may be discarded by a
12294 linkonce section and vice versa. */
12296 if ((flags & SEC_GROUP) != 0)
12298 asection *first = elf_next_in_group (sec);
12300 if (first != NULL && elf_next_in_group (first) == first)
12301 /* Check this single member group against linkonce sections. */
12302 for (l = already_linked_list->entry; l != NULL; l = l->next)
12303 if ((l->sec->flags & SEC_GROUP) == 0
12304 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12305 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12307 first->output_section = bfd_abs_section_ptr;
12308 first->kept_section = l->sec;
12309 sec->output_section = bfd_abs_section_ptr;
12310 break;
12313 else
12314 /* Check this linkonce section against single member groups. */
12315 for (l = already_linked_list->entry; l != NULL; l = l->next)
12316 if (l->sec->flags & SEC_GROUP)
12318 asection *first = elf_next_in_group (l->sec);
12320 if (first != NULL
12321 && elf_next_in_group (first) == first
12322 && bfd_elf_match_symbols_in_sections (first, sec, info))
12324 sec->output_section = bfd_abs_section_ptr;
12325 sec->kept_section = first;
12326 break;
12330 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12331 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12332 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12333 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12334 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12335 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12336 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12337 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12338 The reverse order cannot happen as there is never a bfd with only the
12339 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12340 matter as here were are looking only for cross-bfd sections. */
12342 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12343 for (l = already_linked_list->entry; l != NULL; l = l->next)
12344 if ((l->sec->flags & SEC_GROUP) == 0
12345 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12347 if (abfd != l->sec->owner)
12348 sec->output_section = bfd_abs_section_ptr;
12349 break;
12352 /* This is the first section with this name. Record it. */
12353 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12354 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12357 bfd_boolean
12358 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12360 return sym->st_shndx == SHN_COMMON;
12363 unsigned int
12364 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12366 return SHN_COMMON;
12369 asection *
12370 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12372 return bfd_com_section_ptr;
12375 bfd_vma
12376 _bfd_elf_default_got_elt_size (bfd *abfd,
12377 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12378 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12379 bfd *ibfd ATTRIBUTE_UNUSED,
12380 unsigned long symndx ATTRIBUTE_UNUSED)
12382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12383 return bed->s->arch_size / 8;
12386 /* Routines to support the creation of dynamic relocs. */
12388 /* Return true if NAME is a name of a relocation
12389 section associated with section S. */
12391 static bfd_boolean
12392 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12394 if (rela)
12395 return CONST_STRNEQ (name, ".rela")
12396 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12398 return CONST_STRNEQ (name, ".rel")
12399 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12402 /* Returns the name of the dynamic reloc section associated with SEC. */
12404 static const char *
12405 get_dynamic_reloc_section_name (bfd * abfd,
12406 asection * sec,
12407 bfd_boolean is_rela)
12409 const char * name;
12410 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12411 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12413 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12414 if (name == NULL)
12415 return NULL;
12417 if (! is_reloc_section (is_rela, name, sec))
12419 static bfd_boolean complained = FALSE;
12421 if (! complained)
12423 (*_bfd_error_handler)
12424 (_("%B: bad relocation section name `%s\'"), abfd, name);
12425 complained = TRUE;
12427 name = NULL;
12430 return name;
12433 /* Returns the dynamic reloc section associated with SEC.
12434 If necessary compute the name of the dynamic reloc section based
12435 on SEC's name (looked up in ABFD's string table) and the setting
12436 of IS_RELA. */
12438 asection *
12439 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12440 asection * sec,
12441 bfd_boolean is_rela)
12443 asection * reloc_sec = elf_section_data (sec)->sreloc;
12445 if (reloc_sec == NULL)
12447 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12449 if (name != NULL)
12451 reloc_sec = bfd_get_section_by_name (abfd, name);
12453 if (reloc_sec != NULL)
12454 elf_section_data (sec)->sreloc = reloc_sec;
12458 return reloc_sec;
12461 /* Returns the dynamic reloc section associated with SEC. If the
12462 section does not exist it is created and attached to the DYNOBJ
12463 bfd and stored in the SRELOC field of SEC's elf_section_data
12464 structure.
12466 ALIGNMENT is the alignment for the newly created section and
12467 IS_RELA defines whether the name should be .rela.<SEC's name>
12468 or .rel.<SEC's name>. The section name is looked up in the
12469 string table associated with ABFD. */
12471 asection *
12472 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12473 bfd * dynobj,
12474 unsigned int alignment,
12475 bfd * abfd,
12476 bfd_boolean is_rela)
12478 asection * reloc_sec = elf_section_data (sec)->sreloc;
12480 if (reloc_sec == NULL)
12482 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12484 if (name == NULL)
12485 return NULL;
12487 reloc_sec = bfd_get_section_by_name (dynobj, name);
12489 if (reloc_sec == NULL)
12491 flagword flags;
12493 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12494 if ((sec->flags & SEC_ALLOC) != 0)
12495 flags |= SEC_ALLOC | SEC_LOAD;
12497 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12498 if (reloc_sec != NULL)
12500 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12501 reloc_sec = NULL;
12505 elf_section_data (sec)->sreloc = reloc_sec;
12508 return reloc_sec;