PR ld/11384
[binutils.git] / gold / arm.cc
blobe331fd3462a18d31a62f9be69c985a660abfe148
1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
26 #include "gold.h"
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
55 namespace
58 using namespace gold;
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
64 class Stub_table;
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
81 class Arm_relobj;
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
90 class Target_arm;
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
134 class Insn_template
136 public:
137 // Types of instruction templates.
138 enum Type
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
189 uint32_t
190 data() const
191 { return this->data_; }
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
256 // Stub types.
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
261 arm_stub_none,
262 DEF_STUBS
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
283 class Stub_template
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
288 ~Stub_template()
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
376 class Stub
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
387 virtual
388 ~Stub()
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
470 Arm_address
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
512 if (symbol != NULL)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
517 else
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
525 ~Key()
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
564 size_t
565 hash_value() const
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
576 // Functors for STL associative containers.
577 struct hash
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
584 struct equal_to
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianity-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
622 ~Reloc_stub()
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
663 public:
664 ~Cortex_a8_stub()
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
722 else
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
751 public:
752 ~Arm_v4bx_stub()
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
806 // Stub factory class.
808 class Stub_factory
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
815 static Stub_factory singleton;
816 return singleton;
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
854 Stub_factory();
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), cortex_a8_stubs_(),
872 arm_v4bx_stubs_(0xf), prev_data_size_(0), prev_addralign_(1)
875 ~Stub_table()
878 // Owner of this stub table.
879 Arm_input_section<big_endian>*
880 owner() const
881 { return this->owner_; }
883 // Whether this stub table is empty.
884 bool
885 empty() const
887 return (this->reloc_stubs_.empty()
888 && this->cortex_a8_stubs_.empty()
889 && this->arm_v4bx_stubs_.empty());
892 // Return the current data size.
893 off_t
894 current_data_size() const
895 { return this->current_data_size_for_child(); }
897 // Add a STUB with using KEY. Caller is reponsible for avoid adding
898 // if already a STUB with the same key has been added.
899 void
900 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 const Stub_template* stub_template = stub->stub_template();
903 gold_assert(stub_template->type() == key.stub_type());
904 this->reloc_stubs_[key] = stub;
907 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
908 // Caller is reponsible for avoid adding if already a STUB with the same
909 // address has been added.
910 void
911 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
913 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
914 this->cortex_a8_stubs_.insert(value);
917 // Add an ARM V4BX relocation stub. A register index will be retrieved
918 // from the stub.
919 void
920 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
922 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
923 this->arm_v4bx_stubs_[stub->reg()] = stub;
926 // Remove all Cortex-A8 stubs.
927 void
928 remove_all_cortex_a8_stubs();
930 // Look up a relocation stub using KEY. Return NULL if there is none.
931 Reloc_stub*
932 find_reloc_stub(const Reloc_stub::Key& key) const
934 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
935 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
938 // Look up an arm v4bx relocation stub using the register index.
939 // Return NULL if there is none.
940 Arm_v4bx_stub*
941 find_arm_v4bx_stub(const uint32_t reg) const
943 gold_assert(reg < 0xf);
944 return this->arm_v4bx_stubs_[reg];
947 // Relocate stubs in this stub table.
948 void
949 relocate_stubs(const Relocate_info<32, big_endian>*,
950 Target_arm<big_endian>*, Output_section*,
951 unsigned char*, Arm_address, section_size_type);
953 // Update data size and alignment at the end of a relaxation pass. Return
954 // true if either data size or alignment is different from that of the
955 // previous relaxation pass.
956 bool
957 update_data_size_and_addralign();
959 // Finalize stubs. Set the offsets of all stubs and mark input sections
960 // needing the Cortex-A8 workaround.
961 void
962 finalize_stubs();
964 // Apply Cortex-A8 workaround to an address range.
965 void
966 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
967 unsigned char*, Arm_address,
968 section_size_type);
970 protected:
971 // Write out section contents.
972 void
973 do_write(Output_file*);
975 // Return the required alignment.
976 uint64_t
977 do_addralign() const
978 { return this->prev_addralign_; }
980 // Reset address and file offset.
981 void
982 do_reset_address_and_file_offset()
983 { this->set_current_data_size_for_child(this->prev_data_size_); }
985 // Set final data size.
986 void
987 set_final_data_size()
988 { this->set_data_size(this->current_data_size()); }
990 private:
991 // Relocate one stub.
992 void
993 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
994 Target_arm<big_endian>*, Output_section*,
995 unsigned char*, Arm_address, section_size_type);
997 // Unordered map of relocation stubs.
998 typedef
999 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1000 Reloc_stub::Key::equal_to>
1001 Reloc_stub_map;
1003 // List of Cortex-A8 stubs ordered by addresses of branches being
1004 // fixed up in output.
1005 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1006 // List of Arm V4BX relocation stubs ordered by associated registers.
1007 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1009 // Owner of this stub table.
1010 Arm_input_section<big_endian>* owner_;
1011 // The relocation stubs.
1012 Reloc_stub_map reloc_stubs_;
1013 // The cortex_a8_stubs.
1014 Cortex_a8_stub_list cortex_a8_stubs_;
1015 // The Arm V4BX relocation stubs.
1016 Arm_v4bx_stub_list arm_v4bx_stubs_;
1017 // data size of this in the previous pass.
1018 off_t prev_data_size_;
1019 // address alignment of this in the previous pass.
1020 uint64_t prev_addralign_;
1023 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1024 // we add to the end of an EXIDX input section that goes into the output.
1026 class Arm_exidx_cantunwind : public Output_section_data
1028 public:
1029 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1030 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1033 // Return the object containing the section pointed by this.
1034 Relobj*
1035 relobj() const
1036 { return this->relobj_; }
1038 // Return the section index of the section pointed by this.
1039 unsigned int
1040 shndx() const
1041 { return this->shndx_; }
1043 protected:
1044 void
1045 do_write(Output_file* of)
1047 if (parameters->target().is_big_endian())
1048 this->do_fixed_endian_write<true>(of);
1049 else
1050 this->do_fixed_endian_write<false>(of);
1053 private:
1054 // Implement do_write for a given endianity.
1055 template<bool big_endian>
1056 void inline
1057 do_fixed_endian_write(Output_file*);
1059 // The object containing the section pointed by this.
1060 Relobj* relobj_;
1061 // The section index of the section pointed by this.
1062 unsigned int shndx_;
1065 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1066 // Offset map is used to map input section offset within the EXIDX section
1067 // to the output offset from the start of this EXIDX section.
1069 typedef std::map<section_offset_type, section_offset_type>
1070 Arm_exidx_section_offset_map;
1072 // Arm_exidx_merged_section class. This represents an EXIDX input section
1073 // with some of its entries merged.
1075 class Arm_exidx_merged_section : public Output_relaxed_input_section
1077 public:
1078 // Constructor for Arm_exidx_merged_section.
1079 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1080 // SECTION_OFFSET_MAP points to a section offset map describing how
1081 // parts of the input section are mapped to output. DELETED_BYTES is
1082 // the number of bytes deleted from the EXIDX input section.
1083 Arm_exidx_merged_section(
1084 const Arm_exidx_input_section& exidx_input_section,
1085 const Arm_exidx_section_offset_map& section_offset_map,
1086 uint32_t deleted_bytes);
1088 // Return the original EXIDX input section.
1089 const Arm_exidx_input_section&
1090 exidx_input_section() const
1091 { return this->exidx_input_section_; }
1093 // Return the section offset map.
1094 const Arm_exidx_section_offset_map&
1095 section_offset_map() const
1096 { return this->section_offset_map_; }
1098 protected:
1099 // Write merged section into file OF.
1100 void
1101 do_write(Output_file* of);
1103 bool
1104 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1105 section_offset_type*) const;
1107 private:
1108 // Original EXIDX input section.
1109 const Arm_exidx_input_section& exidx_input_section_;
1110 // Section offset map.
1111 const Arm_exidx_section_offset_map& section_offset_map_;
1114 // A class to wrap an ordinary input section containing executable code.
1116 template<bool big_endian>
1117 class Arm_input_section : public Output_relaxed_input_section
1119 public:
1120 Arm_input_section(Relobj* relobj, unsigned int shndx)
1121 : Output_relaxed_input_section(relobj, shndx, 1),
1122 original_addralign_(1), original_size_(0), stub_table_(NULL)
1125 ~Arm_input_section()
1128 // Initialize.
1129 void
1130 init();
1132 // Whether this is a stub table owner.
1133 bool
1134 is_stub_table_owner() const
1135 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1137 // Return the stub table.
1138 Stub_table<big_endian>*
1139 stub_table() const
1140 { return this->stub_table_; }
1142 // Set the stub_table.
1143 void
1144 set_stub_table(Stub_table<big_endian>* stub_table)
1145 { this->stub_table_ = stub_table; }
1147 // Downcast a base pointer to an Arm_input_section pointer. This is
1148 // not type-safe but we only use Arm_input_section not the base class.
1149 static Arm_input_section<big_endian>*
1150 as_arm_input_section(Output_relaxed_input_section* poris)
1151 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1153 protected:
1154 // Write data to output file.
1155 void
1156 do_write(Output_file*);
1158 // Return required alignment of this.
1159 uint64_t
1160 do_addralign() const
1162 if (this->is_stub_table_owner())
1163 return std::max(this->stub_table_->addralign(),
1164 this->original_addralign_);
1165 else
1166 return this->original_addralign_;
1169 // Finalize data size.
1170 void
1171 set_final_data_size();
1173 // Reset address and file offset.
1174 void
1175 do_reset_address_and_file_offset();
1177 // Output offset.
1178 bool
1179 do_output_offset(const Relobj* object, unsigned int shndx,
1180 section_offset_type offset,
1181 section_offset_type* poutput) const
1183 if ((object == this->relobj())
1184 && (shndx == this->shndx())
1185 && (offset >= 0)
1186 && (convert_types<uint64_t, section_offset_type>(offset)
1187 <= this->original_size_))
1189 *poutput = offset;
1190 return true;
1192 else
1193 return false;
1196 private:
1197 // Copying is not allowed.
1198 Arm_input_section(const Arm_input_section&);
1199 Arm_input_section& operator=(const Arm_input_section&);
1201 // Address alignment of the original input section.
1202 uint64_t original_addralign_;
1203 // Section size of the original input section.
1204 uint64_t original_size_;
1205 // Stub table.
1206 Stub_table<big_endian>* stub_table_;
1209 // Arm_exidx_fixup class. This is used to define a number of methods
1210 // and keep states for fixing up EXIDX coverage.
1212 class Arm_exidx_fixup
1214 public:
1215 Arm_exidx_fixup(Output_section* exidx_output_section)
1216 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1217 last_inlined_entry_(0), last_input_section_(NULL),
1218 section_offset_map_(NULL), first_output_text_section_(NULL)
1221 ~Arm_exidx_fixup()
1222 { delete this->section_offset_map_; }
1224 // Process an EXIDX section for entry merging. Return number of bytes to
1225 // be deleted in output. If parts of the input EXIDX section are merged
1226 // a heap allocated Arm_exidx_section_offset_map is store in the located
1227 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1228 // releasing it.
1229 template<bool big_endian>
1230 uint32_t
1231 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1232 Arm_exidx_section_offset_map** psection_offset_map);
1234 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1235 // input section, if there is not one already.
1236 void
1237 add_exidx_cantunwind_as_needed();
1239 // Return the output section for the text section which is linked to the
1240 // first exidx input in output.
1241 Output_section*
1242 first_output_text_section() const
1243 { return this->first_output_text_section_; }
1245 private:
1246 // Copying is not allowed.
1247 Arm_exidx_fixup(const Arm_exidx_fixup&);
1248 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1250 // Type of EXIDX unwind entry.
1251 enum Unwind_type
1253 // No type.
1254 UT_NONE,
1255 // EXIDX_CANTUNWIND.
1256 UT_EXIDX_CANTUNWIND,
1257 // Inlined entry.
1258 UT_INLINED_ENTRY,
1259 // Normal entry.
1260 UT_NORMAL_ENTRY,
1263 // Process an EXIDX entry. We only care about the second word of the
1264 // entry. Return true if the entry can be deleted.
1265 bool
1266 process_exidx_entry(uint32_t second_word);
1268 // Update the current section offset map during EXIDX section fix-up.
1269 // If there is no map, create one. INPUT_OFFSET is the offset of a
1270 // reference point, DELETED_BYTES is the number of deleted by in the
1271 // section so far. If DELETE_ENTRY is true, the reference point and
1272 // all offsets after the previous reference point are discarded.
1273 void
1274 update_offset_map(section_offset_type input_offset,
1275 section_size_type deleted_bytes, bool delete_entry);
1277 // EXIDX output section.
1278 Output_section* exidx_output_section_;
1279 // Unwind type of the last EXIDX entry processed.
1280 Unwind_type last_unwind_type_;
1281 // Last seen inlined EXIDX entry.
1282 uint32_t last_inlined_entry_;
1283 // Last processed EXIDX input section.
1284 const Arm_exidx_input_section* last_input_section_;
1285 // Section offset map created in process_exidx_section.
1286 Arm_exidx_section_offset_map* section_offset_map_;
1287 // Output section for the text section which is linked to the first exidx
1288 // input in output.
1289 Output_section* first_output_text_section_;
1292 // Arm output section class. This is defined mainly to add a number of
1293 // stub generation methods.
1295 template<bool big_endian>
1296 class Arm_output_section : public Output_section
1298 public:
1299 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1301 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1302 elfcpp::Elf_Xword flags)
1303 : Output_section(name, type, flags)
1306 ~Arm_output_section()
1309 // Group input sections for stub generation.
1310 void
1311 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1313 // Downcast a base pointer to an Arm_output_section pointer. This is
1314 // not type-safe but we only use Arm_output_section not the base class.
1315 static Arm_output_section<big_endian>*
1316 as_arm_output_section(Output_section* os)
1317 { return static_cast<Arm_output_section<big_endian>*>(os); }
1319 // Append all input text sections in this into LIST.
1320 void
1321 append_text_sections_to_list(Text_section_list* list);
1323 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1324 // is a list of text input sections sorted in ascending order of their
1325 // output addresses.
1326 void
1327 fix_exidx_coverage(Layout* layout,
1328 const Text_section_list& sorted_text_section,
1329 Symbol_table* symtab);
1331 private:
1332 // For convenience.
1333 typedef Output_section::Input_section Input_section;
1334 typedef Output_section::Input_section_list Input_section_list;
1336 // Create a stub group.
1337 void create_stub_group(Input_section_list::const_iterator,
1338 Input_section_list::const_iterator,
1339 Input_section_list::const_iterator,
1340 Target_arm<big_endian>*,
1341 std::vector<Output_relaxed_input_section*>*);
1344 // Arm_exidx_input_section class. This represents an EXIDX input section.
1346 class Arm_exidx_input_section
1348 public:
1349 static const section_offset_type invalid_offset =
1350 static_cast<section_offset_type>(-1);
1352 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1353 unsigned int link, uint32_t size, uint32_t addralign)
1354 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1355 addralign_(addralign)
1358 ~Arm_exidx_input_section()
1361 // Accessors: This is a read-only class.
1363 // Return the object containing this EXIDX input section.
1364 Relobj*
1365 relobj() const
1366 { return this->relobj_; }
1368 // Return the section index of this EXIDX input section.
1369 unsigned int
1370 shndx() const
1371 { return this->shndx_; }
1373 // Return the section index of linked text section in the same object.
1374 unsigned int
1375 link() const
1376 { return this->link_; }
1378 // Return size of the EXIDX input section.
1379 uint32_t
1380 size() const
1381 { return this->size_; }
1383 // Reutnr address alignment of EXIDX input section.
1384 uint32_t
1385 addralign() const
1386 { return this->addralign_; }
1388 private:
1389 // Object containing this.
1390 Relobj* relobj_;
1391 // Section index of this.
1392 unsigned int shndx_;
1393 // text section linked to this in the same object.
1394 unsigned int link_;
1395 // Size of this. For ARM 32-bit is sufficient.
1396 uint32_t size_;
1397 // Address alignment of this. For ARM 32-bit is sufficient.
1398 uint32_t addralign_;
1401 // Arm_relobj class.
1403 template<bool big_endian>
1404 class Arm_relobj : public Sized_relobj<32, big_endian>
1406 public:
1407 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1409 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1410 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1411 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1412 stub_tables_(), local_symbol_is_thumb_function_(),
1413 attributes_section_data_(NULL), mapping_symbols_info_(),
1414 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1415 output_local_symbol_count_needs_update_(false)
1418 ~Arm_relobj()
1419 { delete this->attributes_section_data_; }
1421 // Return the stub table of the SHNDX-th section if there is one.
1422 Stub_table<big_endian>*
1423 stub_table(unsigned int shndx) const
1425 gold_assert(shndx < this->stub_tables_.size());
1426 return this->stub_tables_[shndx];
1429 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1430 void
1431 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1433 gold_assert(shndx < this->stub_tables_.size());
1434 this->stub_tables_[shndx] = stub_table;
1437 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1438 // index. This is only valid after do_count_local_symbol is called.
1439 bool
1440 local_symbol_is_thumb_function(unsigned int r_sym) const
1442 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1443 return this->local_symbol_is_thumb_function_[r_sym];
1446 // Scan all relocation sections for stub generation.
1447 void
1448 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1449 const Layout*);
1451 // Convert regular input section with index SHNDX to a relaxed section.
1452 void
1453 convert_input_section_to_relaxed_section(unsigned shndx)
1455 // The stubs have relocations and we need to process them after writing
1456 // out the stubs. So relocation now must follow section write.
1457 this->set_section_offset(shndx, -1ULL);
1458 this->set_relocs_must_follow_section_writes();
1461 // Downcast a base pointer to an Arm_relobj pointer. This is
1462 // not type-safe but we only use Arm_relobj not the base class.
1463 static Arm_relobj<big_endian>*
1464 as_arm_relobj(Relobj* relobj)
1465 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1467 // Processor-specific flags in ELF file header. This is valid only after
1468 // reading symbols.
1469 elfcpp::Elf_Word
1470 processor_specific_flags() const
1471 { return this->processor_specific_flags_; }
1473 // Attribute section data This is the contents of the .ARM.attribute section
1474 // if there is one.
1475 const Attributes_section_data*
1476 attributes_section_data() const
1477 { return this->attributes_section_data_; }
1479 // Mapping symbol location.
1480 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1482 // Functor for STL container.
1483 struct Mapping_symbol_position_less
1485 bool
1486 operator()(const Mapping_symbol_position& p1,
1487 const Mapping_symbol_position& p2) const
1489 return (p1.first < p2.first
1490 || (p1.first == p2.first && p1.second < p2.second));
1494 // We only care about the first character of a mapping symbol, so
1495 // we only store that instead of the whole symbol name.
1496 typedef std::map<Mapping_symbol_position, char,
1497 Mapping_symbol_position_less> Mapping_symbols_info;
1499 // Whether a section contains any Cortex-A8 workaround.
1500 bool
1501 section_has_cortex_a8_workaround(unsigned int shndx) const
1503 return (this->section_has_cortex_a8_workaround_ != NULL
1504 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1507 // Mark a section that has Cortex-A8 workaround.
1508 void
1509 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1511 if (this->section_has_cortex_a8_workaround_ == NULL)
1512 this->section_has_cortex_a8_workaround_ =
1513 new std::vector<bool>(this->shnum(), false);
1514 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1517 // Return the EXIDX section of an text section with index SHNDX or NULL
1518 // if the text section has no associated EXIDX section.
1519 const Arm_exidx_input_section*
1520 exidx_input_section_by_link(unsigned int shndx) const
1522 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1523 return ((p != this->exidx_section_map_.end()
1524 && p->second->link() == shndx)
1525 ? p->second
1526 : NULL);
1529 // Return the EXIDX section with index SHNDX or NULL if there is none.
1530 const Arm_exidx_input_section*
1531 exidx_input_section_by_shndx(unsigned shndx) const
1533 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1534 return ((p != this->exidx_section_map_.end()
1535 && p->second->shndx() == shndx)
1536 ? p->second
1537 : NULL);
1540 // Whether output local symbol count needs updating.
1541 bool
1542 output_local_symbol_count_needs_update() const
1543 { return this->output_local_symbol_count_needs_update_; }
1545 // Set output_local_symbol_count_needs_update flag to be true.
1546 void
1547 set_output_local_symbol_count_needs_update()
1548 { this->output_local_symbol_count_needs_update_ = true; }
1550 // Update output local symbol count at the end of relaxation.
1551 void
1552 update_output_local_symbol_count();
1554 protected:
1555 // Post constructor setup.
1556 void
1557 do_setup()
1559 // Call parent's setup method.
1560 Sized_relobj<32, big_endian>::do_setup();
1562 // Initialize look-up tables.
1563 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1564 this->stub_tables_.swap(empty_stub_table_list);
1567 // Count the local symbols.
1568 void
1569 do_count_local_symbols(Stringpool_template<char>*,
1570 Stringpool_template<char>*);
1572 void
1573 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1574 const unsigned char* pshdrs,
1575 typename Sized_relobj<32, big_endian>::Views* pivews);
1577 // Read the symbol information.
1578 void
1579 do_read_symbols(Read_symbols_data* sd);
1581 // Process relocs for garbage collection.
1582 void
1583 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1585 private:
1587 // Whether a section needs to be scanned for relocation stubs.
1588 bool
1589 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1590 const Relobj::Output_sections&,
1591 const Symbol_table *, const unsigned char*);
1593 // Whether a section is a scannable text section.
1594 bool
1595 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1596 const Output_section*, const Symbol_table *);
1598 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1599 bool
1600 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1601 unsigned int, Output_section*,
1602 const Symbol_table *);
1604 // Scan a section for the Cortex-A8 erratum.
1605 void
1606 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1607 unsigned int, Output_section*,
1608 Target_arm<big_endian>*);
1610 // Find the linked text section of an EXIDX section by looking at the
1611 // first reloction of the EXIDX section. PSHDR points to the section
1612 // headers of a relocation section and PSYMS points to the local symbols.
1613 // PSHNDX points to a location storing the text section index if found.
1614 // Return whether we can find the linked section.
1615 bool
1616 find_linked_text_section(const unsigned char* pshdr,
1617 const unsigned char* psyms, unsigned int* pshndx);
1620 // Make a new Arm_exidx_input_section object for EXIDX section with
1621 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1622 // index of the linked text section.
1623 void
1624 make_exidx_input_section(unsigned int shndx,
1625 const elfcpp::Shdr<32, big_endian>& shdr,
1626 unsigned int text_shndx);
1628 // Return the output address of either a plain input section or a
1629 // relaxed input section. SHNDX is the section index.
1630 Arm_address
1631 simple_input_section_output_address(unsigned int, Output_section*);
1633 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1634 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1635 Exidx_section_map;
1637 // List of stub tables.
1638 Stub_table_list stub_tables_;
1639 // Bit vector to tell if a local symbol is a thumb function or not.
1640 // This is only valid after do_count_local_symbol is called.
1641 std::vector<bool> local_symbol_is_thumb_function_;
1642 // processor-specific flags in ELF file header.
1643 elfcpp::Elf_Word processor_specific_flags_;
1644 // Object attributes if there is an .ARM.attributes section or NULL.
1645 Attributes_section_data* attributes_section_data_;
1646 // Mapping symbols information.
1647 Mapping_symbols_info mapping_symbols_info_;
1648 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1649 std::vector<bool>* section_has_cortex_a8_workaround_;
1650 // Map a text section to its associated .ARM.exidx section, if there is one.
1651 Exidx_section_map exidx_section_map_;
1652 // Whether output local symbol count needs updating.
1653 bool output_local_symbol_count_needs_update_;
1656 // Arm_dynobj class.
1658 template<bool big_endian>
1659 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1661 public:
1662 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1663 const elfcpp::Ehdr<32, big_endian>& ehdr)
1664 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1665 processor_specific_flags_(0), attributes_section_data_(NULL)
1668 ~Arm_dynobj()
1669 { delete this->attributes_section_data_; }
1671 // Downcast a base pointer to an Arm_relobj pointer. This is
1672 // not type-safe but we only use Arm_relobj not the base class.
1673 static Arm_dynobj<big_endian>*
1674 as_arm_dynobj(Dynobj* dynobj)
1675 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1677 // Processor-specific flags in ELF file header. This is valid only after
1678 // reading symbols.
1679 elfcpp::Elf_Word
1680 processor_specific_flags() const
1681 { return this->processor_specific_flags_; }
1683 // Attributes section data.
1684 const Attributes_section_data*
1685 attributes_section_data() const
1686 { return this->attributes_section_data_; }
1688 protected:
1689 // Read the symbol information.
1690 void
1691 do_read_symbols(Read_symbols_data* sd);
1693 private:
1694 // processor-specific flags in ELF file header.
1695 elfcpp::Elf_Word processor_specific_flags_;
1696 // Object attributes if there is an .ARM.attributes section or NULL.
1697 Attributes_section_data* attributes_section_data_;
1700 // Functor to read reloc addends during stub generation.
1702 template<int sh_type, bool big_endian>
1703 struct Stub_addend_reader
1705 // Return the addend for a relocation of a particular type. Depending
1706 // on whether this is a REL or RELA relocation, read the addend from a
1707 // view or from a Reloc object.
1708 elfcpp::Elf_types<32>::Elf_Swxword
1709 operator()(
1710 unsigned int /* r_type */,
1711 const unsigned char* /* view */,
1712 const typename Reloc_types<sh_type,
1713 32, big_endian>::Reloc& /* reloc */) const;
1716 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1718 template<bool big_endian>
1719 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1721 elfcpp::Elf_types<32>::Elf_Swxword
1722 operator()(
1723 unsigned int,
1724 const unsigned char*,
1725 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1728 // Specialized Stub_addend_reader for RELA type relocation sections.
1729 // We currently do not handle RELA type relocation sections but it is trivial
1730 // to implement the addend reader. This is provided for completeness and to
1731 // make it easier to add support for RELA relocation sections in the future.
1733 template<bool big_endian>
1734 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1736 elfcpp::Elf_types<32>::Elf_Swxword
1737 operator()(
1738 unsigned int,
1739 const unsigned char*,
1740 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1741 big_endian>::Reloc& reloc) const
1742 { return reloc.get_r_addend(); }
1745 // Cortex_a8_reloc class. We keep record of relocation that may need
1746 // the Cortex-A8 erratum workaround.
1748 class Cortex_a8_reloc
1750 public:
1751 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1752 Arm_address destination)
1753 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1756 ~Cortex_a8_reloc()
1759 // Accessors: This is a read-only class.
1761 // Return the relocation stub associated with this relocation if there is
1762 // one.
1763 const Reloc_stub*
1764 reloc_stub() const
1765 { return this->reloc_stub_; }
1767 // Return the relocation type.
1768 unsigned int
1769 r_type() const
1770 { return this->r_type_; }
1772 // Return the destination address of the relocation. LSB stores the THUMB
1773 // bit.
1774 Arm_address
1775 destination() const
1776 { return this->destination_; }
1778 private:
1779 // Associated relocation stub if there is one, or NULL.
1780 const Reloc_stub* reloc_stub_;
1781 // Relocation type.
1782 unsigned int r_type_;
1783 // Destination address of this relocation. LSB is used to distinguish
1784 // ARM/THUMB mode.
1785 Arm_address destination_;
1788 // Arm_output_data_got class. We derive this from Output_data_got to add
1789 // extra methods to handle TLS relocations in a static link.
1791 template<bool big_endian>
1792 class Arm_output_data_got : public Output_data_got<32, big_endian>
1794 public:
1795 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1796 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1799 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1800 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1801 // applied in a static link.
1802 void
1803 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1804 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1806 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1807 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1808 // relocation that needs to be applied in a static link.
1809 void
1810 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1811 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1813 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1814 index));
1817 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1818 // The first one is initialized to be 1, which is the module index for
1819 // the main executable and the second one 0. A reloc of the type
1820 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1821 // be applied by gold. GSYM is a global symbol.
1822 void
1823 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1825 // Same as the above but for a local symbol in OBJECT with INDEX.
1826 void
1827 add_tls_gd32_with_static_reloc(unsigned int got_type,
1828 Sized_relobj<32, big_endian>* object,
1829 unsigned int index);
1831 protected:
1832 // Write out the GOT table.
1833 void
1834 do_write(Output_file*);
1836 private:
1837 // This class represent dynamic relocations that need to be applied by
1838 // gold because we are using TLS relocations in a static link.
1839 class Static_reloc
1841 public:
1842 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1843 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1844 { this->u_.global.symbol = gsym; }
1846 Static_reloc(unsigned int got_offset, unsigned int r_type,
1847 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1848 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1850 this->u_.local.relobj = relobj;
1851 this->u_.local.index = index;
1854 // Return the GOT offset.
1855 unsigned int
1856 got_offset() const
1857 { return this->got_offset_; }
1859 // Relocation type.
1860 unsigned int
1861 r_type() const
1862 { return this->r_type_; }
1864 // Whether the symbol is global or not.
1865 bool
1866 symbol_is_global() const
1867 { return this->symbol_is_global_; }
1869 // For a relocation against a global symbol, the global symbol.
1870 Symbol*
1871 symbol() const
1873 gold_assert(this->symbol_is_global_);
1874 return this->u_.global.symbol;
1877 // For a relocation against a local symbol, the defining object.
1878 Sized_relobj<32, big_endian>*
1879 relobj() const
1881 gold_assert(!this->symbol_is_global_);
1882 return this->u_.local.relobj;
1885 // For a relocation against a local symbol, the local symbol index.
1886 unsigned int
1887 index() const
1889 gold_assert(!this->symbol_is_global_);
1890 return this->u_.local.index;
1893 private:
1894 // GOT offset of the entry to which this relocation is applied.
1895 unsigned int got_offset_;
1896 // Type of relocation.
1897 unsigned int r_type_;
1898 // Whether this relocation is against a global symbol.
1899 bool symbol_is_global_;
1900 // A global or local symbol.
1901 union
1903 struct
1905 // For a global symbol, the symbol itself.
1906 Symbol* symbol;
1907 } global;
1908 struct
1910 // For a local symbol, the object defining object.
1911 Sized_relobj<32, big_endian>* relobj;
1912 // For a local symbol, the symbol index.
1913 unsigned int index;
1914 } local;
1915 } u_;
1918 // Symbol table of the output object.
1919 Symbol_table* symbol_table_;
1920 // Layout of the output object.
1921 Layout* layout_;
1922 // Static relocs to be applied to the GOT.
1923 std::vector<Static_reloc> static_relocs_;
1926 // Utilities for manipulating integers of up to 32-bits
1928 namespace utils
1930 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1931 // an int32_t. NO_BITS must be between 1 to 32.
1932 template<int no_bits>
1933 static inline int32_t
1934 sign_extend(uint32_t bits)
1936 gold_assert(no_bits >= 0 && no_bits <= 32);
1937 if (no_bits == 32)
1938 return static_cast<int32_t>(bits);
1939 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1940 bits &= mask;
1941 uint32_t top_bit = 1U << (no_bits - 1);
1942 int32_t as_signed = static_cast<int32_t>(bits);
1943 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1946 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1947 template<int no_bits>
1948 static inline bool
1949 has_overflow(uint32_t bits)
1951 gold_assert(no_bits >= 0 && no_bits <= 32);
1952 if (no_bits == 32)
1953 return false;
1954 int32_t max = (1 << (no_bits - 1)) - 1;
1955 int32_t min = -(1 << (no_bits - 1));
1956 int32_t as_signed = static_cast<int32_t>(bits);
1957 return as_signed > max || as_signed < min;
1960 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1961 // fits in the given number of bits as either a signed or unsigned value.
1962 // For example, has_signed_unsigned_overflow<8> would check
1963 // -128 <= bits <= 255
1964 template<int no_bits>
1965 static inline bool
1966 has_signed_unsigned_overflow(uint32_t bits)
1968 gold_assert(no_bits >= 2 && no_bits <= 32);
1969 if (no_bits == 32)
1970 return false;
1971 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1972 int32_t min = -(1 << (no_bits - 1));
1973 int32_t as_signed = static_cast<int32_t>(bits);
1974 return as_signed > max || as_signed < min;
1977 // Select bits from A and B using bits in MASK. For each n in [0..31],
1978 // the n-th bit in the result is chosen from the n-th bits of A and B.
1979 // A zero selects A and a one selects B.
1980 static inline uint32_t
1981 bit_select(uint32_t a, uint32_t b, uint32_t mask)
1982 { return (a & ~mask) | (b & mask); }
1985 template<bool big_endian>
1986 class Target_arm : public Sized_target<32, big_endian>
1988 public:
1989 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
1990 Reloc_section;
1992 // When were are relocating a stub, we pass this as the relocation number.
1993 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
1995 Target_arm()
1996 : Sized_target<32, big_endian>(&arm_info),
1997 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
1998 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
1999 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2000 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2001 may_use_blx_(false), should_force_pic_veneer_(false),
2002 arm_input_section_map_(), attributes_section_data_(NULL),
2003 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2006 // Whether we can use BLX.
2007 bool
2008 may_use_blx() const
2009 { return this->may_use_blx_; }
2011 // Set use-BLX flag.
2012 void
2013 set_may_use_blx(bool value)
2014 { this->may_use_blx_ = value; }
2016 // Whether we force PCI branch veneers.
2017 bool
2018 should_force_pic_veneer() const
2019 { return this->should_force_pic_veneer_; }
2021 // Set PIC veneer flag.
2022 void
2023 set_should_force_pic_veneer(bool value)
2024 { this->should_force_pic_veneer_ = value; }
2026 // Whether we use THUMB-2 instructions.
2027 bool
2028 using_thumb2() const
2030 Object_attribute* attr =
2031 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2032 int arch = attr->int_value();
2033 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2036 // Whether we use THUMB/THUMB-2 instructions only.
2037 bool
2038 using_thumb_only() const
2040 Object_attribute* attr =
2041 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2042 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2043 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2044 return false;
2045 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2046 return attr->int_value() == 'M';
2049 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2050 bool
2051 may_use_arm_nop() const
2053 Object_attribute* attr =
2054 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055 int arch = attr->int_value();
2056 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2057 || arch == elfcpp::TAG_CPU_ARCH_V6K
2058 || arch == elfcpp::TAG_CPU_ARCH_V7
2059 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2062 // Whether we have THUMB-2 NOP.W instruction.
2063 bool
2064 may_use_thumb2_nop() const
2066 Object_attribute* attr =
2067 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2068 int arch = attr->int_value();
2069 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2070 || arch == elfcpp::TAG_CPU_ARCH_V7
2071 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2074 // Process the relocations to determine unreferenced sections for
2075 // garbage collection.
2076 void
2077 gc_process_relocs(Symbol_table* symtab,
2078 Layout* layout,
2079 Sized_relobj<32, big_endian>* object,
2080 unsigned int data_shndx,
2081 unsigned int sh_type,
2082 const unsigned char* prelocs,
2083 size_t reloc_count,
2084 Output_section* output_section,
2085 bool needs_special_offset_handling,
2086 size_t local_symbol_count,
2087 const unsigned char* plocal_symbols);
2089 // Scan the relocations to look for symbol adjustments.
2090 void
2091 scan_relocs(Symbol_table* symtab,
2092 Layout* layout,
2093 Sized_relobj<32, big_endian>* object,
2094 unsigned int data_shndx,
2095 unsigned int sh_type,
2096 const unsigned char* prelocs,
2097 size_t reloc_count,
2098 Output_section* output_section,
2099 bool needs_special_offset_handling,
2100 size_t local_symbol_count,
2101 const unsigned char* plocal_symbols);
2103 // Finalize the sections.
2104 void
2105 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2107 // Return the value to use for a dynamic symbol which requires special
2108 // treatment.
2109 uint64_t
2110 do_dynsym_value(const Symbol*) const;
2112 // Relocate a section.
2113 void
2114 relocate_section(const Relocate_info<32, big_endian>*,
2115 unsigned int sh_type,
2116 const unsigned char* prelocs,
2117 size_t reloc_count,
2118 Output_section* output_section,
2119 bool needs_special_offset_handling,
2120 unsigned char* view,
2121 Arm_address view_address,
2122 section_size_type view_size,
2123 const Reloc_symbol_changes*);
2125 // Scan the relocs during a relocatable link.
2126 void
2127 scan_relocatable_relocs(Symbol_table* symtab,
2128 Layout* layout,
2129 Sized_relobj<32, big_endian>* object,
2130 unsigned int data_shndx,
2131 unsigned int sh_type,
2132 const unsigned char* prelocs,
2133 size_t reloc_count,
2134 Output_section* output_section,
2135 bool needs_special_offset_handling,
2136 size_t local_symbol_count,
2137 const unsigned char* plocal_symbols,
2138 Relocatable_relocs*);
2140 // Relocate a section during a relocatable link.
2141 void
2142 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2143 unsigned int sh_type,
2144 const unsigned char* prelocs,
2145 size_t reloc_count,
2146 Output_section* output_section,
2147 off_t offset_in_output_section,
2148 const Relocatable_relocs*,
2149 unsigned char* view,
2150 Arm_address view_address,
2151 section_size_type view_size,
2152 unsigned char* reloc_view,
2153 section_size_type reloc_view_size);
2155 // Return whether SYM is defined by the ABI.
2156 bool
2157 do_is_defined_by_abi(Symbol* sym) const
2158 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2160 // Return whether there is a GOT section.
2161 bool
2162 has_got_section() const
2163 { return this->got_ != NULL; }
2165 // Return the size of the GOT section.
2166 section_size_type
2167 got_size()
2169 gold_assert(this->got_ != NULL);
2170 return this->got_->data_size();
2173 // Map platform-specific reloc types
2174 static unsigned int
2175 get_real_reloc_type (unsigned int r_type);
2178 // Methods to support stub-generations.
2181 // Return the stub factory
2182 const Stub_factory&
2183 stub_factory() const
2184 { return this->stub_factory_; }
2186 // Make a new Arm_input_section object.
2187 Arm_input_section<big_endian>*
2188 new_arm_input_section(Relobj*, unsigned int);
2190 // Find the Arm_input_section object corresponding to the SHNDX-th input
2191 // section of RELOBJ.
2192 Arm_input_section<big_endian>*
2193 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2195 // Make a new Stub_table
2196 Stub_table<big_endian>*
2197 new_stub_table(Arm_input_section<big_endian>*);
2199 // Scan a section for stub generation.
2200 void
2201 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2202 const unsigned char*, size_t, Output_section*,
2203 bool, const unsigned char*, Arm_address,
2204 section_size_type);
2206 // Relocate a stub.
2207 void
2208 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2209 Output_section*, unsigned char*, Arm_address,
2210 section_size_type);
2212 // Get the default ARM target.
2213 static Target_arm<big_endian>*
2214 default_target()
2216 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2217 && parameters->target().is_big_endian() == big_endian);
2218 return static_cast<Target_arm<big_endian>*>(
2219 parameters->sized_target<32, big_endian>());
2222 // Whether NAME belongs to a mapping symbol.
2223 static bool
2224 is_mapping_symbol_name(const char* name)
2226 return (name
2227 && name[0] == '$'
2228 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2229 && (name[2] == '\0' || name[2] == '.'));
2232 // Whether we work around the Cortex-A8 erratum.
2233 bool
2234 fix_cortex_a8() const
2235 { return this->fix_cortex_a8_; }
2237 // Whether we fix R_ARM_V4BX relocation.
2238 // 0 - do not fix
2239 // 1 - replace with MOV instruction (armv4 target)
2240 // 2 - make interworking veneer (>= armv4t targets only)
2241 General_options::Fix_v4bx
2242 fix_v4bx() const
2243 { return parameters->options().fix_v4bx(); }
2245 // Scan a span of THUMB code section for Cortex-A8 erratum.
2246 void
2247 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2248 section_size_type, section_size_type,
2249 const unsigned char*, Arm_address);
2251 // Apply Cortex-A8 workaround to a branch.
2252 void
2253 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2254 unsigned char*, Arm_address);
2256 protected:
2257 // Make an ELF object.
2258 Object*
2259 do_make_elf_object(const std::string&, Input_file*, off_t,
2260 const elfcpp::Ehdr<32, big_endian>& ehdr);
2262 Object*
2263 do_make_elf_object(const std::string&, Input_file*, off_t,
2264 const elfcpp::Ehdr<32, !big_endian>&)
2265 { gold_unreachable(); }
2267 Object*
2268 do_make_elf_object(const std::string&, Input_file*, off_t,
2269 const elfcpp::Ehdr<64, false>&)
2270 { gold_unreachable(); }
2272 Object*
2273 do_make_elf_object(const std::string&, Input_file*, off_t,
2274 const elfcpp::Ehdr<64, true>&)
2275 { gold_unreachable(); }
2277 // Make an output section.
2278 Output_section*
2279 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2280 elfcpp::Elf_Xword flags)
2281 { return new Arm_output_section<big_endian>(name, type, flags); }
2283 void
2284 do_adjust_elf_header(unsigned char* view, int len) const;
2286 // We only need to generate stubs, and hence perform relaxation if we are
2287 // not doing relocatable linking.
2288 bool
2289 do_may_relax() const
2290 { return !parameters->options().relocatable(); }
2292 bool
2293 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2295 // Determine whether an object attribute tag takes an integer, a
2296 // string or both.
2298 do_attribute_arg_type(int tag) const;
2300 // Reorder tags during output.
2302 do_attributes_order(int num) const;
2304 // This is called when the target is selected as the default.
2305 void
2306 do_select_as_default_target()
2308 // No locking is required since there should only be one default target.
2309 // We cannot have both the big-endian and little-endian ARM targets
2310 // as the default.
2311 gold_assert(arm_reloc_property_table == NULL);
2312 arm_reloc_property_table = new Arm_reloc_property_table();
2315 private:
2316 // The class which scans relocations.
2317 class Scan
2319 public:
2320 Scan()
2321 : issued_non_pic_error_(false)
2324 inline void
2325 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2326 Sized_relobj<32, big_endian>* object,
2327 unsigned int data_shndx,
2328 Output_section* output_section,
2329 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2330 const elfcpp::Sym<32, big_endian>& lsym);
2332 inline void
2333 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2334 Sized_relobj<32, big_endian>* object,
2335 unsigned int data_shndx,
2336 Output_section* output_section,
2337 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2338 Symbol* gsym);
2340 inline bool
2341 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2342 Sized_relobj<32, big_endian>* ,
2343 unsigned int ,
2344 Output_section* ,
2345 const elfcpp::Rel<32, big_endian>& ,
2346 unsigned int ,
2347 const elfcpp::Sym<32, big_endian>&)
2348 { return false; }
2350 inline bool
2351 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2352 Sized_relobj<32, big_endian>* ,
2353 unsigned int ,
2354 Output_section* ,
2355 const elfcpp::Rel<32, big_endian>& ,
2356 unsigned int , Symbol*)
2357 { return false; }
2359 private:
2360 static void
2361 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2362 unsigned int r_type);
2364 static void
2365 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2366 unsigned int r_type, Symbol*);
2368 void
2369 check_non_pic(Relobj*, unsigned int r_type);
2371 // Almost identical to Symbol::needs_plt_entry except that it also
2372 // handles STT_ARM_TFUNC.
2373 static bool
2374 symbol_needs_plt_entry(const Symbol* sym)
2376 // An undefined symbol from an executable does not need a PLT entry.
2377 if (sym->is_undefined() && !parameters->options().shared())
2378 return false;
2380 return (!parameters->doing_static_link()
2381 && (sym->type() == elfcpp::STT_FUNC
2382 || sym->type() == elfcpp::STT_ARM_TFUNC)
2383 && (sym->is_from_dynobj()
2384 || sym->is_undefined()
2385 || sym->is_preemptible()));
2388 // Whether we have issued an error about a non-PIC compilation.
2389 bool issued_non_pic_error_;
2392 // The class which implements relocation.
2393 class Relocate
2395 public:
2396 Relocate()
2399 ~Relocate()
2402 // Return whether the static relocation needs to be applied.
2403 inline bool
2404 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2405 int ref_flags,
2406 bool is_32bit,
2407 Output_section* output_section);
2409 // Do a relocation. Return false if the caller should not issue
2410 // any warnings about this relocation.
2411 inline bool
2412 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2413 Output_section*, size_t relnum,
2414 const elfcpp::Rel<32, big_endian>&,
2415 unsigned int r_type, const Sized_symbol<32>*,
2416 const Symbol_value<32>*,
2417 unsigned char*, Arm_address,
2418 section_size_type);
2420 // Return whether we want to pass flag NON_PIC_REF for this
2421 // reloc. This means the relocation type accesses a symbol not via
2422 // GOT or PLT.
2423 static inline bool
2424 reloc_is_non_pic (unsigned int r_type)
2426 switch (r_type)
2428 // These relocation types reference GOT or PLT entries explicitly.
2429 case elfcpp::R_ARM_GOT_BREL:
2430 case elfcpp::R_ARM_GOT_ABS:
2431 case elfcpp::R_ARM_GOT_PREL:
2432 case elfcpp::R_ARM_GOT_BREL12:
2433 case elfcpp::R_ARM_PLT32_ABS:
2434 case elfcpp::R_ARM_TLS_GD32:
2435 case elfcpp::R_ARM_TLS_LDM32:
2436 case elfcpp::R_ARM_TLS_IE32:
2437 case elfcpp::R_ARM_TLS_IE12GP:
2439 // These relocate types may use PLT entries.
2440 case elfcpp::R_ARM_CALL:
2441 case elfcpp::R_ARM_THM_CALL:
2442 case elfcpp::R_ARM_JUMP24:
2443 case elfcpp::R_ARM_THM_JUMP24:
2444 case elfcpp::R_ARM_THM_JUMP19:
2445 case elfcpp::R_ARM_PLT32:
2446 case elfcpp::R_ARM_THM_XPC22:
2447 case elfcpp::R_ARM_PREL31:
2448 case elfcpp::R_ARM_SBREL31:
2449 return false;
2451 default:
2452 return true;
2456 private:
2457 // Do a TLS relocation.
2458 inline typename Arm_relocate_functions<big_endian>::Status
2459 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2460 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2461 const Sized_symbol<32>*, const Symbol_value<32>*,
2462 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2463 section_size_type);
2467 // A class which returns the size required for a relocation type,
2468 // used while scanning relocs during a relocatable link.
2469 class Relocatable_size_for_reloc
2471 public:
2472 unsigned int
2473 get_size_for_reloc(unsigned int, Relobj*);
2476 // Adjust TLS relocation type based on the options and whether this
2477 // is a local symbol.
2478 static tls::Tls_optimization
2479 optimize_tls_reloc(bool is_final, int r_type);
2481 // Get the GOT section, creating it if necessary.
2482 Arm_output_data_got<big_endian>*
2483 got_section(Symbol_table*, Layout*);
2485 // Get the GOT PLT section.
2486 Output_data_space*
2487 got_plt_section() const
2489 gold_assert(this->got_plt_ != NULL);
2490 return this->got_plt_;
2493 // Create a PLT entry for a global symbol.
2494 void
2495 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2497 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2498 void
2499 define_tls_base_symbol(Symbol_table*, Layout*);
2501 // Create a GOT entry for the TLS module index.
2502 unsigned int
2503 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2504 Sized_relobj<32, big_endian>* object);
2506 // Get the PLT section.
2507 const Output_data_plt_arm<big_endian>*
2508 plt_section() const
2510 gold_assert(this->plt_ != NULL);
2511 return this->plt_;
2514 // Get the dynamic reloc section, creating it if necessary.
2515 Reloc_section*
2516 rel_dyn_section(Layout*);
2518 // Get the section to use for TLS_DESC relocations.
2519 Reloc_section*
2520 rel_tls_desc_section(Layout*) const;
2522 // Return true if the symbol may need a COPY relocation.
2523 // References from an executable object to non-function symbols
2524 // defined in a dynamic object may need a COPY relocation.
2525 bool
2526 may_need_copy_reloc(Symbol* gsym)
2528 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2529 && gsym->may_need_copy_reloc());
2532 // Add a potential copy relocation.
2533 void
2534 copy_reloc(Symbol_table* symtab, Layout* layout,
2535 Sized_relobj<32, big_endian>* object,
2536 unsigned int shndx, Output_section* output_section,
2537 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2539 this->copy_relocs_.copy_reloc(symtab, layout,
2540 symtab->get_sized_symbol<32>(sym),
2541 object, shndx, output_section, reloc,
2542 this->rel_dyn_section(layout));
2545 // Whether two EABI versions are compatible.
2546 static bool
2547 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2549 // Merge processor-specific flags from input object and those in the ELF
2550 // header of the output.
2551 void
2552 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2554 // Get the secondary compatible architecture.
2555 static int
2556 get_secondary_compatible_arch(const Attributes_section_data*);
2558 // Set the secondary compatible architecture.
2559 static void
2560 set_secondary_compatible_arch(Attributes_section_data*, int);
2562 static int
2563 tag_cpu_arch_combine(const char*, int, int*, int, int);
2565 // Helper to print AEABI enum tag value.
2566 static std::string
2567 aeabi_enum_name(unsigned int);
2569 // Return string value for TAG_CPU_name.
2570 static std::string
2571 tag_cpu_name_value(unsigned int);
2573 // Merge object attributes from input object and those in the output.
2574 void
2575 merge_object_attributes(const char*, const Attributes_section_data*);
2577 // Helper to get an AEABI object attribute
2578 Object_attribute*
2579 get_aeabi_object_attribute(int tag) const
2581 Attributes_section_data* pasd = this->attributes_section_data_;
2582 gold_assert(pasd != NULL);
2583 Object_attribute* attr =
2584 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2585 gold_assert(attr != NULL);
2586 return attr;
2590 // Methods to support stub-generations.
2593 // Group input sections for stub generation.
2594 void
2595 group_sections(Layout*, section_size_type, bool);
2597 // Scan a relocation for stub generation.
2598 void
2599 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2600 const Sized_symbol<32>*, unsigned int,
2601 const Symbol_value<32>*,
2602 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2604 // Scan a relocation section for stub.
2605 template<int sh_type>
2606 void
2607 scan_reloc_section_for_stubs(
2608 const Relocate_info<32, big_endian>* relinfo,
2609 const unsigned char* prelocs,
2610 size_t reloc_count,
2611 Output_section* output_section,
2612 bool needs_special_offset_handling,
2613 const unsigned char* view,
2614 elfcpp::Elf_types<32>::Elf_Addr view_address,
2615 section_size_type);
2617 // Fix .ARM.exidx section coverage.
2618 void
2619 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2621 // Functors for STL set.
2622 struct output_section_address_less_than
2624 bool
2625 operator()(const Output_section* s1, const Output_section* s2) const
2626 { return s1->address() < s2->address(); }
2629 // Information about this specific target which we pass to the
2630 // general Target structure.
2631 static const Target::Target_info arm_info;
2633 // The types of GOT entries needed for this platform.
2634 enum Got_type
2636 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2637 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2638 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2639 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2640 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2643 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2645 // Map input section to Arm_input_section.
2646 typedef Unordered_map<Section_id,
2647 Arm_input_section<big_endian>*,
2648 Section_id_hash>
2649 Arm_input_section_map;
2651 // Map output addresses to relocs for Cortex-A8 erratum.
2652 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2653 Cortex_a8_relocs_info;
2655 // The GOT section.
2656 Arm_output_data_got<big_endian>* got_;
2657 // The PLT section.
2658 Output_data_plt_arm<big_endian>* plt_;
2659 // The GOT PLT section.
2660 Output_data_space* got_plt_;
2661 // The dynamic reloc section.
2662 Reloc_section* rel_dyn_;
2663 // Relocs saved to avoid a COPY reloc.
2664 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2665 // Space for variables copied with a COPY reloc.
2666 Output_data_space* dynbss_;
2667 // Offset of the GOT entry for the TLS module index.
2668 unsigned int got_mod_index_offset_;
2669 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2670 bool tls_base_symbol_defined_;
2671 // Vector of Stub_tables created.
2672 Stub_table_list stub_tables_;
2673 // Stub factory.
2674 const Stub_factory &stub_factory_;
2675 // Whether we can use BLX.
2676 bool may_use_blx_;
2677 // Whether we force PIC branch veneers.
2678 bool should_force_pic_veneer_;
2679 // Map for locating Arm_input_sections.
2680 Arm_input_section_map arm_input_section_map_;
2681 // Attributes section data in output.
2682 Attributes_section_data* attributes_section_data_;
2683 // Whether we want to fix code for Cortex-A8 erratum.
2684 bool fix_cortex_a8_;
2685 // Map addresses to relocs for Cortex-A8 erratum.
2686 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2689 template<bool big_endian>
2690 const Target::Target_info Target_arm<big_endian>::arm_info =
2692 32, // size
2693 big_endian, // is_big_endian
2694 elfcpp::EM_ARM, // machine_code
2695 false, // has_make_symbol
2696 false, // has_resolve
2697 false, // has_code_fill
2698 true, // is_default_stack_executable
2699 '\0', // wrap_char
2700 "/usr/lib/libc.so.1", // dynamic_linker
2701 0x8000, // default_text_segment_address
2702 0x1000, // abi_pagesize (overridable by -z max-page-size)
2703 0x1000, // common_pagesize (overridable by -z common-page-size)
2704 elfcpp::SHN_UNDEF, // small_common_shndx
2705 elfcpp::SHN_UNDEF, // large_common_shndx
2706 0, // small_common_section_flags
2707 0, // large_common_section_flags
2708 ".ARM.attributes", // attributes_section
2709 "aeabi" // attributes_vendor
2712 // Arm relocate functions class
2715 template<bool big_endian>
2716 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2718 public:
2719 typedef enum
2721 STATUS_OKAY, // No error during relocation.
2722 STATUS_OVERFLOW, // Relocation oveflow.
2723 STATUS_BAD_RELOC // Relocation cannot be applied.
2724 } Status;
2726 private:
2727 typedef Relocate_functions<32, big_endian> Base;
2728 typedef Arm_relocate_functions<big_endian> This;
2730 // Encoding of imm16 argument for movt and movw ARM instructions
2731 // from ARM ARM:
2733 // imm16 := imm4 | imm12
2735 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2736 // +-------+---------------+-------+-------+-----------------------+
2737 // | | |imm4 | |imm12 |
2738 // +-------+---------------+-------+-------+-----------------------+
2740 // Extract the relocation addend from VAL based on the ARM
2741 // instruction encoding described above.
2742 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2743 extract_arm_movw_movt_addend(
2744 typename elfcpp::Swap<32, big_endian>::Valtype val)
2746 // According to the Elf ABI for ARM Architecture the immediate
2747 // field is sign-extended to form the addend.
2748 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2751 // Insert X into VAL based on the ARM instruction encoding described
2752 // above.
2753 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2754 insert_val_arm_movw_movt(
2755 typename elfcpp::Swap<32, big_endian>::Valtype val,
2756 typename elfcpp::Swap<32, big_endian>::Valtype x)
2758 val &= 0xfff0f000;
2759 val |= x & 0x0fff;
2760 val |= (x & 0xf000) << 4;
2761 return val;
2764 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2765 // from ARM ARM:
2767 // imm16 := imm4 | i | imm3 | imm8
2769 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2770 // +---------+-+-----------+-------++-+-----+-------+---------------+
2771 // | |i| |imm4 || |imm3 | |imm8 |
2772 // +---------+-+-----------+-------++-+-----+-------+---------------+
2774 // Extract the relocation addend from VAL based on the Thumb2
2775 // instruction encoding described above.
2776 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2777 extract_thumb_movw_movt_addend(
2778 typename elfcpp::Swap<32, big_endian>::Valtype val)
2780 // According to the Elf ABI for ARM Architecture the immediate
2781 // field is sign-extended to form the addend.
2782 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2783 | ((val >> 15) & 0x0800)
2784 | ((val >> 4) & 0x0700)
2785 | (val & 0x00ff));
2788 // Insert X into VAL based on the Thumb2 instruction encoding
2789 // described above.
2790 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2791 insert_val_thumb_movw_movt(
2792 typename elfcpp::Swap<32, big_endian>::Valtype val,
2793 typename elfcpp::Swap<32, big_endian>::Valtype x)
2795 val &= 0xfbf08f00;
2796 val |= (x & 0xf000) << 4;
2797 val |= (x & 0x0800) << 15;
2798 val |= (x & 0x0700) << 4;
2799 val |= (x & 0x00ff);
2800 return val;
2803 // Calculate the smallest constant Kn for the specified residual.
2804 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2805 static uint32_t
2806 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2808 int32_t msb;
2810 if (residual == 0)
2811 return 0;
2812 // Determine the most significant bit in the residual and
2813 // align the resulting value to a 2-bit boundary.
2814 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2816 // The desired shift is now (msb - 6), or zero, whichever
2817 // is the greater.
2818 return (((msb - 6) < 0) ? 0 : (msb - 6));
2821 // Calculate the final residual for the specified group index.
2822 // If the passed group index is less than zero, the method will return
2823 // the value of the specified residual without any change.
2824 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2825 static typename elfcpp::Swap<32, big_endian>::Valtype
2826 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2827 const int group)
2829 for (int n = 0; n <= group; n++)
2831 // Calculate which part of the value to mask.
2832 uint32_t shift = calc_grp_kn(residual);
2833 // Calculate the residual for the next time around.
2834 residual &= ~(residual & (0xff << shift));
2837 return residual;
2840 // Calculate the value of Gn for the specified group index.
2841 // We return it in the form of an encoded constant-and-rotation.
2842 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2843 static typename elfcpp::Swap<32, big_endian>::Valtype
2844 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2845 const int group)
2847 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2848 uint32_t shift = 0;
2850 for (int n = 0; n <= group; n++)
2852 // Calculate which part of the value to mask.
2853 shift = calc_grp_kn(residual);
2854 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2855 gn = residual & (0xff << shift);
2856 // Calculate the residual for the next time around.
2857 residual &= ~gn;
2859 // Return Gn in the form of an encoded constant-and-rotation.
2860 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2863 public:
2864 // Handle ARM long branches.
2865 static typename This::Status
2866 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2867 unsigned char *, const Sized_symbol<32>*,
2868 const Arm_relobj<big_endian>*, unsigned int,
2869 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2871 // Handle THUMB long branches.
2872 static typename This::Status
2873 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2874 unsigned char *, const Sized_symbol<32>*,
2875 const Arm_relobj<big_endian>*, unsigned int,
2876 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2879 // Return the branch offset of a 32-bit THUMB branch.
2880 static inline int32_t
2881 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2883 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2884 // involving the J1 and J2 bits.
2885 uint32_t s = (upper_insn & (1U << 10)) >> 10;
2886 uint32_t upper = upper_insn & 0x3ffU;
2887 uint32_t lower = lower_insn & 0x7ffU;
2888 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2889 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2890 uint32_t i1 = j1 ^ s ? 0 : 1;
2891 uint32_t i2 = j2 ^ s ? 0 : 1;
2893 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2894 | (upper << 12) | (lower << 1));
2897 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2898 // UPPER_INSN is the original upper instruction of the branch. Caller is
2899 // responsible for overflow checking and BLX offset adjustment.
2900 static inline uint16_t
2901 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2903 uint32_t s = offset < 0 ? 1 : 0;
2904 uint32_t bits = static_cast<uint32_t>(offset);
2905 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2908 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2909 // LOWER_INSN is the original lower instruction of the branch. Caller is
2910 // responsible for overflow checking and BLX offset adjustment.
2911 static inline uint16_t
2912 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2914 uint32_t s = offset < 0 ? 1 : 0;
2915 uint32_t bits = static_cast<uint32_t>(offset);
2916 return ((lower_insn & ~0x2fffU)
2917 | ((((bits >> 23) & 1) ^ !s) << 13)
2918 | ((((bits >> 22) & 1) ^ !s) << 11)
2919 | ((bits >> 1) & 0x7ffU));
2922 // Return the branch offset of a 32-bit THUMB conditional branch.
2923 static inline int32_t
2924 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2926 uint32_t s = (upper_insn & 0x0400U) >> 10;
2927 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2928 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2929 uint32_t lower = (lower_insn & 0x07ffU);
2930 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2932 return utils::sign_extend<21>((upper << 12) | (lower << 1));
2935 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2936 // instruction. UPPER_INSN is the original upper instruction of the branch.
2937 // Caller is responsible for overflow checking.
2938 static inline uint16_t
2939 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2941 uint32_t s = offset < 0 ? 1 : 0;
2942 uint32_t bits = static_cast<uint32_t>(offset);
2943 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2946 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2947 // instruction. LOWER_INSN is the original lower instruction of the branch.
2948 // Caller is reponsible for overflow checking.
2949 static inline uint16_t
2950 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2952 uint32_t bits = static_cast<uint32_t>(offset);
2953 uint32_t j2 = (bits & 0x00080000U) >> 19;
2954 uint32_t j1 = (bits & 0x00040000U) >> 18;
2955 uint32_t lo = (bits & 0x00000ffeU) >> 1;
2957 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2960 // R_ARM_ABS8: S + A
2961 static inline typename This::Status
2962 abs8(unsigned char *view,
2963 const Sized_relobj<32, big_endian>* object,
2964 const Symbol_value<32>* psymval)
2966 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2967 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2968 Valtype* wv = reinterpret_cast<Valtype*>(view);
2969 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2970 Reltype addend = utils::sign_extend<8>(val);
2971 Reltype x = psymval->value(object, addend);
2972 val = utils::bit_select(val, x, 0xffU);
2973 elfcpp::Swap<8, big_endian>::writeval(wv, val);
2974 return (utils::has_signed_unsigned_overflow<8>(x)
2975 ? This::STATUS_OVERFLOW
2976 : This::STATUS_OKAY);
2979 // R_ARM_THM_ABS5: S + A
2980 static inline typename This::Status
2981 thm_abs5(unsigned char *view,
2982 const Sized_relobj<32, big_endian>* object,
2983 const Symbol_value<32>* psymval)
2985 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2986 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2987 Valtype* wv = reinterpret_cast<Valtype*>(view);
2988 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
2989 Reltype addend = (val & 0x7e0U) >> 6;
2990 Reltype x = psymval->value(object, addend);
2991 val = utils::bit_select(val, x << 6, 0x7e0U);
2992 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2993 return (utils::has_overflow<5>(x)
2994 ? This::STATUS_OVERFLOW
2995 : This::STATUS_OKAY);
2998 // R_ARM_ABS12: S + A
2999 static inline typename This::Status
3000 abs12(unsigned char *view,
3001 const Sized_relobj<32, big_endian>* object,
3002 const Symbol_value<32>* psymval)
3004 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3005 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3006 Valtype* wv = reinterpret_cast<Valtype*>(view);
3007 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3008 Reltype addend = val & 0x0fffU;
3009 Reltype x = psymval->value(object, addend);
3010 val = utils::bit_select(val, x, 0x0fffU);
3011 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3012 return (utils::has_overflow<12>(x)
3013 ? This::STATUS_OVERFLOW
3014 : This::STATUS_OKAY);
3017 // R_ARM_ABS16: S + A
3018 static inline typename This::Status
3019 abs16(unsigned char *view,
3020 const Sized_relobj<32, big_endian>* object,
3021 const Symbol_value<32>* psymval)
3023 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3024 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3025 Valtype* wv = reinterpret_cast<Valtype*>(view);
3026 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3027 Reltype addend = utils::sign_extend<16>(val);
3028 Reltype x = psymval->value(object, addend);
3029 val = utils::bit_select(val, x, 0xffffU);
3030 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3031 return (utils::has_signed_unsigned_overflow<16>(x)
3032 ? This::STATUS_OVERFLOW
3033 : This::STATUS_OKAY);
3036 // R_ARM_ABS32: (S + A) | T
3037 static inline typename This::Status
3038 abs32(unsigned char *view,
3039 const Sized_relobj<32, big_endian>* object,
3040 const Symbol_value<32>* psymval,
3041 Arm_address thumb_bit)
3043 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3044 Valtype* wv = reinterpret_cast<Valtype*>(view);
3045 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3046 Valtype x = psymval->value(object, addend) | thumb_bit;
3047 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3048 return This::STATUS_OKAY;
3051 // R_ARM_REL32: (S + A) | T - P
3052 static inline typename This::Status
3053 rel32(unsigned char *view,
3054 const Sized_relobj<32, big_endian>* object,
3055 const Symbol_value<32>* psymval,
3056 Arm_address address,
3057 Arm_address thumb_bit)
3059 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3060 Valtype* wv = reinterpret_cast<Valtype*>(view);
3061 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3062 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3063 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3064 return This::STATUS_OKAY;
3067 // R_ARM_THM_JUMP24: (S + A) | T - P
3068 static typename This::Status
3069 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3070 const Symbol_value<32>* psymval, Arm_address address,
3071 Arm_address thumb_bit);
3073 // R_ARM_THM_JUMP6: S + A – P
3074 static inline typename This::Status
3075 thm_jump6(unsigned char *view,
3076 const Sized_relobj<32, big_endian>* object,
3077 const Symbol_value<32>* psymval,
3078 Arm_address address)
3080 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3081 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3082 Valtype* wv = reinterpret_cast<Valtype*>(view);
3083 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3084 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3085 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3086 Reltype x = (psymval->value(object, addend) - address);
3087 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3088 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3089 // CZB does only forward jumps.
3090 return ((x > 0x007e)
3091 ? This::STATUS_OVERFLOW
3092 : This::STATUS_OKAY);
3095 // R_ARM_THM_JUMP8: S + A – P
3096 static inline typename This::Status
3097 thm_jump8(unsigned char *view,
3098 const Sized_relobj<32, big_endian>* object,
3099 const Symbol_value<32>* psymval,
3100 Arm_address address)
3102 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3103 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3104 Valtype* wv = reinterpret_cast<Valtype*>(view);
3105 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3106 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3107 Reltype x = (psymval->value(object, addend) - address);
3108 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3109 return (utils::has_overflow<8>(x)
3110 ? This::STATUS_OVERFLOW
3111 : This::STATUS_OKAY);
3114 // R_ARM_THM_JUMP11: S + A – P
3115 static inline typename This::Status
3116 thm_jump11(unsigned char *view,
3117 const Sized_relobj<32, big_endian>* object,
3118 const Symbol_value<32>* psymval,
3119 Arm_address address)
3121 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3122 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3123 Valtype* wv = reinterpret_cast<Valtype*>(view);
3124 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3125 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3126 Reltype x = (psymval->value(object, addend) - address);
3127 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3128 return (utils::has_overflow<11>(x)
3129 ? This::STATUS_OVERFLOW
3130 : This::STATUS_OKAY);
3133 // R_ARM_BASE_PREL: B(S) + A - P
3134 static inline typename This::Status
3135 base_prel(unsigned char* view,
3136 Arm_address origin,
3137 Arm_address address)
3139 Base::rel32(view, origin - address);
3140 return STATUS_OKAY;
3143 // R_ARM_BASE_ABS: B(S) + A
3144 static inline typename This::Status
3145 base_abs(unsigned char* view,
3146 Arm_address origin)
3148 Base::rel32(view, origin);
3149 return STATUS_OKAY;
3152 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3153 static inline typename This::Status
3154 got_brel(unsigned char* view,
3155 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3157 Base::rel32(view, got_offset);
3158 return This::STATUS_OKAY;
3161 // R_ARM_GOT_PREL: GOT(S) + A - P
3162 static inline typename This::Status
3163 got_prel(unsigned char *view,
3164 Arm_address got_entry,
3165 Arm_address address)
3167 Base::rel32(view, got_entry - address);
3168 return This::STATUS_OKAY;
3171 // R_ARM_PREL: (S + A) | T - P
3172 static inline typename This::Status
3173 prel31(unsigned char *view,
3174 const Sized_relobj<32, big_endian>* object,
3175 const Symbol_value<32>* psymval,
3176 Arm_address address,
3177 Arm_address thumb_bit)
3179 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3180 Valtype* wv = reinterpret_cast<Valtype*>(view);
3181 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3182 Valtype addend = utils::sign_extend<31>(val);
3183 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3184 val = utils::bit_select(val, x, 0x7fffffffU);
3185 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3186 return (utils::has_overflow<31>(x) ?
3187 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3190 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3191 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3192 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3193 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3194 static inline typename This::Status
3195 movw(unsigned char* view,
3196 const Sized_relobj<32, big_endian>* object,
3197 const Symbol_value<32>* psymval,
3198 Arm_address relative_address_base,
3199 Arm_address thumb_bit,
3200 bool check_overflow)
3202 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3203 Valtype* wv = reinterpret_cast<Valtype*>(view);
3204 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3205 Valtype addend = This::extract_arm_movw_movt_addend(val);
3206 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3207 - relative_address_base);
3208 val = This::insert_val_arm_movw_movt(val, x);
3209 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3210 return ((check_overflow && utils::has_overflow<16>(x))
3211 ? This::STATUS_OVERFLOW
3212 : This::STATUS_OKAY);
3215 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3216 // R_ARM_MOVT_PREL: S + A - P
3217 // R_ARM_MOVT_BREL: S + A - B(S)
3218 static inline typename This::Status
3219 movt(unsigned char* view,
3220 const Sized_relobj<32, big_endian>* object,
3221 const Symbol_value<32>* psymval,
3222 Arm_address relative_address_base)
3224 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3225 Valtype* wv = reinterpret_cast<Valtype*>(view);
3226 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3227 Valtype addend = This::extract_arm_movw_movt_addend(val);
3228 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3229 val = This::insert_val_arm_movw_movt(val, x);
3230 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3231 // FIXME: IHI0044D says that we should check for overflow.
3232 return This::STATUS_OKAY;
3235 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3236 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3237 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3238 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3239 static inline typename This::Status
3240 thm_movw(unsigned char *view,
3241 const Sized_relobj<32, big_endian>* object,
3242 const Symbol_value<32>* psymval,
3243 Arm_address relative_address_base,
3244 Arm_address thumb_bit,
3245 bool check_overflow)
3247 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3248 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3249 Valtype* wv = reinterpret_cast<Valtype*>(view);
3250 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3251 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3252 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3253 Reltype x =
3254 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3255 val = This::insert_val_thumb_movw_movt(val, x);
3256 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3257 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3258 return ((check_overflow && utils::has_overflow<16>(x))
3259 ? This::STATUS_OVERFLOW
3260 : This::STATUS_OKAY);
3263 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3264 // R_ARM_THM_MOVT_PREL: S + A - P
3265 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3266 static inline typename This::Status
3267 thm_movt(unsigned char* view,
3268 const Sized_relobj<32, big_endian>* object,
3269 const Symbol_value<32>* psymval,
3270 Arm_address relative_address_base)
3272 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3273 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3274 Valtype* wv = reinterpret_cast<Valtype*>(view);
3275 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3276 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3277 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3278 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3279 val = This::insert_val_thumb_movw_movt(val, x);
3280 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3281 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3282 return This::STATUS_OKAY;
3285 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3286 static inline typename This::Status
3287 thm_alu11(unsigned char* view,
3288 const Sized_relobj<32, big_endian>* object,
3289 const Symbol_value<32>* psymval,
3290 Arm_address address,
3291 Arm_address thumb_bit)
3293 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3294 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3295 Valtype* wv = reinterpret_cast<Valtype*>(view);
3296 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3297 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3299 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3300 // -----------------------------------------------------------------------
3301 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3302 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3303 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3304 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3305 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3306 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3308 // Determine a sign for the addend.
3309 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3310 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3311 // Thumb2 addend encoding:
3312 // imm12 := i | imm3 | imm8
3313 int32_t addend = (insn & 0xff)
3314 | ((insn & 0x00007000) >> 4)
3315 | ((insn & 0x04000000) >> 15);
3316 // Apply a sign to the added.
3317 addend *= sign;
3319 int32_t x = (psymval->value(object, addend) | thumb_bit)
3320 - (address & 0xfffffffc);
3321 Reltype val = abs(x);
3322 // Mask out the value and a distinct part of the ADD/SUB opcode
3323 // (bits 7:5 of opword).
3324 insn = (insn & 0xfb0f8f00)
3325 | (val & 0xff)
3326 | ((val & 0x700) << 4)
3327 | ((val & 0x800) << 15);
3328 // Set the opcode according to whether the value to go in the
3329 // place is negative.
3330 if (x < 0)
3331 insn |= 0x00a00000;
3333 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3334 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3335 return ((val > 0xfff) ?
3336 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3339 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3340 static inline typename This::Status
3341 thm_pc8(unsigned char* view,
3342 const Sized_relobj<32, big_endian>* object,
3343 const Symbol_value<32>* psymval,
3344 Arm_address address)
3346 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3348 Valtype* wv = reinterpret_cast<Valtype*>(view);
3349 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3350 Reltype addend = ((insn & 0x00ff) << 2);
3351 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3352 Reltype val = abs(x);
3353 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3355 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3356 return ((val > 0x03fc)
3357 ? This::STATUS_OVERFLOW
3358 : This::STATUS_OKAY);
3361 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3362 static inline typename This::Status
3363 thm_pc12(unsigned char* view,
3364 const Sized_relobj<32, big_endian>* object,
3365 const Symbol_value<32>* psymval,
3366 Arm_address address)
3368 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3369 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3370 Valtype* wv = reinterpret_cast<Valtype*>(view);
3371 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3372 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3373 // Determine a sign for the addend (positive if the U bit is 1).
3374 const int sign = (insn & 0x00800000) ? 1 : -1;
3375 int32_t addend = (insn & 0xfff);
3376 // Apply a sign to the added.
3377 addend *= sign;
3379 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3380 Reltype val = abs(x);
3381 // Mask out and apply the value and the U bit.
3382 insn = (insn & 0xff7ff000) | (val & 0xfff);
3383 // Set the U bit according to whether the value to go in the
3384 // place is positive.
3385 if (x >= 0)
3386 insn |= 0x00800000;
3388 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3389 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3390 return ((val > 0xfff) ?
3391 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3394 // R_ARM_V4BX
3395 static inline typename This::Status
3396 v4bx(const Relocate_info<32, big_endian>* relinfo,
3397 unsigned char *view,
3398 const Arm_relobj<big_endian>* object,
3399 const Arm_address address,
3400 const bool is_interworking)
3403 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3404 Valtype* wv = reinterpret_cast<Valtype*>(view);
3405 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3407 // Ensure that we have a BX instruction.
3408 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3409 const uint32_t reg = (val & 0xf);
3410 if (is_interworking && reg != 0xf)
3412 Stub_table<big_endian>* stub_table =
3413 object->stub_table(relinfo->data_shndx);
3414 gold_assert(stub_table != NULL);
3416 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3417 gold_assert(stub != NULL);
3419 int32_t veneer_address =
3420 stub_table->address() + stub->offset() - 8 - address;
3421 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3422 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3423 // Replace with a branch to veneer (B <addr>)
3424 val = (val & 0xf0000000) | 0x0a000000
3425 | ((veneer_address >> 2) & 0x00ffffff);
3427 else
3429 // Preserve Rm (lowest four bits) and the condition code
3430 // (highest four bits). Other bits encode MOV PC,Rm.
3431 val = (val & 0xf000000f) | 0x01a0f000;
3433 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3434 return This::STATUS_OKAY;
3437 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3438 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3439 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3440 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3441 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3442 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3443 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3444 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3445 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3446 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3447 static inline typename This::Status
3448 arm_grp_alu(unsigned char* view,
3449 const Sized_relobj<32, big_endian>* object,
3450 const Symbol_value<32>* psymval,
3451 const int group,
3452 Arm_address address,
3453 Arm_address thumb_bit,
3454 bool check_overflow)
3456 gold_assert(group >= 0 && group < 3);
3457 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3458 Valtype* wv = reinterpret_cast<Valtype*>(view);
3459 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3461 // ALU group relocations are allowed only for the ADD/SUB instructions.
3462 // (0x00800000 - ADD, 0x00400000 - SUB)
3463 const Valtype opcode = insn & 0x01e00000;
3464 if (opcode != 0x00800000 && opcode != 0x00400000)
3465 return This::STATUS_BAD_RELOC;
3467 // Determine a sign for the addend.
3468 const int sign = (opcode == 0x00800000) ? 1 : -1;
3469 // shifter = rotate_imm * 2
3470 const uint32_t shifter = (insn & 0xf00) >> 7;
3471 // Initial addend value.
3472 int32_t addend = insn & 0xff;
3473 // Rotate addend right by shifter.
3474 addend = (addend >> shifter) | (addend << (32 - shifter));
3475 // Apply a sign to the added.
3476 addend *= sign;
3478 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3479 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3480 // Check for overflow if required
3481 if (check_overflow
3482 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3483 return This::STATUS_OVERFLOW;
3485 // Mask out the value and the ADD/SUB part of the opcode; take care
3486 // not to destroy the S bit.
3487 insn &= 0xff1ff000;
3488 // Set the opcode according to whether the value to go in the
3489 // place is negative.
3490 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3491 // Encode the offset (encoded Gn).
3492 insn |= gn;
3494 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3495 return This::STATUS_OKAY;
3498 // R_ARM_LDR_PC_G0: S + A - P
3499 // R_ARM_LDR_PC_G1: S + A - P
3500 // R_ARM_LDR_PC_G2: S + A - P
3501 // R_ARM_LDR_SB_G0: S + A - B(S)
3502 // R_ARM_LDR_SB_G1: S + A - B(S)
3503 // R_ARM_LDR_SB_G2: S + A - B(S)
3504 static inline typename This::Status
3505 arm_grp_ldr(unsigned char* view,
3506 const Sized_relobj<32, big_endian>* object,
3507 const Symbol_value<32>* psymval,
3508 const int group,
3509 Arm_address address)
3511 gold_assert(group >= 0 && group < 3);
3512 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3513 Valtype* wv = reinterpret_cast<Valtype*>(view);
3514 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3516 const int sign = (insn & 0x00800000) ? 1 : -1;
3517 int32_t addend = (insn & 0xfff) * sign;
3518 int32_t x = (psymval->value(object, addend) - address);
3519 // Calculate the relevant G(n-1) value to obtain this stage residual.
3520 Valtype residual =
3521 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3522 if (residual >= 0x1000)
3523 return This::STATUS_OVERFLOW;
3525 // Mask out the value and U bit.
3526 insn &= 0xff7ff000;
3527 // Set the U bit for non-negative values.
3528 if (x >= 0)
3529 insn |= 0x00800000;
3530 insn |= residual;
3532 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3533 return This::STATUS_OKAY;
3536 // R_ARM_LDRS_PC_G0: S + A - P
3537 // R_ARM_LDRS_PC_G1: S + A - P
3538 // R_ARM_LDRS_PC_G2: S + A - P
3539 // R_ARM_LDRS_SB_G0: S + A - B(S)
3540 // R_ARM_LDRS_SB_G1: S + A - B(S)
3541 // R_ARM_LDRS_SB_G2: S + A - B(S)
3542 static inline typename This::Status
3543 arm_grp_ldrs(unsigned char* view,
3544 const Sized_relobj<32, big_endian>* object,
3545 const Symbol_value<32>* psymval,
3546 const int group,
3547 Arm_address address)
3549 gold_assert(group >= 0 && group < 3);
3550 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3551 Valtype* wv = reinterpret_cast<Valtype*>(view);
3552 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3554 const int sign = (insn & 0x00800000) ? 1 : -1;
3555 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3556 int32_t x = (psymval->value(object, addend) - address);
3557 // Calculate the relevant G(n-1) value to obtain this stage residual.
3558 Valtype residual =
3559 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3560 if (residual >= 0x100)
3561 return This::STATUS_OVERFLOW;
3563 // Mask out the value and U bit.
3564 insn &= 0xff7ff0f0;
3565 // Set the U bit for non-negative values.
3566 if (x >= 0)
3567 insn |= 0x00800000;
3568 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3570 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3571 return This::STATUS_OKAY;
3574 // R_ARM_LDC_PC_G0: S + A - P
3575 // R_ARM_LDC_PC_G1: S + A - P
3576 // R_ARM_LDC_PC_G2: S + A - P
3577 // R_ARM_LDC_SB_G0: S + A - B(S)
3578 // R_ARM_LDC_SB_G1: S + A - B(S)
3579 // R_ARM_LDC_SB_G2: S + A - B(S)
3580 static inline typename This::Status
3581 arm_grp_ldc(unsigned char* view,
3582 const Sized_relobj<32, big_endian>* object,
3583 const Symbol_value<32>* psymval,
3584 const int group,
3585 Arm_address address)
3587 gold_assert(group >= 0 && group < 3);
3588 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3589 Valtype* wv = reinterpret_cast<Valtype*>(view);
3590 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3592 const int sign = (insn & 0x00800000) ? 1 : -1;
3593 int32_t addend = ((insn & 0xff) << 2) * sign;
3594 int32_t x = (psymval->value(object, addend) - address);
3595 // Calculate the relevant G(n-1) value to obtain this stage residual.
3596 Valtype residual =
3597 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3598 if ((residual & 0x3) != 0 || residual >= 0x400)
3599 return This::STATUS_OVERFLOW;
3601 // Mask out the value and U bit.
3602 insn &= 0xff7fff00;
3603 // Set the U bit for non-negative values.
3604 if (x >= 0)
3605 insn |= 0x00800000;
3606 insn |= (residual >> 2);
3608 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3609 return This::STATUS_OKAY;
3613 // Relocate ARM long branches. This handles relocation types
3614 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3615 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3616 // undefined and we do not use PLT in this relocation. In such a case,
3617 // the branch is converted into an NOP.
3619 template<bool big_endian>
3620 typename Arm_relocate_functions<big_endian>::Status
3621 Arm_relocate_functions<big_endian>::arm_branch_common(
3622 unsigned int r_type,
3623 const Relocate_info<32, big_endian>* relinfo,
3624 unsigned char *view,
3625 const Sized_symbol<32>* gsym,
3626 const Arm_relobj<big_endian>* object,
3627 unsigned int r_sym,
3628 const Symbol_value<32>* psymval,
3629 Arm_address address,
3630 Arm_address thumb_bit,
3631 bool is_weakly_undefined_without_plt)
3633 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3634 Valtype* wv = reinterpret_cast<Valtype*>(view);
3635 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3637 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3638 && ((val & 0x0f000000UL) == 0x0a000000UL);
3639 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3640 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3641 && ((val & 0x0f000000UL) == 0x0b000000UL);
3642 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3643 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3645 // Check that the instruction is valid.
3646 if (r_type == elfcpp::R_ARM_CALL)
3648 if (!insn_is_uncond_bl && !insn_is_blx)
3649 return This::STATUS_BAD_RELOC;
3651 else if (r_type == elfcpp::R_ARM_JUMP24)
3653 if (!insn_is_b && !insn_is_cond_bl)
3654 return This::STATUS_BAD_RELOC;
3656 else if (r_type == elfcpp::R_ARM_PLT32)
3658 if (!insn_is_any_branch)
3659 return This::STATUS_BAD_RELOC;
3661 else if (r_type == elfcpp::R_ARM_XPC25)
3663 // FIXME: AAELF document IH0044C does not say much about it other
3664 // than it being obsolete.
3665 if (!insn_is_any_branch)
3666 return This::STATUS_BAD_RELOC;
3668 else
3669 gold_unreachable();
3671 // A branch to an undefined weak symbol is turned into a jump to
3672 // the next instruction unless a PLT entry will be created.
3673 // Do the same for local undefined symbols.
3674 // The jump to the next instruction is optimized as a NOP depending
3675 // on the architecture.
3676 const Target_arm<big_endian>* arm_target =
3677 Target_arm<big_endian>::default_target();
3678 if (is_weakly_undefined_without_plt)
3680 Valtype cond = val & 0xf0000000U;
3681 if (arm_target->may_use_arm_nop())
3682 val = cond | 0x0320f000;
3683 else
3684 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3685 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3686 return This::STATUS_OKAY;
3689 Valtype addend = utils::sign_extend<26>(val << 2);
3690 Valtype branch_target = psymval->value(object, addend);
3691 int32_t branch_offset = branch_target - address;
3693 // We need a stub if the branch offset is too large or if we need
3694 // to switch mode.
3695 bool may_use_blx = arm_target->may_use_blx();
3696 Reloc_stub* stub = NULL;
3697 if (utils::has_overflow<26>(branch_offset)
3698 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3700 Valtype unadjusted_branch_target = psymval->value(object, 0);
3702 Stub_type stub_type =
3703 Reloc_stub::stub_type_for_reloc(r_type, address,
3704 unadjusted_branch_target,
3705 (thumb_bit != 0));
3706 if (stub_type != arm_stub_none)
3708 Stub_table<big_endian>* stub_table =
3709 object->stub_table(relinfo->data_shndx);
3710 gold_assert(stub_table != NULL);
3712 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3713 stub = stub_table->find_reloc_stub(stub_key);
3714 gold_assert(stub != NULL);
3715 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3716 branch_target = stub_table->address() + stub->offset() + addend;
3717 branch_offset = branch_target - address;
3718 gold_assert(!utils::has_overflow<26>(branch_offset));
3722 // At this point, if we still need to switch mode, the instruction
3723 // must either be a BLX or a BL that can be converted to a BLX.
3724 if (thumb_bit != 0)
3726 // Turn BL to BLX.
3727 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3728 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3731 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3732 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3733 return (utils::has_overflow<26>(branch_offset)
3734 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3737 // Relocate THUMB long branches. This handles relocation types
3738 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3739 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3740 // undefined and we do not use PLT in this relocation. In such a case,
3741 // the branch is converted into an NOP.
3743 template<bool big_endian>
3744 typename Arm_relocate_functions<big_endian>::Status
3745 Arm_relocate_functions<big_endian>::thumb_branch_common(
3746 unsigned int r_type,
3747 const Relocate_info<32, big_endian>* relinfo,
3748 unsigned char *view,
3749 const Sized_symbol<32>* gsym,
3750 const Arm_relobj<big_endian>* object,
3751 unsigned int r_sym,
3752 const Symbol_value<32>* psymval,
3753 Arm_address address,
3754 Arm_address thumb_bit,
3755 bool is_weakly_undefined_without_plt)
3757 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3758 Valtype* wv = reinterpret_cast<Valtype*>(view);
3759 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3760 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3762 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3763 // into account.
3764 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3765 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3767 // Check that the instruction is valid.
3768 if (r_type == elfcpp::R_ARM_THM_CALL)
3770 if (!is_bl_insn && !is_blx_insn)
3771 return This::STATUS_BAD_RELOC;
3773 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3775 // This cannot be a BLX.
3776 if (!is_bl_insn)
3777 return This::STATUS_BAD_RELOC;
3779 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3781 // Check for Thumb to Thumb call.
3782 if (!is_blx_insn)
3783 return This::STATUS_BAD_RELOC;
3784 if (thumb_bit != 0)
3786 gold_warning(_("%s: Thumb BLX instruction targets "
3787 "thumb function '%s'."),
3788 object->name().c_str(),
3789 (gsym ? gsym->name() : "(local)"));
3790 // Convert BLX to BL.
3791 lower_insn |= 0x1000U;
3794 else
3795 gold_unreachable();
3797 // A branch to an undefined weak symbol is turned into a jump to
3798 // the next instruction unless a PLT entry will be created.
3799 // The jump to the next instruction is optimized as a NOP.W for
3800 // Thumb-2 enabled architectures.
3801 const Target_arm<big_endian>* arm_target =
3802 Target_arm<big_endian>::default_target();
3803 if (is_weakly_undefined_without_plt)
3805 if (arm_target->may_use_thumb2_nop())
3807 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3808 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3810 else
3812 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3813 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3815 return This::STATUS_OKAY;
3818 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3819 Arm_address branch_target = psymval->value(object, addend);
3820 int32_t branch_offset = branch_target - address;
3822 // We need a stub if the branch offset is too large or if we need
3823 // to switch mode.
3824 bool may_use_blx = arm_target->may_use_blx();
3825 bool thumb2 = arm_target->using_thumb2();
3826 if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3827 || (thumb2 && utils::has_overflow<25>(branch_offset))
3828 || ((thumb_bit == 0)
3829 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3830 || r_type == elfcpp::R_ARM_THM_JUMP24)))
3832 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3834 Stub_type stub_type =
3835 Reloc_stub::stub_type_for_reloc(r_type, address,
3836 unadjusted_branch_target,
3837 (thumb_bit != 0));
3839 if (stub_type != arm_stub_none)
3841 Stub_table<big_endian>* stub_table =
3842 object->stub_table(relinfo->data_shndx);
3843 gold_assert(stub_table != NULL);
3845 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3846 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3847 gold_assert(stub != NULL);
3848 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3849 branch_target = stub_table->address() + stub->offset() + addend;
3850 branch_offset = branch_target - address;
3854 // At this point, if we still need to switch mode, the instruction
3855 // must either be a BLX or a BL that can be converted to a BLX.
3856 if (thumb_bit == 0)
3858 gold_assert(may_use_blx
3859 && (r_type == elfcpp::R_ARM_THM_CALL
3860 || r_type == elfcpp::R_ARM_THM_XPC22));
3861 // Make sure this is a BLX.
3862 lower_insn &= ~0x1000U;
3864 else
3866 // Make sure this is a BL.
3867 lower_insn |= 0x1000U;
3870 if ((lower_insn & 0x5000U) == 0x4000U)
3871 // For a BLX instruction, make sure that the relocation is rounded up
3872 // to a word boundary. This follows the semantics of the instruction
3873 // which specifies that bit 1 of the target address will come from bit
3874 // 1 of the base address.
3875 branch_offset = (branch_offset + 2) & ~3;
3877 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
3878 // We use the Thumb-2 encoding, which is safe even if dealing with
3879 // a Thumb-1 instruction by virtue of our overflow check above. */
3880 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3881 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
3883 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3884 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3886 return ((thumb2
3887 ? utils::has_overflow<25>(branch_offset)
3888 : utils::has_overflow<23>(branch_offset))
3889 ? This::STATUS_OVERFLOW
3890 : This::STATUS_OKAY);
3893 // Relocate THUMB-2 long conditional branches.
3894 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3895 // undefined and we do not use PLT in this relocation. In such a case,
3896 // the branch is converted into an NOP.
3898 template<bool big_endian>
3899 typename Arm_relocate_functions<big_endian>::Status
3900 Arm_relocate_functions<big_endian>::thm_jump19(
3901 unsigned char *view,
3902 const Arm_relobj<big_endian>* object,
3903 const Symbol_value<32>* psymval,
3904 Arm_address address,
3905 Arm_address thumb_bit)
3907 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3908 Valtype* wv = reinterpret_cast<Valtype*>(view);
3909 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3910 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3911 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3913 Arm_address branch_target = psymval->value(object, addend);
3914 int32_t branch_offset = branch_target - address;
3916 // ??? Should handle interworking? GCC might someday try to
3917 // use this for tail calls.
3918 // FIXME: We do support thumb entry to PLT yet.
3919 if (thumb_bit == 0)
3921 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3922 return This::STATUS_BAD_RELOC;
3925 // Put RELOCATION back into the insn.
3926 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3927 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3929 // Put the relocated value back in the object file:
3930 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3931 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3933 return (utils::has_overflow<21>(branch_offset)
3934 ? This::STATUS_OVERFLOW
3935 : This::STATUS_OKAY);
3938 // Get the GOT section, creating it if necessary.
3940 template<bool big_endian>
3941 Arm_output_data_got<big_endian>*
3942 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3944 if (this->got_ == NULL)
3946 gold_assert(symtab != NULL && layout != NULL);
3948 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
3950 Output_section* os;
3951 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3952 (elfcpp::SHF_ALLOC
3953 | elfcpp::SHF_WRITE),
3954 this->got_, false, false, false,
3955 true);
3956 // The old GNU linker creates a .got.plt section. We just
3957 // create another set of data in the .got section. Note that we
3958 // always create a PLT if we create a GOT, although the PLT
3959 // might be empty.
3960 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
3961 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3962 (elfcpp::SHF_ALLOC
3963 | elfcpp::SHF_WRITE),
3964 this->got_plt_, false, false,
3965 false, false);
3967 // The first three entries are reserved.
3968 this->got_plt_->set_current_data_size(3 * 4);
3970 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3971 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3972 Symbol_table::PREDEFINED,
3973 this->got_plt_,
3974 0, 0, elfcpp::STT_OBJECT,
3975 elfcpp::STB_LOCAL,
3976 elfcpp::STV_HIDDEN, 0,
3977 false, false);
3979 return this->got_;
3982 // Get the dynamic reloc section, creating it if necessary.
3984 template<bool big_endian>
3985 typename Target_arm<big_endian>::Reloc_section*
3986 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
3988 if (this->rel_dyn_ == NULL)
3990 gold_assert(layout != NULL);
3991 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
3992 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
3993 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
3994 false, false, false);
3996 return this->rel_dyn_;
3999 // Insn_template methods.
4001 // Return byte size of an instruction template.
4003 size_t
4004 Insn_template::size() const
4006 switch (this->type())
4008 case THUMB16_TYPE:
4009 case THUMB16_SPECIAL_TYPE:
4010 return 2;
4011 case ARM_TYPE:
4012 case THUMB32_TYPE:
4013 case DATA_TYPE:
4014 return 4;
4015 default:
4016 gold_unreachable();
4020 // Return alignment of an instruction template.
4022 unsigned
4023 Insn_template::alignment() const
4025 switch (this->type())
4027 case THUMB16_TYPE:
4028 case THUMB16_SPECIAL_TYPE:
4029 case THUMB32_TYPE:
4030 return 2;
4031 case ARM_TYPE:
4032 case DATA_TYPE:
4033 return 4;
4034 default:
4035 gold_unreachable();
4039 // Stub_template methods.
4041 Stub_template::Stub_template(
4042 Stub_type type, const Insn_template* insns,
4043 size_t insn_count)
4044 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4045 entry_in_thumb_mode_(false), relocs_()
4047 off_t offset = 0;
4049 // Compute byte size and alignment of stub template.
4050 for (size_t i = 0; i < insn_count; i++)
4052 unsigned insn_alignment = insns[i].alignment();
4053 size_t insn_size = insns[i].size();
4054 gold_assert((offset & (insn_alignment - 1)) == 0);
4055 this->alignment_ = std::max(this->alignment_, insn_alignment);
4056 switch (insns[i].type())
4058 case Insn_template::THUMB16_TYPE:
4059 case Insn_template::THUMB16_SPECIAL_TYPE:
4060 if (i == 0)
4061 this->entry_in_thumb_mode_ = true;
4062 break;
4064 case Insn_template::THUMB32_TYPE:
4065 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4066 this->relocs_.push_back(Reloc(i, offset));
4067 if (i == 0)
4068 this->entry_in_thumb_mode_ = true;
4069 break;
4071 case Insn_template::ARM_TYPE:
4072 // Handle cases where the target is encoded within the
4073 // instruction.
4074 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4075 this->relocs_.push_back(Reloc(i, offset));
4076 break;
4078 case Insn_template::DATA_TYPE:
4079 // Entry point cannot be data.
4080 gold_assert(i != 0);
4081 this->relocs_.push_back(Reloc(i, offset));
4082 break;
4084 default:
4085 gold_unreachable();
4087 offset += insn_size;
4089 this->size_ = offset;
4092 // Stub methods.
4094 // Template to implement do_write for a specific target endianity.
4096 template<bool big_endian>
4097 void inline
4098 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4100 const Stub_template* stub_template = this->stub_template();
4101 const Insn_template* insns = stub_template->insns();
4103 // FIXME: We do not handle BE8 encoding yet.
4104 unsigned char* pov = view;
4105 for (size_t i = 0; i < stub_template->insn_count(); i++)
4107 switch (insns[i].type())
4109 case Insn_template::THUMB16_TYPE:
4110 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4111 break;
4112 case Insn_template::THUMB16_SPECIAL_TYPE:
4113 elfcpp::Swap<16, big_endian>::writeval(
4114 pov,
4115 this->thumb16_special(i));
4116 break;
4117 case Insn_template::THUMB32_TYPE:
4119 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4120 uint32_t lo = insns[i].data() & 0xffff;
4121 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4122 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4124 break;
4125 case Insn_template::ARM_TYPE:
4126 case Insn_template::DATA_TYPE:
4127 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4128 break;
4129 default:
4130 gold_unreachable();
4132 pov += insns[i].size();
4134 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4137 // Reloc_stub::Key methods.
4139 // Dump a Key as a string for debugging.
4141 std::string
4142 Reloc_stub::Key::name() const
4144 if (this->r_sym_ == invalid_index)
4146 // Global symbol key name
4147 // <stub-type>:<symbol name>:<addend>.
4148 const std::string sym_name = this->u_.symbol->name();
4149 // We need to print two hex number and two colons. So just add 100 bytes
4150 // to the symbol name size.
4151 size_t len = sym_name.size() + 100;
4152 char* buffer = new char[len];
4153 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4154 sym_name.c_str(), this->addend_);
4155 gold_assert(c > 0 && c < static_cast<int>(len));
4156 delete[] buffer;
4157 return std::string(buffer);
4159 else
4161 // local symbol key name
4162 // <stub-type>:<object>:<r_sym>:<addend>.
4163 const size_t len = 200;
4164 char buffer[len];
4165 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4166 this->u_.relobj, this->r_sym_, this->addend_);
4167 gold_assert(c > 0 && c < static_cast<int>(len));
4168 return std::string(buffer);
4172 // Reloc_stub methods.
4174 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4175 // LOCATION to DESTINATION.
4176 // This code is based on the arm_type_of_stub function in
4177 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4178 // class simple.
4180 Stub_type
4181 Reloc_stub::stub_type_for_reloc(
4182 unsigned int r_type,
4183 Arm_address location,
4184 Arm_address destination,
4185 bool target_is_thumb)
4187 Stub_type stub_type = arm_stub_none;
4189 // This is a bit ugly but we want to avoid using a templated class for
4190 // big and little endianities.
4191 bool may_use_blx;
4192 bool should_force_pic_veneer;
4193 bool thumb2;
4194 bool thumb_only;
4195 if (parameters->target().is_big_endian())
4197 const Target_arm<true>* big_endian_target =
4198 Target_arm<true>::default_target();
4199 may_use_blx = big_endian_target->may_use_blx();
4200 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4201 thumb2 = big_endian_target->using_thumb2();
4202 thumb_only = big_endian_target->using_thumb_only();
4204 else
4206 const Target_arm<false>* little_endian_target =
4207 Target_arm<false>::default_target();
4208 may_use_blx = little_endian_target->may_use_blx();
4209 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4210 thumb2 = little_endian_target->using_thumb2();
4211 thumb_only = little_endian_target->using_thumb_only();
4214 int64_t branch_offset = (int64_t)destination - location;
4216 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4218 // Handle cases where:
4219 // - this call goes too far (different Thumb/Thumb2 max
4220 // distance)
4221 // - it's a Thumb->Arm call and blx is not available, or it's a
4222 // Thumb->Arm branch (not bl). A stub is needed in this case.
4223 if ((!thumb2
4224 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4225 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4226 || (thumb2
4227 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4228 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4229 || ((!target_is_thumb)
4230 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4231 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4233 if (target_is_thumb)
4235 // Thumb to thumb.
4236 if (!thumb_only)
4238 stub_type = (parameters->options().shared()
4239 || should_force_pic_veneer)
4240 // PIC stubs.
4241 ? ((may_use_blx
4242 && (r_type == elfcpp::R_ARM_THM_CALL))
4243 // V5T and above. Stub starts with ARM code, so
4244 // we must be able to switch mode before
4245 // reaching it, which is only possible for 'bl'
4246 // (ie R_ARM_THM_CALL relocation).
4247 ? arm_stub_long_branch_any_thumb_pic
4248 // On V4T, use Thumb code only.
4249 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4251 // non-PIC stubs.
4252 : ((may_use_blx
4253 && (r_type == elfcpp::R_ARM_THM_CALL))
4254 ? arm_stub_long_branch_any_any // V5T and above.
4255 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4257 else
4259 stub_type = (parameters->options().shared()
4260 || should_force_pic_veneer)
4261 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4262 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4265 else
4267 // Thumb to arm.
4269 // FIXME: We should check that the input section is from an
4270 // object that has interwork enabled.
4272 stub_type = (parameters->options().shared()
4273 || should_force_pic_veneer)
4274 // PIC stubs.
4275 ? ((may_use_blx
4276 && (r_type == elfcpp::R_ARM_THM_CALL))
4277 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4278 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4280 // non-PIC stubs.
4281 : ((may_use_blx
4282 && (r_type == elfcpp::R_ARM_THM_CALL))
4283 ? arm_stub_long_branch_any_any // V5T and above.
4284 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4286 // Handle v4t short branches.
4287 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4288 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4289 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4290 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4294 else if (r_type == elfcpp::R_ARM_CALL
4295 || r_type == elfcpp::R_ARM_JUMP24
4296 || r_type == elfcpp::R_ARM_PLT32)
4298 if (target_is_thumb)
4300 // Arm to thumb.
4302 // FIXME: We should check that the input section is from an
4303 // object that has interwork enabled.
4305 // We have an extra 2-bytes reach because of
4306 // the mode change (bit 24 (H) of BLX encoding).
4307 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4308 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4309 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4310 || (r_type == elfcpp::R_ARM_JUMP24)
4311 || (r_type == elfcpp::R_ARM_PLT32))
4313 stub_type = (parameters->options().shared()
4314 || should_force_pic_veneer)
4315 // PIC stubs.
4316 ? (may_use_blx
4317 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4318 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4320 // non-PIC stubs.
4321 : (may_use_blx
4322 ? arm_stub_long_branch_any_any // V5T and above.
4323 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4326 else
4328 // Arm to arm.
4329 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4330 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4332 stub_type = (parameters->options().shared()
4333 || should_force_pic_veneer)
4334 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4335 : arm_stub_long_branch_any_any; /// non-PIC.
4340 return stub_type;
4343 // Cortex_a8_stub methods.
4345 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4346 // I is the position of the instruction template in the stub template.
4348 uint16_t
4349 Cortex_a8_stub::do_thumb16_special(size_t i)
4351 // The only use of this is to copy condition code from a conditional
4352 // branch being worked around to the corresponding conditional branch in
4353 // to the stub.
4354 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4355 && i == 0);
4356 uint16_t data = this->stub_template()->insns()[i].data();
4357 gold_assert((data & 0xff00U) == 0xd000U);
4358 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4359 return data;
4362 // Stub_factory methods.
4364 Stub_factory::Stub_factory()
4366 // The instruction template sequences are declared as static
4367 // objects and initialized first time the constructor runs.
4369 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4370 // to reach the stub if necessary.
4371 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4373 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4374 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4375 // dcd R_ARM_ABS32(X)
4378 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4379 // available.
4380 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4382 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4383 Insn_template::arm_insn(0xe12fff1c), // bx ip
4384 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4385 // dcd R_ARM_ABS32(X)
4388 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4389 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4391 Insn_template::thumb16_insn(0xb401), // push {r0}
4392 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4393 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4394 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4395 Insn_template::thumb16_insn(0x4760), // bx ip
4396 Insn_template::thumb16_insn(0xbf00), // nop
4397 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4398 // dcd R_ARM_ABS32(X)
4401 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4402 // allowed.
4403 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4405 Insn_template::thumb16_insn(0x4778), // bx pc
4406 Insn_template::thumb16_insn(0x46c0), // nop
4407 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4408 Insn_template::arm_insn(0xe12fff1c), // bx ip
4409 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4410 // dcd R_ARM_ABS32(X)
4413 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4414 // available.
4415 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4417 Insn_template::thumb16_insn(0x4778), // bx pc
4418 Insn_template::thumb16_insn(0x46c0), // nop
4419 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4420 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4421 // dcd R_ARM_ABS32(X)
4424 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4425 // one, when the destination is close enough.
4426 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4428 Insn_template::thumb16_insn(0x4778), // bx pc
4429 Insn_template::thumb16_insn(0x46c0), // nop
4430 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4433 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4434 // blx to reach the stub if necessary.
4435 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4437 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4438 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4439 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4440 // dcd R_ARM_REL32(X-4)
4443 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4444 // blx to reach the stub if necessary. We can not add into pc;
4445 // it is not guaranteed to mode switch (different in ARMv6 and
4446 // ARMv7).
4447 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4449 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4450 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4451 Insn_template::arm_insn(0xe12fff1c), // bx ip
4452 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4453 // dcd R_ARM_REL32(X)
4456 // V4T ARM -> ARM long branch stub, PIC.
4457 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4459 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4460 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4461 Insn_template::arm_insn(0xe12fff1c), // bx ip
4462 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4463 // dcd R_ARM_REL32(X)
4466 // V4T Thumb -> ARM long branch stub, PIC.
4467 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4469 Insn_template::thumb16_insn(0x4778), // bx pc
4470 Insn_template::thumb16_insn(0x46c0), // nop
4471 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4472 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4473 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4474 // dcd R_ARM_REL32(X)
4477 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4478 // architectures.
4479 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4481 Insn_template::thumb16_insn(0xb401), // push {r0}
4482 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4483 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4484 Insn_template::thumb16_insn(0x4484), // add ip, r0
4485 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4486 Insn_template::thumb16_insn(0x4760), // bx ip
4487 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4488 // dcd R_ARM_REL32(X)
4491 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4492 // allowed.
4493 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4495 Insn_template::thumb16_insn(0x4778), // bx pc
4496 Insn_template::thumb16_insn(0x46c0), // nop
4497 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4498 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4499 Insn_template::arm_insn(0xe12fff1c), // bx ip
4500 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4501 // dcd R_ARM_REL32(X)
4504 // Cortex-A8 erratum-workaround stubs.
4506 // Stub used for conditional branches (which may be beyond +/-1MB away,
4507 // so we can't use a conditional branch to reach this stub).
4509 // original code:
4511 // b<cond> X
4512 // after:
4514 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4516 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4517 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4518 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4519 // b.w X
4522 // Stub used for b.w and bl.w instructions.
4524 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4526 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4529 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4531 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4534 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4535 // instruction (which switches to ARM mode) to point to this stub. Jump to
4536 // the real destination using an ARM-mode branch.
4537 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4539 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4542 // Stub used to provide an interworking for R_ARM_V4BX relocation
4543 // (bx r[n] instruction).
4544 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4546 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4547 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4548 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4551 // Fill in the stub template look-up table. Stub templates are constructed
4552 // per instance of Stub_factory for fast look-up without locking
4553 // in a thread-enabled environment.
4555 this->stub_templates_[arm_stub_none] =
4556 new Stub_template(arm_stub_none, NULL, 0);
4558 #define DEF_STUB(x) \
4559 do \
4561 size_t array_size \
4562 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4563 Stub_type type = arm_stub_##x; \
4564 this->stub_templates_[type] = \
4565 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4567 while (0);
4569 DEF_STUBS
4570 #undef DEF_STUB
4573 // Stub_table methods.
4575 // Removel all Cortex-A8 stub.
4577 template<bool big_endian>
4578 void
4579 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4581 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4582 p != this->cortex_a8_stubs_.end();
4583 ++p)
4584 delete p->second;
4585 this->cortex_a8_stubs_.clear();
4588 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4590 template<bool big_endian>
4591 void
4592 Stub_table<big_endian>::relocate_stub(
4593 Stub* stub,
4594 const Relocate_info<32, big_endian>* relinfo,
4595 Target_arm<big_endian>* arm_target,
4596 Output_section* output_section,
4597 unsigned char* view,
4598 Arm_address address,
4599 section_size_type view_size)
4601 const Stub_template* stub_template = stub->stub_template();
4602 if (stub_template->reloc_count() != 0)
4604 // Adjust view to cover the stub only.
4605 section_size_type offset = stub->offset();
4606 section_size_type stub_size = stub_template->size();
4607 gold_assert(offset + stub_size <= view_size);
4609 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4610 address + offset, stub_size);
4614 // Relocate all stubs in this stub table.
4616 template<bool big_endian>
4617 void
4618 Stub_table<big_endian>::relocate_stubs(
4619 const Relocate_info<32, big_endian>* relinfo,
4620 Target_arm<big_endian>* arm_target,
4621 Output_section* output_section,
4622 unsigned char* view,
4623 Arm_address address,
4624 section_size_type view_size)
4626 // If we are passed a view bigger than the stub table's. we need to
4627 // adjust the view.
4628 gold_assert(address == this->address()
4629 && (view_size
4630 == static_cast<section_size_type>(this->data_size())));
4632 // Relocate all relocation stubs.
4633 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4634 p != this->reloc_stubs_.end();
4635 ++p)
4636 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4637 address, view_size);
4639 // Relocate all Cortex-A8 stubs.
4640 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4641 p != this->cortex_a8_stubs_.end();
4642 ++p)
4643 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4644 address, view_size);
4646 // Relocate all ARM V4BX stubs.
4647 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4648 p != this->arm_v4bx_stubs_.end();
4649 ++p)
4651 if (*p != NULL)
4652 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4653 address, view_size);
4657 // Write out the stubs to file.
4659 template<bool big_endian>
4660 void
4661 Stub_table<big_endian>::do_write(Output_file* of)
4663 off_t offset = this->offset();
4664 const section_size_type oview_size =
4665 convert_to_section_size_type(this->data_size());
4666 unsigned char* const oview = of->get_output_view(offset, oview_size);
4668 // Write relocation stubs.
4669 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4670 p != this->reloc_stubs_.end();
4671 ++p)
4673 Reloc_stub* stub = p->second;
4674 Arm_address address = this->address() + stub->offset();
4675 gold_assert(address
4676 == align_address(address,
4677 stub->stub_template()->alignment()));
4678 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4679 big_endian);
4682 // Write Cortex-A8 stubs.
4683 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4684 p != this->cortex_a8_stubs_.end();
4685 ++p)
4687 Cortex_a8_stub* stub = p->second;
4688 Arm_address address = this->address() + stub->offset();
4689 gold_assert(address
4690 == align_address(address,
4691 stub->stub_template()->alignment()));
4692 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4693 big_endian);
4696 // Write ARM V4BX relocation stubs.
4697 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4698 p != this->arm_v4bx_stubs_.end();
4699 ++p)
4701 if (*p == NULL)
4702 continue;
4704 Arm_address address = this->address() + (*p)->offset();
4705 gold_assert(address
4706 == align_address(address,
4707 (*p)->stub_template()->alignment()));
4708 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4709 big_endian);
4712 of->write_output_view(this->offset(), oview_size, oview);
4715 // Update the data size and address alignment of the stub table at the end
4716 // of a relaxation pass. Return true if either the data size or the
4717 // alignment changed in this relaxation pass.
4719 template<bool big_endian>
4720 bool
4721 Stub_table<big_endian>::update_data_size_and_addralign()
4723 off_t size = 0;
4724 unsigned addralign = 1;
4726 // Go over all stubs in table to compute data size and address alignment.
4728 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4729 p != this->reloc_stubs_.end();
4730 ++p)
4732 const Stub_template* stub_template = p->second->stub_template();
4733 addralign = std::max(addralign, stub_template->alignment());
4734 size = (align_address(size, stub_template->alignment())
4735 + stub_template->size());
4738 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4739 p != this->cortex_a8_stubs_.end();
4740 ++p)
4742 const Stub_template* stub_template = p->second->stub_template();
4743 addralign = std::max(addralign, stub_template->alignment());
4744 size = (align_address(size, stub_template->alignment())
4745 + stub_template->size());
4748 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4749 p != this->arm_v4bx_stubs_.end();
4750 ++p)
4752 if (*p == NULL)
4753 continue;
4755 const Stub_template* stub_template = (*p)->stub_template();
4756 addralign = std::max(addralign, stub_template->alignment());
4757 size = (align_address(size, stub_template->alignment())
4758 + stub_template->size());
4761 // Check if either data size or alignment changed in this pass.
4762 // Update prev_data_size_ and prev_addralign_. These will be used
4763 // as the current data size and address alignment for the next pass.
4764 bool changed = size != this->prev_data_size_;
4765 this->prev_data_size_ = size;
4767 if (addralign != this->prev_addralign_)
4768 changed = true;
4769 this->prev_addralign_ = addralign;
4771 return changed;
4774 // Finalize the stubs. This sets the offsets of the stubs within the stub
4775 // table. It also marks all input sections needing Cortex-A8 workaround.
4777 template<bool big_endian>
4778 void
4779 Stub_table<big_endian>::finalize_stubs()
4781 off_t off = 0;
4782 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4783 p != this->reloc_stubs_.end();
4784 ++p)
4786 Reloc_stub* stub = p->second;
4787 const Stub_template* stub_template = stub->stub_template();
4788 uint64_t stub_addralign = stub_template->alignment();
4789 off = align_address(off, stub_addralign);
4790 stub->set_offset(off);
4791 off += stub_template->size();
4794 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4795 p != this->cortex_a8_stubs_.end();
4796 ++p)
4798 Cortex_a8_stub* stub = p->second;
4799 const Stub_template* stub_template = stub->stub_template();
4800 uint64_t stub_addralign = stub_template->alignment();
4801 off = align_address(off, stub_addralign);
4802 stub->set_offset(off);
4803 off += stub_template->size();
4805 // Mark input section so that we can determine later if a code section
4806 // needs the Cortex-A8 workaround quickly.
4807 Arm_relobj<big_endian>* arm_relobj =
4808 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4809 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4812 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4813 p != this->arm_v4bx_stubs_.end();
4814 ++p)
4816 if (*p == NULL)
4817 continue;
4819 const Stub_template* stub_template = (*p)->stub_template();
4820 uint64_t stub_addralign = stub_template->alignment();
4821 off = align_address(off, stub_addralign);
4822 (*p)->set_offset(off);
4823 off += stub_template->size();
4826 gold_assert(off <= this->prev_data_size_);
4829 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4830 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4831 // of the address range seen by the linker.
4833 template<bool big_endian>
4834 void
4835 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4836 Target_arm<big_endian>* arm_target,
4837 unsigned char* view,
4838 Arm_address view_address,
4839 section_size_type view_size)
4841 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4842 for (Cortex_a8_stub_list::const_iterator p =
4843 this->cortex_a8_stubs_.lower_bound(view_address);
4844 ((p != this->cortex_a8_stubs_.end())
4845 && (p->first < (view_address + view_size)));
4846 ++p)
4848 // We do not store the THUMB bit in the LSB of either the branch address
4849 // or the stub offset. There is no need to strip the LSB.
4850 Arm_address branch_address = p->first;
4851 const Cortex_a8_stub* stub = p->second;
4852 Arm_address stub_address = this->address() + stub->offset();
4854 // Offset of the branch instruction relative to this view.
4855 section_size_type offset =
4856 convert_to_section_size_type(branch_address - view_address);
4857 gold_assert((offset + 4) <= view_size);
4859 arm_target->apply_cortex_a8_workaround(stub, stub_address,
4860 view + offset, branch_address);
4864 // Arm_input_section methods.
4866 // Initialize an Arm_input_section.
4868 template<bool big_endian>
4869 void
4870 Arm_input_section<big_endian>::init()
4872 Relobj* relobj = this->relobj();
4873 unsigned int shndx = this->shndx();
4875 // Cache these to speed up size and alignment queries. It is too slow
4876 // to call section_addraglin and section_size every time.
4877 this->original_addralign_ = relobj->section_addralign(shndx);
4878 this->original_size_ = relobj->section_size(shndx);
4880 // We want to make this look like the original input section after
4881 // output sections are finalized.
4882 Output_section* os = relobj->output_section(shndx);
4883 off_t offset = relobj->output_section_offset(shndx);
4884 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4885 this->set_address(os->address() + offset);
4886 this->set_file_offset(os->offset() + offset);
4888 this->set_current_data_size(this->original_size_);
4889 this->finalize_data_size();
4892 template<bool big_endian>
4893 void
4894 Arm_input_section<big_endian>::do_write(Output_file* of)
4896 // We have to write out the original section content.
4897 section_size_type section_size;
4898 const unsigned char* section_contents =
4899 this->relobj()->section_contents(this->shndx(), &section_size, false);
4900 of->write(this->offset(), section_contents, section_size);
4902 // If this owns a stub table and it is not empty, write it.
4903 if (this->is_stub_table_owner() && !this->stub_table_->empty())
4904 this->stub_table_->write(of);
4907 // Finalize data size.
4909 template<bool big_endian>
4910 void
4911 Arm_input_section<big_endian>::set_final_data_size()
4913 // If this owns a stub table, finalize its data size as well.
4914 if (this->is_stub_table_owner())
4916 uint64_t address = this->address();
4918 // The stub table comes after the original section contents.
4919 address += this->original_size_;
4920 address = align_address(address, this->stub_table_->addralign());
4921 off_t offset = this->offset() + (address - this->address());
4922 this->stub_table_->set_address_and_file_offset(address, offset);
4923 address += this->stub_table_->data_size();
4924 gold_assert(address == this->address() + this->current_data_size());
4927 this->set_data_size(this->current_data_size());
4930 // Reset address and file offset.
4932 template<bool big_endian>
4933 void
4934 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4936 // Size of the original input section contents.
4937 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4939 // If this is a stub table owner, account for the stub table size.
4940 if (this->is_stub_table_owner())
4942 Stub_table<big_endian>* stub_table = this->stub_table_;
4944 // Reset the stub table's address and file offset. The
4945 // current data size for child will be updated after that.
4946 stub_table_->reset_address_and_file_offset();
4947 off = align_address(off, stub_table_->addralign());
4948 off += stub_table->current_data_size();
4951 this->set_current_data_size(off);
4954 // Arm_exidx_cantunwind methods.
4956 // Write this to Output file OF for a fixed endianity.
4958 template<bool big_endian>
4959 void
4960 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4962 off_t offset = this->offset();
4963 const section_size_type oview_size = 8;
4964 unsigned char* const oview = of->get_output_view(offset, oview_size);
4966 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4967 Valtype* wv = reinterpret_cast<Valtype*>(oview);
4969 Output_section* os = this->relobj_->output_section(this->shndx_);
4970 gold_assert(os != NULL);
4972 Arm_relobj<big_endian>* arm_relobj =
4973 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4974 Arm_address output_offset =
4975 arm_relobj->get_output_section_offset(this->shndx_);
4976 Arm_address section_start;
4977 if(output_offset != Arm_relobj<big_endian>::invalid_address)
4978 section_start = os->address() + output_offset;
4979 else
4981 // Currently this only happens for a relaxed section.
4982 const Output_relaxed_input_section* poris =
4983 os->find_relaxed_input_section(this->relobj_, this->shndx_);
4984 gold_assert(poris != NULL);
4985 section_start = poris->address();
4988 // We always append this to the end of an EXIDX section.
4989 Arm_address output_address =
4990 section_start + this->relobj_->section_size(this->shndx_);
4992 // Write out the entry. The first word either points to the beginning
4993 // or after the end of a text section. The second word is the special
4994 // EXIDX_CANTUNWIND value.
4995 uint32_t prel31_offset = output_address - this->address();
4996 if (utils::has_overflow<31>(offset))
4997 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
4998 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
4999 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5001 of->write_output_view(this->offset(), oview_size, oview);
5004 // Arm_exidx_merged_section methods.
5006 // Constructor for Arm_exidx_merged_section.
5007 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5008 // SECTION_OFFSET_MAP points to a section offset map describing how
5009 // parts of the input section are mapped to output. DELETED_BYTES is
5010 // the number of bytes deleted from the EXIDX input section.
5012 Arm_exidx_merged_section::Arm_exidx_merged_section(
5013 const Arm_exidx_input_section& exidx_input_section,
5014 const Arm_exidx_section_offset_map& section_offset_map,
5015 uint32_t deleted_bytes)
5016 : Output_relaxed_input_section(exidx_input_section.relobj(),
5017 exidx_input_section.shndx(),
5018 exidx_input_section.addralign()),
5019 exidx_input_section_(exidx_input_section),
5020 section_offset_map_(section_offset_map)
5022 // Fix size here so that we do not need to implement set_final_data_size.
5023 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5024 this->fix_data_size();
5027 // Given an input OBJECT, an input section index SHNDX within that
5028 // object, and an OFFSET relative to the start of that input
5029 // section, return whether or not the corresponding offset within
5030 // the output section is known. If this function returns true, it
5031 // sets *POUTPUT to the output offset. The value -1 indicates that
5032 // this input offset is being discarded.
5034 bool
5035 Arm_exidx_merged_section::do_output_offset(
5036 const Relobj* relobj,
5037 unsigned int shndx,
5038 section_offset_type offset,
5039 section_offset_type* poutput) const
5041 // We only handle offsets for the original EXIDX input section.
5042 if (relobj != this->exidx_input_section_.relobj()
5043 || shndx != this->exidx_input_section_.shndx())
5044 return false;
5046 section_offset_type section_size =
5047 convert_types<section_offset_type>(this->exidx_input_section_.size());
5048 if (offset < 0 || offset >= section_size)
5049 // Input offset is out of valid range.
5050 *poutput = -1;
5051 else
5053 // We need to look up the section offset map to determine the output
5054 // offset. Find the reference point in map that is first offset
5055 // bigger than or equal to this offset.
5056 Arm_exidx_section_offset_map::const_iterator p =
5057 this->section_offset_map_.lower_bound(offset);
5059 // The section offset maps are build such that this should not happen if
5060 // input offset is in the valid range.
5061 gold_assert(p != this->section_offset_map_.end());
5063 // We need to check if this is dropped.
5064 section_offset_type ref = p->first;
5065 section_offset_type mapped_ref = p->second;
5067 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5068 // Offset is present in output.
5069 *poutput = mapped_ref + (offset - ref);
5070 else
5071 // Offset is discarded owing to EXIDX entry merging.
5072 *poutput = -1;
5075 return true;
5078 // Write this to output file OF.
5080 void
5081 Arm_exidx_merged_section::do_write(Output_file* of)
5083 // If we retain or discard the whole EXIDX input section, we would
5084 // not be here.
5085 gold_assert(this->data_size() != this->exidx_input_section_.size()
5086 && this->data_size() != 0);
5088 off_t offset = this->offset();
5089 const section_size_type oview_size = this->data_size();
5090 unsigned char* const oview = of->get_output_view(offset, oview_size);
5092 Output_section* os = this->relobj()->output_section(this->shndx());
5093 gold_assert(os != NULL);
5095 // Get contents of EXIDX input section.
5096 section_size_type section_size;
5097 const unsigned char* section_contents =
5098 this->relobj()->section_contents(this->shndx(), &section_size, false);
5099 gold_assert(section_size == this->exidx_input_section_.size());
5101 // Go over spans of input offsets and write only those that are not
5102 // discarded.
5103 section_offset_type in_start = 0;
5104 section_offset_type out_start = 0;
5105 for(Arm_exidx_section_offset_map::const_iterator p =
5106 this->section_offset_map_.begin();
5107 p != this->section_offset_map_.end();
5108 ++p)
5110 section_offset_type in_end = p->first;
5111 gold_assert(in_end >= in_start);
5112 section_offset_type out_end = p->second;
5113 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5114 if (out_end != -1)
5116 size_t out_chunk_size =
5117 convert_types<size_t>(out_end - out_start + 1);
5118 gold_assert(out_chunk_size == in_chunk_size);
5119 memcpy(oview + out_start, section_contents + in_start,
5120 out_chunk_size);
5121 out_start += out_chunk_size;
5123 in_start += in_chunk_size;
5126 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5127 of->write_output_view(this->offset(), oview_size, oview);
5130 // Arm_exidx_fixup methods.
5132 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5133 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5134 // points to the end of the last seen EXIDX section.
5136 void
5137 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5139 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5140 && this->last_input_section_ != NULL)
5142 Relobj* relobj = this->last_input_section_->relobj();
5143 unsigned int text_shndx = this->last_input_section_->link();
5144 Arm_exidx_cantunwind* cantunwind =
5145 new Arm_exidx_cantunwind(relobj, text_shndx);
5146 this->exidx_output_section_->add_output_section_data(cantunwind);
5147 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5151 // Process an EXIDX section entry in input. Return whether this entry
5152 // can be deleted in the output. SECOND_WORD in the second word of the
5153 // EXIDX entry.
5155 bool
5156 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5158 bool delete_entry;
5159 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5161 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5162 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5163 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5165 else if ((second_word & 0x80000000) != 0)
5167 // Inlined unwinding data. Merge if equal to previous.
5168 delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5169 && this->last_inlined_entry_ == second_word);
5170 this->last_unwind_type_ = UT_INLINED_ENTRY;
5171 this->last_inlined_entry_ = second_word;
5173 else
5175 // Normal table entry. In theory we could merge these too,
5176 // but duplicate entries are likely to be much less common.
5177 delete_entry = false;
5178 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5180 return delete_entry;
5183 // Update the current section offset map during EXIDX section fix-up.
5184 // If there is no map, create one. INPUT_OFFSET is the offset of a
5185 // reference point, DELETED_BYTES is the number of deleted by in the
5186 // section so far. If DELETE_ENTRY is true, the reference point and
5187 // all offsets after the previous reference point are discarded.
5189 void
5190 Arm_exidx_fixup::update_offset_map(
5191 section_offset_type input_offset,
5192 section_size_type deleted_bytes,
5193 bool delete_entry)
5195 if (this->section_offset_map_ == NULL)
5196 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5197 section_offset_type output_offset =
5198 (delete_entry
5199 ? Arm_exidx_input_section::invalid_offset
5200 : input_offset - deleted_bytes);
5201 (*this->section_offset_map_)[input_offset] = output_offset;
5204 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5205 // bytes deleted. If some entries are merged, also store a pointer to a newly
5206 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5207 // caller owns the map and is responsible for releasing it after use.
5209 template<bool big_endian>
5210 uint32_t
5211 Arm_exidx_fixup::process_exidx_section(
5212 const Arm_exidx_input_section* exidx_input_section,
5213 Arm_exidx_section_offset_map** psection_offset_map)
5215 Relobj* relobj = exidx_input_section->relobj();
5216 unsigned shndx = exidx_input_section->shndx();
5217 section_size_type section_size;
5218 const unsigned char* section_contents =
5219 relobj->section_contents(shndx, &section_size, false);
5221 if ((section_size % 8) != 0)
5223 // Something is wrong with this section. Better not touch it.
5224 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5225 relobj->name().c_str(), shndx);
5226 this->last_input_section_ = exidx_input_section;
5227 this->last_unwind_type_ = UT_NONE;
5228 return 0;
5231 uint32_t deleted_bytes = 0;
5232 bool prev_delete_entry = false;
5233 gold_assert(this->section_offset_map_ == NULL);
5235 for (section_size_type i = 0; i < section_size; i += 8)
5237 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5238 const Valtype* wv =
5239 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5240 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5242 bool delete_entry = this->process_exidx_entry(second_word);
5244 // Entry deletion causes changes in output offsets. We use a std::map
5245 // to record these. And entry (x, y) means input offset x
5246 // is mapped to output offset y. If y is invalid_offset, then x is
5247 // dropped in the output. Because of the way std::map::lower_bound
5248 // works, we record the last offset in a region w.r.t to keeping or
5249 // dropping. If there is no entry (x0, y0) for an input offset x0,
5250 // the output offset y0 of it is determined by the output offset y1 of
5251 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5252 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5253 // y0 is also -1.
5254 if (delete_entry != prev_delete_entry && i != 0)
5255 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5257 // Update total deleted bytes for this entry.
5258 if (delete_entry)
5259 deleted_bytes += 8;
5261 prev_delete_entry = delete_entry;
5264 // If section offset map is not NULL, make an entry for the end of
5265 // section.
5266 if (this->section_offset_map_ != NULL)
5267 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5269 *psection_offset_map = this->section_offset_map_;
5270 this->section_offset_map_ = NULL;
5271 this->last_input_section_ = exidx_input_section;
5273 // Set the first output text section so that we can link the EXIDX output
5274 // section to it. Ignore any EXIDX input section that is completely merged.
5275 if (this->first_output_text_section_ == NULL
5276 && deleted_bytes != section_size)
5278 unsigned int link = exidx_input_section->link();
5279 Output_section* os = relobj->output_section(link);
5280 gold_assert(os != NULL);
5281 this->first_output_text_section_ = os;
5284 return deleted_bytes;
5287 // Arm_output_section methods.
5289 // Create a stub group for input sections from BEGIN to END. OWNER
5290 // points to the input section to be the owner a new stub table.
5292 template<bool big_endian>
5293 void
5294 Arm_output_section<big_endian>::create_stub_group(
5295 Input_section_list::const_iterator begin,
5296 Input_section_list::const_iterator end,
5297 Input_section_list::const_iterator owner,
5298 Target_arm<big_endian>* target,
5299 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5301 // We use a different kind of relaxed section in an EXIDX section.
5302 // The static casting from Output_relaxed_input_section to
5303 // Arm_input_section is invalid in an EXIDX section. We are okay
5304 // because we should not be calling this for an EXIDX section.
5305 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5307 // Currently we convert ordinary input sections into relaxed sections only
5308 // at this point but we may want to support creating relaxed input section
5309 // very early. So we check here to see if owner is already a relaxed
5310 // section.
5312 Arm_input_section<big_endian>* arm_input_section;
5313 if (owner->is_relaxed_input_section())
5315 arm_input_section =
5316 Arm_input_section<big_endian>::as_arm_input_section(
5317 owner->relaxed_input_section());
5319 else
5321 gold_assert(owner->is_input_section());
5322 // Create a new relaxed input section.
5323 arm_input_section =
5324 target->new_arm_input_section(owner->relobj(), owner->shndx());
5325 new_relaxed_sections->push_back(arm_input_section);
5328 // Create a stub table.
5329 Stub_table<big_endian>* stub_table =
5330 target->new_stub_table(arm_input_section);
5332 arm_input_section->set_stub_table(stub_table);
5334 Input_section_list::const_iterator p = begin;
5335 Input_section_list::const_iterator prev_p;
5337 // Look for input sections or relaxed input sections in [begin ... end].
5340 if (p->is_input_section() || p->is_relaxed_input_section())
5342 // The stub table information for input sections live
5343 // in their objects.
5344 Arm_relobj<big_endian>* arm_relobj =
5345 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5346 arm_relobj->set_stub_table(p->shndx(), stub_table);
5348 prev_p = p++;
5350 while (prev_p != end);
5353 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5354 // of stub groups. We grow a stub group by adding input section until the
5355 // size is just below GROUP_SIZE. The last input section will be converted
5356 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5357 // input section after the stub table, effectively double the group size.
5359 // This is similar to the group_sections() function in elf32-arm.c but is
5360 // implemented differently.
5362 template<bool big_endian>
5363 void
5364 Arm_output_section<big_endian>::group_sections(
5365 section_size_type group_size,
5366 bool stubs_always_after_branch,
5367 Target_arm<big_endian>* target)
5369 // We only care about sections containing code.
5370 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5371 return;
5373 // States for grouping.
5374 typedef enum
5376 // No group is being built.
5377 NO_GROUP,
5378 // A group is being built but the stub table is not found yet.
5379 // We keep group a stub group until the size is just under GROUP_SIZE.
5380 // The last input section in the group will be used as the stub table.
5381 FINDING_STUB_SECTION,
5382 // A group is being built and we have already found a stub table.
5383 // We enter this state to grow a stub group by adding input section
5384 // after the stub table. This effectively doubles the group size.
5385 HAS_STUB_SECTION
5386 } State;
5388 // Any newly created relaxed sections are stored here.
5389 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5391 State state = NO_GROUP;
5392 section_size_type off = 0;
5393 section_size_type group_begin_offset = 0;
5394 section_size_type group_end_offset = 0;
5395 section_size_type stub_table_end_offset = 0;
5396 Input_section_list::const_iterator group_begin =
5397 this->input_sections().end();
5398 Input_section_list::const_iterator stub_table =
5399 this->input_sections().end();
5400 Input_section_list::const_iterator group_end = this->input_sections().end();
5401 for (Input_section_list::const_iterator p = this->input_sections().begin();
5402 p != this->input_sections().end();
5403 ++p)
5405 section_size_type section_begin_offset =
5406 align_address(off, p->addralign());
5407 section_size_type section_end_offset =
5408 section_begin_offset + p->data_size();
5410 // Check to see if we should group the previously seens sections.
5411 switch (state)
5413 case NO_GROUP:
5414 break;
5416 case FINDING_STUB_SECTION:
5417 // Adding this section makes the group larger than GROUP_SIZE.
5418 if (section_end_offset - group_begin_offset >= group_size)
5420 if (stubs_always_after_branch)
5422 gold_assert(group_end != this->input_sections().end());
5423 this->create_stub_group(group_begin, group_end, group_end,
5424 target, &new_relaxed_sections);
5425 state = NO_GROUP;
5427 else
5429 // But wait, there's more! Input sections up to
5430 // stub_group_size bytes after the stub table can be
5431 // handled by it too.
5432 state = HAS_STUB_SECTION;
5433 stub_table = group_end;
5434 stub_table_end_offset = group_end_offset;
5437 break;
5439 case HAS_STUB_SECTION:
5440 // Adding this section makes the post stub-section group larger
5441 // than GROUP_SIZE.
5442 if (section_end_offset - stub_table_end_offset >= group_size)
5444 gold_assert(group_end != this->input_sections().end());
5445 this->create_stub_group(group_begin, group_end, stub_table,
5446 target, &new_relaxed_sections);
5447 state = NO_GROUP;
5449 break;
5451 default:
5452 gold_unreachable();
5455 // If we see an input section and currently there is no group, start
5456 // a new one. Skip any empty sections.
5457 if ((p->is_input_section() || p->is_relaxed_input_section())
5458 && (p->relobj()->section_size(p->shndx()) != 0))
5460 if (state == NO_GROUP)
5462 state = FINDING_STUB_SECTION;
5463 group_begin = p;
5464 group_begin_offset = section_begin_offset;
5467 // Keep track of the last input section seen.
5468 group_end = p;
5469 group_end_offset = section_end_offset;
5472 off = section_end_offset;
5475 // Create a stub group for any ungrouped sections.
5476 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5478 gold_assert(group_end != this->input_sections().end());
5479 this->create_stub_group(group_begin, group_end,
5480 (state == FINDING_STUB_SECTION
5481 ? group_end
5482 : stub_table),
5483 target, &new_relaxed_sections);
5486 // Convert input section into relaxed input section in a batch.
5487 if (!new_relaxed_sections.empty())
5488 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5490 // Update the section offsets
5491 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5493 Arm_relobj<big_endian>* arm_relobj =
5494 Arm_relobj<big_endian>::as_arm_relobj(
5495 new_relaxed_sections[i]->relobj());
5496 unsigned int shndx = new_relaxed_sections[i]->shndx();
5497 // Tell Arm_relobj that this input section is converted.
5498 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5502 // Append non empty text sections in this to LIST in ascending
5503 // order of their position in this.
5505 template<bool big_endian>
5506 void
5507 Arm_output_section<big_endian>::append_text_sections_to_list(
5508 Text_section_list* list)
5510 // We only care about text sections.
5511 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5512 return;
5514 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5516 for (Input_section_list::const_iterator p = this->input_sections().begin();
5517 p != this->input_sections().end();
5518 ++p)
5520 // We only care about plain or relaxed input sections. We also
5521 // ignore any merged sections.
5522 if ((p->is_input_section() || p->is_relaxed_input_section())
5523 && p->data_size() != 0)
5524 list->push_back(Text_section_list::value_type(p->relobj(),
5525 p->shndx()));
5529 template<bool big_endian>
5530 void
5531 Arm_output_section<big_endian>::fix_exidx_coverage(
5532 Layout* layout,
5533 const Text_section_list& sorted_text_sections,
5534 Symbol_table* symtab)
5536 // We should only do this for the EXIDX output section.
5537 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5539 // We don't want the relaxation loop to undo these changes, so we discard
5540 // the current saved states and take another one after the fix-up.
5541 this->discard_states();
5543 // Remove all input sections.
5544 uint64_t address = this->address();
5545 typedef std::list<Simple_input_section> Simple_input_section_list;
5546 Simple_input_section_list input_sections;
5547 this->reset_address_and_file_offset();
5548 this->get_input_sections(address, std::string(""), &input_sections);
5550 if (!this->input_sections().empty())
5551 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5553 // Go through all the known input sections and record them.
5554 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5555 Section_id_set known_input_sections;
5556 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5557 p != input_sections.end();
5558 ++p)
5560 // This should never happen. At this point, we should only see
5561 // plain EXIDX input sections.
5562 gold_assert(!p->is_relaxed_input_section());
5563 known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5566 Arm_exidx_fixup exidx_fixup(this);
5568 // Go over the sorted text sections.
5569 Section_id_set processed_input_sections;
5570 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5571 p != sorted_text_sections.end();
5572 ++p)
5574 Relobj* relobj = p->first;
5575 unsigned int shndx = p->second;
5577 Arm_relobj<big_endian>* arm_relobj =
5578 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5579 const Arm_exidx_input_section* exidx_input_section =
5580 arm_relobj->exidx_input_section_by_link(shndx);
5582 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5583 // entry pointing to the end of the last seen EXIDX section.
5584 if (exidx_input_section == NULL)
5586 exidx_fixup.add_exidx_cantunwind_as_needed();
5587 continue;
5590 Relobj* exidx_relobj = exidx_input_section->relobj();
5591 unsigned int exidx_shndx = exidx_input_section->shndx();
5592 Section_id sid(exidx_relobj, exidx_shndx);
5593 if (known_input_sections.find(sid) == known_input_sections.end())
5595 // This is odd. We have not seen this EXIDX input section before.
5596 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5597 // issue a warning instead. We assume the user knows what he
5598 // or she is doing. Otherwise, this is an error.
5599 if (layout->script_options()->saw_sections_clause())
5600 gold_warning(_("unwinding may not work because EXIDX input section"
5601 " %u of %s is not in EXIDX output section"),
5602 exidx_shndx, exidx_relobj->name().c_str());
5603 else
5604 gold_error(_("unwinding may not work because EXIDX input section"
5605 " %u of %s is not in EXIDX output section"),
5606 exidx_shndx, exidx_relobj->name().c_str());
5608 exidx_fixup.add_exidx_cantunwind_as_needed();
5609 continue;
5612 // Fix up coverage and append input section to output data list.
5613 Arm_exidx_section_offset_map* section_offset_map = NULL;
5614 uint32_t deleted_bytes =
5615 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5616 &section_offset_map);
5618 if (deleted_bytes == exidx_input_section->size())
5620 // The whole EXIDX section got merged. Remove it from output.
5621 gold_assert(section_offset_map == NULL);
5622 exidx_relobj->set_output_section(exidx_shndx, NULL);
5624 // All local symbols defined in this input section will be dropped.
5625 // We need to adjust output local symbol count.
5626 arm_relobj->set_output_local_symbol_count_needs_update();
5628 else if (deleted_bytes > 0)
5630 // Some entries are merged. We need to convert this EXIDX input
5631 // section into a relaxed section.
5632 gold_assert(section_offset_map != NULL);
5633 Arm_exidx_merged_section* merged_section =
5634 new Arm_exidx_merged_section(*exidx_input_section,
5635 *section_offset_map, deleted_bytes);
5636 this->add_relaxed_input_section(merged_section);
5637 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5639 // All local symbols defined in discarded portions of this input
5640 // section will be dropped. We need to adjust output local symbol
5641 // count.
5642 arm_relobj->set_output_local_symbol_count_needs_update();
5644 else
5646 // Just add back the EXIDX input section.
5647 gold_assert(section_offset_map == NULL);
5648 Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5649 this->add_simple_input_section(sis, exidx_input_section->size(),
5650 exidx_input_section->addralign());
5653 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5656 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5657 exidx_fixup.add_exidx_cantunwind_as_needed();
5659 // Remove any known EXIDX input sections that are not processed.
5660 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5661 p != input_sections.end();
5662 ++p)
5664 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5665 == processed_input_sections.end())
5667 // We only discard a known EXIDX section because its linked
5668 // text section has been folded by ICF.
5669 Arm_relobj<big_endian>* arm_relobj =
5670 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5671 const Arm_exidx_input_section* exidx_input_section =
5672 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5673 gold_assert(exidx_input_section != NULL);
5674 unsigned int text_shndx = exidx_input_section->link();
5675 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5677 // Remove this from link.
5678 p->relobj()->set_output_section(p->shndx(), NULL);
5682 // Link exidx output section to the first seen output section and
5683 // set correct entry size.
5684 this->set_link_section(exidx_fixup.first_output_text_section());
5685 this->set_entsize(8);
5687 // Make changes permanent.
5688 this->save_states();
5689 this->set_section_offsets_need_adjustment();
5692 // Arm_relobj methods.
5694 // Determine if an input section is scannable for stub processing. SHDR is
5695 // the header of the section and SHNDX is the section index. OS is the output
5696 // section for the input section and SYMTAB is the global symbol table used to
5697 // look up ICF information.
5699 template<bool big_endian>
5700 bool
5701 Arm_relobj<big_endian>::section_is_scannable(
5702 const elfcpp::Shdr<32, big_endian>& shdr,
5703 unsigned int shndx,
5704 const Output_section* os,
5705 const Symbol_table *symtab)
5707 // Skip any empty sections, unallocated sections or sections whose
5708 // type are not SHT_PROGBITS.
5709 if (shdr.get_sh_size() == 0
5710 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5711 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5712 return false;
5714 // Skip any discarded or ICF'ed sections.
5715 if (os == NULL || symtab->is_section_folded(this, shndx))
5716 return false;
5718 // If this requires special offset handling, check to see if it is
5719 // a relaxed section. If this is not, then it is a merged section that
5720 // we cannot handle.
5721 if (this->is_output_section_offset_invalid(shndx))
5723 const Output_relaxed_input_section* poris =
5724 os->find_relaxed_input_section(this, shndx);
5725 if (poris == NULL)
5726 return false;
5729 return true;
5732 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5733 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5735 template<bool big_endian>
5736 bool
5737 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5738 const elfcpp::Shdr<32, big_endian>& shdr,
5739 const Relobj::Output_sections& out_sections,
5740 const Symbol_table *symtab,
5741 const unsigned char* pshdrs)
5743 unsigned int sh_type = shdr.get_sh_type();
5744 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5745 return false;
5747 // Ignore empty section.
5748 off_t sh_size = shdr.get_sh_size();
5749 if (sh_size == 0)
5750 return false;
5752 // Ignore reloc section with unexpected symbol table. The
5753 // error will be reported in the final link.
5754 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5755 return false;
5757 unsigned int reloc_size;
5758 if (sh_type == elfcpp::SHT_REL)
5759 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5760 else
5761 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5763 // Ignore reloc section with unexpected entsize or uneven size.
5764 // The error will be reported in the final link.
5765 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5766 return false;
5768 // Ignore reloc section with bad info. This error will be
5769 // reported in the final link.
5770 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5771 if (index >= this->shnum())
5772 return false;
5774 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5775 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5776 return this->section_is_scannable(text_shdr, index,
5777 out_sections[index], symtab);
5780 // Return the output address of either a plain input section or a relaxed
5781 // input section. SHNDX is the section index. We define and use this
5782 // instead of calling Output_section::output_address because that is slow
5783 // for large output.
5785 template<bool big_endian>
5786 Arm_address
5787 Arm_relobj<big_endian>::simple_input_section_output_address(
5788 unsigned int shndx,
5789 Output_section* os)
5791 if (this->is_output_section_offset_invalid(shndx))
5793 const Output_relaxed_input_section* poris =
5794 os->find_relaxed_input_section(this, shndx);
5795 // We do not handle merged sections here.
5796 gold_assert(poris != NULL);
5797 return poris->address();
5799 else
5800 return os->address() + this->get_output_section_offset(shndx);
5803 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5804 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5806 template<bool big_endian>
5807 bool
5808 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5809 const elfcpp::Shdr<32, big_endian>& shdr,
5810 unsigned int shndx,
5811 Output_section* os,
5812 const Symbol_table* symtab)
5814 if (!this->section_is_scannable(shdr, shndx, os, symtab))
5815 return false;
5817 // If the section does not cross any 4K-boundaries, it does not need to
5818 // be scanned.
5819 Arm_address address = this->simple_input_section_output_address(shndx, os);
5820 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5821 return false;
5823 return true;
5826 // Scan a section for Cortex-A8 workaround.
5828 template<bool big_endian>
5829 void
5830 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5831 const elfcpp::Shdr<32, big_endian>& shdr,
5832 unsigned int shndx,
5833 Output_section* os,
5834 Target_arm<big_endian>* arm_target)
5836 // Look for the first mapping symbol in this section. It should be
5837 // at (shndx, 0).
5838 Mapping_symbol_position section_start(shndx, 0);
5839 typename Mapping_symbols_info::const_iterator p =
5840 this->mapping_symbols_info_.lower_bound(section_start);
5842 // There are no mapping symbols for this section. Treat it as a data-only
5843 // section.
5844 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5845 return;
5847 Arm_address output_address =
5848 this->simple_input_section_output_address(shndx, os);
5850 // Get the section contents.
5851 section_size_type input_view_size = 0;
5852 const unsigned char* input_view =
5853 this->section_contents(shndx, &input_view_size, false);
5855 // We need to go through the mapping symbols to determine what to
5856 // scan. There are two reasons. First, we should look at THUMB code and
5857 // THUMB code only. Second, we only want to look at the 4K-page boundary
5858 // to speed up the scanning.
5860 while (p != this->mapping_symbols_info_.end()
5861 && p->first.first == shndx)
5863 typename Mapping_symbols_info::const_iterator next =
5864 this->mapping_symbols_info_.upper_bound(p->first);
5866 // Only scan part of a section with THUMB code.
5867 if (p->second == 't')
5869 // Determine the end of this range.
5870 section_size_type span_start =
5871 convert_to_section_size_type(p->first.second);
5872 section_size_type span_end;
5873 if (next != this->mapping_symbols_info_.end()
5874 && next->first.first == shndx)
5875 span_end = convert_to_section_size_type(next->first.second);
5876 else
5877 span_end = convert_to_section_size_type(shdr.get_sh_size());
5879 if (((span_start + output_address) & ~0xfffUL)
5880 != ((span_end + output_address - 1) & ~0xfffUL))
5882 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5883 span_start, span_end,
5884 input_view,
5885 output_address);
5889 p = next;
5893 // Scan relocations for stub generation.
5895 template<bool big_endian>
5896 void
5897 Arm_relobj<big_endian>::scan_sections_for_stubs(
5898 Target_arm<big_endian>* arm_target,
5899 const Symbol_table* symtab,
5900 const Layout* layout)
5902 unsigned int shnum = this->shnum();
5903 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5905 // Read the section headers.
5906 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
5907 shnum * shdr_size,
5908 true, true);
5910 // To speed up processing, we set up hash tables for fast lookup of
5911 // input offsets to output addresses.
5912 this->initialize_input_to_output_maps();
5914 const Relobj::Output_sections& out_sections(this->output_sections());
5916 Relocate_info<32, big_endian> relinfo;
5917 relinfo.symtab = symtab;
5918 relinfo.layout = layout;
5919 relinfo.object = this;
5921 // Do relocation stubs scanning.
5922 const unsigned char* p = pshdrs + shdr_size;
5923 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5925 const elfcpp::Shdr<32, big_endian> shdr(p);
5926 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5927 pshdrs))
5929 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5930 Arm_address output_offset = this->get_output_section_offset(index);
5931 Arm_address output_address;
5932 if(output_offset != invalid_address)
5933 output_address = out_sections[index]->address() + output_offset;
5934 else
5936 // Currently this only happens for a relaxed section.
5937 const Output_relaxed_input_section* poris =
5938 out_sections[index]->find_relaxed_input_section(this, index);
5939 gold_assert(poris != NULL);
5940 output_address = poris->address();
5943 // Get the relocations.
5944 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5945 shdr.get_sh_size(),
5946 true, false);
5948 // Get the section contents. This does work for the case in which
5949 // we modify the contents of an input section. We need to pass the
5950 // output view under such circumstances.
5951 section_size_type input_view_size = 0;
5952 const unsigned char* input_view =
5953 this->section_contents(index, &input_view_size, false);
5955 relinfo.reloc_shndx = i;
5956 relinfo.data_shndx = index;
5957 unsigned int sh_type = shdr.get_sh_type();
5958 unsigned int reloc_size;
5959 if (sh_type == elfcpp::SHT_REL)
5960 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5961 else
5962 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5964 Output_section* os = out_sections[index];
5965 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5966 shdr.get_sh_size() / reloc_size,
5968 output_offset == invalid_address,
5969 input_view, output_address,
5970 input_view_size);
5974 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
5975 // after its relocation section, if there is one, is processed for
5976 // relocation stubs. Merging this loop with the one above would have been
5977 // complicated since we would have had to make sure that relocation stub
5978 // scanning is done first.
5979 if (arm_target->fix_cortex_a8())
5981 const unsigned char* p = pshdrs + shdr_size;
5982 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5984 const elfcpp::Shdr<32, big_endian> shdr(p);
5985 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
5986 out_sections[i],
5987 symtab))
5988 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
5989 arm_target);
5993 // After we've done the relocations, we release the hash tables,
5994 // since we no longer need them.
5995 this->free_input_to_output_maps();
5998 // Count the local symbols. The ARM backend needs to know if a symbol
5999 // is a THUMB function or not. For global symbols, it is easy because
6000 // the Symbol object keeps the ELF symbol type. For local symbol it is
6001 // harder because we cannot access this information. So we override the
6002 // do_count_local_symbol in parent and scan local symbols to mark
6003 // THUMB functions. This is not the most efficient way but I do not want to
6004 // slow down other ports by calling a per symbol targer hook inside
6005 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6007 template<bool big_endian>
6008 void
6009 Arm_relobj<big_endian>::do_count_local_symbols(
6010 Stringpool_template<char>* pool,
6011 Stringpool_template<char>* dynpool)
6013 // We need to fix-up the values of any local symbols whose type are
6014 // STT_ARM_TFUNC.
6016 // Ask parent to count the local symbols.
6017 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6018 const unsigned int loccount = this->local_symbol_count();
6019 if (loccount == 0)
6020 return;
6022 // Intialize the thumb function bit-vector.
6023 std::vector<bool> empty_vector(loccount, false);
6024 this->local_symbol_is_thumb_function_.swap(empty_vector);
6026 // Read the symbol table section header.
6027 const unsigned int symtab_shndx = this->symtab_shndx();
6028 elfcpp::Shdr<32, big_endian>
6029 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6030 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6032 // Read the local symbols.
6033 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6034 gold_assert(loccount == symtabshdr.get_sh_info());
6035 off_t locsize = loccount * sym_size;
6036 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6037 locsize, true, true);
6039 // For mapping symbol processing, we need to read the symbol names.
6040 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6041 if (strtab_shndx >= this->shnum())
6043 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6044 return;
6047 elfcpp::Shdr<32, big_endian>
6048 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6049 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6051 this->error(_("symbol table name section has wrong type: %u"),
6052 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6053 return;
6055 const char* pnames =
6056 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6057 strtabshdr.get_sh_size(),
6058 false, false));
6060 // Loop over the local symbols and mark any local symbols pointing
6061 // to THUMB functions.
6063 // Skip the first dummy symbol.
6064 psyms += sym_size;
6065 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6066 this->local_values();
6067 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6069 elfcpp::Sym<32, big_endian> sym(psyms);
6070 elfcpp::STT st_type = sym.get_st_type();
6071 Symbol_value<32>& lv((*plocal_values)[i]);
6072 Arm_address input_value = lv.input_value();
6074 // Check to see if this is a mapping symbol.
6075 const char* sym_name = pnames + sym.get_st_name();
6076 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6078 unsigned int input_shndx = sym.get_st_shndx();
6080 // Strip of LSB in case this is a THUMB symbol.
6081 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6082 this->mapping_symbols_info_[msp] = sym_name[1];
6085 if (st_type == elfcpp::STT_ARM_TFUNC
6086 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6088 // This is a THUMB function. Mark this and canonicalize the
6089 // symbol value by setting LSB.
6090 this->local_symbol_is_thumb_function_[i] = true;
6091 if ((input_value & 1) == 0)
6092 lv.set_input_value(input_value | 1);
6097 // Relocate sections.
6098 template<bool big_endian>
6099 void
6100 Arm_relobj<big_endian>::do_relocate_sections(
6101 const Symbol_table* symtab,
6102 const Layout* layout,
6103 const unsigned char* pshdrs,
6104 typename Sized_relobj<32, big_endian>::Views* pviews)
6106 // Call parent to relocate sections.
6107 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6108 pviews);
6110 // We do not generate stubs if doing a relocatable link.
6111 if (parameters->options().relocatable())
6112 return;
6114 // Relocate stub tables.
6115 unsigned int shnum = this->shnum();
6117 Target_arm<big_endian>* arm_target =
6118 Target_arm<big_endian>::default_target();
6120 Relocate_info<32, big_endian> relinfo;
6121 relinfo.symtab = symtab;
6122 relinfo.layout = layout;
6123 relinfo.object = this;
6125 for (unsigned int i = 1; i < shnum; ++i)
6127 Arm_input_section<big_endian>* arm_input_section =
6128 arm_target->find_arm_input_section(this, i);
6130 if (arm_input_section != NULL
6131 && arm_input_section->is_stub_table_owner()
6132 && !arm_input_section->stub_table()->empty())
6134 // We cannot discard a section if it owns a stub table.
6135 Output_section* os = this->output_section(i);
6136 gold_assert(os != NULL);
6138 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6139 relinfo.reloc_shdr = NULL;
6140 relinfo.data_shndx = i;
6141 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6143 gold_assert((*pviews)[i].view != NULL);
6145 // We are passed the output section view. Adjust it to cover the
6146 // stub table only.
6147 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6148 gold_assert((stub_table->address() >= (*pviews)[i].address)
6149 && ((stub_table->address() + stub_table->data_size())
6150 <= (*pviews)[i].address + (*pviews)[i].view_size));
6152 off_t offset = stub_table->address() - (*pviews)[i].address;
6153 unsigned char* view = (*pviews)[i].view + offset;
6154 Arm_address address = stub_table->address();
6155 section_size_type view_size = stub_table->data_size();
6157 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6158 view_size);
6161 // Apply Cortex A8 workaround if applicable.
6162 if (this->section_has_cortex_a8_workaround(i))
6164 unsigned char* view = (*pviews)[i].view;
6165 Arm_address view_address = (*pviews)[i].address;
6166 section_size_type view_size = (*pviews)[i].view_size;
6167 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6169 // Adjust view to cover section.
6170 Output_section* os = this->output_section(i);
6171 gold_assert(os != NULL);
6172 Arm_address section_address =
6173 this->simple_input_section_output_address(i, os);
6174 uint64_t section_size = this->section_size(i);
6176 gold_assert(section_address >= view_address
6177 && ((section_address + section_size)
6178 <= (view_address + view_size)));
6180 unsigned char* section_view = view + (section_address - view_address);
6182 // Apply the Cortex-A8 workaround to the output address range
6183 // corresponding to this input section.
6184 stub_table->apply_cortex_a8_workaround_to_address_range(
6185 arm_target,
6186 section_view,
6187 section_address,
6188 section_size);
6193 // Find the linked text section of an EXIDX section by looking the the first
6194 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6195 // must be linked to to its associated code section via the sh_link field of
6196 // its section header. However, some tools are broken and the link is not
6197 // always set. LD just drops such an EXIDX section silently, causing the
6198 // associated code not unwindabled. Here we try a little bit harder to
6199 // discover the linked code section.
6201 // PSHDR points to the section header of a relocation section of an EXIDX
6202 // section. If we can find a linked text section, return true and
6203 // store the text section index in the location PSHNDX. Otherwise
6204 // return false.
6206 template<bool big_endian>
6207 bool
6208 Arm_relobj<big_endian>::find_linked_text_section(
6209 const unsigned char* pshdr,
6210 const unsigned char* psyms,
6211 unsigned int* pshndx)
6213 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6215 // If there is no relocation, we cannot find the linked text section.
6216 size_t reloc_size;
6217 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6218 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6219 else
6220 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6221 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6223 // Get the relocations.
6224 const unsigned char* prelocs =
6225 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6227 // Find the REL31 relocation for the first word of the first EXIDX entry.
6228 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6230 Arm_address r_offset;
6231 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6232 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6234 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6235 r_info = reloc.get_r_info();
6236 r_offset = reloc.get_r_offset();
6238 else
6240 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6241 r_info = reloc.get_r_info();
6242 r_offset = reloc.get_r_offset();
6245 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6246 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6247 continue;
6249 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6250 if (r_sym == 0
6251 || r_sym >= this->local_symbol_count()
6252 || r_offset != 0)
6253 continue;
6255 // This is the relocation for the first word of the first EXIDX entry.
6256 // We expect to see a local section symbol.
6257 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6258 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6259 if (sym.get_st_type() == elfcpp::STT_SECTION)
6261 *pshndx = this->adjust_shndx(sym.get_st_shndx());
6262 return true;
6264 else
6265 return false;
6268 return false;
6271 // Make an EXIDX input section object for an EXIDX section whose index is
6272 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6273 // is the section index of the linked text section.
6275 template<bool big_endian>
6276 void
6277 Arm_relobj<big_endian>::make_exidx_input_section(
6278 unsigned int shndx,
6279 const elfcpp::Shdr<32, big_endian>& shdr,
6280 unsigned int text_shndx)
6282 // Issue an error and ignore this EXIDX section if it points to a text
6283 // section already has an EXIDX section.
6284 if (this->exidx_section_map_[text_shndx] != NULL)
6286 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6287 "in %s"),
6288 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6289 text_shndx, this->name().c_str());
6290 return;
6293 // Create an Arm_exidx_input_section object for this EXIDX section.
6294 Arm_exidx_input_section* exidx_input_section =
6295 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6296 shdr.get_sh_addralign());
6297 this->exidx_section_map_[text_shndx] = exidx_input_section;
6299 // Also map the EXIDX section index to this.
6300 gold_assert(this->exidx_section_map_[shndx] == NULL);
6301 this->exidx_section_map_[shndx] = exidx_input_section;
6304 // Read the symbol information.
6306 template<bool big_endian>
6307 void
6308 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6310 // Call parent class to read symbol information.
6311 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6313 // Read processor-specific flags in ELF file header.
6314 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6315 elfcpp::Elf_sizes<32>::ehdr_size,
6316 true, false);
6317 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6318 this->processor_specific_flags_ = ehdr.get_e_flags();
6320 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6321 // sections.
6322 std::vector<unsigned int> deferred_exidx_sections;
6323 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6324 const unsigned char* pshdrs = sd->section_headers->data();
6325 const unsigned char *ps = pshdrs + shdr_size;
6326 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6328 elfcpp::Shdr<32, big_endian> shdr(ps);
6329 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6331 gold_assert(this->attributes_section_data_ == NULL);
6332 section_offset_type section_offset = shdr.get_sh_offset();
6333 section_size_type section_size =
6334 convert_to_section_size_type(shdr.get_sh_size());
6335 File_view* view = this->get_lasting_view(section_offset,
6336 section_size, true, false);
6337 this->attributes_section_data_ =
6338 new Attributes_section_data(view->data(), section_size);
6340 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6342 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6343 if (text_shndx >= this->shnum())
6344 gold_error(_("EXIDX section %u linked to invalid section %u"),
6345 i, text_shndx);
6346 else if (text_shndx == elfcpp::SHN_UNDEF)
6347 deferred_exidx_sections.push_back(i);
6348 else
6349 this->make_exidx_input_section(i, shdr, text_shndx);
6353 // Some tools are broken and they do not set the link of EXIDX sections.
6354 // We look at the first relocation to figure out the linked sections.
6355 if (!deferred_exidx_sections.empty())
6357 // We need to go over the section headers again to find the mapping
6358 // from sections being relocated to their relocation sections. This is
6359 // a bit inefficient as we could do that in the loop above. However,
6360 // we do not expect any deferred EXIDX sections normally. So we do not
6361 // want to slow down the most common path.
6362 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6363 Reloc_map reloc_map;
6364 ps = pshdrs + shdr_size;
6365 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6367 elfcpp::Shdr<32, big_endian> shdr(ps);
6368 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6369 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6371 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6372 if (info_shndx >= this->shnum())
6373 gold_error(_("relocation section %u has invalid info %u"),
6374 i, info_shndx);
6375 Reloc_map::value_type value(info_shndx, i);
6376 std::pair<Reloc_map::iterator, bool> result =
6377 reloc_map.insert(value);
6378 if (!result.second)
6379 gold_error(_("section %u has multiple relocation sections "
6380 "%u and %u"),
6381 info_shndx, i, reloc_map[info_shndx]);
6385 // Read the symbol table section header.
6386 const unsigned int symtab_shndx = this->symtab_shndx();
6387 elfcpp::Shdr<32, big_endian>
6388 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6389 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6391 // Read the local symbols.
6392 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6393 const unsigned int loccount = this->local_symbol_count();
6394 gold_assert(loccount == symtabshdr.get_sh_info());
6395 off_t locsize = loccount * sym_size;
6396 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6397 locsize, true, true);
6399 // Process the deferred EXIDX sections.
6400 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6402 unsigned int shndx = deferred_exidx_sections[i];
6403 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6404 unsigned int text_shndx;
6405 Reloc_map::const_iterator it = reloc_map.find(shndx);
6406 if (it != reloc_map.end()
6407 && find_linked_text_section(pshdrs + it->second * shdr_size,
6408 psyms, &text_shndx))
6409 this->make_exidx_input_section(shndx, shdr, text_shndx);
6410 else
6411 gold_error(_("EXIDX section %u has no linked text section."),
6412 shndx);
6417 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6418 // sections for unwinding. These sections are referenced implicitly by
6419 // text sections linked in the section headers. If we ignore these implict
6420 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6421 // will be garbage-collected incorrectly. Hence we override the same function
6422 // in the base class to handle these implicit references.
6424 template<bool big_endian>
6425 void
6426 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6427 Layout* layout,
6428 Read_relocs_data* rd)
6430 // First, call base class method to process relocations in this object.
6431 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6433 // If --gc-sections is not specified, there is nothing more to do.
6434 // This happens when --icf is used but --gc-sections is not.
6435 if (!parameters->options().gc_sections())
6436 return;
6438 unsigned int shnum = this->shnum();
6439 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6440 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6441 shnum * shdr_size,
6442 true, true);
6444 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6445 // to these from the linked text sections.
6446 const unsigned char* ps = pshdrs + shdr_size;
6447 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6449 elfcpp::Shdr<32, big_endian> shdr(ps);
6450 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6452 // Found an .ARM.exidx section, add it to the set of reachable
6453 // sections from its linked text section.
6454 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6455 symtab->gc()->add_reference(this, text_shndx, this, i);
6460 // Update output local symbol count. Owing to EXIDX entry merging, some local
6461 // symbols will be removed in output. Adjust output local symbol count
6462 // accordingly. We can only changed the static output local symbol count. It
6463 // is too late to change the dynamic symbols.
6465 template<bool big_endian>
6466 void
6467 Arm_relobj<big_endian>::update_output_local_symbol_count()
6469 // Caller should check that this needs updating. We want caller checking
6470 // because output_local_symbol_count_needs_update() is most likely inlined.
6471 gold_assert(this->output_local_symbol_count_needs_update_);
6473 gold_assert(this->symtab_shndx() != -1U);
6474 if (this->symtab_shndx() == 0)
6476 // This object has no symbols. Weird but legal.
6477 return;
6480 // Read the symbol table section header.
6481 const unsigned int symtab_shndx = this->symtab_shndx();
6482 elfcpp::Shdr<32, big_endian>
6483 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6484 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6486 // Read the local symbols.
6487 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6488 const unsigned int loccount = this->local_symbol_count();
6489 gold_assert(loccount == symtabshdr.get_sh_info());
6490 off_t locsize = loccount * sym_size;
6491 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6492 locsize, true, true);
6494 // Loop over the local symbols.
6496 typedef typename Sized_relobj<32, big_endian>::Output_sections
6497 Output_sections;
6498 const Output_sections& out_sections(this->output_sections());
6499 unsigned int shnum = this->shnum();
6500 unsigned int count = 0;
6501 // Skip the first, dummy, symbol.
6502 psyms += sym_size;
6503 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6505 elfcpp::Sym<32, big_endian> sym(psyms);
6507 Symbol_value<32>& lv((*this->local_values())[i]);
6509 // This local symbol was already discarded by do_count_local_symbols.
6510 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6511 continue;
6513 bool is_ordinary;
6514 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6515 &is_ordinary);
6517 if (shndx < shnum)
6519 Output_section* os = out_sections[shndx];
6521 // This local symbol no longer has an output section. Discard it.
6522 if (os == NULL)
6524 lv.set_no_output_symtab_entry();
6525 continue;
6528 // Currently we only discard parts of EXIDX input sections.
6529 // We explicitly check for a merged EXIDX input section to avoid
6530 // calling Output_section_data::output_offset unless necessary.
6531 if ((this->get_output_section_offset(shndx) == invalid_address)
6532 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6534 section_offset_type output_offset =
6535 os->output_offset(this, shndx, lv.input_value());
6536 if (output_offset == -1)
6538 // This symbol is defined in a part of an EXIDX input section
6539 // that is discarded due to entry merging.
6540 lv.set_no_output_symtab_entry();
6541 continue;
6546 ++count;
6549 this->set_output_local_symbol_count(count);
6550 this->output_local_symbol_count_needs_update_ = false;
6553 // Arm_dynobj methods.
6555 // Read the symbol information.
6557 template<bool big_endian>
6558 void
6559 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6561 // Call parent class to read symbol information.
6562 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6564 // Read processor-specific flags in ELF file header.
6565 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6566 elfcpp::Elf_sizes<32>::ehdr_size,
6567 true, false);
6568 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6569 this->processor_specific_flags_ = ehdr.get_e_flags();
6571 // Read the attributes section if there is one.
6572 // We read from the end because gas seems to put it near the end of
6573 // the section headers.
6574 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6575 const unsigned char *ps =
6576 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6577 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6579 elfcpp::Shdr<32, big_endian> shdr(ps);
6580 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6582 section_offset_type section_offset = shdr.get_sh_offset();
6583 section_size_type section_size =
6584 convert_to_section_size_type(shdr.get_sh_size());
6585 File_view* view = this->get_lasting_view(section_offset,
6586 section_size, true, false);
6587 this->attributes_section_data_ =
6588 new Attributes_section_data(view->data(), section_size);
6589 break;
6594 // Stub_addend_reader methods.
6596 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6598 template<bool big_endian>
6599 elfcpp::Elf_types<32>::Elf_Swxword
6600 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6601 unsigned int r_type,
6602 const unsigned char* view,
6603 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6605 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6607 switch (r_type)
6609 case elfcpp::R_ARM_CALL:
6610 case elfcpp::R_ARM_JUMP24:
6611 case elfcpp::R_ARM_PLT32:
6613 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6614 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6615 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6616 return utils::sign_extend<26>(val << 2);
6619 case elfcpp::R_ARM_THM_CALL:
6620 case elfcpp::R_ARM_THM_JUMP24:
6621 case elfcpp::R_ARM_THM_XPC22:
6623 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6624 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6625 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6626 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6627 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6630 case elfcpp::R_ARM_THM_JUMP19:
6632 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6633 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6634 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6635 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6636 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6639 default:
6640 gold_unreachable();
6644 // Arm_output_data_got methods.
6646 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6647 // The first one is initialized to be 1, which is the module index for
6648 // the main executable and the second one 0. A reloc of the type
6649 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6650 // be applied by gold. GSYM is a global symbol.
6652 template<bool big_endian>
6653 void
6654 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6655 unsigned int got_type,
6656 Symbol* gsym)
6658 if (gsym->has_got_offset(got_type))
6659 return;
6661 // We are doing a static link. Just mark it as belong to module 1,
6662 // the executable.
6663 unsigned int got_offset = this->add_constant(1);
6664 gsym->set_got_offset(got_type, got_offset);
6665 got_offset = this->add_constant(0);
6666 this->static_relocs_.push_back(Static_reloc(got_offset,
6667 elfcpp::R_ARM_TLS_DTPOFF32,
6668 gsym));
6671 // Same as the above but for a local symbol.
6673 template<bool big_endian>
6674 void
6675 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6676 unsigned int got_type,
6677 Sized_relobj<32, big_endian>* object,
6678 unsigned int index)
6680 if (object->local_has_got_offset(index, got_type))
6681 return;
6683 // We are doing a static link. Just mark it as belong to module 1,
6684 // the executable.
6685 unsigned int got_offset = this->add_constant(1);
6686 object->set_local_got_offset(index, got_type, got_offset);
6687 got_offset = this->add_constant(0);
6688 this->static_relocs_.push_back(Static_reloc(got_offset,
6689 elfcpp::R_ARM_TLS_DTPOFF32,
6690 object, index));
6693 template<bool big_endian>
6694 void
6695 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6697 // Call parent to write out GOT.
6698 Output_data_got<32, big_endian>::do_write(of);
6700 // We are done if there is no fix up.
6701 if (this->static_relocs_.empty())
6702 return;
6704 gold_assert(parameters->doing_static_link());
6706 const off_t offset = this->offset();
6707 const section_size_type oview_size =
6708 convert_to_section_size_type(this->data_size());
6709 unsigned char* const oview = of->get_output_view(offset, oview_size);
6711 Output_segment* tls_segment = this->layout_->tls_segment();
6712 gold_assert(tls_segment != NULL);
6714 // The thread pointer $tp points to the TCB, which is followed by the
6715 // TLS. So we need to adjust $tp relative addressing by this amount.
6716 Arm_address aligned_tcb_size =
6717 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6719 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6721 Static_reloc& reloc(this->static_relocs_[i]);
6723 Arm_address value;
6724 if (!reloc.symbol_is_global())
6726 Sized_relobj<32, big_endian>* object = reloc.relobj();
6727 const Symbol_value<32>* psymval =
6728 reloc.relobj()->local_symbol(reloc.index());
6730 // We are doing static linking. Issue an error and skip this
6731 // relocation if the symbol is undefined or in a discarded_section.
6732 bool is_ordinary;
6733 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6734 if ((shndx == elfcpp::SHN_UNDEF)
6735 || (is_ordinary
6736 && shndx != elfcpp::SHN_UNDEF
6737 && !object->is_section_included(shndx)
6738 && !this->symbol_table_->is_section_folded(object, shndx)))
6740 gold_error(_("undefined or discarded local symbol %u from "
6741 " object %s in GOT"),
6742 reloc.index(), reloc.relobj()->name().c_str());
6743 continue;
6746 value = psymval->value(object, 0);
6748 else
6750 const Symbol* gsym = reloc.symbol();
6751 gold_assert(gsym != NULL);
6752 if (gsym->is_forwarder())
6753 gsym = this->symbol_table_->resolve_forwards(gsym);
6755 // We are doing static linking. Issue an error and skip this
6756 // relocation if the symbol is undefined or in a discarded_section
6757 // unless it is a weakly_undefined symbol.
6758 if ((gsym->is_defined_in_discarded_section()
6759 || gsym->is_undefined())
6760 && !gsym->is_weak_undefined())
6762 gold_error(_("undefined or discarded symbol %s in GOT"),
6763 gsym->name());
6764 continue;
6767 if (!gsym->is_weak_undefined())
6769 const Sized_symbol<32>* sym =
6770 static_cast<const Sized_symbol<32>*>(gsym);
6771 value = sym->value();
6773 else
6774 value = 0;
6777 unsigned got_offset = reloc.got_offset();
6778 gold_assert(got_offset < oview_size);
6780 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6781 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6782 Valtype x;
6783 switch (reloc.r_type())
6785 case elfcpp::R_ARM_TLS_DTPOFF32:
6786 x = value;
6787 break;
6788 case elfcpp::R_ARM_TLS_TPOFF32:
6789 x = value + aligned_tcb_size;
6790 break;
6791 default:
6792 gold_unreachable();
6794 elfcpp::Swap<32, big_endian>::writeval(wv, x);
6797 of->write_output_view(offset, oview_size, oview);
6800 // A class to handle the PLT data.
6802 template<bool big_endian>
6803 class Output_data_plt_arm : public Output_section_data
6805 public:
6806 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6807 Reloc_section;
6809 Output_data_plt_arm(Layout*, Output_data_space*);
6811 // Add an entry to the PLT.
6812 void
6813 add_entry(Symbol* gsym);
6815 // Return the .rel.plt section data.
6816 const Reloc_section*
6817 rel_plt() const
6818 { return this->rel_; }
6820 protected:
6821 void
6822 do_adjust_output_section(Output_section* os);
6824 // Write to a map file.
6825 void
6826 do_print_to_mapfile(Mapfile* mapfile) const
6827 { mapfile->print_output_data(this, _("** PLT")); }
6829 private:
6830 // Template for the first PLT entry.
6831 static const uint32_t first_plt_entry[5];
6833 // Template for subsequent PLT entries.
6834 static const uint32_t plt_entry[3];
6836 // Set the final size.
6837 void
6838 set_final_data_size()
6840 this->set_data_size(sizeof(first_plt_entry)
6841 + this->count_ * sizeof(plt_entry));
6844 // Write out the PLT data.
6845 void
6846 do_write(Output_file*);
6848 // The reloc section.
6849 Reloc_section* rel_;
6850 // The .got.plt section.
6851 Output_data_space* got_plt_;
6852 // The number of PLT entries.
6853 unsigned int count_;
6856 // Create the PLT section. The ordinary .got section is an argument,
6857 // since we need to refer to the start. We also create our own .got
6858 // section just for PLT entries.
6860 template<bool big_endian>
6861 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
6862 Output_data_space* got_plt)
6863 : Output_section_data(4), got_plt_(got_plt), count_(0)
6865 this->rel_ = new Reloc_section(false);
6866 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
6867 elfcpp::SHF_ALLOC, this->rel_, true, false,
6868 false, false);
6871 template<bool big_endian>
6872 void
6873 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6875 os->set_entsize(0);
6878 // Add an entry to the PLT.
6880 template<bool big_endian>
6881 void
6882 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6884 gold_assert(!gsym->has_plt_offset());
6886 // Note that when setting the PLT offset we skip the initial
6887 // reserved PLT entry.
6888 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6889 + sizeof(first_plt_entry));
6891 ++this->count_;
6893 section_offset_type got_offset = this->got_plt_->current_data_size();
6895 // Every PLT entry needs a GOT entry which points back to the PLT
6896 // entry (this will be changed by the dynamic linker, normally
6897 // lazily when the function is called).
6898 this->got_plt_->set_current_data_size(got_offset + 4);
6900 // Every PLT entry needs a reloc.
6901 gsym->set_needs_dynsym_entry();
6902 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6903 got_offset);
6905 // Note that we don't need to save the symbol. The contents of the
6906 // PLT are independent of which symbols are used. The symbols only
6907 // appear in the relocations.
6910 // ARM PLTs.
6911 // FIXME: This is not very flexible. Right now this has only been tested
6912 // on armv5te. If we are to support additional architecture features like
6913 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6915 // The first entry in the PLT.
6916 template<bool big_endian>
6917 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6919 0xe52de004, // str lr, [sp, #-4]!
6920 0xe59fe004, // ldr lr, [pc, #4]
6921 0xe08fe00e, // add lr, pc, lr
6922 0xe5bef008, // ldr pc, [lr, #8]!
6923 0x00000000, // &GOT[0] - .
6926 // Subsequent entries in the PLT.
6928 template<bool big_endian>
6929 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
6931 0xe28fc600, // add ip, pc, #0xNN00000
6932 0xe28cca00, // add ip, ip, #0xNN000
6933 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
6936 // Write out the PLT. This uses the hand-coded instructions above,
6937 // and adjusts them as needed. This is all specified by the arm ELF
6938 // Processor Supplement.
6940 template<bool big_endian>
6941 void
6942 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
6944 const off_t offset = this->offset();
6945 const section_size_type oview_size =
6946 convert_to_section_size_type(this->data_size());
6947 unsigned char* const oview = of->get_output_view(offset, oview_size);
6949 const off_t got_file_offset = this->got_plt_->offset();
6950 const section_size_type got_size =
6951 convert_to_section_size_type(this->got_plt_->data_size());
6952 unsigned char* const got_view = of->get_output_view(got_file_offset,
6953 got_size);
6954 unsigned char* pov = oview;
6956 Arm_address plt_address = this->address();
6957 Arm_address got_address = this->got_plt_->address();
6959 // Write first PLT entry. All but the last word are constants.
6960 const size_t num_first_plt_words = (sizeof(first_plt_entry)
6961 / sizeof(plt_entry[0]));
6962 for (size_t i = 0; i < num_first_plt_words - 1; i++)
6963 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
6964 // Last word in first PLT entry is &GOT[0] - .
6965 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
6966 got_address - (plt_address + 16));
6967 pov += sizeof(first_plt_entry);
6969 unsigned char* got_pov = got_view;
6971 memset(got_pov, 0, 12);
6972 got_pov += 12;
6974 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
6975 unsigned int plt_offset = sizeof(first_plt_entry);
6976 unsigned int plt_rel_offset = 0;
6977 unsigned int got_offset = 12;
6978 const unsigned int count = this->count_;
6979 for (unsigned int i = 0;
6980 i < count;
6981 ++i,
6982 pov += sizeof(plt_entry),
6983 got_pov += 4,
6984 plt_offset += sizeof(plt_entry),
6985 plt_rel_offset += rel_size,
6986 got_offset += 4)
6988 // Set and adjust the PLT entry itself.
6989 int32_t offset = ((got_address + got_offset)
6990 - (plt_address + plt_offset + 8));
6992 gold_assert(offset >= 0 && offset < 0x0fffffff);
6993 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
6994 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
6995 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
6996 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
6997 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
6998 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7000 // Set the entry in the GOT.
7001 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7004 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7005 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7007 of->write_output_view(offset, oview_size, oview);
7008 of->write_output_view(got_file_offset, got_size, got_view);
7011 // Create a PLT entry for a global symbol.
7013 template<bool big_endian>
7014 void
7015 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7016 Symbol* gsym)
7018 if (gsym->has_plt_offset())
7019 return;
7021 if (this->plt_ == NULL)
7023 // Create the GOT sections first.
7024 this->got_section(symtab, layout);
7026 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7027 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7028 (elfcpp::SHF_ALLOC
7029 | elfcpp::SHF_EXECINSTR),
7030 this->plt_, false, false, false, false);
7032 this->plt_->add_entry(gsym);
7035 // Get the section to use for TLS_DESC relocations.
7037 template<bool big_endian>
7038 typename Target_arm<big_endian>::Reloc_section*
7039 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7041 return this->plt_section()->rel_tls_desc(layout);
7044 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7046 template<bool big_endian>
7047 void
7048 Target_arm<big_endian>::define_tls_base_symbol(
7049 Symbol_table* symtab,
7050 Layout* layout)
7052 if (this->tls_base_symbol_defined_)
7053 return;
7055 Output_segment* tls_segment = layout->tls_segment();
7056 if (tls_segment != NULL)
7058 bool is_exec = parameters->options().output_is_executable();
7059 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7060 Symbol_table::PREDEFINED,
7061 tls_segment, 0, 0,
7062 elfcpp::STT_TLS,
7063 elfcpp::STB_LOCAL,
7064 elfcpp::STV_HIDDEN, 0,
7065 (is_exec
7066 ? Symbol::SEGMENT_END
7067 : Symbol::SEGMENT_START),
7068 true);
7070 this->tls_base_symbol_defined_ = true;
7073 // Create a GOT entry for the TLS module index.
7075 template<bool big_endian>
7076 unsigned int
7077 Target_arm<big_endian>::got_mod_index_entry(
7078 Symbol_table* symtab,
7079 Layout* layout,
7080 Sized_relobj<32, big_endian>* object)
7082 if (this->got_mod_index_offset_ == -1U)
7084 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7085 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7086 unsigned int got_offset;
7087 if (!parameters->doing_static_link())
7089 got_offset = got->add_constant(0);
7090 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7091 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7092 got_offset);
7094 else
7096 // We are doing a static link. Just mark it as belong to module 1,
7097 // the executable.
7098 got_offset = got->add_constant(1);
7101 got->add_constant(0);
7102 this->got_mod_index_offset_ = got_offset;
7104 return this->got_mod_index_offset_;
7107 // Optimize the TLS relocation type based on what we know about the
7108 // symbol. IS_FINAL is true if the final address of this symbol is
7109 // known at link time.
7111 template<bool big_endian>
7112 tls::Tls_optimization
7113 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7115 // FIXME: Currently we do not do any TLS optimization.
7116 return tls::TLSOPT_NONE;
7119 // Report an unsupported relocation against a local symbol.
7121 template<bool big_endian>
7122 void
7123 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7124 Sized_relobj<32, big_endian>* object,
7125 unsigned int r_type)
7127 gold_error(_("%s: unsupported reloc %u against local symbol"),
7128 object->name().c_str(), r_type);
7131 // We are about to emit a dynamic relocation of type R_TYPE. If the
7132 // dynamic linker does not support it, issue an error. The GNU linker
7133 // only issues a non-PIC error for an allocated read-only section.
7134 // Here we know the section is allocated, but we don't know that it is
7135 // read-only. But we check for all the relocation types which the
7136 // glibc dynamic linker supports, so it seems appropriate to issue an
7137 // error even if the section is not read-only.
7139 template<bool big_endian>
7140 void
7141 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7142 unsigned int r_type)
7144 switch (r_type)
7146 // These are the relocation types supported by glibc for ARM.
7147 case elfcpp::R_ARM_RELATIVE:
7148 case elfcpp::R_ARM_COPY:
7149 case elfcpp::R_ARM_GLOB_DAT:
7150 case elfcpp::R_ARM_JUMP_SLOT:
7151 case elfcpp::R_ARM_ABS32:
7152 case elfcpp::R_ARM_ABS32_NOI:
7153 case elfcpp::R_ARM_PC24:
7154 // FIXME: The following 3 types are not supported by Android's dynamic
7155 // linker.
7156 case elfcpp::R_ARM_TLS_DTPMOD32:
7157 case elfcpp::R_ARM_TLS_DTPOFF32:
7158 case elfcpp::R_ARM_TLS_TPOFF32:
7159 return;
7161 default:
7163 // This prevents us from issuing more than one error per reloc
7164 // section. But we can still wind up issuing more than one
7165 // error per object file.
7166 if (this->issued_non_pic_error_)
7167 return;
7168 const Arm_reloc_property* reloc_property =
7169 arm_reloc_property_table->get_reloc_property(r_type);
7170 gold_assert(reloc_property != NULL);
7171 object->error(_("requires unsupported dynamic reloc %s; "
7172 "recompile with -fPIC"),
7173 reloc_property->name().c_str());
7174 this->issued_non_pic_error_ = true;
7175 return;
7178 case elfcpp::R_ARM_NONE:
7179 gold_unreachable();
7183 // Scan a relocation for a local symbol.
7184 // FIXME: This only handles a subset of relocation types used by Android
7185 // on ARM v5te devices.
7187 template<bool big_endian>
7188 inline void
7189 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7190 Layout* layout,
7191 Target_arm* target,
7192 Sized_relobj<32, big_endian>* object,
7193 unsigned int data_shndx,
7194 Output_section* output_section,
7195 const elfcpp::Rel<32, big_endian>& reloc,
7196 unsigned int r_type,
7197 const elfcpp::Sym<32, big_endian>& lsym)
7199 r_type = get_real_reloc_type(r_type);
7200 switch (r_type)
7202 case elfcpp::R_ARM_NONE:
7203 case elfcpp::R_ARM_V4BX:
7204 case elfcpp::R_ARM_GNU_VTENTRY:
7205 case elfcpp::R_ARM_GNU_VTINHERIT:
7206 break;
7208 case elfcpp::R_ARM_ABS32:
7209 case elfcpp::R_ARM_ABS32_NOI:
7210 // If building a shared library (or a position-independent
7211 // executable), we need to create a dynamic relocation for
7212 // this location. The relocation applied at link time will
7213 // apply the link-time value, so we flag the location with
7214 // an R_ARM_RELATIVE relocation so the dynamic loader can
7215 // relocate it easily.
7216 if (parameters->options().output_is_position_independent())
7218 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7219 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7220 // If we are to add more other reloc types than R_ARM_ABS32,
7221 // we need to add check_non_pic(object, r_type) here.
7222 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7223 output_section, data_shndx,
7224 reloc.get_r_offset());
7226 break;
7228 case elfcpp::R_ARM_ABS16:
7229 case elfcpp::R_ARM_ABS12:
7230 case elfcpp::R_ARM_THM_ABS5:
7231 case elfcpp::R_ARM_ABS8:
7232 case elfcpp::R_ARM_BASE_ABS:
7233 case elfcpp::R_ARM_MOVW_ABS_NC:
7234 case elfcpp::R_ARM_MOVT_ABS:
7235 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7236 case elfcpp::R_ARM_THM_MOVT_ABS:
7237 // If building a shared library (or a position-independent
7238 // executable), we need to create a dynamic relocation for
7239 // this location. Because the addend needs to remain in the
7240 // data section, we need to be careful not to apply this
7241 // relocation statically.
7242 if (parameters->options().output_is_position_independent())
7244 check_non_pic(object, r_type);
7245 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7246 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7247 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7248 rel_dyn->add_local(object, r_sym, r_type, output_section,
7249 data_shndx, reloc.get_r_offset());
7250 else
7252 gold_assert(lsym.get_st_value() == 0);
7253 unsigned int shndx = lsym.get_st_shndx();
7254 bool is_ordinary;
7255 shndx = object->adjust_sym_shndx(r_sym, shndx,
7256 &is_ordinary);
7257 if (!is_ordinary)
7258 object->error(_("section symbol %u has bad shndx %u"),
7259 r_sym, shndx);
7260 else
7261 rel_dyn->add_local_section(object, shndx,
7262 r_type, output_section,
7263 data_shndx, reloc.get_r_offset());
7266 break;
7268 case elfcpp::R_ARM_PC24:
7269 case elfcpp::R_ARM_REL32:
7270 case elfcpp::R_ARM_LDR_PC_G0:
7271 case elfcpp::R_ARM_SBREL32:
7272 case elfcpp::R_ARM_THM_CALL:
7273 case elfcpp::R_ARM_THM_PC8:
7274 case elfcpp::R_ARM_BASE_PREL:
7275 case elfcpp::R_ARM_PLT32:
7276 case elfcpp::R_ARM_CALL:
7277 case elfcpp::R_ARM_JUMP24:
7278 case elfcpp::R_ARM_THM_JUMP24:
7279 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7280 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7281 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7282 case elfcpp::R_ARM_SBREL31:
7283 case elfcpp::R_ARM_PREL31:
7284 case elfcpp::R_ARM_MOVW_PREL_NC:
7285 case elfcpp::R_ARM_MOVT_PREL:
7286 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7287 case elfcpp::R_ARM_THM_MOVT_PREL:
7288 case elfcpp::R_ARM_THM_JUMP19:
7289 case elfcpp::R_ARM_THM_JUMP6:
7290 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7291 case elfcpp::R_ARM_THM_PC12:
7292 case elfcpp::R_ARM_REL32_NOI:
7293 case elfcpp::R_ARM_ALU_PC_G0_NC:
7294 case elfcpp::R_ARM_ALU_PC_G0:
7295 case elfcpp::R_ARM_ALU_PC_G1_NC:
7296 case elfcpp::R_ARM_ALU_PC_G1:
7297 case elfcpp::R_ARM_ALU_PC_G2:
7298 case elfcpp::R_ARM_LDR_PC_G1:
7299 case elfcpp::R_ARM_LDR_PC_G2:
7300 case elfcpp::R_ARM_LDRS_PC_G0:
7301 case elfcpp::R_ARM_LDRS_PC_G1:
7302 case elfcpp::R_ARM_LDRS_PC_G2:
7303 case elfcpp::R_ARM_LDC_PC_G0:
7304 case elfcpp::R_ARM_LDC_PC_G1:
7305 case elfcpp::R_ARM_LDC_PC_G2:
7306 case elfcpp::R_ARM_ALU_SB_G0_NC:
7307 case elfcpp::R_ARM_ALU_SB_G0:
7308 case elfcpp::R_ARM_ALU_SB_G1_NC:
7309 case elfcpp::R_ARM_ALU_SB_G1:
7310 case elfcpp::R_ARM_ALU_SB_G2:
7311 case elfcpp::R_ARM_LDR_SB_G0:
7312 case elfcpp::R_ARM_LDR_SB_G1:
7313 case elfcpp::R_ARM_LDR_SB_G2:
7314 case elfcpp::R_ARM_LDRS_SB_G0:
7315 case elfcpp::R_ARM_LDRS_SB_G1:
7316 case elfcpp::R_ARM_LDRS_SB_G2:
7317 case elfcpp::R_ARM_LDC_SB_G0:
7318 case elfcpp::R_ARM_LDC_SB_G1:
7319 case elfcpp::R_ARM_LDC_SB_G2:
7320 case elfcpp::R_ARM_MOVW_BREL_NC:
7321 case elfcpp::R_ARM_MOVT_BREL:
7322 case elfcpp::R_ARM_MOVW_BREL:
7323 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7324 case elfcpp::R_ARM_THM_MOVT_BREL:
7325 case elfcpp::R_ARM_THM_MOVW_BREL:
7326 case elfcpp::R_ARM_THM_JUMP11:
7327 case elfcpp::R_ARM_THM_JUMP8:
7328 // We don't need to do anything for a relative addressing relocation
7329 // against a local symbol if it does not reference the GOT.
7330 break;
7332 case elfcpp::R_ARM_GOTOFF32:
7333 case elfcpp::R_ARM_GOTOFF12:
7334 // We need a GOT section:
7335 target->got_section(symtab, layout);
7336 break;
7338 case elfcpp::R_ARM_GOT_BREL:
7339 case elfcpp::R_ARM_GOT_PREL:
7341 // The symbol requires a GOT entry.
7342 Arm_output_data_got<big_endian>* got =
7343 target->got_section(symtab, layout);
7344 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7345 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7347 // If we are generating a shared object, we need to add a
7348 // dynamic RELATIVE relocation for this symbol's GOT entry.
7349 if (parameters->options().output_is_position_independent())
7351 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7352 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7353 rel_dyn->add_local_relative(
7354 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7355 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7359 break;
7361 case elfcpp::R_ARM_TARGET1:
7362 case elfcpp::R_ARM_TARGET2:
7363 // This should have been mapped to another type already.
7364 // Fall through.
7365 case elfcpp::R_ARM_COPY:
7366 case elfcpp::R_ARM_GLOB_DAT:
7367 case elfcpp::R_ARM_JUMP_SLOT:
7368 case elfcpp::R_ARM_RELATIVE:
7369 // These are relocations which should only be seen by the
7370 // dynamic linker, and should never be seen here.
7371 gold_error(_("%s: unexpected reloc %u in object file"),
7372 object->name().c_str(), r_type);
7373 break;
7376 // These are initial TLS relocs, which are expected when
7377 // linking.
7378 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7379 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7380 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7381 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7382 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7384 bool output_is_shared = parameters->options().shared();
7385 const tls::Tls_optimization optimized_type
7386 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7387 r_type);
7388 switch (r_type)
7390 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7391 if (optimized_type == tls::TLSOPT_NONE)
7393 // Create a pair of GOT entries for the module index and
7394 // dtv-relative offset.
7395 Arm_output_data_got<big_endian>* got
7396 = target->got_section(symtab, layout);
7397 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7398 unsigned int shndx = lsym.get_st_shndx();
7399 bool is_ordinary;
7400 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7401 if (!is_ordinary)
7403 object->error(_("local symbol %u has bad shndx %u"),
7404 r_sym, shndx);
7405 break;
7408 if (!parameters->doing_static_link())
7409 got->add_local_pair_with_rel(object, r_sym, shndx,
7410 GOT_TYPE_TLS_PAIR,
7411 target->rel_dyn_section(layout),
7412 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7413 else
7414 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7415 object, r_sym);
7417 else
7418 // FIXME: TLS optimization not supported yet.
7419 gold_unreachable();
7420 break;
7422 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7423 if (optimized_type == tls::TLSOPT_NONE)
7425 // Create a GOT entry for the module index.
7426 target->got_mod_index_entry(symtab, layout, object);
7428 else
7429 // FIXME: TLS optimization not supported yet.
7430 gold_unreachable();
7431 break;
7433 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7434 break;
7436 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7437 layout->set_has_static_tls();
7438 if (optimized_type == tls::TLSOPT_NONE)
7440 // Create a GOT entry for the tp-relative offset.
7441 Arm_output_data_got<big_endian>* got
7442 = target->got_section(symtab, layout);
7443 unsigned int r_sym =
7444 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7445 if (!parameters->doing_static_link())
7446 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7447 target->rel_dyn_section(layout),
7448 elfcpp::R_ARM_TLS_TPOFF32);
7449 else if (!object->local_has_got_offset(r_sym,
7450 GOT_TYPE_TLS_OFFSET))
7452 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7453 unsigned int got_offset =
7454 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7455 got->add_static_reloc(got_offset,
7456 elfcpp::R_ARM_TLS_TPOFF32, object,
7457 r_sym);
7460 else
7461 // FIXME: TLS optimization not supported yet.
7462 gold_unreachable();
7463 break;
7465 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7466 layout->set_has_static_tls();
7467 if (output_is_shared)
7469 // We need to create a dynamic relocation.
7470 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7471 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7472 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7473 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7474 output_section, data_shndx,
7475 reloc.get_r_offset());
7477 break;
7479 default:
7480 gold_unreachable();
7483 break;
7485 default:
7486 unsupported_reloc_local(object, r_type);
7487 break;
7491 // Report an unsupported relocation against a global symbol.
7493 template<bool big_endian>
7494 void
7495 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7496 Sized_relobj<32, big_endian>* object,
7497 unsigned int r_type,
7498 Symbol* gsym)
7500 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7501 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7504 // Scan a relocation for a global symbol.
7506 template<bool big_endian>
7507 inline void
7508 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7509 Layout* layout,
7510 Target_arm* target,
7511 Sized_relobj<32, big_endian>* object,
7512 unsigned int data_shndx,
7513 Output_section* output_section,
7514 const elfcpp::Rel<32, big_endian>& reloc,
7515 unsigned int r_type,
7516 Symbol* gsym)
7518 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7519 // section. We check here to avoid creating a dynamic reloc against
7520 // _GLOBAL_OFFSET_TABLE_.
7521 if (!target->has_got_section()
7522 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7523 target->got_section(symtab, layout);
7525 r_type = get_real_reloc_type(r_type);
7526 switch (r_type)
7528 case elfcpp::R_ARM_NONE:
7529 case elfcpp::R_ARM_V4BX:
7530 case elfcpp::R_ARM_GNU_VTENTRY:
7531 case elfcpp::R_ARM_GNU_VTINHERIT:
7532 break;
7534 case elfcpp::R_ARM_ABS32:
7535 case elfcpp::R_ARM_ABS16:
7536 case elfcpp::R_ARM_ABS12:
7537 case elfcpp::R_ARM_THM_ABS5:
7538 case elfcpp::R_ARM_ABS8:
7539 case elfcpp::R_ARM_BASE_ABS:
7540 case elfcpp::R_ARM_MOVW_ABS_NC:
7541 case elfcpp::R_ARM_MOVT_ABS:
7542 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7543 case elfcpp::R_ARM_THM_MOVT_ABS:
7544 case elfcpp::R_ARM_ABS32_NOI:
7545 // Absolute addressing relocations.
7547 // Make a PLT entry if necessary.
7548 if (this->symbol_needs_plt_entry(gsym))
7550 target->make_plt_entry(symtab, layout, gsym);
7551 // Since this is not a PC-relative relocation, we may be
7552 // taking the address of a function. In that case we need to
7553 // set the entry in the dynamic symbol table to the address of
7554 // the PLT entry.
7555 if (gsym->is_from_dynobj() && !parameters->options().shared())
7556 gsym->set_needs_dynsym_value();
7558 // Make a dynamic relocation if necessary.
7559 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7561 if (gsym->may_need_copy_reloc())
7563 target->copy_reloc(symtab, layout, object,
7564 data_shndx, output_section, gsym, reloc);
7566 else if ((r_type == elfcpp::R_ARM_ABS32
7567 || r_type == elfcpp::R_ARM_ABS32_NOI)
7568 && gsym->can_use_relative_reloc(false))
7570 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7571 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7572 output_section, object,
7573 data_shndx, reloc.get_r_offset());
7575 else
7577 check_non_pic(object, r_type);
7578 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7579 rel_dyn->add_global(gsym, r_type, output_section, object,
7580 data_shndx, reloc.get_r_offset());
7584 break;
7586 case elfcpp::R_ARM_GOTOFF32:
7587 case elfcpp::R_ARM_GOTOFF12:
7588 // We need a GOT section.
7589 target->got_section(symtab, layout);
7590 break;
7592 case elfcpp::R_ARM_REL32:
7593 case elfcpp::R_ARM_LDR_PC_G0:
7594 case elfcpp::R_ARM_SBREL32:
7595 case elfcpp::R_ARM_THM_PC8:
7596 case elfcpp::R_ARM_BASE_PREL:
7597 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7598 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7599 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7600 case elfcpp::R_ARM_MOVW_PREL_NC:
7601 case elfcpp::R_ARM_MOVT_PREL:
7602 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7603 case elfcpp::R_ARM_THM_MOVT_PREL:
7604 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7605 case elfcpp::R_ARM_THM_PC12:
7606 case elfcpp::R_ARM_REL32_NOI:
7607 case elfcpp::R_ARM_ALU_PC_G0_NC:
7608 case elfcpp::R_ARM_ALU_PC_G0:
7609 case elfcpp::R_ARM_ALU_PC_G1_NC:
7610 case elfcpp::R_ARM_ALU_PC_G1:
7611 case elfcpp::R_ARM_ALU_PC_G2:
7612 case elfcpp::R_ARM_LDR_PC_G1:
7613 case elfcpp::R_ARM_LDR_PC_G2:
7614 case elfcpp::R_ARM_LDRS_PC_G0:
7615 case elfcpp::R_ARM_LDRS_PC_G1:
7616 case elfcpp::R_ARM_LDRS_PC_G2:
7617 case elfcpp::R_ARM_LDC_PC_G0:
7618 case elfcpp::R_ARM_LDC_PC_G1:
7619 case elfcpp::R_ARM_LDC_PC_G2:
7620 case elfcpp::R_ARM_ALU_SB_G0_NC:
7621 case elfcpp::R_ARM_ALU_SB_G0:
7622 case elfcpp::R_ARM_ALU_SB_G1_NC:
7623 case elfcpp::R_ARM_ALU_SB_G1:
7624 case elfcpp::R_ARM_ALU_SB_G2:
7625 case elfcpp::R_ARM_LDR_SB_G0:
7626 case elfcpp::R_ARM_LDR_SB_G1:
7627 case elfcpp::R_ARM_LDR_SB_G2:
7628 case elfcpp::R_ARM_LDRS_SB_G0:
7629 case elfcpp::R_ARM_LDRS_SB_G1:
7630 case elfcpp::R_ARM_LDRS_SB_G2:
7631 case elfcpp::R_ARM_LDC_SB_G0:
7632 case elfcpp::R_ARM_LDC_SB_G1:
7633 case elfcpp::R_ARM_LDC_SB_G2:
7634 case elfcpp::R_ARM_MOVW_BREL_NC:
7635 case elfcpp::R_ARM_MOVT_BREL:
7636 case elfcpp::R_ARM_MOVW_BREL:
7637 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7638 case elfcpp::R_ARM_THM_MOVT_BREL:
7639 case elfcpp::R_ARM_THM_MOVW_BREL:
7640 // Relative addressing relocations.
7642 // Make a dynamic relocation if necessary.
7643 int flags = Symbol::NON_PIC_REF;
7644 if (gsym->needs_dynamic_reloc(flags))
7646 if (target->may_need_copy_reloc(gsym))
7648 target->copy_reloc(symtab, layout, object,
7649 data_shndx, output_section, gsym, reloc);
7651 else
7653 check_non_pic(object, r_type);
7654 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7655 rel_dyn->add_global(gsym, r_type, output_section, object,
7656 data_shndx, reloc.get_r_offset());
7660 break;
7662 case elfcpp::R_ARM_PC24:
7663 case elfcpp::R_ARM_THM_CALL:
7664 case elfcpp::R_ARM_PLT32:
7665 case elfcpp::R_ARM_CALL:
7666 case elfcpp::R_ARM_JUMP24:
7667 case elfcpp::R_ARM_THM_JUMP24:
7668 case elfcpp::R_ARM_SBREL31:
7669 case elfcpp::R_ARM_PREL31:
7670 case elfcpp::R_ARM_THM_JUMP19:
7671 case elfcpp::R_ARM_THM_JUMP6:
7672 case elfcpp::R_ARM_THM_JUMP11:
7673 case elfcpp::R_ARM_THM_JUMP8:
7674 // All the relocation above are branches except for the PREL31 ones.
7675 // A PREL31 relocation can point to a personality function in a shared
7676 // library. In that case we want to use a PLT because we want to
7677 // call the personality routine and the dyanmic linkers we care about
7678 // do not support dynamic PREL31 relocations. An REL31 relocation may
7679 // point to a function whose unwinding behaviour is being described but
7680 // we will not mistakenly generate a PLT for that because we should use
7681 // a local section symbol.
7683 // If the symbol is fully resolved, this is just a relative
7684 // local reloc. Otherwise we need a PLT entry.
7685 if (gsym->final_value_is_known())
7686 break;
7687 // If building a shared library, we can also skip the PLT entry
7688 // if the symbol is defined in the output file and is protected
7689 // or hidden.
7690 if (gsym->is_defined()
7691 && !gsym->is_from_dynobj()
7692 && !gsym->is_preemptible())
7693 break;
7694 target->make_plt_entry(symtab, layout, gsym);
7695 break;
7697 case elfcpp::R_ARM_GOT_BREL:
7698 case elfcpp::R_ARM_GOT_ABS:
7699 case elfcpp::R_ARM_GOT_PREL:
7701 // The symbol requires a GOT entry.
7702 Arm_output_data_got<big_endian>* got =
7703 target->got_section(symtab, layout);
7704 if (gsym->final_value_is_known())
7705 got->add_global(gsym, GOT_TYPE_STANDARD);
7706 else
7708 // If this symbol is not fully resolved, we need to add a
7709 // GOT entry with a dynamic relocation.
7710 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7711 if (gsym->is_from_dynobj()
7712 || gsym->is_undefined()
7713 || gsym->is_preemptible())
7714 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7715 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7716 else
7718 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7719 rel_dyn->add_global_relative(
7720 gsym, elfcpp::R_ARM_RELATIVE, got,
7721 gsym->got_offset(GOT_TYPE_STANDARD));
7725 break;
7727 case elfcpp::R_ARM_TARGET1:
7728 case elfcpp::R_ARM_TARGET2:
7729 // These should have been mapped to other types already.
7730 // Fall through.
7731 case elfcpp::R_ARM_COPY:
7732 case elfcpp::R_ARM_GLOB_DAT:
7733 case elfcpp::R_ARM_JUMP_SLOT:
7734 case elfcpp::R_ARM_RELATIVE:
7735 // These are relocations which should only be seen by the
7736 // dynamic linker, and should never be seen here.
7737 gold_error(_("%s: unexpected reloc %u in object file"),
7738 object->name().c_str(), r_type);
7739 break;
7741 // These are initial tls relocs, which are expected when
7742 // linking.
7743 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7744 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7745 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7746 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7747 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7749 const bool is_final = gsym->final_value_is_known();
7750 const tls::Tls_optimization optimized_type
7751 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7752 switch (r_type)
7754 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7755 if (optimized_type == tls::TLSOPT_NONE)
7757 // Create a pair of GOT entries for the module index and
7758 // dtv-relative offset.
7759 Arm_output_data_got<big_endian>* got
7760 = target->got_section(symtab, layout);
7761 if (!parameters->doing_static_link())
7762 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7763 target->rel_dyn_section(layout),
7764 elfcpp::R_ARM_TLS_DTPMOD32,
7765 elfcpp::R_ARM_TLS_DTPOFF32);
7766 else
7767 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7769 else
7770 // FIXME: TLS optimization not supported yet.
7771 gold_unreachable();
7772 break;
7774 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7775 if (optimized_type == tls::TLSOPT_NONE)
7777 // Create a GOT entry for the module index.
7778 target->got_mod_index_entry(symtab, layout, object);
7780 else
7781 // FIXME: TLS optimization not supported yet.
7782 gold_unreachable();
7783 break;
7785 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7786 break;
7788 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7789 layout->set_has_static_tls();
7790 if (optimized_type == tls::TLSOPT_NONE)
7792 // Create a GOT entry for the tp-relative offset.
7793 Arm_output_data_got<big_endian>* got
7794 = target->got_section(symtab, layout);
7795 if (!parameters->doing_static_link())
7796 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7797 target->rel_dyn_section(layout),
7798 elfcpp::R_ARM_TLS_TPOFF32);
7799 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7801 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7802 unsigned int got_offset =
7803 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7804 got->add_static_reloc(got_offset,
7805 elfcpp::R_ARM_TLS_TPOFF32, gsym);
7808 else
7809 // FIXME: TLS optimization not supported yet.
7810 gold_unreachable();
7811 break;
7813 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7814 layout->set_has_static_tls();
7815 if (parameters->options().shared())
7817 // We need to create a dynamic relocation.
7818 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7819 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7820 output_section, object,
7821 data_shndx, reloc.get_r_offset());
7823 break;
7825 default:
7826 gold_unreachable();
7829 break;
7831 default:
7832 unsupported_reloc_global(object, r_type, gsym);
7833 break;
7837 // Process relocations for gc.
7839 template<bool big_endian>
7840 void
7841 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
7842 Layout* layout,
7843 Sized_relobj<32, big_endian>* object,
7844 unsigned int data_shndx,
7845 unsigned int,
7846 const unsigned char* prelocs,
7847 size_t reloc_count,
7848 Output_section* output_section,
7849 bool needs_special_offset_handling,
7850 size_t local_symbol_count,
7851 const unsigned char* plocal_symbols)
7853 typedef Target_arm<big_endian> Arm;
7854 typedef typename Target_arm<big_endian>::Scan Scan;
7856 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
7857 symtab,
7858 layout,
7859 this,
7860 object,
7861 data_shndx,
7862 prelocs,
7863 reloc_count,
7864 output_section,
7865 needs_special_offset_handling,
7866 local_symbol_count,
7867 plocal_symbols);
7870 // Scan relocations for a section.
7872 template<bool big_endian>
7873 void
7874 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
7875 Layout* layout,
7876 Sized_relobj<32, big_endian>* object,
7877 unsigned int data_shndx,
7878 unsigned int sh_type,
7879 const unsigned char* prelocs,
7880 size_t reloc_count,
7881 Output_section* output_section,
7882 bool needs_special_offset_handling,
7883 size_t local_symbol_count,
7884 const unsigned char* plocal_symbols)
7886 typedef typename Target_arm<big_endian>::Scan Scan;
7887 if (sh_type == elfcpp::SHT_RELA)
7889 gold_error(_("%s: unsupported RELA reloc section"),
7890 object->name().c_str());
7891 return;
7894 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
7895 symtab,
7896 layout,
7897 this,
7898 object,
7899 data_shndx,
7900 prelocs,
7901 reloc_count,
7902 output_section,
7903 needs_special_offset_handling,
7904 local_symbol_count,
7905 plocal_symbols);
7908 // Finalize the sections.
7910 template<bool big_endian>
7911 void
7912 Target_arm<big_endian>::do_finalize_sections(
7913 Layout* layout,
7914 const Input_objects* input_objects,
7915 Symbol_table* symtab)
7917 // Create an empty uninitialized attribute section if we still don't have it
7918 // at this moment.
7919 if (this->attributes_section_data_ == NULL)
7920 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7922 // Merge processor-specific flags.
7923 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7924 p != input_objects->relobj_end();
7925 ++p)
7927 // If this input file is a binary file, it has no processor
7928 // specific flags and attributes section.
7929 Input_file::Format format = (*p)->input_file()->format();
7930 if (format != Input_file::FORMAT_ELF)
7932 gold_assert(format == Input_file::FORMAT_BINARY);
7933 continue;
7936 Arm_relobj<big_endian>* arm_relobj =
7937 Arm_relobj<big_endian>::as_arm_relobj(*p);
7938 this->merge_processor_specific_flags(
7939 arm_relobj->name(),
7940 arm_relobj->processor_specific_flags());
7941 this->merge_object_attributes(arm_relobj->name().c_str(),
7942 arm_relobj->attributes_section_data());
7946 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
7947 p != input_objects->dynobj_end();
7948 ++p)
7950 Arm_dynobj<big_endian>* arm_dynobj =
7951 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
7952 this->merge_processor_specific_flags(
7953 arm_dynobj->name(),
7954 arm_dynobj->processor_specific_flags());
7955 this->merge_object_attributes(arm_dynobj->name().c_str(),
7956 arm_dynobj->attributes_section_data());
7959 // Check BLX use.
7960 const Object_attribute* cpu_arch_attr =
7961 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
7962 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
7963 this->set_may_use_blx(true);
7965 // Check if we need to use Cortex-A8 workaround.
7966 if (parameters->options().user_set_fix_cortex_a8())
7967 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
7968 else
7970 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
7971 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
7972 // profile.
7973 const Object_attribute* cpu_arch_profile_attr =
7974 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
7975 this->fix_cortex_a8_ =
7976 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
7977 && (cpu_arch_profile_attr->int_value() == 'A'
7978 || cpu_arch_profile_attr->int_value() == 0));
7981 // Check if we can use V4BX interworking.
7982 // The V4BX interworking stub contains BX instruction,
7983 // which is not specified for some profiles.
7984 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
7985 && !this->may_use_blx())
7986 gold_error(_("unable to provide V4BX reloc interworking fix up; "
7987 "the target profile does not support BX instruction"));
7989 // Fill in some more dynamic tags.
7990 const Reloc_section* rel_plt = (this->plt_ == NULL
7991 ? NULL
7992 : this->plt_->rel_plt());
7993 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
7994 this->rel_dyn_, true, false);
7996 // Emit any relocs we saved in an attempt to avoid generating COPY
7997 // relocs.
7998 if (this->copy_relocs_.any_saved_relocs())
7999 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8001 // Handle the .ARM.exidx section.
8002 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8003 if (exidx_section != NULL
8004 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8005 && !parameters->options().relocatable())
8007 // Create __exidx_start and __exdix_end symbols.
8008 symtab->define_in_output_data("__exidx_start", NULL,
8009 Symbol_table::PREDEFINED,
8010 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8011 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8012 false, true);
8013 symtab->define_in_output_data("__exidx_end", NULL,
8014 Symbol_table::PREDEFINED,
8015 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8016 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8017 true, true);
8019 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8020 // the .ARM.exidx section.
8021 if (!layout->script_options()->saw_phdrs_clause())
8023 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8024 == NULL);
8025 Output_segment* exidx_segment =
8026 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8027 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8028 false);
8032 // Create an .ARM.attributes section if there is not one already.
8033 Output_attributes_section_data* attributes_section =
8034 new Output_attributes_section_data(*this->attributes_section_data_);
8035 layout->add_output_section_data(".ARM.attributes",
8036 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8037 attributes_section, false, false, false,
8038 false);
8041 // Return whether a direct absolute static relocation needs to be applied.
8042 // In cases where Scan::local() or Scan::global() has created
8043 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8044 // of the relocation is carried in the data, and we must not
8045 // apply the static relocation.
8047 template<bool big_endian>
8048 inline bool
8049 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8050 const Sized_symbol<32>* gsym,
8051 int ref_flags,
8052 bool is_32bit,
8053 Output_section* output_section)
8055 // If the output section is not allocated, then we didn't call
8056 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8057 // the reloc here.
8058 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8059 return true;
8061 // For local symbols, we will have created a non-RELATIVE dynamic
8062 // relocation only if (a) the output is position independent,
8063 // (b) the relocation is absolute (not pc- or segment-relative), and
8064 // (c) the relocation is not 32 bits wide.
8065 if (gsym == NULL)
8066 return !(parameters->options().output_is_position_independent()
8067 && (ref_flags & Symbol::ABSOLUTE_REF)
8068 && !is_32bit);
8070 // For global symbols, we use the same helper routines used in the
8071 // scan pass. If we did not create a dynamic relocation, or if we
8072 // created a RELATIVE dynamic relocation, we should apply the static
8073 // relocation.
8074 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8075 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8076 && gsym->can_use_relative_reloc(ref_flags
8077 & Symbol::FUNCTION_CALL);
8078 return !has_dyn || is_rel;
8081 // Perform a relocation.
8083 template<bool big_endian>
8084 inline bool
8085 Target_arm<big_endian>::Relocate::relocate(
8086 const Relocate_info<32, big_endian>* relinfo,
8087 Target_arm* target,
8088 Output_section *output_section,
8089 size_t relnum,
8090 const elfcpp::Rel<32, big_endian>& rel,
8091 unsigned int r_type,
8092 const Sized_symbol<32>* gsym,
8093 const Symbol_value<32>* psymval,
8094 unsigned char* view,
8095 Arm_address address,
8096 section_size_type view_size)
8098 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8100 r_type = get_real_reloc_type(r_type);
8101 const Arm_reloc_property* reloc_property =
8102 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8103 if (reloc_property == NULL)
8105 std::string reloc_name =
8106 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8107 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8108 _("cannot relocate %s in object file"),
8109 reloc_name.c_str());
8110 return true;
8113 const Arm_relobj<big_endian>* object =
8114 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8116 // If the final branch target of a relocation is THUMB instruction, this
8117 // is 1. Otherwise it is 0.
8118 Arm_address thumb_bit = 0;
8119 Symbol_value<32> symval;
8120 bool is_weakly_undefined_without_plt = false;
8121 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8123 if (gsym != NULL)
8125 // This is a global symbol. Determine if we use PLT and if the
8126 // final target is THUMB.
8127 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8129 // This uses a PLT, change the symbol value.
8130 symval.set_output_value(target->plt_section()->address()
8131 + gsym->plt_offset());
8132 psymval = &symval;
8134 else if (gsym->is_weak_undefined())
8136 // This is a weakly undefined symbol and we do not use PLT
8137 // for this relocation. A branch targeting this symbol will
8138 // be converted into an NOP.
8139 is_weakly_undefined_without_plt = true;
8141 else
8143 // Set thumb bit if symbol:
8144 // -Has type STT_ARM_TFUNC or
8145 // -Has type STT_FUNC, is defined and with LSB in value set.
8146 thumb_bit =
8147 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8148 || (gsym->type() == elfcpp::STT_FUNC
8149 && !gsym->is_undefined()
8150 && ((psymval->value(object, 0) & 1) != 0)))
8152 : 0);
8155 else
8157 // This is a local symbol. Determine if the final target is THUMB.
8158 // We saved this information when all the local symbols were read.
8159 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8160 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8161 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8164 else
8166 // This is a fake relocation synthesized for a stub. It does not have
8167 // a real symbol. We just look at the LSB of the symbol value to
8168 // determine if the target is THUMB or not.
8169 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8172 // Strip LSB if this points to a THUMB target.
8173 if (thumb_bit != 0
8174 && reloc_property->uses_thumb_bit()
8175 && ((psymval->value(object, 0) & 1) != 0))
8177 Arm_address stripped_value =
8178 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8179 symval.set_output_value(stripped_value);
8180 psymval = &symval;
8183 // Get the GOT offset if needed.
8184 // The GOT pointer points to the end of the GOT section.
8185 // We need to subtract the size of the GOT section to get
8186 // the actual offset to use in the relocation.
8187 bool have_got_offset = false;
8188 unsigned int got_offset = 0;
8189 switch (r_type)
8191 case elfcpp::R_ARM_GOT_BREL:
8192 case elfcpp::R_ARM_GOT_PREL:
8193 if (gsym != NULL)
8195 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8196 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8197 - target->got_size());
8199 else
8201 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8202 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8203 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8204 - target->got_size());
8206 have_got_offset = true;
8207 break;
8209 default:
8210 break;
8213 // To look up relocation stubs, we need to pass the symbol table index of
8214 // a local symbol.
8215 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8217 // Get the addressing origin of the output segment defining the
8218 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8219 Arm_address sym_origin = 0;
8220 if (reloc_property->uses_symbol_base())
8222 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8223 // R_ARM_BASE_ABS with the NULL symbol will give the
8224 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8225 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8226 sym_origin = target->got_plt_section()->address();
8227 else if (gsym == NULL)
8228 sym_origin = 0;
8229 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8230 sym_origin = gsym->output_segment()->vaddr();
8231 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8232 sym_origin = gsym->output_data()->address();
8234 // TODO: Assumes the segment base to be zero for the global symbols
8235 // till the proper support for the segment-base-relative addressing
8236 // will be implemented. This is consistent with GNU ld.
8239 // For relative addressing relocation, find out the relative address base.
8240 Arm_address relative_address_base = 0;
8241 switch(reloc_property->relative_address_base())
8243 case Arm_reloc_property::RAB_NONE:
8244 // Relocations with relative address bases RAB_TLS and RAB_tp are
8245 // handled by relocate_tls. So we do not need to do anything here.
8246 case Arm_reloc_property::RAB_TLS:
8247 case Arm_reloc_property::RAB_tp:
8248 break;
8249 case Arm_reloc_property::RAB_B_S:
8250 relative_address_base = sym_origin;
8251 break;
8252 case Arm_reloc_property::RAB_GOT_ORG:
8253 relative_address_base = target->got_plt_section()->address();
8254 break;
8255 case Arm_reloc_property::RAB_P:
8256 relative_address_base = address;
8257 break;
8258 case Arm_reloc_property::RAB_Pa:
8259 relative_address_base = address & 0xfffffffcU;
8260 break;
8261 default:
8262 gold_unreachable();
8265 typename Arm_relocate_functions::Status reloc_status =
8266 Arm_relocate_functions::STATUS_OKAY;
8267 bool check_overflow = reloc_property->checks_overflow();
8268 switch (r_type)
8270 case elfcpp::R_ARM_NONE:
8271 break;
8273 case elfcpp::R_ARM_ABS8:
8274 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8275 output_section))
8276 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8277 break;
8279 case elfcpp::R_ARM_ABS12:
8280 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8281 output_section))
8282 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8283 break;
8285 case elfcpp::R_ARM_ABS16:
8286 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8287 output_section))
8288 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8289 break;
8291 case elfcpp::R_ARM_ABS32:
8292 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8293 output_section))
8294 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8295 thumb_bit);
8296 break;
8298 case elfcpp::R_ARM_ABS32_NOI:
8299 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8300 output_section))
8301 // No thumb bit for this relocation: (S + A)
8302 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8304 break;
8306 case elfcpp::R_ARM_MOVW_ABS_NC:
8307 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8308 output_section))
8309 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8310 0, thumb_bit,
8311 check_overflow);
8312 break;
8314 case elfcpp::R_ARM_MOVT_ABS:
8315 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8316 output_section))
8317 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8318 break;
8320 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8321 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8322 output_section))
8323 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8324 0, thumb_bit, false);
8325 break;
8327 case elfcpp::R_ARM_THM_MOVT_ABS:
8328 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8329 output_section))
8330 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8331 psymval, 0);
8332 break;
8334 case elfcpp::R_ARM_MOVW_PREL_NC:
8335 case elfcpp::R_ARM_MOVW_BREL_NC:
8336 case elfcpp::R_ARM_MOVW_BREL:
8337 reloc_status =
8338 Arm_relocate_functions::movw(view, object, psymval,
8339 relative_address_base, thumb_bit,
8340 check_overflow);
8341 break;
8343 case elfcpp::R_ARM_MOVT_PREL:
8344 case elfcpp::R_ARM_MOVT_BREL:
8345 reloc_status =
8346 Arm_relocate_functions::movt(view, object, psymval,
8347 relative_address_base);
8348 break;
8350 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8351 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8352 case elfcpp::R_ARM_THM_MOVW_BREL:
8353 reloc_status =
8354 Arm_relocate_functions::thm_movw(view, object, psymval,
8355 relative_address_base,
8356 thumb_bit, check_overflow);
8357 break;
8359 case elfcpp::R_ARM_THM_MOVT_PREL:
8360 case elfcpp::R_ARM_THM_MOVT_BREL:
8361 reloc_status =
8362 Arm_relocate_functions::thm_movt(view, object, psymval,
8363 relative_address_base);
8364 break;
8366 case elfcpp::R_ARM_REL32:
8367 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8368 address, thumb_bit);
8369 break;
8371 case elfcpp::R_ARM_THM_ABS5:
8372 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8373 output_section))
8374 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8375 break;
8377 // Thumb long branches.
8378 case elfcpp::R_ARM_THM_CALL:
8379 case elfcpp::R_ARM_THM_XPC22:
8380 case elfcpp::R_ARM_THM_JUMP24:
8381 reloc_status =
8382 Arm_relocate_functions::thumb_branch_common(
8383 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8384 thumb_bit, is_weakly_undefined_without_plt);
8385 break;
8387 case elfcpp::R_ARM_GOTOFF32:
8389 Arm_address got_origin;
8390 got_origin = target->got_plt_section()->address();
8391 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8392 got_origin, thumb_bit);
8394 break;
8396 case elfcpp::R_ARM_BASE_PREL:
8397 gold_assert(gsym != NULL);
8398 reloc_status =
8399 Arm_relocate_functions::base_prel(view, sym_origin, address);
8400 break;
8402 case elfcpp::R_ARM_BASE_ABS:
8404 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8405 output_section))
8406 break;
8408 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8410 break;
8412 case elfcpp::R_ARM_GOT_BREL:
8413 gold_assert(have_got_offset);
8414 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8415 break;
8417 case elfcpp::R_ARM_GOT_PREL:
8418 gold_assert(have_got_offset);
8419 // Get the address origin for GOT PLT, which is allocated right
8420 // after the GOT section, to calculate an absolute address of
8421 // the symbol GOT entry (got_origin + got_offset).
8422 Arm_address got_origin;
8423 got_origin = target->got_plt_section()->address();
8424 reloc_status = Arm_relocate_functions::got_prel(view,
8425 got_origin + got_offset,
8426 address);
8427 break;
8429 case elfcpp::R_ARM_PLT32:
8430 case elfcpp::R_ARM_CALL:
8431 case elfcpp::R_ARM_JUMP24:
8432 case elfcpp::R_ARM_XPC25:
8433 gold_assert(gsym == NULL
8434 || gsym->has_plt_offset()
8435 || gsym->final_value_is_known()
8436 || (gsym->is_defined()
8437 && !gsym->is_from_dynobj()
8438 && !gsym->is_preemptible()));
8439 reloc_status =
8440 Arm_relocate_functions::arm_branch_common(
8441 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8442 thumb_bit, is_weakly_undefined_without_plt);
8443 break;
8445 case elfcpp::R_ARM_THM_JUMP19:
8446 reloc_status =
8447 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8448 thumb_bit);
8449 break;
8451 case elfcpp::R_ARM_THM_JUMP6:
8452 reloc_status =
8453 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8454 break;
8456 case elfcpp::R_ARM_THM_JUMP8:
8457 reloc_status =
8458 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8459 break;
8461 case elfcpp::R_ARM_THM_JUMP11:
8462 reloc_status =
8463 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8464 break;
8466 case elfcpp::R_ARM_PREL31:
8467 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8468 address, thumb_bit);
8469 break;
8471 case elfcpp::R_ARM_V4BX:
8472 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8474 const bool is_v4bx_interworking =
8475 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8476 reloc_status =
8477 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8478 is_v4bx_interworking);
8480 break;
8482 case elfcpp::R_ARM_THM_PC8:
8483 reloc_status =
8484 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8485 break;
8487 case elfcpp::R_ARM_THM_PC12:
8488 reloc_status =
8489 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8490 break;
8492 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8493 reloc_status =
8494 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8495 thumb_bit);
8496 break;
8498 case elfcpp::R_ARM_ALU_PC_G0_NC:
8499 case elfcpp::R_ARM_ALU_PC_G0:
8500 case elfcpp::R_ARM_ALU_PC_G1_NC:
8501 case elfcpp::R_ARM_ALU_PC_G1:
8502 case elfcpp::R_ARM_ALU_PC_G2:
8503 case elfcpp::R_ARM_ALU_SB_G0_NC:
8504 case elfcpp::R_ARM_ALU_SB_G0:
8505 case elfcpp::R_ARM_ALU_SB_G1_NC:
8506 case elfcpp::R_ARM_ALU_SB_G1:
8507 case elfcpp::R_ARM_ALU_SB_G2:
8508 reloc_status =
8509 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8510 reloc_property->group_index(),
8511 relative_address_base,
8512 thumb_bit, check_overflow);
8513 break;
8515 case elfcpp::R_ARM_LDR_PC_G0:
8516 case elfcpp::R_ARM_LDR_PC_G1:
8517 case elfcpp::R_ARM_LDR_PC_G2:
8518 case elfcpp::R_ARM_LDR_SB_G0:
8519 case elfcpp::R_ARM_LDR_SB_G1:
8520 case elfcpp::R_ARM_LDR_SB_G2:
8521 reloc_status =
8522 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8523 reloc_property->group_index(),
8524 relative_address_base);
8525 break;
8527 case elfcpp::R_ARM_LDRS_PC_G0:
8528 case elfcpp::R_ARM_LDRS_PC_G1:
8529 case elfcpp::R_ARM_LDRS_PC_G2:
8530 case elfcpp::R_ARM_LDRS_SB_G0:
8531 case elfcpp::R_ARM_LDRS_SB_G1:
8532 case elfcpp::R_ARM_LDRS_SB_G2:
8533 reloc_status =
8534 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8535 reloc_property->group_index(),
8536 relative_address_base);
8537 break;
8539 case elfcpp::R_ARM_LDC_PC_G0:
8540 case elfcpp::R_ARM_LDC_PC_G1:
8541 case elfcpp::R_ARM_LDC_PC_G2:
8542 case elfcpp::R_ARM_LDC_SB_G0:
8543 case elfcpp::R_ARM_LDC_SB_G1:
8544 case elfcpp::R_ARM_LDC_SB_G2:
8545 reloc_status =
8546 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8547 reloc_property->group_index(),
8548 relative_address_base);
8549 break;
8551 // These are initial tls relocs, which are expected when
8552 // linking.
8553 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8554 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8555 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8556 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8557 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8558 reloc_status =
8559 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8560 view, address, view_size);
8561 break;
8563 default:
8564 gold_unreachable();
8567 // Report any errors.
8568 switch (reloc_status)
8570 case Arm_relocate_functions::STATUS_OKAY:
8571 break;
8572 case Arm_relocate_functions::STATUS_OVERFLOW:
8573 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8574 _("relocation overflow in relocation %u"),
8575 r_type);
8576 break;
8577 case Arm_relocate_functions::STATUS_BAD_RELOC:
8578 gold_error_at_location(
8579 relinfo,
8580 relnum,
8581 rel.get_r_offset(),
8582 _("unexpected opcode while processing relocation %u"),
8583 r_type);
8584 break;
8585 default:
8586 gold_unreachable();
8589 return true;
8592 // Perform a TLS relocation.
8594 template<bool big_endian>
8595 inline typename Arm_relocate_functions<big_endian>::Status
8596 Target_arm<big_endian>::Relocate::relocate_tls(
8597 const Relocate_info<32, big_endian>* relinfo,
8598 Target_arm<big_endian>* target,
8599 size_t relnum,
8600 const elfcpp::Rel<32, big_endian>& rel,
8601 unsigned int r_type,
8602 const Sized_symbol<32>* gsym,
8603 const Symbol_value<32>* psymval,
8604 unsigned char* view,
8605 elfcpp::Elf_types<32>::Elf_Addr address,
8606 section_size_type /*view_size*/ )
8608 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8609 typedef Relocate_functions<32, big_endian> RelocFuncs;
8610 Output_segment* tls_segment = relinfo->layout->tls_segment();
8612 const Sized_relobj<32, big_endian>* object = relinfo->object;
8614 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8616 const bool is_final = (gsym == NULL
8617 ? !parameters->options().shared()
8618 : gsym->final_value_is_known());
8619 const tls::Tls_optimization optimized_type
8620 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8621 switch (r_type)
8623 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8625 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8626 unsigned int got_offset;
8627 if (gsym != NULL)
8629 gold_assert(gsym->has_got_offset(got_type));
8630 got_offset = gsym->got_offset(got_type) - target->got_size();
8632 else
8634 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8635 gold_assert(object->local_has_got_offset(r_sym, got_type));
8636 got_offset = (object->local_got_offset(r_sym, got_type)
8637 - target->got_size());
8639 if (optimized_type == tls::TLSOPT_NONE)
8641 Arm_address got_entry =
8642 target->got_plt_section()->address() + got_offset;
8644 // Relocate the field with the PC relative offset of the pair of
8645 // GOT entries.
8646 RelocFuncs::pcrel32(view, got_entry, address);
8647 return ArmRelocFuncs::STATUS_OKAY;
8650 break;
8652 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8653 if (optimized_type == tls::TLSOPT_NONE)
8655 // Relocate the field with the offset of the GOT entry for
8656 // the module index.
8657 unsigned int got_offset;
8658 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8659 - target->got_size());
8660 Arm_address got_entry =
8661 target->got_plt_section()->address() + got_offset;
8663 // Relocate the field with the PC relative offset of the pair of
8664 // GOT entries.
8665 RelocFuncs::pcrel32(view, got_entry, address);
8666 return ArmRelocFuncs::STATUS_OKAY;
8668 break;
8670 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8671 RelocFuncs::rel32(view, value);
8672 return ArmRelocFuncs::STATUS_OKAY;
8674 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8675 if (optimized_type == tls::TLSOPT_NONE)
8677 // Relocate the field with the offset of the GOT entry for
8678 // the tp-relative offset of the symbol.
8679 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8680 unsigned int got_offset;
8681 if (gsym != NULL)
8683 gold_assert(gsym->has_got_offset(got_type));
8684 got_offset = gsym->got_offset(got_type);
8686 else
8688 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8689 gold_assert(object->local_has_got_offset(r_sym, got_type));
8690 got_offset = object->local_got_offset(r_sym, got_type);
8693 // All GOT offsets are relative to the end of the GOT.
8694 got_offset -= target->got_size();
8696 Arm_address got_entry =
8697 target->got_plt_section()->address() + got_offset;
8699 // Relocate the field with the PC relative offset of the GOT entry.
8700 RelocFuncs::pcrel32(view, got_entry, address);
8701 return ArmRelocFuncs::STATUS_OKAY;
8703 break;
8705 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8706 // If we're creating a shared library, a dynamic relocation will
8707 // have been created for this location, so do not apply it now.
8708 if (!parameters->options().shared())
8710 gold_assert(tls_segment != NULL);
8712 // $tp points to the TCB, which is followed by the TLS, so we
8713 // need to add TCB size to the offset.
8714 Arm_address aligned_tcb_size =
8715 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8716 RelocFuncs::rel32(view, value + aligned_tcb_size);
8719 return ArmRelocFuncs::STATUS_OKAY;
8721 default:
8722 gold_unreachable();
8725 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8726 _("unsupported reloc %u"),
8727 r_type);
8728 return ArmRelocFuncs::STATUS_BAD_RELOC;
8731 // Relocate section data.
8733 template<bool big_endian>
8734 void
8735 Target_arm<big_endian>::relocate_section(
8736 const Relocate_info<32, big_endian>* relinfo,
8737 unsigned int sh_type,
8738 const unsigned char* prelocs,
8739 size_t reloc_count,
8740 Output_section* output_section,
8741 bool needs_special_offset_handling,
8742 unsigned char* view,
8743 Arm_address address,
8744 section_size_type view_size,
8745 const Reloc_symbol_changes* reloc_symbol_changes)
8747 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8748 gold_assert(sh_type == elfcpp::SHT_REL);
8750 // See if we are relocating a relaxed input section. If so, the view
8751 // covers the whole output section and we need to adjust accordingly.
8752 if (needs_special_offset_handling)
8754 const Output_relaxed_input_section* poris =
8755 output_section->find_relaxed_input_section(relinfo->object,
8756 relinfo->data_shndx);
8757 if (poris != NULL)
8759 Arm_address section_address = poris->address();
8760 section_size_type section_size = poris->data_size();
8762 gold_assert((section_address >= address)
8763 && ((section_address + section_size)
8764 <= (address + view_size)));
8766 off_t offset = section_address - address;
8767 view += offset;
8768 address += offset;
8769 view_size = section_size;
8773 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8774 Arm_relocate>(
8775 relinfo,
8776 this,
8777 prelocs,
8778 reloc_count,
8779 output_section,
8780 needs_special_offset_handling,
8781 view,
8782 address,
8783 view_size,
8784 reloc_symbol_changes);
8787 // Return the size of a relocation while scanning during a relocatable
8788 // link.
8790 template<bool big_endian>
8791 unsigned int
8792 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8793 unsigned int r_type,
8794 Relobj* object)
8796 r_type = get_real_reloc_type(r_type);
8797 const Arm_reloc_property* arp =
8798 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8799 if (arp != NULL)
8800 return arp->size();
8801 else
8803 std::string reloc_name =
8804 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8805 gold_error(_("%s: unexpected %s in object file"),
8806 object->name().c_str(), reloc_name.c_str());
8807 return 0;
8811 // Scan the relocs during a relocatable link.
8813 template<bool big_endian>
8814 void
8815 Target_arm<big_endian>::scan_relocatable_relocs(
8816 Symbol_table* symtab,
8817 Layout* layout,
8818 Sized_relobj<32, big_endian>* object,
8819 unsigned int data_shndx,
8820 unsigned int sh_type,
8821 const unsigned char* prelocs,
8822 size_t reloc_count,
8823 Output_section* output_section,
8824 bool needs_special_offset_handling,
8825 size_t local_symbol_count,
8826 const unsigned char* plocal_symbols,
8827 Relocatable_relocs* rr)
8829 gold_assert(sh_type == elfcpp::SHT_REL);
8831 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8832 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8834 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8835 Scan_relocatable_relocs>(
8836 symtab,
8837 layout,
8838 object,
8839 data_shndx,
8840 prelocs,
8841 reloc_count,
8842 output_section,
8843 needs_special_offset_handling,
8844 local_symbol_count,
8845 plocal_symbols,
8846 rr);
8849 // Relocate a section during a relocatable link.
8851 template<bool big_endian>
8852 void
8853 Target_arm<big_endian>::relocate_for_relocatable(
8854 const Relocate_info<32, big_endian>* relinfo,
8855 unsigned int sh_type,
8856 const unsigned char* prelocs,
8857 size_t reloc_count,
8858 Output_section* output_section,
8859 off_t offset_in_output_section,
8860 const Relocatable_relocs* rr,
8861 unsigned char* view,
8862 Arm_address view_address,
8863 section_size_type view_size,
8864 unsigned char* reloc_view,
8865 section_size_type reloc_view_size)
8867 gold_assert(sh_type == elfcpp::SHT_REL);
8869 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8870 relinfo,
8871 prelocs,
8872 reloc_count,
8873 output_section,
8874 offset_in_output_section,
8876 view,
8877 view_address,
8878 view_size,
8879 reloc_view,
8880 reloc_view_size);
8883 // Return the value to use for a dynamic symbol which requires special
8884 // treatment. This is how we support equality comparisons of function
8885 // pointers across shared library boundaries, as described in the
8886 // processor specific ABI supplement.
8888 template<bool big_endian>
8889 uint64_t
8890 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
8892 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8893 return this->plt_section()->address() + gsym->plt_offset();
8896 // Map platform-specific relocs to real relocs
8898 template<bool big_endian>
8899 unsigned int
8900 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
8902 switch (r_type)
8904 case elfcpp::R_ARM_TARGET1:
8905 // This is either R_ARM_ABS32 or R_ARM_REL32;
8906 return elfcpp::R_ARM_ABS32;
8908 case elfcpp::R_ARM_TARGET2:
8909 // This can be any reloc type but ususally is R_ARM_GOT_PREL
8910 return elfcpp::R_ARM_GOT_PREL;
8912 default:
8913 return r_type;
8917 // Whether if two EABI versions V1 and V2 are compatible.
8919 template<bool big_endian>
8920 bool
8921 Target_arm<big_endian>::are_eabi_versions_compatible(
8922 elfcpp::Elf_Word v1,
8923 elfcpp::Elf_Word v2)
8925 // v4 and v5 are the same spec before and after it was released,
8926 // so allow mixing them.
8927 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8928 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8929 return true;
8931 return v1 == v2;
8934 // Combine FLAGS from an input object called NAME and the processor-specific
8935 // flags in the ELF header of the output. Much of this is adapted from the
8936 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
8937 // in bfd/elf32-arm.c.
8939 template<bool big_endian>
8940 void
8941 Target_arm<big_endian>::merge_processor_specific_flags(
8942 const std::string& name,
8943 elfcpp::Elf_Word flags)
8945 if (this->are_processor_specific_flags_set())
8947 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
8949 // Nothing to merge if flags equal to those in output.
8950 if (flags == out_flags)
8951 return;
8953 // Complain about various flag mismatches.
8954 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
8955 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
8956 if (!this->are_eabi_versions_compatible(version1, version2))
8957 gold_error(_("Source object %s has EABI version %d but output has "
8958 "EABI version %d."),
8959 name.c_str(),
8960 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
8961 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
8963 else
8965 // If the input is the default architecture and had the default
8966 // flags then do not bother setting the flags for the output
8967 // architecture, instead allow future merges to do this. If no
8968 // future merges ever set these flags then they will retain their
8969 // uninitialised values, which surprise surprise, correspond
8970 // to the default values.
8971 if (flags == 0)
8972 return;
8974 // This is the first time, just copy the flags.
8975 // We only copy the EABI version for now.
8976 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
8980 // Adjust ELF file header.
8981 template<bool big_endian>
8982 void
8983 Target_arm<big_endian>::do_adjust_elf_header(
8984 unsigned char* view,
8985 int len) const
8987 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
8989 elfcpp::Ehdr<32, big_endian> ehdr(view);
8990 unsigned char e_ident[elfcpp::EI_NIDENT];
8991 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
8993 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
8994 == elfcpp::EF_ARM_EABI_UNKNOWN)
8995 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
8996 else
8997 e_ident[elfcpp::EI_OSABI] = 0;
8998 e_ident[elfcpp::EI_ABIVERSION] = 0;
9000 // FIXME: Do EF_ARM_BE8 adjustment.
9002 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9003 oehdr.put_e_ident(e_ident);
9006 // do_make_elf_object to override the same function in the base class.
9007 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9008 // to store ARM specific information. Hence we need to have our own
9009 // ELF object creation.
9011 template<bool big_endian>
9012 Object*
9013 Target_arm<big_endian>::do_make_elf_object(
9014 const std::string& name,
9015 Input_file* input_file,
9016 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9018 int et = ehdr.get_e_type();
9019 if (et == elfcpp::ET_REL)
9021 Arm_relobj<big_endian>* obj =
9022 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9023 obj->setup();
9024 return obj;
9026 else if (et == elfcpp::ET_DYN)
9028 Sized_dynobj<32, big_endian>* obj =
9029 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9030 obj->setup();
9031 return obj;
9033 else
9035 gold_error(_("%s: unsupported ELF file type %d"),
9036 name.c_str(), et);
9037 return NULL;
9041 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9042 // Returns -1 if no architecture could be read.
9043 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9045 template<bool big_endian>
9047 Target_arm<big_endian>::get_secondary_compatible_arch(
9048 const Attributes_section_data* pasd)
9050 const Object_attribute *known_attributes =
9051 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9053 // Note: the tag and its argument below are uleb128 values, though
9054 // currently-defined values fit in one byte for each.
9055 const std::string& sv =
9056 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9057 if (sv.size() == 2
9058 && sv.data()[0] == elfcpp::Tag_CPU_arch
9059 && (sv.data()[1] & 128) != 128)
9060 return sv.data()[1];
9062 // This tag is "safely ignorable", so don't complain if it looks funny.
9063 return -1;
9066 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9067 // The tag is removed if ARCH is -1.
9068 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9070 template<bool big_endian>
9071 void
9072 Target_arm<big_endian>::set_secondary_compatible_arch(
9073 Attributes_section_data* pasd,
9074 int arch)
9076 Object_attribute *known_attributes =
9077 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9079 if (arch == -1)
9081 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9082 return;
9085 // Note: the tag and its argument below are uleb128 values, though
9086 // currently-defined values fit in one byte for each.
9087 char sv[3];
9088 sv[0] = elfcpp::Tag_CPU_arch;
9089 gold_assert(arch != 0);
9090 sv[1] = arch;
9091 sv[2] = '\0';
9093 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9096 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9097 // into account.
9098 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9100 template<bool big_endian>
9102 Target_arm<big_endian>::tag_cpu_arch_combine(
9103 const char* name,
9104 int oldtag,
9105 int* secondary_compat_out,
9106 int newtag,
9107 int secondary_compat)
9109 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9110 static const int v6t2[] =
9112 T(V6T2), // PRE_V4.
9113 T(V6T2), // V4.
9114 T(V6T2), // V4T.
9115 T(V6T2), // V5T.
9116 T(V6T2), // V5TE.
9117 T(V6T2), // V5TEJ.
9118 T(V6T2), // V6.
9119 T(V7), // V6KZ.
9120 T(V6T2) // V6T2.
9122 static const int v6k[] =
9124 T(V6K), // PRE_V4.
9125 T(V6K), // V4.
9126 T(V6K), // V4T.
9127 T(V6K), // V5T.
9128 T(V6K), // V5TE.
9129 T(V6K), // V5TEJ.
9130 T(V6K), // V6.
9131 T(V6KZ), // V6KZ.
9132 T(V7), // V6T2.
9133 T(V6K) // V6K.
9135 static const int v7[] =
9137 T(V7), // PRE_V4.
9138 T(V7), // V4.
9139 T(V7), // V4T.
9140 T(V7), // V5T.
9141 T(V7), // V5TE.
9142 T(V7), // V5TEJ.
9143 T(V7), // V6.
9144 T(V7), // V6KZ.
9145 T(V7), // V6T2.
9146 T(V7), // V6K.
9147 T(V7) // V7.
9149 static const int v6_m[] =
9151 -1, // PRE_V4.
9152 -1, // V4.
9153 T(V6K), // V4T.
9154 T(V6K), // V5T.
9155 T(V6K), // V5TE.
9156 T(V6K), // V5TEJ.
9157 T(V6K), // V6.
9158 T(V6KZ), // V6KZ.
9159 T(V7), // V6T2.
9160 T(V6K), // V6K.
9161 T(V7), // V7.
9162 T(V6_M) // V6_M.
9164 static const int v6s_m[] =
9166 -1, // PRE_V4.
9167 -1, // V4.
9168 T(V6K), // V4T.
9169 T(V6K), // V5T.
9170 T(V6K), // V5TE.
9171 T(V6K), // V5TEJ.
9172 T(V6K), // V6.
9173 T(V6KZ), // V6KZ.
9174 T(V7), // V6T2.
9175 T(V6K), // V6K.
9176 T(V7), // V7.
9177 T(V6S_M), // V6_M.
9178 T(V6S_M) // V6S_M.
9180 static const int v7e_m[] =
9182 -1, // PRE_V4.
9183 -1, // V4.
9184 T(V7E_M), // V4T.
9185 T(V7E_M), // V5T.
9186 T(V7E_M), // V5TE.
9187 T(V7E_M), // V5TEJ.
9188 T(V7E_M), // V6.
9189 T(V7E_M), // V6KZ.
9190 T(V7E_M), // V6T2.
9191 T(V7E_M), // V6K.
9192 T(V7E_M), // V7.
9193 T(V7E_M), // V6_M.
9194 T(V7E_M), // V6S_M.
9195 T(V7E_M) // V7E_M.
9197 static const int v4t_plus_v6_m[] =
9199 -1, // PRE_V4.
9200 -1, // V4.
9201 T(V4T), // V4T.
9202 T(V5T), // V5T.
9203 T(V5TE), // V5TE.
9204 T(V5TEJ), // V5TEJ.
9205 T(V6), // V6.
9206 T(V6KZ), // V6KZ.
9207 T(V6T2), // V6T2.
9208 T(V6K), // V6K.
9209 T(V7), // V7.
9210 T(V6_M), // V6_M.
9211 T(V6S_M), // V6S_M.
9212 T(V7E_M), // V7E_M.
9213 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9215 static const int *comb[] =
9217 v6t2,
9218 v6k,
9220 v6_m,
9221 v6s_m,
9222 v7e_m,
9223 // Pseudo-architecture.
9224 v4t_plus_v6_m
9227 // Check we've not got a higher architecture than we know about.
9229 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9231 gold_error(_("%s: unknown CPU architecture"), name);
9232 return -1;
9235 // Override old tag if we have a Tag_also_compatible_with on the output.
9237 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9238 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9239 oldtag = T(V4T_PLUS_V6_M);
9241 // And override the new tag if we have a Tag_also_compatible_with on the
9242 // input.
9244 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9245 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9246 newtag = T(V4T_PLUS_V6_M);
9248 // Architectures before V6KZ add features monotonically.
9249 int tagh = std::max(oldtag, newtag);
9250 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9251 return tagh;
9253 int tagl = std::min(oldtag, newtag);
9254 int result = comb[tagh - T(V6T2)][tagl];
9256 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9257 // as the canonical version.
9258 if (result == T(V4T_PLUS_V6_M))
9260 result = T(V4T);
9261 *secondary_compat_out = T(V6_M);
9263 else
9264 *secondary_compat_out = -1;
9266 if (result == -1)
9268 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9269 name, oldtag, newtag);
9270 return -1;
9273 return result;
9274 #undef T
9277 // Helper to print AEABI enum tag value.
9279 template<bool big_endian>
9280 std::string
9281 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9283 static const char *aeabi_enum_names[] =
9284 { "", "variable-size", "32-bit", "" };
9285 const size_t aeabi_enum_names_size =
9286 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9288 if (value < aeabi_enum_names_size)
9289 return std::string(aeabi_enum_names[value]);
9290 else
9292 char buffer[100];
9293 sprintf(buffer, "<unknown value %u>", value);
9294 return std::string(buffer);
9298 // Return the string value to store in TAG_CPU_name.
9300 template<bool big_endian>
9301 std::string
9302 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9304 static const char *name_table[] = {
9305 // These aren't real CPU names, but we can't guess
9306 // that from the architecture version alone.
9307 "Pre v4",
9308 "ARM v4",
9309 "ARM v4T",
9310 "ARM v5T",
9311 "ARM v5TE",
9312 "ARM v5TEJ",
9313 "ARM v6",
9314 "ARM v6KZ",
9315 "ARM v6T2",
9316 "ARM v6K",
9317 "ARM v7",
9318 "ARM v6-M",
9319 "ARM v6S-M",
9320 "ARM v7E-M"
9322 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9324 if (value < name_table_size)
9325 return std::string(name_table[value]);
9326 else
9328 char buffer[100];
9329 sprintf(buffer, "<unknown CPU value %u>", value);
9330 return std::string(buffer);
9334 // Merge object attributes from input file called NAME with those of the
9335 // output. The input object attributes are in the object pointed by PASD.
9337 template<bool big_endian>
9338 void
9339 Target_arm<big_endian>::merge_object_attributes(
9340 const char* name,
9341 const Attributes_section_data* pasd)
9343 // Return if there is no attributes section data.
9344 if (pasd == NULL)
9345 return;
9347 // If output has no object attributes, just copy.
9348 if (this->attributes_section_data_ == NULL)
9350 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9351 return;
9354 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9355 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9356 Object_attribute* out_attr =
9357 this->attributes_section_data_->known_attributes(vendor);
9359 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9360 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9361 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9363 // Ignore mismatches if the object doesn't use floating point. */
9364 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9365 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9366 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9367 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
9368 gold_error(_("%s uses VFP register arguments, output does not"),
9369 name);
9372 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9374 // Merge this attribute with existing attributes.
9375 switch (i)
9377 case elfcpp::Tag_CPU_raw_name:
9378 case elfcpp::Tag_CPU_name:
9379 // These are merged after Tag_CPU_arch.
9380 break;
9382 case elfcpp::Tag_ABI_optimization_goals:
9383 case elfcpp::Tag_ABI_FP_optimization_goals:
9384 // Use the first value seen.
9385 break;
9387 case elfcpp::Tag_CPU_arch:
9389 unsigned int saved_out_attr = out_attr->int_value();
9390 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9391 int secondary_compat =
9392 this->get_secondary_compatible_arch(pasd);
9393 int secondary_compat_out =
9394 this->get_secondary_compatible_arch(
9395 this->attributes_section_data_);
9396 out_attr[i].set_int_value(
9397 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9398 &secondary_compat_out,
9399 in_attr[i].int_value(),
9400 secondary_compat));
9401 this->set_secondary_compatible_arch(this->attributes_section_data_,
9402 secondary_compat_out);
9404 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9405 if (out_attr[i].int_value() == saved_out_attr)
9406 ; // Leave the names alone.
9407 else if (out_attr[i].int_value() == in_attr[i].int_value())
9409 // The output architecture has been changed to match the
9410 // input architecture. Use the input names.
9411 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9412 in_attr[elfcpp::Tag_CPU_name].string_value());
9413 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9414 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9416 else
9418 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9419 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9422 // If we still don't have a value for Tag_CPU_name,
9423 // make one up now. Tag_CPU_raw_name remains blank.
9424 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9426 const std::string cpu_name =
9427 this->tag_cpu_name_value(out_attr[i].int_value());
9428 // FIXME: If we see an unknown CPU, this will be set
9429 // to "<unknown CPU n>", where n is the attribute value.
9430 // This is different from BFD, which leaves the name alone.
9431 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9434 break;
9436 case elfcpp::Tag_ARM_ISA_use:
9437 case elfcpp::Tag_THUMB_ISA_use:
9438 case elfcpp::Tag_WMMX_arch:
9439 case elfcpp::Tag_Advanced_SIMD_arch:
9440 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9441 case elfcpp::Tag_ABI_FP_rounding:
9442 case elfcpp::Tag_ABI_FP_exceptions:
9443 case elfcpp::Tag_ABI_FP_user_exceptions:
9444 case elfcpp::Tag_ABI_FP_number_model:
9445 case elfcpp::Tag_VFP_HP_extension:
9446 case elfcpp::Tag_CPU_unaligned_access:
9447 case elfcpp::Tag_T2EE_use:
9448 case elfcpp::Tag_Virtualization_use:
9449 case elfcpp::Tag_MPextension_use:
9450 // Use the largest value specified.
9451 if (in_attr[i].int_value() > out_attr[i].int_value())
9452 out_attr[i].set_int_value(in_attr[i].int_value());
9453 break;
9455 case elfcpp::Tag_ABI_align8_preserved:
9456 case elfcpp::Tag_ABI_PCS_RO_data:
9457 // Use the smallest value specified.
9458 if (in_attr[i].int_value() < out_attr[i].int_value())
9459 out_attr[i].set_int_value(in_attr[i].int_value());
9460 break;
9462 case elfcpp::Tag_ABI_align8_needed:
9463 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9464 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9465 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9466 == 0)))
9468 // This error message should be enabled once all non-conformant
9469 // binaries in the toolchain have had the attributes set
9470 // properly.
9471 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9472 // name);
9474 // Fall through.
9475 case elfcpp::Tag_ABI_FP_denormal:
9476 case elfcpp::Tag_ABI_PCS_GOT_use:
9478 // These tags have 0 = don't care, 1 = strong requirement,
9479 // 2 = weak requirement.
9480 static const int order_021[3] = {0, 2, 1};
9482 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9483 // value if greater than 2 (for future-proofing).
9484 if ((in_attr[i].int_value() > 2
9485 && in_attr[i].int_value() > out_attr[i].int_value())
9486 || (in_attr[i].int_value() <= 2
9487 && out_attr[i].int_value() <= 2
9488 && (order_021[in_attr[i].int_value()]
9489 > order_021[out_attr[i].int_value()])))
9490 out_attr[i].set_int_value(in_attr[i].int_value());
9492 break;
9494 case elfcpp::Tag_CPU_arch_profile:
9495 if (out_attr[i].int_value() != in_attr[i].int_value())
9497 // 0 will merge with anything.
9498 // 'A' and 'S' merge to 'A'.
9499 // 'R' and 'S' merge to 'R'.
9500 // 'M' and 'A|R|S' is an error.
9501 if (out_attr[i].int_value() == 0
9502 || (out_attr[i].int_value() == 'S'
9503 && (in_attr[i].int_value() == 'A'
9504 || in_attr[i].int_value() == 'R')))
9505 out_attr[i].set_int_value(in_attr[i].int_value());
9506 else if (in_attr[i].int_value() == 0
9507 || (in_attr[i].int_value() == 'S'
9508 && (out_attr[i].int_value() == 'A'
9509 || out_attr[i].int_value() == 'R')))
9510 ; // Do nothing.
9511 else
9513 gold_error
9514 (_("conflicting architecture profiles %c/%c"),
9515 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9516 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9519 break;
9520 case elfcpp::Tag_VFP_arch:
9522 static const struct
9524 int ver;
9525 int regs;
9526 } vfp_versions[7] =
9528 {0, 0},
9529 {1, 16},
9530 {2, 16},
9531 {3, 32},
9532 {3, 16},
9533 {4, 32},
9534 {4, 16}
9537 // Values greater than 6 aren't defined, so just pick the
9538 // biggest.
9539 if (in_attr[i].int_value() > 6
9540 && in_attr[i].int_value() > out_attr[i].int_value())
9542 *out_attr = *in_attr;
9543 break;
9545 // The output uses the superset of input features
9546 // (ISA version) and registers.
9547 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9548 vfp_versions[out_attr[i].int_value()].ver);
9549 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9550 vfp_versions[out_attr[i].int_value()].regs);
9551 // This assumes all possible supersets are also a valid
9552 // options.
9553 int newval;
9554 for (newval = 6; newval > 0; newval--)
9556 if (regs == vfp_versions[newval].regs
9557 && ver == vfp_versions[newval].ver)
9558 break;
9560 out_attr[i].set_int_value(newval);
9562 break;
9563 case elfcpp::Tag_PCS_config:
9564 if (out_attr[i].int_value() == 0)
9565 out_attr[i].set_int_value(in_attr[i].int_value());
9566 else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9568 // It's sometimes ok to mix different configs, so this is only
9569 // a warning.
9570 gold_warning(_("%s: conflicting platform configuration"), name);
9572 break;
9573 case elfcpp::Tag_ABI_PCS_R9_use:
9574 if (in_attr[i].int_value() != out_attr[i].int_value()
9575 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
9576 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
9578 gold_error(_("%s: conflicting use of R9"), name);
9580 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9581 out_attr[i].set_int_value(in_attr[i].int_value());
9582 break;
9583 case elfcpp::Tag_ABI_PCS_RW_data:
9584 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9585 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9586 != elfcpp::AEABI_R9_SB)
9587 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9588 != elfcpp::AEABI_R9_unused))
9590 gold_error(_("%s: SB relative addressing conflicts with use "
9591 "of R9"),
9592 name);
9594 // Use the smallest value specified.
9595 if (in_attr[i].int_value() < out_attr[i].int_value())
9596 out_attr[i].set_int_value(in_attr[i].int_value());
9597 break;
9598 case elfcpp::Tag_ABI_PCS_wchar_t:
9599 // FIXME: Make it possible to turn off this warning.
9600 if (out_attr[i].int_value()
9601 && in_attr[i].int_value()
9602 && out_attr[i].int_value() != in_attr[i].int_value())
9604 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9605 "use %u-byte wchar_t; use of wchar_t values "
9606 "across objects may fail"),
9607 name, in_attr[i].int_value(),
9608 out_attr[i].int_value());
9610 else if (in_attr[i].int_value() && !out_attr[i].int_value())
9611 out_attr[i].set_int_value(in_attr[i].int_value());
9612 break;
9613 case elfcpp::Tag_ABI_enum_size:
9614 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9616 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9617 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9619 // The existing object is compatible with anything.
9620 // Use whatever requirements the new object has.
9621 out_attr[i].set_int_value(in_attr[i].int_value());
9623 // FIXME: Make it possible to turn off this warning.
9624 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
9625 && out_attr[i].int_value() != in_attr[i].int_value())
9627 unsigned int in_value = in_attr[i].int_value();
9628 unsigned int out_value = out_attr[i].int_value();
9629 gold_warning(_("%s uses %s enums yet the output is to use "
9630 "%s enums; use of enum values across objects "
9631 "may fail"),
9632 name,
9633 this->aeabi_enum_name(in_value).c_str(),
9634 this->aeabi_enum_name(out_value).c_str());
9637 break;
9638 case elfcpp::Tag_ABI_VFP_args:
9639 // Aready done.
9640 break;
9641 case elfcpp::Tag_ABI_WMMX_args:
9642 if (in_attr[i].int_value() != out_attr[i].int_value())
9644 gold_error(_("%s uses iWMMXt register arguments, output does "
9645 "not"),
9646 name);
9648 break;
9649 case Object_attribute::Tag_compatibility:
9650 // Merged in target-independent code.
9651 break;
9652 case elfcpp::Tag_ABI_HardFP_use:
9653 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9654 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9655 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9656 out_attr[i].set_int_value(3);
9657 else if (in_attr[i].int_value() > out_attr[i].int_value())
9658 out_attr[i].set_int_value(in_attr[i].int_value());
9659 break;
9660 case elfcpp::Tag_ABI_FP_16bit_format:
9661 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9663 if (in_attr[i].int_value() != out_attr[i].int_value())
9664 gold_error(_("fp16 format mismatch between %s and output"),
9665 name);
9667 if (in_attr[i].int_value() != 0)
9668 out_attr[i].set_int_value(in_attr[i].int_value());
9669 break;
9671 case elfcpp::Tag_nodefaults:
9672 // This tag is set if it exists, but the value is unused (and is
9673 // typically zero). We don't actually need to do anything here -
9674 // the merge happens automatically when the type flags are merged
9675 // below.
9676 break;
9677 case elfcpp::Tag_also_compatible_with:
9678 // Already done in Tag_CPU_arch.
9679 break;
9680 case elfcpp::Tag_conformance:
9681 // Keep the attribute if it matches. Throw it away otherwise.
9682 // No attribute means no claim to conform.
9683 if (in_attr[i].string_value() != out_attr[i].string_value())
9684 out_attr[i].set_string_value("");
9685 break;
9687 default:
9689 const char* err_object = NULL;
9691 // The "known_obj_attributes" table does contain some undefined
9692 // attributes. Ensure that there are unused.
9693 if (out_attr[i].int_value() != 0
9694 || out_attr[i].string_value() != "")
9695 err_object = "output";
9696 else if (in_attr[i].int_value() != 0
9697 || in_attr[i].string_value() != "")
9698 err_object = name;
9700 if (err_object != NULL)
9702 // Attribute numbers >=64 (mod 128) can be safely ignored.
9703 if ((i & 127) < 64)
9704 gold_error(_("%s: unknown mandatory EABI object attribute "
9705 "%d"),
9706 err_object, i);
9707 else
9708 gold_warning(_("%s: unknown EABI object attribute %d"),
9709 err_object, i);
9712 // Only pass on attributes that match in both inputs.
9713 if (!in_attr[i].matches(out_attr[i]))
9715 out_attr[i].set_int_value(0);
9716 out_attr[i].set_string_value("");
9721 // If out_attr was copied from in_attr then it won't have a type yet.
9722 if (in_attr[i].type() && !out_attr[i].type())
9723 out_attr[i].set_type(in_attr[i].type());
9726 // Merge Tag_compatibility attributes and any common GNU ones.
9727 this->attributes_section_data_->merge(name, pasd);
9729 // Check for any attributes not known on ARM.
9730 typedef Vendor_object_attributes::Other_attributes Other_attributes;
9731 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9732 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9733 Other_attributes* out_other_attributes =
9734 this->attributes_section_data_->other_attributes(vendor);
9735 Other_attributes::iterator out_iter = out_other_attributes->begin();
9737 while (in_iter != in_other_attributes->end()
9738 || out_iter != out_other_attributes->end())
9740 const char* err_object = NULL;
9741 int err_tag = 0;
9743 // The tags for each list are in numerical order.
9744 // If the tags are equal, then merge.
9745 if (out_iter != out_other_attributes->end()
9746 && (in_iter == in_other_attributes->end()
9747 || in_iter->first > out_iter->first))
9749 // This attribute only exists in output. We can't merge, and we
9750 // don't know what the tag means, so delete it.
9751 err_object = "output";
9752 err_tag = out_iter->first;
9753 int saved_tag = out_iter->first;
9754 delete out_iter->second;
9755 out_other_attributes->erase(out_iter);
9756 out_iter = out_other_attributes->upper_bound(saved_tag);
9758 else if (in_iter != in_other_attributes->end()
9759 && (out_iter != out_other_attributes->end()
9760 || in_iter->first < out_iter->first))
9762 // This attribute only exists in input. We can't merge, and we
9763 // don't know what the tag means, so ignore it.
9764 err_object = name;
9765 err_tag = in_iter->first;
9766 ++in_iter;
9768 else // The tags are equal.
9770 // As present, all attributes in the list are unknown, and
9771 // therefore can't be merged meaningfully.
9772 err_object = "output";
9773 err_tag = out_iter->first;
9775 // Only pass on attributes that match in both inputs.
9776 if (!in_iter->second->matches(*(out_iter->second)))
9778 // No match. Delete the attribute.
9779 int saved_tag = out_iter->first;
9780 delete out_iter->second;
9781 out_other_attributes->erase(out_iter);
9782 out_iter = out_other_attributes->upper_bound(saved_tag);
9784 else
9786 // Matched. Keep the attribute and move to the next.
9787 ++out_iter;
9788 ++in_iter;
9792 if (err_object)
9794 // Attribute numbers >=64 (mod 128) can be safely ignored. */
9795 if ((err_tag & 127) < 64)
9797 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9798 err_object, err_tag);
9800 else
9802 gold_warning(_("%s: unknown EABI object attribute %d"),
9803 err_object, err_tag);
9809 // Stub-generation methods for Target_arm.
9811 // Make a new Arm_input_section object.
9813 template<bool big_endian>
9814 Arm_input_section<big_endian>*
9815 Target_arm<big_endian>::new_arm_input_section(
9816 Relobj* relobj,
9817 unsigned int shndx)
9819 Section_id sid(relobj, shndx);
9821 Arm_input_section<big_endian>* arm_input_section =
9822 new Arm_input_section<big_endian>(relobj, shndx);
9823 arm_input_section->init();
9825 // Register new Arm_input_section in map for look-up.
9826 std::pair<typename Arm_input_section_map::iterator, bool> ins =
9827 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
9829 // Make sure that it we have not created another Arm_input_section
9830 // for this input section already.
9831 gold_assert(ins.second);
9833 return arm_input_section;
9836 // Find the Arm_input_section object corresponding to the SHNDX-th input
9837 // section of RELOBJ.
9839 template<bool big_endian>
9840 Arm_input_section<big_endian>*
9841 Target_arm<big_endian>::find_arm_input_section(
9842 Relobj* relobj,
9843 unsigned int shndx) const
9845 Section_id sid(relobj, shndx);
9846 typename Arm_input_section_map::const_iterator p =
9847 this->arm_input_section_map_.find(sid);
9848 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9851 // Make a new stub table.
9853 template<bool big_endian>
9854 Stub_table<big_endian>*
9855 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9857 Stub_table<big_endian>* stub_table =
9858 new Stub_table<big_endian>(owner);
9859 this->stub_tables_.push_back(stub_table);
9861 stub_table->set_address(owner->address() + owner->data_size());
9862 stub_table->set_file_offset(owner->offset() + owner->data_size());
9863 stub_table->finalize_data_size();
9865 return stub_table;
9868 // Scan a relocation for stub generation.
9870 template<bool big_endian>
9871 void
9872 Target_arm<big_endian>::scan_reloc_for_stub(
9873 const Relocate_info<32, big_endian>* relinfo,
9874 unsigned int r_type,
9875 const Sized_symbol<32>* gsym,
9876 unsigned int r_sym,
9877 const Symbol_value<32>* psymval,
9878 elfcpp::Elf_types<32>::Elf_Swxword addend,
9879 Arm_address address)
9881 typedef typename Target_arm<big_endian>::Relocate Relocate;
9883 const Arm_relobj<big_endian>* arm_relobj =
9884 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9886 bool target_is_thumb;
9887 Symbol_value<32> symval;
9888 if (gsym != NULL)
9890 // This is a global symbol. Determine if we use PLT and if the
9891 // final target is THUMB.
9892 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
9894 // This uses a PLT, change the symbol value.
9895 symval.set_output_value(this->plt_section()->address()
9896 + gsym->plt_offset());
9897 psymval = &symval;
9898 target_is_thumb = false;
9900 else if (gsym->is_undefined())
9901 // There is no need to generate a stub symbol is undefined.
9902 return;
9903 else
9905 target_is_thumb =
9906 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9907 || (gsym->type() == elfcpp::STT_FUNC
9908 && !gsym->is_undefined()
9909 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9912 else
9914 // This is a local symbol. Determine if the final target is THUMB.
9915 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9918 // Strip LSB if this points to a THUMB target.
9919 const Arm_reloc_property* reloc_property =
9920 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9921 gold_assert(reloc_property != NULL);
9922 if (target_is_thumb
9923 && reloc_property->uses_thumb_bit()
9924 && ((psymval->value(arm_relobj, 0) & 1) != 0))
9926 Arm_address stripped_value =
9927 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
9928 symval.set_output_value(stripped_value);
9929 psymval = &symval;
9932 // Get the symbol value.
9933 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
9935 // Owing to pipelining, the PC relative branches below actually skip
9936 // two instructions when the branch offset is 0.
9937 Arm_address destination;
9938 switch (r_type)
9940 case elfcpp::R_ARM_CALL:
9941 case elfcpp::R_ARM_JUMP24:
9942 case elfcpp::R_ARM_PLT32:
9943 // ARM branches.
9944 destination = value + addend + 8;
9945 break;
9946 case elfcpp::R_ARM_THM_CALL:
9947 case elfcpp::R_ARM_THM_XPC22:
9948 case elfcpp::R_ARM_THM_JUMP24:
9949 case elfcpp::R_ARM_THM_JUMP19:
9950 // THUMB branches.
9951 destination = value + addend + 4;
9952 break;
9953 default:
9954 gold_unreachable();
9957 Reloc_stub* stub = NULL;
9958 Stub_type stub_type =
9959 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
9960 target_is_thumb);
9961 if (stub_type != arm_stub_none)
9963 // Try looking up an existing stub from a stub table.
9964 Stub_table<big_endian>* stub_table =
9965 arm_relobj->stub_table(relinfo->data_shndx);
9966 gold_assert(stub_table != NULL);
9968 // Locate stub by destination.
9969 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
9971 // Create a stub if there is not one already
9972 stub = stub_table->find_reloc_stub(stub_key);
9973 if (stub == NULL)
9975 // create a new stub and add it to stub table.
9976 stub = this->stub_factory().make_reloc_stub(stub_type);
9977 stub_table->add_reloc_stub(stub, stub_key);
9980 // Record the destination address.
9981 stub->set_destination_address(destination
9982 | (target_is_thumb ? 1 : 0));
9985 // For Cortex-A8, we need to record a relocation at 4K page boundary.
9986 if (this->fix_cortex_a8_
9987 && (r_type == elfcpp::R_ARM_THM_JUMP24
9988 || r_type == elfcpp::R_ARM_THM_JUMP19
9989 || r_type == elfcpp::R_ARM_THM_CALL
9990 || r_type == elfcpp::R_ARM_THM_XPC22)
9991 && (address & 0xfffU) == 0xffeU)
9993 // Found a candidate. Note we haven't checked the destination is
9994 // within 4K here: if we do so (and don't create a record) we can't
9995 // tell that a branch should have been relocated when scanning later.
9996 this->cortex_a8_relocs_info_[address] =
9997 new Cortex_a8_reloc(stub, r_type,
9998 destination | (target_is_thumb ? 1 : 0));
10002 // This function scans a relocation sections for stub generation.
10003 // The template parameter Relocate must be a class type which provides
10004 // a single function, relocate(), which implements the machine
10005 // specific part of a relocation.
10007 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10008 // SHT_REL or SHT_RELA.
10010 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10011 // of relocs. OUTPUT_SECTION is the output section.
10012 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10013 // mapped to output offsets.
10015 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10016 // VIEW_SIZE is the size. These refer to the input section, unless
10017 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10018 // the output section.
10020 template<bool big_endian>
10021 template<int sh_type>
10022 void inline
10023 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10024 const Relocate_info<32, big_endian>* relinfo,
10025 const unsigned char* prelocs,
10026 size_t reloc_count,
10027 Output_section* output_section,
10028 bool needs_special_offset_handling,
10029 const unsigned char* view,
10030 elfcpp::Elf_types<32>::Elf_Addr view_address,
10031 section_size_type)
10033 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10034 const int reloc_size =
10035 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10037 Arm_relobj<big_endian>* arm_object =
10038 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10039 unsigned int local_count = arm_object->local_symbol_count();
10041 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10043 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10045 Reltype reloc(prelocs);
10047 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10048 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10049 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10051 r_type = this->get_real_reloc_type(r_type);
10053 // Only a few relocation types need stubs.
10054 if ((r_type != elfcpp::R_ARM_CALL)
10055 && (r_type != elfcpp::R_ARM_JUMP24)
10056 && (r_type != elfcpp::R_ARM_PLT32)
10057 && (r_type != elfcpp::R_ARM_THM_CALL)
10058 && (r_type != elfcpp::R_ARM_THM_XPC22)
10059 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10060 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10061 && (r_type != elfcpp::R_ARM_V4BX))
10062 continue;
10064 section_offset_type offset =
10065 convert_to_section_size_type(reloc.get_r_offset());
10067 if (needs_special_offset_handling)
10069 offset = output_section->output_offset(relinfo->object,
10070 relinfo->data_shndx,
10071 offset);
10072 if (offset == -1)
10073 continue;
10076 // Create a v4bx stub if --fix-v4bx-interworking is used.
10077 if (r_type == elfcpp::R_ARM_V4BX)
10079 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10081 // Get the BX instruction.
10082 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10083 const Valtype* wv =
10084 reinterpret_cast<const Valtype*>(view + offset);
10085 elfcpp::Elf_types<32>::Elf_Swxword insn =
10086 elfcpp::Swap<32, big_endian>::readval(wv);
10087 const uint32_t reg = (insn & 0xf);
10089 if (reg < 0xf)
10091 // Try looking up an existing stub from a stub table.
10092 Stub_table<big_endian>* stub_table =
10093 arm_object->stub_table(relinfo->data_shndx);
10094 gold_assert(stub_table != NULL);
10096 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10098 // create a new stub and add it to stub table.
10099 Arm_v4bx_stub* stub =
10100 this->stub_factory().make_arm_v4bx_stub(reg);
10101 gold_assert(stub != NULL);
10102 stub_table->add_arm_v4bx_stub(stub);
10106 continue;
10109 // Get the addend.
10110 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10111 elfcpp::Elf_types<32>::Elf_Swxword addend =
10112 stub_addend_reader(r_type, view + offset, reloc);
10114 const Sized_symbol<32>* sym;
10116 Symbol_value<32> symval;
10117 const Symbol_value<32> *psymval;
10118 if (r_sym < local_count)
10120 sym = NULL;
10121 psymval = arm_object->local_symbol(r_sym);
10123 // If the local symbol belongs to a section we are discarding,
10124 // and that section is a debug section, try to find the
10125 // corresponding kept section and map this symbol to its
10126 // counterpart in the kept section. The symbol must not
10127 // correspond to a section we are folding.
10128 bool is_ordinary;
10129 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10130 if (is_ordinary
10131 && shndx != elfcpp::SHN_UNDEF
10132 && !arm_object->is_section_included(shndx)
10133 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10135 if (comdat_behavior == CB_UNDETERMINED)
10137 std::string name =
10138 arm_object->section_name(relinfo->data_shndx);
10139 comdat_behavior = get_comdat_behavior(name.c_str());
10141 if (comdat_behavior == CB_PRETEND)
10143 bool found;
10144 typename elfcpp::Elf_types<32>::Elf_Addr value =
10145 arm_object->map_to_kept_section(shndx, &found);
10146 if (found)
10147 symval.set_output_value(value + psymval->input_value());
10148 else
10149 symval.set_output_value(0);
10151 else
10153 symval.set_output_value(0);
10155 symval.set_no_output_symtab_entry();
10156 psymval = &symval;
10159 else
10161 const Symbol* gsym = arm_object->global_symbol(r_sym);
10162 gold_assert(gsym != NULL);
10163 if (gsym->is_forwarder())
10164 gsym = relinfo->symtab->resolve_forwards(gsym);
10166 sym = static_cast<const Sized_symbol<32>*>(gsym);
10167 if (sym->has_symtab_index())
10168 symval.set_output_symtab_index(sym->symtab_index());
10169 else
10170 symval.set_no_output_symtab_entry();
10172 // We need to compute the would-be final value of this global
10173 // symbol.
10174 const Symbol_table* symtab = relinfo->symtab;
10175 const Sized_symbol<32>* sized_symbol =
10176 symtab->get_sized_symbol<32>(gsym);
10177 Symbol_table::Compute_final_value_status status;
10178 Arm_address value =
10179 symtab->compute_final_value<32>(sized_symbol, &status);
10181 // Skip this if the symbol has not output section.
10182 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10183 continue;
10185 symval.set_output_value(value);
10186 psymval = &symval;
10189 // If symbol is a section symbol, we don't know the actual type of
10190 // destination. Give up.
10191 if (psymval->is_section_symbol())
10192 continue;
10194 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10195 addend, view_address + offset);
10199 // Scan an input section for stub generation.
10201 template<bool big_endian>
10202 void
10203 Target_arm<big_endian>::scan_section_for_stubs(
10204 const Relocate_info<32, big_endian>* relinfo,
10205 unsigned int sh_type,
10206 const unsigned char* prelocs,
10207 size_t reloc_count,
10208 Output_section* output_section,
10209 bool needs_special_offset_handling,
10210 const unsigned char* view,
10211 Arm_address view_address,
10212 section_size_type view_size)
10214 if (sh_type == elfcpp::SHT_REL)
10215 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10216 relinfo,
10217 prelocs,
10218 reloc_count,
10219 output_section,
10220 needs_special_offset_handling,
10221 view,
10222 view_address,
10223 view_size);
10224 else if (sh_type == elfcpp::SHT_RELA)
10225 // We do not support RELA type relocations yet. This is provided for
10226 // completeness.
10227 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10228 relinfo,
10229 prelocs,
10230 reloc_count,
10231 output_section,
10232 needs_special_offset_handling,
10233 view,
10234 view_address,
10235 view_size);
10236 else
10237 gold_unreachable();
10240 // Group input sections for stub generation.
10242 // We goup input sections in an output sections so that the total size,
10243 // including any padding space due to alignment is smaller than GROUP_SIZE
10244 // unless the only input section in group is bigger than GROUP_SIZE already.
10245 // Then an ARM stub table is created to follow the last input section
10246 // in group. For each group an ARM stub table is created an is placed
10247 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10248 // extend the group after the stub table.
10250 template<bool big_endian>
10251 void
10252 Target_arm<big_endian>::group_sections(
10253 Layout* layout,
10254 section_size_type group_size,
10255 bool stubs_always_after_branch)
10257 // Group input sections and insert stub table
10258 Layout::Section_list section_list;
10259 layout->get_allocated_sections(&section_list);
10260 for (Layout::Section_list::const_iterator p = section_list.begin();
10261 p != section_list.end();
10262 ++p)
10264 Arm_output_section<big_endian>* output_section =
10265 Arm_output_section<big_endian>::as_arm_output_section(*p);
10266 output_section->group_sections(group_size, stubs_always_after_branch,
10267 this);
10271 // Relaxation hook. This is where we do stub generation.
10273 template<bool big_endian>
10274 bool
10275 Target_arm<big_endian>::do_relax(
10276 int pass,
10277 const Input_objects* input_objects,
10278 Symbol_table* symtab,
10279 Layout* layout)
10281 // No need to generate stubs if this is a relocatable link.
10282 gold_assert(!parameters->options().relocatable());
10284 // If this is the first pass, we need to group input sections into
10285 // stub groups.
10286 bool done_exidx_fixup = false;
10287 if (pass == 1)
10289 // Determine the stub group size. The group size is the absolute
10290 // value of the parameter --stub-group-size. If --stub-group-size
10291 // is passed a negative value, we restict stubs to be always after
10292 // the stubbed branches.
10293 int32_t stub_group_size_param =
10294 parameters->options().stub_group_size();
10295 bool stubs_always_after_branch = stub_group_size_param < 0;
10296 section_size_type stub_group_size = abs(stub_group_size_param);
10298 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10299 // page as the first half of a 32-bit branch straddling two 4K pages.
10300 // This is a crude way of enforcing that.
10301 if (this->fix_cortex_a8_)
10302 stubs_always_after_branch = true;
10304 if (stub_group_size == 1)
10306 // Default value.
10307 // Thumb branch range is +-4MB has to be used as the default
10308 // maximum size (a given section can contain both ARM and Thumb
10309 // code, so the worst case has to be taken into account).
10311 // This value is 24K less than that, which allows for 2025
10312 // 12-byte stubs. If we exceed that, then we will fail to link.
10313 // The user will have to relink with an explicit group size
10314 // option.
10315 stub_group_size = 4170000;
10318 group_sections(layout, stub_group_size, stubs_always_after_branch);
10320 // Also fix .ARM.exidx section coverage.
10321 Output_section* os = layout->find_output_section(".ARM.exidx");
10322 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10324 Arm_output_section<big_endian>* exidx_output_section =
10325 Arm_output_section<big_endian>::as_arm_output_section(os);
10326 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10327 done_exidx_fixup = true;
10331 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10332 // beginning of each relaxation pass, just blow away all the stubs.
10333 // Alternatively, we could selectively remove only the stubs and reloc
10334 // information for code sections that have moved since the last pass.
10335 // That would require more book-keeping.
10336 typedef typename Stub_table_list::iterator Stub_table_iterator;
10337 if (this->fix_cortex_a8_)
10339 // Clear all Cortex-A8 reloc information.
10340 for (typename Cortex_a8_relocs_info::const_iterator p =
10341 this->cortex_a8_relocs_info_.begin();
10342 p != this->cortex_a8_relocs_info_.end();
10343 ++p)
10344 delete p->second;
10345 this->cortex_a8_relocs_info_.clear();
10347 // Remove all Cortex-A8 stubs.
10348 for (Stub_table_iterator sp = this->stub_tables_.begin();
10349 sp != this->stub_tables_.end();
10350 ++sp)
10351 (*sp)->remove_all_cortex_a8_stubs();
10354 // Scan relocs for relocation stubs
10355 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10356 op != input_objects->relobj_end();
10357 ++op)
10359 Arm_relobj<big_endian>* arm_relobj =
10360 Arm_relobj<big_endian>::as_arm_relobj(*op);
10361 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10364 // Check all stub tables to see if any of them have their data sizes
10365 // or addresses alignments changed. These are the only things that
10366 // matter.
10367 bool any_stub_table_changed = false;
10368 Unordered_set<const Output_section*> sections_needing_adjustment;
10369 for (Stub_table_iterator sp = this->stub_tables_.begin();
10370 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10371 ++sp)
10373 if ((*sp)->update_data_size_and_addralign())
10375 // Update data size of stub table owner.
10376 Arm_input_section<big_endian>* owner = (*sp)->owner();
10377 uint64_t address = owner->address();
10378 off_t offset = owner->offset();
10379 owner->reset_address_and_file_offset();
10380 owner->set_address_and_file_offset(address, offset);
10382 sections_needing_adjustment.insert(owner->output_section());
10383 any_stub_table_changed = true;
10387 // Output_section_data::output_section() returns a const pointer but we
10388 // need to update output sections, so we record all output sections needing
10389 // update above and scan the sections here to find out what sections need
10390 // to be updated.
10391 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10392 p != layout->section_list().end();
10393 ++p)
10395 if (sections_needing_adjustment.find(*p)
10396 != sections_needing_adjustment.end())
10397 (*p)->set_section_offsets_need_adjustment();
10400 // Stop relaxation if no EXIDX fix-up and no stub table change.
10401 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10403 // Finalize the stubs in the last relaxation pass.
10404 if (!continue_relaxation)
10406 for (Stub_table_iterator sp = this->stub_tables_.begin();
10407 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10408 ++sp)
10409 (*sp)->finalize_stubs();
10411 // Update output local symbol counts of objects if necessary.
10412 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10413 op != input_objects->relobj_end();
10414 ++op)
10416 Arm_relobj<big_endian>* arm_relobj =
10417 Arm_relobj<big_endian>::as_arm_relobj(*op);
10419 // Update output local symbol counts. We need to discard local
10420 // symbols defined in parts of input sections that are discarded by
10421 // relaxation.
10422 if (arm_relobj->output_local_symbol_count_needs_update())
10423 arm_relobj->update_output_local_symbol_count();
10427 return continue_relaxation;
10430 // Relocate a stub.
10432 template<bool big_endian>
10433 void
10434 Target_arm<big_endian>::relocate_stub(
10435 Stub* stub,
10436 const Relocate_info<32, big_endian>* relinfo,
10437 Output_section* output_section,
10438 unsigned char* view,
10439 Arm_address address,
10440 section_size_type view_size)
10442 Relocate relocate;
10443 const Stub_template* stub_template = stub->stub_template();
10444 for (size_t i = 0; i < stub_template->reloc_count(); i++)
10446 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10447 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
10449 unsigned int r_type = insn->r_type();
10450 section_size_type reloc_offset = stub_template->reloc_offset(i);
10451 section_size_type reloc_size = insn->size();
10452 gold_assert(reloc_offset + reloc_size <= view_size);
10454 // This is the address of the stub destination.
10455 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
10456 Symbol_value<32> symval;
10457 symval.set_output_value(target);
10459 // Synthesize a fake reloc just in case. We don't have a symbol so
10460 // we use 0.
10461 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10462 memset(reloc_buffer, 0, sizeof(reloc_buffer));
10463 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10464 reloc_write.put_r_offset(reloc_offset);
10465 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10466 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10468 relocate.relocate(relinfo, this, output_section,
10469 this->fake_relnum_for_stubs, rel, r_type,
10470 NULL, &symval, view + reloc_offset,
10471 address + reloc_offset, reloc_size);
10475 // Determine whether an object attribute tag takes an integer, a
10476 // string or both.
10478 template<bool big_endian>
10480 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10482 if (tag == Object_attribute::Tag_compatibility)
10483 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10484 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10485 else if (tag == elfcpp::Tag_nodefaults)
10486 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10487 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10488 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10489 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10490 else if (tag < 32)
10491 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10492 else
10493 return ((tag & 1) != 0
10494 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10495 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10498 // Reorder attributes.
10500 // The ABI defines that Tag_conformance should be emitted first, and that
10501 // Tag_nodefaults should be second (if either is defined). This sets those
10502 // two positions, and bumps up the position of all the remaining tags to
10503 // compensate.
10505 template<bool big_endian>
10507 Target_arm<big_endian>::do_attributes_order(int num) const
10509 // Reorder the known object attributes in output. We want to move
10510 // Tag_conformance to position 4 and Tag_conformance to position 5
10511 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10512 if (num == 4)
10513 return elfcpp::Tag_conformance;
10514 if (num == 5)
10515 return elfcpp::Tag_nodefaults;
10516 if ((num - 2) < elfcpp::Tag_nodefaults)
10517 return num - 2;
10518 if ((num - 1) < elfcpp::Tag_conformance)
10519 return num - 1;
10520 return num;
10523 // Scan a span of THUMB code for Cortex-A8 erratum.
10525 template<bool big_endian>
10526 void
10527 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10528 Arm_relobj<big_endian>* arm_relobj,
10529 unsigned int shndx,
10530 section_size_type span_start,
10531 section_size_type span_end,
10532 const unsigned char* view,
10533 Arm_address address)
10535 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10537 // The opcode is BLX.W, BL.W, B.W, Bcc.W
10538 // The branch target is in the same 4KB region as the
10539 // first half of the branch.
10540 // The instruction before the branch is a 32-bit
10541 // length non-branch instruction.
10542 section_size_type i = span_start;
10543 bool last_was_32bit = false;
10544 bool last_was_branch = false;
10545 while (i < span_end)
10547 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10548 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10549 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10550 bool is_blx = false, is_b = false;
10551 bool is_bl = false, is_bcc = false;
10553 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10554 if (insn_32bit)
10556 // Load the rest of the insn (in manual-friendly order).
10557 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10559 // Encoding T4: B<c>.W.
10560 is_b = (insn & 0xf800d000U) == 0xf0009000U;
10561 // Encoding T1: BL<c>.W.
10562 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10563 // Encoding T2: BLX<c>.W.
10564 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10565 // Encoding T3: B<c>.W (not permitted in IT block).
10566 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10567 && (insn & 0x07f00000U) != 0x03800000U);
10570 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10572 // If this instruction is a 32-bit THUMB branch that crosses a 4K
10573 // page boundary and it follows 32-bit non-branch instruction,
10574 // we need to work around.
10575 if (is_32bit_branch
10576 && ((address + i) & 0xfffU) == 0xffeU
10577 && last_was_32bit
10578 && !last_was_branch)
10580 // Check to see if there is a relocation stub for this branch.
10581 bool force_target_arm = false;
10582 bool force_target_thumb = false;
10583 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10584 Cortex_a8_relocs_info::const_iterator p =
10585 this->cortex_a8_relocs_info_.find(address + i);
10587 if (p != this->cortex_a8_relocs_info_.end())
10589 cortex_a8_reloc = p->second;
10590 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10592 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10593 && !target_is_thumb)
10594 force_target_arm = true;
10595 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10596 && target_is_thumb)
10597 force_target_thumb = true;
10600 off_t offset;
10601 Stub_type stub_type = arm_stub_none;
10603 // Check if we have an offending branch instruction.
10604 uint16_t upper_insn = (insn >> 16) & 0xffffU;
10605 uint16_t lower_insn = insn & 0xffffU;
10606 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10608 if (cortex_a8_reloc != NULL
10609 && cortex_a8_reloc->reloc_stub() != NULL)
10610 // We've already made a stub for this instruction, e.g.
10611 // it's a long branch or a Thumb->ARM stub. Assume that
10612 // stub will suffice to work around the A8 erratum (see
10613 // setting of always_after_branch above).
10615 else if (is_bcc)
10617 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10618 lower_insn);
10619 stub_type = arm_stub_a8_veneer_b_cond;
10621 else if (is_b || is_bl || is_blx)
10623 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10624 lower_insn);
10625 if (is_blx)
10626 offset &= ~3;
10628 stub_type = (is_blx
10629 ? arm_stub_a8_veneer_blx
10630 : (is_bl
10631 ? arm_stub_a8_veneer_bl
10632 : arm_stub_a8_veneer_b));
10635 if (stub_type != arm_stub_none)
10637 Arm_address pc_for_insn = address + i + 4;
10639 // The original instruction is a BL, but the target is
10640 // an ARM instruction. If we were not making a stub,
10641 // the BL would have been converted to a BLX. Use the
10642 // BLX stub instead in that case.
10643 if (this->may_use_blx() && force_target_arm
10644 && stub_type == arm_stub_a8_veneer_bl)
10646 stub_type = arm_stub_a8_veneer_blx;
10647 is_blx = true;
10648 is_bl = false;
10650 // Conversely, if the original instruction was
10651 // BLX but the target is Thumb mode, use the BL stub.
10652 else if (force_target_thumb
10653 && stub_type == arm_stub_a8_veneer_blx)
10655 stub_type = arm_stub_a8_veneer_bl;
10656 is_blx = false;
10657 is_bl = true;
10660 if (is_blx)
10661 pc_for_insn &= ~3;
10663 // If we found a relocation, use the proper destination,
10664 // not the offset in the (unrelocated) instruction.
10665 // Note this is always done if we switched the stub type above.
10666 if (cortex_a8_reloc != NULL)
10667 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10669 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10671 // Add a new stub if destination address in in the same page.
10672 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10674 Cortex_a8_stub* stub =
10675 this->stub_factory_.make_cortex_a8_stub(stub_type,
10676 arm_relobj, shndx,
10677 address + i,
10678 target, insn);
10679 Stub_table<big_endian>* stub_table =
10680 arm_relobj->stub_table(shndx);
10681 gold_assert(stub_table != NULL);
10682 stub_table->add_cortex_a8_stub(address + i, stub);
10687 i += insn_32bit ? 4 : 2;
10688 last_was_32bit = insn_32bit;
10689 last_was_branch = is_32bit_branch;
10693 // Apply the Cortex-A8 workaround.
10695 template<bool big_endian>
10696 void
10697 Target_arm<big_endian>::apply_cortex_a8_workaround(
10698 const Cortex_a8_stub* stub,
10699 Arm_address stub_address,
10700 unsigned char* insn_view,
10701 Arm_address insn_address)
10703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10704 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10705 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10706 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10707 off_t branch_offset = stub_address - (insn_address + 4);
10709 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10710 switch (stub->stub_template()->type())
10712 case arm_stub_a8_veneer_b_cond:
10713 gold_assert(!utils::has_overflow<21>(branch_offset));
10714 upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10715 branch_offset);
10716 lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10717 branch_offset);
10718 break;
10720 case arm_stub_a8_veneer_b:
10721 case arm_stub_a8_veneer_bl:
10722 case arm_stub_a8_veneer_blx:
10723 if ((lower_insn & 0x5000U) == 0x4000U)
10724 // For a BLX instruction, make sure that the relocation is
10725 // rounded up to a word boundary. This follows the semantics of
10726 // the instruction which specifies that bit 1 of the target
10727 // address will come from bit 1 of the base address.
10728 branch_offset = (branch_offset + 2) & ~3;
10730 // Put BRANCH_OFFSET back into the insn.
10731 gold_assert(!utils::has_overflow<25>(branch_offset));
10732 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10733 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10734 break;
10736 default:
10737 gold_unreachable();
10740 // Put the relocated value back in the object file:
10741 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10742 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10745 template<bool big_endian>
10746 class Target_selector_arm : public Target_selector
10748 public:
10749 Target_selector_arm()
10750 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10751 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10754 Target*
10755 do_instantiate_target()
10756 { return new Target_arm<big_endian>(); }
10759 // Fix .ARM.exidx section coverage.
10761 template<bool big_endian>
10762 void
10763 Target_arm<big_endian>::fix_exidx_coverage(
10764 Layout* layout,
10765 Arm_output_section<big_endian>* exidx_section,
10766 Symbol_table* symtab)
10768 // We need to look at all the input sections in output in ascending
10769 // order of of output address. We do that by building a sorted list
10770 // of output sections by addresses. Then we looks at the output sections
10771 // in order. The input sections in an output section are already sorted
10772 // by addresses within the output section.
10774 typedef std::set<Output_section*, output_section_address_less_than>
10775 Sorted_output_section_list;
10776 Sorted_output_section_list sorted_output_sections;
10777 Layout::Section_list section_list;
10778 layout->get_allocated_sections(&section_list);
10779 for (Layout::Section_list::const_iterator p = section_list.begin();
10780 p != section_list.end();
10781 ++p)
10783 // We only care about output sections that contain executable code.
10784 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10785 sorted_output_sections.insert(*p);
10788 // Go over the output sections in ascending order of output addresses.
10789 typedef typename Arm_output_section<big_endian>::Text_section_list
10790 Text_section_list;
10791 Text_section_list sorted_text_sections;
10792 for(typename Sorted_output_section_list::iterator p =
10793 sorted_output_sections.begin();
10794 p != sorted_output_sections.end();
10795 ++p)
10797 Arm_output_section<big_endian>* arm_output_section =
10798 Arm_output_section<big_endian>::as_arm_output_section(*p);
10799 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10802 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
10805 Target_selector_arm<false> target_selector_arm;
10806 Target_selector_arm<true> target_selector_armbe;
10808 } // End anonymous namespace.