bfd/
[binutils.git] / bfd / elf32-hppa.c
blob942b376cf9f9d0e67925fa8dc4776542ff07a61d
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
133 elf32_hppa_dyn_reloc_entry "hdh"
135 Always remember to use GNU Coding Style. */
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
141 static const bfd_byte plt_stub[] =
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
180 struct elf32_hppa_stub_hash_entry {
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
185 /* The stub section. */
186 asection *stub_sec;
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
196 enum elf32_hppa_stub_type stub_type;
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
206 struct elf32_hppa_link_hash_entry {
208 struct elf_link_hash_entry eh;
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
221 /* The input section of the reloc. */
222 asection *sec;
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
237 struct elf32_hppa_link_hash_table {
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
311 /* Assorted hash table functions. */
313 /* Initialize an entry in the stub hash table. */
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
334 struct elf32_hppa_stub_hash_entry *hsh;
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
347 return entry;
350 /* Initialize an entry in the link hash table. */
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
371 struct elf32_hppa_link_hash_entry *hh;
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
380 return entry;
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
399 free (htab);
400 return NULL;
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
426 return &htab->etab.root;
429 /* Free the derived linker hash table. */
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
441 /* Build a name for an entry in the stub hash table. */
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
449 char *stub_name;
450 bfd_size_type len;
452 if (hh)
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
464 else
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
477 return stub_name;
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
504 hsh_entry = hh->hsh_cache;
506 else
508 char *stub_name;
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
519 free (stub_name);
522 return hsh_entry;
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
561 htab->stub_group[section->id].stub_sec = stub_sec;
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
581 /* Determine the type of stub needed, if any, for a call. */
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
622 max_branch_offset = (1 << (17-1)) << 2;
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
626 max_branch_offset = (1 << (12-1)) << 2;
628 else /* R_PARISC_PCREL22F. */
630 max_branch_offset = (1 << (22-1)) << 2;
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
636 return hppa_stub_none;
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
705 stub_bfd = stub_sec->owner;
707 switch (hsh->stub_type)
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
726 size = 8;
727 break;
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
781 if (htab->multi_subspace)
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
792 size = 28;
794 else
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
801 size = 16;
804 break;
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
848 size = 24;
849 break;
851 default:
852 BFD_FAIL ();
853 return FALSE;
856 stub_sec->size += size;
857 return TRUE;
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
909 hsh->stub_sec->size += size;
910 return TRUE;
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
939 else
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
957 return TRUE;
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006 static void
1007 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1016 if (hh_ind->dyn_relocs != NULL)
1018 if (hh_dir->dyn_relocs != NULL)
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023 if (eh_ind->root.type == bfd_link_hash_indirect)
1024 abort ();
1026 /* Add reloc counts against the weak sym to the strong sym
1027 list. Merge any entries against the same section. */
1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1032 for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1045 *hdh_pp = hh_dir->dyn_relocs;
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 else
1065 _bfd_elf_link_hash_copy_indirect (bed, eh_dir, eh_ind);
1068 /* Look through the relocs for a section during the first phase, and
1069 calculate needed space in the global offset table, procedure linkage
1070 table, and dynamic reloc sections. At this point we haven't
1071 necessarily read all the input files. */
1073 static bfd_boolean
1074 elf32_hppa_check_relocs (bfd *abfd,
1075 struct bfd_link_info *info,
1076 asection *sec,
1077 const Elf_Internal_Rela *relocs)
1079 Elf_Internal_Shdr *symtab_hdr;
1080 struct elf_link_hash_entry **eh_syms;
1081 const Elf_Internal_Rela *rela;
1082 const Elf_Internal_Rela *rela_end;
1083 struct elf32_hppa_link_hash_table *htab;
1084 asection *sreloc;
1085 asection *stubreloc;
1087 if (info->relocatable)
1088 return TRUE;
1090 htab = hppa_link_hash_table (info);
1091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092 eh_syms = elf_sym_hashes (abfd);
1093 sreloc = NULL;
1094 stubreloc = NULL;
1096 rela_end = relocs + sec->reloc_count;
1097 for (rela = relocs; rela < rela_end; rela++)
1099 enum {
1100 NEED_GOT = 1,
1101 NEED_PLT = 2,
1102 NEED_DYNREL = 4,
1103 PLT_PLABEL = 8
1106 unsigned int r_symndx, r_type;
1107 struct elf32_hppa_link_hash_entry *hh;
1108 int need_entry = 0;
1110 r_symndx = ELF32_R_SYM (rela->r_info);
1112 if (r_symndx < symtab_hdr->sh_info)
1113 hh = NULL;
1114 else
1116 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1117 while (hh->eh.root.type == bfd_link_hash_indirect
1118 || hh->eh.root.type == bfd_link_hash_warning)
1119 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1122 r_type = ELF32_R_TYPE (rela->r_info);
1124 switch (r_type)
1126 case R_PARISC_DLTIND14F:
1127 case R_PARISC_DLTIND14R:
1128 case R_PARISC_DLTIND21L:
1129 /* This symbol requires a global offset table entry. */
1130 need_entry = NEED_GOT;
1131 break;
1133 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1134 case R_PARISC_PLABEL21L:
1135 case R_PARISC_PLABEL32:
1136 /* If the addend is non-zero, we break badly. */
1137 if (rela->r_addend != 0)
1138 abort ();
1140 /* If we are creating a shared library, then we need to
1141 create a PLT entry for all PLABELs, because PLABELs with
1142 local symbols may be passed via a pointer to another
1143 object. Additionally, output a dynamic relocation
1144 pointing to the PLT entry.
1146 For executables, the original 32-bit ABI allowed two
1147 different styles of PLABELs (function pointers): For
1148 global functions, the PLABEL word points into the .plt
1149 two bytes past a (function address, gp) pair, and for
1150 local functions the PLABEL points directly at the
1151 function. The magic +2 for the first type allows us to
1152 differentiate between the two. As you can imagine, this
1153 is a real pain when it comes to generating code to call
1154 functions indirectly or to compare function pointers.
1155 We avoid the mess by always pointing a PLABEL into the
1156 .plt, even for local functions. */
1157 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1158 break;
1160 case R_PARISC_PCREL12F:
1161 htab->has_12bit_branch = 1;
1162 goto branch_common;
1164 case R_PARISC_PCREL17C:
1165 case R_PARISC_PCREL17F:
1166 htab->has_17bit_branch = 1;
1167 goto branch_common;
1169 case R_PARISC_PCREL22F:
1170 htab->has_22bit_branch = 1;
1171 branch_common:
1172 /* Function calls might need to go through the .plt, and
1173 might require long branch stubs. */
1174 if (hh == NULL)
1176 /* We know local syms won't need a .plt entry, and if
1177 they need a long branch stub we can't guarantee that
1178 we can reach the stub. So just flag an error later
1179 if we're doing a shared link and find we need a long
1180 branch stub. */
1181 continue;
1183 else
1185 /* Global symbols will need a .plt entry if they remain
1186 global, and in most cases won't need a long branch
1187 stub. Unfortunately, we have to cater for the case
1188 where a symbol is forced local by versioning, or due
1189 to symbolic linking, and we lose the .plt entry. */
1190 need_entry = NEED_PLT;
1191 if (hh->eh.type == STT_PARISC_MILLI)
1192 need_entry = 0;
1194 break;
1196 case R_PARISC_SEGBASE: /* Used to set segment base. */
1197 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1198 case R_PARISC_PCREL14F: /* PC relative load/store. */
1199 case R_PARISC_PCREL14R:
1200 case R_PARISC_PCREL17R: /* External branches. */
1201 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1202 case R_PARISC_PCREL32:
1203 /* We don't need to propagate the relocation if linking a
1204 shared object since these are section relative. */
1205 continue;
1207 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1208 case R_PARISC_DPREL14R:
1209 case R_PARISC_DPREL21L:
1210 if (info->shared)
1212 (*_bfd_error_handler)
1213 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1214 abfd,
1215 elf_hppa_howto_table[r_type].name);
1216 bfd_set_error (bfd_error_bad_value);
1217 return FALSE;
1219 /* Fall through. */
1221 case R_PARISC_DIR17F: /* Used for external branches. */
1222 case R_PARISC_DIR17R:
1223 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1224 case R_PARISC_DIR14R:
1225 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1226 case R_PARISC_DIR32: /* .word relocs. */
1227 /* We may want to output a dynamic relocation later. */
1228 need_entry = NEED_DYNREL;
1229 break;
1231 /* This relocation describes the C++ object vtable hierarchy.
1232 Reconstruct it for later use during GC. */
1233 case R_PARISC_GNU_VTINHERIT:
1234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1235 return FALSE;
1236 continue;
1238 /* This relocation describes which C++ vtable entries are actually
1239 used. Record for later use during GC. */
1240 case R_PARISC_GNU_VTENTRY:
1241 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1242 return FALSE;
1243 continue;
1245 default:
1246 continue;
1249 /* Now carry out our orders. */
1250 if (need_entry & NEED_GOT)
1252 /* Allocate space for a GOT entry, as well as a dynamic
1253 relocation for this entry. */
1254 if (htab->sgot == NULL)
1256 if (htab->etab.dynobj == NULL)
1257 htab->etab.dynobj = abfd;
1258 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1259 return FALSE;
1262 if (hh != NULL)
1264 hh->eh.got.refcount += 1;
1266 else
1268 bfd_signed_vma *local_got_refcounts;
1269 /* This is a global offset table entry for a local symbol. */
1270 local_got_refcounts = elf_local_got_refcounts (abfd);
1271 if (local_got_refcounts == NULL)
1273 bfd_size_type size;
1275 /* Allocate space for local got offsets and local
1276 plt offsets. Done this way to save polluting
1277 elf_obj_tdata with another target specific
1278 pointer. */
1279 size = symtab_hdr->sh_info;
1280 size *= 2 * sizeof (bfd_signed_vma);
1281 local_got_refcounts = bfd_zalloc (abfd, size);
1282 if (local_got_refcounts == NULL)
1283 return FALSE;
1284 elf_local_got_refcounts (abfd) = local_got_refcounts;
1286 local_got_refcounts[r_symndx] += 1;
1290 if (need_entry & NEED_PLT)
1292 /* If we are creating a shared library, and this is a reloc
1293 against a weak symbol or a global symbol in a dynamic
1294 object, then we will be creating an import stub and a
1295 .plt entry for the symbol. Similarly, on a normal link
1296 to symbols defined in a dynamic object we'll need the
1297 import stub and a .plt entry. We don't know yet whether
1298 the symbol is defined or not, so make an entry anyway and
1299 clean up later in adjust_dynamic_symbol. */
1300 if ((sec->flags & SEC_ALLOC) != 0)
1302 if (hh != NULL)
1304 hh->eh.needs_plt = 1;
1305 hh->eh.plt.refcount += 1;
1307 /* If this .plt entry is for a plabel, mark it so
1308 that adjust_dynamic_symbol will keep the entry
1309 even if it appears to be local. */
1310 if (need_entry & PLT_PLABEL)
1311 hh->plabel = 1;
1313 else if (need_entry & PLT_PLABEL)
1315 bfd_signed_vma *local_got_refcounts;
1316 bfd_signed_vma *local_plt_refcounts;
1318 local_got_refcounts = elf_local_got_refcounts (abfd);
1319 if (local_got_refcounts == NULL)
1321 bfd_size_type size;
1323 /* Allocate space for local got offsets and local
1324 plt offsets. */
1325 size = symtab_hdr->sh_info;
1326 size *= 2 * sizeof (bfd_signed_vma);
1327 local_got_refcounts = bfd_zalloc (abfd, size);
1328 if (local_got_refcounts == NULL)
1329 return FALSE;
1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
1332 local_plt_refcounts = (local_got_refcounts
1333 + symtab_hdr->sh_info);
1334 local_plt_refcounts[r_symndx] += 1;
1339 if (need_entry & NEED_DYNREL)
1341 /* Flag this symbol as having a non-got, non-plt reference
1342 so that we generate copy relocs if it turns out to be
1343 dynamic. */
1344 if (hh != NULL && !info->shared)
1345 hh->eh.non_got_ref = 1;
1347 /* If we are creating a shared library then we need to copy
1348 the reloc into the shared library. However, if we are
1349 linking with -Bsymbolic, we need only copy absolute
1350 relocs or relocs against symbols that are not defined in
1351 an object we are including in the link. PC- or DP- or
1352 DLT-relative relocs against any local sym or global sym
1353 with DEF_REGULAR set, can be discarded. At this point we
1354 have not seen all the input files, so it is possible that
1355 DEF_REGULAR is not set now but will be set later (it is
1356 never cleared). We account for that possibility below by
1357 storing information in the dyn_relocs field of the
1358 hash table entry.
1360 A similar situation to the -Bsymbolic case occurs when
1361 creating shared libraries and symbol visibility changes
1362 render the symbol local.
1364 As it turns out, all the relocs we will be creating here
1365 are absolute, so we cannot remove them on -Bsymbolic
1366 links or visibility changes anyway. A STUB_REL reloc
1367 is absolute too, as in that case it is the reloc in the
1368 stub we will be creating, rather than copying the PCREL
1369 reloc in the branch.
1371 If on the other hand, we are creating an executable, we
1372 may need to keep relocations for symbols satisfied by a
1373 dynamic library if we manage to avoid copy relocs for the
1374 symbol. */
1375 if ((info->shared
1376 && (sec->flags & SEC_ALLOC) != 0
1377 && (IS_ABSOLUTE_RELOC (r_type)
1378 || (hh != NULL
1379 && (!info->symbolic
1380 || hh->eh.root.type == bfd_link_hash_defweak
1381 || !hh->eh.def_regular))))
1382 || (ELIMINATE_COPY_RELOCS
1383 && !info->shared
1384 && (sec->flags & SEC_ALLOC) != 0
1385 && hh != NULL
1386 && (hh->eh.root.type == bfd_link_hash_defweak
1387 || !hh->eh.def_regular)))
1389 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1390 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1392 /* Create a reloc section in dynobj and make room for
1393 this reloc. */
1394 if (sreloc == NULL)
1396 char *name;
1397 bfd *dynobj;
1399 name = (bfd_elf_string_from_elf_section
1400 (abfd,
1401 elf_elfheader (abfd)->e_shstrndx,
1402 elf_section_data (sec)->rel_hdr.sh_name));
1403 if (name == NULL)
1405 (*_bfd_error_handler)
1406 (_("Could not find relocation section for %s"),
1407 sec->name);
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1412 if (htab->etab.dynobj == NULL)
1413 htab->etab.dynobj = abfd;
1415 dynobj = htab->etab.dynobj;
1416 sreloc = bfd_get_section_by_name (dynobj, name);
1417 if (sreloc == NULL)
1419 flagword flags;
1421 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1422 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1423 if ((sec->flags & SEC_ALLOC) != 0)
1424 flags |= SEC_ALLOC | SEC_LOAD;
1425 sreloc = bfd_make_section_with_flags (dynobj,
1426 name,
1427 flags);
1428 if (sreloc == NULL
1429 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1430 return FALSE;
1433 elf_section_data (sec)->sreloc = sreloc;
1436 /* If this is a global symbol, we count the number of
1437 relocations we need for this symbol. */
1438 if (hh != NULL)
1440 hdh_head = &hh->dyn_relocs;
1442 else
1444 /* Track dynamic relocs needed for local syms too.
1445 We really need local syms available to do this
1446 easily. Oh well. */
1448 asection *sr;
1449 void *vpp;
1451 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1452 sec, r_symndx);
1453 if (sr == NULL)
1454 return FALSE;
1456 vpp = &elf_section_data (sr)->local_dynrel;
1457 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1460 hdh_p = *hdh_head;
1461 if (hdh_p == NULL || hdh_p->sec != sec)
1463 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1464 if (hdh_p == NULL)
1465 return FALSE;
1466 hdh_p->hdh_next = *hdh_head;
1467 *hdh_head = hdh_p;
1468 hdh_p->sec = sec;
1469 hdh_p->count = 0;
1470 #if RELATIVE_DYNRELOCS
1471 hdh_p->relative_count = 0;
1472 #endif
1475 hdh_p->count += 1;
1476 #if RELATIVE_DYNRELOCS
1477 if (!IS_ABSOLUTE_RELOC (rtype))
1478 hdh_p->relative_count += 1;
1479 #endif
1484 return TRUE;
1487 /* Return the section that should be marked against garbage collection
1488 for a given relocation. */
1490 static asection *
1491 elf32_hppa_gc_mark_hook (asection *sec,
1492 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 Elf_Internal_Rela *rela,
1494 struct elf_link_hash_entry *hh,
1495 Elf_Internal_Sym *sym)
1497 if (hh != NULL)
1499 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1501 case R_PARISC_GNU_VTINHERIT:
1502 case R_PARISC_GNU_VTENTRY:
1503 break;
1505 default:
1506 switch (hh->root.type)
1508 case bfd_link_hash_defined:
1509 case bfd_link_hash_defweak:
1510 return hh->root.u.def.section;
1512 case bfd_link_hash_common:
1513 return hh->root.u.c.p->section;
1515 default:
1516 break;
1520 else
1521 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1523 return NULL;
1526 /* Update the got and plt entry reference counts for the section being
1527 removed. */
1529 static bfd_boolean
1530 elf32_hppa_gc_sweep_hook (bfd *abfd,
1531 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1532 asection *sec,
1533 const Elf_Internal_Rela *relocs)
1535 Elf_Internal_Shdr *symtab_hdr;
1536 struct elf_link_hash_entry **eh_syms;
1537 bfd_signed_vma *local_got_refcounts;
1538 bfd_signed_vma *local_plt_refcounts;
1539 const Elf_Internal_Rela *rela, *relend;
1541 elf_section_data (sec)->local_dynrel = NULL;
1543 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1544 eh_syms = elf_sym_hashes (abfd);
1545 local_got_refcounts = elf_local_got_refcounts (abfd);
1546 local_plt_refcounts = local_got_refcounts;
1547 if (local_plt_refcounts != NULL)
1548 local_plt_refcounts += symtab_hdr->sh_info;
1550 relend = relocs + sec->reloc_count;
1551 for (rela = relocs; rela < relend; rela++)
1553 unsigned long r_symndx;
1554 unsigned int r_type;
1555 struct elf_link_hash_entry *eh = NULL;
1557 r_symndx = ELF32_R_SYM (rela->r_info);
1558 if (r_symndx >= symtab_hdr->sh_info)
1560 struct elf32_hppa_link_hash_entry *hh;
1561 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1562 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1564 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1565 while (eh->root.type == bfd_link_hash_indirect
1566 || eh->root.type == bfd_link_hash_warning)
1567 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1568 hh = hppa_elf_hash_entry (eh);
1570 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1571 if (hdh_p->sec == sec)
1573 /* Everything must go for SEC. */
1574 *hdh_pp = hdh_p->hdh_next;
1575 break;
1579 r_type = ELF32_R_TYPE (rela->r_info);
1580 switch (r_type)
1582 case R_PARISC_DLTIND14F:
1583 case R_PARISC_DLTIND14R:
1584 case R_PARISC_DLTIND21L:
1585 if (eh != NULL)
1587 if (eh->got.refcount > 0)
1588 eh->got.refcount -= 1;
1590 else if (local_got_refcounts != NULL)
1592 if (local_got_refcounts[r_symndx] > 0)
1593 local_got_refcounts[r_symndx] -= 1;
1595 break;
1597 case R_PARISC_PCREL12F:
1598 case R_PARISC_PCREL17C:
1599 case R_PARISC_PCREL17F:
1600 case R_PARISC_PCREL22F:
1601 if (eh != NULL)
1603 if (eh->plt.refcount > 0)
1604 eh->plt.refcount -= 1;
1606 break;
1608 case R_PARISC_PLABEL14R:
1609 case R_PARISC_PLABEL21L:
1610 case R_PARISC_PLABEL32:
1611 if (eh != NULL)
1613 if (eh->plt.refcount > 0)
1614 eh->plt.refcount -= 1;
1616 else if (local_plt_refcounts != NULL)
1618 if (local_plt_refcounts[r_symndx] > 0)
1619 local_plt_refcounts[r_symndx] -= 1;
1621 break;
1623 default:
1624 break;
1628 return TRUE;
1631 /* Support for core dump NOTE sections. */
1633 static bfd_boolean
1634 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1636 int offset;
1637 size_t size;
1639 switch (note->descsz)
1641 default:
1642 return FALSE;
1644 case 396: /* Linux/hppa */
1645 /* pr_cursig */
1646 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1648 /* pr_pid */
1649 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1651 /* pr_reg */
1652 offset = 72;
1653 size = 320;
1655 break;
1658 /* Make a ".reg/999" section. */
1659 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1660 size, note->descpos + offset);
1663 static bfd_boolean
1664 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1666 switch (note->descsz)
1668 default:
1669 return FALSE;
1671 case 124: /* Linux/hppa elf_prpsinfo. */
1672 elf_tdata (abfd)->core_program
1673 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1674 elf_tdata (abfd)->core_command
1675 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1678 /* Note that for some reason, a spurious space is tacked
1679 onto the end of the args in some (at least one anyway)
1680 implementations, so strip it off if it exists. */
1682 char *command = elf_tdata (abfd)->core_command;
1683 int n = strlen (command);
1685 if (0 < n && command[n - 1] == ' ')
1686 command[n - 1] = '\0';
1689 return TRUE;
1692 /* Our own version of hide_symbol, so that we can keep plt entries for
1693 plabels. */
1695 static void
1696 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1697 struct elf_link_hash_entry *eh,
1698 bfd_boolean force_local)
1700 if (force_local)
1702 eh->forced_local = 1;
1703 if (eh->dynindx != -1)
1705 eh->dynindx = -1;
1706 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1707 eh->dynstr_index);
1711 if (! hppa_elf_hash_entry(eh)->plabel)
1713 eh->needs_plt = 0;
1714 eh->plt = elf_hash_table (info)->init_plt_refcount;
1718 /* Adjust a symbol defined by a dynamic object and referenced by a
1719 regular object. The current definition is in some section of the
1720 dynamic object, but we're not including those sections. We have to
1721 change the definition to something the rest of the link can
1722 understand. */
1724 static bfd_boolean
1725 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1726 struct elf_link_hash_entry *eh)
1728 struct elf32_hppa_link_hash_table *htab;
1729 asection *sec;
1730 unsigned int power_of_two;
1732 /* If this is a function, put it in the procedure linkage table. We
1733 will fill in the contents of the procedure linkage table later. */
1734 if (eh->type == STT_FUNC
1735 || eh->needs_plt)
1737 if (eh->plt.refcount <= 0
1738 || (eh->def_regular
1739 && eh->root.type != bfd_link_hash_defweak
1740 && ! hppa_elf_hash_entry (eh)->plabel
1741 && (!info->shared || info->symbolic)))
1743 /* The .plt entry is not needed when:
1744 a) Garbage collection has removed all references to the
1745 symbol, or
1746 b) We know for certain the symbol is defined in this
1747 object, and it's not a weak definition, nor is the symbol
1748 used by a plabel relocation. Either this object is the
1749 application or we are doing a shared symbolic link. */
1751 eh->plt.offset = (bfd_vma) -1;
1752 eh->needs_plt = 0;
1755 return TRUE;
1757 else
1758 eh->plt.offset = (bfd_vma) -1;
1760 /* If this is a weak symbol, and there is a real definition, the
1761 processor independent code will have arranged for us to see the
1762 real definition first, and we can just use the same value. */
1763 if (eh->u.weakdef != NULL)
1765 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1766 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1767 abort ();
1768 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1769 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1770 if (ELIMINATE_COPY_RELOCS)
1771 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1772 return TRUE;
1775 /* This is a reference to a symbol defined by a dynamic object which
1776 is not a function. */
1778 /* If we are creating a shared library, we must presume that the
1779 only references to the symbol are via the global offset table.
1780 For such cases we need not do anything here; the relocations will
1781 be handled correctly by relocate_section. */
1782 if (info->shared)
1783 return TRUE;
1785 /* If there are no references to this symbol that do not use the
1786 GOT, we don't need to generate a copy reloc. */
1787 if (!eh->non_got_ref)
1788 return TRUE;
1790 if (ELIMINATE_COPY_RELOCS)
1792 struct elf32_hppa_link_hash_entry *hh;
1793 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1795 hh = hppa_elf_hash_entry (eh);
1796 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1798 sec = hdh_p->sec->output_section;
1799 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1800 break;
1803 /* If we didn't find any dynamic relocs in read-only sections, then
1804 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1805 if (hdh_p == NULL)
1807 eh->non_got_ref = 0;
1808 return TRUE;
1812 if (eh->size == 0)
1814 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1815 eh->root.root.string);
1816 return TRUE;
1819 /* We must allocate the symbol in our .dynbss section, which will
1820 become part of the .bss section of the executable. There will be
1821 an entry for this symbol in the .dynsym section. The dynamic
1822 object will contain position independent code, so all references
1823 from the dynamic object to this symbol will go through the global
1824 offset table. The dynamic linker will use the .dynsym entry to
1825 determine the address it must put in the global offset table, so
1826 both the dynamic object and the regular object will refer to the
1827 same memory location for the variable. */
1829 htab = hppa_link_hash_table (info);
1831 /* We must generate a COPY reloc to tell the dynamic linker to
1832 copy the initial value out of the dynamic object and into the
1833 runtime process image. */
1834 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1836 htab->srelbss->size += sizeof (Elf32_External_Rela);
1837 eh->needs_copy = 1;
1840 /* We need to figure out the alignment required for this symbol. I
1841 have no idea how other ELF linkers handle this. */
1843 power_of_two = bfd_log2 (eh->size);
1844 if (power_of_two > 3)
1845 power_of_two = 3;
1847 /* Apply the required alignment. */
1848 sec = htab->sdynbss;
1849 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1850 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1852 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1853 return FALSE;
1856 /* Define the symbol as being at this point in the section. */
1857 eh->root.u.def.section = sec;
1858 eh->root.u.def.value = sec->size;
1860 /* Increment the section size to make room for the symbol. */
1861 sec->size += eh->size;
1863 return TRUE;
1866 /* Allocate space in the .plt for entries that won't have relocations.
1867 ie. plabel entries. */
1869 static bfd_boolean
1870 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1872 struct bfd_link_info *info;
1873 struct elf32_hppa_link_hash_table *htab;
1874 struct elf32_hppa_link_hash_entry *hh;
1875 asection *sec;
1877 if (eh->root.type == bfd_link_hash_indirect)
1878 return TRUE;
1880 if (eh->root.type == bfd_link_hash_warning)
1881 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1883 info = (struct bfd_link_info *) inf;
1884 hh = hppa_elf_hash_entry(eh);
1885 htab = hppa_link_hash_table (info);
1886 if (htab->etab.dynamic_sections_created
1887 && eh->plt.refcount > 0)
1889 /* Make sure this symbol is output as a dynamic symbol.
1890 Undefined weak syms won't yet be marked as dynamic. */
1891 if (eh->dynindx == -1
1892 && !eh->forced_local
1893 && eh->type != STT_PARISC_MILLI)
1895 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1896 return FALSE;
1899 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1901 /* Allocate these later. From this point on, h->plabel
1902 means that the plt entry is only used by a plabel.
1903 We'll be using a normal plt entry for this symbol, so
1904 clear the plabel indicator. */
1906 hh->plabel = 0;
1908 else if (hh->plabel)
1910 /* Make an entry in the .plt section for plabel references
1911 that won't have a .plt entry for other reasons. */
1912 sec = htab->splt;
1913 eh->plt.offset = sec->size;
1914 sec->size += PLT_ENTRY_SIZE;
1916 else
1918 /* No .plt entry needed. */
1919 eh->plt.offset = (bfd_vma) -1;
1920 eh->needs_plt = 0;
1923 else
1925 eh->plt.offset = (bfd_vma) -1;
1926 eh->needs_plt = 0;
1929 return TRUE;
1932 /* Allocate space in .plt, .got and associated reloc sections for
1933 global syms. */
1935 static bfd_boolean
1936 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1938 struct bfd_link_info *info;
1939 struct elf32_hppa_link_hash_table *htab;
1940 asection *sec;
1941 struct elf32_hppa_link_hash_entry *hh;
1942 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1944 if (eh->root.type == bfd_link_hash_indirect)
1945 return TRUE;
1947 if (eh->root.type == bfd_link_hash_warning)
1948 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1950 info = inf;
1951 htab = hppa_link_hash_table (info);
1952 hh = hppa_elf_hash_entry (eh);
1954 if (htab->etab.dynamic_sections_created
1955 && eh->plt.offset != (bfd_vma) -1
1956 && !hh->plabel
1957 && eh->plt.refcount > 0)
1959 /* Make an entry in the .plt section. */
1960 sec = htab->splt;
1961 eh->plt.offset = sec->size;
1962 sec->size += PLT_ENTRY_SIZE;
1964 /* We also need to make an entry in the .rela.plt section. */
1965 htab->srelplt->size += sizeof (Elf32_External_Rela);
1966 htab->need_plt_stub = 1;
1969 if (eh->got.refcount > 0)
1971 /* Make sure this symbol is output as a dynamic symbol.
1972 Undefined weak syms won't yet be marked as dynamic. */
1973 if (eh->dynindx == -1
1974 && !eh->forced_local
1975 && eh->type != STT_PARISC_MILLI)
1977 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1978 return FALSE;
1981 sec = htab->sgot;
1982 eh->got.offset = sec->size;
1983 sec->size += GOT_ENTRY_SIZE;
1984 if (htab->etab.dynamic_sections_created
1985 && (info->shared
1986 || (eh->dynindx != -1
1987 && !eh->forced_local)))
1989 htab->srelgot->size += sizeof (Elf32_External_Rela);
1992 else
1993 eh->got.offset = (bfd_vma) -1;
1995 if (hh->dyn_relocs == NULL)
1996 return TRUE;
1998 /* If this is a -Bsymbolic shared link, then we need to discard all
1999 space allocated for dynamic pc-relative relocs against symbols
2000 defined in a regular object. For the normal shared case, discard
2001 space for relocs that have become local due to symbol visibility
2002 changes. */
2003 if (info->shared)
2005 #if RELATIVE_DYNRELOCS
2006 if (SYMBOL_CALLS_LOCAL (info, eh))
2008 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2010 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2012 hdh_p->count -= hdh_p->relative_count;
2013 hdh_p->relative_count = 0;
2014 if (hdh_p->count == 0)
2015 *hdh_pp = hdh_p->hdh_next;
2016 else
2017 hdh_pp = &hdh_p->hdh_next;
2020 #endif
2022 /* Also discard relocs on undefined weak syms with non-default
2023 visibility. */
2024 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2025 && eh->root.type == bfd_link_hash_undefweak)
2026 hh->dyn_relocs = NULL;
2028 else
2030 /* For the non-shared case, discard space for relocs against
2031 symbols which turn out to need copy relocs or are not
2032 dynamic. */
2034 if (!eh->non_got_ref
2035 && ((ELIMINATE_COPY_RELOCS
2036 && eh->def_dynamic
2037 && !eh->def_regular)
2038 || (htab->etab.dynamic_sections_created
2039 && (eh->root.type == bfd_link_hash_undefweak
2040 || eh->root.type == bfd_link_hash_undefined))))
2042 /* Make sure this symbol is output as a dynamic symbol.
2043 Undefined weak syms won't yet be marked as dynamic. */
2044 if (eh->dynindx == -1
2045 && !eh->forced_local
2046 && eh->type != STT_PARISC_MILLI)
2048 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2049 return FALSE;
2052 /* If that succeeded, we know we'll be keeping all the
2053 relocs. */
2054 if (eh->dynindx != -1)
2055 goto keep;
2058 hh->dyn_relocs = NULL;
2059 return TRUE;
2061 keep: ;
2064 /* Finally, allocate space. */
2065 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2067 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2068 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2071 return TRUE;
2074 /* This function is called via elf_link_hash_traverse to force
2075 millicode symbols local so they do not end up as globals in the
2076 dynamic symbol table. We ought to be able to do this in
2077 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2078 for all dynamic symbols. Arguably, this is a bug in
2079 elf_adjust_dynamic_symbol. */
2081 static bfd_boolean
2082 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2083 struct bfd_link_info *info)
2085 if (eh->root.type == bfd_link_hash_warning)
2086 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2088 if (eh->type == STT_PARISC_MILLI
2089 && !eh->forced_local)
2091 elf32_hppa_hide_symbol (info, eh, TRUE);
2093 return TRUE;
2096 /* Find any dynamic relocs that apply to read-only sections. */
2098 static bfd_boolean
2099 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2101 struct elf32_hppa_link_hash_entry *hh;
2102 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2104 if (eh->root.type == bfd_link_hash_warning)
2105 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2107 hh = hppa_elf_hash_entry (eh);
2108 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2110 asection *sec = hdh_p->sec->output_section;
2112 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2114 struct bfd_link_info *info = inf;
2116 info->flags |= DF_TEXTREL;
2118 /* Not an error, just cut short the traversal. */
2119 return FALSE;
2122 return TRUE;
2125 /* Set the sizes of the dynamic sections. */
2127 static bfd_boolean
2128 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2129 struct bfd_link_info *info)
2131 struct elf32_hppa_link_hash_table *htab;
2132 bfd *dynobj;
2133 bfd *ibfd;
2134 asection *sec;
2135 bfd_boolean relocs;
2137 htab = hppa_link_hash_table (info);
2138 dynobj = htab->etab.dynobj;
2139 if (dynobj == NULL)
2140 abort ();
2142 if (htab->etab.dynamic_sections_created)
2144 /* Set the contents of the .interp section to the interpreter. */
2145 if (info->executable)
2147 sec = bfd_get_section_by_name (dynobj, ".interp");
2148 if (sec == NULL)
2149 abort ();
2150 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2151 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2154 /* Force millicode symbols local. */
2155 elf_link_hash_traverse (&htab->etab,
2156 clobber_millicode_symbols,
2157 info);
2160 /* Set up .got and .plt offsets for local syms, and space for local
2161 dynamic relocs. */
2162 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2164 bfd_signed_vma *local_got;
2165 bfd_signed_vma *end_local_got;
2166 bfd_signed_vma *local_plt;
2167 bfd_signed_vma *end_local_plt;
2168 bfd_size_type locsymcount;
2169 Elf_Internal_Shdr *symtab_hdr;
2170 asection *srel;
2172 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2173 continue;
2175 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2177 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2179 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2180 elf_section_data (sec)->local_dynrel);
2181 hdh_p != NULL;
2182 hdh_p = hdh_p->hdh_next)
2184 if (!bfd_is_abs_section (hdh_p->sec)
2185 && bfd_is_abs_section (hdh_p->sec->output_section))
2187 /* Input section has been discarded, either because
2188 it is a copy of a linkonce section or due to
2189 linker script /DISCARD/, so we'll be discarding
2190 the relocs too. */
2192 else if (hdh_p->count != 0)
2194 srel = elf_section_data (hdh_p->sec)->sreloc;
2195 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2196 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2197 info->flags |= DF_TEXTREL;
2202 local_got = elf_local_got_refcounts (ibfd);
2203 if (!local_got)
2204 continue;
2206 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2207 locsymcount = symtab_hdr->sh_info;
2208 end_local_got = local_got + locsymcount;
2209 sec = htab->sgot;
2210 srel = htab->srelgot;
2211 for (; local_got < end_local_got; ++local_got)
2213 if (*local_got > 0)
2215 *local_got = sec->size;
2216 sec->size += GOT_ENTRY_SIZE;
2217 if (info->shared)
2218 srel->size += sizeof (Elf32_External_Rela);
2220 else
2221 *local_got = (bfd_vma) -1;
2224 local_plt = end_local_got;
2225 end_local_plt = local_plt + locsymcount;
2226 if (! htab->etab.dynamic_sections_created)
2228 /* Won't be used, but be safe. */
2229 for (; local_plt < end_local_plt; ++local_plt)
2230 *local_plt = (bfd_vma) -1;
2232 else
2234 sec = htab->splt;
2235 srel = htab->srelplt;
2236 for (; local_plt < end_local_plt; ++local_plt)
2238 if (*local_plt > 0)
2240 *local_plt = sec->size;
2241 sec->size += PLT_ENTRY_SIZE;
2242 if (info->shared)
2243 srel->size += sizeof (Elf32_External_Rela);
2245 else
2246 *local_plt = (bfd_vma) -1;
2251 /* Do all the .plt entries without relocs first. The dynamic linker
2252 uses the last .plt reloc to find the end of the .plt (and hence
2253 the start of the .got) for lazy linking. */
2254 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2256 /* Allocate global sym .plt and .got entries, and space for global
2257 sym dynamic relocs. */
2258 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2260 /* The check_relocs and adjust_dynamic_symbol entry points have
2261 determined the sizes of the various dynamic sections. Allocate
2262 memory for them. */
2263 relocs = FALSE;
2264 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2266 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2267 continue;
2269 if (sec == htab->splt)
2271 if (htab->need_plt_stub)
2273 /* Make space for the plt stub at the end of the .plt
2274 section. We want this stub right at the end, up
2275 against the .got section. */
2276 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2277 int pltalign = bfd_section_alignment (dynobj, sec);
2278 bfd_size_type mask;
2280 if (gotalign > pltalign)
2281 bfd_set_section_alignment (dynobj, sec, gotalign);
2282 mask = ((bfd_size_type) 1 << gotalign) - 1;
2283 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2286 else if (sec == htab->sgot
2287 || sec == htab->sdynbss)
2289 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2291 if (sec->size != 0)
2293 /* Remember whether there are any reloc sections other
2294 than .rela.plt. */
2295 if (sec != htab->srelplt)
2296 relocs = TRUE;
2298 /* We use the reloc_count field as a counter if we need
2299 to copy relocs into the output file. */
2300 sec->reloc_count = 0;
2303 else
2305 /* It's not one of our sections, so don't allocate space. */
2306 continue;
2309 if (sec->size == 0)
2311 /* If we don't need this section, strip it from the
2312 output file. This is mostly to handle .rela.bss and
2313 .rela.plt. We must create both sections in
2314 create_dynamic_sections, because they must be created
2315 before the linker maps input sections to output
2316 sections. The linker does that before
2317 adjust_dynamic_symbol is called, and it is that
2318 function which decides whether anything needs to go
2319 into these sections. */
2320 sec->flags |= SEC_EXCLUDE;
2321 continue;
2324 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2325 continue;
2327 /* Allocate memory for the section contents. Zero it, because
2328 we may not fill in all the reloc sections. */
2329 sec->contents = bfd_zalloc (dynobj, sec->size);
2330 if (sec->contents == NULL)
2331 return FALSE;
2334 if (htab->etab.dynamic_sections_created)
2336 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2337 actually has nothing to do with the PLT, it is how we
2338 communicate the LTP value of a load module to the dynamic
2339 linker. */
2340 #define add_dynamic_entry(TAG, VAL) \
2341 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2343 if (!add_dynamic_entry (DT_PLTGOT, 0))
2344 return FALSE;
2346 /* Add some entries to the .dynamic section. We fill in the
2347 values later, in elf32_hppa_finish_dynamic_sections, but we
2348 must add the entries now so that we get the correct size for
2349 the .dynamic section. The DT_DEBUG entry is filled in by the
2350 dynamic linker and used by the debugger. */
2351 if (!info->shared)
2353 if (!add_dynamic_entry (DT_DEBUG, 0))
2354 return FALSE;
2357 if (htab->srelplt->size != 0)
2359 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2360 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2361 || !add_dynamic_entry (DT_JMPREL, 0))
2362 return FALSE;
2365 if (relocs)
2367 if (!add_dynamic_entry (DT_RELA, 0)
2368 || !add_dynamic_entry (DT_RELASZ, 0)
2369 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2370 return FALSE;
2372 /* If any dynamic relocs apply to a read-only section,
2373 then we need a DT_TEXTREL entry. */
2374 if ((info->flags & DF_TEXTREL) == 0)
2375 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2377 if ((info->flags & DF_TEXTREL) != 0)
2379 if (!add_dynamic_entry (DT_TEXTREL, 0))
2380 return FALSE;
2384 #undef add_dynamic_entry
2386 return TRUE;
2389 /* External entry points for sizing and building linker stubs. */
2391 /* Set up various things so that we can make a list of input sections
2392 for each output section included in the link. Returns -1 on error,
2393 0 when no stubs will be needed, and 1 on success. */
2396 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2398 bfd *input_bfd;
2399 unsigned int bfd_count;
2400 int top_id, top_index;
2401 asection *section;
2402 asection **input_list, **list;
2403 bfd_size_type amt;
2404 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2406 /* Count the number of input BFDs and find the top input section id. */
2407 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2408 input_bfd != NULL;
2409 input_bfd = input_bfd->link_next)
2411 bfd_count += 1;
2412 for (section = input_bfd->sections;
2413 section != NULL;
2414 section = section->next)
2416 if (top_id < section->id)
2417 top_id = section->id;
2420 htab->bfd_count = bfd_count;
2422 amt = sizeof (struct map_stub) * (top_id + 1);
2423 htab->stub_group = bfd_zmalloc (amt);
2424 if (htab->stub_group == NULL)
2425 return -1;
2427 /* We can't use output_bfd->section_count here to find the top output
2428 section index as some sections may have been removed, and
2429 strip_excluded_output_sections doesn't renumber the indices. */
2430 for (section = output_bfd->sections, top_index = 0;
2431 section != NULL;
2432 section = section->next)
2434 if (top_index < section->index)
2435 top_index = section->index;
2438 htab->top_index = top_index;
2439 amt = sizeof (asection *) * (top_index + 1);
2440 input_list = bfd_malloc (amt);
2441 htab->input_list = input_list;
2442 if (input_list == NULL)
2443 return -1;
2445 /* For sections we aren't interested in, mark their entries with a
2446 value we can check later. */
2447 list = input_list + top_index;
2449 *list = bfd_abs_section_ptr;
2450 while (list-- != input_list);
2452 for (section = output_bfd->sections;
2453 section != NULL;
2454 section = section->next)
2456 if ((section->flags & SEC_CODE) != 0)
2457 input_list[section->index] = NULL;
2460 return 1;
2463 /* The linker repeatedly calls this function for each input section,
2464 in the order that input sections are linked into output sections.
2465 Build lists of input sections to determine groupings between which
2466 we may insert linker stubs. */
2468 void
2469 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2471 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2473 if (isec->output_section->index <= htab->top_index)
2475 asection **list = htab->input_list + isec->output_section->index;
2476 if (*list != bfd_abs_section_ptr)
2478 /* Steal the link_sec pointer for our list. */
2479 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2480 /* This happens to make the list in reverse order,
2481 which is what we want. */
2482 PREV_SEC (isec) = *list;
2483 *list = isec;
2488 /* See whether we can group stub sections together. Grouping stub
2489 sections may result in fewer stubs. More importantly, we need to
2490 put all .init* and .fini* stubs at the beginning of the .init or
2491 .fini output sections respectively, because glibc splits the
2492 _init and _fini functions into multiple parts. Putting a stub in
2493 the middle of a function is not a good idea. */
2495 static void
2496 group_sections (struct elf32_hppa_link_hash_table *htab,
2497 bfd_size_type stub_group_size,
2498 bfd_boolean stubs_always_before_branch)
2500 asection **list = htab->input_list + htab->top_index;
2503 asection *tail = *list;
2504 if (tail == bfd_abs_section_ptr)
2505 continue;
2506 while (tail != NULL)
2508 asection *curr;
2509 asection *prev;
2510 bfd_size_type total;
2511 bfd_boolean big_sec;
2513 curr = tail;
2514 total = tail->size;
2515 big_sec = total >= stub_group_size;
2517 while ((prev = PREV_SEC (curr)) != NULL
2518 && ((total += curr->output_offset - prev->output_offset)
2519 < stub_group_size))
2520 curr = prev;
2522 /* OK, the size from the start of CURR to the end is less
2523 than 240000 bytes and thus can be handled by one stub
2524 section. (or the tail section is itself larger than
2525 240000 bytes, in which case we may be toast.)
2526 We should really be keeping track of the total size of
2527 stubs added here, as stubs contribute to the final output
2528 section size. That's a little tricky, and this way will
2529 only break if stubs added total more than 22144 bytes, or
2530 2768 long branch stubs. It seems unlikely for more than
2531 2768 different functions to be called, especially from
2532 code only 240000 bytes long. This limit used to be
2533 250000, but c++ code tends to generate lots of little
2534 functions, and sometimes violated the assumption. */
2537 prev = PREV_SEC (tail);
2538 /* Set up this stub group. */
2539 htab->stub_group[tail->id].link_sec = curr;
2541 while (tail != curr && (tail = prev) != NULL);
2543 /* But wait, there's more! Input sections up to 240000
2544 bytes before the stub section can be handled by it too.
2545 Don't do this if we have a really large section after the
2546 stubs, as adding more stubs increases the chance that
2547 branches may not reach into the stub section. */
2548 if (!stubs_always_before_branch && !big_sec)
2550 total = 0;
2551 while (prev != NULL
2552 && ((total += tail->output_offset - prev->output_offset)
2553 < stub_group_size))
2555 tail = prev;
2556 prev = PREV_SEC (tail);
2557 htab->stub_group[tail->id].link_sec = curr;
2560 tail = prev;
2563 while (list-- != htab->input_list);
2564 free (htab->input_list);
2565 #undef PREV_SEC
2568 /* Read in all local syms for all input bfds, and create hash entries
2569 for export stubs if we are building a multi-subspace shared lib.
2570 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2572 static int
2573 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2575 unsigned int bfd_indx;
2576 Elf_Internal_Sym *local_syms, **all_local_syms;
2577 int stub_changed = 0;
2578 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2580 /* We want to read in symbol extension records only once. To do this
2581 we need to read in the local symbols in parallel and save them for
2582 later use; so hold pointers to the local symbols in an array. */
2583 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2584 all_local_syms = bfd_zmalloc (amt);
2585 htab->all_local_syms = all_local_syms;
2586 if (all_local_syms == NULL)
2587 return -1;
2589 /* Walk over all the input BFDs, swapping in local symbols.
2590 If we are creating a shared library, create hash entries for the
2591 export stubs. */
2592 for (bfd_indx = 0;
2593 input_bfd != NULL;
2594 input_bfd = input_bfd->link_next, bfd_indx++)
2596 Elf_Internal_Shdr *symtab_hdr;
2598 /* We'll need the symbol table in a second. */
2599 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2600 if (symtab_hdr->sh_info == 0)
2601 continue;
2603 /* We need an array of the local symbols attached to the input bfd. */
2604 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2605 if (local_syms == NULL)
2607 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2608 symtab_hdr->sh_info, 0,
2609 NULL, NULL, NULL);
2610 /* Cache them for elf_link_input_bfd. */
2611 symtab_hdr->contents = (unsigned char *) local_syms;
2613 if (local_syms == NULL)
2614 return -1;
2616 all_local_syms[bfd_indx] = local_syms;
2618 if (info->shared && htab->multi_subspace)
2620 struct elf_link_hash_entry **eh_syms;
2621 struct elf_link_hash_entry **eh_symend;
2622 unsigned int symcount;
2624 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2625 - symtab_hdr->sh_info);
2626 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2627 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2629 /* Look through the global syms for functions; We need to
2630 build export stubs for all globally visible functions. */
2631 for (; eh_syms < eh_symend; eh_syms++)
2633 struct elf32_hppa_link_hash_entry *hh;
2635 hh = hppa_elf_hash_entry (*eh_syms);
2637 while (hh->eh.root.type == bfd_link_hash_indirect
2638 || hh->eh.root.type == bfd_link_hash_warning)
2639 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2641 /* At this point in the link, undefined syms have been
2642 resolved, so we need to check that the symbol was
2643 defined in this BFD. */
2644 if ((hh->eh.root.type == bfd_link_hash_defined
2645 || hh->eh.root.type == bfd_link_hash_defweak)
2646 && hh->eh.type == STT_FUNC
2647 && hh->eh.root.u.def.section->output_section != NULL
2648 && (hh->eh.root.u.def.section->output_section->owner
2649 == output_bfd)
2650 && hh->eh.root.u.def.section->owner == input_bfd
2651 && hh->eh.def_regular
2652 && !hh->eh.forced_local
2653 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2655 asection *sec;
2656 const char *stub_name;
2657 struct elf32_hppa_stub_hash_entry *hsh;
2659 sec = hh->eh.root.u.def.section;
2660 stub_name = hh->eh.root.root.string;
2661 hsh = hppa_stub_hash_lookup (&htab->bstab,
2662 stub_name,
2663 FALSE, FALSE);
2664 if (hsh == NULL)
2666 hsh = hppa_add_stub (stub_name, sec, htab);
2667 if (!hsh)
2668 return -1;
2670 hsh->target_value = hh->eh.root.u.def.value;
2671 hsh->target_section = hh->eh.root.u.def.section;
2672 hsh->stub_type = hppa_stub_export;
2673 hsh->hh = hh;
2674 stub_changed = 1;
2676 else
2678 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2679 input_bfd,
2680 stub_name);
2687 return stub_changed;
2690 /* Determine and set the size of the stub section for a final link.
2692 The basic idea here is to examine all the relocations looking for
2693 PC-relative calls to a target that is unreachable with a "bl"
2694 instruction. */
2696 bfd_boolean
2697 elf32_hppa_size_stubs
2698 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2699 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2700 asection * (*add_stub_section) (const char *, asection *),
2701 void (*layout_sections_again) (void))
2703 bfd_size_type stub_group_size;
2704 bfd_boolean stubs_always_before_branch;
2705 bfd_boolean stub_changed;
2706 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2708 /* Stash our params away. */
2709 htab->stub_bfd = stub_bfd;
2710 htab->multi_subspace = multi_subspace;
2711 htab->add_stub_section = add_stub_section;
2712 htab->layout_sections_again = layout_sections_again;
2713 stubs_always_before_branch = group_size < 0;
2714 if (group_size < 0)
2715 stub_group_size = -group_size;
2716 else
2717 stub_group_size = group_size;
2718 if (stub_group_size == 1)
2720 /* Default values. */
2721 if (stubs_always_before_branch)
2723 stub_group_size = 7680000;
2724 if (htab->has_17bit_branch || htab->multi_subspace)
2725 stub_group_size = 240000;
2726 if (htab->has_12bit_branch)
2727 stub_group_size = 7500;
2729 else
2731 stub_group_size = 6971392;
2732 if (htab->has_17bit_branch || htab->multi_subspace)
2733 stub_group_size = 217856;
2734 if (htab->has_12bit_branch)
2735 stub_group_size = 6808;
2739 group_sections (htab, stub_group_size, stubs_always_before_branch);
2741 switch (get_local_syms (output_bfd, info->input_bfds, info))
2743 default:
2744 if (htab->all_local_syms)
2745 goto error_ret_free_local;
2746 return FALSE;
2748 case 0:
2749 stub_changed = FALSE;
2750 break;
2752 case 1:
2753 stub_changed = TRUE;
2754 break;
2757 while (1)
2759 bfd *input_bfd;
2760 unsigned int bfd_indx;
2761 asection *stub_sec;
2763 for (input_bfd = info->input_bfds, bfd_indx = 0;
2764 input_bfd != NULL;
2765 input_bfd = input_bfd->link_next, bfd_indx++)
2767 Elf_Internal_Shdr *symtab_hdr;
2768 asection *section;
2769 Elf_Internal_Sym *local_syms;
2771 /* We'll need the symbol table in a second. */
2772 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2773 if (symtab_hdr->sh_info == 0)
2774 continue;
2776 local_syms = htab->all_local_syms[bfd_indx];
2778 /* Walk over each section attached to the input bfd. */
2779 for (section = input_bfd->sections;
2780 section != NULL;
2781 section = section->next)
2783 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2785 /* If there aren't any relocs, then there's nothing more
2786 to do. */
2787 if ((section->flags & SEC_RELOC) == 0
2788 || section->reloc_count == 0)
2789 continue;
2791 /* If this section is a link-once section that will be
2792 discarded, then don't create any stubs. */
2793 if (section->output_section == NULL
2794 || section->output_section->owner != output_bfd)
2795 continue;
2797 /* Get the relocs. */
2798 internal_relocs
2799 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2800 info->keep_memory);
2801 if (internal_relocs == NULL)
2802 goto error_ret_free_local;
2804 /* Now examine each relocation. */
2805 irela = internal_relocs;
2806 irelaend = irela + section->reloc_count;
2807 for (; irela < irelaend; irela++)
2809 unsigned int r_type, r_indx;
2810 enum elf32_hppa_stub_type stub_type;
2811 struct elf32_hppa_stub_hash_entry *hsh;
2812 asection *sym_sec;
2813 bfd_vma sym_value;
2814 bfd_vma destination;
2815 struct elf32_hppa_link_hash_entry *hh;
2816 char *stub_name;
2817 const asection *id_sec;
2819 r_type = ELF32_R_TYPE (irela->r_info);
2820 r_indx = ELF32_R_SYM (irela->r_info);
2822 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2824 bfd_set_error (bfd_error_bad_value);
2825 error_ret_free_internal:
2826 if (elf_section_data (section)->relocs == NULL)
2827 free (internal_relocs);
2828 goto error_ret_free_local;
2831 /* Only look for stubs on call instructions. */
2832 if (r_type != (unsigned int) R_PARISC_PCREL12F
2833 && r_type != (unsigned int) R_PARISC_PCREL17F
2834 && r_type != (unsigned int) R_PARISC_PCREL22F)
2835 continue;
2837 /* Now determine the call target, its name, value,
2838 section. */
2839 sym_sec = NULL;
2840 sym_value = 0;
2841 destination = 0;
2842 hh = NULL;
2843 if (r_indx < symtab_hdr->sh_info)
2845 /* It's a local symbol. */
2846 Elf_Internal_Sym *sym;
2847 Elf_Internal_Shdr *hdr;
2849 sym = local_syms + r_indx;
2850 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2851 sym_sec = hdr->bfd_section;
2852 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2853 sym_value = sym->st_value;
2854 destination = (sym_value + irela->r_addend
2855 + sym_sec->output_offset
2856 + sym_sec->output_section->vma);
2858 else
2860 /* It's an external symbol. */
2861 int e_indx;
2863 e_indx = r_indx - symtab_hdr->sh_info;
2864 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2866 while (hh->eh.root.type == bfd_link_hash_indirect
2867 || hh->eh.root.type == bfd_link_hash_warning)
2868 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2870 if (hh->eh.root.type == bfd_link_hash_defined
2871 || hh->eh.root.type == bfd_link_hash_defweak)
2873 sym_sec = hh->eh.root.u.def.section;
2874 sym_value = hh->eh.root.u.def.value;
2875 if (sym_sec->output_section != NULL)
2876 destination = (sym_value + irela->r_addend
2877 + sym_sec->output_offset
2878 + sym_sec->output_section->vma);
2880 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2882 if (! info->shared)
2883 continue;
2885 else if (hh->eh.root.type == bfd_link_hash_undefined)
2887 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2888 && (ELF_ST_VISIBILITY (hh->eh.other)
2889 == STV_DEFAULT)
2890 && hh->eh.type != STT_PARISC_MILLI))
2891 continue;
2893 else
2895 bfd_set_error (bfd_error_bad_value);
2896 goto error_ret_free_internal;
2900 /* Determine what (if any) linker stub is needed. */
2901 stub_type = hppa_type_of_stub (section, irela, hh,
2902 destination, info);
2903 if (stub_type == hppa_stub_none)
2904 continue;
2906 /* Support for grouping stub sections. */
2907 id_sec = htab->stub_group[section->id].link_sec;
2909 /* Get the name of this stub. */
2910 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2911 if (!stub_name)
2912 goto error_ret_free_internal;
2914 hsh = hppa_stub_hash_lookup (&htab->bstab,
2915 stub_name,
2916 FALSE, FALSE);
2917 if (hsh != NULL)
2919 /* The proper stub has already been created. */
2920 free (stub_name);
2921 continue;
2924 hsh = hppa_add_stub (stub_name, section, htab);
2925 if (hsh == NULL)
2927 free (stub_name);
2928 goto error_ret_free_internal;
2931 hsh->target_value = sym_value;
2932 hsh->target_section = sym_sec;
2933 hsh->stub_type = stub_type;
2934 if (info->shared)
2936 if (stub_type == hppa_stub_import)
2937 hsh->stub_type = hppa_stub_import_shared;
2938 else if (stub_type == hppa_stub_long_branch)
2939 hsh->stub_type = hppa_stub_long_branch_shared;
2941 hsh->hh = hh;
2942 stub_changed = TRUE;
2945 /* We're done with the internal relocs, free them. */
2946 if (elf_section_data (section)->relocs == NULL)
2947 free (internal_relocs);
2951 if (!stub_changed)
2952 break;
2954 /* OK, we've added some stubs. Find out the new size of the
2955 stub sections. */
2956 for (stub_sec = htab->stub_bfd->sections;
2957 stub_sec != NULL;
2958 stub_sec = stub_sec->next)
2959 stub_sec->size = 0;
2961 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2963 /* Ask the linker to do its stuff. */
2964 (*htab->layout_sections_again) ();
2965 stub_changed = FALSE;
2968 free (htab->all_local_syms);
2969 return TRUE;
2971 error_ret_free_local:
2972 free (htab->all_local_syms);
2973 return FALSE;
2976 /* For a final link, this function is called after we have sized the
2977 stubs to provide a value for __gp. */
2979 bfd_boolean
2980 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2982 struct bfd_link_hash_entry *h;
2983 asection *sec = NULL;
2984 bfd_vma gp_val = 0;
2985 struct elf32_hppa_link_hash_table *htab;
2987 htab = hppa_link_hash_table (info);
2988 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
2990 if (h != NULL
2991 && (h->type == bfd_link_hash_defined
2992 || h->type == bfd_link_hash_defweak))
2994 gp_val = h->u.def.value;
2995 sec = h->u.def.section;
2997 else
2999 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3000 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3002 /* Choose to point our LTP at, in this order, one of .plt, .got,
3003 or .data, if these sections exist. In the case of choosing
3004 .plt try to make the LTP ideal for addressing anywhere in the
3005 .plt or .got with a 14 bit signed offset. Typically, the end
3006 of the .plt is the start of the .got, so choose .plt + 0x2000
3007 if either the .plt or .got is larger than 0x2000. If both
3008 the .plt and .got are smaller than 0x2000, choose the end of
3009 the .plt section. */
3010 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3011 ? NULL : splt;
3012 if (sec != NULL)
3014 gp_val = sec->size;
3015 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3017 gp_val = 0x2000;
3020 else
3022 sec = sgot;
3023 if (sec != NULL)
3025 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3027 /* We know we don't have a .plt. If .got is large,
3028 offset our LTP. */
3029 if (sec->size > 0x2000)
3030 gp_val = 0x2000;
3033 else
3035 /* No .plt or .got. Who cares what the LTP is? */
3036 sec = bfd_get_section_by_name (abfd, ".data");
3040 if (h != NULL)
3042 h->type = bfd_link_hash_defined;
3043 h->u.def.value = gp_val;
3044 if (sec != NULL)
3045 h->u.def.section = sec;
3046 else
3047 h->u.def.section = bfd_abs_section_ptr;
3051 if (sec != NULL && sec->output_section != NULL)
3052 gp_val += sec->output_section->vma + sec->output_offset;
3054 elf_gp (abfd) = gp_val;
3055 return TRUE;
3058 /* Build all the stubs associated with the current output file. The
3059 stubs are kept in a hash table attached to the main linker hash
3060 table. We also set up the .plt entries for statically linked PIC
3061 functions here. This function is called via hppaelf_finish in the
3062 linker. */
3064 bfd_boolean
3065 elf32_hppa_build_stubs (struct bfd_link_info *info)
3067 asection *stub_sec;
3068 struct bfd_hash_table *table;
3069 struct elf32_hppa_link_hash_table *htab;
3071 htab = hppa_link_hash_table (info);
3073 for (stub_sec = htab->stub_bfd->sections;
3074 stub_sec != NULL;
3075 stub_sec = stub_sec->next)
3077 bfd_size_type size;
3079 /* Allocate memory to hold the linker stubs. */
3080 size = stub_sec->size;
3081 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3082 if (stub_sec->contents == NULL && size != 0)
3083 return FALSE;
3084 stub_sec->size = 0;
3087 /* Build the stubs as directed by the stub hash table. */
3088 table = &htab->bstab;
3089 bfd_hash_traverse (table, hppa_build_one_stub, info);
3091 return TRUE;
3094 /* Perform a final link. */
3096 static bfd_boolean
3097 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3099 /* Invoke the regular ELF linker to do all the work. */
3100 if (!bfd_elf_final_link (abfd, info))
3101 return FALSE;
3103 /* If we're producing a final executable, sort the contents of the
3104 unwind section. */
3105 return elf_hppa_sort_unwind (abfd);
3108 /* Record the lowest address for the data and text segments. */
3110 static void
3111 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3112 asection *section,
3113 void *data)
3115 struct elf32_hppa_link_hash_table *htab;
3117 htab = (struct elf32_hppa_link_hash_table*) data;
3119 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3121 bfd_vma value = section->vma - section->filepos;
3123 if ((section->flags & SEC_READONLY) != 0)
3125 if (value < htab->text_segment_base)
3126 htab->text_segment_base = value;
3128 else
3130 if (value < htab->data_segment_base)
3131 htab->data_segment_base = value;
3136 /* Perform a relocation as part of a final link. */
3138 static bfd_reloc_status_type
3139 final_link_relocate (asection *input_section,
3140 bfd_byte *contents,
3141 const Elf_Internal_Rela *rela,
3142 bfd_vma value,
3143 struct elf32_hppa_link_hash_table *htab,
3144 asection *sym_sec,
3145 struct elf32_hppa_link_hash_entry *hh,
3146 struct bfd_link_info *info)
3148 int insn;
3149 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3150 unsigned int orig_r_type = r_type;
3151 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3152 int r_format = howto->bitsize;
3153 enum hppa_reloc_field_selector_type_alt r_field;
3154 bfd *input_bfd = input_section->owner;
3155 bfd_vma offset = rela->r_offset;
3156 bfd_vma max_branch_offset = 0;
3157 bfd_byte *hit_data = contents + offset;
3158 bfd_signed_vma addend = rela->r_addend;
3159 bfd_vma location;
3160 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3161 int val;
3163 if (r_type == R_PARISC_NONE)
3164 return bfd_reloc_ok;
3166 insn = bfd_get_32 (input_bfd, hit_data);
3168 /* Find out where we are and where we're going. */
3169 location = (offset +
3170 input_section->output_offset +
3171 input_section->output_section->vma);
3173 /* If we are not building a shared library, convert DLTIND relocs to
3174 DPREL relocs. */
3175 if (!info->shared)
3177 switch (r_type)
3179 case R_PARISC_DLTIND21L:
3180 r_type = R_PARISC_DPREL21L;
3181 break;
3183 case R_PARISC_DLTIND14R:
3184 r_type = R_PARISC_DPREL14R;
3185 break;
3187 case R_PARISC_DLTIND14F:
3188 r_type = R_PARISC_DPREL14F;
3189 break;
3193 switch (r_type)
3195 case R_PARISC_PCREL12F:
3196 case R_PARISC_PCREL17F:
3197 case R_PARISC_PCREL22F:
3198 /* If this call should go via the plt, find the import stub in
3199 the stub hash. */
3200 if (sym_sec == NULL
3201 || sym_sec->output_section == NULL
3202 || (hh != NULL
3203 && hh->eh.plt.offset != (bfd_vma) -1
3204 && hh->eh.dynindx != -1
3205 && !hh->plabel
3206 && (info->shared
3207 || !hh->eh.def_regular
3208 || hh->eh.root.type == bfd_link_hash_defweak)))
3210 hsh = hppa_get_stub_entry (input_section, sym_sec,
3211 hh, rela, htab);
3212 if (hsh != NULL)
3214 value = (hsh->stub_offset
3215 + hsh->stub_sec->output_offset
3216 + hsh->stub_sec->output_section->vma);
3217 addend = 0;
3219 else if (sym_sec == NULL && hh != NULL
3220 && hh->eh.root.type == bfd_link_hash_undefweak)
3222 /* It's OK if undefined weak. Calls to undefined weak
3223 symbols behave as if the "called" function
3224 immediately returns. We can thus call to a weak
3225 function without first checking whether the function
3226 is defined. */
3227 value = location;
3228 addend = 8;
3230 else
3231 return bfd_reloc_undefined;
3233 /* Fall thru. */
3235 case R_PARISC_PCREL21L:
3236 case R_PARISC_PCREL17C:
3237 case R_PARISC_PCREL17R:
3238 case R_PARISC_PCREL14R:
3239 case R_PARISC_PCREL14F:
3240 case R_PARISC_PCREL32:
3241 /* Make it a pc relative offset. */
3242 value -= location;
3243 addend -= 8;
3244 break;
3246 case R_PARISC_DPREL21L:
3247 case R_PARISC_DPREL14R:
3248 case R_PARISC_DPREL14F:
3249 /* Convert instructions that use the linkage table pointer (r19) to
3250 instructions that use the global data pointer (dp). This is the
3251 most efficient way of using PIC code in an incomplete executable,
3252 but the user must follow the standard runtime conventions for
3253 accessing data for this to work. */
3254 if (orig_r_type == R_PARISC_DLTIND21L)
3256 /* Convert addil instructions if the original reloc was a
3257 DLTIND21L. GCC sometimes uses a register other than r19 for
3258 the operation, so we must convert any addil instruction
3259 that uses this relocation. */
3260 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3261 insn = ADDIL_DP;
3262 else
3263 /* We must have a ldil instruction. It's too hard to find
3264 and convert the associated add instruction, so issue an
3265 error. */
3266 (*_bfd_error_handler)
3267 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3268 input_bfd,
3269 input_section,
3270 offset,
3271 howto->name,
3272 insn);
3274 else if (orig_r_type == R_PARISC_DLTIND14F)
3276 /* This must be a format 1 load/store. Change the base
3277 register to dp. */
3278 insn = (insn & 0xfc1ffff) | (27 << 21);
3281 /* For all the DP relative relocations, we need to examine the symbol's
3282 section. If it has no section or if it's a code section, then
3283 "data pointer relative" makes no sense. In that case we don't
3284 adjust the "value", and for 21 bit addil instructions, we change the
3285 source addend register from %dp to %r0. This situation commonly
3286 arises for undefined weak symbols and when a variable's "constness"
3287 is declared differently from the way the variable is defined. For
3288 instance: "extern int foo" with foo defined as "const int foo". */
3289 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3291 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3292 == (((int) OP_ADDIL << 26) | (27 << 21)))
3294 insn &= ~ (0x1f << 21);
3296 /* Now try to make things easy for the dynamic linker. */
3298 break;
3300 /* Fall thru. */
3302 case R_PARISC_DLTIND21L:
3303 case R_PARISC_DLTIND14R:
3304 case R_PARISC_DLTIND14F:
3305 value -= elf_gp (input_section->output_section->owner);
3306 break;
3308 case R_PARISC_SEGREL32:
3309 if ((sym_sec->flags & SEC_CODE) != 0)
3310 value -= htab->text_segment_base;
3311 else
3312 value -= htab->data_segment_base;
3313 break;
3315 default:
3316 break;
3319 switch (r_type)
3321 case R_PARISC_DIR32:
3322 case R_PARISC_DIR14F:
3323 case R_PARISC_DIR17F:
3324 case R_PARISC_PCREL17C:
3325 case R_PARISC_PCREL14F:
3326 case R_PARISC_PCREL32:
3327 case R_PARISC_DPREL14F:
3328 case R_PARISC_PLABEL32:
3329 case R_PARISC_DLTIND14F:
3330 case R_PARISC_SEGBASE:
3331 case R_PARISC_SEGREL32:
3332 r_field = e_fsel;
3333 break;
3335 case R_PARISC_DLTIND21L:
3336 case R_PARISC_PCREL21L:
3337 case R_PARISC_PLABEL21L:
3338 r_field = e_lsel;
3339 break;
3341 case R_PARISC_DIR21L:
3342 case R_PARISC_DPREL21L:
3343 r_field = e_lrsel;
3344 break;
3346 case R_PARISC_PCREL17R:
3347 case R_PARISC_PCREL14R:
3348 case R_PARISC_PLABEL14R:
3349 case R_PARISC_DLTIND14R:
3350 r_field = e_rsel;
3351 break;
3353 case R_PARISC_DIR17R:
3354 case R_PARISC_DIR14R:
3355 case R_PARISC_DPREL14R:
3356 r_field = e_rrsel;
3357 break;
3359 case R_PARISC_PCREL12F:
3360 case R_PARISC_PCREL17F:
3361 case R_PARISC_PCREL22F:
3362 r_field = e_fsel;
3364 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3366 max_branch_offset = (1 << (17-1)) << 2;
3368 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3370 max_branch_offset = (1 << (12-1)) << 2;
3372 else
3374 max_branch_offset = (1 << (22-1)) << 2;
3377 /* sym_sec is NULL on undefined weak syms or when shared on
3378 undefined syms. We've already checked for a stub for the
3379 shared undefined case. */
3380 if (sym_sec == NULL)
3381 break;
3383 /* If the branch is out of reach, then redirect the
3384 call to the local stub for this function. */
3385 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3387 hsh = hppa_get_stub_entry (input_section, sym_sec,
3388 hh, rela, htab);
3389 if (hsh == NULL)
3390 return bfd_reloc_undefined;
3392 /* Munge up the value and addend so that we call the stub
3393 rather than the procedure directly. */
3394 value = (hsh->stub_offset
3395 + hsh->stub_sec->output_offset
3396 + hsh->stub_sec->output_section->vma
3397 - location);
3398 addend = -8;
3400 break;
3402 /* Something we don't know how to handle. */
3403 default:
3404 return bfd_reloc_notsupported;
3407 /* Make sure we can reach the stub. */
3408 if (max_branch_offset != 0
3409 && value + addend + max_branch_offset >= 2*max_branch_offset)
3411 (*_bfd_error_handler)
3412 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3413 input_bfd,
3414 input_section,
3415 offset,
3416 hsh->bh_root.string);
3417 bfd_set_error (bfd_error_bad_value);
3418 return bfd_reloc_notsupported;
3421 val = hppa_field_adjust (value, addend, r_field);
3423 switch (r_type)
3425 case R_PARISC_PCREL12F:
3426 case R_PARISC_PCREL17C:
3427 case R_PARISC_PCREL17F:
3428 case R_PARISC_PCREL17R:
3429 case R_PARISC_PCREL22F:
3430 case R_PARISC_DIR17F:
3431 case R_PARISC_DIR17R:
3432 /* This is a branch. Divide the offset by four.
3433 Note that we need to decide whether it's a branch or
3434 otherwise by inspecting the reloc. Inspecting insn won't
3435 work as insn might be from a .word directive. */
3436 val >>= 2;
3437 break;
3439 default:
3440 break;
3443 insn = hppa_rebuild_insn (insn, val, r_format);
3445 /* Update the instruction word. */
3446 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3447 return bfd_reloc_ok;
3450 /* Relocate an HPPA ELF section. */
3452 static bfd_boolean
3453 elf32_hppa_relocate_section (bfd *output_bfd,
3454 struct bfd_link_info *info,
3455 bfd *input_bfd,
3456 asection *input_section,
3457 bfd_byte *contents,
3458 Elf_Internal_Rela *relocs,
3459 Elf_Internal_Sym *local_syms,
3460 asection **local_sections)
3462 bfd_vma *local_got_offsets;
3463 struct elf32_hppa_link_hash_table *htab;
3464 Elf_Internal_Shdr *symtab_hdr;
3465 Elf_Internal_Rela *rela;
3466 Elf_Internal_Rela *relend;
3468 if (info->relocatable)
3469 return TRUE;
3471 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3473 htab = hppa_link_hash_table (info);
3474 local_got_offsets = elf_local_got_offsets (input_bfd);
3476 rela = relocs;
3477 relend = relocs + input_section->reloc_count;
3478 for (; rela < relend; rela++)
3480 unsigned int r_type;
3481 reloc_howto_type *howto;
3482 unsigned int r_symndx;
3483 struct elf32_hppa_link_hash_entry *hh;
3484 Elf_Internal_Sym *sym;
3485 asection *sym_sec;
3486 bfd_vma relocation;
3487 bfd_reloc_status_type rstatus;
3488 const char *sym_name;
3489 bfd_boolean plabel;
3490 bfd_boolean warned_undef;
3492 r_type = ELF32_R_TYPE (rela->r_info);
3493 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3495 bfd_set_error (bfd_error_bad_value);
3496 return FALSE;
3498 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3499 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3500 continue;
3502 /* This is a final link. */
3503 r_symndx = ELF32_R_SYM (rela->r_info);
3504 hh = NULL;
3505 sym = NULL;
3506 sym_sec = NULL;
3507 warned_undef = FALSE;
3508 if (r_symndx < symtab_hdr->sh_info)
3510 /* This is a local symbol, h defaults to NULL. */
3511 sym = local_syms + r_symndx;
3512 sym_sec = local_sections[r_symndx];
3513 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3515 else
3517 struct elf_link_hash_entry *eh;
3518 bfd_boolean unresolved_reloc;
3519 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3521 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3522 r_symndx, symtab_hdr, sym_hashes,
3523 eh, sym_sec, relocation,
3524 unresolved_reloc, warned_undef);
3526 if (relocation == 0
3527 && eh->root.type != bfd_link_hash_defined
3528 && eh->root.type != bfd_link_hash_defweak
3529 && eh->root.type != bfd_link_hash_undefweak)
3531 if (info->unresolved_syms_in_objects == RM_IGNORE
3532 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3533 && eh->type == STT_PARISC_MILLI)
3535 if (! info->callbacks->undefined_symbol
3536 (info, eh->root.root.string, input_bfd,
3537 input_section, rela->r_offset, FALSE))
3538 return FALSE;
3539 warned_undef = TRUE;
3542 hh = hppa_elf_hash_entry (eh);
3545 /* Do any required modifications to the relocation value, and
3546 determine what types of dynamic info we need to output, if
3547 any. */
3548 plabel = 0;
3549 switch (r_type)
3551 case R_PARISC_DLTIND14F:
3552 case R_PARISC_DLTIND14R:
3553 case R_PARISC_DLTIND21L:
3555 bfd_vma off;
3556 bfd_boolean do_got = 0;
3558 /* Relocation is to the entry for this symbol in the
3559 global offset table. */
3560 if (hh != NULL)
3562 bfd_boolean dyn;
3564 off = hh->eh.got.offset;
3565 dyn = htab->etab.dynamic_sections_created;
3566 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3567 &hh->eh))
3569 /* If we aren't going to call finish_dynamic_symbol,
3570 then we need to handle initialisation of the .got
3571 entry and create needed relocs here. Since the
3572 offset must always be a multiple of 4, we use the
3573 least significant bit to record whether we have
3574 initialised it already. */
3575 if ((off & 1) != 0)
3576 off &= ~1;
3577 else
3579 hh->eh.got.offset |= 1;
3580 do_got = 1;
3584 else
3586 /* Local symbol case. */
3587 if (local_got_offsets == NULL)
3588 abort ();
3590 off = local_got_offsets[r_symndx];
3592 /* The offset must always be a multiple of 4. We use
3593 the least significant bit to record whether we have
3594 already generated the necessary reloc. */
3595 if ((off & 1) != 0)
3596 off &= ~1;
3597 else
3599 local_got_offsets[r_symndx] |= 1;
3600 do_got = 1;
3604 if (do_got)
3606 if (info->shared)
3608 /* Output a dynamic relocation for this GOT entry.
3609 In this case it is relative to the base of the
3610 object because the symbol index is zero. */
3611 Elf_Internal_Rela outrel;
3612 bfd_byte *loc;
3613 asection *sec = htab->srelgot;
3615 outrel.r_offset = (off
3616 + htab->sgot->output_offset
3617 + htab->sgot->output_section->vma);
3618 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3619 outrel.r_addend = relocation;
3620 loc = sec->contents;
3621 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3622 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3624 else
3625 bfd_put_32 (output_bfd, relocation,
3626 htab->sgot->contents + off);
3629 if (off >= (bfd_vma) -2)
3630 abort ();
3632 /* Add the base of the GOT to the relocation value. */
3633 relocation = (off
3634 + htab->sgot->output_offset
3635 + htab->sgot->output_section->vma);
3637 break;
3639 case R_PARISC_SEGREL32:
3640 /* If this is the first SEGREL relocation, then initialize
3641 the segment base values. */
3642 if (htab->text_segment_base == (bfd_vma) -1)
3643 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3644 break;
3646 case R_PARISC_PLABEL14R:
3647 case R_PARISC_PLABEL21L:
3648 case R_PARISC_PLABEL32:
3649 if (htab->etab.dynamic_sections_created)
3651 bfd_vma off;
3652 bfd_boolean do_plt = 0;
3653 /* If we have a global symbol with a PLT slot, then
3654 redirect this relocation to it. */
3655 if (hh != NULL)
3657 off = hh->eh.plt.offset;
3658 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3659 &hh->eh))
3661 /* In a non-shared link, adjust_dynamic_symbols
3662 isn't called for symbols forced local. We
3663 need to write out the plt entry here. */
3664 if ((off & 1) != 0)
3665 off &= ~1;
3666 else
3668 hh->eh.plt.offset |= 1;
3669 do_plt = 1;
3673 else
3675 bfd_vma *local_plt_offsets;
3677 if (local_got_offsets == NULL)
3678 abort ();
3680 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3681 off = local_plt_offsets[r_symndx];
3683 /* As for the local .got entry case, we use the last
3684 bit to record whether we've already initialised
3685 this local .plt entry. */
3686 if ((off & 1) != 0)
3687 off &= ~1;
3688 else
3690 local_plt_offsets[r_symndx] |= 1;
3691 do_plt = 1;
3695 if (do_plt)
3697 if (info->shared)
3699 /* Output a dynamic IPLT relocation for this
3700 PLT entry. */
3701 Elf_Internal_Rela outrel;
3702 bfd_byte *loc;
3703 asection *s = htab->srelplt;
3705 outrel.r_offset = (off
3706 + htab->splt->output_offset
3707 + htab->splt->output_section->vma);
3708 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3709 outrel.r_addend = relocation;
3710 loc = s->contents;
3711 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3712 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3714 else
3716 bfd_put_32 (output_bfd,
3717 relocation,
3718 htab->splt->contents + off);
3719 bfd_put_32 (output_bfd,
3720 elf_gp (htab->splt->output_section->owner),
3721 htab->splt->contents + off + 4);
3725 if (off >= (bfd_vma) -2)
3726 abort ();
3728 /* PLABELs contain function pointers. Relocation is to
3729 the entry for the function in the .plt. The magic +2
3730 offset signals to $$dyncall that the function pointer
3731 is in the .plt and thus has a gp pointer too.
3732 Exception: Undefined PLABELs should have a value of
3733 zero. */
3734 if (hh == NULL
3735 || (hh->eh.root.type != bfd_link_hash_undefweak
3736 && hh->eh.root.type != bfd_link_hash_undefined))
3738 relocation = (off
3739 + htab->splt->output_offset
3740 + htab->splt->output_section->vma
3741 + 2);
3743 plabel = 1;
3745 /* Fall through and possibly emit a dynamic relocation. */
3747 case R_PARISC_DIR17F:
3748 case R_PARISC_DIR17R:
3749 case R_PARISC_DIR14F:
3750 case R_PARISC_DIR14R:
3751 case R_PARISC_DIR21L:
3752 case R_PARISC_DPREL14F:
3753 case R_PARISC_DPREL14R:
3754 case R_PARISC_DPREL21L:
3755 case R_PARISC_DIR32:
3756 /* r_symndx will be zero only for relocs against symbols
3757 from removed linkonce sections, or sections discarded by
3758 a linker script. */
3759 if (r_symndx == 0
3760 || (input_section->flags & SEC_ALLOC) == 0)
3761 break;
3763 /* The reloc types handled here and this conditional
3764 expression must match the code in ..check_relocs and
3765 allocate_dynrelocs. ie. We need exactly the same condition
3766 as in ..check_relocs, with some extra conditions (dynindx
3767 test in this case) to cater for relocs removed by
3768 allocate_dynrelocs. If you squint, the non-shared test
3769 here does indeed match the one in ..check_relocs, the
3770 difference being that here we test DEF_DYNAMIC as well as
3771 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3772 which is why we can't use just that test here.
3773 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3774 there all files have not been loaded. */
3775 if ((info->shared
3776 && (hh == NULL
3777 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3778 || hh->eh.root.type != bfd_link_hash_undefweak)
3779 && (IS_ABSOLUTE_RELOC (r_type)
3780 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3781 || (!info->shared
3782 && hh != NULL
3783 && hh->eh.dynindx != -1
3784 && !hh->eh.non_got_ref
3785 && ((ELIMINATE_COPY_RELOCS
3786 && hh->eh.def_dynamic
3787 && !hh->eh.def_regular)
3788 || hh->eh.root.type == bfd_link_hash_undefweak
3789 || hh->eh.root.type == bfd_link_hash_undefined)))
3791 Elf_Internal_Rela outrel;
3792 bfd_boolean skip;
3793 asection *sreloc;
3794 bfd_byte *loc;
3796 /* When generating a shared object, these relocations
3797 are copied into the output file to be resolved at run
3798 time. */
3800 outrel.r_addend = rela->r_addend;
3801 outrel.r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section,
3803 rela->r_offset);
3804 skip = (outrel.r_offset == (bfd_vma) -1
3805 || outrel.r_offset == (bfd_vma) -2);
3806 outrel.r_offset += (input_section->output_offset
3807 + input_section->output_section->vma);
3809 if (skip)
3811 memset (&outrel, 0, sizeof (outrel));
3813 else if (hh != NULL
3814 && hh->eh.dynindx != -1
3815 && (plabel
3816 || !IS_ABSOLUTE_RELOC (r_type)
3817 || !info->shared
3818 || !info->symbolic
3819 || !hh->eh.def_regular))
3821 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3823 else /* It's a local symbol, or one marked to become local. */
3825 int indx = 0;
3827 /* Add the absolute offset of the symbol. */
3828 outrel.r_addend += relocation;
3830 /* Global plabels need to be processed by the
3831 dynamic linker so that functions have at most one
3832 fptr. For this reason, we need to differentiate
3833 between global and local plabels, which we do by
3834 providing the function symbol for a global plabel
3835 reloc, and no symbol for local plabels. */
3836 if (! plabel
3837 && sym_sec != NULL
3838 && sym_sec->output_section != NULL
3839 && ! bfd_is_abs_section (sym_sec))
3841 /* Skip this relocation if the output section has
3842 been discarded. */
3843 if (bfd_is_abs_section (sym_sec->output_section))
3844 break;
3846 indx = elf_section_data (sym_sec->output_section)->dynindx;
3847 /* We are turning this relocation into one
3848 against a section symbol, so subtract out the
3849 output section's address but not the offset
3850 of the input section in the output section. */
3851 outrel.r_addend -= sym_sec->output_section->vma;
3854 outrel.r_info = ELF32_R_INFO (indx, r_type);
3856 sreloc = elf_section_data (input_section)->sreloc;
3857 if (sreloc == NULL)
3858 abort ();
3860 loc = sreloc->contents;
3861 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3862 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3864 break;
3866 default:
3867 break;
3870 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3871 htab, sym_sec, hh, info);
3873 if (rstatus == bfd_reloc_ok)
3874 continue;
3876 if (hh != NULL)
3877 sym_name = hh->eh.root.root.string;
3878 else
3880 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3881 symtab_hdr->sh_link,
3882 sym->st_name);
3883 if (sym_name == NULL)
3884 return FALSE;
3885 if (*sym_name == '\0')
3886 sym_name = bfd_section_name (input_bfd, sym_sec);
3889 howto = elf_hppa_howto_table + r_type;
3891 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3893 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3895 (*_bfd_error_handler)
3896 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3897 input_bfd,
3898 input_section,
3899 (long) rela->r_offset,
3900 howto->name,
3901 sym_name);
3902 bfd_set_error (bfd_error_bad_value);
3903 return FALSE;
3906 else
3908 if (!((*info->callbacks->reloc_overflow)
3909 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3910 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3911 return FALSE;
3915 return TRUE;
3918 /* Finish up dynamic symbol handling. We set the contents of various
3919 dynamic sections here. */
3921 static bfd_boolean
3922 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3923 struct bfd_link_info *info,
3924 struct elf_link_hash_entry *eh,
3925 Elf_Internal_Sym *sym)
3927 struct elf32_hppa_link_hash_table *htab;
3928 Elf_Internal_Rela rela;
3929 bfd_byte *loc;
3931 htab = hppa_link_hash_table (info);
3933 if (eh->plt.offset != (bfd_vma) -1)
3935 bfd_vma value;
3937 if (eh->plt.offset & 1)
3938 abort ();
3940 /* This symbol has an entry in the procedure linkage table. Set
3941 it up.
3943 The format of a plt entry is
3944 <funcaddr>
3945 <__gp>
3947 value = 0;
3948 if (eh->root.type == bfd_link_hash_defined
3949 || eh->root.type == bfd_link_hash_defweak)
3951 value = eh->root.u.def.value;
3952 if (eh->root.u.def.section->output_section != NULL)
3953 value += (eh->root.u.def.section->output_offset
3954 + eh->root.u.def.section->output_section->vma);
3957 /* Create a dynamic IPLT relocation for this entry. */
3958 rela.r_offset = (eh->plt.offset
3959 + htab->splt->output_offset
3960 + htab->splt->output_section->vma);
3961 if (eh->dynindx != -1)
3963 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3964 rela.r_addend = 0;
3966 else
3968 /* This symbol has been marked to become local, and is
3969 used by a plabel so must be kept in the .plt. */
3970 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3971 rela.r_addend = value;
3974 loc = htab->srelplt->contents;
3975 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3976 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3978 if (!eh->def_regular)
3980 /* Mark the symbol as undefined, rather than as defined in
3981 the .plt section. Leave the value alone. */
3982 sym->st_shndx = SHN_UNDEF;
3986 if (eh->got.offset != (bfd_vma) -1)
3988 /* This symbol has an entry in the global offset table. Set it
3989 up. */
3991 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
3992 + htab->sgot->output_offset
3993 + htab->sgot->output_section->vma);
3995 /* If this is a -Bsymbolic link and the symbol is defined
3996 locally or was forced to be local because of a version file,
3997 we just want to emit a RELATIVE reloc. The entry in the
3998 global offset table will already have been initialized in the
3999 relocate_section function. */
4000 if (info->shared
4001 && (info->symbolic || eh->dynindx == -1)
4002 && eh->def_regular)
4004 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4005 rela.r_addend = (eh->root.u.def.value
4006 + eh->root.u.def.section->output_offset
4007 + eh->root.u.def.section->output_section->vma);
4009 else
4011 if ((eh->got.offset & 1) != 0)
4012 abort ();
4014 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4015 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4016 rela.r_addend = 0;
4019 loc = htab->srelgot->contents;
4020 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4021 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4024 if (eh->needs_copy)
4026 asection *sec;
4028 /* This symbol needs a copy reloc. Set it up. */
4030 if (! (eh->dynindx != -1
4031 && (eh->root.type == bfd_link_hash_defined
4032 || eh->root.type == bfd_link_hash_defweak)))
4033 abort ();
4035 sec = htab->srelbss;
4037 rela.r_offset = (eh->root.u.def.value
4038 + eh->root.u.def.section->output_offset
4039 + eh->root.u.def.section->output_section->vma);
4040 rela.r_addend = 0;
4041 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4042 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4043 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4046 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4047 if (eh->root.root.string[0] == '_'
4048 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4049 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4051 sym->st_shndx = SHN_ABS;
4054 return TRUE;
4057 /* Used to decide how to sort relocs in an optimal manner for the
4058 dynamic linker, before writing them out. */
4060 static enum elf_reloc_type_class
4061 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4063 if (ELF32_R_SYM (rela->r_info) == 0)
4064 return reloc_class_relative;
4066 switch ((int) ELF32_R_TYPE (rela->r_info))
4068 case R_PARISC_IPLT:
4069 return reloc_class_plt;
4070 case R_PARISC_COPY:
4071 return reloc_class_copy;
4072 default:
4073 return reloc_class_normal;
4077 /* Finish up the dynamic sections. */
4079 static bfd_boolean
4080 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4081 struct bfd_link_info *info)
4083 bfd *dynobj;
4084 struct elf32_hppa_link_hash_table *htab;
4085 asection *sdyn;
4087 htab = hppa_link_hash_table (info);
4088 dynobj = htab->etab.dynobj;
4090 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4092 if (htab->etab.dynamic_sections_created)
4094 Elf32_External_Dyn *dyncon, *dynconend;
4096 if (sdyn == NULL)
4097 abort ();
4099 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4100 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4101 for (; dyncon < dynconend; dyncon++)
4103 Elf_Internal_Dyn dyn;
4104 asection *s;
4106 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4108 switch (dyn.d_tag)
4110 default:
4111 continue;
4113 case DT_PLTGOT:
4114 /* Use PLTGOT to set the GOT register. */
4115 dyn.d_un.d_ptr = elf_gp (output_bfd);
4116 break;
4118 case DT_JMPREL:
4119 s = htab->srelplt;
4120 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4121 break;
4123 case DT_PLTRELSZ:
4124 s = htab->srelplt;
4125 dyn.d_un.d_val = s->size;
4126 break;
4128 case DT_RELASZ:
4129 /* Don't count procedure linkage table relocs in the
4130 overall reloc count. */
4131 s = htab->srelplt;
4132 if (s == NULL)
4133 continue;
4134 dyn.d_un.d_val -= s->size;
4135 break;
4137 case DT_RELA:
4138 /* We may not be using the standard ELF linker script.
4139 If .rela.plt is the first .rela section, we adjust
4140 DT_RELA to not include it. */
4141 s = htab->srelplt;
4142 if (s == NULL)
4143 continue;
4144 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4145 continue;
4146 dyn.d_un.d_ptr += s->size;
4147 break;
4150 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4154 if (htab->sgot != NULL && htab->sgot->size != 0)
4156 /* Fill in the first entry in the global offset table.
4157 We use it to point to our dynamic section, if we have one. */
4158 bfd_put_32 (output_bfd,
4159 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4160 htab->sgot->contents);
4162 /* The second entry is reserved for use by the dynamic linker. */
4163 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4165 /* Set .got entry size. */
4166 elf_section_data (htab->sgot->output_section)
4167 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4170 if (htab->splt != NULL && htab->splt->size != 0)
4172 /* Set plt entry size. */
4173 elf_section_data (htab->splt->output_section)
4174 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4176 if (htab->need_plt_stub)
4178 /* Set up the .plt stub. */
4179 memcpy (htab->splt->contents
4180 + htab->splt->size - sizeof (plt_stub),
4181 plt_stub, sizeof (plt_stub));
4183 if ((htab->splt->output_offset
4184 + htab->splt->output_section->vma
4185 + htab->splt->size)
4186 != (htab->sgot->output_offset
4187 + htab->sgot->output_section->vma))
4189 (*_bfd_error_handler)
4190 (_(".got section not immediately after .plt section"));
4191 return FALSE;
4196 return TRUE;
4199 /* Tweak the OSABI field of the elf header. */
4201 static void
4202 elf32_hppa_post_process_headers (bfd *abfd,
4203 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4205 Elf_Internal_Ehdr * i_ehdrp;
4207 i_ehdrp = elf_elfheader (abfd);
4209 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4211 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4213 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4215 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4217 else
4219 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4223 /* Called when writing out an object file to decide the type of a
4224 symbol. */
4225 static int
4226 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4228 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4229 return STT_PARISC_MILLI;
4230 else
4231 return type;
4234 /* Misc BFD support code. */
4235 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4236 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4237 #define elf_info_to_howto elf_hppa_info_to_howto
4238 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4240 /* Stuff for the BFD linker. */
4241 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4242 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4243 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4244 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4245 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4246 #define elf_backend_check_relocs elf32_hppa_check_relocs
4247 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4248 #define elf_backend_fake_sections elf_hppa_fake_sections
4249 #define elf_backend_relocate_section elf32_hppa_relocate_section
4250 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4251 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4252 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4253 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4254 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4255 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4256 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4257 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4258 #define elf_backend_object_p elf32_hppa_object_p
4259 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4260 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4261 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4262 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4263 #define elf_backend_action_discarded elf_hppa_action_discarded
4265 #define elf_backend_can_gc_sections 1
4266 #define elf_backend_can_refcount 1
4267 #define elf_backend_plt_alignment 2
4268 #define elf_backend_want_got_plt 0
4269 #define elf_backend_plt_readonly 0
4270 #define elf_backend_want_plt_sym 0
4271 #define elf_backend_got_header_size 8
4272 #define elf_backend_rela_normal 1
4274 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4275 #define TARGET_BIG_NAME "elf32-hppa"
4276 #define ELF_ARCH bfd_arch_hppa
4277 #define ELF_MACHINE_CODE EM_PARISC
4278 #define ELF_MAXPAGESIZE 0x1000
4280 #include "elf32-target.h"
4282 #undef TARGET_BIG_SYM
4283 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4284 #undef TARGET_BIG_NAME
4285 #define TARGET_BIG_NAME "elf32-hppa-linux"
4287 #define INCLUDED_TARGET_FILE 1
4288 #include "elf32-target.h"
4290 #undef TARGET_BIG_SYM
4291 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4292 #undef TARGET_BIG_NAME
4293 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4295 #include "elf32-target.h"