Add OpenRISC support
[binutils.git] / bfd / elf32-mips.c
blobefbcbfab293e3b2ea4f9835a0f1c72e9eed37c9c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
52 struct mips_got_info
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
68 struct mips_elf_link_hash_entry
70 struct elf_link_hash_entry root;
72 /* External symbol information. */
73 EXTR esym;
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
79 /* The index of the first dynamic relocation (in the .rel.dyn
80 section) against this symbol. */
81 unsigned int min_dyn_reloc_index;
83 /* We must not create a stub for a symbol that has relocations
84 related to taking the function's address, i.e. any but
85 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
86 p. 4-20. */
87 boolean no_fn_stub;
89 /* If there is a stub that 32 bit functions should use to call this
90 16 bit function, this points to the section containing the stub. */
91 asection *fn_stub;
93 /* Whether we need the fn_stub; this is set if this symbol appears
94 in any relocs other than a 16 bit call. */
95 boolean need_fn_stub;
97 /* If there is a stub that 16 bit functions should use to call this
98 32 bit function, this points to the section containing the stub. */
99 asection *call_stub;
101 /* This is like the call_stub field, but it is used if the function
102 being called returns a floating point value. */
103 asection *call_fp_stub;
106 static bfd_reloc_status_type mips32_64bit_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
109 PARAMS ((bfd *, bfd_reloc_code_real_type));
110 static reloc_howto_type *mips_rtype_to_howto
111 PARAMS ((unsigned int));
112 static void mips_info_to_howto_rel
113 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
114 static void mips_info_to_howto_rela
115 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
116 static void bfd_mips_elf32_swap_gptab_in
117 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
118 static void bfd_mips_elf32_swap_gptab_out
119 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
120 #if 0
121 static void bfd_mips_elf_swap_msym_in
122 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
123 #endif
124 static void bfd_mips_elf_swap_msym_out
125 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
126 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
127 static boolean mips_elf_create_procedure_table
128 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
129 struct ecoff_debug_info *));
130 static INLINE int elf_mips_isa PARAMS ((flagword));
131 static INLINE int elf_mips_mach PARAMS ((flagword));
132 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
133 static boolean mips_elf_is_local_label_name
134 PARAMS ((bfd *, const char *));
135 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
136 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
137 static int gptab_compare PARAMS ((const void *, const void *));
138 static bfd_reloc_status_type mips16_jump_reloc
139 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
140 static bfd_reloc_status_type mips16_gprel_reloc
141 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
142 static boolean mips_elf_create_compact_rel_section
143 PARAMS ((bfd *, struct bfd_link_info *));
144 static boolean mips_elf_create_got_section
145 PARAMS ((bfd *, struct bfd_link_info *));
146 static bfd_reloc_status_type mips_elf_final_gp
147 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
148 static bfd_byte *elf32_mips_get_relocated_section_contents
149 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
150 bfd_byte *, boolean, asymbol **));
151 static asection *mips_elf_create_msym_section
152 PARAMS ((bfd *));
153 static void mips_elf_irix6_finish_dynamic_symbol
154 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
155 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
156 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
157 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
158 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
159 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
160 static bfd_vma mips_elf_global_got_index
161 PARAMS ((bfd *, struct elf_link_hash_entry *));
162 static bfd_vma mips_elf_local_got_index
163 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
164 static bfd_vma mips_elf_got_offset_from_index
165 PARAMS ((bfd *, bfd *, bfd_vma));
166 static boolean mips_elf_record_global_got_symbol
167 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
168 struct mips_got_info *));
169 static bfd_vma mips_elf_got_page
170 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
171 static const Elf_Internal_Rela *mips_elf_next_relocation
172 PARAMS ((unsigned int, const Elf_Internal_Rela *,
173 const Elf_Internal_Rela *));
174 static bfd_reloc_status_type mips_elf_calculate_relocation
175 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
176 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
177 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
178 boolean *));
179 static bfd_vma mips_elf_obtain_contents
180 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
181 static boolean mips_elf_perform_relocation
182 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
183 const Elf_Internal_Rela *, bfd_vma,
184 bfd *, asection *, bfd_byte *, boolean));
185 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
186 static boolean mips_elf_sort_hash_table_f
187 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
188 static boolean mips_elf_sort_hash_table
189 PARAMS ((struct bfd_link_info *, unsigned long));
190 static asection * mips_elf_got_section PARAMS ((bfd *));
191 static struct mips_got_info *mips_elf_got_info
192 PARAMS ((bfd *, asection **));
193 static boolean mips_elf_local_relocation_p
194 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
195 static bfd_vma mips_elf_create_local_got_entry
196 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
197 static bfd_vma mips_elf_got16_entry
198 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
199 static boolean mips_elf_create_dynamic_relocation
200 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
201 struct mips_elf_link_hash_entry *, asection *,
202 bfd_vma, bfd_vma *, asection *));
203 static void mips_elf_allocate_dynamic_relocations
204 PARAMS ((bfd *, unsigned int));
205 static boolean mips_elf_stub_section_p
206 PARAMS ((bfd *, asection *));
207 static int sort_dynamic_relocs
208 PARAMS ((const void *, const void *));
210 extern const bfd_target bfd_elf32_tradbigmips_vec;
211 extern const bfd_target bfd_elf32_tradlittlemips_vec;
212 #ifdef BFD64
213 extern const bfd_target bfd_elf64_tradbigmips_vec;
214 extern const bfd_target bfd_elf64_tradlittlemips_vec;
215 #endif
217 /* The level of IRIX compatibility we're striving for. */
219 typedef enum {
220 ict_none,
221 ict_irix5,
222 ict_irix6
223 } irix_compat_t;
225 /* This will be used when we sort the dynamic relocation records. */
226 static bfd *reldyn_sorting_bfd;
228 /* Nonzero if ABFD is using the N32 ABI. */
230 #define ABI_N32_P(abfd) \
231 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
233 /* Nonzero if ABFD is using the 64-bit ABI. */
234 #define ABI_64_P(abfd) \
235 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
237 /* Depending on the target vector we generate some version of Irix
238 executables or "normal" MIPS ELF ABI executables. */
239 #ifdef BFD64
240 #define IRIX_COMPAT(abfd) \
241 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
242 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
243 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
244 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
245 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
246 #else
247 #define IRIX_COMPAT(abfd) \
248 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
249 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
250 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
251 #endif
252 /* Whether we are trying to be compatible with IRIX at all. */
254 #define SGI_COMPAT(abfd) \
255 (IRIX_COMPAT (abfd) != ict_none)
257 /* The name of the msym section. */
258 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
260 /* The name of the srdata section. */
261 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
263 /* The name of the options section. */
264 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
265 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
267 /* The name of the stub section. */
268 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
269 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
271 /* The name of the dynamic relocation section. */
272 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
274 /* The size of an external REL relocation. */
275 #define MIPS_ELF_REL_SIZE(abfd) \
276 (get_elf_backend_data (abfd)->s->sizeof_rel)
278 /* The size of an external dynamic table entry. */
279 #define MIPS_ELF_DYN_SIZE(abfd) \
280 (get_elf_backend_data (abfd)->s->sizeof_dyn)
282 /* The size of a GOT entry. */
283 #define MIPS_ELF_GOT_SIZE(abfd) \
284 (get_elf_backend_data (abfd)->s->arch_size / 8)
286 /* The size of a symbol-table entry. */
287 #define MIPS_ELF_SYM_SIZE(abfd) \
288 (get_elf_backend_data (abfd)->s->sizeof_sym)
290 /* The default alignment for sections, as a power of two. */
291 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
292 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
294 /* Get word-sized data. */
295 #define MIPS_ELF_GET_WORD(abfd, ptr) \
296 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
298 /* Put out word-sized data. */
299 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
300 (ABI_64_P (abfd) \
301 ? bfd_put_64 (abfd, val, ptr) \
302 : bfd_put_32 (abfd, val, ptr))
304 /* Add a dynamic symbol table-entry. */
305 #ifdef BFD64
306 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
307 (ABI_64_P (elf_hash_table (info)->dynobj) \
308 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
309 : bfd_elf32_add_dynamic_entry (info, tag, val))
310 #else
311 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
312 (ABI_64_P (elf_hash_table (info)->dynobj) \
313 ? (abort (), false) \
314 : bfd_elf32_add_dynamic_entry (info, tag, val))
315 #endif
317 /* The number of local .got entries we reserve. */
318 #define MIPS_RESERVED_GOTNO (2)
320 /* Instructions which appear in a stub. For some reason the stub is
321 slightly different on an SGI system. */
322 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
323 #define STUB_LW(abfd) \
324 (SGI_COMPAT (abfd) \
325 ? (ABI_64_P (abfd) \
326 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
327 : 0x8f998010) /* lw t9,0x8010(gp) */ \
328 : 0x8f998010) /* lw t9,0x8000(gp) */
329 #define STUB_MOVE(abfd) \
330 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
331 #define STUB_JALR 0x0320f809 /* jal t9 */
332 #define STUB_LI16(abfd) \
333 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
334 #define MIPS_FUNCTION_STUB_SIZE (16)
336 #if 0
337 /* We no longer try to identify particular sections for the .dynsym
338 section. When we do, we wind up crashing if there are other random
339 sections with relocations. */
341 /* Names of sections which appear in the .dynsym section in an Irix 5
342 executable. */
344 static const char * const mips_elf_dynsym_sec_names[] =
346 ".text",
347 ".init",
348 ".fini",
349 ".data",
350 ".rodata",
351 ".sdata",
352 ".sbss",
353 ".bss",
354 NULL
357 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
358 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
360 /* The number of entries in mips_elf_dynsym_sec_names which go in the
361 text segment. */
363 #define MIPS_TEXT_DYNSYM_SECNO (3)
365 #endif /* 0 */
367 /* The names of the runtime procedure table symbols used on Irix 5. */
369 static const char * const mips_elf_dynsym_rtproc_names[] =
371 "_procedure_table",
372 "_procedure_string_table",
373 "_procedure_table_size",
374 NULL
377 /* These structures are used to generate the .compact_rel section on
378 Irix 5. */
380 typedef struct
382 unsigned long id1; /* Always one? */
383 unsigned long num; /* Number of compact relocation entries. */
384 unsigned long id2; /* Always two? */
385 unsigned long offset; /* The file offset of the first relocation. */
386 unsigned long reserved0; /* Zero? */
387 unsigned long reserved1; /* Zero? */
388 } Elf32_compact_rel;
390 typedef struct
392 bfd_byte id1[4];
393 bfd_byte num[4];
394 bfd_byte id2[4];
395 bfd_byte offset[4];
396 bfd_byte reserved0[4];
397 bfd_byte reserved1[4];
398 } Elf32_External_compact_rel;
400 typedef struct
402 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
403 unsigned int rtype : 4; /* Relocation types. See below. */
404 unsigned int dist2to : 8;
405 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
406 unsigned long konst; /* KONST field. See below. */
407 unsigned long vaddr; /* VADDR to be relocated. */
408 } Elf32_crinfo;
410 typedef struct
412 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
413 unsigned int rtype : 4; /* Relocation types. See below. */
414 unsigned int dist2to : 8;
415 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
416 unsigned long konst; /* KONST field. See below. */
417 } Elf32_crinfo2;
419 typedef struct
421 bfd_byte info[4];
422 bfd_byte konst[4];
423 bfd_byte vaddr[4];
424 } Elf32_External_crinfo;
426 typedef struct
428 bfd_byte info[4];
429 bfd_byte konst[4];
430 } Elf32_External_crinfo2;
432 /* These are the constants used to swap the bitfields in a crinfo. */
434 #define CRINFO_CTYPE (0x1)
435 #define CRINFO_CTYPE_SH (31)
436 #define CRINFO_RTYPE (0xf)
437 #define CRINFO_RTYPE_SH (27)
438 #define CRINFO_DIST2TO (0xff)
439 #define CRINFO_DIST2TO_SH (19)
440 #define CRINFO_RELVADDR (0x7ffff)
441 #define CRINFO_RELVADDR_SH (0)
443 /* A compact relocation info has long (3 words) or short (2 words)
444 formats. A short format doesn't have VADDR field and relvaddr
445 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
446 #define CRF_MIPS_LONG 1
447 #define CRF_MIPS_SHORT 0
449 /* There are 4 types of compact relocation at least. The value KONST
450 has different meaning for each type:
452 (type) (konst)
453 CT_MIPS_REL32 Address in data
454 CT_MIPS_WORD Address in word (XXX)
455 CT_MIPS_GPHI_LO GP - vaddr
456 CT_MIPS_JMPAD Address to jump
459 #define CRT_MIPS_REL32 0xa
460 #define CRT_MIPS_WORD 0xb
461 #define CRT_MIPS_GPHI_LO 0xc
462 #define CRT_MIPS_JMPAD 0xd
464 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
465 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
466 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
467 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 static void bfd_elf32_swap_compact_rel_out
470 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
471 static void bfd_elf32_swap_crinfo_out
472 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
474 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
476 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
477 from smaller values. Start with zero, widen, *then* decrement. */
478 #define MINUS_ONE (((bfd_vma)0) - 1)
480 static reloc_howto_type elf_mips_howto_table[] =
482 /* No relocation. */
483 HOWTO (R_MIPS_NONE, /* type */
484 0, /* rightshift */
485 0, /* size (0 = byte, 1 = short, 2 = long) */
486 0, /* bitsize */
487 false, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_dont, /* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_MIPS_NONE", /* name */
492 false, /* partial_inplace */
493 0, /* src_mask */
494 0, /* dst_mask */
495 false), /* pcrel_offset */
497 /* 16 bit relocation. */
498 HOWTO (R_MIPS_16, /* type */
499 0, /* rightshift */
500 1, /* size (0 = byte, 1 = short, 2 = long) */
501 16, /* bitsize */
502 false, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_bitfield, /* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_MIPS_16", /* name */
507 true, /* partial_inplace */
508 0xffff, /* src_mask */
509 0xffff, /* dst_mask */
510 false), /* pcrel_offset */
512 /* 32 bit relocation. */
513 HOWTO (R_MIPS_32, /* type */
514 0, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 32, /* bitsize */
517 false, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_bitfield, /* complain_on_overflow */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_MIPS_32", /* name */
522 true, /* partial_inplace */
523 0xffffffff, /* src_mask */
524 0xffffffff, /* dst_mask */
525 false), /* pcrel_offset */
527 /* 32 bit symbol relative relocation. */
528 HOWTO (R_MIPS_REL32, /* type */
529 0, /* rightshift */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
531 32, /* bitsize */
532 false, /* pc_relative */
533 0, /* bitpos */
534 complain_overflow_bitfield, /* complain_on_overflow */
535 bfd_elf_generic_reloc, /* special_function */
536 "R_MIPS_REL32", /* name */
537 true, /* partial_inplace */
538 0xffffffff, /* src_mask */
539 0xffffffff, /* dst_mask */
540 false), /* pcrel_offset */
542 /* 26 bit branch address. */
543 HOWTO (R_MIPS_26, /* type */
544 2, /* rightshift */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
546 26, /* bitsize */
547 false, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 /* This needs complex overflow
551 detection, because the upper four
552 bits must match the PC + 4. */
553 bfd_elf_generic_reloc, /* special_function */
554 "R_MIPS_26", /* name */
555 true, /* partial_inplace */
556 0x3ffffff, /* src_mask */
557 0x3ffffff, /* dst_mask */
558 false), /* pcrel_offset */
560 /* High 16 bits of symbol value. */
561 HOWTO (R_MIPS_HI16, /* type */
562 0, /* rightshift */
563 2, /* size (0 = byte, 1 = short, 2 = long) */
564 16, /* bitsize */
565 false, /* pc_relative */
566 0, /* bitpos */
567 complain_overflow_dont, /* complain_on_overflow */
568 _bfd_mips_elf_hi16_reloc, /* special_function */
569 "R_MIPS_HI16", /* name */
570 true, /* partial_inplace */
571 0xffff, /* src_mask */
572 0xffff, /* dst_mask */
573 false), /* pcrel_offset */
575 /* Low 16 bits of symbol value. */
576 HOWTO (R_MIPS_LO16, /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 16, /* bitsize */
580 false, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_dont, /* complain_on_overflow */
583 _bfd_mips_elf_lo16_reloc, /* special_function */
584 "R_MIPS_LO16", /* name */
585 true, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 false), /* pcrel_offset */
590 /* GP relative reference. */
591 HOWTO (R_MIPS_GPREL16, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 16, /* bitsize */
595 false, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 _bfd_mips_elf_gprel16_reloc, /* special_function */
599 "R_MIPS_GPREL16", /* name */
600 true, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 false), /* pcrel_offset */
605 /* Reference to literal section. */
606 HOWTO (R_MIPS_LITERAL, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 16, /* bitsize */
610 false, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 _bfd_mips_elf_gprel16_reloc, /* special_function */
614 "R_MIPS_LITERAL", /* name */
615 true, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 false), /* pcrel_offset */
620 /* Reference to global offset table. */
621 HOWTO (R_MIPS_GOT16, /* type */
622 0, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 16, /* bitsize */
625 false, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 _bfd_mips_elf_got16_reloc, /* special_function */
629 "R_MIPS_GOT16", /* name */
630 false, /* partial_inplace */
631 0xffff, /* src_mask */
632 0xffff, /* dst_mask */
633 false), /* pcrel_offset */
635 /* 16 bit PC relative reference. */
636 HOWTO (R_MIPS_PC16, /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 true, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 "R_MIPS_PC16", /* name */
645 true, /* partial_inplace */
646 0xffff, /* src_mask */
647 0xffff, /* dst_mask */
648 true), /* pcrel_offset */
650 /* 16 bit call through global offset table. */
651 HOWTO (R_MIPS_CALL16, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 16, /* bitsize */
655 false, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_signed, /* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_MIPS_CALL16", /* name */
660 false, /* partial_inplace */
661 0xffff, /* src_mask */
662 0xffff, /* dst_mask */
663 false), /* pcrel_offset */
665 /* 32 bit GP relative reference. */
666 HOWTO (R_MIPS_GPREL32, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 false, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_bitfield, /* complain_on_overflow */
673 _bfd_mips_elf_gprel32_reloc, /* special_function */
674 "R_MIPS_GPREL32", /* name */
675 true, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 false), /* pcrel_offset */
680 /* The remaining relocs are defined on Irix 5, although they are
681 not defined by the ABI. */
682 EMPTY_HOWTO (13),
683 EMPTY_HOWTO (14),
684 EMPTY_HOWTO (15),
686 /* A 5 bit shift field. */
687 HOWTO (R_MIPS_SHIFT5, /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 5, /* bitsize */
691 false, /* pc_relative */
692 6, /* bitpos */
693 complain_overflow_bitfield, /* complain_on_overflow */
694 bfd_elf_generic_reloc, /* special_function */
695 "R_MIPS_SHIFT5", /* name */
696 true, /* partial_inplace */
697 0x000007c0, /* src_mask */
698 0x000007c0, /* dst_mask */
699 false), /* pcrel_offset */
701 /* A 6 bit shift field. */
702 /* FIXME: This is not handled correctly; a special function is
703 needed to put the most significant bit in the right place. */
704 HOWTO (R_MIPS_SHIFT6, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 6, /* bitsize */
708 false, /* pc_relative */
709 6, /* bitpos */
710 complain_overflow_bitfield, /* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_MIPS_SHIFT6", /* name */
713 true, /* partial_inplace */
714 0x000007c4, /* src_mask */
715 0x000007c4, /* dst_mask */
716 false), /* pcrel_offset */
718 /* A 64 bit relocation. */
719 HOWTO (R_MIPS_64, /* type */
720 0, /* rightshift */
721 4, /* size (0 = byte, 1 = short, 2 = long) */
722 64, /* bitsize */
723 false, /* pc_relative */
724 0, /* bitpos */
725 complain_overflow_bitfield, /* complain_on_overflow */
726 mips32_64bit_reloc, /* special_function */
727 "R_MIPS_64", /* name */
728 true, /* partial_inplace */
729 MINUS_ONE, /* src_mask */
730 MINUS_ONE, /* dst_mask */
731 false), /* pcrel_offset */
733 /* Displacement in the global offset table. */
734 HOWTO (R_MIPS_GOT_DISP, /* type */
735 0, /* rightshift */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
737 16, /* bitsize */
738 false, /* pc_relative */
739 0, /* bitpos */
740 complain_overflow_bitfield, /* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_MIPS_GOT_DISP", /* name */
743 true, /* partial_inplace */
744 0x0000ffff, /* src_mask */
745 0x0000ffff, /* dst_mask */
746 false), /* pcrel_offset */
748 /* Displacement to page pointer in the global offset table. */
749 HOWTO (R_MIPS_GOT_PAGE, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 false, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_bitfield, /* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_MIPS_GOT_PAGE", /* name */
758 true, /* partial_inplace */
759 0x0000ffff, /* src_mask */
760 0x0000ffff, /* dst_mask */
761 false), /* pcrel_offset */
763 /* Offset from page pointer in the global offset table. */
764 HOWTO (R_MIPS_GOT_OFST, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 false, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield, /* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_MIPS_GOT_OFST", /* name */
773 true, /* partial_inplace */
774 0x0000ffff, /* src_mask */
775 0x0000ffff, /* dst_mask */
776 false), /* pcrel_offset */
778 /* High 16 bits of displacement in global offset table. */
779 HOWTO (R_MIPS_GOT_HI16, /* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 false, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont, /* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_MIPS_GOT_HI16", /* name */
788 true, /* partial_inplace */
789 0x0000ffff, /* src_mask */
790 0x0000ffff, /* dst_mask */
791 false), /* pcrel_offset */
793 /* Low 16 bits of displacement in global offset table. */
794 HOWTO (R_MIPS_GOT_LO16, /* type */
795 0, /* rightshift */
796 2, /* size (0 = byte, 1 = short, 2 = long) */
797 16, /* bitsize */
798 false, /* pc_relative */
799 0, /* bitpos */
800 complain_overflow_dont, /* complain_on_overflow */
801 bfd_elf_generic_reloc, /* special_function */
802 "R_MIPS_GOT_LO16", /* name */
803 true, /* partial_inplace */
804 0x0000ffff, /* src_mask */
805 0x0000ffff, /* dst_mask */
806 false), /* pcrel_offset */
808 /* 64 bit subtraction. Used in the N32 ABI. */
809 HOWTO (R_MIPS_SUB, /* type */
810 0, /* rightshift */
811 4, /* size (0 = byte, 1 = short, 2 = long) */
812 64, /* bitsize */
813 false, /* pc_relative */
814 0, /* bitpos */
815 complain_overflow_bitfield, /* complain_on_overflow */
816 bfd_elf_generic_reloc, /* special_function */
817 "R_MIPS_SUB", /* name */
818 true, /* partial_inplace */
819 MINUS_ONE, /* src_mask */
820 MINUS_ONE, /* dst_mask */
821 false), /* pcrel_offset */
823 /* Used to cause the linker to insert and delete instructions? */
824 EMPTY_HOWTO (R_MIPS_INSERT_A),
825 EMPTY_HOWTO (R_MIPS_INSERT_B),
826 EMPTY_HOWTO (R_MIPS_DELETE),
828 /* Get the higher value of a 64 bit addend. */
829 HOWTO (R_MIPS_HIGHER, /* type */
830 0, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 16, /* bitsize */
833 false, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_dont, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 "R_MIPS_HIGHER", /* name */
838 true, /* partial_inplace */
839 0, /* src_mask */
840 0xffff, /* dst_mask */
841 false), /* pcrel_offset */
843 /* Get the highest value of a 64 bit addend. */
844 HOWTO (R_MIPS_HIGHEST, /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 false, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 "R_MIPS_HIGHEST", /* name */
853 true, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 false), /* pcrel_offset */
858 /* High 16 bits of displacement in global offset table. */
859 HOWTO (R_MIPS_CALL_HI16, /* type */
860 0, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 false, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_MIPS_CALL_HI16", /* name */
868 true, /* partial_inplace */
869 0x0000ffff, /* src_mask */
870 0x0000ffff, /* dst_mask */
871 false), /* pcrel_offset */
873 /* Low 16 bits of displacement in global offset table. */
874 HOWTO (R_MIPS_CALL_LO16, /* type */
875 0, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 16, /* bitsize */
878 false, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "R_MIPS_CALL_LO16", /* name */
883 true, /* partial_inplace */
884 0x0000ffff, /* src_mask */
885 0x0000ffff, /* dst_mask */
886 false), /* pcrel_offset */
888 /* Section displacement. */
889 HOWTO (R_MIPS_SCN_DISP, /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 32, /* bitsize */
893 false, /* pc_relative */
894 0, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 "R_MIPS_SCN_DISP", /* name */
898 false, /* partial_inplace */
899 0xffffffff, /* src_mask */
900 0xffffffff, /* dst_mask */
901 false), /* pcrel_offset */
903 EMPTY_HOWTO (R_MIPS_REL16),
904 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
905 EMPTY_HOWTO (R_MIPS_PJUMP),
906 EMPTY_HOWTO (R_MIPS_RELGOT),
908 /* Protected jump conversion. This is an optimization hint. No
909 relocation is required for correctness. */
910 HOWTO (R_MIPS_JALR, /* type */
911 0, /* rightshift */
912 0, /* size (0 = byte, 1 = short, 2 = long) */
913 0, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_MIPS_JALR", /* name */
919 false, /* partial_inplace */
920 0x00000000, /* src_mask */
921 0x00000000, /* dst_mask */
922 false), /* pcrel_offset */
925 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
926 is a hack to make the linker think that we need 64 bit values. */
927 static reloc_howto_type elf_mips_ctor64_howto =
928 HOWTO (R_MIPS_64, /* type */
929 0, /* rightshift */
930 4, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 false, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_signed, /* complain_on_overflow */
935 mips32_64bit_reloc, /* special_function */
936 "R_MIPS_64", /* name */
937 true, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 false); /* pcrel_offset */
942 /* The reloc used for the mips16 jump instruction. */
943 static reloc_howto_type elf_mips16_jump_howto =
944 HOWTO (R_MIPS16_26, /* type */
945 2, /* rightshift */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
947 26, /* bitsize */
948 false, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_dont, /* complain_on_overflow */
951 /* This needs complex overflow
952 detection, because the upper four
953 bits must match the PC. */
954 mips16_jump_reloc, /* special_function */
955 "R_MIPS16_26", /* name */
956 true, /* partial_inplace */
957 0x3ffffff, /* src_mask */
958 0x3ffffff, /* dst_mask */
959 false); /* pcrel_offset */
961 /* The reloc used for the mips16 gprel instruction. */
962 static reloc_howto_type elf_mips16_gprel_howto =
963 HOWTO (R_MIPS16_GPREL, /* type */
964 0, /* rightshift */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
966 16, /* bitsize */
967 false, /* pc_relative */
968 0, /* bitpos */
969 complain_overflow_signed, /* complain_on_overflow */
970 mips16_gprel_reloc, /* special_function */
971 "R_MIPS16_GPREL", /* name */
972 true, /* partial_inplace */
973 0x07ff001f, /* src_mask */
974 0x07ff001f, /* dst_mask */
975 false); /* pcrel_offset */
977 /* GNU extensions for embedded-pic. */
978 /* High 16 bits of symbol value, pc-relative. */
979 static reloc_howto_type elf_mips_gnu_rel_hi16 =
980 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 16, /* bitsize */
984 true, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont, /* complain_on_overflow */
987 _bfd_mips_elf_hi16_reloc, /* special_function */
988 "R_MIPS_GNU_REL_HI16", /* name */
989 true, /* partial_inplace */
990 0xffff, /* src_mask */
991 0xffff, /* dst_mask */
992 true); /* pcrel_offset */
994 /* Low 16 bits of symbol value, pc-relative. */
995 static reloc_howto_type elf_mips_gnu_rel_lo16 =
996 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
997 0, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 16, /* bitsize */
1000 true, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 _bfd_mips_elf_lo16_reloc, /* special_function */
1004 "R_MIPS_GNU_REL_LO16", /* name */
1005 true, /* partial_inplace */
1006 0xffff, /* src_mask */
1007 0xffff, /* dst_mask */
1008 true); /* pcrel_offset */
1010 /* 16 bit offset for pc-relative branches. */
1011 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1012 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1013 2, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 16, /* bitsize */
1016 true, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_signed, /* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_MIPS_GNU_REL16_S2", /* name */
1021 true, /* partial_inplace */
1022 0xffff, /* src_mask */
1023 0xffff, /* dst_mask */
1024 true); /* pcrel_offset */
1026 /* 64 bit pc-relative. */
1027 static reloc_howto_type elf_mips_gnu_pcrel64 =
1028 HOWTO (R_MIPS_PC64, /* type */
1029 0, /* rightshift */
1030 4, /* size (0 = byte, 1 = short, 2 = long) */
1031 64, /* bitsize */
1032 true, /* pc_relative */
1033 0, /* bitpos */
1034 complain_overflow_signed, /* complain_on_overflow */
1035 bfd_elf_generic_reloc, /* special_function */
1036 "R_MIPS_PC64", /* name */
1037 true, /* partial_inplace */
1038 MINUS_ONE, /* src_mask */
1039 MINUS_ONE, /* dst_mask */
1040 true); /* pcrel_offset */
1042 /* 32 bit pc-relative. */
1043 static reloc_howto_type elf_mips_gnu_pcrel32 =
1044 HOWTO (R_MIPS_PC32, /* type */
1045 0, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 32, /* bitsize */
1048 true, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_signed, /* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 "R_MIPS_PC32", /* name */
1053 true, /* partial_inplace */
1054 0xffffffff, /* src_mask */
1055 0xffffffff, /* dst_mask */
1056 true); /* pcrel_offset */
1058 /* GNU extension to record C++ vtable hierarchy */
1059 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1060 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1061 0, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 0, /* bitsize */
1064 false, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_dont, /* complain_on_overflow */
1067 NULL, /* special_function */
1068 "R_MIPS_GNU_VTINHERIT", /* name */
1069 false, /* partial_inplace */
1070 0, /* src_mask */
1071 0, /* dst_mask */
1072 false); /* pcrel_offset */
1074 /* GNU extension to record C++ vtable member usage */
1075 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1076 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 0, /* bitsize */
1080 false, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont, /* complain_on_overflow */
1083 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1084 "R_MIPS_GNU_VTENTRY", /* name */
1085 false, /* partial_inplace */
1086 0, /* src_mask */
1087 0, /* dst_mask */
1088 false); /* pcrel_offset */
1090 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1091 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1092 the HI16. Here we just save the information we need; we do the
1093 actual relocation when we see the LO16. MIPS ELF requires that the
1094 LO16 immediately follow the HI16. As a GNU extension, we permit an
1095 arbitrary number of HI16 relocs to be associated with a single LO16
1096 reloc. This extension permits gcc to output the HI and LO relocs
1097 itself. */
1099 struct mips_hi16
1101 struct mips_hi16 *next;
1102 bfd_byte *addr;
1103 bfd_vma addend;
1106 /* FIXME: This should not be a static variable. */
1108 static struct mips_hi16 *mips_hi16_list;
1110 bfd_reloc_status_type
1111 _bfd_mips_elf_hi16_reloc (abfd,
1112 reloc_entry,
1113 symbol,
1114 data,
1115 input_section,
1116 output_bfd,
1117 error_message)
1118 bfd *abfd ATTRIBUTE_UNUSED;
1119 arelent *reloc_entry;
1120 asymbol *symbol;
1121 PTR data;
1122 asection *input_section;
1123 bfd *output_bfd;
1124 char **error_message;
1126 bfd_reloc_status_type ret;
1127 bfd_vma relocation;
1128 struct mips_hi16 *n;
1130 /* If we're relocating, and this an external symbol, we don't want
1131 to change anything. */
1132 if (output_bfd != (bfd *) NULL
1133 && (symbol->flags & BSF_SECTION_SYM) == 0
1134 && reloc_entry->addend == 0)
1136 reloc_entry->address += input_section->output_offset;
1137 return bfd_reloc_ok;
1140 ret = bfd_reloc_ok;
1142 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1144 boolean relocateable;
1145 bfd_vma gp;
1147 if (ret == bfd_reloc_undefined)
1148 abort ();
1150 if (output_bfd != NULL)
1151 relocateable = true;
1152 else
1154 relocateable = false;
1155 output_bfd = symbol->section->output_section->owner;
1158 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1159 error_message, &gp);
1160 if (ret != bfd_reloc_ok)
1161 return ret;
1163 relocation = gp - reloc_entry->address;
1165 else
1167 if (bfd_is_und_section (symbol->section)
1168 && output_bfd == (bfd *) NULL)
1169 ret = bfd_reloc_undefined;
1171 if (bfd_is_com_section (symbol->section))
1172 relocation = 0;
1173 else
1174 relocation = symbol->value;
1177 relocation += symbol->section->output_section->vma;
1178 relocation += symbol->section->output_offset;
1179 relocation += reloc_entry->addend;
1181 if (reloc_entry->address > input_section->_cooked_size)
1182 return bfd_reloc_outofrange;
1184 /* Save the information, and let LO16 do the actual relocation. */
1185 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1186 if (n == NULL)
1187 return bfd_reloc_outofrange;
1188 n->addr = (bfd_byte *) data + reloc_entry->address;
1189 n->addend = relocation;
1190 n->next = mips_hi16_list;
1191 mips_hi16_list = n;
1193 if (output_bfd != (bfd *) NULL)
1194 reloc_entry->address += input_section->output_offset;
1196 return ret;
1199 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1200 inplace relocation; this function exists in order to do the
1201 R_MIPS_HI16 relocation described above. */
1203 bfd_reloc_status_type
1204 _bfd_mips_elf_lo16_reloc (abfd,
1205 reloc_entry,
1206 symbol,
1207 data,
1208 input_section,
1209 output_bfd,
1210 error_message)
1211 bfd *abfd;
1212 arelent *reloc_entry;
1213 asymbol *symbol;
1214 PTR data;
1215 asection *input_section;
1216 bfd *output_bfd;
1217 char **error_message;
1219 arelent gp_disp_relent;
1221 if (mips_hi16_list != NULL)
1223 struct mips_hi16 *l;
1225 l = mips_hi16_list;
1226 while (l != NULL)
1228 unsigned long insn;
1229 unsigned long val;
1230 unsigned long vallo;
1231 struct mips_hi16 *next;
1233 /* Do the HI16 relocation. Note that we actually don't need
1234 to know anything about the LO16 itself, except where to
1235 find the low 16 bits of the addend needed by the LO16. */
1236 insn = bfd_get_32 (abfd, l->addr);
1237 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1238 & 0xffff);
1239 val = ((insn & 0xffff) << 16) + vallo;
1240 val += l->addend;
1242 /* The low order 16 bits are always treated as a signed
1243 value. Therefore, a negative value in the low order bits
1244 requires an adjustment in the high order bits. We need
1245 to make this adjustment in two ways: once for the bits we
1246 took from the data, and once for the bits we are putting
1247 back in to the data. */
1248 if ((vallo & 0x8000) != 0)
1249 val -= 0x10000;
1250 if ((val & 0x8000) != 0)
1251 val += 0x10000;
1253 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1254 bfd_put_32 (abfd, insn, l->addr);
1256 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1258 gp_disp_relent = *reloc_entry;
1259 reloc_entry = &gp_disp_relent;
1260 reloc_entry->addend = l->addend;
1263 next = l->next;
1264 free (l);
1265 l = next;
1268 mips_hi16_list = NULL;
1270 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1272 bfd_reloc_status_type ret;
1273 bfd_vma gp, relocation;
1275 /* FIXME: Does this case ever occur? */
1277 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1278 if (ret != bfd_reloc_ok)
1279 return ret;
1281 relocation = gp - reloc_entry->address;
1282 relocation += symbol->section->output_section->vma;
1283 relocation += symbol->section->output_offset;
1284 relocation += reloc_entry->addend;
1286 if (reloc_entry->address > input_section->_cooked_size)
1287 return bfd_reloc_outofrange;
1289 gp_disp_relent = *reloc_entry;
1290 reloc_entry = &gp_disp_relent;
1291 reloc_entry->addend = relocation - 4;
1294 /* Now do the LO16 reloc in the usual way. */
1295 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1296 input_section, output_bfd, error_message);
1299 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1300 table used for PIC code. If the symbol is an external symbol, the
1301 instruction is modified to contain the offset of the appropriate
1302 entry in the global offset table. If the symbol is a section
1303 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1304 addends are combined to form the real addend against the section
1305 symbol; the GOT16 is modified to contain the offset of an entry in
1306 the global offset table, and the LO16 is modified to offset it
1307 appropriately. Thus an offset larger than 16 bits requires a
1308 modified value in the global offset table.
1310 This implementation suffices for the assembler, but the linker does
1311 not yet know how to create global offset tables. */
1313 bfd_reloc_status_type
1314 _bfd_mips_elf_got16_reloc (abfd,
1315 reloc_entry,
1316 symbol,
1317 data,
1318 input_section,
1319 output_bfd,
1320 error_message)
1321 bfd *abfd;
1322 arelent *reloc_entry;
1323 asymbol *symbol;
1324 PTR data;
1325 asection *input_section;
1326 bfd *output_bfd;
1327 char **error_message;
1329 /* If we're relocating, and this an external symbol, we don't want
1330 to change anything. */
1331 if (output_bfd != (bfd *) NULL
1332 && (symbol->flags & BSF_SECTION_SYM) == 0
1333 && reloc_entry->addend == 0)
1335 reloc_entry->address += input_section->output_offset;
1336 return bfd_reloc_ok;
1339 /* If we're relocating, and this is a local symbol, we can handle it
1340 just like HI16. */
1341 if (output_bfd != (bfd *) NULL
1342 && (symbol->flags & BSF_SECTION_SYM) != 0)
1343 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1344 input_section, output_bfd, error_message);
1346 abort ();
1349 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1350 dangerous relocation. */
1352 static boolean
1353 mips_elf_assign_gp (output_bfd, pgp)
1354 bfd *output_bfd;
1355 bfd_vma *pgp;
1357 unsigned int count;
1358 asymbol **sym;
1359 unsigned int i;
1361 /* If we've already figured out what GP will be, just return it. */
1362 *pgp = _bfd_get_gp_value (output_bfd);
1363 if (*pgp)
1364 return true;
1366 count = bfd_get_symcount (output_bfd);
1367 sym = bfd_get_outsymbols (output_bfd);
1369 /* The linker script will have created a symbol named `_gp' with the
1370 appropriate value. */
1371 if (sym == (asymbol **) NULL)
1372 i = count;
1373 else
1375 for (i = 0; i < count; i++, sym++)
1377 register CONST char *name;
1379 name = bfd_asymbol_name (*sym);
1380 if (*name == '_' && strcmp (name, "_gp") == 0)
1382 *pgp = bfd_asymbol_value (*sym);
1383 _bfd_set_gp_value (output_bfd, *pgp);
1384 break;
1389 if (i >= count)
1391 /* Only get the error once. */
1392 *pgp = 4;
1393 _bfd_set_gp_value (output_bfd, *pgp);
1394 return false;
1397 return true;
1400 /* We have to figure out the gp value, so that we can adjust the
1401 symbol value correctly. We look up the symbol _gp in the output
1402 BFD. If we can't find it, we're stuck. We cache it in the ELF
1403 target data. We don't need to adjust the symbol value for an
1404 external symbol if we are producing relocateable output. */
1406 static bfd_reloc_status_type
1407 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1408 bfd *output_bfd;
1409 asymbol *symbol;
1410 boolean relocateable;
1411 char **error_message;
1412 bfd_vma *pgp;
1414 if (bfd_is_und_section (symbol->section)
1415 && ! relocateable)
1417 *pgp = 0;
1418 return bfd_reloc_undefined;
1421 *pgp = _bfd_get_gp_value (output_bfd);
1422 if (*pgp == 0
1423 && (! relocateable
1424 || (symbol->flags & BSF_SECTION_SYM) != 0))
1426 if (relocateable)
1428 /* Make up a value. */
1429 *pgp = symbol->section->output_section->vma + 0x4000;
1430 _bfd_set_gp_value (output_bfd, *pgp);
1432 else if (!mips_elf_assign_gp (output_bfd, pgp))
1434 *error_message =
1435 (char *) _("GP relative relocation when _gp not defined");
1436 return bfd_reloc_dangerous;
1440 return bfd_reloc_ok;
1443 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1444 become the offset from the gp register. This function also handles
1445 R_MIPS_LITERAL relocations, although those can be handled more
1446 cleverly because the entries in the .lit8 and .lit4 sections can be
1447 merged. */
1449 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1450 arelent *, asection *,
1451 boolean, PTR, bfd_vma));
1453 bfd_reloc_status_type
1454 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1455 output_bfd, error_message)
1456 bfd *abfd;
1457 arelent *reloc_entry;
1458 asymbol *symbol;
1459 PTR data;
1460 asection *input_section;
1461 bfd *output_bfd;
1462 char **error_message;
1464 boolean relocateable;
1465 bfd_reloc_status_type ret;
1466 bfd_vma gp;
1468 /* If we're relocating, and this is an external symbol with no
1469 addend, we don't want to change anything. We will only have an
1470 addend if this is a newly created reloc, not read from an ELF
1471 file. */
1472 if (output_bfd != (bfd *) NULL
1473 && (symbol->flags & BSF_SECTION_SYM) == 0
1474 && reloc_entry->addend == 0)
1476 reloc_entry->address += input_section->output_offset;
1477 return bfd_reloc_ok;
1480 if (output_bfd != (bfd *) NULL)
1481 relocateable = true;
1482 else
1484 relocateable = false;
1485 output_bfd = symbol->section->output_section->owner;
1488 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1489 &gp);
1490 if (ret != bfd_reloc_ok)
1491 return ret;
1493 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1494 relocateable, data, gp);
1497 static bfd_reloc_status_type
1498 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1500 bfd *abfd;
1501 asymbol *symbol;
1502 arelent *reloc_entry;
1503 asection *input_section;
1504 boolean relocateable;
1505 PTR data;
1506 bfd_vma gp;
1508 bfd_vma relocation;
1509 unsigned long insn;
1510 unsigned long val;
1512 if (bfd_is_com_section (symbol->section))
1513 relocation = 0;
1514 else
1515 relocation = symbol->value;
1517 relocation += symbol->section->output_section->vma;
1518 relocation += symbol->section->output_offset;
1520 if (reloc_entry->address > input_section->_cooked_size)
1521 return bfd_reloc_outofrange;
1523 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1525 /* Set val to the offset into the section or symbol. */
1526 if (reloc_entry->howto->src_mask == 0)
1528 /* This case occurs with the 64-bit MIPS ELF ABI. */
1529 val = reloc_entry->addend;
1531 else
1533 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1534 if (val & 0x8000)
1535 val -= 0x10000;
1538 /* Adjust val for the final section location and GP value. If we
1539 are producing relocateable output, we don't want to do this for
1540 an external symbol. */
1541 if (! relocateable
1542 || (symbol->flags & BSF_SECTION_SYM) != 0)
1543 val += relocation - gp;
1545 insn = (insn & ~0xffff) | (val & 0xffff);
1546 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1548 if (relocateable)
1549 reloc_entry->address += input_section->output_offset;
1551 /* Make sure it fit in 16 bits. */
1552 if ((long) val >= 0x8000 || (long) val < -0x8000)
1553 return bfd_reloc_overflow;
1555 return bfd_reloc_ok;
1558 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1559 from the gp register? XXX */
1561 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1562 arelent *, asection *,
1563 boolean, PTR, bfd_vma));
1565 bfd_reloc_status_type
1566 _bfd_mips_elf_gprel32_reloc (abfd,
1567 reloc_entry,
1568 symbol,
1569 data,
1570 input_section,
1571 output_bfd,
1572 error_message)
1573 bfd *abfd;
1574 arelent *reloc_entry;
1575 asymbol *symbol;
1576 PTR data;
1577 asection *input_section;
1578 bfd *output_bfd;
1579 char **error_message;
1581 boolean relocateable;
1582 bfd_reloc_status_type ret;
1583 bfd_vma gp;
1585 /* If we're relocating, and this is an external symbol with no
1586 addend, we don't want to change anything. We will only have an
1587 addend if this is a newly created reloc, not read from an ELF
1588 file. */
1589 if (output_bfd != (bfd *) NULL
1590 && (symbol->flags & BSF_SECTION_SYM) == 0
1591 && reloc_entry->addend == 0)
1593 *error_message = (char *)
1594 _("32bits gp relative relocation occurs for an external symbol");
1595 return bfd_reloc_outofrange;
1598 if (output_bfd != (bfd *) NULL)
1600 relocateable = true;
1601 gp = _bfd_get_gp_value (output_bfd);
1603 else
1605 relocateable = false;
1606 output_bfd = symbol->section->output_section->owner;
1608 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1609 error_message, &gp);
1610 if (ret != bfd_reloc_ok)
1611 return ret;
1614 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1615 relocateable, data, gp);
1618 static bfd_reloc_status_type
1619 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1621 bfd *abfd;
1622 asymbol *symbol;
1623 arelent *reloc_entry;
1624 asection *input_section;
1625 boolean relocateable;
1626 PTR data;
1627 bfd_vma gp;
1629 bfd_vma relocation;
1630 unsigned long val;
1632 if (bfd_is_com_section (symbol->section))
1633 relocation = 0;
1634 else
1635 relocation = symbol->value;
1637 relocation += symbol->section->output_section->vma;
1638 relocation += symbol->section->output_offset;
1640 if (reloc_entry->address > input_section->_cooked_size)
1641 return bfd_reloc_outofrange;
1643 if (reloc_entry->howto->src_mask == 0)
1645 /* This case arises with the 64-bit MIPS ELF ABI. */
1646 val = 0;
1648 else
1649 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1651 /* Set val to the offset into the section or symbol. */
1652 val += reloc_entry->addend;
1654 /* Adjust val for the final section location and GP value. If we
1655 are producing relocateable output, we don't want to do this for
1656 an external symbol. */
1657 if (! relocateable
1658 || (symbol->flags & BSF_SECTION_SYM) != 0)
1659 val += relocation - gp;
1661 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1663 if (relocateable)
1664 reloc_entry->address += input_section->output_offset;
1666 return bfd_reloc_ok;
1669 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1670 generated when addreses are 64 bits. The upper 32 bits are a simle
1671 sign extension. */
1673 static bfd_reloc_status_type
1674 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1675 output_bfd, error_message)
1676 bfd *abfd;
1677 arelent *reloc_entry;
1678 asymbol *symbol;
1679 PTR data;
1680 asection *input_section;
1681 bfd *output_bfd;
1682 char **error_message;
1684 bfd_reloc_status_type r;
1685 arelent reloc32;
1686 unsigned long val;
1687 bfd_size_type addr;
1689 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1690 input_section, output_bfd, error_message);
1691 if (r != bfd_reloc_continue)
1692 return r;
1694 /* Do a normal 32 bit relocation on the lower 32 bits. */
1695 reloc32 = *reloc_entry;
1696 if (bfd_big_endian (abfd))
1697 reloc32.address += 4;
1698 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1699 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1700 output_bfd, error_message);
1702 /* Sign extend into the upper 32 bits. */
1703 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1704 if ((val & 0x80000000) != 0)
1705 val = 0xffffffff;
1706 else
1707 val = 0;
1708 addr = reloc_entry->address;
1709 if (bfd_little_endian (abfd))
1710 addr += 4;
1711 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1713 return r;
1716 /* Handle a mips16 jump. */
1718 static bfd_reloc_status_type
1719 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1720 output_bfd, error_message)
1721 bfd *abfd ATTRIBUTE_UNUSED;
1722 arelent *reloc_entry;
1723 asymbol *symbol;
1724 PTR data ATTRIBUTE_UNUSED;
1725 asection *input_section;
1726 bfd *output_bfd;
1727 char **error_message ATTRIBUTE_UNUSED;
1729 if (output_bfd != (bfd *) NULL
1730 && (symbol->flags & BSF_SECTION_SYM) == 0
1731 && reloc_entry->addend == 0)
1733 reloc_entry->address += input_section->output_offset;
1734 return bfd_reloc_ok;
1737 /* FIXME. */
1739 static boolean warned;
1741 if (! warned)
1742 (*_bfd_error_handler)
1743 (_("Linking mips16 objects into %s format is not supported"),
1744 bfd_get_target (input_section->output_section->owner));
1745 warned = true;
1748 return bfd_reloc_undefined;
1751 /* Handle a mips16 GP relative reloc. */
1753 static bfd_reloc_status_type
1754 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1755 output_bfd, error_message)
1756 bfd *abfd;
1757 arelent *reloc_entry;
1758 asymbol *symbol;
1759 PTR data;
1760 asection *input_section;
1761 bfd *output_bfd;
1762 char **error_message;
1764 boolean relocateable;
1765 bfd_reloc_status_type ret;
1766 bfd_vma gp;
1767 unsigned short extend, insn;
1768 unsigned long final;
1770 /* If we're relocating, and this is an external symbol with no
1771 addend, we don't want to change anything. We will only have an
1772 addend if this is a newly created reloc, not read from an ELF
1773 file. */
1774 if (output_bfd != NULL
1775 && (symbol->flags & BSF_SECTION_SYM) == 0
1776 && reloc_entry->addend == 0)
1778 reloc_entry->address += input_section->output_offset;
1779 return bfd_reloc_ok;
1782 if (output_bfd != NULL)
1783 relocateable = true;
1784 else
1786 relocateable = false;
1787 output_bfd = symbol->section->output_section->owner;
1790 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1791 &gp);
1792 if (ret != bfd_reloc_ok)
1793 return ret;
1795 if (reloc_entry->address > input_section->_cooked_size)
1796 return bfd_reloc_outofrange;
1798 /* Pick up the mips16 extend instruction and the real instruction. */
1799 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1800 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1802 /* Stuff the current addend back as a 32 bit value, do the usual
1803 relocation, and then clean up. */
1804 bfd_put_32 (abfd,
1805 (((extend & 0x1f) << 11)
1806 | (extend & 0x7e0)
1807 | (insn & 0x1f)),
1808 (bfd_byte *) data + reloc_entry->address);
1810 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1811 relocateable, data, gp);
1813 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1814 bfd_put_16 (abfd,
1815 ((extend & 0xf800)
1816 | ((final >> 11) & 0x1f)
1817 | (final & 0x7e0)),
1818 (bfd_byte *) data + reloc_entry->address);
1819 bfd_put_16 (abfd,
1820 ((insn & 0xffe0)
1821 | (final & 0x1f)),
1822 (bfd_byte *) data + reloc_entry->address + 2);
1824 return ret;
1827 /* Return the ISA for a MIPS e_flags value. */
1829 static INLINE int
1830 elf_mips_isa (flags)
1831 flagword flags;
1833 switch (flags & EF_MIPS_ARCH)
1835 case E_MIPS_ARCH_1:
1836 return 1;
1837 case E_MIPS_ARCH_2:
1838 return 2;
1839 case E_MIPS_ARCH_3:
1840 return 3;
1841 case E_MIPS_ARCH_4:
1842 return 4;
1843 case E_MIPS_ARCH_5:
1844 return 5;
1845 case E_MIPS_ARCH_32:
1846 return 32;
1847 case E_MIPS_ARCH_64:
1848 return 64;
1850 return 4;
1853 /* Return the MACH for a MIPS e_flags value. */
1855 static INLINE int
1856 elf_mips_mach (flags)
1857 flagword flags;
1859 switch (flags & EF_MIPS_MACH)
1861 case E_MIPS_MACH_3900:
1862 return bfd_mach_mips3900;
1864 case E_MIPS_MACH_4010:
1865 return bfd_mach_mips4010;
1867 case E_MIPS_MACH_4100:
1868 return bfd_mach_mips4100;
1870 case E_MIPS_MACH_4111:
1871 return bfd_mach_mips4111;
1873 case E_MIPS_MACH_4650:
1874 return bfd_mach_mips4650;
1876 case E_MIPS_MACH_MIPS32_4K:
1877 return bfd_mach_mips32_4k;
1879 case E_MIPS_MACH_SB1:
1880 return bfd_mach_mips_sb1;
1882 default:
1883 switch (flags & EF_MIPS_ARCH)
1885 default:
1886 case E_MIPS_ARCH_1:
1887 return bfd_mach_mips3000;
1888 break;
1890 case E_MIPS_ARCH_2:
1891 return bfd_mach_mips6000;
1892 break;
1894 case E_MIPS_ARCH_3:
1895 return bfd_mach_mips4000;
1896 break;
1898 case E_MIPS_ARCH_4:
1899 return bfd_mach_mips8000;
1900 break;
1902 case E_MIPS_ARCH_5:
1903 return bfd_mach_mips5;
1904 break;
1906 case E_MIPS_ARCH_32:
1907 return bfd_mach_mips32;
1908 break;
1910 case E_MIPS_ARCH_64:
1911 return bfd_mach_mips64;
1912 break;
1916 return 0;
1919 /* Return printable name for ABI. */
1921 static INLINE char *
1922 elf_mips_abi_name (abfd)
1923 bfd *abfd;
1925 flagword flags;
1927 if (ABI_N32_P (abfd))
1928 return "N32";
1929 else if (ABI_64_P (abfd))
1930 return "64";
1932 flags = elf_elfheader (abfd)->e_flags;
1933 switch (flags & EF_MIPS_ABI)
1935 case 0:
1936 return "none";
1937 case E_MIPS_ABI_O32:
1938 return "O32";
1939 case E_MIPS_ABI_O64:
1940 return "O64";
1941 case E_MIPS_ABI_EABI32:
1942 return "EABI32";
1943 case E_MIPS_ABI_EABI64:
1944 return "EABI64";
1945 default:
1946 return "unknown abi";
1950 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1952 struct elf_reloc_map {
1953 bfd_reloc_code_real_type bfd_reloc_val;
1954 enum elf_mips_reloc_type elf_reloc_val;
1957 static CONST struct elf_reloc_map mips_reloc_map[] =
1959 { BFD_RELOC_NONE, R_MIPS_NONE, },
1960 { BFD_RELOC_16, R_MIPS_16 },
1961 { BFD_RELOC_32, R_MIPS_32 },
1962 { BFD_RELOC_64, R_MIPS_64 },
1963 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1964 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1965 { BFD_RELOC_LO16, R_MIPS_LO16 },
1966 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1967 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1968 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1969 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1970 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1971 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1972 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1973 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1974 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1975 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1976 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1977 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1978 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1979 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1982 /* Given a BFD reloc type, return a howto structure. */
1984 static reloc_howto_type *
1985 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1986 bfd *abfd;
1987 bfd_reloc_code_real_type code;
1989 unsigned int i;
1991 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1993 if (mips_reloc_map[i].bfd_reloc_val == code)
1994 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1997 switch (code)
1999 default:
2000 bfd_set_error (bfd_error_bad_value);
2001 return NULL;
2003 case BFD_RELOC_CTOR:
2004 /* We need to handle BFD_RELOC_CTOR specially.
2005 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2006 size of addresses on this architecture. */
2007 if (bfd_arch_bits_per_address (abfd) == 32)
2008 return &elf_mips_howto_table[(int) R_MIPS_32];
2009 else
2010 return &elf_mips_ctor64_howto;
2012 case BFD_RELOC_MIPS16_JMP:
2013 return &elf_mips16_jump_howto;
2014 case BFD_RELOC_MIPS16_GPREL:
2015 return &elf_mips16_gprel_howto;
2016 case BFD_RELOC_VTABLE_INHERIT:
2017 return &elf_mips_gnu_vtinherit_howto;
2018 case BFD_RELOC_VTABLE_ENTRY:
2019 return &elf_mips_gnu_vtentry_howto;
2020 case BFD_RELOC_PCREL_HI16_S:
2021 return &elf_mips_gnu_rel_hi16;
2022 case BFD_RELOC_PCREL_LO16:
2023 return &elf_mips_gnu_rel_lo16;
2024 case BFD_RELOC_16_PCREL_S2:
2025 return &elf_mips_gnu_rel16_s2;
2026 case BFD_RELOC_64_PCREL:
2027 return &elf_mips_gnu_pcrel64;
2028 case BFD_RELOC_32_PCREL:
2029 return &elf_mips_gnu_pcrel32;
2033 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2035 static reloc_howto_type *
2036 mips_rtype_to_howto (r_type)
2037 unsigned int r_type;
2039 switch (r_type)
2041 case R_MIPS16_26:
2042 return &elf_mips16_jump_howto;
2043 break;
2044 case R_MIPS16_GPREL:
2045 return &elf_mips16_gprel_howto;
2046 break;
2047 case R_MIPS_GNU_VTINHERIT:
2048 return &elf_mips_gnu_vtinherit_howto;
2049 break;
2050 case R_MIPS_GNU_VTENTRY:
2051 return &elf_mips_gnu_vtentry_howto;
2052 break;
2053 case R_MIPS_GNU_REL_HI16:
2054 return &elf_mips_gnu_rel_hi16;
2055 break;
2056 case R_MIPS_GNU_REL_LO16:
2057 return &elf_mips_gnu_rel_lo16;
2058 break;
2059 case R_MIPS_GNU_REL16_S2:
2060 return &elf_mips_gnu_rel16_s2;
2061 break;
2062 case R_MIPS_PC64:
2063 return &elf_mips_gnu_pcrel64;
2064 break;
2065 case R_MIPS_PC32:
2066 return &elf_mips_gnu_pcrel32;
2067 break;
2069 default:
2070 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2071 return &elf_mips_howto_table[r_type];
2072 break;
2076 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2078 static void
2079 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2080 bfd *abfd;
2081 arelent *cache_ptr;
2082 Elf32_Internal_Rel *dst;
2084 unsigned int r_type;
2086 r_type = ELF32_R_TYPE (dst->r_info);
2087 cache_ptr->howto = mips_rtype_to_howto (r_type);
2089 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2090 value for the object file. We get the addend now, rather than
2091 when we do the relocation, because the symbol manipulations done
2092 by the linker may cause us to lose track of the input BFD. */
2093 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2094 && (r_type == (unsigned int) R_MIPS_GPREL16
2095 || r_type == (unsigned int) R_MIPS_LITERAL))
2096 cache_ptr->addend = elf_gp (abfd);
2099 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2101 static void
2102 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2103 bfd *abfd;
2104 arelent *cache_ptr;
2105 Elf32_Internal_Rela *dst;
2107 /* Since an Elf32_Internal_Rel is an initial prefix of an
2108 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2109 above. */
2110 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2112 /* If we ever need to do any extra processing with dst->r_addend
2113 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2116 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2117 routines swap this structure in and out. They are used outside of
2118 BFD, so they are globally visible. */
2120 void
2121 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2122 bfd *abfd;
2123 const Elf32_External_RegInfo *ex;
2124 Elf32_RegInfo *in;
2126 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2127 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2128 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2129 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2130 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2131 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2134 void
2135 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2136 bfd *abfd;
2137 const Elf32_RegInfo *in;
2138 Elf32_External_RegInfo *ex;
2140 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2141 (bfd_byte *) ex->ri_gprmask);
2142 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2143 (bfd_byte *) ex->ri_cprmask[0]);
2144 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2145 (bfd_byte *) ex->ri_cprmask[1]);
2146 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2147 (bfd_byte *) ex->ri_cprmask[2]);
2148 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2149 (bfd_byte *) ex->ri_cprmask[3]);
2150 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2151 (bfd_byte *) ex->ri_gp_value);
2154 /* In the 64 bit ABI, the .MIPS.options section holds register
2155 information in an Elf64_Reginfo structure. These routines swap
2156 them in and out. They are globally visible because they are used
2157 outside of BFD. These routines are here so that gas can call them
2158 without worrying about whether the 64 bit ABI has been included. */
2160 void
2161 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2162 bfd *abfd;
2163 const Elf64_External_RegInfo *ex;
2164 Elf64_Internal_RegInfo *in;
2166 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2167 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2168 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2169 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2170 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2171 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2172 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2175 void
2176 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2177 bfd *abfd;
2178 const Elf64_Internal_RegInfo *in;
2179 Elf64_External_RegInfo *ex;
2181 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2182 (bfd_byte *) ex->ri_gprmask);
2183 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2184 (bfd_byte *) ex->ri_pad);
2185 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2186 (bfd_byte *) ex->ri_cprmask[0]);
2187 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2188 (bfd_byte *) ex->ri_cprmask[1]);
2189 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2190 (bfd_byte *) ex->ri_cprmask[2]);
2191 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2192 (bfd_byte *) ex->ri_cprmask[3]);
2193 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2194 (bfd_byte *) ex->ri_gp_value);
2197 /* Swap an entry in a .gptab section. Note that these routines rely
2198 on the equivalence of the two elements of the union. */
2200 static void
2201 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2202 bfd *abfd;
2203 const Elf32_External_gptab *ex;
2204 Elf32_gptab *in;
2206 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2207 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2210 static void
2211 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2212 bfd *abfd;
2213 const Elf32_gptab *in;
2214 Elf32_External_gptab *ex;
2216 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2217 ex->gt_entry.gt_g_value);
2218 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2219 ex->gt_entry.gt_bytes);
2222 static void
2223 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2224 bfd *abfd;
2225 const Elf32_compact_rel *in;
2226 Elf32_External_compact_rel *ex;
2228 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2229 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2230 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2231 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2232 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2233 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2236 static void
2237 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2238 bfd *abfd;
2239 const Elf32_crinfo *in;
2240 Elf32_External_crinfo *ex;
2242 unsigned long l;
2244 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2245 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2246 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2247 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2248 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2249 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2250 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2253 /* Swap in an options header. */
2255 void
2256 bfd_mips_elf_swap_options_in (abfd, ex, in)
2257 bfd *abfd;
2258 const Elf_External_Options *ex;
2259 Elf_Internal_Options *in;
2261 in->kind = bfd_h_get_8 (abfd, ex->kind);
2262 in->size = bfd_h_get_8 (abfd, ex->size);
2263 in->section = bfd_h_get_16 (abfd, ex->section);
2264 in->info = bfd_h_get_32 (abfd, ex->info);
2267 /* Swap out an options header. */
2269 void
2270 bfd_mips_elf_swap_options_out (abfd, in, ex)
2271 bfd *abfd;
2272 const Elf_Internal_Options *in;
2273 Elf_External_Options *ex;
2275 bfd_h_put_8 (abfd, in->kind, ex->kind);
2276 bfd_h_put_8 (abfd, in->size, ex->size);
2277 bfd_h_put_16 (abfd, in->section, ex->section);
2278 bfd_h_put_32 (abfd, in->info, ex->info);
2280 #if 0
2281 /* Swap in an MSYM entry. */
2283 static void
2284 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2285 bfd *abfd;
2286 const Elf32_External_Msym *ex;
2287 Elf32_Internal_Msym *in;
2289 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2290 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2292 #endif
2293 /* Swap out an MSYM entry. */
2295 static void
2296 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2297 bfd *abfd;
2298 const Elf32_Internal_Msym *in;
2299 Elf32_External_Msym *ex;
2301 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2302 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2305 /* Determine whether a symbol is global for the purposes of splitting
2306 the symbol table into global symbols and local symbols. At least
2307 on Irix 5, this split must be between section symbols and all other
2308 symbols. On most ELF targets the split is between static symbols
2309 and externally visible symbols. */
2311 static boolean
2312 mips_elf_sym_is_global (abfd, sym)
2313 bfd *abfd ATTRIBUTE_UNUSED;
2314 asymbol *sym;
2316 if (SGI_COMPAT(abfd))
2317 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2318 else
2319 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2320 || bfd_is_und_section (bfd_get_section (sym))
2321 || bfd_is_com_section (bfd_get_section (sym)));
2324 /* Set the right machine number for a MIPS ELF file. This is used for
2325 both the 32-bit and the 64-bit ABI. */
2327 boolean
2328 _bfd_mips_elf_object_p (abfd)
2329 bfd *abfd;
2331 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2332 sorted correctly such that local symbols precede global symbols,
2333 and the sh_info field in the symbol table is not always right. */
2334 elf_bad_symtab (abfd) = true;
2336 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2337 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2338 return true;
2341 /* The final processing done just before writing out a MIPS ELF object
2342 file. This gets the MIPS architecture right based on the machine
2343 number. This is used by both the 32-bit and the 64-bit ABI. */
2345 void
2346 _bfd_mips_elf_final_write_processing (abfd, linker)
2347 bfd *abfd;
2348 boolean linker ATTRIBUTE_UNUSED;
2350 unsigned long val;
2351 unsigned int i;
2352 Elf_Internal_Shdr **hdrpp;
2353 const char *name;
2354 asection *sec;
2356 switch (bfd_get_mach (abfd))
2358 default:
2359 case bfd_mach_mips3000:
2360 val = E_MIPS_ARCH_1;
2361 break;
2363 case bfd_mach_mips3900:
2364 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2365 break;
2367 case bfd_mach_mips6000:
2368 val = E_MIPS_ARCH_2;
2369 break;
2371 case bfd_mach_mips4000:
2372 case bfd_mach_mips4300:
2373 val = E_MIPS_ARCH_3;
2374 break;
2376 case bfd_mach_mips4010:
2377 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2378 break;
2380 case bfd_mach_mips4100:
2381 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2382 break;
2384 case bfd_mach_mips4111:
2385 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2386 break;
2388 case bfd_mach_mips4650:
2389 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2390 break;
2392 case bfd_mach_mips8000:
2393 val = E_MIPS_ARCH_4;
2394 break;
2396 case bfd_mach_mips32:
2397 val = E_MIPS_ARCH_32;
2398 break;
2400 case bfd_mach_mips32_4k:
2401 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2402 break;
2404 case bfd_mach_mips5:
2405 val = E_MIPS_ARCH_5;
2406 break;
2408 case bfd_mach_mips64:
2409 val = E_MIPS_ARCH_64;
2410 break;
2412 case bfd_mach_mips_sb1:
2413 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2414 break;
2417 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2418 elf_elfheader (abfd)->e_flags |= val;
2420 /* Set the sh_info field for .gptab sections and other appropriate
2421 info for each special section. */
2422 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2423 i < elf_elfheader (abfd)->e_shnum;
2424 i++, hdrpp++)
2426 switch ((*hdrpp)->sh_type)
2428 case SHT_MIPS_MSYM:
2429 case SHT_MIPS_LIBLIST:
2430 sec = bfd_get_section_by_name (abfd, ".dynstr");
2431 if (sec != NULL)
2432 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2433 break;
2435 case SHT_MIPS_GPTAB:
2436 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2437 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2438 BFD_ASSERT (name != NULL
2439 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2440 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2441 BFD_ASSERT (sec != NULL);
2442 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2443 break;
2445 case SHT_MIPS_CONTENT:
2446 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2447 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2448 BFD_ASSERT (name != NULL
2449 && strncmp (name, ".MIPS.content",
2450 sizeof ".MIPS.content" - 1) == 0);
2451 sec = bfd_get_section_by_name (abfd,
2452 name + sizeof ".MIPS.content" - 1);
2453 BFD_ASSERT (sec != NULL);
2454 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2455 break;
2457 case SHT_MIPS_SYMBOL_LIB:
2458 sec = bfd_get_section_by_name (abfd, ".dynsym");
2459 if (sec != NULL)
2460 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2461 sec = bfd_get_section_by_name (abfd, ".liblist");
2462 if (sec != NULL)
2463 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2464 break;
2466 case SHT_MIPS_EVENTS:
2467 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2468 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2469 BFD_ASSERT (name != NULL);
2470 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2471 sec = bfd_get_section_by_name (abfd,
2472 name + sizeof ".MIPS.events" - 1);
2473 else
2475 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2476 sizeof ".MIPS.post_rel" - 1) == 0);
2477 sec = bfd_get_section_by_name (abfd,
2478 (name
2479 + sizeof ".MIPS.post_rel" - 1));
2481 BFD_ASSERT (sec != NULL);
2482 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2483 break;
2489 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2491 boolean
2492 _bfd_mips_elf_set_private_flags (abfd, flags)
2493 bfd *abfd;
2494 flagword flags;
2496 BFD_ASSERT (!elf_flags_init (abfd)
2497 || elf_elfheader (abfd)->e_flags == flags);
2499 elf_elfheader (abfd)->e_flags = flags;
2500 elf_flags_init (abfd) = true;
2501 return true;
2504 /* Copy backend specific data from one object module to another */
2506 boolean
2507 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2508 bfd *ibfd;
2509 bfd *obfd;
2511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2513 return true;
2515 BFD_ASSERT (!elf_flags_init (obfd)
2516 || (elf_elfheader (obfd)->e_flags
2517 == elf_elfheader (ibfd)->e_flags));
2519 elf_gp (obfd) = elf_gp (ibfd);
2520 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2521 elf_flags_init (obfd) = true;
2522 return true;
2525 /* Merge backend specific data from an object file to the output
2526 object file when linking. */
2528 boolean
2529 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2530 bfd *ibfd;
2531 bfd *obfd;
2533 flagword old_flags;
2534 flagword new_flags;
2535 boolean ok;
2536 boolean null_input_bfd = true;
2537 asection *sec;
2539 /* Check if we have the same endianess */
2540 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2541 return false;
2543 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2544 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2545 return true;
2547 new_flags = elf_elfheader (ibfd)->e_flags;
2548 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2549 old_flags = elf_elfheader (obfd)->e_flags;
2551 if (! elf_flags_init (obfd))
2553 elf_flags_init (obfd) = true;
2554 elf_elfheader (obfd)->e_flags = new_flags;
2555 elf_elfheader (obfd)->e_ident[EI_CLASS]
2556 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2558 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2559 && bfd_get_arch_info (obfd)->the_default)
2561 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2562 bfd_get_mach (ibfd)))
2563 return false;
2566 return true;
2569 /* Check flag compatibility. */
2571 new_flags &= ~EF_MIPS_NOREORDER;
2572 old_flags &= ~EF_MIPS_NOREORDER;
2574 if (new_flags == old_flags)
2575 return true;
2577 /* Check to see if the input BFD actually contains any sections.
2578 If not, its flags may not have been initialised either, but it cannot
2579 actually cause any incompatibility. */
2580 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2582 /* Ignore synthetic sections and empty .text, .data and .bss sections
2583 which are automatically generated by gas. */
2584 if (strcmp (sec->name, ".reginfo")
2585 && strcmp (sec->name, ".mdebug")
2586 && ((!strcmp (sec->name, ".text")
2587 || !strcmp (sec->name, ".data")
2588 || !strcmp (sec->name, ".bss"))
2589 && sec->_raw_size != 0))
2591 null_input_bfd = false;
2592 break;
2595 if (null_input_bfd)
2596 return true;
2598 ok = true;
2600 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2602 new_flags &= ~EF_MIPS_PIC;
2603 old_flags &= ~EF_MIPS_PIC;
2604 (*_bfd_error_handler)
2605 (_("%s: linking PIC files with non-PIC files"),
2606 bfd_get_filename (ibfd));
2607 ok = false;
2610 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2612 new_flags &= ~EF_MIPS_CPIC;
2613 old_flags &= ~EF_MIPS_CPIC;
2614 (*_bfd_error_handler)
2615 (_("%s: linking abicalls files with non-abicalls files"),
2616 bfd_get_filename (ibfd));
2617 ok = false;
2620 /* Compare the ISA's. */
2621 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2622 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2624 int new_mach = new_flags & EF_MIPS_MACH;
2625 int old_mach = old_flags & EF_MIPS_MACH;
2626 int new_isa = elf_mips_isa (new_flags);
2627 int old_isa = elf_mips_isa (old_flags);
2629 /* If either has no machine specified, just compare the general isa's.
2630 Some combinations of machines are ok, if the isa's match. */
2631 if (! new_mach
2632 || ! old_mach
2633 || new_mach == old_mach
2636 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2637 using 64-bit ISAs. They will normally use the same data sizes
2638 and calling conventions. */
2640 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2641 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2643 (*_bfd_error_handler)
2644 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2645 bfd_get_filename (ibfd), new_isa, old_isa);
2646 ok = false;
2650 else
2652 (*_bfd_error_handler)
2653 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2654 bfd_get_filename (ibfd),
2655 elf_mips_mach (new_flags),
2656 elf_mips_mach (old_flags));
2657 ok = false;
2660 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2661 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2664 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2665 does set EI_CLASS differently from any 32-bit ABI. */
2666 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2667 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2668 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2670 /* Only error if both are set (to different values). */
2671 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2672 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2673 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2675 (*_bfd_error_handler)
2676 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2677 bfd_get_filename (ibfd),
2678 elf_mips_abi_name (ibfd),
2679 elf_mips_abi_name (obfd));
2680 ok = false;
2682 new_flags &= ~EF_MIPS_ABI;
2683 old_flags &= ~EF_MIPS_ABI;
2686 /* Warn about any other mismatches */
2687 if (new_flags != old_flags)
2689 (*_bfd_error_handler)
2690 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2691 bfd_get_filename (ibfd), (unsigned long) new_flags,
2692 (unsigned long) old_flags);
2693 ok = false;
2696 if (! ok)
2698 bfd_set_error (bfd_error_bad_value);
2699 return false;
2702 return true;
2705 boolean
2706 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2707 bfd *abfd;
2708 PTR ptr;
2710 FILE *file = (FILE *) ptr;
2712 BFD_ASSERT (abfd != NULL && ptr != NULL);
2714 /* Print normal ELF private data. */
2715 _bfd_elf_print_private_bfd_data (abfd, ptr);
2717 /* xgettext:c-format */
2718 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2720 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2721 fprintf (file, _(" [abi=O32]"));
2722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2723 fprintf (file, _(" [abi=O64]"));
2724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2725 fprintf (file, _(" [abi=EABI32]"));
2726 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2727 fprintf (file, _(" [abi=EABI64]"));
2728 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2729 fprintf (file, _(" [abi unknown]"));
2730 else if (ABI_N32_P (abfd))
2731 fprintf (file, _(" [abi=N32]"));
2732 else if (ABI_64_P (abfd))
2733 fprintf (file, _(" [abi=64]"));
2734 else
2735 fprintf (file, _(" [no abi set]"));
2737 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2738 fprintf (file, _(" [mips1]"));
2739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2740 fprintf (file, _(" [mips2]"));
2741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2742 fprintf (file, _(" [mips3]"));
2743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2744 fprintf (file, _(" [mips4]"));
2745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2746 fprintf (file, _ (" [mips5]"));
2747 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2748 fprintf (file, _ (" [mips32]"));
2749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2750 fprintf (file, _ (" [mips64]"));
2751 else
2752 fprintf (file, _(" [unknown ISA]"));
2754 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2755 fprintf (file, _(" [32bitmode]"));
2756 else
2757 fprintf (file, _(" [not 32bitmode]"));
2759 fputc ('\n', file);
2761 return true;
2764 /* Handle a MIPS specific section when reading an object file. This
2765 is called when elfcode.h finds a section with an unknown type.
2766 This routine supports both the 32-bit and 64-bit ELF ABI.
2768 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2769 how to. */
2771 boolean
2772 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2773 bfd *abfd;
2774 Elf_Internal_Shdr *hdr;
2775 char *name;
2777 flagword flags = 0;
2779 /* There ought to be a place to keep ELF backend specific flags, but
2780 at the moment there isn't one. We just keep track of the
2781 sections by their name, instead. Fortunately, the ABI gives
2782 suggested names for all the MIPS specific sections, so we will
2783 probably get away with this. */
2784 switch (hdr->sh_type)
2786 case SHT_MIPS_LIBLIST:
2787 if (strcmp (name, ".liblist") != 0)
2788 return false;
2789 break;
2790 case SHT_MIPS_MSYM:
2791 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2792 return false;
2793 break;
2794 case SHT_MIPS_CONFLICT:
2795 if (strcmp (name, ".conflict") != 0)
2796 return false;
2797 break;
2798 case SHT_MIPS_GPTAB:
2799 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2800 return false;
2801 break;
2802 case SHT_MIPS_UCODE:
2803 if (strcmp (name, ".ucode") != 0)
2804 return false;
2805 break;
2806 case SHT_MIPS_DEBUG:
2807 if (strcmp (name, ".mdebug") != 0)
2808 return false;
2809 flags = SEC_DEBUGGING;
2810 break;
2811 case SHT_MIPS_REGINFO:
2812 if (strcmp (name, ".reginfo") != 0
2813 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2814 return false;
2815 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2816 break;
2817 case SHT_MIPS_IFACE:
2818 if (strcmp (name, ".MIPS.interfaces") != 0)
2819 return false;
2820 break;
2821 case SHT_MIPS_CONTENT:
2822 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2823 return false;
2824 break;
2825 case SHT_MIPS_OPTIONS:
2826 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2827 return false;
2828 break;
2829 case SHT_MIPS_DWARF:
2830 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2831 return false;
2832 break;
2833 case SHT_MIPS_SYMBOL_LIB:
2834 if (strcmp (name, ".MIPS.symlib") != 0)
2835 return false;
2836 break;
2837 case SHT_MIPS_EVENTS:
2838 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2839 && strncmp (name, ".MIPS.post_rel",
2840 sizeof ".MIPS.post_rel" - 1) != 0)
2841 return false;
2842 break;
2843 default:
2844 return false;
2847 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2848 return false;
2850 if (flags)
2852 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2853 (bfd_get_section_flags (abfd,
2854 hdr->bfd_section)
2855 | flags)))
2856 return false;
2859 /* FIXME: We should record sh_info for a .gptab section. */
2861 /* For a .reginfo section, set the gp value in the tdata information
2862 from the contents of this section. We need the gp value while
2863 processing relocs, so we just get it now. The .reginfo section
2864 is not used in the 64-bit MIPS ELF ABI. */
2865 if (hdr->sh_type == SHT_MIPS_REGINFO)
2867 Elf32_External_RegInfo ext;
2868 Elf32_RegInfo s;
2870 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2871 (file_ptr) 0, sizeof ext))
2872 return false;
2873 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2874 elf_gp (abfd) = s.ri_gp_value;
2877 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2878 set the gp value based on what we find. We may see both
2879 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2880 they should agree. */
2881 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2883 bfd_byte *contents, *l, *lend;
2885 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2886 if (contents == NULL)
2887 return false;
2888 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2889 (file_ptr) 0, hdr->sh_size))
2891 free (contents);
2892 return false;
2894 l = contents;
2895 lend = contents + hdr->sh_size;
2896 while (l + sizeof (Elf_External_Options) <= lend)
2898 Elf_Internal_Options intopt;
2900 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2901 &intopt);
2902 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2904 Elf64_Internal_RegInfo intreg;
2906 bfd_mips_elf64_swap_reginfo_in
2907 (abfd,
2908 ((Elf64_External_RegInfo *)
2909 (l + sizeof (Elf_External_Options))),
2910 &intreg);
2911 elf_gp (abfd) = intreg.ri_gp_value;
2913 else if (intopt.kind == ODK_REGINFO)
2915 Elf32_RegInfo intreg;
2917 bfd_mips_elf32_swap_reginfo_in
2918 (abfd,
2919 ((Elf32_External_RegInfo *)
2920 (l + sizeof (Elf_External_Options))),
2921 &intreg);
2922 elf_gp (abfd) = intreg.ri_gp_value;
2924 l += intopt.size;
2926 free (contents);
2929 return true;
2932 /* Set the correct type for a MIPS ELF section. We do this by the
2933 section name, which is a hack, but ought to work. This routine is
2934 used by both the 32-bit and the 64-bit ABI. */
2936 boolean
2937 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2938 bfd *abfd;
2939 Elf32_Internal_Shdr *hdr;
2940 asection *sec;
2942 register const char *name;
2944 name = bfd_get_section_name (abfd, sec);
2946 if (strcmp (name, ".liblist") == 0)
2948 hdr->sh_type = SHT_MIPS_LIBLIST;
2949 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2950 /* The sh_link field is set in final_write_processing. */
2952 else if (strcmp (name, ".conflict") == 0)
2953 hdr->sh_type = SHT_MIPS_CONFLICT;
2954 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2956 hdr->sh_type = SHT_MIPS_GPTAB;
2957 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2958 /* The sh_info field is set in final_write_processing. */
2960 else if (strcmp (name, ".ucode") == 0)
2961 hdr->sh_type = SHT_MIPS_UCODE;
2962 else if (strcmp (name, ".mdebug") == 0)
2964 hdr->sh_type = SHT_MIPS_DEBUG;
2965 /* In a shared object on Irix 5.3, the .mdebug section has an
2966 entsize of 0. FIXME: Does this matter? */
2967 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2968 hdr->sh_entsize = 0;
2969 else
2970 hdr->sh_entsize = 1;
2972 else if (strcmp (name, ".reginfo") == 0)
2974 hdr->sh_type = SHT_MIPS_REGINFO;
2975 /* In a shared object on Irix 5.3, the .reginfo section has an
2976 entsize of 0x18. FIXME: Does this matter? */
2977 if (SGI_COMPAT (abfd))
2979 if ((abfd->flags & DYNAMIC) != 0)
2980 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2981 else
2982 hdr->sh_entsize = 1;
2984 else
2985 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2987 else if (SGI_COMPAT (abfd)
2988 && (strcmp (name, ".hash") == 0
2989 || strcmp (name, ".dynamic") == 0
2990 || strcmp (name, ".dynstr") == 0))
2992 if (SGI_COMPAT (abfd))
2993 hdr->sh_entsize = 0;
2994 #if 0
2995 /* This isn't how the Irix 6 linker behaves. */
2996 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2997 #endif
2999 else if (strcmp (name, ".got") == 0
3000 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3001 || strcmp (name, ".sdata") == 0
3002 || strcmp (name, ".sbss") == 0
3003 || strcmp (name, ".lit4") == 0
3004 || strcmp (name, ".lit8") == 0)
3005 hdr->sh_flags |= SHF_MIPS_GPREL;
3006 else if (strcmp (name, ".MIPS.interfaces") == 0)
3008 hdr->sh_type = SHT_MIPS_IFACE;
3009 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3011 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3013 hdr->sh_type = SHT_MIPS_CONTENT;
3014 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3015 /* The sh_info field is set in final_write_processing. */
3017 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3019 hdr->sh_type = SHT_MIPS_OPTIONS;
3020 hdr->sh_entsize = 1;
3021 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3023 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3024 hdr->sh_type = SHT_MIPS_DWARF;
3025 else if (strcmp (name, ".MIPS.symlib") == 0)
3027 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3028 /* The sh_link and sh_info fields are set in
3029 final_write_processing. */
3031 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3032 || strncmp (name, ".MIPS.post_rel",
3033 sizeof ".MIPS.post_rel" - 1) == 0)
3035 hdr->sh_type = SHT_MIPS_EVENTS;
3036 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3037 /* The sh_link field is set in final_write_processing. */
3039 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3041 hdr->sh_type = SHT_MIPS_MSYM;
3042 hdr->sh_flags |= SHF_ALLOC;
3043 hdr->sh_entsize = 8;
3046 /* The generic elf_fake_sections will set up REL_HDR using the
3047 default kind of relocations. But, we may actually need both
3048 kinds of relocations, so we set up the second header here. */
3049 if ((sec->flags & SEC_RELOC) != 0)
3051 struct bfd_elf_section_data *esd;
3053 esd = elf_section_data (sec);
3054 BFD_ASSERT (esd->rel_hdr2 == NULL);
3055 esd->rel_hdr2
3056 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3057 if (!esd->rel_hdr2)
3058 return false;
3059 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3060 !elf_section_data (sec)->use_rela_p);
3063 return true;
3066 /* Given a BFD section, try to locate the corresponding ELF section
3067 index. This is used by both the 32-bit and the 64-bit ABI.
3068 Actually, it's not clear to me that the 64-bit ABI supports these,
3069 but for non-PIC objects we will certainly want support for at least
3070 the .scommon section. */
3072 boolean
3073 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3074 bfd *abfd ATTRIBUTE_UNUSED;
3075 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3076 asection *sec;
3077 int *retval;
3079 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3081 *retval = SHN_MIPS_SCOMMON;
3082 return true;
3084 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3086 *retval = SHN_MIPS_ACOMMON;
3087 return true;
3089 return false;
3092 /* When are writing out the .options or .MIPS.options section,
3093 remember the bytes we are writing out, so that we can install the
3094 GP value in the section_processing routine. */
3096 boolean
3097 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3098 bfd *abfd;
3099 sec_ptr section;
3100 PTR location;
3101 file_ptr offset;
3102 bfd_size_type count;
3104 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3106 bfd_byte *c;
3108 if (elf_section_data (section) == NULL)
3110 section->used_by_bfd =
3111 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3112 if (elf_section_data (section) == NULL)
3113 return false;
3115 c = (bfd_byte *) elf_section_data (section)->tdata;
3116 if (c == NULL)
3118 bfd_size_type size;
3120 if (section->_cooked_size != 0)
3121 size = section->_cooked_size;
3122 else
3123 size = section->_raw_size;
3124 c = (bfd_byte *) bfd_zalloc (abfd, size);
3125 if (c == NULL)
3126 return false;
3127 elf_section_data (section)->tdata = (PTR) c;
3130 memcpy (c + offset, location, count);
3133 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3134 count);
3137 /* Work over a section just before writing it out. This routine is
3138 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3139 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3140 a better way. */
3142 boolean
3143 _bfd_mips_elf_section_processing (abfd, hdr)
3144 bfd *abfd;
3145 Elf_Internal_Shdr *hdr;
3147 if (hdr->sh_type == SHT_MIPS_REGINFO
3148 && hdr->sh_size > 0)
3150 bfd_byte buf[4];
3152 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3153 BFD_ASSERT (hdr->contents == NULL);
3155 if (bfd_seek (abfd,
3156 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3157 SEEK_SET) == -1)
3158 return false;
3159 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3160 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3161 return false;
3164 if (hdr->sh_type == SHT_MIPS_OPTIONS
3165 && hdr->bfd_section != NULL
3166 && elf_section_data (hdr->bfd_section) != NULL
3167 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3169 bfd_byte *contents, *l, *lend;
3171 /* We stored the section contents in the elf_section_data tdata
3172 field in the set_section_contents routine. We save the
3173 section contents so that we don't have to read them again.
3174 At this point we know that elf_gp is set, so we can look
3175 through the section contents to see if there is an
3176 ODK_REGINFO structure. */
3178 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3179 l = contents;
3180 lend = contents + hdr->sh_size;
3181 while (l + sizeof (Elf_External_Options) <= lend)
3183 Elf_Internal_Options intopt;
3185 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3186 &intopt);
3187 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3189 bfd_byte buf[8];
3191 if (bfd_seek (abfd,
3192 (hdr->sh_offset
3193 + (l - contents)
3194 + sizeof (Elf_External_Options)
3195 + (sizeof (Elf64_External_RegInfo) - 8)),
3196 SEEK_SET) == -1)
3197 return false;
3198 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3199 if (bfd_write (buf, 1, 8, abfd) != 8)
3200 return false;
3202 else if (intopt.kind == ODK_REGINFO)
3204 bfd_byte buf[4];
3206 if (bfd_seek (abfd,
3207 (hdr->sh_offset
3208 + (l - contents)
3209 + sizeof (Elf_External_Options)
3210 + (sizeof (Elf32_External_RegInfo) - 4)),
3211 SEEK_SET) == -1)
3212 return false;
3213 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3214 if (bfd_write (buf, 1, 4, abfd) != 4)
3215 return false;
3217 l += intopt.size;
3221 if (hdr->bfd_section != NULL)
3223 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3225 if (strcmp (name, ".sdata") == 0
3226 || strcmp (name, ".lit8") == 0
3227 || strcmp (name, ".lit4") == 0)
3229 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3230 hdr->sh_type = SHT_PROGBITS;
3232 else if (strcmp (name, ".sbss") == 0)
3234 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3235 hdr->sh_type = SHT_NOBITS;
3237 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3239 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3240 hdr->sh_type = SHT_PROGBITS;
3242 else if (strcmp (name, ".compact_rel") == 0)
3244 hdr->sh_flags = 0;
3245 hdr->sh_type = SHT_PROGBITS;
3247 else if (strcmp (name, ".rtproc") == 0)
3249 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3251 unsigned int adjust;
3253 adjust = hdr->sh_size % hdr->sh_addralign;
3254 if (adjust != 0)
3255 hdr->sh_size += hdr->sh_addralign - adjust;
3260 return true;
3263 /* MIPS ELF uses two common sections. One is the usual one, and the
3264 other is for small objects. All the small objects are kept
3265 together, and then referenced via the gp pointer, which yields
3266 faster assembler code. This is what we use for the small common
3267 section. This approach is copied from ecoff.c. */
3268 static asection mips_elf_scom_section;
3269 static asymbol mips_elf_scom_symbol;
3270 static asymbol *mips_elf_scom_symbol_ptr;
3272 /* MIPS ELF also uses an acommon section, which represents an
3273 allocated common symbol which may be overridden by a
3274 definition in a shared library. */
3275 static asection mips_elf_acom_section;
3276 static asymbol mips_elf_acom_symbol;
3277 static asymbol *mips_elf_acom_symbol_ptr;
3279 /* Handle the special MIPS section numbers that a symbol may use.
3280 This is used for both the 32-bit and the 64-bit ABI. */
3282 void
3283 _bfd_mips_elf_symbol_processing (abfd, asym)
3284 bfd *abfd;
3285 asymbol *asym;
3287 elf_symbol_type *elfsym;
3289 elfsym = (elf_symbol_type *) asym;
3290 switch (elfsym->internal_elf_sym.st_shndx)
3292 case SHN_MIPS_ACOMMON:
3293 /* This section is used in a dynamically linked executable file.
3294 It is an allocated common section. The dynamic linker can
3295 either resolve these symbols to something in a shared
3296 library, or it can just leave them here. For our purposes,
3297 we can consider these symbols to be in a new section. */
3298 if (mips_elf_acom_section.name == NULL)
3300 /* Initialize the acommon section. */
3301 mips_elf_acom_section.name = ".acommon";
3302 mips_elf_acom_section.flags = SEC_ALLOC;
3303 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3304 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3305 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3306 mips_elf_acom_symbol.name = ".acommon";
3307 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3308 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3309 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3311 asym->section = &mips_elf_acom_section;
3312 break;
3314 case SHN_COMMON:
3315 /* Common symbols less than the GP size are automatically
3316 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3317 if (asym->value > elf_gp_size (abfd)
3318 || IRIX_COMPAT (abfd) == ict_irix6)
3319 break;
3320 /* Fall through. */
3321 case SHN_MIPS_SCOMMON:
3322 if (mips_elf_scom_section.name == NULL)
3324 /* Initialize the small common section. */
3325 mips_elf_scom_section.name = ".scommon";
3326 mips_elf_scom_section.flags = SEC_IS_COMMON;
3327 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3328 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3329 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3330 mips_elf_scom_symbol.name = ".scommon";
3331 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3332 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3333 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3335 asym->section = &mips_elf_scom_section;
3336 asym->value = elfsym->internal_elf_sym.st_size;
3337 break;
3339 case SHN_MIPS_SUNDEFINED:
3340 asym->section = bfd_und_section_ptr;
3341 break;
3343 #if 0 /* for SGI_COMPAT */
3344 case SHN_MIPS_TEXT:
3345 asym->section = mips_elf_text_section_ptr;
3346 break;
3348 case SHN_MIPS_DATA:
3349 asym->section = mips_elf_data_section_ptr;
3350 break;
3351 #endif
3355 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3356 segments. */
3359 _bfd_mips_elf_additional_program_headers (abfd)
3360 bfd *abfd;
3362 asection *s;
3363 int ret = 0;
3365 /* See if we need a PT_MIPS_REGINFO segment. */
3366 s = bfd_get_section_by_name (abfd, ".reginfo");
3367 if (s && (s->flags & SEC_LOAD))
3368 ++ret;
3370 /* See if we need a PT_MIPS_OPTIONS segment. */
3371 if (IRIX_COMPAT (abfd) == ict_irix6
3372 && bfd_get_section_by_name (abfd,
3373 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3374 ++ret;
3376 /* See if we need a PT_MIPS_RTPROC segment. */
3377 if (IRIX_COMPAT (abfd) == ict_irix5
3378 && bfd_get_section_by_name (abfd, ".dynamic")
3379 && bfd_get_section_by_name (abfd, ".mdebug"))
3380 ++ret;
3382 return ret;
3385 /* Modify the segment map for an Irix 5 executable. */
3387 boolean
3388 _bfd_mips_elf_modify_segment_map (abfd)
3389 bfd *abfd;
3391 asection *s;
3392 struct elf_segment_map *m, **pm;
3394 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3395 segment. */
3396 s = bfd_get_section_by_name (abfd, ".reginfo");
3397 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3399 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3400 if (m->p_type == PT_MIPS_REGINFO)
3401 break;
3402 if (m == NULL)
3404 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3405 if (m == NULL)
3406 return false;
3408 m->p_type = PT_MIPS_REGINFO;
3409 m->count = 1;
3410 m->sections[0] = s;
3412 /* We want to put it after the PHDR and INTERP segments. */
3413 pm = &elf_tdata (abfd)->segment_map;
3414 while (*pm != NULL
3415 && ((*pm)->p_type == PT_PHDR
3416 || (*pm)->p_type == PT_INTERP))
3417 pm = &(*pm)->next;
3419 m->next = *pm;
3420 *pm = m;
3424 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3425 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3426 PT_OPTIONS segement immediately following the program header
3427 table. */
3428 if (IRIX_COMPAT (abfd) == ict_irix6)
3430 asection *s;
3432 for (s = abfd->sections; s; s = s->next)
3433 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3434 break;
3436 if (s)
3438 struct elf_segment_map *options_segment;
3440 /* Usually, there's a program header table. But, sometimes
3441 there's not (like when running the `ld' testsuite). So,
3442 if there's no program header table, we just put the
3443 options segement at the end. */
3444 for (pm = &elf_tdata (abfd)->segment_map;
3445 *pm != NULL;
3446 pm = &(*pm)->next)
3447 if ((*pm)->p_type == PT_PHDR)
3448 break;
3450 options_segment = bfd_zalloc (abfd,
3451 sizeof (struct elf_segment_map));
3452 options_segment->next = *pm;
3453 options_segment->p_type = PT_MIPS_OPTIONS;
3454 options_segment->p_flags = PF_R;
3455 options_segment->p_flags_valid = true;
3456 options_segment->count = 1;
3457 options_segment->sections[0] = s;
3458 *pm = options_segment;
3461 else
3463 if (IRIX_COMPAT (abfd) == ict_irix5)
3465 /* If there are .dynamic and .mdebug sections, we make a room
3466 for the RTPROC header. FIXME: Rewrite without section names. */
3467 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3468 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3469 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3471 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3472 if (m->p_type == PT_MIPS_RTPROC)
3473 break;
3474 if (m == NULL)
3476 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3477 if (m == NULL)
3478 return false;
3480 m->p_type = PT_MIPS_RTPROC;
3482 s = bfd_get_section_by_name (abfd, ".rtproc");
3483 if (s == NULL)
3485 m->count = 0;
3486 m->p_flags = 0;
3487 m->p_flags_valid = 1;
3489 else
3491 m->count = 1;
3492 m->sections[0] = s;
3495 /* We want to put it after the DYNAMIC segment. */
3496 pm = &elf_tdata (abfd)->segment_map;
3497 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3498 pm = &(*pm)->next;
3499 if (*pm != NULL)
3500 pm = &(*pm)->next;
3502 m->next = *pm;
3503 *pm = m;
3507 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3508 .dynstr, .dynsym, and .hash sections, and everything in
3509 between. */
3510 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3511 pm = &(*pm)->next)
3512 if ((*pm)->p_type == PT_DYNAMIC)
3513 break;
3514 m = *pm;
3515 if (IRIX_COMPAT (abfd) == ict_none)
3517 /* For a normal mips executable the permissions for the PT_DYNAMIC
3518 segment are read, write and execute. We do that here since
3519 the code in elf.c sets only the read permission. This matters
3520 sometimes for the dynamic linker. */
3521 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3523 m->p_flags = PF_R | PF_W | PF_X;
3524 m->p_flags_valid = 1;
3527 if (m != NULL
3528 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3530 static const char *sec_names[] =
3532 ".dynamic", ".dynstr", ".dynsym", ".hash"
3534 bfd_vma low, high;
3535 unsigned int i, c;
3536 struct elf_segment_map *n;
3538 low = 0xffffffff;
3539 high = 0;
3540 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3542 s = bfd_get_section_by_name (abfd, sec_names[i]);
3543 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3545 bfd_size_type sz;
3547 if (low > s->vma)
3548 low = s->vma;
3549 sz = s->_cooked_size;
3550 if (sz == 0)
3551 sz = s->_raw_size;
3552 if (high < s->vma + sz)
3553 high = s->vma + sz;
3557 c = 0;
3558 for (s = abfd->sections; s != NULL; s = s->next)
3559 if ((s->flags & SEC_LOAD) != 0
3560 && s->vma >= low
3561 && ((s->vma
3562 + (s->_cooked_size !=
3563 0 ? s->_cooked_size : s->_raw_size)) <= high))
3564 ++c;
3566 n = ((struct elf_segment_map *)
3567 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3568 if (n == NULL)
3569 return false;
3570 *n = *m;
3571 n->count = c;
3573 i = 0;
3574 for (s = abfd->sections; s != NULL; s = s->next)
3576 if ((s->flags & SEC_LOAD) != 0
3577 && s->vma >= low
3578 && ((s->vma
3579 + (s->_cooked_size != 0 ?
3580 s->_cooked_size : s->_raw_size)) <= high))
3582 n->sections[i] = s;
3583 ++i;
3587 *pm = n;
3591 return true;
3594 /* The structure of the runtime procedure descriptor created by the
3595 loader for use by the static exception system. */
3597 typedef struct runtime_pdr {
3598 bfd_vma adr; /* memory address of start of procedure */
3599 long regmask; /* save register mask */
3600 long regoffset; /* save register offset */
3601 long fregmask; /* save floating point register mask */
3602 long fregoffset; /* save floating point register offset */
3603 long frameoffset; /* frame size */
3604 short framereg; /* frame pointer register */
3605 short pcreg; /* offset or reg of return pc */
3606 long irpss; /* index into the runtime string table */
3607 long reserved;
3608 struct exception_info *exception_info;/* pointer to exception array */
3609 } RPDR, *pRPDR;
3610 #define cbRPDR sizeof (RPDR)
3611 #define rpdNil ((pRPDR) 0)
3613 /* Swap RPDR (runtime procedure table entry) for output. */
3615 static void ecoff_swap_rpdr_out
3616 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3618 static void
3619 ecoff_swap_rpdr_out (abfd, in, ex)
3620 bfd *abfd;
3621 const RPDR *in;
3622 struct rpdr_ext *ex;
3624 /* ecoff_put_off was defined in ecoffswap.h. */
3625 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3626 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3627 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3628 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3629 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3630 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3632 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3633 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3635 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3636 #if 0 /* FIXME */
3637 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3638 #endif
3641 /* Read ECOFF debugging information from a .mdebug section into a
3642 ecoff_debug_info structure. */
3644 boolean
3645 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3646 bfd *abfd;
3647 asection *section;
3648 struct ecoff_debug_info *debug;
3650 HDRR *symhdr;
3651 const struct ecoff_debug_swap *swap;
3652 char *ext_hdr = NULL;
3654 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3655 memset (debug, 0, sizeof (*debug));
3657 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3658 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3659 goto error_return;
3661 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3662 swap->external_hdr_size)
3663 == false)
3664 goto error_return;
3666 symhdr = &debug->symbolic_header;
3667 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3669 /* The symbolic header contains absolute file offsets and sizes to
3670 read. */
3671 #define READ(ptr, offset, count, size, type) \
3672 if (symhdr->count == 0) \
3673 debug->ptr = NULL; \
3674 else \
3676 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3677 if (debug->ptr == NULL) \
3678 goto error_return; \
3679 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3680 || (bfd_read (debug->ptr, size, symhdr->count, \
3681 abfd) != size * symhdr->count)) \
3682 goto error_return; \
3685 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3686 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3687 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3688 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3689 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3690 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3691 union aux_ext *);
3692 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3693 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3694 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3695 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3696 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3697 #undef READ
3699 debug->fdr = NULL;
3700 debug->adjust = NULL;
3702 return true;
3704 error_return:
3705 if (ext_hdr != NULL)
3706 free (ext_hdr);
3707 if (debug->line != NULL)
3708 free (debug->line);
3709 if (debug->external_dnr != NULL)
3710 free (debug->external_dnr);
3711 if (debug->external_pdr != NULL)
3712 free (debug->external_pdr);
3713 if (debug->external_sym != NULL)
3714 free (debug->external_sym);
3715 if (debug->external_opt != NULL)
3716 free (debug->external_opt);
3717 if (debug->external_aux != NULL)
3718 free (debug->external_aux);
3719 if (debug->ss != NULL)
3720 free (debug->ss);
3721 if (debug->ssext != NULL)
3722 free (debug->ssext);
3723 if (debug->external_fdr != NULL)
3724 free (debug->external_fdr);
3725 if (debug->external_rfd != NULL)
3726 free (debug->external_rfd);
3727 if (debug->external_ext != NULL)
3728 free (debug->external_ext);
3729 return false;
3732 /* MIPS ELF local labels start with '$', not 'L'. */
3734 static boolean
3735 mips_elf_is_local_label_name (abfd, name)
3736 bfd *abfd;
3737 const char *name;
3739 if (name[0] == '$')
3740 return true;
3742 /* On Irix 6, the labels go back to starting with '.', so we accept
3743 the generic ELF local label syntax as well. */
3744 return _bfd_elf_is_local_label_name (abfd, name);
3747 /* MIPS ELF uses a special find_nearest_line routine in order the
3748 handle the ECOFF debugging information. */
3750 struct mips_elf_find_line
3752 struct ecoff_debug_info d;
3753 struct ecoff_find_line i;
3756 boolean
3757 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3758 functionname_ptr, line_ptr)
3759 bfd *abfd;
3760 asection *section;
3761 asymbol **symbols;
3762 bfd_vma offset;
3763 const char **filename_ptr;
3764 const char **functionname_ptr;
3765 unsigned int *line_ptr;
3767 asection *msec;
3769 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3770 filename_ptr, functionname_ptr,
3771 line_ptr))
3772 return true;
3774 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3775 filename_ptr, functionname_ptr,
3776 line_ptr,
3777 ABI_64_P (abfd) ? 8 : 0,
3778 &elf_tdata (abfd)->dwarf2_find_line_info))
3779 return true;
3781 msec = bfd_get_section_by_name (abfd, ".mdebug");
3782 if (msec != NULL)
3784 flagword origflags;
3785 struct mips_elf_find_line *fi;
3786 const struct ecoff_debug_swap * const swap =
3787 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3789 /* If we are called during a link, mips_elf_final_link may have
3790 cleared the SEC_HAS_CONTENTS field. We force it back on here
3791 if appropriate (which it normally will be). */
3792 origflags = msec->flags;
3793 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3794 msec->flags |= SEC_HAS_CONTENTS;
3796 fi = elf_tdata (abfd)->find_line_info;
3797 if (fi == NULL)
3799 bfd_size_type external_fdr_size;
3800 char *fraw_src;
3801 char *fraw_end;
3802 struct fdr *fdr_ptr;
3804 fi = ((struct mips_elf_find_line *)
3805 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3806 if (fi == NULL)
3808 msec->flags = origflags;
3809 return false;
3812 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3814 msec->flags = origflags;
3815 return false;
3818 /* Swap in the FDR information. */
3819 fi->d.fdr = ((struct fdr *)
3820 bfd_alloc (abfd,
3821 (fi->d.symbolic_header.ifdMax *
3822 sizeof (struct fdr))));
3823 if (fi->d.fdr == NULL)
3825 msec->flags = origflags;
3826 return false;
3828 external_fdr_size = swap->external_fdr_size;
3829 fdr_ptr = fi->d.fdr;
3830 fraw_src = (char *) fi->d.external_fdr;
3831 fraw_end = (fraw_src
3832 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3833 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3834 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3836 elf_tdata (abfd)->find_line_info = fi;
3838 /* Note that we don't bother to ever free this information.
3839 find_nearest_line is either called all the time, as in
3840 objdump -l, so the information should be saved, or it is
3841 rarely called, as in ld error messages, so the memory
3842 wasted is unimportant. Still, it would probably be a
3843 good idea for free_cached_info to throw it away. */
3846 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3847 &fi->i, filename_ptr, functionname_ptr,
3848 line_ptr))
3850 msec->flags = origflags;
3851 return true;
3854 msec->flags = origflags;
3857 /* Fall back on the generic ELF find_nearest_line routine. */
3859 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3860 filename_ptr, functionname_ptr,
3861 line_ptr);
3864 /* The mips16 compiler uses a couple of special sections to handle
3865 floating point arguments.
3867 Section names that look like .mips16.fn.FNNAME contain stubs that
3868 copy floating point arguments from the fp regs to the gp regs and
3869 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3870 call should be redirected to the stub instead. If no 32 bit
3871 function calls FNNAME, the stub should be discarded. We need to
3872 consider any reference to the function, not just a call, because
3873 if the address of the function is taken we will need the stub,
3874 since the address might be passed to a 32 bit function.
3876 Section names that look like .mips16.call.FNNAME contain stubs
3877 that copy floating point arguments from the gp regs to the fp
3878 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3879 then any 16 bit function that calls FNNAME should be redirected
3880 to the stub instead. If FNNAME is not a 32 bit function, the
3881 stub should be discarded.
3883 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3884 which call FNNAME and then copy the return value from the fp regs
3885 to the gp regs. These stubs store the return value in $18 while
3886 calling FNNAME; any function which might call one of these stubs
3887 must arrange to save $18 around the call. (This case is not
3888 needed for 32 bit functions that call 16 bit functions, because
3889 16 bit functions always return floating point values in both
3890 $f0/$f1 and $2/$3.)
3892 Note that in all cases FNNAME might be defined statically.
3893 Therefore, FNNAME is not used literally. Instead, the relocation
3894 information will indicate which symbol the section is for.
3896 We record any stubs that we find in the symbol table. */
3898 #define FN_STUB ".mips16.fn."
3899 #define CALL_STUB ".mips16.call."
3900 #define CALL_FP_STUB ".mips16.call.fp."
3902 /* MIPS ELF linker hash table. */
3904 struct mips_elf_link_hash_table
3906 struct elf_link_hash_table root;
3907 #if 0
3908 /* We no longer use this. */
3909 /* String section indices for the dynamic section symbols. */
3910 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3911 #endif
3912 /* The number of .rtproc entries. */
3913 bfd_size_type procedure_count;
3914 /* The size of the .compact_rel section (if SGI_COMPAT). */
3915 bfd_size_type compact_rel_size;
3916 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3917 entry is set to the address of __rld_obj_head as in Irix 5. */
3918 boolean use_rld_obj_head;
3919 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3920 bfd_vma rld_value;
3921 /* This is set if we see any mips16 stub sections. */
3922 boolean mips16_stubs_seen;
3925 /* Look up an entry in a MIPS ELF linker hash table. */
3927 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3928 ((struct mips_elf_link_hash_entry *) \
3929 elf_link_hash_lookup (&(table)->root, (string), (create), \
3930 (copy), (follow)))
3932 /* Traverse a MIPS ELF linker hash table. */
3934 #define mips_elf_link_hash_traverse(table, func, info) \
3935 (elf_link_hash_traverse \
3936 (&(table)->root, \
3937 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3938 (info)))
3940 /* Get the MIPS ELF linker hash table from a link_info structure. */
3942 #define mips_elf_hash_table(p) \
3943 ((struct mips_elf_link_hash_table *) ((p)->hash))
3945 static boolean mips_elf_output_extsym
3946 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3948 /* Create an entry in a MIPS ELF linker hash table. */
3950 static struct bfd_hash_entry *
3951 mips_elf_link_hash_newfunc (entry, table, string)
3952 struct bfd_hash_entry *entry;
3953 struct bfd_hash_table *table;
3954 const char *string;
3956 struct mips_elf_link_hash_entry *ret =
3957 (struct mips_elf_link_hash_entry *) entry;
3959 /* Allocate the structure if it has not already been allocated by a
3960 subclass. */
3961 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3962 ret = ((struct mips_elf_link_hash_entry *)
3963 bfd_hash_allocate (table,
3964 sizeof (struct mips_elf_link_hash_entry)));
3965 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3966 return (struct bfd_hash_entry *) ret;
3968 /* Call the allocation method of the superclass. */
3969 ret = ((struct mips_elf_link_hash_entry *)
3970 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3971 table, string));
3972 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3974 /* Set local fields. */
3975 memset (&ret->esym, 0, sizeof (EXTR));
3976 /* We use -2 as a marker to indicate that the information has
3977 not been set. -1 means there is no associated ifd. */
3978 ret->esym.ifd = -2;
3979 ret->possibly_dynamic_relocs = 0;
3980 ret->min_dyn_reloc_index = 0;
3981 ret->no_fn_stub = false;
3982 ret->fn_stub = NULL;
3983 ret->need_fn_stub = false;
3984 ret->call_stub = NULL;
3985 ret->call_fp_stub = NULL;
3988 return (struct bfd_hash_entry *) ret;
3991 void
3992 _bfd_mips_elf_hide_symbol (info, h)
3993 struct bfd_link_info *info;
3994 struct mips_elf_link_hash_entry *h;
3996 bfd *dynobj;
3997 asection *got;
3998 struct mips_got_info *g;
3999 dynobj = elf_hash_table (info)->dynobj;
4000 got = bfd_get_section_by_name (dynobj, ".got");
4001 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4003 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4004 h->root.plt.offset = (bfd_vma) -1;
4005 h->root.dynindx = -1;
4007 /* FIXME: Do we allocate too much GOT space here? */
4008 g->local_gotno++;
4009 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4012 /* Create a MIPS ELF linker hash table. */
4014 struct bfd_link_hash_table *
4015 _bfd_mips_elf_link_hash_table_create (abfd)
4016 bfd *abfd;
4018 struct mips_elf_link_hash_table *ret;
4020 ret = ((struct mips_elf_link_hash_table *)
4021 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
4022 if (ret == (struct mips_elf_link_hash_table *) NULL)
4023 return NULL;
4025 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4026 mips_elf_link_hash_newfunc))
4028 bfd_release (abfd, ret);
4029 return NULL;
4032 #if 0
4033 /* We no longer use this. */
4034 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4035 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4036 #endif
4037 ret->procedure_count = 0;
4038 ret->compact_rel_size = 0;
4039 ret->use_rld_obj_head = false;
4040 ret->rld_value = 0;
4041 ret->mips16_stubs_seen = false;
4043 return &ret->root.root;
4046 /* Hook called by the linker routine which adds symbols from an object
4047 file. We must handle the special MIPS section numbers here. */
4049 boolean
4050 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4051 bfd *abfd;
4052 struct bfd_link_info *info;
4053 const Elf_Internal_Sym *sym;
4054 const char **namep;
4055 flagword *flagsp ATTRIBUTE_UNUSED;
4056 asection **secp;
4057 bfd_vma *valp;
4059 if (SGI_COMPAT (abfd)
4060 && (abfd->flags & DYNAMIC) != 0
4061 && strcmp (*namep, "_rld_new_interface") == 0)
4063 /* Skip Irix 5 rld entry name. */
4064 *namep = NULL;
4065 return true;
4068 switch (sym->st_shndx)
4070 case SHN_COMMON:
4071 /* Common symbols less than the GP size are automatically
4072 treated as SHN_MIPS_SCOMMON symbols. */
4073 if (sym->st_size > elf_gp_size (abfd)
4074 || IRIX_COMPAT (abfd) == ict_irix6)
4075 break;
4076 /* Fall through. */
4077 case SHN_MIPS_SCOMMON:
4078 *secp = bfd_make_section_old_way (abfd, ".scommon");
4079 (*secp)->flags |= SEC_IS_COMMON;
4080 *valp = sym->st_size;
4081 break;
4083 case SHN_MIPS_TEXT:
4084 /* This section is used in a shared object. */
4085 if (elf_tdata (abfd)->elf_text_section == NULL)
4087 asymbol *elf_text_symbol;
4088 asection *elf_text_section;
4090 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4091 if (elf_text_section == NULL)
4092 return false;
4094 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4095 if (elf_text_symbol == NULL)
4096 return false;
4098 /* Initialize the section. */
4100 elf_tdata (abfd)->elf_text_section = elf_text_section;
4101 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4103 elf_text_section->symbol = elf_text_symbol;
4104 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4106 elf_text_section->name = ".text";
4107 elf_text_section->flags = SEC_NO_FLAGS;
4108 elf_text_section->output_section = NULL;
4109 elf_text_section->owner = abfd;
4110 elf_text_symbol->name = ".text";
4111 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4112 elf_text_symbol->section = elf_text_section;
4114 /* This code used to do *secp = bfd_und_section_ptr if
4115 info->shared. I don't know why, and that doesn't make sense,
4116 so I took it out. */
4117 *secp = elf_tdata (abfd)->elf_text_section;
4118 break;
4120 case SHN_MIPS_ACOMMON:
4121 /* Fall through. XXX Can we treat this as allocated data? */
4122 case SHN_MIPS_DATA:
4123 /* This section is used in a shared object. */
4124 if (elf_tdata (abfd)->elf_data_section == NULL)
4126 asymbol *elf_data_symbol;
4127 asection *elf_data_section;
4129 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4130 if (elf_data_section == NULL)
4131 return false;
4133 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4134 if (elf_data_symbol == NULL)
4135 return false;
4137 /* Initialize the section. */
4139 elf_tdata (abfd)->elf_data_section = elf_data_section;
4140 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4142 elf_data_section->symbol = elf_data_symbol;
4143 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4145 elf_data_section->name = ".data";
4146 elf_data_section->flags = SEC_NO_FLAGS;
4147 elf_data_section->output_section = NULL;
4148 elf_data_section->owner = abfd;
4149 elf_data_symbol->name = ".data";
4150 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4151 elf_data_symbol->section = elf_data_section;
4153 /* This code used to do *secp = bfd_und_section_ptr if
4154 info->shared. I don't know why, and that doesn't make sense,
4155 so I took it out. */
4156 *secp = elf_tdata (abfd)->elf_data_section;
4157 break;
4159 case SHN_MIPS_SUNDEFINED:
4160 *secp = bfd_und_section_ptr;
4161 break;
4164 if (SGI_COMPAT (abfd)
4165 && ! info->shared
4166 && info->hash->creator == abfd->xvec
4167 && strcmp (*namep, "__rld_obj_head") == 0)
4169 struct elf_link_hash_entry *h;
4171 /* Mark __rld_obj_head as dynamic. */
4172 h = NULL;
4173 if (! (_bfd_generic_link_add_one_symbol
4174 (info, abfd, *namep, BSF_GLOBAL, *secp,
4175 (bfd_vma) *valp, (const char *) NULL, false,
4176 get_elf_backend_data (abfd)->collect,
4177 (struct bfd_link_hash_entry **) &h)))
4178 return false;
4179 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4180 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4181 h->type = STT_OBJECT;
4183 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4184 return false;
4186 mips_elf_hash_table (info)->use_rld_obj_head = true;
4189 /* If this is a mips16 text symbol, add 1 to the value to make it
4190 odd. This will cause something like .word SYM to come up with
4191 the right value when it is loaded into the PC. */
4192 if (sym->st_other == STO_MIPS16)
4193 ++*valp;
4195 return true;
4198 /* Structure used to pass information to mips_elf_output_extsym. */
4200 struct extsym_info
4202 bfd *abfd;
4203 struct bfd_link_info *info;
4204 struct ecoff_debug_info *debug;
4205 const struct ecoff_debug_swap *swap;
4206 boolean failed;
4209 /* This routine is used to write out ECOFF debugging external symbol
4210 information. It is called via mips_elf_link_hash_traverse. The
4211 ECOFF external symbol information must match the ELF external
4212 symbol information. Unfortunately, at this point we don't know
4213 whether a symbol is required by reloc information, so the two
4214 tables may wind up being different. We must sort out the external
4215 symbol information before we can set the final size of the .mdebug
4216 section, and we must set the size of the .mdebug section before we
4217 can relocate any sections, and we can't know which symbols are
4218 required by relocation until we relocate the sections.
4219 Fortunately, it is relatively unlikely that any symbol will be
4220 stripped but required by a reloc. In particular, it can not happen
4221 when generating a final executable. */
4223 static boolean
4224 mips_elf_output_extsym (h, data)
4225 struct mips_elf_link_hash_entry *h;
4226 PTR data;
4228 struct extsym_info *einfo = (struct extsym_info *) data;
4229 boolean strip;
4230 asection *sec, *output_section;
4232 if (h->root.indx == -2)
4233 strip = false;
4234 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4235 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4236 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4237 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4238 strip = true;
4239 else if (einfo->info->strip == strip_all
4240 || (einfo->info->strip == strip_some
4241 && bfd_hash_lookup (einfo->info->keep_hash,
4242 h->root.root.root.string,
4243 false, false) == NULL))
4244 strip = true;
4245 else
4246 strip = false;
4248 if (strip)
4249 return true;
4251 if (h->esym.ifd == -2)
4253 h->esym.jmptbl = 0;
4254 h->esym.cobol_main = 0;
4255 h->esym.weakext = 0;
4256 h->esym.reserved = 0;
4257 h->esym.ifd = ifdNil;
4258 h->esym.asym.value = 0;
4259 h->esym.asym.st = stGlobal;
4261 if (h->root.root.type == bfd_link_hash_undefined
4262 || h->root.root.type == bfd_link_hash_undefweak)
4264 const char *name;
4266 /* Use undefined class. Also, set class and type for some
4267 special symbols. */
4268 name = h->root.root.root.string;
4269 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4270 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4272 h->esym.asym.sc = scData;
4273 h->esym.asym.st = stLabel;
4274 h->esym.asym.value = 0;
4276 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4278 h->esym.asym.sc = scAbs;
4279 h->esym.asym.st = stLabel;
4280 h->esym.asym.value =
4281 mips_elf_hash_table (einfo->info)->procedure_count;
4283 else if (strcmp (name, "_gp_disp") == 0)
4285 h->esym.asym.sc = scAbs;
4286 h->esym.asym.st = stLabel;
4287 h->esym.asym.value = elf_gp (einfo->abfd);
4289 else
4290 h->esym.asym.sc = scUndefined;
4292 else if (h->root.root.type != bfd_link_hash_defined
4293 && h->root.root.type != bfd_link_hash_defweak)
4294 h->esym.asym.sc = scAbs;
4295 else
4297 const char *name;
4299 sec = h->root.root.u.def.section;
4300 output_section = sec->output_section;
4302 /* When making a shared library and symbol h is the one from
4303 the another shared library, OUTPUT_SECTION may be null. */
4304 if (output_section == NULL)
4305 h->esym.asym.sc = scUndefined;
4306 else
4308 name = bfd_section_name (output_section->owner, output_section);
4310 if (strcmp (name, ".text") == 0)
4311 h->esym.asym.sc = scText;
4312 else if (strcmp (name, ".data") == 0)
4313 h->esym.asym.sc = scData;
4314 else if (strcmp (name, ".sdata") == 0)
4315 h->esym.asym.sc = scSData;
4316 else if (strcmp (name, ".rodata") == 0
4317 || strcmp (name, ".rdata") == 0)
4318 h->esym.asym.sc = scRData;
4319 else if (strcmp (name, ".bss") == 0)
4320 h->esym.asym.sc = scBss;
4321 else if (strcmp (name, ".sbss") == 0)
4322 h->esym.asym.sc = scSBss;
4323 else if (strcmp (name, ".init") == 0)
4324 h->esym.asym.sc = scInit;
4325 else if (strcmp (name, ".fini") == 0)
4326 h->esym.asym.sc = scFini;
4327 else
4328 h->esym.asym.sc = scAbs;
4332 h->esym.asym.reserved = 0;
4333 h->esym.asym.index = indexNil;
4336 if (h->root.root.type == bfd_link_hash_common)
4337 h->esym.asym.value = h->root.root.u.c.size;
4338 else if (h->root.root.type == bfd_link_hash_defined
4339 || h->root.root.type == bfd_link_hash_defweak)
4341 if (h->esym.asym.sc == scCommon)
4342 h->esym.asym.sc = scBss;
4343 else if (h->esym.asym.sc == scSCommon)
4344 h->esym.asym.sc = scSBss;
4346 sec = h->root.root.u.def.section;
4347 output_section = sec->output_section;
4348 if (output_section != NULL)
4349 h->esym.asym.value = (h->root.root.u.def.value
4350 + sec->output_offset
4351 + output_section->vma);
4352 else
4353 h->esym.asym.value = 0;
4355 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4357 struct mips_elf_link_hash_entry *hd = h;
4358 boolean no_fn_stub = h->no_fn_stub;
4360 while (hd->root.root.type == bfd_link_hash_indirect)
4362 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4363 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4366 if (!no_fn_stub)
4368 /* Set type and value for a symbol with a function stub. */
4369 h->esym.asym.st = stProc;
4370 sec = hd->root.root.u.def.section;
4371 if (sec == NULL)
4372 h->esym.asym.value = 0;
4373 else
4375 output_section = sec->output_section;
4376 if (output_section != NULL)
4377 h->esym.asym.value = (hd->root.plt.offset
4378 + sec->output_offset
4379 + output_section->vma);
4380 else
4381 h->esym.asym.value = 0;
4383 #if 0 /* FIXME? */
4384 h->esym.ifd = 0;
4385 #endif
4389 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4390 h->root.root.root.string,
4391 &h->esym))
4393 einfo->failed = true;
4394 return false;
4397 return true;
4400 /* Create a runtime procedure table from the .mdebug section. */
4402 static boolean
4403 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4404 PTR handle;
4405 bfd *abfd;
4406 struct bfd_link_info *info;
4407 asection *s;
4408 struct ecoff_debug_info *debug;
4410 const struct ecoff_debug_swap *swap;
4411 HDRR *hdr = &debug->symbolic_header;
4412 RPDR *rpdr, *rp;
4413 struct rpdr_ext *erp;
4414 PTR rtproc;
4415 struct pdr_ext *epdr;
4416 struct sym_ext *esym;
4417 char *ss, **sv;
4418 char *str;
4419 unsigned long size, count;
4420 unsigned long sindex;
4421 unsigned long i;
4422 PDR pdr;
4423 SYMR sym;
4424 const char *no_name_func = _("static procedure (no name)");
4426 epdr = NULL;
4427 rpdr = NULL;
4428 esym = NULL;
4429 ss = NULL;
4430 sv = NULL;
4432 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4434 sindex = strlen (no_name_func) + 1;
4435 count = hdr->ipdMax;
4436 if (count > 0)
4438 size = swap->external_pdr_size;
4440 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4441 if (epdr == NULL)
4442 goto error_return;
4444 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4445 goto error_return;
4447 size = sizeof (RPDR);
4448 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4449 if (rpdr == NULL)
4450 goto error_return;
4452 sv = (char **) bfd_malloc (sizeof (char *) * count);
4453 if (sv == NULL)
4454 goto error_return;
4456 count = hdr->isymMax;
4457 size = swap->external_sym_size;
4458 esym = (struct sym_ext *) bfd_malloc (size * count);
4459 if (esym == NULL)
4460 goto error_return;
4462 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4463 goto error_return;
4465 count = hdr->issMax;
4466 ss = (char *) bfd_malloc (count);
4467 if (ss == NULL)
4468 goto error_return;
4469 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4470 goto error_return;
4472 count = hdr->ipdMax;
4473 for (i = 0; i < count; i++, rp++)
4475 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4476 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4477 rp->adr = sym.value;
4478 rp->regmask = pdr.regmask;
4479 rp->regoffset = pdr.regoffset;
4480 rp->fregmask = pdr.fregmask;
4481 rp->fregoffset = pdr.fregoffset;
4482 rp->frameoffset = pdr.frameoffset;
4483 rp->framereg = pdr.framereg;
4484 rp->pcreg = pdr.pcreg;
4485 rp->irpss = sindex;
4486 sv[i] = ss + sym.iss;
4487 sindex += strlen (sv[i]) + 1;
4491 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4492 size = BFD_ALIGN (size, 16);
4493 rtproc = (PTR) bfd_alloc (abfd, size);
4494 if (rtproc == NULL)
4496 mips_elf_hash_table (info)->procedure_count = 0;
4497 goto error_return;
4500 mips_elf_hash_table (info)->procedure_count = count + 2;
4502 erp = (struct rpdr_ext *) rtproc;
4503 memset (erp, 0, sizeof (struct rpdr_ext));
4504 erp++;
4505 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4506 strcpy (str, no_name_func);
4507 str += strlen (no_name_func) + 1;
4508 for (i = 0; i < count; i++)
4510 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4511 strcpy (str, sv[i]);
4512 str += strlen (sv[i]) + 1;
4514 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4516 /* Set the size and contents of .rtproc section. */
4517 s->_raw_size = size;
4518 s->contents = (bfd_byte *) rtproc;
4520 /* Skip this section later on (I don't think this currently
4521 matters, but someday it might). */
4522 s->link_order_head = (struct bfd_link_order *) NULL;
4524 if (epdr != NULL)
4525 free (epdr);
4526 if (rpdr != NULL)
4527 free (rpdr);
4528 if (esym != NULL)
4529 free (esym);
4530 if (ss != NULL)
4531 free (ss);
4532 if (sv != NULL)
4533 free (sv);
4535 return true;
4537 error_return:
4538 if (epdr != NULL)
4539 free (epdr);
4540 if (rpdr != NULL)
4541 free (rpdr);
4542 if (esym != NULL)
4543 free (esym);
4544 if (ss != NULL)
4545 free (ss);
4546 if (sv != NULL)
4547 free (sv);
4548 return false;
4551 /* A comparison routine used to sort .gptab entries. */
4553 static int
4554 gptab_compare (p1, p2)
4555 const PTR p1;
4556 const PTR p2;
4558 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4559 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4561 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4564 /* We need to use a special link routine to handle the .reginfo and
4565 the .mdebug sections. We need to merge all instances of these
4566 sections together, not write them all out sequentially. */
4568 boolean
4569 _bfd_mips_elf_final_link (abfd, info)
4570 bfd *abfd;
4571 struct bfd_link_info *info;
4573 asection **secpp;
4574 asection *o;
4575 struct bfd_link_order *p;
4576 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4577 asection *rtproc_sec;
4578 Elf32_RegInfo reginfo;
4579 struct ecoff_debug_info debug;
4580 const struct ecoff_debug_swap *swap
4581 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4582 HDRR *symhdr = &debug.symbolic_header;
4583 PTR mdebug_handle = NULL;
4584 asection *s;
4585 EXTR esym;
4586 bfd_vma last;
4587 unsigned int i;
4588 static const char * const name[] =
4590 ".text", ".init", ".fini", ".data",
4591 ".rodata", ".sdata", ".sbss", ".bss"
4593 static const int sc[] =
4595 scText, scInit, scFini, scData,
4596 scRData, scSData, scSBss, scBss
4599 /* If all the things we linked together were PIC, but we're
4600 producing an executable (rather than a shared object), then the
4601 resulting file is CPIC (i.e., it calls PIC code.) */
4602 if (!info->shared
4603 && !info->relocateable
4604 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4606 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4607 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4610 /* We'd carefully arranged the dynamic symbol indices, and then the
4611 generic size_dynamic_sections renumbered them out from under us.
4612 Rather than trying somehow to prevent the renumbering, just do
4613 the sort again. */
4614 if (elf_hash_table (info)->dynamic_sections_created)
4616 bfd *dynobj;
4617 asection *got;
4618 struct mips_got_info *g;
4620 /* When we resort, we must tell mips_elf_sort_hash_table what
4621 the lowest index it may use is. That's the number of section
4622 symbols we're going to add. The generic ELF linker only
4623 adds these symbols when building a shared object. Note that
4624 we count the sections after (possibly) removing the .options
4625 section above. */
4626 if (!mips_elf_sort_hash_table (info, (info->shared
4627 ? bfd_count_sections (abfd) + 1
4628 : 1)))
4629 return false;
4631 /* Make sure we didn't grow the global .got region. */
4632 dynobj = elf_hash_table (info)->dynobj;
4633 got = bfd_get_section_by_name (dynobj, ".got");
4634 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4636 if (g->global_gotsym != NULL)
4637 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4638 - g->global_gotsym->dynindx)
4639 <= g->global_gotno);
4642 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4643 include it, even though we don't process it quite right. (Some
4644 entries are supposed to be merged.) Empirically, we seem to be
4645 better off including it then not. */
4646 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4647 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4649 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4651 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4652 if (p->type == bfd_indirect_link_order)
4653 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4654 (*secpp)->link_order_head = NULL;
4655 *secpp = (*secpp)->next;
4656 --abfd->section_count;
4658 break;
4662 /* Get a value for the GP register. */
4663 if (elf_gp (abfd) == 0)
4665 struct bfd_link_hash_entry *h;
4667 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4668 if (h != (struct bfd_link_hash_entry *) NULL
4669 && h->type == bfd_link_hash_defined)
4670 elf_gp (abfd) = (h->u.def.value
4671 + h->u.def.section->output_section->vma
4672 + h->u.def.section->output_offset);
4673 else if (info->relocateable)
4675 bfd_vma lo;
4677 /* Find the GP-relative section with the lowest offset. */
4678 lo = (bfd_vma) -1;
4679 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4680 if (o->vma < lo
4681 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4682 lo = o->vma;
4684 /* And calculate GP relative to that. */
4685 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4687 else
4689 /* If the relocate_section function needs to do a reloc
4690 involving the GP value, it should make a reloc_dangerous
4691 callback to warn that GP is not defined. */
4695 /* Go through the sections and collect the .reginfo and .mdebug
4696 information. */
4697 reginfo_sec = NULL;
4698 mdebug_sec = NULL;
4699 gptab_data_sec = NULL;
4700 gptab_bss_sec = NULL;
4701 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4703 if (strcmp (o->name, ".reginfo") == 0)
4705 memset (&reginfo, 0, sizeof reginfo);
4707 /* We have found the .reginfo section in the output file.
4708 Look through all the link_orders comprising it and merge
4709 the information together. */
4710 for (p = o->link_order_head;
4711 p != (struct bfd_link_order *) NULL;
4712 p = p->next)
4714 asection *input_section;
4715 bfd *input_bfd;
4716 Elf32_External_RegInfo ext;
4717 Elf32_RegInfo sub;
4719 if (p->type != bfd_indirect_link_order)
4721 if (p->type == bfd_fill_link_order)
4722 continue;
4723 abort ();
4726 input_section = p->u.indirect.section;
4727 input_bfd = input_section->owner;
4729 /* The linker emulation code has probably clobbered the
4730 size to be zero bytes. */
4731 if (input_section->_raw_size == 0)
4732 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4734 if (! bfd_get_section_contents (input_bfd, input_section,
4735 (PTR) &ext,
4736 (file_ptr) 0,
4737 sizeof ext))
4738 return false;
4740 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4742 reginfo.ri_gprmask |= sub.ri_gprmask;
4743 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4744 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4745 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4746 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4748 /* ri_gp_value is set by the function
4749 mips_elf32_section_processing when the section is
4750 finally written out. */
4752 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4753 elf_link_input_bfd ignores this section. */
4754 input_section->flags &= ~SEC_HAS_CONTENTS;
4757 /* Size has been set in mips_elf_always_size_sections */
4758 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4760 /* Skip this section later on (I don't think this currently
4761 matters, but someday it might). */
4762 o->link_order_head = (struct bfd_link_order *) NULL;
4764 reginfo_sec = o;
4767 if (strcmp (o->name, ".mdebug") == 0)
4769 struct extsym_info einfo;
4771 /* We have found the .mdebug section in the output file.
4772 Look through all the link_orders comprising it and merge
4773 the information together. */
4774 symhdr->magic = swap->sym_magic;
4775 /* FIXME: What should the version stamp be? */
4776 symhdr->vstamp = 0;
4777 symhdr->ilineMax = 0;
4778 symhdr->cbLine = 0;
4779 symhdr->idnMax = 0;
4780 symhdr->ipdMax = 0;
4781 symhdr->isymMax = 0;
4782 symhdr->ioptMax = 0;
4783 symhdr->iauxMax = 0;
4784 symhdr->issMax = 0;
4785 symhdr->issExtMax = 0;
4786 symhdr->ifdMax = 0;
4787 symhdr->crfd = 0;
4788 symhdr->iextMax = 0;
4790 /* We accumulate the debugging information itself in the
4791 debug_info structure. */
4792 debug.line = NULL;
4793 debug.external_dnr = NULL;
4794 debug.external_pdr = NULL;
4795 debug.external_sym = NULL;
4796 debug.external_opt = NULL;
4797 debug.external_aux = NULL;
4798 debug.ss = NULL;
4799 debug.ssext = debug.ssext_end = NULL;
4800 debug.external_fdr = NULL;
4801 debug.external_rfd = NULL;
4802 debug.external_ext = debug.external_ext_end = NULL;
4804 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4805 if (mdebug_handle == (PTR) NULL)
4806 return false;
4808 esym.jmptbl = 0;
4809 esym.cobol_main = 0;
4810 esym.weakext = 0;
4811 esym.reserved = 0;
4812 esym.ifd = ifdNil;
4813 esym.asym.iss = issNil;
4814 esym.asym.st = stLocal;
4815 esym.asym.reserved = 0;
4816 esym.asym.index = indexNil;
4817 last = 0;
4818 for (i = 0; i < 8; i++)
4820 esym.asym.sc = sc[i];
4821 s = bfd_get_section_by_name (abfd, name[i]);
4822 if (s != NULL)
4824 esym.asym.value = s->vma;
4825 last = s->vma + s->_raw_size;
4827 else
4828 esym.asym.value = last;
4829 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4830 name[i], &esym))
4831 return false;
4834 for (p = o->link_order_head;
4835 p != (struct bfd_link_order *) NULL;
4836 p = p->next)
4838 asection *input_section;
4839 bfd *input_bfd;
4840 const struct ecoff_debug_swap *input_swap;
4841 struct ecoff_debug_info input_debug;
4842 char *eraw_src;
4843 char *eraw_end;
4845 if (p->type != bfd_indirect_link_order)
4847 if (p->type == bfd_fill_link_order)
4848 continue;
4849 abort ();
4852 input_section = p->u.indirect.section;
4853 input_bfd = input_section->owner;
4855 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4856 || (get_elf_backend_data (input_bfd)
4857 ->elf_backend_ecoff_debug_swap) == NULL)
4859 /* I don't know what a non MIPS ELF bfd would be
4860 doing with a .mdebug section, but I don't really
4861 want to deal with it. */
4862 continue;
4865 input_swap = (get_elf_backend_data (input_bfd)
4866 ->elf_backend_ecoff_debug_swap);
4868 BFD_ASSERT (p->size == input_section->_raw_size);
4870 /* The ECOFF linking code expects that we have already
4871 read in the debugging information and set up an
4872 ecoff_debug_info structure, so we do that now. */
4873 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4874 &input_debug))
4875 return false;
4877 if (! (bfd_ecoff_debug_accumulate
4878 (mdebug_handle, abfd, &debug, swap, input_bfd,
4879 &input_debug, input_swap, info)))
4880 return false;
4882 /* Loop through the external symbols. For each one with
4883 interesting information, try to find the symbol in
4884 the linker global hash table and save the information
4885 for the output external symbols. */
4886 eraw_src = input_debug.external_ext;
4887 eraw_end = (eraw_src
4888 + (input_debug.symbolic_header.iextMax
4889 * input_swap->external_ext_size));
4890 for (;
4891 eraw_src < eraw_end;
4892 eraw_src += input_swap->external_ext_size)
4894 EXTR ext;
4895 const char *name;
4896 struct mips_elf_link_hash_entry *h;
4898 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4899 if (ext.asym.sc == scNil
4900 || ext.asym.sc == scUndefined
4901 || ext.asym.sc == scSUndefined)
4902 continue;
4904 name = input_debug.ssext + ext.asym.iss;
4905 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4906 name, false, false, true);
4907 if (h == NULL || h->esym.ifd != -2)
4908 continue;
4910 if (ext.ifd != -1)
4912 BFD_ASSERT (ext.ifd
4913 < input_debug.symbolic_header.ifdMax);
4914 ext.ifd = input_debug.ifdmap[ext.ifd];
4917 h->esym = ext;
4920 /* Free up the information we just read. */
4921 free (input_debug.line);
4922 free (input_debug.external_dnr);
4923 free (input_debug.external_pdr);
4924 free (input_debug.external_sym);
4925 free (input_debug.external_opt);
4926 free (input_debug.external_aux);
4927 free (input_debug.ss);
4928 free (input_debug.ssext);
4929 free (input_debug.external_fdr);
4930 free (input_debug.external_rfd);
4931 free (input_debug.external_ext);
4933 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4934 elf_link_input_bfd ignores this section. */
4935 input_section->flags &= ~SEC_HAS_CONTENTS;
4938 if (SGI_COMPAT (abfd) && info->shared)
4940 /* Create .rtproc section. */
4941 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4942 if (rtproc_sec == NULL)
4944 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4945 | SEC_LINKER_CREATED | SEC_READONLY);
4947 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4948 if (rtproc_sec == NULL
4949 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4950 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4951 return false;
4954 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4955 info, rtproc_sec, &debug))
4956 return false;
4959 /* Build the external symbol information. */
4960 einfo.abfd = abfd;
4961 einfo.info = info;
4962 einfo.debug = &debug;
4963 einfo.swap = swap;
4964 einfo.failed = false;
4965 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4966 mips_elf_output_extsym,
4967 (PTR) &einfo);
4968 if (einfo.failed)
4969 return false;
4971 /* Set the size of the .mdebug section. */
4972 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4974 /* Skip this section later on (I don't think this currently
4975 matters, but someday it might). */
4976 o->link_order_head = (struct bfd_link_order *) NULL;
4978 mdebug_sec = o;
4981 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4983 const char *subname;
4984 unsigned int c;
4985 Elf32_gptab *tab;
4986 Elf32_External_gptab *ext_tab;
4987 unsigned int i;
4989 /* The .gptab.sdata and .gptab.sbss sections hold
4990 information describing how the small data area would
4991 change depending upon the -G switch. These sections
4992 not used in executables files. */
4993 if (! info->relocateable)
4995 asection **secpp;
4997 for (p = o->link_order_head;
4998 p != (struct bfd_link_order *) NULL;
4999 p = p->next)
5001 asection *input_section;
5003 if (p->type != bfd_indirect_link_order)
5005 if (p->type == bfd_fill_link_order)
5006 continue;
5007 abort ();
5010 input_section = p->u.indirect.section;
5012 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5013 elf_link_input_bfd ignores this section. */
5014 input_section->flags &= ~SEC_HAS_CONTENTS;
5017 /* Skip this section later on (I don't think this
5018 currently matters, but someday it might). */
5019 o->link_order_head = (struct bfd_link_order *) NULL;
5021 /* Really remove the section. */
5022 for (secpp = &abfd->sections;
5023 *secpp != o;
5024 secpp = &(*secpp)->next)
5026 *secpp = (*secpp)->next;
5027 --abfd->section_count;
5029 continue;
5032 /* There is one gptab for initialized data, and one for
5033 uninitialized data. */
5034 if (strcmp (o->name, ".gptab.sdata") == 0)
5035 gptab_data_sec = o;
5036 else if (strcmp (o->name, ".gptab.sbss") == 0)
5037 gptab_bss_sec = o;
5038 else
5040 (*_bfd_error_handler)
5041 (_("%s: illegal section name `%s'"),
5042 bfd_get_filename (abfd), o->name);
5043 bfd_set_error (bfd_error_nonrepresentable_section);
5044 return false;
5047 /* The linker script always combines .gptab.data and
5048 .gptab.sdata into .gptab.sdata, and likewise for
5049 .gptab.bss and .gptab.sbss. It is possible that there is
5050 no .sdata or .sbss section in the output file, in which
5051 case we must change the name of the output section. */
5052 subname = o->name + sizeof ".gptab" - 1;
5053 if (bfd_get_section_by_name (abfd, subname) == NULL)
5055 if (o == gptab_data_sec)
5056 o->name = ".gptab.data";
5057 else
5058 o->name = ".gptab.bss";
5059 subname = o->name + sizeof ".gptab" - 1;
5060 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5063 /* Set up the first entry. */
5064 c = 1;
5065 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
5066 if (tab == NULL)
5067 return false;
5068 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5069 tab[0].gt_header.gt_unused = 0;
5071 /* Combine the input sections. */
5072 for (p = o->link_order_head;
5073 p != (struct bfd_link_order *) NULL;
5074 p = p->next)
5076 asection *input_section;
5077 bfd *input_bfd;
5078 bfd_size_type size;
5079 unsigned long last;
5080 bfd_size_type gpentry;
5082 if (p->type != bfd_indirect_link_order)
5084 if (p->type == bfd_fill_link_order)
5085 continue;
5086 abort ();
5089 input_section = p->u.indirect.section;
5090 input_bfd = input_section->owner;
5092 /* Combine the gptab entries for this input section one
5093 by one. We know that the input gptab entries are
5094 sorted by ascending -G value. */
5095 size = bfd_section_size (input_bfd, input_section);
5096 last = 0;
5097 for (gpentry = sizeof (Elf32_External_gptab);
5098 gpentry < size;
5099 gpentry += sizeof (Elf32_External_gptab))
5101 Elf32_External_gptab ext_gptab;
5102 Elf32_gptab int_gptab;
5103 unsigned long val;
5104 unsigned long add;
5105 boolean exact;
5106 unsigned int look;
5108 if (! (bfd_get_section_contents
5109 (input_bfd, input_section, (PTR) &ext_gptab,
5110 gpentry, sizeof (Elf32_External_gptab))))
5112 free (tab);
5113 return false;
5116 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5117 &int_gptab);
5118 val = int_gptab.gt_entry.gt_g_value;
5119 add = int_gptab.gt_entry.gt_bytes - last;
5121 exact = false;
5122 for (look = 1; look < c; look++)
5124 if (tab[look].gt_entry.gt_g_value >= val)
5125 tab[look].gt_entry.gt_bytes += add;
5127 if (tab[look].gt_entry.gt_g_value == val)
5128 exact = true;
5131 if (! exact)
5133 Elf32_gptab *new_tab;
5134 unsigned int max;
5136 /* We need a new table entry. */
5137 new_tab = ((Elf32_gptab *)
5138 bfd_realloc ((PTR) tab,
5139 (c + 1) * sizeof (Elf32_gptab)));
5140 if (new_tab == NULL)
5142 free (tab);
5143 return false;
5145 tab = new_tab;
5146 tab[c].gt_entry.gt_g_value = val;
5147 tab[c].gt_entry.gt_bytes = add;
5149 /* Merge in the size for the next smallest -G
5150 value, since that will be implied by this new
5151 value. */
5152 max = 0;
5153 for (look = 1; look < c; look++)
5155 if (tab[look].gt_entry.gt_g_value < val
5156 && (max == 0
5157 || (tab[look].gt_entry.gt_g_value
5158 > tab[max].gt_entry.gt_g_value)))
5159 max = look;
5161 if (max != 0)
5162 tab[c].gt_entry.gt_bytes +=
5163 tab[max].gt_entry.gt_bytes;
5165 ++c;
5168 last = int_gptab.gt_entry.gt_bytes;
5171 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5172 elf_link_input_bfd ignores this section. */
5173 input_section->flags &= ~SEC_HAS_CONTENTS;
5176 /* The table must be sorted by -G value. */
5177 if (c > 2)
5178 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5180 /* Swap out the table. */
5181 ext_tab = ((Elf32_External_gptab *)
5182 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5183 if (ext_tab == NULL)
5185 free (tab);
5186 return false;
5189 for (i = 0; i < c; i++)
5190 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5191 free (tab);
5193 o->_raw_size = c * sizeof (Elf32_External_gptab);
5194 o->contents = (bfd_byte *) ext_tab;
5196 /* Skip this section later on (I don't think this currently
5197 matters, but someday it might). */
5198 o->link_order_head = (struct bfd_link_order *) NULL;
5202 /* Invoke the regular ELF backend linker to do all the work. */
5203 if (ABI_64_P (abfd))
5205 #ifdef BFD64
5206 if (!bfd_elf64_bfd_final_link (abfd, info))
5207 return false;
5208 #else
5209 abort ();
5210 return false;
5211 #endif /* BFD64 */
5213 else if (!bfd_elf32_bfd_final_link (abfd, info))
5214 return false;
5216 /* Now write out the computed sections. */
5218 if (reginfo_sec != (asection *) NULL)
5220 Elf32_External_RegInfo ext;
5222 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5223 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5224 (file_ptr) 0, sizeof ext))
5225 return false;
5228 if (mdebug_sec != (asection *) NULL)
5230 BFD_ASSERT (abfd->output_has_begun);
5231 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5232 swap, info,
5233 mdebug_sec->filepos))
5234 return false;
5236 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5239 if (gptab_data_sec != (asection *) NULL)
5241 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5242 gptab_data_sec->contents,
5243 (file_ptr) 0,
5244 gptab_data_sec->_raw_size))
5245 return false;
5248 if (gptab_bss_sec != (asection *) NULL)
5250 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5251 gptab_bss_sec->contents,
5252 (file_ptr) 0,
5253 gptab_bss_sec->_raw_size))
5254 return false;
5257 if (SGI_COMPAT (abfd))
5259 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5260 if (rtproc_sec != NULL)
5262 if (! bfd_set_section_contents (abfd, rtproc_sec,
5263 rtproc_sec->contents,
5264 (file_ptr) 0,
5265 rtproc_sec->_raw_size))
5266 return false;
5270 return true;
5273 /* This function is called via qsort() to sort the dynamic relocation
5274 entries by increasing r_symndx value. */
5276 static int
5277 sort_dynamic_relocs (arg1, arg2)
5278 const PTR arg1;
5279 const PTR arg2;
5281 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5282 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5284 Elf_Internal_Rel int_reloc1;
5285 Elf_Internal_Rel int_reloc2;
5287 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5288 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5290 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5293 /* Returns the GOT section for ABFD. */
5295 static asection *
5296 mips_elf_got_section (abfd)
5297 bfd *abfd;
5299 return bfd_get_section_by_name (abfd, ".got");
5302 /* Returns the GOT information associated with the link indicated by
5303 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5304 section. */
5306 static struct mips_got_info *
5307 mips_elf_got_info (abfd, sgotp)
5308 bfd *abfd;
5309 asection **sgotp;
5311 asection *sgot;
5312 struct mips_got_info *g;
5314 sgot = mips_elf_got_section (abfd);
5315 BFD_ASSERT (sgot != NULL);
5316 BFD_ASSERT (elf_section_data (sgot) != NULL);
5317 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5318 BFD_ASSERT (g != NULL);
5320 if (sgotp)
5321 *sgotp = sgot;
5322 return g;
5325 /* Return whether a relocation is against a local symbol. */
5327 static boolean
5328 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5329 check_forced)
5330 bfd *input_bfd;
5331 const Elf_Internal_Rela *relocation;
5332 asection **local_sections;
5333 boolean check_forced;
5335 unsigned long r_symndx;
5336 Elf_Internal_Shdr *symtab_hdr;
5337 struct mips_elf_link_hash_entry *h;
5338 size_t extsymoff;
5340 r_symndx = ELF32_R_SYM (relocation->r_info);
5341 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5342 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5344 if (r_symndx < extsymoff)
5345 return true;
5346 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5347 return true;
5349 if (check_forced)
5351 /* Look up the hash table to check whether the symbol
5352 was forced local. */
5353 h = (struct mips_elf_link_hash_entry *)
5354 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5355 /* Find the real hash-table entry for this symbol. */
5356 while (h->root.root.type == bfd_link_hash_indirect
5357 || h->root.root.type == bfd_link_hash_warning)
5358 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5359 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5360 return true;
5363 return false;
5366 /* Sign-extend VALUE, which has the indicated number of BITS. */
5368 static bfd_vma
5369 mips_elf_sign_extend (value, bits)
5370 bfd_vma value;
5371 int bits;
5373 if (value & ((bfd_vma) 1 << (bits - 1)))
5374 /* VALUE is negative. */
5375 value |= ((bfd_vma) - 1) << bits;
5377 return value;
5380 /* Return non-zero if the indicated VALUE has overflowed the maximum
5381 range expressable by a signed number with the indicated number of
5382 BITS. */
5384 static boolean
5385 mips_elf_overflow_p (value, bits)
5386 bfd_vma value;
5387 int bits;
5389 bfd_signed_vma svalue = (bfd_signed_vma) value;
5391 if (svalue > (1 << (bits - 1)) - 1)
5392 /* The value is too big. */
5393 return true;
5394 else if (svalue < -(1 << (bits - 1)))
5395 /* The value is too small. */
5396 return true;
5398 /* All is well. */
5399 return false;
5402 /* Calculate the %high function. */
5404 static bfd_vma
5405 mips_elf_high (value)
5406 bfd_vma value;
5408 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5411 /* Calculate the %higher function. */
5413 static bfd_vma
5414 mips_elf_higher (value)
5415 bfd_vma value ATTRIBUTE_UNUSED;
5417 #ifdef BFD64
5418 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5419 #else
5420 abort ();
5421 return (bfd_vma) -1;
5422 #endif
5425 /* Calculate the %highest function. */
5427 static bfd_vma
5428 mips_elf_highest (value)
5429 bfd_vma value ATTRIBUTE_UNUSED;
5431 #ifdef BFD64
5432 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5433 #else
5434 abort ();
5435 return (bfd_vma) -1;
5436 #endif
5439 /* Returns the GOT index for the global symbol indicated by H. */
5441 static bfd_vma
5442 mips_elf_global_got_index (abfd, h)
5443 bfd *abfd;
5444 struct elf_link_hash_entry *h;
5446 bfd_vma index;
5447 asection *sgot;
5448 struct mips_got_info *g;
5450 g = mips_elf_got_info (abfd, &sgot);
5452 /* Once we determine the global GOT entry with the lowest dynamic
5453 symbol table index, we must put all dynamic symbols with greater
5454 indices into the GOT. That makes it easy to calculate the GOT
5455 offset. */
5456 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5457 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5458 * MIPS_ELF_GOT_SIZE (abfd));
5459 BFD_ASSERT (index < sgot->_raw_size);
5461 return index;
5464 /* Returns the offset for the entry at the INDEXth position
5465 in the GOT. */
5467 static bfd_vma
5468 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5469 bfd *dynobj;
5470 bfd *output_bfd;
5471 bfd_vma index;
5473 asection *sgot;
5474 bfd_vma gp;
5476 sgot = mips_elf_got_section (dynobj);
5477 gp = _bfd_get_gp_value (output_bfd);
5478 return (sgot->output_section->vma + sgot->output_offset + index -
5479 gp);
5482 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5483 symbol table index lower than any we've seen to date, record it for
5484 posterity. */
5486 static boolean
5487 mips_elf_record_global_got_symbol (h, info, g)
5488 struct elf_link_hash_entry *h;
5489 struct bfd_link_info *info;
5490 struct mips_got_info *g ATTRIBUTE_UNUSED;
5492 /* A global symbol in the GOT must also be in the dynamic symbol
5493 table. */
5494 if (h->dynindx == -1
5495 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5496 return false;
5498 /* If we've already marked this entry as need GOT space, we don't
5499 need to do it again. */
5500 if (h->got.offset != (bfd_vma) - 1)
5501 return true;
5503 /* By setting this to a value other than -1, we are indicating that
5504 there needs to be a GOT entry for H. */
5505 h->got.offset = 0;
5507 return true;
5510 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5511 the dynamic symbols. */
5513 struct mips_elf_hash_sort_data
5515 /* The symbol in the global GOT with the lowest dynamic symbol table
5516 index. */
5517 struct elf_link_hash_entry *low;
5518 /* The least dynamic symbol table index corresponding to a symbol
5519 with a GOT entry. */
5520 long min_got_dynindx;
5521 /* The greatest dynamic symbol table index not corresponding to a
5522 symbol without a GOT entry. */
5523 long max_non_got_dynindx;
5526 /* If H needs a GOT entry, assign it the highest available dynamic
5527 index. Otherwise, assign it the lowest available dynamic
5528 index. */
5530 static boolean
5531 mips_elf_sort_hash_table_f (h, data)
5532 struct mips_elf_link_hash_entry *h;
5533 PTR data;
5535 struct mips_elf_hash_sort_data *hsd
5536 = (struct mips_elf_hash_sort_data *) data;
5538 /* Symbols without dynamic symbol table entries aren't interesting
5539 at all. */
5540 if (h->root.dynindx == -1)
5541 return true;
5543 if (h->root.got.offset != 0)
5544 h->root.dynindx = hsd->max_non_got_dynindx++;
5545 else
5547 h->root.dynindx = --hsd->min_got_dynindx;
5548 hsd->low = (struct elf_link_hash_entry *) h;
5551 return true;
5554 /* Sort the dynamic symbol table so that symbols that need GOT entries
5555 appear towards the end. This reduces the amount of GOT space
5556 required. MAX_LOCAL is used to set the number of local symbols
5557 known to be in the dynamic symbol table. During
5558 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5559 section symbols are added and the count is higher. */
5561 static boolean
5562 mips_elf_sort_hash_table (info, max_local)
5563 struct bfd_link_info *info;
5564 unsigned long max_local;
5566 struct mips_elf_hash_sort_data hsd;
5567 struct mips_got_info *g;
5568 bfd *dynobj;
5570 dynobj = elf_hash_table (info)->dynobj;
5572 hsd.low = NULL;
5573 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5574 hsd.max_non_got_dynindx = max_local;
5575 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5576 elf_hash_table (info)),
5577 mips_elf_sort_hash_table_f,
5578 &hsd);
5580 /* There shoud have been enough room in the symbol table to
5581 accomodate both the GOT and non-GOT symbols. */
5582 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5584 /* Now we know which dynamic symbol has the lowest dynamic symbol
5585 table index in the GOT. */
5586 g = mips_elf_got_info (dynobj, NULL);
5587 g->global_gotsym = hsd.low;
5589 return true;
5592 /* Create a local GOT entry for VALUE. Return the index of the entry,
5593 or -1 if it could not be created. */
5595 static bfd_vma
5596 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5597 bfd *abfd;
5598 struct mips_got_info *g;
5599 asection *sgot;
5600 bfd_vma value;
5602 if (g->assigned_gotno >= g->local_gotno)
5604 /* We didn't allocate enough space in the GOT. */
5605 (*_bfd_error_handler)
5606 (_("not enough GOT space for local GOT entries"));
5607 bfd_set_error (bfd_error_bad_value);
5608 return (bfd_vma) -1;
5611 MIPS_ELF_PUT_WORD (abfd, value,
5612 (sgot->contents
5613 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5614 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5617 /* Returns the GOT offset at which the indicated address can be found.
5618 If there is not yet a GOT entry for this value, create one. Returns
5619 -1 if no satisfactory GOT offset can be found. */
5621 static bfd_vma
5622 mips_elf_local_got_index (abfd, info, value)
5623 bfd *abfd;
5624 struct bfd_link_info *info;
5625 bfd_vma value;
5627 asection *sgot;
5628 struct mips_got_info *g;
5629 bfd_byte *entry;
5631 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5633 /* Look to see if we already have an appropriate entry. */
5634 for (entry = (sgot->contents
5635 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5636 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5637 entry += MIPS_ELF_GOT_SIZE (abfd))
5639 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5640 if (address == value)
5641 return entry - sgot->contents;
5644 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5647 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5648 are supposed to be placed at small offsets in the GOT, i.e.,
5649 within 32KB of GP. Return the index into the GOT for this page,
5650 and store the offset from this entry to the desired address in
5651 OFFSETP, if it is non-NULL. */
5653 static bfd_vma
5654 mips_elf_got_page (abfd, info, value, offsetp)
5655 bfd *abfd;
5656 struct bfd_link_info *info;
5657 bfd_vma value;
5658 bfd_vma *offsetp;
5660 asection *sgot;
5661 struct mips_got_info *g;
5662 bfd_byte *entry;
5663 bfd_byte *last_entry;
5664 bfd_vma index = 0;
5665 bfd_vma address;
5667 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5669 /* Look to see if we aleady have an appropriate entry. */
5670 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5671 for (entry = (sgot->contents
5672 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5673 entry != last_entry;
5674 entry += MIPS_ELF_GOT_SIZE (abfd))
5676 address = MIPS_ELF_GET_WORD (abfd, entry);
5678 if (!mips_elf_overflow_p (value - address, 16))
5680 /* This entry will serve as the page pointer. We can add a
5681 16-bit number to it to get the actual address. */
5682 index = entry - sgot->contents;
5683 break;
5687 /* If we didn't have an appropriate entry, we create one now. */
5688 if (entry == last_entry)
5689 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5691 if (offsetp)
5693 address = MIPS_ELF_GET_WORD (abfd, entry);
5694 *offsetp = value - address;
5697 return index;
5700 /* Find a GOT entry whose higher-order 16 bits are the same as those
5701 for value. Return the index into the GOT for this entry. */
5703 static bfd_vma
5704 mips_elf_got16_entry (abfd, info, value, external)
5705 bfd *abfd;
5706 struct bfd_link_info *info;
5707 bfd_vma value;
5708 boolean external;
5710 asection *sgot;
5711 struct mips_got_info *g;
5712 bfd_byte *entry;
5713 bfd_byte *last_entry;
5714 bfd_vma index = 0;
5715 bfd_vma address;
5717 if (! external)
5719 /* Although the ABI says that it is "the high-order 16 bits" that we
5720 want, it is really the %high value. The complete value is
5721 calculated with a `addiu' of a LO16 relocation, just as with a
5722 HI16/LO16 pair. */
5723 value = mips_elf_high (value) << 16;
5726 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5728 /* Look to see if we already have an appropriate entry. */
5729 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5730 for (entry = (sgot->contents
5731 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5732 entry != last_entry;
5733 entry += MIPS_ELF_GOT_SIZE (abfd))
5735 address = MIPS_ELF_GET_WORD (abfd, entry);
5736 if (address == value)
5738 /* This entry has the right high-order 16 bits, and the low-order
5739 16 bits are set to zero. */
5740 index = entry - sgot->contents;
5741 break;
5745 /* If we didn't have an appropriate entry, we create one now. */
5746 if (entry == last_entry)
5747 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5749 return index;
5752 /* Returns the first relocation of type r_type found, beginning with
5753 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5755 static const Elf_Internal_Rela *
5756 mips_elf_next_relocation (r_type, relocation, relend)
5757 unsigned int r_type;
5758 const Elf_Internal_Rela *relocation;
5759 const Elf_Internal_Rela *relend;
5761 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5762 immediately following. However, for the IRIX6 ABI, the next
5763 relocation may be a composed relocation consisting of several
5764 relocations for the same address. In that case, the R_MIPS_LO16
5765 relocation may occur as one of these. We permit a similar
5766 extension in general, as that is useful for GCC. */
5767 while (relocation < relend)
5769 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5770 return relocation;
5772 ++relocation;
5775 /* We didn't find it. */
5776 bfd_set_error (bfd_error_bad_value);
5777 return NULL;
5780 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5781 is the original relocation, which is now being transformed into a
5782 dynamic relocation. The ADDENDP is adjusted if necessary; the
5783 caller should store the result in place of the original addend. */
5785 static boolean
5786 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5787 symbol, addendp, input_section)
5788 bfd *output_bfd;
5789 struct bfd_link_info *info;
5790 const Elf_Internal_Rela *rel;
5791 struct mips_elf_link_hash_entry *h;
5792 asection *sec;
5793 bfd_vma symbol;
5794 bfd_vma *addendp;
5795 asection *input_section;
5797 Elf_Internal_Rel outrel;
5798 boolean skip;
5799 asection *sreloc;
5800 bfd *dynobj;
5801 int r_type;
5803 r_type = ELF32_R_TYPE (rel->r_info);
5804 dynobj = elf_hash_table (info)->dynobj;
5805 sreloc
5806 = bfd_get_section_by_name (dynobj,
5807 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5808 BFD_ASSERT (sreloc != NULL);
5809 BFD_ASSERT (sreloc->contents != NULL);
5811 skip = false;
5813 /* We begin by assuming that the offset for the dynamic relocation
5814 is the same as for the original relocation. We'll adjust this
5815 later to reflect the correct output offsets. */
5816 if (elf_section_data (input_section)->stab_info == NULL)
5817 outrel.r_offset = rel->r_offset;
5818 else
5820 /* Except that in a stab section things are more complex.
5821 Because we compress stab information, the offset given in the
5822 relocation may not be the one we want; we must let the stabs
5823 machinery tell us the offset. */
5824 outrel.r_offset
5825 = (_bfd_stab_section_offset
5826 (output_bfd, &elf_hash_table (info)->stab_info,
5827 input_section,
5828 &elf_section_data (input_section)->stab_info,
5829 rel->r_offset));
5830 /* If we didn't need the relocation at all, this value will be
5831 -1. */
5832 if (outrel.r_offset == (bfd_vma) -1)
5833 skip = true;
5836 /* If we've decided to skip this relocation, just output an empty
5837 record. Note that R_MIPS_NONE == 0, so that this call to memset
5838 is a way of setting R_TYPE to R_MIPS_NONE. */
5839 if (skip)
5840 memset (&outrel, 0, sizeof (outrel));
5841 else
5843 long indx;
5844 bfd_vma section_offset;
5846 /* We must now calculate the dynamic symbol table index to use
5847 in the relocation. */
5848 if (h != NULL
5849 && (! info->symbolic || (h->root.elf_link_hash_flags
5850 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5852 indx = h->root.dynindx;
5853 /* h->root.dynindx may be -1 if this symbol was marked to
5854 become local. */
5855 if (indx == -1)
5856 indx = 0;
5858 else
5860 if (sec != NULL && bfd_is_abs_section (sec))
5861 indx = 0;
5862 else if (sec == NULL || sec->owner == NULL)
5864 bfd_set_error (bfd_error_bad_value);
5865 return false;
5867 else
5869 indx = elf_section_data (sec->output_section)->dynindx;
5870 if (indx == 0)
5871 abort ();
5874 /* Figure out how far the target of the relocation is from
5875 the beginning of its section. */
5876 section_offset = symbol - sec->output_section->vma;
5877 /* The relocation we're building is section-relative.
5878 Therefore, the original addend must be adjusted by the
5879 section offset. */
5880 *addendp += section_offset;
5881 /* Now, the relocation is just against the section. */
5882 symbol = sec->output_section->vma;
5885 /* If the relocation was previously an absolute relocation and
5886 this symbol will not be referred to by the relocation, we must
5887 adjust it by the value we give it in the dynamic symbol table.
5888 Otherwise leave the job up to the dynamic linker. */
5889 if (!indx && r_type != R_MIPS_REL32)
5890 *addendp += symbol;
5892 /* The relocation is always an REL32 relocation because we don't
5893 know where the shared library will wind up at load-time. */
5894 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5896 /* Adjust the output offset of the relocation to reference the
5897 correct location in the output file. */
5898 outrel.r_offset += (input_section->output_section->vma
5899 + input_section->output_offset);
5902 /* Put the relocation back out. We have to use the special
5903 relocation outputter in the 64-bit case since the 64-bit
5904 relocation format is non-standard. */
5905 if (ABI_64_P (output_bfd))
5907 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5908 (output_bfd, &outrel,
5909 (sreloc->contents
5910 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5912 else
5913 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5914 (((Elf32_External_Rel *)
5915 sreloc->contents)
5916 + sreloc->reloc_count));
5918 /* Record the index of the first relocation referencing H. This
5919 information is later emitted in the .msym section. */
5920 if (h != NULL
5921 && (h->min_dyn_reloc_index == 0
5922 || sreloc->reloc_count < h->min_dyn_reloc_index))
5923 h->min_dyn_reloc_index = sreloc->reloc_count;
5925 /* We've now added another relocation. */
5926 ++sreloc->reloc_count;
5928 /* Make sure the output section is writable. The dynamic linker
5929 will be writing to it. */
5930 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5931 |= SHF_WRITE;
5933 /* On IRIX5, make an entry of compact relocation info. */
5934 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5936 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5937 bfd_byte *cr;
5939 if (scpt)
5941 Elf32_crinfo cptrel;
5943 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5944 cptrel.vaddr = (rel->r_offset
5945 + input_section->output_section->vma
5946 + input_section->output_offset);
5947 if (r_type == R_MIPS_REL32)
5948 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5949 else
5950 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5951 mips_elf_set_cr_dist2to (cptrel, 0);
5952 cptrel.konst = *addendp;
5954 cr = (scpt->contents
5955 + sizeof (Elf32_External_compact_rel));
5956 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5957 ((Elf32_External_crinfo *) cr
5958 + scpt->reloc_count));
5959 ++scpt->reloc_count;
5963 return true;
5966 /* Calculate the value produced by the RELOCATION (which comes from
5967 the INPUT_BFD). The ADDEND is the addend to use for this
5968 RELOCATION; RELOCATION->R_ADDEND is ignored.
5970 The result of the relocation calculation is stored in VALUEP.
5971 REQUIRE_JALXP indicates whether or not the opcode used with this
5972 relocation must be JALX.
5974 This function returns bfd_reloc_continue if the caller need take no
5975 further action regarding this relocation, bfd_reloc_notsupported if
5976 something goes dramatically wrong, bfd_reloc_overflow if an
5977 overflow occurs, and bfd_reloc_ok to indicate success. */
5979 static bfd_reloc_status_type
5980 mips_elf_calculate_relocation (abfd,
5981 input_bfd,
5982 input_section,
5983 info,
5984 relocation,
5985 addend,
5986 howto,
5987 local_syms,
5988 local_sections,
5989 valuep,
5990 namep,
5991 require_jalxp)
5992 bfd *abfd;
5993 bfd *input_bfd;
5994 asection *input_section;
5995 struct bfd_link_info *info;
5996 const Elf_Internal_Rela *relocation;
5997 bfd_vma addend;
5998 reloc_howto_type *howto;
5999 Elf_Internal_Sym *local_syms;
6000 asection **local_sections;
6001 bfd_vma *valuep;
6002 const char **namep;
6003 boolean *require_jalxp;
6005 /* The eventual value we will return. */
6006 bfd_vma value;
6007 /* The address of the symbol against which the relocation is
6008 occurring. */
6009 bfd_vma symbol = 0;
6010 /* The final GP value to be used for the relocatable, executable, or
6011 shared object file being produced. */
6012 bfd_vma gp = (bfd_vma) - 1;
6013 /* The place (section offset or address) of the storage unit being
6014 relocated. */
6015 bfd_vma p;
6016 /* The value of GP used to create the relocatable object. */
6017 bfd_vma gp0 = (bfd_vma) - 1;
6018 /* The offset into the global offset table at which the address of
6019 the relocation entry symbol, adjusted by the addend, resides
6020 during execution. */
6021 bfd_vma g = (bfd_vma) - 1;
6022 /* The section in which the symbol referenced by the relocation is
6023 located. */
6024 asection *sec = NULL;
6025 struct mips_elf_link_hash_entry *h = NULL;
6026 /* True if the symbol referred to by this relocation is a local
6027 symbol. */
6028 boolean local_p;
6029 /* True if the symbol referred to by this relocation is "_gp_disp". */
6030 boolean gp_disp_p = false;
6031 Elf_Internal_Shdr *symtab_hdr;
6032 size_t extsymoff;
6033 unsigned long r_symndx;
6034 int r_type;
6035 /* True if overflow occurred during the calculation of the
6036 relocation value. */
6037 boolean overflowed_p;
6038 /* True if this relocation refers to a MIPS16 function. */
6039 boolean target_is_16_bit_code_p = false;
6041 /* Parse the relocation. */
6042 r_symndx = ELF32_R_SYM (relocation->r_info);
6043 r_type = ELF32_R_TYPE (relocation->r_info);
6044 p = (input_section->output_section->vma
6045 + input_section->output_offset
6046 + relocation->r_offset);
6048 /* Assume that there will be no overflow. */
6049 overflowed_p = false;
6051 /* Figure out whether or not the symbol is local, and get the offset
6052 used in the array of hash table entries. */
6053 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6054 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6055 local_sections, false);
6056 if (! elf_bad_symtab (input_bfd))
6057 extsymoff = symtab_hdr->sh_info;
6058 else
6060 /* The symbol table does not follow the rule that local symbols
6061 must come before globals. */
6062 extsymoff = 0;
6065 /* Figure out the value of the symbol. */
6066 if (local_p)
6068 Elf_Internal_Sym *sym;
6070 sym = local_syms + r_symndx;
6071 sec = local_sections[r_symndx];
6073 symbol = sec->output_section->vma + sec->output_offset;
6074 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6075 symbol += sym->st_value;
6077 /* MIPS16 text labels should be treated as odd. */
6078 if (sym->st_other == STO_MIPS16)
6079 ++symbol;
6081 /* Record the name of this symbol, for our caller. */
6082 *namep = bfd_elf_string_from_elf_section (input_bfd,
6083 symtab_hdr->sh_link,
6084 sym->st_name);
6085 if (*namep == '\0')
6086 *namep = bfd_section_name (input_bfd, sec);
6088 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6090 else
6092 /* For global symbols we look up the symbol in the hash-table. */
6093 h = ((struct mips_elf_link_hash_entry *)
6094 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6095 /* Find the real hash-table entry for this symbol. */
6096 while (h->root.root.type == bfd_link_hash_indirect
6097 || h->root.root.type == bfd_link_hash_warning)
6098 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6100 /* Record the name of this symbol, for our caller. */
6101 *namep = h->root.root.root.string;
6103 /* See if this is the special _gp_disp symbol. Note that such a
6104 symbol must always be a global symbol. */
6105 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6107 /* Relocations against _gp_disp are permitted only with
6108 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6109 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6110 return bfd_reloc_notsupported;
6112 gp_disp_p = true;
6114 /* If this symbol is defined, calculate its address. Note that
6115 _gp_disp is a magic symbol, always implicitly defined by the
6116 linker, so it's inappropriate to check to see whether or not
6117 its defined. */
6118 else if ((h->root.root.type == bfd_link_hash_defined
6119 || h->root.root.type == bfd_link_hash_defweak)
6120 && h->root.root.u.def.section)
6122 sec = h->root.root.u.def.section;
6123 if (sec->output_section)
6124 symbol = (h->root.root.u.def.value
6125 + sec->output_section->vma
6126 + sec->output_offset);
6127 else
6128 symbol = h->root.root.u.def.value;
6130 else if (h->root.root.type == bfd_link_hash_undefweak)
6131 /* We allow relocations against undefined weak symbols, giving
6132 it the value zero, so that you can undefined weak functions
6133 and check to see if they exist by looking at their
6134 addresses. */
6135 symbol = 0;
6136 else if (info->shared && !info->symbolic && !info->no_undefined
6137 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6138 symbol = 0;
6139 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6140 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6142 /* If this is a dynamic link, we should have created a
6143 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6144 in in mips_elf_create_dynamic_sections.
6145 Otherwise, we should define the symbol with a value of 0.
6146 FIXME: It should probably get into the symbol table
6147 somehow as well. */
6148 BFD_ASSERT (! info->shared);
6149 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6150 symbol = 0;
6152 else
6154 if (! ((*info->callbacks->undefined_symbol)
6155 (info, h->root.root.root.string, input_bfd,
6156 input_section, relocation->r_offset,
6157 (!info->shared || info->no_undefined
6158 || ELF_ST_VISIBILITY (h->root.other)))))
6159 return bfd_reloc_undefined;
6160 symbol = 0;
6163 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6166 /* If this is a 32-bit call to a 16-bit function with a stub, we
6167 need to redirect the call to the stub, unless we're already *in*
6168 a stub. */
6169 if (r_type != R_MIPS16_26 && !info->relocateable
6170 && ((h != NULL && h->fn_stub != NULL)
6171 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6172 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6173 && !mips_elf_stub_section_p (input_bfd, input_section))
6175 /* This is a 32-bit call to a 16-bit function. We should
6176 have already noticed that we were going to need the
6177 stub. */
6178 if (local_p)
6179 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6180 else
6182 BFD_ASSERT (h->need_fn_stub);
6183 sec = h->fn_stub;
6186 symbol = sec->output_section->vma + sec->output_offset;
6188 /* If this is a 16-bit call to a 32-bit function with a stub, we
6189 need to redirect the call to the stub. */
6190 else if (r_type == R_MIPS16_26 && !info->relocateable
6191 && h != NULL
6192 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6193 && !target_is_16_bit_code_p)
6195 /* If both call_stub and call_fp_stub are defined, we can figure
6196 out which one to use by seeing which one appears in the input
6197 file. */
6198 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6200 asection *o;
6202 sec = NULL;
6203 for (o = input_bfd->sections; o != NULL; o = o->next)
6205 if (strncmp (bfd_get_section_name (input_bfd, o),
6206 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6208 sec = h->call_fp_stub;
6209 break;
6212 if (sec == NULL)
6213 sec = h->call_stub;
6215 else if (h->call_stub != NULL)
6216 sec = h->call_stub;
6217 else
6218 sec = h->call_fp_stub;
6220 BFD_ASSERT (sec->_raw_size > 0);
6221 symbol = sec->output_section->vma + sec->output_offset;
6224 /* Calls from 16-bit code to 32-bit code and vice versa require the
6225 special jalx instruction. */
6226 *require_jalxp = (!info->relocateable
6227 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6229 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6230 local_sections, true);
6232 /* If we haven't already determined the GOT offset, or the GP value,
6233 and we're going to need it, get it now. */
6234 switch (r_type)
6236 case R_MIPS_CALL16:
6237 case R_MIPS_GOT16:
6238 case R_MIPS_GOT_DISP:
6239 case R_MIPS_GOT_HI16:
6240 case R_MIPS_CALL_HI16:
6241 case R_MIPS_GOT_LO16:
6242 case R_MIPS_CALL_LO16:
6243 /* Find the index into the GOT where this value is located. */
6244 if (!local_p)
6246 BFD_ASSERT (addend == 0);
6247 g = mips_elf_global_got_index
6248 (elf_hash_table (info)->dynobj,
6249 (struct elf_link_hash_entry *) h);
6250 if (! elf_hash_table(info)->dynamic_sections_created
6251 || (info->shared
6252 && (info->symbolic || h->root.dynindx == -1)
6253 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6255 /* This is a static link or a -Bsymbolic link. The
6256 symbol is defined locally, or was forced to be local.
6257 We must initialize this entry in the GOT. */
6258 asection *sgot = mips_elf_got_section(elf_hash_table
6259 (info)->dynobj);
6260 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6261 symbol + addend, sgot->contents + g);
6264 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6265 /* There's no need to create a local GOT entry here; the
6266 calculation for a local GOT16 entry does not involve G. */
6267 break;
6268 else
6270 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6271 if (g == (bfd_vma) -1)
6272 return false;
6275 /* Convert GOT indices to actual offsets. */
6276 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6277 abfd, g);
6278 break;
6280 case R_MIPS_HI16:
6281 case R_MIPS_LO16:
6282 case R_MIPS_GPREL16:
6283 case R_MIPS_GPREL32:
6284 case R_MIPS_LITERAL:
6285 gp0 = _bfd_get_gp_value (input_bfd);
6286 gp = _bfd_get_gp_value (abfd);
6287 break;
6289 default:
6290 break;
6293 /* Figure out what kind of relocation is being performed. */
6294 switch (r_type)
6296 case R_MIPS_NONE:
6297 return bfd_reloc_continue;
6299 case R_MIPS_16:
6300 value = symbol + mips_elf_sign_extend (addend, 16);
6301 overflowed_p = mips_elf_overflow_p (value, 16);
6302 break;
6304 case R_MIPS_32:
6305 case R_MIPS_REL32:
6306 case R_MIPS_64:
6307 if ((info->shared
6308 || (elf_hash_table (info)->dynamic_sections_created
6309 && h != NULL
6310 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6311 != 0)))
6312 && (input_section->flags & SEC_ALLOC) != 0)
6314 /* If we're creating a shared library, or this relocation is
6315 against a symbol in a shared library, then we can't know
6316 where the symbol will end up. So, we create a relocation
6317 record in the output, and leave the job up to the dynamic
6318 linker. */
6319 value = addend;
6320 if (!mips_elf_create_dynamic_relocation (abfd,
6321 info,
6322 relocation,
6324 sec,
6325 symbol,
6326 &value,
6327 input_section))
6328 return false;
6330 else
6332 if (r_type != R_MIPS_REL32)
6333 value = symbol + addend;
6334 else
6335 value = addend;
6337 value &= howto->dst_mask;
6338 break;
6340 case R_MIPS_PC32:
6341 case R_MIPS_PC64:
6342 case R_MIPS_GNU_REL_LO16:
6343 value = symbol + addend - p;
6344 value &= howto->dst_mask;
6345 break;
6347 case R_MIPS_GNU_REL16_S2:
6348 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6349 overflowed_p = mips_elf_overflow_p (value, 18);
6350 value = (value >> 2) & howto->dst_mask;
6351 break;
6353 case R_MIPS_GNU_REL_HI16:
6354 value = mips_elf_high (addend + symbol - p);
6355 value &= howto->dst_mask;
6356 break;
6358 case R_MIPS16_26:
6359 /* The calculation for R_MIPS16_26 is just the same as for an
6360 R_MIPS_26. It's only the storage of the relocated field into
6361 the output file that's different. That's handled in
6362 mips_elf_perform_relocation. So, we just fall through to the
6363 R_MIPS_26 case here. */
6364 case R_MIPS_26:
6365 if (local_p)
6366 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6367 else
6368 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6369 value &= howto->dst_mask;
6370 break;
6372 case R_MIPS_HI16:
6373 if (!gp_disp_p)
6375 value = mips_elf_high (addend + symbol);
6376 value &= howto->dst_mask;
6378 else
6380 value = mips_elf_high (addend + gp - p);
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6383 break;
6385 case R_MIPS_LO16:
6386 if (!gp_disp_p)
6387 value = (symbol + addend) & howto->dst_mask;
6388 else
6390 value = addend + gp - p + 4;
6391 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6392 for overflow. But, on, say, Irix 5, relocations against
6393 _gp_disp are normally generated from the .cpload
6394 pseudo-op. It generates code that normally looks like
6395 this:
6397 lui $gp,%hi(_gp_disp)
6398 addiu $gp,$gp,%lo(_gp_disp)
6399 addu $gp,$gp,$t9
6401 Here $t9 holds the address of the function being called,
6402 as required by the MIPS ELF ABI. The R_MIPS_LO16
6403 relocation can easily overflow in this situation, but the
6404 R_MIPS_HI16 relocation will handle the overflow.
6405 Therefore, we consider this a bug in the MIPS ABI, and do
6406 not check for overflow here. */
6408 break;
6410 case R_MIPS_LITERAL:
6411 /* Because we don't merge literal sections, we can handle this
6412 just like R_MIPS_GPREL16. In the long run, we should merge
6413 shared literals, and then we will need to additional work
6414 here. */
6416 /* Fall through. */
6418 case R_MIPS16_GPREL:
6419 /* The R_MIPS16_GPREL performs the same calculation as
6420 R_MIPS_GPREL16, but stores the relocated bits in a different
6421 order. We don't need to do anything special here; the
6422 differences are handled in mips_elf_perform_relocation. */
6423 case R_MIPS_GPREL16:
6424 if (local_p)
6425 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6426 else
6427 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6428 overflowed_p = mips_elf_overflow_p (value, 16);
6429 break;
6431 case R_MIPS_GOT16:
6432 case R_MIPS_CALL16:
6433 if (local_p)
6435 boolean forced;
6437 /* The special case is when the symbol is forced to be local. We
6438 need the full address in the GOT since no R_MIPS_LO16 relocation
6439 follows. */
6440 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6441 local_sections, false);
6442 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6443 if (value == (bfd_vma) -1)
6444 return false;
6445 value
6446 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6447 abfd,
6448 value);
6449 overflowed_p = mips_elf_overflow_p (value, 16);
6450 break;
6453 /* Fall through. */
6455 case R_MIPS_GOT_DISP:
6456 value = g;
6457 overflowed_p = mips_elf_overflow_p (value, 16);
6458 break;
6460 case R_MIPS_GPREL32:
6461 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6462 break;
6464 case R_MIPS_PC16:
6465 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6466 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6467 overflowed_p = mips_elf_overflow_p (value, 16);
6468 break;
6470 case R_MIPS_GOT_HI16:
6471 case R_MIPS_CALL_HI16:
6472 /* We're allowed to handle these two relocations identically.
6473 The dynamic linker is allowed to handle the CALL relocations
6474 differently by creating a lazy evaluation stub. */
6475 value = g;
6476 value = mips_elf_high (value);
6477 value &= howto->dst_mask;
6478 break;
6480 case R_MIPS_GOT_LO16:
6481 case R_MIPS_CALL_LO16:
6482 value = g & howto->dst_mask;
6483 break;
6485 case R_MIPS_GOT_PAGE:
6486 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6487 if (value == (bfd_vma) -1)
6488 return false;
6489 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6490 abfd,
6491 value);
6492 overflowed_p = mips_elf_overflow_p (value, 16);
6493 break;
6495 case R_MIPS_GOT_OFST:
6496 mips_elf_got_page (abfd, info, symbol + addend, &value);
6497 overflowed_p = mips_elf_overflow_p (value, 16);
6498 break;
6500 case R_MIPS_SUB:
6501 value = symbol - addend;
6502 value &= howto->dst_mask;
6503 break;
6505 case R_MIPS_HIGHER:
6506 value = mips_elf_higher (addend + symbol);
6507 value &= howto->dst_mask;
6508 break;
6510 case R_MIPS_HIGHEST:
6511 value = mips_elf_highest (addend + symbol);
6512 value &= howto->dst_mask;
6513 break;
6515 case R_MIPS_SCN_DISP:
6516 value = symbol + addend - sec->output_offset;
6517 value &= howto->dst_mask;
6518 break;
6520 case R_MIPS_PJUMP:
6521 case R_MIPS_JALR:
6522 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6523 hint; we could improve performance by honoring that hint. */
6524 return bfd_reloc_continue;
6526 case R_MIPS_GNU_VTINHERIT:
6527 case R_MIPS_GNU_VTENTRY:
6528 /* We don't do anything with these at present. */
6529 return bfd_reloc_continue;
6531 default:
6532 /* An unrecognized relocation type. */
6533 return bfd_reloc_notsupported;
6536 /* Store the VALUE for our caller. */
6537 *valuep = value;
6538 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6541 /* Obtain the field relocated by RELOCATION. */
6543 static bfd_vma
6544 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6545 reloc_howto_type *howto;
6546 const Elf_Internal_Rela *relocation;
6547 bfd *input_bfd;
6548 bfd_byte *contents;
6550 bfd_vma x;
6551 bfd_byte *location = contents + relocation->r_offset;
6553 /* Obtain the bytes. */
6554 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6556 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6557 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6558 && bfd_little_endian (input_bfd))
6559 /* The two 16-bit words will be reversed on a little-endian
6560 system. See mips_elf_perform_relocation for more details. */
6561 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6563 return x;
6566 /* It has been determined that the result of the RELOCATION is the
6567 VALUE. Use HOWTO to place VALUE into the output file at the
6568 appropriate position. The SECTION is the section to which the
6569 relocation applies. If REQUIRE_JALX is true, then the opcode used
6570 for the relocation must be either JAL or JALX, and it is
6571 unconditionally converted to JALX.
6573 Returns false if anything goes wrong. */
6575 static boolean
6576 mips_elf_perform_relocation (info, howto, relocation, value,
6577 input_bfd, input_section,
6578 contents, require_jalx)
6579 struct bfd_link_info *info;
6580 reloc_howto_type *howto;
6581 const Elf_Internal_Rela *relocation;
6582 bfd_vma value;
6583 bfd *input_bfd;
6584 asection *input_section;
6585 bfd_byte *contents;
6586 boolean require_jalx;
6588 bfd_vma x;
6589 bfd_byte *location;
6590 int r_type = ELF32_R_TYPE (relocation->r_info);
6592 /* Figure out where the relocation is occurring. */
6593 location = contents + relocation->r_offset;
6595 /* Obtain the current value. */
6596 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6598 /* Clear the field we are setting. */
6599 x &= ~howto->dst_mask;
6601 /* If this is the R_MIPS16_26 relocation, we must store the
6602 value in a funny way. */
6603 if (r_type == R_MIPS16_26)
6605 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6606 Most mips16 instructions are 16 bits, but these instructions
6607 are 32 bits.
6609 The format of these instructions is:
6611 +--------------+--------------------------------+
6612 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6613 +--------------+--------------------------------+
6614 ! Immediate 15:0 !
6615 +-----------------------------------------------+
6617 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6618 Note that the immediate value in the first word is swapped.
6620 When producing a relocateable object file, R_MIPS16_26 is
6621 handled mostly like R_MIPS_26. In particular, the addend is
6622 stored as a straight 26-bit value in a 32-bit instruction.
6623 (gas makes life simpler for itself by never adjusting a
6624 R_MIPS16_26 reloc to be against a section, so the addend is
6625 always zero). However, the 32 bit instruction is stored as 2
6626 16-bit values, rather than a single 32-bit value. In a
6627 big-endian file, the result is the same; in a little-endian
6628 file, the two 16-bit halves of the 32 bit value are swapped.
6629 This is so that a disassembler can recognize the jal
6630 instruction.
6632 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6633 instruction stored as two 16-bit values. The addend A is the
6634 contents of the targ26 field. The calculation is the same as
6635 R_MIPS_26. When storing the calculated value, reorder the
6636 immediate value as shown above, and don't forget to store the
6637 value as two 16-bit values.
6639 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6640 defined as
6642 big-endian:
6643 +--------+----------------------+
6644 | | |
6645 | | targ26-16 |
6646 |31 26|25 0|
6647 +--------+----------------------+
6649 little-endian:
6650 +----------+------+-------------+
6651 | | | |
6652 | sub1 | | sub2 |
6653 |0 9|10 15|16 31|
6654 +----------+--------------------+
6655 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6656 ((sub1 << 16) | sub2)).
6658 When producing a relocateable object file, the calculation is
6659 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6660 When producing a fully linked file, the calculation is
6661 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6662 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6664 if (!info->relocateable)
6665 /* Shuffle the bits according to the formula above. */
6666 value = (((value & 0x1f0000) << 5)
6667 | ((value & 0x3e00000) >> 5)
6668 | (value & 0xffff));
6670 else if (r_type == R_MIPS16_GPREL)
6672 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6673 mode. A typical instruction will have a format like this:
6675 +--------------+--------------------------------+
6676 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6677 +--------------+--------------------------------+
6678 ! Major ! rx ! ry ! Imm 4:0 !
6679 +--------------+--------------------------------+
6681 EXTEND is the five bit value 11110. Major is the instruction
6682 opcode.
6684 This is handled exactly like R_MIPS_GPREL16, except that the
6685 addend is retrieved and stored as shown in this diagram; that
6686 is, the Imm fields above replace the V-rel16 field.
6688 All we need to do here is shuffle the bits appropriately. As
6689 above, the two 16-bit halves must be swapped on a
6690 little-endian system. */
6691 value = (((value & 0x7e0) << 16)
6692 | ((value & 0xf800) << 5)
6693 | (value & 0x1f));
6696 /* Set the field. */
6697 x |= (value & howto->dst_mask);
6699 /* If required, turn JAL into JALX. */
6700 if (require_jalx)
6702 boolean ok;
6703 bfd_vma opcode = x >> 26;
6704 bfd_vma jalx_opcode;
6706 /* Check to see if the opcode is already JAL or JALX. */
6707 if (r_type == R_MIPS16_26)
6709 ok = ((opcode == 0x6) || (opcode == 0x7));
6710 jalx_opcode = 0x7;
6712 else
6714 ok = ((opcode == 0x3) || (opcode == 0x1d));
6715 jalx_opcode = 0x1d;
6718 /* If the opcode is not JAL or JALX, there's a problem. */
6719 if (!ok)
6721 (*_bfd_error_handler)
6722 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6723 bfd_get_filename (input_bfd),
6724 input_section->name,
6725 (unsigned long) relocation->r_offset);
6726 bfd_set_error (bfd_error_bad_value);
6727 return false;
6730 /* Make this the JALX opcode. */
6731 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6734 /* Swap the high- and low-order 16 bits on little-endian systems
6735 when doing a MIPS16 relocation. */
6736 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6737 && bfd_little_endian (input_bfd))
6738 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6740 /* Put the value into the output. */
6741 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6742 return true;
6745 /* Returns true if SECTION is a MIPS16 stub section. */
6747 static boolean
6748 mips_elf_stub_section_p (abfd, section)
6749 bfd *abfd ATTRIBUTE_UNUSED;
6750 asection *section;
6752 const char *name = bfd_get_section_name (abfd, section);
6754 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6755 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6756 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6759 /* Relocate a MIPS ELF section. */
6761 boolean
6762 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6763 contents, relocs, local_syms, local_sections)
6764 bfd *output_bfd;
6765 struct bfd_link_info *info;
6766 bfd *input_bfd;
6767 asection *input_section;
6768 bfd_byte *contents;
6769 Elf_Internal_Rela *relocs;
6770 Elf_Internal_Sym *local_syms;
6771 asection **local_sections;
6773 Elf_Internal_Rela *rel;
6774 const Elf_Internal_Rela *relend;
6775 bfd_vma addend = 0;
6776 boolean use_saved_addend_p = false;
6777 struct elf_backend_data *bed;
6779 bed = get_elf_backend_data (output_bfd);
6780 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6781 for (rel = relocs; rel < relend; ++rel)
6783 const char *name;
6784 bfd_vma value;
6785 reloc_howto_type *howto;
6786 boolean require_jalx;
6787 /* True if the relocation is a RELA relocation, rather than a
6788 REL relocation. */
6789 boolean rela_relocation_p = true;
6790 int r_type = ELF32_R_TYPE (rel->r_info);
6791 const char * msg = (const char *) NULL;
6793 /* Find the relocation howto for this relocation. */
6794 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6796 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6797 64-bit code, but make sure all their addresses are in the
6798 lowermost or uppermost 32-bit section of the 64-bit address
6799 space. Thus, when they use an R_MIPS_64 they mean what is
6800 usually meant by R_MIPS_32, with the exception that the
6801 stored value is sign-extended to 64 bits. */
6802 howto = elf_mips_howto_table + R_MIPS_32;
6804 /* On big-endian systems, we need to lie about the position
6805 of the reloc. */
6806 if (bfd_big_endian (input_bfd))
6807 rel->r_offset += 4;
6809 else
6810 howto = mips_rtype_to_howto (r_type);
6812 if (!use_saved_addend_p)
6814 Elf_Internal_Shdr *rel_hdr;
6816 /* If these relocations were originally of the REL variety,
6817 we must pull the addend out of the field that will be
6818 relocated. Otherwise, we simply use the contents of the
6819 RELA relocation. To determine which flavor or relocation
6820 this is, we depend on the fact that the INPUT_SECTION's
6821 REL_HDR is read before its REL_HDR2. */
6822 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6823 if ((size_t) (rel - relocs)
6824 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6825 * bed->s->int_rels_per_ext_rel))
6826 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6827 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6829 /* Note that this is a REL relocation. */
6830 rela_relocation_p = false;
6832 /* Get the addend, which is stored in the input file. */
6833 addend = mips_elf_obtain_contents (howto,
6834 rel,
6835 input_bfd,
6836 contents);
6837 addend &= howto->src_mask;
6839 /* For some kinds of relocations, the ADDEND is a
6840 combination of the addend stored in two different
6841 relocations. */
6842 if (r_type == R_MIPS_HI16
6843 || r_type == R_MIPS_GNU_REL_HI16
6844 || (r_type == R_MIPS_GOT16
6845 && mips_elf_local_relocation_p (input_bfd, rel,
6846 local_sections, false)))
6848 bfd_vma l;
6849 const Elf_Internal_Rela *lo16_relocation;
6850 reloc_howto_type *lo16_howto;
6851 int lo;
6853 /* The combined value is the sum of the HI16 addend,
6854 left-shifted by sixteen bits, and the LO16
6855 addend, sign extended. (Usually, the code does
6856 a `lui' of the HI16 value, and then an `addiu' of
6857 the LO16 value.)
6859 Scan ahead to find a matching LO16 relocation. */
6860 if (r_type == R_MIPS_GNU_REL_HI16)
6861 lo = R_MIPS_GNU_REL_LO16;
6862 else
6863 lo = R_MIPS_LO16;
6864 lo16_relocation
6865 = mips_elf_next_relocation (lo, rel, relend);
6866 if (lo16_relocation == NULL)
6867 return false;
6869 /* Obtain the addend kept there. */
6870 lo16_howto = mips_rtype_to_howto (lo);
6871 l = mips_elf_obtain_contents (lo16_howto,
6872 lo16_relocation,
6873 input_bfd, contents);
6874 l &= lo16_howto->src_mask;
6875 l = mips_elf_sign_extend (l, 16);
6877 addend <<= 16;
6879 /* Compute the combined addend. */
6880 addend += l;
6882 else if (r_type == R_MIPS16_GPREL)
6884 /* The addend is scrambled in the object file. See
6885 mips_elf_perform_relocation for details on the
6886 format. */
6887 addend = (((addend & 0x1f0000) >> 5)
6888 | ((addend & 0x7e00000) >> 16)
6889 | (addend & 0x1f));
6892 else
6893 addend = rel->r_addend;
6896 if (info->relocateable)
6898 Elf_Internal_Sym *sym;
6899 unsigned long r_symndx;
6901 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6902 && bfd_big_endian (input_bfd))
6903 rel->r_offset -= 4;
6905 /* Since we're just relocating, all we need to do is copy
6906 the relocations back out to the object file, unless
6907 they're against a section symbol, in which case we need
6908 to adjust by the section offset, or unless they're GP
6909 relative in which case we need to adjust by the amount
6910 that we're adjusting GP in this relocateable object. */
6912 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6913 false))
6914 /* There's nothing to do for non-local relocations. */
6915 continue;
6917 if (r_type == R_MIPS16_GPREL
6918 || r_type == R_MIPS_GPREL16
6919 || r_type == R_MIPS_GPREL32
6920 || r_type == R_MIPS_LITERAL)
6921 addend -= (_bfd_get_gp_value (output_bfd)
6922 - _bfd_get_gp_value (input_bfd));
6923 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6924 || r_type == R_MIPS_GNU_REL16_S2)
6925 /* The addend is stored without its two least
6926 significant bits (which are always zero.) In a
6927 non-relocateable link, calculate_relocation will do
6928 this shift; here, we must do it ourselves. */
6929 addend <<= 2;
6931 r_symndx = ELF32_R_SYM (rel->r_info);
6932 sym = local_syms + r_symndx;
6933 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6934 /* Adjust the addend appropriately. */
6935 addend += local_sections[r_symndx]->output_offset;
6937 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6938 then we only want to write out the high-order 16 bits.
6939 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6940 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6941 || r_type == R_MIPS_GNU_REL_HI16)
6942 addend = mips_elf_high (addend);
6943 /* If the relocation is for an R_MIPS_26 relocation, then
6944 the two low-order bits are not stored in the object file;
6945 they are implicitly zero. */
6946 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6947 || r_type == R_MIPS_GNU_REL16_S2)
6948 addend >>= 2;
6950 if (rela_relocation_p)
6951 /* If this is a RELA relocation, just update the addend.
6952 We have to cast away constness for REL. */
6953 rel->r_addend = addend;
6954 else
6956 /* Otherwise, we have to write the value back out. Note
6957 that we use the source mask, rather than the
6958 destination mask because the place to which we are
6959 writing will be source of the addend in the final
6960 link. */
6961 addend &= howto->src_mask;
6963 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6964 /* See the comment above about using R_MIPS_64 in the 32-bit
6965 ABI. Here, we need to update the addend. It would be
6966 possible to get away with just using the R_MIPS_32 reloc
6967 but for endianness. */
6969 bfd_vma sign_bits;
6970 bfd_vma low_bits;
6971 bfd_vma high_bits;
6973 if (addend & ((bfd_vma) 1 << 31))
6974 sign_bits = ((bfd_vma) 1 << 32) - 1;
6975 else
6976 sign_bits = 0;
6978 /* If we don't know that we have a 64-bit type,
6979 do two separate stores. */
6980 if (bfd_big_endian (input_bfd))
6982 /* Store the sign-bits (which are most significant)
6983 first. */
6984 low_bits = sign_bits;
6985 high_bits = addend;
6987 else
6989 low_bits = addend;
6990 high_bits = sign_bits;
6992 bfd_put_32 (input_bfd, low_bits,
6993 contents + rel->r_offset);
6994 bfd_put_32 (input_bfd, high_bits,
6995 contents + rel->r_offset + 4);
6996 continue;
6999 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7000 input_bfd, input_section,
7001 contents, false))
7002 return false;
7005 /* Go on to the next relocation. */
7006 continue;
7009 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7010 relocations for the same offset. In that case we are
7011 supposed to treat the output of each relocation as the addend
7012 for the next. */
7013 if (rel + 1 < relend
7014 && rel->r_offset == rel[1].r_offset
7015 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7016 use_saved_addend_p = true;
7017 else
7018 use_saved_addend_p = false;
7020 /* Figure out what value we are supposed to relocate. */
7021 switch (mips_elf_calculate_relocation (output_bfd,
7022 input_bfd,
7023 input_section,
7024 info,
7025 rel,
7026 addend,
7027 howto,
7028 local_syms,
7029 local_sections,
7030 &value,
7031 &name,
7032 &require_jalx))
7034 case bfd_reloc_continue:
7035 /* There's nothing to do. */
7036 continue;
7038 case bfd_reloc_undefined:
7039 /* mips_elf_calculate_relocation already called the
7040 undefined_symbol callback. There's no real point in
7041 trying to perform the relocation at this point, so we
7042 just skip ahead to the next relocation. */
7043 continue;
7045 case bfd_reloc_notsupported:
7046 msg = _("internal error: unsupported relocation error");
7047 info->callbacks->warning
7048 (info, msg, name, input_bfd, input_section, rel->r_offset);
7049 return false;
7051 case bfd_reloc_overflow:
7052 if (use_saved_addend_p)
7053 /* Ignore overflow until we reach the last relocation for
7054 a given location. */
7056 else
7058 BFD_ASSERT (name != NULL);
7059 if (! ((*info->callbacks->reloc_overflow)
7060 (info, name, howto->name, (bfd_vma) 0,
7061 input_bfd, input_section, rel->r_offset)))
7062 return false;
7064 break;
7066 case bfd_reloc_ok:
7067 break;
7069 default:
7070 abort ();
7071 break;
7074 /* If we've got another relocation for the address, keep going
7075 until we reach the last one. */
7076 if (use_saved_addend_p)
7078 addend = value;
7079 continue;
7082 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7083 /* See the comment above about using R_MIPS_64 in the 32-bit
7084 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7085 that calculated the right value. Now, however, we
7086 sign-extend the 32-bit result to 64-bits, and store it as a
7087 64-bit value. We are especially generous here in that we
7088 go to extreme lengths to support this usage on systems with
7089 only a 32-bit VMA. */
7091 bfd_vma sign_bits;
7092 bfd_vma low_bits;
7093 bfd_vma high_bits;
7095 if (value & ((bfd_vma) 1 << 31))
7096 sign_bits = ((bfd_vma) 1 << 32) - 1;
7097 else
7098 sign_bits = 0;
7100 /* If we don't know that we have a 64-bit type,
7101 do two separate stores. */
7102 if (bfd_big_endian (input_bfd))
7104 /* Undo what we did above. */
7105 rel->r_offset -= 4;
7106 /* Store the sign-bits (which are most significant)
7107 first. */
7108 low_bits = sign_bits;
7109 high_bits = value;
7111 else
7113 low_bits = value;
7114 high_bits = sign_bits;
7116 bfd_put_32 (input_bfd, low_bits,
7117 contents + rel->r_offset);
7118 bfd_put_32 (input_bfd, high_bits,
7119 contents + rel->r_offset + 4);
7120 continue;
7123 /* Actually perform the relocation. */
7124 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7125 input_section, contents,
7126 require_jalx))
7127 return false;
7130 return true;
7133 /* This hook function is called before the linker writes out a global
7134 symbol. We mark symbols as small common if appropriate. This is
7135 also where we undo the increment of the value for a mips16 symbol. */
7137 boolean
7138 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7139 bfd *abfd ATTRIBUTE_UNUSED;
7140 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7141 const char *name ATTRIBUTE_UNUSED;
7142 Elf_Internal_Sym *sym;
7143 asection *input_sec;
7145 /* If we see a common symbol, which implies a relocatable link, then
7146 if a symbol was small common in an input file, mark it as small
7147 common in the output file. */
7148 if (sym->st_shndx == SHN_COMMON
7149 && strcmp (input_sec->name, ".scommon") == 0)
7150 sym->st_shndx = SHN_MIPS_SCOMMON;
7152 if (sym->st_other == STO_MIPS16
7153 && (sym->st_value & 1) != 0)
7154 --sym->st_value;
7156 return true;
7159 /* Functions for the dynamic linker. */
7161 /* The name of the dynamic interpreter. This is put in the .interp
7162 section. */
7164 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7165 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7166 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7167 : "/usr/lib/libc.so.1")
7169 /* Create dynamic sections when linking against a dynamic object. */
7171 boolean
7172 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7173 bfd *abfd;
7174 struct bfd_link_info *info;
7176 struct elf_link_hash_entry *h;
7177 flagword flags;
7178 register asection *s;
7179 const char * const *namep;
7181 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7182 | SEC_LINKER_CREATED | SEC_READONLY);
7184 /* Mips ABI requests the .dynamic section to be read only. */
7185 s = bfd_get_section_by_name (abfd, ".dynamic");
7186 if (s != NULL)
7188 if (! bfd_set_section_flags (abfd, s, flags))
7189 return false;
7192 /* We need to create .got section. */
7193 if (! mips_elf_create_got_section (abfd, info))
7194 return false;
7196 /* Create the .msym section on IRIX6. It is used by the dynamic
7197 linker to speed up dynamic relocations, and to avoid computing
7198 the ELF hash for symbols. */
7199 if (IRIX_COMPAT (abfd) == ict_irix6
7200 && !mips_elf_create_msym_section (abfd))
7201 return false;
7203 /* Create .stub section. */
7204 if (bfd_get_section_by_name (abfd,
7205 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7207 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7208 if (s == NULL
7209 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7210 || ! bfd_set_section_alignment (abfd, s,
7211 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7212 return false;
7215 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7216 && !info->shared
7217 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7219 s = bfd_make_section (abfd, ".rld_map");
7220 if (s == NULL
7221 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7222 || ! bfd_set_section_alignment (abfd, s,
7223 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7224 return false;
7227 /* On IRIX5, we adjust add some additional symbols and change the
7228 alignments of several sections. There is no ABI documentation
7229 indicating that this is necessary on IRIX6, nor any evidence that
7230 the linker takes such action. */
7231 if (IRIX_COMPAT (abfd) == ict_irix5)
7233 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7235 h = NULL;
7236 if (! (_bfd_generic_link_add_one_symbol
7237 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7238 (bfd_vma) 0, (const char *) NULL, false,
7239 get_elf_backend_data (abfd)->collect,
7240 (struct bfd_link_hash_entry **) &h)))
7241 return false;
7242 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7243 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7244 h->type = STT_SECTION;
7246 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7247 return false;
7250 /* We need to create a .compact_rel section. */
7251 if (SGI_COMPAT (abfd))
7253 if (!mips_elf_create_compact_rel_section (abfd, info))
7254 return false;
7257 /* Change aligments of some sections. */
7258 s = bfd_get_section_by_name (abfd, ".hash");
7259 if (s != NULL)
7260 bfd_set_section_alignment (abfd, s, 4);
7261 s = bfd_get_section_by_name (abfd, ".dynsym");
7262 if (s != NULL)
7263 bfd_set_section_alignment (abfd, s, 4);
7264 s = bfd_get_section_by_name (abfd, ".dynstr");
7265 if (s != NULL)
7266 bfd_set_section_alignment (abfd, s, 4);
7267 s = bfd_get_section_by_name (abfd, ".reginfo");
7268 if (s != NULL)
7269 bfd_set_section_alignment (abfd, s, 4);
7270 s = bfd_get_section_by_name (abfd, ".dynamic");
7271 if (s != NULL)
7272 bfd_set_section_alignment (abfd, s, 4);
7275 if (!info->shared)
7277 h = NULL;
7278 if (SGI_COMPAT (abfd))
7280 if (!(_bfd_generic_link_add_one_symbol
7281 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7282 (bfd_vma) 0, (const char *) NULL, false,
7283 get_elf_backend_data (abfd)->collect,
7284 (struct bfd_link_hash_entry **) &h)))
7285 return false;
7287 else
7289 /* For normal mips it is _DYNAMIC_LINKING. */
7290 if (!(_bfd_generic_link_add_one_symbol
7291 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7292 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7293 get_elf_backend_data (abfd)->collect,
7294 (struct bfd_link_hash_entry **) &h)))
7295 return false;
7297 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7298 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7299 h->type = STT_SECTION;
7301 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7302 return false;
7304 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7306 /* __rld_map is a four byte word located in the .data section
7307 and is filled in by the rtld to contain a pointer to
7308 the _r_debug structure. Its symbol value will be set in
7309 mips_elf_finish_dynamic_symbol. */
7310 s = bfd_get_section_by_name (abfd, ".rld_map");
7311 BFD_ASSERT (s != NULL);
7313 h = NULL;
7314 if (SGI_COMPAT (abfd))
7316 if (!(_bfd_generic_link_add_one_symbol
7317 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7318 (bfd_vma) 0, (const char *) NULL, false,
7319 get_elf_backend_data (abfd)->collect,
7320 (struct bfd_link_hash_entry **) &h)))
7321 return false;
7323 else
7325 /* For normal mips the symbol is __RLD_MAP. */
7326 if (!(_bfd_generic_link_add_one_symbol
7327 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7328 (bfd_vma) 0, (const char *) NULL, false,
7329 get_elf_backend_data (abfd)->collect,
7330 (struct bfd_link_hash_entry **) &h)))
7331 return false;
7333 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7334 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7335 h->type = STT_OBJECT;
7337 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7338 return false;
7342 return true;
7345 /* Create the .compact_rel section. */
7347 static boolean
7348 mips_elf_create_compact_rel_section (abfd, info)
7349 bfd *abfd;
7350 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7352 flagword flags;
7353 register asection *s;
7355 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7357 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7358 | SEC_READONLY);
7360 s = bfd_make_section (abfd, ".compact_rel");
7361 if (s == NULL
7362 || ! bfd_set_section_flags (abfd, s, flags)
7363 || ! bfd_set_section_alignment (abfd, s,
7364 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7365 return false;
7367 s->_raw_size = sizeof (Elf32_External_compact_rel);
7370 return true;
7373 /* Create the .got section to hold the global offset table. */
7375 static boolean
7376 mips_elf_create_got_section (abfd, info)
7377 bfd *abfd;
7378 struct bfd_link_info *info;
7380 flagword flags;
7381 register asection *s;
7382 struct elf_link_hash_entry *h;
7383 struct mips_got_info *g;
7385 /* This function may be called more than once. */
7386 if (mips_elf_got_section (abfd))
7387 return true;
7389 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7390 | SEC_LINKER_CREATED);
7392 s = bfd_make_section (abfd, ".got");
7393 if (s == NULL
7394 || ! bfd_set_section_flags (abfd, s, flags)
7395 || ! bfd_set_section_alignment (abfd, s, 4))
7396 return false;
7398 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7399 linker script because we don't want to define the symbol if we
7400 are not creating a global offset table. */
7401 h = NULL;
7402 if (! (_bfd_generic_link_add_one_symbol
7403 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7404 (bfd_vma) 0, (const char *) NULL, false,
7405 get_elf_backend_data (abfd)->collect,
7406 (struct bfd_link_hash_entry **) &h)))
7407 return false;
7408 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7409 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7410 h->type = STT_OBJECT;
7412 if (info->shared
7413 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7414 return false;
7416 /* The first several global offset table entries are reserved. */
7417 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7419 g = (struct mips_got_info *) bfd_alloc (abfd,
7420 sizeof (struct mips_got_info));
7421 if (g == NULL)
7422 return false;
7423 g->global_gotsym = NULL;
7424 g->local_gotno = MIPS_RESERVED_GOTNO;
7425 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7426 if (elf_section_data (s) == NULL)
7428 s->used_by_bfd =
7429 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7430 if (elf_section_data (s) == NULL)
7431 return false;
7433 elf_section_data (s)->tdata = (PTR) g;
7434 elf_section_data (s)->this_hdr.sh_flags
7435 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7437 return true;
7440 /* Returns the .msym section for ABFD, creating it if it does not
7441 already exist. Returns NULL to indicate error. */
7443 static asection *
7444 mips_elf_create_msym_section (abfd)
7445 bfd *abfd;
7447 asection *s;
7449 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7450 if (!s)
7452 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7453 if (!s
7454 || !bfd_set_section_flags (abfd, s,
7455 SEC_ALLOC
7456 | SEC_LOAD
7457 | SEC_HAS_CONTENTS
7458 | SEC_LINKER_CREATED
7459 | SEC_READONLY)
7460 || !bfd_set_section_alignment (abfd, s,
7461 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7462 return NULL;
7465 return s;
7468 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7470 static void
7471 mips_elf_allocate_dynamic_relocations (abfd, n)
7472 bfd *abfd;
7473 unsigned int n;
7475 asection *s;
7477 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7478 BFD_ASSERT (s != NULL);
7480 if (s->_raw_size == 0)
7482 /* Make room for a null element. */
7483 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7484 ++s->reloc_count;
7486 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7489 /* Look through the relocs for a section during the first phase, and
7490 allocate space in the global offset table. */
7492 boolean
7493 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7494 bfd *abfd;
7495 struct bfd_link_info *info;
7496 asection *sec;
7497 const Elf_Internal_Rela *relocs;
7499 const char *name;
7500 bfd *dynobj;
7501 Elf_Internal_Shdr *symtab_hdr;
7502 struct elf_link_hash_entry **sym_hashes;
7503 struct mips_got_info *g;
7504 size_t extsymoff;
7505 const Elf_Internal_Rela *rel;
7506 const Elf_Internal_Rela *rel_end;
7507 asection *sgot;
7508 asection *sreloc;
7509 struct elf_backend_data *bed;
7511 if (info->relocateable)
7512 return true;
7514 dynobj = elf_hash_table (info)->dynobj;
7515 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7516 sym_hashes = elf_sym_hashes (abfd);
7517 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7519 /* Check for the mips16 stub sections. */
7521 name = bfd_get_section_name (abfd, sec);
7522 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7524 unsigned long r_symndx;
7526 /* Look at the relocation information to figure out which symbol
7527 this is for. */
7529 r_symndx = ELF32_R_SYM (relocs->r_info);
7531 if (r_symndx < extsymoff
7532 || sym_hashes[r_symndx - extsymoff] == NULL)
7534 asection *o;
7536 /* This stub is for a local symbol. This stub will only be
7537 needed if there is some relocation in this BFD, other
7538 than a 16 bit function call, which refers to this symbol. */
7539 for (o = abfd->sections; o != NULL; o = o->next)
7541 Elf_Internal_Rela *sec_relocs;
7542 const Elf_Internal_Rela *r, *rend;
7544 /* We can ignore stub sections when looking for relocs. */
7545 if ((o->flags & SEC_RELOC) == 0
7546 || o->reloc_count == 0
7547 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7548 sizeof FN_STUB - 1) == 0
7549 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7550 sizeof CALL_STUB - 1) == 0
7551 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7552 sizeof CALL_FP_STUB - 1) == 0)
7553 continue;
7555 sec_relocs = (_bfd_elf32_link_read_relocs
7556 (abfd, o, (PTR) NULL,
7557 (Elf_Internal_Rela *) NULL,
7558 info->keep_memory));
7559 if (sec_relocs == NULL)
7560 return false;
7562 rend = sec_relocs + o->reloc_count;
7563 for (r = sec_relocs; r < rend; r++)
7564 if (ELF32_R_SYM (r->r_info) == r_symndx
7565 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7566 break;
7568 if (! info->keep_memory)
7569 free (sec_relocs);
7571 if (r < rend)
7572 break;
7575 if (o == NULL)
7577 /* There is no non-call reloc for this stub, so we do
7578 not need it. Since this function is called before
7579 the linker maps input sections to output sections, we
7580 can easily discard it by setting the SEC_EXCLUDE
7581 flag. */
7582 sec->flags |= SEC_EXCLUDE;
7583 return true;
7586 /* Record this stub in an array of local symbol stubs for
7587 this BFD. */
7588 if (elf_tdata (abfd)->local_stubs == NULL)
7590 unsigned long symcount;
7591 asection **n;
7593 if (elf_bad_symtab (abfd))
7594 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7595 else
7596 symcount = symtab_hdr->sh_info;
7597 n = (asection **) bfd_zalloc (abfd,
7598 symcount * sizeof (asection *));
7599 if (n == NULL)
7600 return false;
7601 elf_tdata (abfd)->local_stubs = n;
7604 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7606 /* We don't need to set mips16_stubs_seen in this case.
7607 That flag is used to see whether we need to look through
7608 the global symbol table for stubs. We don't need to set
7609 it here, because we just have a local stub. */
7611 else
7613 struct mips_elf_link_hash_entry *h;
7615 h = ((struct mips_elf_link_hash_entry *)
7616 sym_hashes[r_symndx - extsymoff]);
7618 /* H is the symbol this stub is for. */
7620 h->fn_stub = sec;
7621 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7624 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7625 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7627 unsigned long r_symndx;
7628 struct mips_elf_link_hash_entry *h;
7629 asection **loc;
7631 /* Look at the relocation information to figure out which symbol
7632 this is for. */
7634 r_symndx = ELF32_R_SYM (relocs->r_info);
7636 if (r_symndx < extsymoff
7637 || sym_hashes[r_symndx - extsymoff] == NULL)
7639 /* This stub was actually built for a static symbol defined
7640 in the same file. We assume that all static symbols in
7641 mips16 code are themselves mips16, so we can simply
7642 discard this stub. Since this function is called before
7643 the linker maps input sections to output sections, we can
7644 easily discard it by setting the SEC_EXCLUDE flag. */
7645 sec->flags |= SEC_EXCLUDE;
7646 return true;
7649 h = ((struct mips_elf_link_hash_entry *)
7650 sym_hashes[r_symndx - extsymoff]);
7652 /* H is the symbol this stub is for. */
7654 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7655 loc = &h->call_fp_stub;
7656 else
7657 loc = &h->call_stub;
7659 /* If we already have an appropriate stub for this function, we
7660 don't need another one, so we can discard this one. Since
7661 this function is called before the linker maps input sections
7662 to output sections, we can easily discard it by setting the
7663 SEC_EXCLUDE flag. We can also discard this section if we
7664 happen to already know that this is a mips16 function; it is
7665 not necessary to check this here, as it is checked later, but
7666 it is slightly faster to check now. */
7667 if (*loc != NULL || h->root.other == STO_MIPS16)
7669 sec->flags |= SEC_EXCLUDE;
7670 return true;
7673 *loc = sec;
7674 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7677 if (dynobj == NULL)
7679 sgot = NULL;
7680 g = NULL;
7682 else
7684 sgot = mips_elf_got_section (dynobj);
7685 if (sgot == NULL)
7686 g = NULL;
7687 else
7689 BFD_ASSERT (elf_section_data (sgot) != NULL);
7690 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7691 BFD_ASSERT (g != NULL);
7695 sreloc = NULL;
7696 bed = get_elf_backend_data (abfd);
7697 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7698 for (rel = relocs; rel < rel_end; ++rel)
7700 unsigned long r_symndx;
7701 int r_type;
7702 struct elf_link_hash_entry *h;
7704 r_symndx = ELF32_R_SYM (rel->r_info);
7705 r_type = ELF32_R_TYPE (rel->r_info);
7707 if (r_symndx < extsymoff)
7708 h = NULL;
7709 else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize))
7711 (*_bfd_error_handler)
7712 (_("Malformed reloc detected for section %s"), name);
7713 bfd_set_error (bfd_error_bad_value);
7714 return false;
7716 else
7718 h = sym_hashes[r_symndx - extsymoff];
7720 /* This may be an indirect symbol created because of a version. */
7721 if (h != NULL)
7723 while (h->root.type == bfd_link_hash_indirect)
7724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7728 /* Some relocs require a global offset table. */
7729 if (dynobj == NULL || sgot == NULL)
7731 switch (r_type)
7733 case R_MIPS_GOT16:
7734 case R_MIPS_CALL16:
7735 case R_MIPS_CALL_HI16:
7736 case R_MIPS_CALL_LO16:
7737 case R_MIPS_GOT_HI16:
7738 case R_MIPS_GOT_LO16:
7739 case R_MIPS_GOT_PAGE:
7740 case R_MIPS_GOT_OFST:
7741 case R_MIPS_GOT_DISP:
7742 if (dynobj == NULL)
7743 elf_hash_table (info)->dynobj = dynobj = abfd;
7744 if (! mips_elf_create_got_section (dynobj, info))
7745 return false;
7746 g = mips_elf_got_info (dynobj, &sgot);
7747 break;
7749 case R_MIPS_32:
7750 case R_MIPS_REL32:
7751 case R_MIPS_64:
7752 if (dynobj == NULL
7753 && (info->shared || h != NULL)
7754 && (sec->flags & SEC_ALLOC) != 0)
7755 elf_hash_table (info)->dynobj = dynobj = abfd;
7756 break;
7758 default:
7759 break;
7763 if (!h && (r_type == R_MIPS_CALL_LO16
7764 || r_type == R_MIPS_GOT_LO16
7765 || r_type == R_MIPS_GOT_DISP))
7767 /* We may need a local GOT entry for this relocation. We
7768 don't count R_MIPS_GOT_PAGE because we can estimate the
7769 maximum number of pages needed by looking at the size of
7770 the segment. Similar comments apply to R_MIPS_GOT16 and
7771 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7772 R_MIPS_CALL_HI16 because these are always followed by an
7773 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7775 This estimation is very conservative since we can merge
7776 duplicate entries in the GOT. In order to be less
7777 conservative, we could actually build the GOT here,
7778 rather than in relocate_section. */
7779 g->local_gotno++;
7780 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7783 switch (r_type)
7785 case R_MIPS_CALL16:
7786 if (h == NULL)
7788 (*_bfd_error_handler)
7789 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7790 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7791 bfd_set_error (bfd_error_bad_value);
7792 return false;
7794 /* Fall through. */
7796 case R_MIPS_CALL_HI16:
7797 case R_MIPS_CALL_LO16:
7798 if (h != NULL)
7800 /* This symbol requires a global offset table entry. */
7801 if (!mips_elf_record_global_got_symbol (h, info, g))
7802 return false;
7804 /* We need a stub, not a plt entry for the undefined
7805 function. But we record it as if it needs plt. See
7806 elf_adjust_dynamic_symbol in elflink.h. */
7807 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7808 h->type = STT_FUNC;
7810 break;
7812 case R_MIPS_GOT16:
7813 case R_MIPS_GOT_HI16:
7814 case R_MIPS_GOT_LO16:
7815 case R_MIPS_GOT_DISP:
7816 /* This symbol requires a global offset table entry. */
7817 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7818 return false;
7819 break;
7821 case R_MIPS_32:
7822 case R_MIPS_REL32:
7823 case R_MIPS_64:
7824 if ((info->shared || h != NULL)
7825 && (sec->flags & SEC_ALLOC) != 0)
7827 if (sreloc == NULL)
7829 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7831 sreloc = bfd_get_section_by_name (dynobj, name);
7832 if (sreloc == NULL)
7834 sreloc = bfd_make_section (dynobj, name);
7835 if (sreloc == NULL
7836 || ! bfd_set_section_flags (dynobj, sreloc,
7837 (SEC_ALLOC
7838 | SEC_LOAD
7839 | SEC_HAS_CONTENTS
7840 | SEC_IN_MEMORY
7841 | SEC_LINKER_CREATED
7842 | SEC_READONLY))
7843 || ! bfd_set_section_alignment (dynobj, sreloc,
7845 return false;
7848 if (info->shared)
7849 /* When creating a shared object, we must copy these
7850 reloc types into the output file as R_MIPS_REL32
7851 relocs. We make room for this reloc in the
7852 .rel.dyn reloc section. */
7853 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7854 else
7856 struct mips_elf_link_hash_entry *hmips;
7858 /* We only need to copy this reloc if the symbol is
7859 defined in a dynamic object. */
7860 hmips = (struct mips_elf_link_hash_entry *) h;
7861 ++hmips->possibly_dynamic_relocs;
7864 /* Even though we don't directly need a GOT entry for
7865 this symbol, a symbol must have a dynamic symbol
7866 table index greater that DT_MIPS_GOTSYM if there are
7867 dynamic relocations against it. */
7868 if (h != NULL
7869 && !mips_elf_record_global_got_symbol (h, info, g))
7870 return false;
7873 if (SGI_COMPAT (abfd))
7874 mips_elf_hash_table (info)->compact_rel_size +=
7875 sizeof (Elf32_External_crinfo);
7876 break;
7878 case R_MIPS_26:
7879 case R_MIPS_GPREL16:
7880 case R_MIPS_LITERAL:
7881 case R_MIPS_GPREL32:
7882 if (SGI_COMPAT (abfd))
7883 mips_elf_hash_table (info)->compact_rel_size +=
7884 sizeof (Elf32_External_crinfo);
7885 break;
7887 /* This relocation describes the C++ object vtable hierarchy.
7888 Reconstruct it for later use during GC. */
7889 case R_MIPS_GNU_VTINHERIT:
7890 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7891 return false;
7892 break;
7894 /* This relocation describes which C++ vtable entries are actually
7895 used. Record for later use during GC. */
7896 case R_MIPS_GNU_VTENTRY:
7897 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7898 return false;
7899 break;
7901 default:
7902 break;
7905 /* We must not create a stub for a symbol that has relocations
7906 related to taking the function's address. */
7907 switch (r_type)
7909 default:
7910 if (h != NULL)
7912 struct mips_elf_link_hash_entry *mh;
7914 mh = (struct mips_elf_link_hash_entry *) h;
7915 mh->no_fn_stub = true;
7917 break;
7918 case R_MIPS_CALL16:
7919 case R_MIPS_CALL_HI16:
7920 case R_MIPS_CALL_LO16:
7921 break;
7924 /* If this reloc is not a 16 bit call, and it has a global
7925 symbol, then we will need the fn_stub if there is one.
7926 References from a stub section do not count. */
7927 if (h != NULL
7928 && r_type != R_MIPS16_26
7929 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7930 sizeof FN_STUB - 1) != 0
7931 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7932 sizeof CALL_STUB - 1) != 0
7933 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7934 sizeof CALL_FP_STUB - 1) != 0)
7936 struct mips_elf_link_hash_entry *mh;
7938 mh = (struct mips_elf_link_hash_entry *) h;
7939 mh->need_fn_stub = true;
7943 return true;
7946 /* Return the section that should be marked against GC for a given
7947 relocation. */
7949 asection *
7950 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7951 bfd *abfd;
7952 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7953 Elf_Internal_Rela *rel;
7954 struct elf_link_hash_entry *h;
7955 Elf_Internal_Sym *sym;
7957 /* ??? Do mips16 stub sections need to be handled special? */
7959 if (h != NULL)
7961 switch (ELF32_R_TYPE (rel->r_info))
7963 case R_MIPS_GNU_VTINHERIT:
7964 case R_MIPS_GNU_VTENTRY:
7965 break;
7967 default:
7968 switch (h->root.type)
7970 case bfd_link_hash_defined:
7971 case bfd_link_hash_defweak:
7972 return h->root.u.def.section;
7974 case bfd_link_hash_common:
7975 return h->root.u.c.p->section;
7977 default:
7978 break;
7982 else
7984 if (!(elf_bad_symtab (abfd)
7985 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7986 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7987 && sym->st_shndx != SHN_COMMON))
7989 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7993 return NULL;
7996 /* Update the got entry reference counts for the section being removed. */
7998 boolean
7999 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8000 bfd *abfd ATTRIBUTE_UNUSED;
8001 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8002 asection *sec ATTRIBUTE_UNUSED;
8003 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8005 #if 0
8006 Elf_Internal_Shdr *symtab_hdr;
8007 struct elf_link_hash_entry **sym_hashes;
8008 bfd_signed_vma *local_got_refcounts;
8009 const Elf_Internal_Rela *rel, *relend;
8010 unsigned long r_symndx;
8011 struct elf_link_hash_entry *h;
8013 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8014 sym_hashes = elf_sym_hashes (abfd);
8015 local_got_refcounts = elf_local_got_refcounts (abfd);
8017 relend = relocs + sec->reloc_count;
8018 for (rel = relocs; rel < relend; rel++)
8019 switch (ELF32_R_TYPE (rel->r_info))
8021 case R_MIPS_GOT16:
8022 case R_MIPS_CALL16:
8023 case R_MIPS_CALL_HI16:
8024 case R_MIPS_CALL_LO16:
8025 case R_MIPS_GOT_HI16:
8026 case R_MIPS_GOT_LO16:
8027 /* ??? It would seem that the existing MIPS code does no sort
8028 of reference counting or whatnot on its GOT and PLT entries,
8029 so it is not possible to garbage collect them at this time. */
8030 break;
8032 default:
8033 break;
8035 #endif
8037 return true;
8040 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8041 hiding the old indirect symbol. Process additional relocation
8042 information. */
8044 void
8045 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8046 struct elf_link_hash_entry *dir, *ind;
8048 struct mips_elf_link_hash_entry *dirmips, *indmips;
8050 _bfd_elf_link_hash_copy_indirect (dir, ind);
8052 dirmips = (struct mips_elf_link_hash_entry *) dir;
8053 indmips = (struct mips_elf_link_hash_entry *) ind;
8054 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8055 if (dirmips->min_dyn_reloc_index == 0
8056 || (indmips->min_dyn_reloc_index != 0
8057 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8058 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8059 if (indmips->no_fn_stub)
8060 dirmips->no_fn_stub = true;
8063 /* Adjust a symbol defined by a dynamic object and referenced by a
8064 regular object. The current definition is in some section of the
8065 dynamic object, but we're not including those sections. We have to
8066 change the definition to something the rest of the link can
8067 understand. */
8069 boolean
8070 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8071 struct bfd_link_info *info;
8072 struct elf_link_hash_entry *h;
8074 bfd *dynobj;
8075 struct mips_elf_link_hash_entry *hmips;
8076 asection *s;
8078 dynobj = elf_hash_table (info)->dynobj;
8080 /* Make sure we know what is going on here. */
8081 BFD_ASSERT (dynobj != NULL
8082 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8083 || h->weakdef != NULL
8084 || ((h->elf_link_hash_flags
8085 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8086 && (h->elf_link_hash_flags
8087 & ELF_LINK_HASH_REF_REGULAR) != 0
8088 && (h->elf_link_hash_flags
8089 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8091 /* If this symbol is defined in a dynamic object, we need to copy
8092 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8093 file. */
8094 hmips = (struct mips_elf_link_hash_entry *) h;
8095 if (! info->relocateable
8096 && hmips->possibly_dynamic_relocs != 0
8097 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8098 mips_elf_allocate_dynamic_relocations (dynobj,
8099 hmips->possibly_dynamic_relocs);
8101 /* For a function, create a stub, if allowed. */
8102 if (! hmips->no_fn_stub
8103 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8105 if (! elf_hash_table (info)->dynamic_sections_created)
8106 return true;
8108 /* If this symbol is not defined in a regular file, then set
8109 the symbol to the stub location. This is required to make
8110 function pointers compare as equal between the normal
8111 executable and the shared library. */
8112 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8114 /* We need .stub section. */
8115 s = bfd_get_section_by_name (dynobj,
8116 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8117 BFD_ASSERT (s != NULL);
8119 h->root.u.def.section = s;
8120 h->root.u.def.value = s->_raw_size;
8122 /* XXX Write this stub address somewhere. */
8123 h->plt.offset = s->_raw_size;
8125 /* Make room for this stub code. */
8126 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8128 /* The last half word of the stub will be filled with the index
8129 of this symbol in .dynsym section. */
8130 return true;
8133 else if ((h->type == STT_FUNC)
8134 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8136 /* This will set the entry for this symbol in the GOT to 0, and
8137 the dynamic linker will take care of this. */
8138 h->root.u.def.value = 0;
8139 return true;
8142 /* If this is a weak symbol, and there is a real definition, the
8143 processor independent code will have arranged for us to see the
8144 real definition first, and we can just use the same value. */
8145 if (h->weakdef != NULL)
8147 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8148 || h->weakdef->root.type == bfd_link_hash_defweak);
8149 h->root.u.def.section = h->weakdef->root.u.def.section;
8150 h->root.u.def.value = h->weakdef->root.u.def.value;
8151 return true;
8154 /* This is a reference to a symbol defined by a dynamic object which
8155 is not a function. */
8157 return true;
8160 /* This function is called after all the input files have been read,
8161 and the input sections have been assigned to output sections. We
8162 check for any mips16 stub sections that we can discard. */
8164 static boolean mips_elf_check_mips16_stubs
8165 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8167 boolean
8168 _bfd_mips_elf_always_size_sections (output_bfd, info)
8169 bfd *output_bfd;
8170 struct bfd_link_info *info;
8172 asection *ri;
8174 /* The .reginfo section has a fixed size. */
8175 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8176 if (ri != NULL)
8177 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8179 if (info->relocateable
8180 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8181 return true;
8183 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8184 mips_elf_check_mips16_stubs,
8185 (PTR) NULL);
8187 return true;
8190 /* Check the mips16 stubs for a particular symbol, and see if we can
8191 discard them. */
8193 static boolean
8194 mips_elf_check_mips16_stubs (h, data)
8195 struct mips_elf_link_hash_entry *h;
8196 PTR data ATTRIBUTE_UNUSED;
8198 if (h->fn_stub != NULL
8199 && ! h->need_fn_stub)
8201 /* We don't need the fn_stub; the only references to this symbol
8202 are 16 bit calls. Clobber the size to 0 to prevent it from
8203 being included in the link. */
8204 h->fn_stub->_raw_size = 0;
8205 h->fn_stub->_cooked_size = 0;
8206 h->fn_stub->flags &= ~SEC_RELOC;
8207 h->fn_stub->reloc_count = 0;
8208 h->fn_stub->flags |= SEC_EXCLUDE;
8211 if (h->call_stub != NULL
8212 && h->root.other == STO_MIPS16)
8214 /* We don't need the call_stub; this is a 16 bit function, so
8215 calls from other 16 bit functions are OK. Clobber the size
8216 to 0 to prevent it from being included in the link. */
8217 h->call_stub->_raw_size = 0;
8218 h->call_stub->_cooked_size = 0;
8219 h->call_stub->flags &= ~SEC_RELOC;
8220 h->call_stub->reloc_count = 0;
8221 h->call_stub->flags |= SEC_EXCLUDE;
8224 if (h->call_fp_stub != NULL
8225 && h->root.other == STO_MIPS16)
8227 /* We don't need the call_stub; this is a 16 bit function, so
8228 calls from other 16 bit functions are OK. Clobber the size
8229 to 0 to prevent it from being included in the link. */
8230 h->call_fp_stub->_raw_size = 0;
8231 h->call_fp_stub->_cooked_size = 0;
8232 h->call_fp_stub->flags &= ~SEC_RELOC;
8233 h->call_fp_stub->reloc_count = 0;
8234 h->call_fp_stub->flags |= SEC_EXCLUDE;
8237 return true;
8240 /* Set the sizes of the dynamic sections. */
8242 boolean
8243 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8244 bfd *output_bfd;
8245 struct bfd_link_info *info;
8247 bfd *dynobj;
8248 asection *s;
8249 boolean reltext;
8250 struct mips_got_info *g = NULL;
8252 dynobj = elf_hash_table (info)->dynobj;
8253 BFD_ASSERT (dynobj != NULL);
8255 if (elf_hash_table (info)->dynamic_sections_created)
8257 /* Set the contents of the .interp section to the interpreter. */
8258 if (! info->shared)
8260 s = bfd_get_section_by_name (dynobj, ".interp");
8261 BFD_ASSERT (s != NULL);
8262 s->_raw_size
8263 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8264 s->contents
8265 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8269 /* The check_relocs and adjust_dynamic_symbol entry points have
8270 determined the sizes of the various dynamic sections. Allocate
8271 memory for them. */
8272 reltext = false;
8273 for (s = dynobj->sections; s != NULL; s = s->next)
8275 const char *name;
8276 boolean strip;
8278 /* It's OK to base decisions on the section name, because none
8279 of the dynobj section names depend upon the input files. */
8280 name = bfd_get_section_name (dynobj, s);
8282 if ((s->flags & SEC_LINKER_CREATED) == 0)
8283 continue;
8285 strip = false;
8287 if (strncmp (name, ".rel", 4) == 0)
8289 if (s->_raw_size == 0)
8291 /* We only strip the section if the output section name
8292 has the same name. Otherwise, there might be several
8293 input sections for this output section. FIXME: This
8294 code is probably not needed these days anyhow, since
8295 the linker now does not create empty output sections. */
8296 if (s->output_section != NULL
8297 && strcmp (name,
8298 bfd_get_section_name (s->output_section->owner,
8299 s->output_section)) == 0)
8300 strip = true;
8302 else
8304 const char *outname;
8305 asection *target;
8307 /* If this relocation section applies to a read only
8308 section, then we probably need a DT_TEXTREL entry.
8309 If the relocation section is .rel.dyn, we always
8310 assert a DT_TEXTREL entry rather than testing whether
8311 there exists a relocation to a read only section or
8312 not. */
8313 outname = bfd_get_section_name (output_bfd,
8314 s->output_section);
8315 target = bfd_get_section_by_name (output_bfd, outname + 4);
8316 if ((target != NULL
8317 && (target->flags & SEC_READONLY) != 0
8318 && (target->flags & SEC_ALLOC) != 0)
8319 || strcmp (outname,
8320 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8321 reltext = true;
8323 /* We use the reloc_count field as a counter if we need
8324 to copy relocs into the output file. */
8325 if (strcmp (name,
8326 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8327 s->reloc_count = 0;
8330 else if (strncmp (name, ".got", 4) == 0)
8332 int i;
8333 bfd_size_type loadable_size = 0;
8334 bfd_size_type local_gotno;
8335 struct _bfd *sub;
8337 BFD_ASSERT (elf_section_data (s) != NULL);
8338 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8339 BFD_ASSERT (g != NULL);
8341 /* Calculate the total loadable size of the output. That
8342 will give us the maximum number of GOT_PAGE entries
8343 required. */
8344 for (sub = info->input_bfds; sub; sub = sub->link_next)
8346 asection *subsection;
8348 for (subsection = sub->sections;
8349 subsection;
8350 subsection = subsection->next)
8352 if ((subsection->flags & SEC_ALLOC) == 0)
8353 continue;
8354 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8357 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8359 /* Assume there are two loadable segments consisting of
8360 contiguous sections. Is 5 enough? */
8361 local_gotno = (loadable_size >> 16) + 5;
8362 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8363 /* It's possible we will need GOT_PAGE entries as well as
8364 GOT16 entries. Often, these will be able to share GOT
8365 entries, but not always. */
8366 local_gotno *= 2;
8368 g->local_gotno += local_gotno;
8369 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8371 /* There has to be a global GOT entry for every symbol with
8372 a dynamic symbol table index of DT_MIPS_GOTSYM or
8373 higher. Therefore, it make sense to put those symbols
8374 that need GOT entries at the end of the symbol table. We
8375 do that here. */
8376 if (!mips_elf_sort_hash_table (info, 1))
8377 return false;
8379 if (g->global_gotsym != NULL)
8380 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8381 else
8382 /* If there are no global symbols, or none requiring
8383 relocations, then GLOBAL_GOTSYM will be NULL. */
8384 i = 0;
8385 g->global_gotno = i;
8386 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8388 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8390 /* Irix rld assumes that the function stub isn't at the end
8391 of .text section. So put a dummy. XXX */
8392 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8394 else if (! info->shared
8395 && ! mips_elf_hash_table (info)->use_rld_obj_head
8396 && strncmp (name, ".rld_map", 8) == 0)
8398 /* We add a room for __rld_map. It will be filled in by the
8399 rtld to contain a pointer to the _r_debug structure. */
8400 s->_raw_size += 4;
8402 else if (SGI_COMPAT (output_bfd)
8403 && strncmp (name, ".compact_rel", 12) == 0)
8404 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8405 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8406 == 0)
8407 s->_raw_size = (sizeof (Elf32_External_Msym)
8408 * (elf_hash_table (info)->dynsymcount
8409 + bfd_count_sections (output_bfd)));
8410 else if (strncmp (name, ".init", 5) != 0)
8412 /* It's not one of our sections, so don't allocate space. */
8413 continue;
8416 if (strip)
8418 _bfd_strip_section_from_output (info, s);
8419 continue;
8422 /* Allocate memory for the section contents. */
8423 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8424 if (s->contents == NULL && s->_raw_size != 0)
8426 bfd_set_error (bfd_error_no_memory);
8427 return false;
8431 if (elf_hash_table (info)->dynamic_sections_created)
8433 /* Add some entries to the .dynamic section. We fill in the
8434 values later, in elf_mips_finish_dynamic_sections, but we
8435 must add the entries now so that we get the correct size for
8436 the .dynamic section. The DT_DEBUG entry is filled in by the
8437 dynamic linker and used by the debugger. */
8438 if (! info->shared)
8440 /* SGI object has the equivalence of DT_DEBUG in the
8441 DT_MIPS_RLD_MAP entry. */
8442 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8443 return false;
8444 if (!SGI_COMPAT (output_bfd))
8446 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8447 return false;
8450 else
8452 /* Shared libraries on traditional mips have DT_DEBUG. */
8453 if (!SGI_COMPAT (output_bfd))
8455 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8456 return false;
8459 if (reltext && SGI_COMPAT (output_bfd))
8461 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8462 return false;
8463 info->flags |= DF_TEXTREL;
8466 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8467 return false;
8469 if (bfd_get_section_by_name (dynobj,
8470 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8472 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8473 return false;
8475 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8476 return false;
8478 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8479 return false;
8482 if (SGI_COMPAT (output_bfd))
8484 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8485 return false;
8488 if (SGI_COMPAT (output_bfd))
8490 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8491 return false;
8494 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8496 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8497 return false;
8499 s = bfd_get_section_by_name (dynobj, ".liblist");
8500 BFD_ASSERT (s != NULL);
8502 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8503 return false;
8506 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8507 return false;
8509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8510 return false;
8512 #if 0
8513 /* Time stamps in executable files are a bad idea. */
8514 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8515 return false;
8516 #endif
8518 #if 0 /* FIXME */
8519 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8520 return false;
8521 #endif
8523 #if 0 /* FIXME */
8524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8525 return false;
8526 #endif
8528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8529 return false;
8531 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8532 return false;
8534 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8535 return false;
8537 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8538 return false;
8540 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8541 return false;
8543 if (IRIX_COMPAT (dynobj) == ict_irix5
8544 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8545 return false;
8547 if (IRIX_COMPAT (dynobj) == ict_irix6
8548 && (bfd_get_section_by_name
8549 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8550 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8551 return false;
8553 if (bfd_get_section_by_name (dynobj,
8554 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8555 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8556 return false;
8559 return true;
8562 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8563 adjust it appropriately now. */
8565 static void
8566 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8567 bfd *abfd ATTRIBUTE_UNUSED;
8568 const char *name;
8569 Elf_Internal_Sym *sym;
8571 /* The linker script takes care of providing names and values for
8572 these, but we must place them into the right sections. */
8573 static const char* const text_section_symbols[] = {
8574 "_ftext",
8575 "_etext",
8576 "__dso_displacement",
8577 "__elf_header",
8578 "__program_header_table",
8579 NULL
8582 static const char* const data_section_symbols[] = {
8583 "_fdata",
8584 "_edata",
8585 "_end",
8586 "_fbss",
8587 NULL
8590 const char* const *p;
8591 int i;
8593 for (i = 0; i < 2; ++i)
8594 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8596 ++p)
8597 if (strcmp (*p, name) == 0)
8599 /* All of these symbols are given type STT_SECTION by the
8600 IRIX6 linker. */
8601 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8603 /* The IRIX linker puts these symbols in special sections. */
8604 if (i == 0)
8605 sym->st_shndx = SHN_MIPS_TEXT;
8606 else
8607 sym->st_shndx = SHN_MIPS_DATA;
8609 break;
8613 /* Finish up dynamic symbol handling. We set the contents of various
8614 dynamic sections here. */
8616 boolean
8617 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8618 bfd *output_bfd;
8619 struct bfd_link_info *info;
8620 struct elf_link_hash_entry *h;
8621 Elf_Internal_Sym *sym;
8623 bfd *dynobj;
8624 bfd_vma gval;
8625 asection *sgot;
8626 asection *smsym;
8627 struct mips_got_info *g;
8628 const char *name;
8629 struct mips_elf_link_hash_entry *mh;
8631 dynobj = elf_hash_table (info)->dynobj;
8632 gval = sym->st_value;
8633 mh = (struct mips_elf_link_hash_entry *) h;
8635 if (h->plt.offset != (bfd_vma) -1)
8637 asection *s;
8638 bfd_byte *p;
8639 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8641 /* This symbol has a stub. Set it up. */
8643 BFD_ASSERT (h->dynindx != -1);
8645 s = bfd_get_section_by_name (dynobj,
8646 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8647 BFD_ASSERT (s != NULL);
8649 /* Fill the stub. */
8650 p = stub;
8651 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8652 p += 4;
8653 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8654 p += 4;
8656 /* FIXME: Can h->dynindex be more than 64K? */
8657 if (h->dynindx & 0xffff0000)
8658 return false;
8660 bfd_put_32 (output_bfd, STUB_JALR, p);
8661 p += 4;
8662 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8664 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8665 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8667 /* Mark the symbol as undefined. plt.offset != -1 occurs
8668 only for the referenced symbol. */
8669 sym->st_shndx = SHN_UNDEF;
8671 /* The run-time linker uses the st_value field of the symbol
8672 to reset the global offset table entry for this external
8673 to its stub address when unlinking a shared object. */
8674 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8675 sym->st_value = gval;
8678 BFD_ASSERT (h->dynindx != -1
8679 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8681 sgot = mips_elf_got_section (dynobj);
8682 BFD_ASSERT (sgot != NULL);
8683 BFD_ASSERT (elf_section_data (sgot) != NULL);
8684 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8685 BFD_ASSERT (g != NULL);
8687 /* Run through the global symbol table, creating GOT entries for all
8688 the symbols that need them. */
8689 if (g->global_gotsym != NULL
8690 && h->dynindx >= g->global_gotsym->dynindx)
8692 bfd_vma offset;
8693 bfd_vma value;
8695 if (sym->st_value)
8696 value = sym->st_value;
8697 else
8699 /* For an entity defined in a shared object, this will be
8700 NULL. (For functions in shared objects for
8701 which we have created stubs, ST_VALUE will be non-NULL.
8702 That's because such the functions are now no longer defined
8703 in a shared object.) */
8705 if (info->shared && h->root.type == bfd_link_hash_undefined)
8706 value = 0;
8707 else
8708 value = h->root.u.def.value;
8710 offset = mips_elf_global_got_index (dynobj, h);
8711 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8714 /* Create a .msym entry, if appropriate. */
8715 smsym = bfd_get_section_by_name (dynobj,
8716 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8717 if (smsym)
8719 Elf32_Internal_Msym msym;
8721 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8722 /* It is undocumented what the `1' indicates, but IRIX6 uses
8723 this value. */
8724 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8725 bfd_mips_elf_swap_msym_out
8726 (dynobj, &msym,
8727 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8730 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8731 name = h->root.root.string;
8732 if (strcmp (name, "_DYNAMIC") == 0
8733 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8734 sym->st_shndx = SHN_ABS;
8735 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8736 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8738 sym->st_shndx = SHN_ABS;
8739 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8740 sym->st_value = 1;
8742 else if (strcmp (name, "_gp_disp") == 0)
8744 sym->st_shndx = SHN_ABS;
8745 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8746 sym->st_value = elf_gp (output_bfd);
8748 else if (SGI_COMPAT (output_bfd))
8750 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8751 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8753 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8754 sym->st_other = STO_PROTECTED;
8755 sym->st_value = 0;
8756 sym->st_shndx = SHN_MIPS_DATA;
8758 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8760 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8761 sym->st_other = STO_PROTECTED;
8762 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8763 sym->st_shndx = SHN_ABS;
8765 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8767 if (h->type == STT_FUNC)
8768 sym->st_shndx = SHN_MIPS_TEXT;
8769 else if (h->type == STT_OBJECT)
8770 sym->st_shndx = SHN_MIPS_DATA;
8774 /* Handle the IRIX6-specific symbols. */
8775 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8776 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8778 if (! info->shared)
8780 if (! mips_elf_hash_table (info)->use_rld_obj_head
8781 && (strcmp (name, "__rld_map") == 0
8782 || strcmp (name, "__RLD_MAP") == 0))
8784 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8785 BFD_ASSERT (s != NULL);
8786 sym->st_value = s->output_section->vma + s->output_offset;
8787 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8788 if (mips_elf_hash_table (info)->rld_value == 0)
8789 mips_elf_hash_table (info)->rld_value = sym->st_value;
8791 else if (mips_elf_hash_table (info)->use_rld_obj_head
8792 && strcmp (name, "__rld_obj_head") == 0)
8794 /* IRIX6 does not use a .rld_map section. */
8795 if (IRIX_COMPAT (output_bfd) == ict_irix5
8796 || IRIX_COMPAT (output_bfd) == ict_none)
8797 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8798 != NULL);
8799 mips_elf_hash_table (info)->rld_value = sym->st_value;
8803 /* If this is a mips16 symbol, force the value to be even. */
8804 if (sym->st_other == STO_MIPS16
8805 && (sym->st_value & 1) != 0)
8806 --sym->st_value;
8808 return true;
8811 /* Finish up the dynamic sections. */
8813 boolean
8814 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8815 bfd *output_bfd;
8816 struct bfd_link_info *info;
8818 bfd *dynobj;
8819 asection *sdyn;
8820 asection *sgot;
8821 struct mips_got_info *g;
8823 dynobj = elf_hash_table (info)->dynobj;
8825 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8827 sgot = mips_elf_got_section (dynobj);
8828 if (sgot == NULL)
8829 g = NULL;
8830 else
8832 BFD_ASSERT (elf_section_data (sgot) != NULL);
8833 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8834 BFD_ASSERT (g != NULL);
8837 if (elf_hash_table (info)->dynamic_sections_created)
8839 bfd_byte *b;
8841 BFD_ASSERT (sdyn != NULL);
8842 BFD_ASSERT (g != NULL);
8844 for (b = sdyn->contents;
8845 b < sdyn->contents + sdyn->_raw_size;
8846 b += MIPS_ELF_DYN_SIZE (dynobj))
8848 Elf_Internal_Dyn dyn;
8849 const char *name;
8850 size_t elemsize;
8851 asection *s;
8852 boolean swap_out_p;
8854 /* Read in the current dynamic entry. */
8855 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8857 /* Assume that we're going to modify it and write it out. */
8858 swap_out_p = true;
8860 switch (dyn.d_tag)
8862 case DT_RELENT:
8863 s = (bfd_get_section_by_name
8864 (dynobj,
8865 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8866 BFD_ASSERT (s != NULL);
8867 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8868 break;
8870 case DT_STRSZ:
8871 /* Rewrite DT_STRSZ. */
8872 dyn.d_un.d_val =
8873 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8874 break;
8876 case DT_PLTGOT:
8877 name = ".got";
8878 goto get_vma;
8879 case DT_MIPS_CONFLICT:
8880 name = ".conflict";
8881 goto get_vma;
8882 case DT_MIPS_LIBLIST:
8883 name = ".liblist";
8884 get_vma:
8885 s = bfd_get_section_by_name (output_bfd, name);
8886 BFD_ASSERT (s != NULL);
8887 dyn.d_un.d_ptr = s->vma;
8888 break;
8890 case DT_MIPS_RLD_VERSION:
8891 dyn.d_un.d_val = 1; /* XXX */
8892 break;
8894 case DT_MIPS_FLAGS:
8895 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8896 break;
8898 case DT_MIPS_CONFLICTNO:
8899 name = ".conflict";
8900 elemsize = sizeof (Elf32_Conflict);
8901 goto set_elemno;
8903 case DT_MIPS_LIBLISTNO:
8904 name = ".liblist";
8905 elemsize = sizeof (Elf32_Lib);
8906 set_elemno:
8907 s = bfd_get_section_by_name (output_bfd, name);
8908 if (s != NULL)
8910 if (s->_cooked_size != 0)
8911 dyn.d_un.d_val = s->_cooked_size / elemsize;
8912 else
8913 dyn.d_un.d_val = s->_raw_size / elemsize;
8915 else
8916 dyn.d_un.d_val = 0;
8917 break;
8919 case DT_MIPS_TIME_STAMP:
8920 time ((time_t *) &dyn.d_un.d_val);
8921 break;
8923 case DT_MIPS_ICHECKSUM:
8924 /* XXX FIXME: */
8925 swap_out_p = false;
8926 break;
8928 case DT_MIPS_IVERSION:
8929 /* XXX FIXME: */
8930 swap_out_p = false;
8931 break;
8933 case DT_MIPS_BASE_ADDRESS:
8934 s = output_bfd->sections;
8935 BFD_ASSERT (s != NULL);
8936 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8937 break;
8939 case DT_MIPS_LOCAL_GOTNO:
8940 dyn.d_un.d_val = g->local_gotno;
8941 break;
8943 case DT_MIPS_UNREFEXTNO:
8944 /* The index into the dynamic symbol table which is the
8945 entry of the first external symbol that is not
8946 referenced within the same object. */
8947 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8948 break;
8950 case DT_MIPS_GOTSYM:
8951 if (g->global_gotsym)
8953 dyn.d_un.d_val = g->global_gotsym->dynindx;
8954 break;
8956 /* In case if we don't have global got symbols we default
8957 to setting DT_MIPS_GOTSYM to the same value as
8958 DT_MIPS_SYMTABNO, so we just fall through. */
8960 case DT_MIPS_SYMTABNO:
8961 name = ".dynsym";
8962 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8963 s = bfd_get_section_by_name (output_bfd, name);
8964 BFD_ASSERT (s != NULL);
8966 if (s->_cooked_size != 0)
8967 dyn.d_un.d_val = s->_cooked_size / elemsize;
8968 else
8969 dyn.d_un.d_val = s->_raw_size / elemsize;
8970 break;
8972 case DT_MIPS_HIPAGENO:
8973 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8974 break;
8976 case DT_MIPS_RLD_MAP:
8977 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8978 break;
8980 case DT_MIPS_OPTIONS:
8981 s = (bfd_get_section_by_name
8982 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8983 dyn.d_un.d_ptr = s->vma;
8984 break;
8986 case DT_MIPS_MSYM:
8987 s = (bfd_get_section_by_name
8988 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8989 dyn.d_un.d_ptr = s->vma;
8990 break;
8992 default:
8993 swap_out_p = false;
8994 break;
8997 if (swap_out_p)
8998 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8999 (dynobj, &dyn, b);
9003 /* The first entry of the global offset table will be filled at
9004 runtime. The second entry will be used by some runtime loaders.
9005 This isn't the case of Irix rld. */
9006 if (sgot != NULL && sgot->_raw_size > 0)
9008 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9009 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9010 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9013 if (sgot != NULL)
9014 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9015 = MIPS_ELF_GOT_SIZE (output_bfd);
9018 asection *smsym;
9019 asection *s;
9020 Elf32_compact_rel cpt;
9022 /* ??? The section symbols for the output sections were set up in
9023 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9024 symbols. Should we do so? */
9026 smsym = bfd_get_section_by_name (dynobj,
9027 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9028 if (smsym != NULL)
9030 Elf32_Internal_Msym msym;
9032 msym.ms_hash_value = 0;
9033 msym.ms_info = ELF32_MS_INFO (0, 1);
9035 for (s = output_bfd->sections; s != NULL; s = s->next)
9037 long dynindx = elf_section_data (s)->dynindx;
9039 bfd_mips_elf_swap_msym_out
9040 (output_bfd, &msym,
9041 (((Elf32_External_Msym *) smsym->contents)
9042 + dynindx));
9046 if (SGI_COMPAT (output_bfd))
9048 /* Write .compact_rel section out. */
9049 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9050 if (s != NULL)
9052 cpt.id1 = 1;
9053 cpt.num = s->reloc_count;
9054 cpt.id2 = 2;
9055 cpt.offset = (s->output_section->filepos
9056 + sizeof (Elf32_External_compact_rel));
9057 cpt.reserved0 = 0;
9058 cpt.reserved1 = 0;
9059 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9060 ((Elf32_External_compact_rel *)
9061 s->contents));
9063 /* Clean up a dummy stub function entry in .text. */
9064 s = bfd_get_section_by_name (dynobj,
9065 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9066 if (s != NULL)
9068 file_ptr dummy_offset;
9070 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9071 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9072 memset (s->contents + dummy_offset, 0,
9073 MIPS_FUNCTION_STUB_SIZE);
9078 /* We need to sort the entries of the dynamic relocation section. */
9080 if (!ABI_64_P (output_bfd))
9082 asection *reldyn;
9084 reldyn = bfd_get_section_by_name (dynobj,
9085 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9086 if (reldyn != NULL && reldyn->reloc_count > 2)
9088 reldyn_sorting_bfd = output_bfd;
9089 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9090 (size_t) reldyn->reloc_count - 1,
9091 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9095 /* Clean up a first relocation in .rel.dyn. */
9096 s = bfd_get_section_by_name (dynobj,
9097 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9098 if (s != NULL && s->_raw_size > 0)
9099 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9102 return true;
9105 /* This is almost identical to bfd_generic_get_... except that some
9106 MIPS relocations need to be handled specially. Sigh. */
9108 static bfd_byte *
9109 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9110 relocateable, symbols)
9111 bfd *abfd;
9112 struct bfd_link_info *link_info;
9113 struct bfd_link_order *link_order;
9114 bfd_byte *data;
9115 boolean relocateable;
9116 asymbol **symbols;
9118 /* Get enough memory to hold the stuff */
9119 bfd *input_bfd = link_order->u.indirect.section->owner;
9120 asection *input_section = link_order->u.indirect.section;
9122 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9123 arelent **reloc_vector = NULL;
9124 long reloc_count;
9126 if (reloc_size < 0)
9127 goto error_return;
9129 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9130 if (reloc_vector == NULL && reloc_size != 0)
9131 goto error_return;
9133 /* read in the section */
9134 if (!bfd_get_section_contents (input_bfd,
9135 input_section,
9136 (PTR) data,
9138 input_section->_raw_size))
9139 goto error_return;
9141 /* We're not relaxing the section, so just copy the size info */
9142 input_section->_cooked_size = input_section->_raw_size;
9143 input_section->reloc_done = true;
9145 reloc_count = bfd_canonicalize_reloc (input_bfd,
9146 input_section,
9147 reloc_vector,
9148 symbols);
9149 if (reloc_count < 0)
9150 goto error_return;
9152 if (reloc_count > 0)
9154 arelent **parent;
9155 /* for mips */
9156 int gp_found;
9157 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9160 struct bfd_hash_entry *h;
9161 struct bfd_link_hash_entry *lh;
9162 /* Skip all this stuff if we aren't mixing formats. */
9163 if (abfd && input_bfd
9164 && abfd->xvec == input_bfd->xvec)
9165 lh = 0;
9166 else
9168 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9169 lh = (struct bfd_link_hash_entry *) h;
9171 lookup:
9172 if (lh)
9174 switch (lh->type)
9176 case bfd_link_hash_undefined:
9177 case bfd_link_hash_undefweak:
9178 case bfd_link_hash_common:
9179 gp_found = 0;
9180 break;
9181 case bfd_link_hash_defined:
9182 case bfd_link_hash_defweak:
9183 gp_found = 1;
9184 gp = lh->u.def.value;
9185 break;
9186 case bfd_link_hash_indirect:
9187 case bfd_link_hash_warning:
9188 lh = lh->u.i.link;
9189 /* @@FIXME ignoring warning for now */
9190 goto lookup;
9191 case bfd_link_hash_new:
9192 default:
9193 abort ();
9196 else
9197 gp_found = 0;
9199 /* end mips */
9200 for (parent = reloc_vector; *parent != (arelent *) NULL;
9201 parent++)
9203 char *error_message = (char *) NULL;
9204 bfd_reloc_status_type r;
9206 /* Specific to MIPS: Deal with relocation types that require
9207 knowing the gp of the output bfd. */
9208 asymbol *sym = *(*parent)->sym_ptr_ptr;
9209 if (bfd_is_abs_section (sym->section) && abfd)
9211 /* The special_function wouldn't get called anyways. */
9213 else if (!gp_found)
9215 /* The gp isn't there; let the special function code
9216 fall over on its own. */
9218 else if ((*parent)->howto->special_function
9219 == _bfd_mips_elf_gprel16_reloc)
9221 /* bypass special_function call */
9222 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9223 relocateable, (PTR) data, gp);
9224 goto skip_bfd_perform_relocation;
9226 /* end mips specific stuff */
9228 r = bfd_perform_relocation (input_bfd,
9229 *parent,
9230 (PTR) data,
9231 input_section,
9232 relocateable ? abfd : (bfd *) NULL,
9233 &error_message);
9234 skip_bfd_perform_relocation:
9236 if (relocateable)
9238 asection *os = input_section->output_section;
9240 /* A partial link, so keep the relocs */
9241 os->orelocation[os->reloc_count] = *parent;
9242 os->reloc_count++;
9245 if (r != bfd_reloc_ok)
9247 switch (r)
9249 case bfd_reloc_undefined:
9250 if (!((*link_info->callbacks->undefined_symbol)
9251 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9252 input_bfd, input_section, (*parent)->address,
9253 true)))
9254 goto error_return;
9255 break;
9256 case bfd_reloc_dangerous:
9257 BFD_ASSERT (error_message != (char *) NULL);
9258 if (!((*link_info->callbacks->reloc_dangerous)
9259 (link_info, error_message, input_bfd, input_section,
9260 (*parent)->address)))
9261 goto error_return;
9262 break;
9263 case bfd_reloc_overflow:
9264 if (!((*link_info->callbacks->reloc_overflow)
9265 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9266 (*parent)->howto->name, (*parent)->addend,
9267 input_bfd, input_section, (*parent)->address)))
9268 goto error_return;
9269 break;
9270 case bfd_reloc_outofrange:
9271 default:
9272 abort ();
9273 break;
9279 if (reloc_vector != NULL)
9280 free (reloc_vector);
9281 return data;
9283 error_return:
9284 if (reloc_vector != NULL)
9285 free (reloc_vector);
9286 return NULL;
9289 #define bfd_elf32_bfd_get_relocated_section_contents \
9290 elf32_mips_get_relocated_section_contents
9292 /* ECOFF swapping routines. These are used when dealing with the
9293 .mdebug section, which is in the ECOFF debugging format. */
9294 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9295 /* Symbol table magic number. */
9296 magicSym,
9297 /* Alignment of debugging information. E.g., 4. */
9299 /* Sizes of external symbolic information. */
9300 sizeof (struct hdr_ext),
9301 sizeof (struct dnr_ext),
9302 sizeof (struct pdr_ext),
9303 sizeof (struct sym_ext),
9304 sizeof (struct opt_ext),
9305 sizeof (struct fdr_ext),
9306 sizeof (struct rfd_ext),
9307 sizeof (struct ext_ext),
9308 /* Functions to swap in external symbolic data. */
9309 ecoff_swap_hdr_in,
9310 ecoff_swap_dnr_in,
9311 ecoff_swap_pdr_in,
9312 ecoff_swap_sym_in,
9313 ecoff_swap_opt_in,
9314 ecoff_swap_fdr_in,
9315 ecoff_swap_rfd_in,
9316 ecoff_swap_ext_in,
9317 _bfd_ecoff_swap_tir_in,
9318 _bfd_ecoff_swap_rndx_in,
9319 /* Functions to swap out external symbolic data. */
9320 ecoff_swap_hdr_out,
9321 ecoff_swap_dnr_out,
9322 ecoff_swap_pdr_out,
9323 ecoff_swap_sym_out,
9324 ecoff_swap_opt_out,
9325 ecoff_swap_fdr_out,
9326 ecoff_swap_rfd_out,
9327 ecoff_swap_ext_out,
9328 _bfd_ecoff_swap_tir_out,
9329 _bfd_ecoff_swap_rndx_out,
9330 /* Function to read in symbolic data. */
9331 _bfd_mips_elf_read_ecoff_info
9334 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9335 #define TARGET_LITTLE_NAME "elf32-littlemips"
9336 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9337 #define TARGET_BIG_NAME "elf32-bigmips"
9338 #define ELF_ARCH bfd_arch_mips
9339 #define ELF_MACHINE_CODE EM_MIPS
9341 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9342 a value of 0x1000, and we are compatible. */
9343 #define ELF_MAXPAGESIZE 0x1000
9345 #define elf_backend_collect true
9346 #define elf_backend_type_change_ok true
9347 #define elf_backend_can_gc_sections true
9348 #define elf_backend_sign_extend_vma true
9349 #define elf_info_to_howto mips_info_to_howto_rela
9350 #define elf_info_to_howto_rel mips_info_to_howto_rel
9351 #define elf_backend_sym_is_global mips_elf_sym_is_global
9352 #define elf_backend_object_p _bfd_mips_elf_object_p
9353 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9354 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9355 #define elf_backend_section_from_bfd_section \
9356 _bfd_mips_elf_section_from_bfd_section
9357 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9358 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9359 #define elf_backend_additional_program_headers \
9360 _bfd_mips_elf_additional_program_headers
9361 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9362 #define elf_backend_final_write_processing \
9363 _bfd_mips_elf_final_write_processing
9364 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9365 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9366 #define elf_backend_create_dynamic_sections \
9367 _bfd_mips_elf_create_dynamic_sections
9368 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9369 #define elf_backend_adjust_dynamic_symbol \
9370 _bfd_mips_elf_adjust_dynamic_symbol
9371 #define elf_backend_always_size_sections \
9372 _bfd_mips_elf_always_size_sections
9373 #define elf_backend_size_dynamic_sections \
9374 _bfd_mips_elf_size_dynamic_sections
9375 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9376 #define elf_backend_link_output_symbol_hook \
9377 _bfd_mips_elf_link_output_symbol_hook
9378 #define elf_backend_finish_dynamic_symbol \
9379 _bfd_mips_elf_finish_dynamic_symbol
9380 #define elf_backend_finish_dynamic_sections \
9381 _bfd_mips_elf_finish_dynamic_sections
9382 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9383 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9385 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9386 #define elf_backend_plt_header_size 0
9388 #define elf_backend_copy_indirect_symbol \
9389 _bfd_mips_elf_copy_indirect_symbol
9391 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9393 #define bfd_elf32_bfd_is_local_label_name \
9394 mips_elf_is_local_label_name
9395 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9396 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9397 #define bfd_elf32_bfd_link_hash_table_create \
9398 _bfd_mips_elf_link_hash_table_create
9399 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9400 #define bfd_elf32_bfd_copy_private_bfd_data \
9401 _bfd_mips_elf_copy_private_bfd_data
9402 #define bfd_elf32_bfd_merge_private_bfd_data \
9403 _bfd_mips_elf_merge_private_bfd_data
9404 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9405 #define bfd_elf32_bfd_print_private_bfd_data \
9406 _bfd_mips_elf_print_private_bfd_data
9407 #include "elf32-target.h"
9409 /* Support for traditional mips targets */
9411 #define INCLUDED_TARGET_FILE /* More a type of flag */
9413 #undef TARGET_LITTLE_SYM
9414 #undef TARGET_LITTLE_NAME
9415 #undef TARGET_BIG_SYM
9416 #undef TARGET_BIG_NAME
9418 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9419 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9420 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9421 #define TARGET_BIG_NAME "elf32-tradbigmips"
9423 /* Include the target file again for this target */
9424 #include "elf32-target.h"