2009-07-17 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gas / config / tc-i386.c
blobd00424a9f6f59446c143b408a8ddd661e368e3d5
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define LOCKREP_PREFIX 4
68 #define REX_PREFIX 5 /* must come last. */
69 #define MAX_PREFIXES 6 /* max prefixes per opcode */
71 /* we define the syntax here (modulo base,index,scale syntax) */
72 #define REGISTER_PREFIX '%'
73 #define IMMEDIATE_PREFIX '$'
74 #define ABSOLUTE_PREFIX '*'
76 /* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78 #define WORD_MNEM_SUFFIX 'w'
79 #define BYTE_MNEM_SUFFIX 'b'
80 #define SHORT_MNEM_SUFFIX 's'
81 #define LONG_MNEM_SUFFIX 'l'
82 #define QWORD_MNEM_SUFFIX 'q'
83 #define XMMWORD_MNEM_SUFFIX 'x'
84 #define YMMWORD_MNEM_SUFFIX 'y'
85 /* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
89 #define END_OF_INSN '\0'
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
98 typedef struct
100 const template *start;
101 const template *end;
103 templates;
105 /* 386 operand encoding bytes: see 386 book for details of this. */
106 typedef struct
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
112 modrm_byte;
114 /* x86-64 extension prefix. */
115 typedef int rex_byte;
117 /* 386 opcode byte to code indirect addressing. */
118 typedef struct
120 unsigned base;
121 unsigned index;
122 unsigned scale;
124 sib_byte;
126 /* x86 arch names, types and features */
127 typedef struct
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
133 arch_entry;
135 static void set_code_flag (int);
136 static void set_16bit_gcc_code_flag (int);
137 static void set_intel_syntax (int);
138 static void set_intel_mnemonic (int);
139 static void set_allow_index_reg (int);
140 static void set_sse_check (int);
141 static void set_cpu_arch (int);
142 #ifdef TE_PE
143 static void pe_directive_secrel (int);
144 #endif
145 static void signed_cons (int);
146 static char *output_invalid (int c);
147 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
151 static int i386_att_operand (char *);
152 static int i386_intel_operand (char *, int);
153 static int i386_intel_simplify (expressionS *);
154 static int i386_intel_parse_name (const char *, expressionS *);
155 static const reg_entry *parse_register (char *, char **);
156 static char *parse_insn (char *, char *);
157 static char *parse_operands (char *, const char *);
158 static void swap_operands (void);
159 static void swap_2_operands (int, int);
160 static void optimize_imm (void);
161 static void optimize_disp (void);
162 static const template *match_template (void);
163 static int check_string (void);
164 static int process_suffix (void);
165 static int check_byte_reg (void);
166 static int check_long_reg (void);
167 static int check_qword_reg (void);
168 static int check_word_reg (void);
169 static int finalize_imm (void);
170 static int process_operands (void);
171 static const seg_entry *build_modrm_byte (void);
172 static void output_insn (void);
173 static void output_imm (fragS *, offsetT);
174 static void output_disp (fragS *, offsetT);
175 #ifndef I386COFF
176 static void s_bss (int);
177 #endif
178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179 static void handle_large_common (int small ATTRIBUTE_UNUSED);
180 #endif
182 static const char *default_arch = DEFAULT_ARCH;
184 /* VEX prefix. */
185 typedef struct
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192 } vex_prefix;
194 /* 'md_assemble ()' gathers together information and puts it into a
195 i386_insn. */
197 union i386_op
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
204 struct _i386_insn
206 /* TM holds the template for the insn were currently assembling. */
207 template tm;
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
211 char suffix;
213 /* OPERANDS gives the number of given operands. */
214 unsigned int operands;
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
218 operands. */
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
221 /* TYPES [i] is the type (see above #defines) which tells us how to
222 use OP[i] for the corresponding operand. */
223 i386_operand_type types[MAX_OPERANDS];
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231 #define Operand_PCrel 1
233 /* Relocation type for operand */
234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
242 /* SEG gives the seg_entries of this insn. They are zero unless
243 explicit segment overrides are given. */
244 const seg_entry *seg[2];
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
251 /* RM and SIB are the modrm byte and the sib byte where the
252 addressing modes of this insn are encoded. */
253 modrm_byte rm;
254 rex_byte rex;
255 sib_byte sib;
256 vex_prefix vex;
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
262 typedef struct _i386_insn i386_insn;
264 /* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
266 const char extra_symbol_chars[] = "*%-(["
267 #ifdef LEX_AT
269 #endif
270 #ifdef LEX_QM
272 #endif
275 #if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
277 && !defined (TE_GNU) \
278 && !defined (TE_LINUX) \
279 && !defined (TE_NETWARE) \
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
282 /* This array holds the chars that always start a comment. If the
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285 const char *i386_comment_chars = "#/";
286 #define SVR4_COMMENT_CHARS 1
287 #define PREFIX_SEPARATOR '\\'
289 #else
290 const char *i386_comment_chars = "#";
291 #define PREFIX_SEPARATOR '/'
292 #endif
294 /* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
298 first line of the input file. This is because the compiler outputs
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
301 '/' isn't otherwise defined. */
302 const char line_comment_chars[] = "#/";
304 const char line_separator_chars[] = ";";
306 /* Chars that can be used to separate mant from exp in floating point
307 nums. */
308 const char EXP_CHARS[] = "eE";
310 /* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
313 const char FLT_CHARS[] = "fFdDxX";
315 /* Tables for lexical analysis. */
316 static char mnemonic_chars[256];
317 static char register_chars[256];
318 static char operand_chars[256];
319 static char identifier_chars[256];
320 static char digit_chars[256];
322 /* Lexical macros. */
323 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324 #define is_operand_char(x) (operand_chars[(unsigned char) x])
325 #define is_register_char(x) (register_chars[(unsigned char) x])
326 #define is_space_char(x) ((x) == ' ')
327 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328 #define is_digit_char(x) (digit_chars[(unsigned char) x])
330 /* All non-digit non-letter characters that may occur in an operand. */
331 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
333 /* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
336 assembler instruction). */
337 static char save_stack[32];
338 static char *save_stack_p;
339 #define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341 #define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
344 /* The instruction we're assembling. */
345 static i386_insn i;
347 /* Possible templates for current insn. */
348 static const templates *current_templates;
350 /* Per instruction expressionS buffers: max displacements & immediates. */
351 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
354 /* Current operand we are working on. */
355 static int this_operand = -1;
357 /* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
360 enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
365 static enum flag_code flag_code;
366 static unsigned int object_64bit;
367 static int use_rela_relocations = 0;
369 /* The names used to print error messages. */
370 static const char *flag_code_names[] =
372 "32",
373 "16",
374 "64"
377 /* 1 for intel syntax,
378 0 if att syntax. */
379 static int intel_syntax = 0;
381 /* 1 for intel mnemonic,
382 0 if att mnemonic. */
383 static int intel_mnemonic = !SYSV386_COMPAT;
385 /* 1 if support old (<= 2.8.1) versions of gcc. */
386 static int old_gcc = OLDGCC_COMPAT;
388 /* 1 if pseudo registers are permitted. */
389 static int allow_pseudo_reg = 0;
391 /* 1 if register prefix % not required. */
392 static int allow_naked_reg = 0;
394 /* 1 if pseudo index register, eiz/riz, is allowed . */
395 static int allow_index_reg = 0;
397 static enum
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
403 sse_check;
405 /* Register prefix used for error message. */
406 static const char *register_prefix = "%";
408 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411 static char stackop_size = '\0';
413 /* Non-zero to optimize code alignment. */
414 int optimize_align_code = 1;
416 /* Non-zero to quieten some warnings. */
417 static int quiet_warnings = 0;
419 /* CPU name. */
420 static const char *cpu_arch_name = NULL;
421 static char *cpu_sub_arch_name = NULL;
423 /* CPU feature flags. */
424 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
426 /* If we have selected a cpu we are generating instructions for. */
427 static int cpu_arch_tune_set = 0;
429 /* Cpu we are generating instructions for. */
430 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
432 /* CPU feature flags of cpu we are generating instructions for. */
433 static i386_cpu_flags cpu_arch_tune_flags;
435 /* CPU instruction set architecture used. */
436 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
438 /* CPU feature flags of instruction set architecture used. */
439 i386_cpu_flags cpu_arch_isa_flags;
441 /* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443 static unsigned int no_cond_jump_promotion = 0;
445 /* Encode SSE instructions with VEX prefix. */
446 static unsigned int sse2avx;
448 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
449 static symbolS *GOT_symbol;
451 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
452 unsigned int x86_dwarf2_return_column;
454 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455 int x86_cie_data_alignment;
457 /* Interface to relax_segment.
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
462 /* Types. */
463 #define UNCOND_JUMP 0
464 #define COND_JUMP 1
465 #define COND_JUMP86 2
467 /* Sizes. */
468 #define CODE16 1
469 #define SMALL 0
470 #define SMALL16 (SMALL | CODE16)
471 #define BIG 2
472 #define BIG16 (BIG | CODE16)
474 #ifndef INLINE
475 #ifdef __GNUC__
476 #define INLINE __inline__
477 #else
478 #define INLINE
479 #endif
480 #endif
482 #define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484 #define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486 #define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
489 /* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
497 const relax_typeS md_relax_table[] =
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
502 3) how many bytes this mode will have in the variable part of the frag
503 4) which index into the table to try if we can't fit into this one. */
505 /* UNCOND_JUMP states. */
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
510 {0, 0, 4, 0},
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
513 {0, 0, 2, 0},
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
521 /* word conditionals add 3 bytes to frag:
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
536 static const arch_entry cpu_arch[] =
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
580 { "k6", PROCESSOR_K6,
581 CPU_K6_FLAGS },
582 { "k6_2", PROCESSOR_K6,
583 CPU_K6_2_FLAGS },
584 { "athlon", PROCESSOR_ATHLON,
585 CPU_ATHLON_FLAGS },
586 { "sledgehammer", PROCESSOR_K8,
587 CPU_K8_FLAGS },
588 { "opteron", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "k8", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "amdfam10", PROCESSOR_AMDFAM10,
593 CPU_AMDFAM10_FLAGS },
594 { ".mmx", PROCESSOR_UNKNOWN,
595 CPU_MMX_FLAGS },
596 { ".sse", PROCESSOR_UNKNOWN,
597 CPU_SSE_FLAGS },
598 { ".sse2", PROCESSOR_UNKNOWN,
599 CPU_SSE2_FLAGS },
600 { ".sse3", PROCESSOR_UNKNOWN,
601 CPU_SSE3_FLAGS },
602 { ".ssse3", PROCESSOR_UNKNOWN,
603 CPU_SSSE3_FLAGS },
604 { ".sse4.1", PROCESSOR_UNKNOWN,
605 CPU_SSE4_1_FLAGS },
606 { ".sse4.2", PROCESSOR_UNKNOWN,
607 CPU_SSE4_2_FLAGS },
608 { ".sse4", PROCESSOR_UNKNOWN,
609 CPU_SSE4_2_FLAGS },
610 { ".avx", PROCESSOR_UNKNOWN,
611 CPU_AVX_FLAGS },
612 { ".vmx", PROCESSOR_UNKNOWN,
613 CPU_VMX_FLAGS },
614 { ".smx", PROCESSOR_UNKNOWN,
615 CPU_SMX_FLAGS },
616 { ".xsave", PROCESSOR_UNKNOWN,
617 CPU_XSAVE_FLAGS },
618 { ".aes", PROCESSOR_UNKNOWN,
619 CPU_AES_FLAGS },
620 { ".pclmul", PROCESSOR_UNKNOWN,
621 CPU_PCLMUL_FLAGS },
622 { ".clmul", PROCESSOR_UNKNOWN,
623 CPU_PCLMUL_FLAGS },
624 { ".fma", PROCESSOR_UNKNOWN,
625 CPU_FMA_FLAGS },
626 { ".fma4", PROCESSOR_UNKNOWN,
627 CPU_FMA4_FLAGS },
628 { ".movbe", PROCESSOR_UNKNOWN,
629 CPU_MOVBE_FLAGS },
630 { ".ept", PROCESSOR_UNKNOWN,
631 CPU_EPT_FLAGS },
632 { ".clflush", PROCESSOR_UNKNOWN,
633 CPU_CLFLUSH_FLAGS },
634 { ".syscall", PROCESSOR_UNKNOWN,
635 CPU_SYSCALL_FLAGS },
636 { ".rdtscp", PROCESSOR_UNKNOWN,
637 CPU_RDTSCP_FLAGS },
638 { ".3dnow", PROCESSOR_UNKNOWN,
639 CPU_3DNOW_FLAGS },
640 { ".3dnowa", PROCESSOR_UNKNOWN,
641 CPU_3DNOWA_FLAGS },
642 { ".padlock", PROCESSOR_UNKNOWN,
643 CPU_PADLOCK_FLAGS },
644 { ".pacifica", PROCESSOR_UNKNOWN,
645 CPU_SVME_FLAGS },
646 { ".svme", PROCESSOR_UNKNOWN,
647 CPU_SVME_FLAGS },
648 { ".sse4a", PROCESSOR_UNKNOWN,
649 CPU_SSE4A_FLAGS },
650 { ".abm", PROCESSOR_UNKNOWN,
651 CPU_ABM_FLAGS },
654 #ifdef I386COFF
655 /* Like s_lcomm_internal in gas/read.c but the alignment string
656 is allowed to be optional. */
658 static symbolS *
659 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
661 addressT align = 0;
663 SKIP_WHITESPACE ();
665 if (needs_align
666 && *input_line_pointer == ',')
668 align = parse_align (needs_align - 1);
670 if (align == (addressT) -1)
671 return NULL;
673 else
675 if (size >= 8)
676 align = 3;
677 else if (size >= 4)
678 align = 2;
679 else if (size >= 2)
680 align = 1;
681 else
682 align = 0;
685 bss_alloc (symbolP, size, align);
686 return symbolP;
689 static void
690 pe_lcomm (int needs_align)
692 s_comm_internal (needs_align * 2, pe_lcomm_internal);
694 #endif
696 const pseudo_typeS md_pseudo_table[] =
698 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
699 {"align", s_align_bytes, 0},
700 #else
701 {"align", s_align_ptwo, 0},
702 #endif
703 {"arch", set_cpu_arch, 0},
704 #ifndef I386COFF
705 {"bss", s_bss, 0},
706 #else
707 {"lcomm", pe_lcomm, 1},
708 #endif
709 {"ffloat", float_cons, 'f'},
710 {"dfloat", float_cons, 'd'},
711 {"tfloat", float_cons, 'x'},
712 {"value", cons, 2},
713 {"slong", signed_cons, 4},
714 {"noopt", s_ignore, 0},
715 {"optim", s_ignore, 0},
716 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
717 {"code16", set_code_flag, CODE_16BIT},
718 {"code32", set_code_flag, CODE_32BIT},
719 {"code64", set_code_flag, CODE_64BIT},
720 {"intel_syntax", set_intel_syntax, 1},
721 {"att_syntax", set_intel_syntax, 0},
722 {"intel_mnemonic", set_intel_mnemonic, 1},
723 {"att_mnemonic", set_intel_mnemonic, 0},
724 {"allow_index_reg", set_allow_index_reg, 1},
725 {"disallow_index_reg", set_allow_index_reg, 0},
726 {"sse_check", set_sse_check, 0},
727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
728 {"largecomm", handle_large_common, 0},
729 #else
730 {"file", (void (*) (int)) dwarf2_directive_file, 0},
731 {"loc", dwarf2_directive_loc, 0},
732 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
733 #endif
734 #ifdef TE_PE
735 {"secrel32", pe_directive_secrel, 0},
736 #endif
737 {0, 0, 0}
740 /* For interface with expression (). */
741 extern char *input_line_pointer;
743 /* Hash table for instruction mnemonic lookup. */
744 static struct hash_control *op_hash;
746 /* Hash table for register lookup. */
747 static struct hash_control *reg_hash;
749 void
750 i386_align_code (fragS *fragP, int count)
752 /* Various efficient no-op patterns for aligning code labels.
753 Note: Don't try to assemble the instructions in the comments.
754 0L and 0w are not legal. */
755 static const char f32_1[] =
756 {0x90}; /* nop */
757 static const char f32_2[] =
758 {0x66,0x90}; /* xchg %ax,%ax */
759 static const char f32_3[] =
760 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
761 static const char f32_4[] =
762 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
763 static const char f32_5[] =
764 {0x90, /* nop */
765 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
766 static const char f32_6[] =
767 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
768 static const char f32_7[] =
769 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
770 static const char f32_8[] =
771 {0x90, /* nop */
772 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
773 static const char f32_9[] =
774 {0x89,0xf6, /* movl %esi,%esi */
775 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
776 static const char f32_10[] =
777 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
778 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
779 static const char f32_11[] =
780 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
781 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
782 static const char f32_12[] =
783 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
784 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
785 static const char f32_13[] =
786 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
787 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
788 static const char f32_14[] =
789 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
790 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
791 static const char f16_3[] =
792 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
793 static const char f16_4[] =
794 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
795 static const char f16_5[] =
796 {0x90, /* nop */
797 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
798 static const char f16_6[] =
799 {0x89,0xf6, /* mov %si,%si */
800 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
801 static const char f16_7[] =
802 {0x8d,0x74,0x00, /* lea 0(%si),%si */
803 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
804 static const char f16_8[] =
805 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
806 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
807 static const char jump_31[] =
808 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
809 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
810 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
811 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
812 static const char *const f32_patt[] = {
813 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
814 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
816 static const char *const f16_patt[] = {
817 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
819 /* nopl (%[re]ax) */
820 static const char alt_3[] =
821 {0x0f,0x1f,0x00};
822 /* nopl 0(%[re]ax) */
823 static const char alt_4[] =
824 {0x0f,0x1f,0x40,0x00};
825 /* nopl 0(%[re]ax,%[re]ax,1) */
826 static const char alt_5[] =
827 {0x0f,0x1f,0x44,0x00,0x00};
828 /* nopw 0(%[re]ax,%[re]ax,1) */
829 static const char alt_6[] =
830 {0x66,0x0f,0x1f,0x44,0x00,0x00};
831 /* nopl 0L(%[re]ax) */
832 static const char alt_7[] =
833 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
834 /* nopl 0L(%[re]ax,%[re]ax,1) */
835 static const char alt_8[] =
836 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
837 /* nopw 0L(%[re]ax,%[re]ax,1) */
838 static const char alt_9[] =
839 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
840 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
841 static const char alt_10[] =
842 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
843 /* data16
844 nopw %cs:0L(%[re]ax,%[re]ax,1) */
845 static const char alt_long_11[] =
846 {0x66,
847 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
848 /* data16
849 data16
850 nopw %cs:0L(%[re]ax,%[re]ax,1) */
851 static const char alt_long_12[] =
852 {0x66,
853 0x66,
854 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
855 /* data16
856 data16
857 data16
858 nopw %cs:0L(%[re]ax,%[re]ax,1) */
859 static const char alt_long_13[] =
860 {0x66,
861 0x66,
862 0x66,
863 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
864 /* data16
865 data16
866 data16
867 data16
868 nopw %cs:0L(%[re]ax,%[re]ax,1) */
869 static const char alt_long_14[] =
870 {0x66,
871 0x66,
872 0x66,
873 0x66,
874 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
875 /* data16
876 data16
877 data16
878 data16
879 data16
880 nopw %cs:0L(%[re]ax,%[re]ax,1) */
881 static const char alt_long_15[] =
882 {0x66,
883 0x66,
884 0x66,
885 0x66,
886 0x66,
887 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
888 /* nopl 0(%[re]ax,%[re]ax,1)
889 nopw 0(%[re]ax,%[re]ax,1) */
890 static const char alt_short_11[] =
891 {0x0f,0x1f,0x44,0x00,0x00,
892 0x66,0x0f,0x1f,0x44,0x00,0x00};
893 /* nopw 0(%[re]ax,%[re]ax,1)
894 nopw 0(%[re]ax,%[re]ax,1) */
895 static const char alt_short_12[] =
896 {0x66,0x0f,0x1f,0x44,0x00,0x00,
897 0x66,0x0f,0x1f,0x44,0x00,0x00};
898 /* nopw 0(%[re]ax,%[re]ax,1)
899 nopl 0L(%[re]ax) */
900 static const char alt_short_13[] =
901 {0x66,0x0f,0x1f,0x44,0x00,0x00,
902 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
903 /* nopl 0L(%[re]ax)
904 nopl 0L(%[re]ax) */
905 static const char alt_short_14[] =
906 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
907 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
908 /* nopl 0L(%[re]ax)
909 nopl 0L(%[re]ax,%[re]ax,1) */
910 static const char alt_short_15[] =
911 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
912 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
913 static const char *const alt_short_patt[] = {
914 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
915 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
916 alt_short_14, alt_short_15
918 static const char *const alt_long_patt[] = {
919 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
920 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
921 alt_long_14, alt_long_15
924 /* Only align for at least a positive non-zero boundary. */
925 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
926 return;
928 /* We need to decide which NOP sequence to use for 32bit and
929 64bit. When -mtune= is used:
931 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
932 PROCESSOR_GENERIC32, f32_patt will be used.
933 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
934 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
935 PROCESSOR_GENERIC64, alt_long_patt will be used.
936 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
937 PROCESSOR_AMDFAM10, alt_short_patt will be used.
939 When -mtune= isn't used, alt_long_patt will be used if
940 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
941 be used.
943 When -march= or .arch is used, we can't use anything beyond
944 cpu_arch_isa_flags. */
946 if (flag_code == CODE_16BIT)
948 if (count > 8)
950 memcpy (fragP->fr_literal + fragP->fr_fix,
951 jump_31, count);
952 /* Adjust jump offset. */
953 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
955 else
956 memcpy (fragP->fr_literal + fragP->fr_fix,
957 f16_patt[count - 1], count);
959 else
961 const char *const *patt = NULL;
963 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
965 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
966 switch (cpu_arch_tune)
968 case PROCESSOR_UNKNOWN:
969 /* We use cpu_arch_isa_flags to check if we SHOULD
970 optimize for Cpu686. */
971 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
972 patt = alt_long_patt;
973 else
974 patt = f32_patt;
975 break;
976 case PROCESSOR_PENTIUMPRO:
977 case PROCESSOR_PENTIUM4:
978 case PROCESSOR_NOCONA:
979 case PROCESSOR_CORE:
980 case PROCESSOR_CORE2:
981 case PROCESSOR_COREI7:
982 case PROCESSOR_GENERIC64:
983 patt = alt_long_patt;
984 break;
985 case PROCESSOR_K6:
986 case PROCESSOR_ATHLON:
987 case PROCESSOR_K8:
988 case PROCESSOR_AMDFAM10:
989 patt = alt_short_patt;
990 break;
991 case PROCESSOR_I386:
992 case PROCESSOR_I486:
993 case PROCESSOR_PENTIUM:
994 case PROCESSOR_GENERIC32:
995 patt = f32_patt;
996 break;
999 else
1001 switch (fragP->tc_frag_data.tune)
1003 case PROCESSOR_UNKNOWN:
1004 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1005 PROCESSOR_UNKNOWN. */
1006 abort ();
1007 break;
1009 case PROCESSOR_I386:
1010 case PROCESSOR_I486:
1011 case PROCESSOR_PENTIUM:
1012 case PROCESSOR_K6:
1013 case PROCESSOR_ATHLON:
1014 case PROCESSOR_K8:
1015 case PROCESSOR_AMDFAM10:
1016 case PROCESSOR_GENERIC32:
1017 /* We use cpu_arch_isa_flags to check if we CAN optimize
1018 for Cpu686. */
1019 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1020 patt = alt_short_patt;
1021 else
1022 patt = f32_patt;
1023 break;
1024 case PROCESSOR_PENTIUMPRO:
1025 case PROCESSOR_PENTIUM4:
1026 case PROCESSOR_NOCONA:
1027 case PROCESSOR_CORE:
1028 case PROCESSOR_CORE2:
1029 case PROCESSOR_COREI7:
1030 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1031 patt = alt_long_patt;
1032 else
1033 patt = f32_patt;
1034 break;
1035 case PROCESSOR_GENERIC64:
1036 patt = alt_long_patt;
1037 break;
1041 if (patt == f32_patt)
1043 /* If the padding is less than 15 bytes, we use the normal
1044 ones. Otherwise, we use a jump instruction and adjust
1045 its offset. */
1046 if (count < 15)
1047 memcpy (fragP->fr_literal + fragP->fr_fix,
1048 patt[count - 1], count);
1049 else
1051 memcpy (fragP->fr_literal + fragP->fr_fix,
1052 jump_31, count);
1053 /* Adjust jump offset. */
1054 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1057 else
1059 /* Maximum length of an instruction is 15 byte. If the
1060 padding is greater than 15 bytes and we don't use jump,
1061 we have to break it into smaller pieces. */
1062 int padding = count;
1063 while (padding > 15)
1065 padding -= 15;
1066 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1067 patt [14], 15);
1070 if (padding)
1071 memcpy (fragP->fr_literal + fragP->fr_fix,
1072 patt [padding - 1], padding);
1075 fragP->fr_var = count;
1078 static INLINE int
1079 operand_type_all_zero (const union i386_operand_type *x)
1081 switch (ARRAY_SIZE(x->array))
1083 case 3:
1084 if (x->array[2])
1085 return 0;
1086 case 2:
1087 if (x->array[1])
1088 return 0;
1089 case 1:
1090 return !x->array[0];
1091 default:
1092 abort ();
1096 static INLINE void
1097 operand_type_set (union i386_operand_type *x, unsigned int v)
1099 switch (ARRAY_SIZE(x->array))
1101 case 3:
1102 x->array[2] = v;
1103 case 2:
1104 x->array[1] = v;
1105 case 1:
1106 x->array[0] = v;
1107 break;
1108 default:
1109 abort ();
1113 static INLINE int
1114 operand_type_equal (const union i386_operand_type *x,
1115 const union i386_operand_type *y)
1117 switch (ARRAY_SIZE(x->array))
1119 case 3:
1120 if (x->array[2] != y->array[2])
1121 return 0;
1122 case 2:
1123 if (x->array[1] != y->array[1])
1124 return 0;
1125 case 1:
1126 return x->array[0] == y->array[0];
1127 break;
1128 default:
1129 abort ();
1133 static INLINE int
1134 cpu_flags_all_zero (const union i386_cpu_flags *x)
1136 switch (ARRAY_SIZE(x->array))
1138 case 3:
1139 if (x->array[2])
1140 return 0;
1141 case 2:
1142 if (x->array[1])
1143 return 0;
1144 case 1:
1145 return !x->array[0];
1146 default:
1147 abort ();
1151 static INLINE void
1152 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1154 switch (ARRAY_SIZE(x->array))
1156 case 3:
1157 x->array[2] = v;
1158 case 2:
1159 x->array[1] = v;
1160 case 1:
1161 x->array[0] = v;
1162 break;
1163 default:
1164 abort ();
1168 static INLINE int
1169 cpu_flags_equal (const union i386_cpu_flags *x,
1170 const union i386_cpu_flags *y)
1172 switch (ARRAY_SIZE(x->array))
1174 case 3:
1175 if (x->array[2] != y->array[2])
1176 return 0;
1177 case 2:
1178 if (x->array[1] != y->array[1])
1179 return 0;
1180 case 1:
1181 return x->array[0] == y->array[0];
1182 break;
1183 default:
1184 abort ();
1188 static INLINE int
1189 cpu_flags_check_cpu64 (i386_cpu_flags f)
1191 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1192 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1195 static INLINE i386_cpu_flags
1196 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1198 switch (ARRAY_SIZE (x.array))
1200 case 3:
1201 x.array [2] &= y.array [2];
1202 case 2:
1203 x.array [1] &= y.array [1];
1204 case 1:
1205 x.array [0] &= y.array [0];
1206 break;
1207 default:
1208 abort ();
1210 return x;
1213 static INLINE i386_cpu_flags
1214 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1216 switch (ARRAY_SIZE (x.array))
1218 case 3:
1219 x.array [2] |= y.array [2];
1220 case 2:
1221 x.array [1] |= y.array [1];
1222 case 1:
1223 x.array [0] |= y.array [0];
1224 break;
1225 default:
1226 abort ();
1228 return x;
1231 #define CPU_FLAGS_ARCH_MATCH 0x1
1232 #define CPU_FLAGS_64BIT_MATCH 0x2
1233 #define CPU_FLAGS_AES_MATCH 0x4
1234 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1235 #define CPU_FLAGS_AVX_MATCH 0x10
1237 #define CPU_FLAGS_32BIT_MATCH \
1238 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1239 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1240 #define CPU_FLAGS_PERFECT_MATCH \
1241 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1243 /* Return CPU flags match bits. */
1245 static int
1246 cpu_flags_match (const template *t)
1248 i386_cpu_flags x = t->cpu_flags;
1249 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1251 x.bitfield.cpu64 = 0;
1252 x.bitfield.cpuno64 = 0;
1254 if (cpu_flags_all_zero (&x))
1256 /* This instruction is available on all archs. */
1257 match |= CPU_FLAGS_32BIT_MATCH;
1259 else
1261 /* This instruction is available only on some archs. */
1262 i386_cpu_flags cpu = cpu_arch_flags;
1264 cpu.bitfield.cpu64 = 0;
1265 cpu.bitfield.cpuno64 = 0;
1266 cpu = cpu_flags_and (x, cpu);
1267 if (!cpu_flags_all_zero (&cpu))
1269 if (x.bitfield.cpuavx)
1271 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1272 if (cpu.bitfield.cpuavx)
1274 /* Check SSE2AVX. */
1275 if (!t->opcode_modifier.sse2avx|| sse2avx)
1277 match |= (CPU_FLAGS_ARCH_MATCH
1278 | CPU_FLAGS_AVX_MATCH);
1279 /* Check AES. */
1280 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1281 match |= CPU_FLAGS_AES_MATCH;
1282 /* Check PCLMUL. */
1283 if (!x.bitfield.cpupclmul
1284 || cpu.bitfield.cpupclmul)
1285 match |= CPU_FLAGS_PCLMUL_MATCH;
1288 else
1289 match |= CPU_FLAGS_ARCH_MATCH;
1291 else
1292 match |= CPU_FLAGS_32BIT_MATCH;
1295 return match;
1298 static INLINE i386_operand_type
1299 operand_type_and (i386_operand_type x, i386_operand_type y)
1301 switch (ARRAY_SIZE (x.array))
1303 case 3:
1304 x.array [2] &= y.array [2];
1305 case 2:
1306 x.array [1] &= y.array [1];
1307 case 1:
1308 x.array [0] &= y.array [0];
1309 break;
1310 default:
1311 abort ();
1313 return x;
1316 static INLINE i386_operand_type
1317 operand_type_or (i386_operand_type x, i386_operand_type y)
1319 switch (ARRAY_SIZE (x.array))
1321 case 3:
1322 x.array [2] |= y.array [2];
1323 case 2:
1324 x.array [1] |= y.array [1];
1325 case 1:
1326 x.array [0] |= y.array [0];
1327 break;
1328 default:
1329 abort ();
1331 return x;
1334 static INLINE i386_operand_type
1335 operand_type_xor (i386_operand_type x, i386_operand_type y)
1337 switch (ARRAY_SIZE (x.array))
1339 case 3:
1340 x.array [2] ^= y.array [2];
1341 case 2:
1342 x.array [1] ^= y.array [1];
1343 case 1:
1344 x.array [0] ^= y.array [0];
1345 break;
1346 default:
1347 abort ();
1349 return x;
1352 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1353 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1354 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1355 static const i386_operand_type inoutportreg
1356 = OPERAND_TYPE_INOUTPORTREG;
1357 static const i386_operand_type reg16_inoutportreg
1358 = OPERAND_TYPE_REG16_INOUTPORTREG;
1359 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1360 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1361 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1362 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1363 static const i386_operand_type anydisp
1364 = OPERAND_TYPE_ANYDISP;
1365 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1366 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1367 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1368 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1369 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1370 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1371 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1372 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1373 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1374 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1375 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1377 enum operand_type
1379 reg,
1380 imm,
1381 disp,
1382 anymem
1385 static INLINE int
1386 operand_type_check (i386_operand_type t, enum operand_type c)
1388 switch (c)
1390 case reg:
1391 return (t.bitfield.reg8
1392 || t.bitfield.reg16
1393 || t.bitfield.reg32
1394 || t.bitfield.reg64);
1396 case imm:
1397 return (t.bitfield.imm8
1398 || t.bitfield.imm8s
1399 || t.bitfield.imm16
1400 || t.bitfield.imm32
1401 || t.bitfield.imm32s
1402 || t.bitfield.imm64);
1404 case disp:
1405 return (t.bitfield.disp8
1406 || t.bitfield.disp16
1407 || t.bitfield.disp32
1408 || t.bitfield.disp32s
1409 || t.bitfield.disp64);
1411 case anymem:
1412 return (t.bitfield.disp8
1413 || t.bitfield.disp16
1414 || t.bitfield.disp32
1415 || t.bitfield.disp32s
1416 || t.bitfield.disp64
1417 || t.bitfield.baseindex);
1419 default:
1420 abort ();
1423 return 0;
1426 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1427 operand J for instruction template T. */
1429 static INLINE int
1430 match_reg_size (const template *t, unsigned int j)
1432 return !((i.types[j].bitfield.byte
1433 && !t->operand_types[j].bitfield.byte)
1434 || (i.types[j].bitfield.word
1435 && !t->operand_types[j].bitfield.word)
1436 || (i.types[j].bitfield.dword
1437 && !t->operand_types[j].bitfield.dword)
1438 || (i.types[j].bitfield.qword
1439 && !t->operand_types[j].bitfield.qword));
1442 /* Return 1 if there is no conflict in any size on operand J for
1443 instruction template T. */
1445 static INLINE int
1446 match_mem_size (const template *t, unsigned int j)
1448 return (match_reg_size (t, j)
1449 && !((i.types[j].bitfield.unspecified
1450 && !t->operand_types[j].bitfield.unspecified)
1451 || (i.types[j].bitfield.fword
1452 && !t->operand_types[j].bitfield.fword)
1453 || (i.types[j].bitfield.tbyte
1454 && !t->operand_types[j].bitfield.tbyte)
1455 || (i.types[j].bitfield.xmmword
1456 && !t->operand_types[j].bitfield.xmmword)
1457 || (i.types[j].bitfield.ymmword
1458 && !t->operand_types[j].bitfield.ymmword)));
1461 /* Return 1 if there is no size conflict on any operands for
1462 instruction template T. */
1464 static INLINE int
1465 operand_size_match (const template *t)
1467 unsigned int j;
1468 int match = 1;
1470 /* Don't check jump instructions. */
1471 if (t->opcode_modifier.jump
1472 || t->opcode_modifier.jumpbyte
1473 || t->opcode_modifier.jumpdword
1474 || t->opcode_modifier.jumpintersegment)
1475 return match;
1477 /* Check memory and accumulator operand size. */
1478 for (j = 0; j < i.operands; j++)
1480 if (t->operand_types[j].bitfield.anysize)
1481 continue;
1483 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1485 match = 0;
1486 break;
1489 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1491 match = 0;
1492 break;
1496 if (match
1497 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1498 return match;
1500 /* Check reverse. */
1501 gas_assert (i.operands == 2);
1503 match = 1;
1504 for (j = 0; j < 2; j++)
1506 if (t->operand_types[j].bitfield.acc
1507 && !match_reg_size (t, j ? 0 : 1))
1509 match = 0;
1510 break;
1513 if (i.types[j].bitfield.mem
1514 && !match_mem_size (t, j ? 0 : 1))
1516 match = 0;
1517 break;
1521 return match;
1524 static INLINE int
1525 operand_type_match (i386_operand_type overlap,
1526 i386_operand_type given)
1528 i386_operand_type temp = overlap;
1530 temp.bitfield.jumpabsolute = 0;
1531 temp.bitfield.unspecified = 0;
1532 temp.bitfield.byte = 0;
1533 temp.bitfield.word = 0;
1534 temp.bitfield.dword = 0;
1535 temp.bitfield.fword = 0;
1536 temp.bitfield.qword = 0;
1537 temp.bitfield.tbyte = 0;
1538 temp.bitfield.xmmword = 0;
1539 temp.bitfield.ymmword = 0;
1540 if (operand_type_all_zero (&temp))
1541 return 0;
1543 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1544 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1547 /* If given types g0 and g1 are registers they must be of the same type
1548 unless the expected operand type register overlap is null.
1549 Note that Acc in a template matches every size of reg. */
1551 static INLINE int
1552 operand_type_register_match (i386_operand_type m0,
1553 i386_operand_type g0,
1554 i386_operand_type t0,
1555 i386_operand_type m1,
1556 i386_operand_type g1,
1557 i386_operand_type t1)
1559 if (!operand_type_check (g0, reg))
1560 return 1;
1562 if (!operand_type_check (g1, reg))
1563 return 1;
1565 if (g0.bitfield.reg8 == g1.bitfield.reg8
1566 && g0.bitfield.reg16 == g1.bitfield.reg16
1567 && g0.bitfield.reg32 == g1.bitfield.reg32
1568 && g0.bitfield.reg64 == g1.bitfield.reg64)
1569 return 1;
1571 if (m0.bitfield.acc)
1573 t0.bitfield.reg8 = 1;
1574 t0.bitfield.reg16 = 1;
1575 t0.bitfield.reg32 = 1;
1576 t0.bitfield.reg64 = 1;
1579 if (m1.bitfield.acc)
1581 t1.bitfield.reg8 = 1;
1582 t1.bitfield.reg16 = 1;
1583 t1.bitfield.reg32 = 1;
1584 t1.bitfield.reg64 = 1;
1587 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1588 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1589 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1590 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1593 static INLINE unsigned int
1594 mode_from_disp_size (i386_operand_type t)
1596 if (t.bitfield.disp8)
1597 return 1;
1598 else if (t.bitfield.disp16
1599 || t.bitfield.disp32
1600 || t.bitfield.disp32s)
1601 return 2;
1602 else
1603 return 0;
1606 static INLINE int
1607 fits_in_signed_byte (offsetT num)
1609 return (num >= -128) && (num <= 127);
1612 static INLINE int
1613 fits_in_unsigned_byte (offsetT num)
1615 return (num & 0xff) == num;
1618 static INLINE int
1619 fits_in_unsigned_word (offsetT num)
1621 return (num & 0xffff) == num;
1624 static INLINE int
1625 fits_in_signed_word (offsetT num)
1627 return (-32768 <= num) && (num <= 32767);
1630 static INLINE int
1631 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1633 #ifndef BFD64
1634 return 1;
1635 #else
1636 return (!(((offsetT) -1 << 31) & num)
1637 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1638 #endif
1639 } /* fits_in_signed_long() */
1641 static INLINE int
1642 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1644 #ifndef BFD64
1645 return 1;
1646 #else
1647 return (num & (((offsetT) 2 << 31) - 1)) == num;
1648 #endif
1649 } /* fits_in_unsigned_long() */
1651 static i386_operand_type
1652 smallest_imm_type (offsetT num)
1654 i386_operand_type t;
1656 operand_type_set (&t, 0);
1657 t.bitfield.imm64 = 1;
1659 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1661 /* This code is disabled on the 486 because all the Imm1 forms
1662 in the opcode table are slower on the i486. They're the
1663 versions with the implicitly specified single-position
1664 displacement, which has another syntax if you really want to
1665 use that form. */
1666 t.bitfield.imm1 = 1;
1667 t.bitfield.imm8 = 1;
1668 t.bitfield.imm8s = 1;
1669 t.bitfield.imm16 = 1;
1670 t.bitfield.imm32 = 1;
1671 t.bitfield.imm32s = 1;
1673 else if (fits_in_signed_byte (num))
1675 t.bitfield.imm8 = 1;
1676 t.bitfield.imm8s = 1;
1677 t.bitfield.imm16 = 1;
1678 t.bitfield.imm32 = 1;
1679 t.bitfield.imm32s = 1;
1681 else if (fits_in_unsigned_byte (num))
1683 t.bitfield.imm8 = 1;
1684 t.bitfield.imm16 = 1;
1685 t.bitfield.imm32 = 1;
1686 t.bitfield.imm32s = 1;
1688 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1690 t.bitfield.imm16 = 1;
1691 t.bitfield.imm32 = 1;
1692 t.bitfield.imm32s = 1;
1694 else if (fits_in_signed_long (num))
1696 t.bitfield.imm32 = 1;
1697 t.bitfield.imm32s = 1;
1699 else if (fits_in_unsigned_long (num))
1700 t.bitfield.imm32 = 1;
1702 return t;
1705 static offsetT
1706 offset_in_range (offsetT val, int size)
1708 addressT mask;
1710 switch (size)
1712 case 1: mask = ((addressT) 1 << 8) - 1; break;
1713 case 2: mask = ((addressT) 1 << 16) - 1; break;
1714 case 4: mask = ((addressT) 2 << 31) - 1; break;
1715 #ifdef BFD64
1716 case 8: mask = ((addressT) 2 << 63) - 1; break;
1717 #endif
1718 default: abort ();
1721 /* If BFD64, sign extend val. */
1722 if (!use_rela_relocations)
1723 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1724 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1726 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1728 char buf1[40], buf2[40];
1730 sprint_value (buf1, val);
1731 sprint_value (buf2, val & mask);
1732 as_warn (_("%s shortened to %s"), buf1, buf2);
1734 return val & mask;
1737 /* Returns 0 if attempting to add a prefix where one from the same
1738 class already exists, 1 if non rep/repne added, 2 if rep/repne
1739 added. */
1740 static int
1741 add_prefix (unsigned int prefix)
1743 int ret = 1;
1744 unsigned int q;
1746 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1747 && flag_code == CODE_64BIT)
1749 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1750 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1751 && (prefix & (REX_R | REX_X | REX_B))))
1752 ret = 0;
1753 q = REX_PREFIX;
1755 else
1757 switch (prefix)
1759 default:
1760 abort ();
1762 case CS_PREFIX_OPCODE:
1763 case DS_PREFIX_OPCODE:
1764 case ES_PREFIX_OPCODE:
1765 case FS_PREFIX_OPCODE:
1766 case GS_PREFIX_OPCODE:
1767 case SS_PREFIX_OPCODE:
1768 q = SEG_PREFIX;
1769 break;
1771 case REPNE_PREFIX_OPCODE:
1772 case REPE_PREFIX_OPCODE:
1773 ret = 2;
1774 /* fall thru */
1775 case LOCK_PREFIX_OPCODE:
1776 q = LOCKREP_PREFIX;
1777 break;
1779 case FWAIT_OPCODE:
1780 q = WAIT_PREFIX;
1781 break;
1783 case ADDR_PREFIX_OPCODE:
1784 q = ADDR_PREFIX;
1785 break;
1787 case DATA_PREFIX_OPCODE:
1788 q = DATA_PREFIX;
1789 break;
1791 if (i.prefix[q] != 0)
1792 ret = 0;
1795 if (ret)
1797 if (!i.prefix[q])
1798 ++i.prefixes;
1799 i.prefix[q] |= prefix;
1801 else
1802 as_bad (_("same type of prefix used twice"));
1804 return ret;
1807 static void
1808 set_code_flag (int value)
1810 flag_code = value;
1811 if (flag_code == CODE_64BIT)
1813 cpu_arch_flags.bitfield.cpu64 = 1;
1814 cpu_arch_flags.bitfield.cpuno64 = 0;
1816 else
1818 cpu_arch_flags.bitfield.cpu64 = 0;
1819 cpu_arch_flags.bitfield.cpuno64 = 1;
1821 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1823 as_bad (_("64bit mode not supported on this CPU."));
1825 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1827 as_bad (_("32bit mode not supported on this CPU."));
1829 stackop_size = '\0';
1832 static void
1833 set_16bit_gcc_code_flag (int new_code_flag)
1835 flag_code = new_code_flag;
1836 if (flag_code != CODE_16BIT)
1837 abort ();
1838 cpu_arch_flags.bitfield.cpu64 = 0;
1839 cpu_arch_flags.bitfield.cpuno64 = 1;
1840 stackop_size = LONG_MNEM_SUFFIX;
1843 static void
1844 set_intel_syntax (int syntax_flag)
1846 /* Find out if register prefixing is specified. */
1847 int ask_naked_reg = 0;
1849 SKIP_WHITESPACE ();
1850 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1852 char *string = input_line_pointer;
1853 int e = get_symbol_end ();
1855 if (strcmp (string, "prefix") == 0)
1856 ask_naked_reg = 1;
1857 else if (strcmp (string, "noprefix") == 0)
1858 ask_naked_reg = -1;
1859 else
1860 as_bad (_("bad argument to syntax directive."));
1861 *input_line_pointer = e;
1863 demand_empty_rest_of_line ();
1865 intel_syntax = syntax_flag;
1867 if (ask_naked_reg == 0)
1868 allow_naked_reg = (intel_syntax
1869 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1870 else
1871 allow_naked_reg = (ask_naked_reg < 0);
1873 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1875 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1876 identifier_chars['$'] = intel_syntax ? '$' : 0;
1877 register_prefix = allow_naked_reg ? "" : "%";
1880 static void
1881 set_intel_mnemonic (int mnemonic_flag)
1883 intel_mnemonic = mnemonic_flag;
1886 static void
1887 set_allow_index_reg (int flag)
1889 allow_index_reg = flag;
1892 static void
1893 set_sse_check (int dummy ATTRIBUTE_UNUSED)
1895 SKIP_WHITESPACE ();
1897 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1899 char *string = input_line_pointer;
1900 int e = get_symbol_end ();
1902 if (strcmp (string, "none") == 0)
1903 sse_check = sse_check_none;
1904 else if (strcmp (string, "warning") == 0)
1905 sse_check = sse_check_warning;
1906 else if (strcmp (string, "error") == 0)
1907 sse_check = sse_check_error;
1908 else
1909 as_bad (_("bad argument to sse_check directive."));
1910 *input_line_pointer = e;
1912 else
1913 as_bad (_("missing argument for sse_check directive"));
1915 demand_empty_rest_of_line ();
1918 static void
1919 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1921 SKIP_WHITESPACE ();
1923 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1925 char *string = input_line_pointer;
1926 int e = get_symbol_end ();
1927 unsigned int i;
1928 i386_cpu_flags flags;
1930 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1932 if (strcmp (string, cpu_arch[i].name) == 0)
1934 if (*string != '.')
1936 cpu_arch_name = cpu_arch[i].name;
1937 cpu_sub_arch_name = NULL;
1938 cpu_arch_flags = cpu_arch[i].flags;
1939 if (flag_code == CODE_64BIT)
1941 cpu_arch_flags.bitfield.cpu64 = 1;
1942 cpu_arch_flags.bitfield.cpuno64 = 0;
1944 else
1946 cpu_arch_flags.bitfield.cpu64 = 0;
1947 cpu_arch_flags.bitfield.cpuno64 = 1;
1949 cpu_arch_isa = cpu_arch[i].type;
1950 cpu_arch_isa_flags = cpu_arch[i].flags;
1951 if (!cpu_arch_tune_set)
1953 cpu_arch_tune = cpu_arch_isa;
1954 cpu_arch_tune_flags = cpu_arch_isa_flags;
1956 break;
1959 flags = cpu_flags_or (cpu_arch_flags,
1960 cpu_arch[i].flags);
1961 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
1963 if (cpu_sub_arch_name)
1965 char *name = cpu_sub_arch_name;
1966 cpu_sub_arch_name = concat (name,
1967 cpu_arch[i].name,
1968 (const char *) NULL);
1969 free (name);
1971 else
1972 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
1973 cpu_arch_flags = flags;
1975 *input_line_pointer = e;
1976 demand_empty_rest_of_line ();
1977 return;
1980 if (i >= ARRAY_SIZE (cpu_arch))
1981 as_bad (_("no such architecture: `%s'"), string);
1983 *input_line_pointer = e;
1985 else
1986 as_bad (_("missing cpu architecture"));
1988 no_cond_jump_promotion = 0;
1989 if (*input_line_pointer == ','
1990 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1992 char *string = ++input_line_pointer;
1993 int e = get_symbol_end ();
1995 if (strcmp (string, "nojumps") == 0)
1996 no_cond_jump_promotion = 1;
1997 else if (strcmp (string, "jumps") == 0)
1999 else
2000 as_bad (_("no such architecture modifier: `%s'"), string);
2002 *input_line_pointer = e;
2005 demand_empty_rest_of_line ();
2008 unsigned long
2009 i386_mach ()
2011 if (!strcmp (default_arch, "x86_64"))
2012 return bfd_mach_x86_64;
2013 else if (!strcmp (default_arch, "i386"))
2014 return bfd_mach_i386_i386;
2015 else
2016 as_fatal (_("Unknown architecture"));
2019 void
2020 md_begin ()
2022 const char *hash_err;
2024 /* Initialize op_hash hash table. */
2025 op_hash = hash_new ();
2028 const template *optab;
2029 templates *core_optab;
2031 /* Setup for loop. */
2032 optab = i386_optab;
2033 core_optab = (templates *) xmalloc (sizeof (templates));
2034 core_optab->start = optab;
2036 while (1)
2038 ++optab;
2039 if (optab->name == NULL
2040 || strcmp (optab->name, (optab - 1)->name) != 0)
2042 /* different name --> ship out current template list;
2043 add to hash table; & begin anew. */
2044 core_optab->end = optab;
2045 hash_err = hash_insert (op_hash,
2046 (optab - 1)->name,
2047 (void *) core_optab);
2048 if (hash_err)
2050 as_fatal (_("Internal Error: Can't hash %s: %s"),
2051 (optab - 1)->name,
2052 hash_err);
2054 if (optab->name == NULL)
2055 break;
2056 core_optab = (templates *) xmalloc (sizeof (templates));
2057 core_optab->start = optab;
2062 /* Initialize reg_hash hash table. */
2063 reg_hash = hash_new ();
2065 const reg_entry *regtab;
2066 unsigned int regtab_size = i386_regtab_size;
2068 for (regtab = i386_regtab; regtab_size--; regtab++)
2070 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2071 if (hash_err)
2072 as_fatal (_("Internal Error: Can't hash %s: %s"),
2073 regtab->reg_name,
2074 hash_err);
2078 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2080 int c;
2081 char *p;
2083 for (c = 0; c < 256; c++)
2085 if (ISDIGIT (c))
2087 digit_chars[c] = c;
2088 mnemonic_chars[c] = c;
2089 register_chars[c] = c;
2090 operand_chars[c] = c;
2092 else if (ISLOWER (c))
2094 mnemonic_chars[c] = c;
2095 register_chars[c] = c;
2096 operand_chars[c] = c;
2098 else if (ISUPPER (c))
2100 mnemonic_chars[c] = TOLOWER (c);
2101 register_chars[c] = mnemonic_chars[c];
2102 operand_chars[c] = c;
2105 if (ISALPHA (c) || ISDIGIT (c))
2106 identifier_chars[c] = c;
2107 else if (c >= 128)
2109 identifier_chars[c] = c;
2110 operand_chars[c] = c;
2114 #ifdef LEX_AT
2115 identifier_chars['@'] = '@';
2116 #endif
2117 #ifdef LEX_QM
2118 identifier_chars['?'] = '?';
2119 operand_chars['?'] = '?';
2120 #endif
2121 digit_chars['-'] = '-';
2122 mnemonic_chars['_'] = '_';
2123 mnemonic_chars['-'] = '-';
2124 mnemonic_chars['.'] = '.';
2125 identifier_chars['_'] = '_';
2126 identifier_chars['.'] = '.';
2128 for (p = operand_special_chars; *p != '\0'; p++)
2129 operand_chars[(unsigned char) *p] = *p;
2132 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2133 if (IS_ELF)
2135 record_alignment (text_section, 2);
2136 record_alignment (data_section, 2);
2137 record_alignment (bss_section, 2);
2139 #endif
2141 if (flag_code == CODE_64BIT)
2143 x86_dwarf2_return_column = 16;
2144 x86_cie_data_alignment = -8;
2146 else
2148 x86_dwarf2_return_column = 8;
2149 x86_cie_data_alignment = -4;
2153 void
2154 i386_print_statistics (FILE *file)
2156 hash_print_statistics (file, "i386 opcode", op_hash);
2157 hash_print_statistics (file, "i386 register", reg_hash);
2160 #ifdef DEBUG386
2162 /* Debugging routines for md_assemble. */
2163 static void pte (template *);
2164 static void pt (i386_operand_type);
2165 static void pe (expressionS *);
2166 static void ps (symbolS *);
2168 static void
2169 pi (char *line, i386_insn *x)
2171 unsigned int i;
2173 fprintf (stdout, "%s: template ", line);
2174 pte (&x->tm);
2175 fprintf (stdout, " address: base %s index %s scale %x\n",
2176 x->base_reg ? x->base_reg->reg_name : "none",
2177 x->index_reg ? x->index_reg->reg_name : "none",
2178 x->log2_scale_factor);
2179 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2180 x->rm.mode, x->rm.reg, x->rm.regmem);
2181 fprintf (stdout, " sib: base %x index %x scale %x\n",
2182 x->sib.base, x->sib.index, x->sib.scale);
2183 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2184 (x->rex & REX_W) != 0,
2185 (x->rex & REX_R) != 0,
2186 (x->rex & REX_X) != 0,
2187 (x->rex & REX_B) != 0);
2188 for (i = 0; i < x->operands; i++)
2190 fprintf (stdout, " #%d: ", i + 1);
2191 pt (x->types[i]);
2192 fprintf (stdout, "\n");
2193 if (x->types[i].bitfield.reg8
2194 || x->types[i].bitfield.reg16
2195 || x->types[i].bitfield.reg32
2196 || x->types[i].bitfield.reg64
2197 || x->types[i].bitfield.regmmx
2198 || x->types[i].bitfield.regxmm
2199 || x->types[i].bitfield.regymm
2200 || x->types[i].bitfield.sreg2
2201 || x->types[i].bitfield.sreg3
2202 || x->types[i].bitfield.control
2203 || x->types[i].bitfield.debug
2204 || x->types[i].bitfield.test)
2205 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2206 if (operand_type_check (x->types[i], imm))
2207 pe (x->op[i].imms);
2208 if (operand_type_check (x->types[i], disp))
2209 pe (x->op[i].disps);
2213 static void
2214 pte (template *t)
2216 unsigned int i;
2217 fprintf (stdout, " %d operands ", t->operands);
2218 fprintf (stdout, "opcode %x ", t->base_opcode);
2219 if (t->extension_opcode != None)
2220 fprintf (stdout, "ext %x ", t->extension_opcode);
2221 if (t->opcode_modifier.d)
2222 fprintf (stdout, "D");
2223 if (t->opcode_modifier.w)
2224 fprintf (stdout, "W");
2225 fprintf (stdout, "\n");
2226 for (i = 0; i < t->operands; i++)
2228 fprintf (stdout, " #%d type ", i + 1);
2229 pt (t->operand_types[i]);
2230 fprintf (stdout, "\n");
2234 static void
2235 pe (expressionS *e)
2237 fprintf (stdout, " operation %d\n", e->X_op);
2238 fprintf (stdout, " add_number %ld (%lx)\n",
2239 (long) e->X_add_number, (long) e->X_add_number);
2240 if (e->X_add_symbol)
2242 fprintf (stdout, " add_symbol ");
2243 ps (e->X_add_symbol);
2244 fprintf (stdout, "\n");
2246 if (e->X_op_symbol)
2248 fprintf (stdout, " op_symbol ");
2249 ps (e->X_op_symbol);
2250 fprintf (stdout, "\n");
2254 static void
2255 ps (symbolS *s)
2257 fprintf (stdout, "%s type %s%s",
2258 S_GET_NAME (s),
2259 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2260 segment_name (S_GET_SEGMENT (s)));
2263 static struct type_name
2265 i386_operand_type mask;
2266 const char *name;
2268 const type_names[] =
2270 { OPERAND_TYPE_REG8, "r8" },
2271 { OPERAND_TYPE_REG16, "r16" },
2272 { OPERAND_TYPE_REG32, "r32" },
2273 { OPERAND_TYPE_REG64, "r64" },
2274 { OPERAND_TYPE_IMM8, "i8" },
2275 { OPERAND_TYPE_IMM8, "i8s" },
2276 { OPERAND_TYPE_IMM16, "i16" },
2277 { OPERAND_TYPE_IMM32, "i32" },
2278 { OPERAND_TYPE_IMM32S, "i32s" },
2279 { OPERAND_TYPE_IMM64, "i64" },
2280 { OPERAND_TYPE_IMM1, "i1" },
2281 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2282 { OPERAND_TYPE_DISP8, "d8" },
2283 { OPERAND_TYPE_DISP16, "d16" },
2284 { OPERAND_TYPE_DISP32, "d32" },
2285 { OPERAND_TYPE_DISP32S, "d32s" },
2286 { OPERAND_TYPE_DISP64, "d64" },
2287 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2288 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2289 { OPERAND_TYPE_CONTROL, "control reg" },
2290 { OPERAND_TYPE_TEST, "test reg" },
2291 { OPERAND_TYPE_DEBUG, "debug reg" },
2292 { OPERAND_TYPE_FLOATREG, "FReg" },
2293 { OPERAND_TYPE_FLOATACC, "FAcc" },
2294 { OPERAND_TYPE_SREG2, "SReg2" },
2295 { OPERAND_TYPE_SREG3, "SReg3" },
2296 { OPERAND_TYPE_ACC, "Acc" },
2297 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2298 { OPERAND_TYPE_REGMMX, "rMMX" },
2299 { OPERAND_TYPE_REGXMM, "rXMM" },
2300 { OPERAND_TYPE_REGYMM, "rYMM" },
2301 { OPERAND_TYPE_ESSEG, "es" },
2304 static void
2305 pt (i386_operand_type t)
2307 unsigned int j;
2308 i386_operand_type a;
2310 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2312 a = operand_type_and (t, type_names[j].mask);
2313 if (!operand_type_all_zero (&a))
2314 fprintf (stdout, "%s, ", type_names[j].name);
2316 fflush (stdout);
2319 #endif /* DEBUG386 */
2321 static bfd_reloc_code_real_type
2322 reloc (unsigned int size,
2323 int pcrel,
2324 int sign,
2325 bfd_reloc_code_real_type other)
2327 if (other != NO_RELOC)
2329 reloc_howto_type *reloc;
2331 if (size == 8)
2332 switch (other)
2334 case BFD_RELOC_X86_64_GOT32:
2335 return BFD_RELOC_X86_64_GOT64;
2336 break;
2337 case BFD_RELOC_X86_64_PLTOFF64:
2338 return BFD_RELOC_X86_64_PLTOFF64;
2339 break;
2340 case BFD_RELOC_X86_64_GOTPC32:
2341 other = BFD_RELOC_X86_64_GOTPC64;
2342 break;
2343 case BFD_RELOC_X86_64_GOTPCREL:
2344 other = BFD_RELOC_X86_64_GOTPCREL64;
2345 break;
2346 case BFD_RELOC_X86_64_TPOFF32:
2347 other = BFD_RELOC_X86_64_TPOFF64;
2348 break;
2349 case BFD_RELOC_X86_64_DTPOFF32:
2350 other = BFD_RELOC_X86_64_DTPOFF64;
2351 break;
2352 default:
2353 break;
2356 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2357 if (size == 4 && flag_code != CODE_64BIT)
2358 sign = -1;
2360 reloc = bfd_reloc_type_lookup (stdoutput, other);
2361 if (!reloc)
2362 as_bad (_("unknown relocation (%u)"), other);
2363 else if (size != bfd_get_reloc_size (reloc))
2364 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2365 bfd_get_reloc_size (reloc),
2366 size);
2367 else if (pcrel && !reloc->pc_relative)
2368 as_bad (_("non-pc-relative relocation for pc-relative field"));
2369 else if ((reloc->complain_on_overflow == complain_overflow_signed
2370 && !sign)
2371 || (reloc->complain_on_overflow == complain_overflow_unsigned
2372 && sign > 0))
2373 as_bad (_("relocated field and relocation type differ in signedness"));
2374 else
2375 return other;
2376 return NO_RELOC;
2379 if (pcrel)
2381 if (!sign)
2382 as_bad (_("there are no unsigned pc-relative relocations"));
2383 switch (size)
2385 case 1: return BFD_RELOC_8_PCREL;
2386 case 2: return BFD_RELOC_16_PCREL;
2387 case 4: return BFD_RELOC_32_PCREL;
2388 case 8: return BFD_RELOC_64_PCREL;
2390 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2392 else
2394 if (sign > 0)
2395 switch (size)
2397 case 4: return BFD_RELOC_X86_64_32S;
2399 else
2400 switch (size)
2402 case 1: return BFD_RELOC_8;
2403 case 2: return BFD_RELOC_16;
2404 case 4: return BFD_RELOC_32;
2405 case 8: return BFD_RELOC_64;
2407 as_bad (_("cannot do %s %u byte relocation"),
2408 sign > 0 ? "signed" : "unsigned", size);
2411 return NO_RELOC;
2414 /* Here we decide which fixups can be adjusted to make them relative to
2415 the beginning of the section instead of the symbol. Basically we need
2416 to make sure that the dynamic relocations are done correctly, so in
2417 some cases we force the original symbol to be used. */
2420 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2422 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2423 if (!IS_ELF)
2424 return 1;
2426 /* Don't adjust pc-relative references to merge sections in 64-bit
2427 mode. */
2428 if (use_rela_relocations
2429 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2430 && fixP->fx_pcrel)
2431 return 0;
2433 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2434 and changed later by validate_fix. */
2435 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2436 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2437 return 0;
2439 /* adjust_reloc_syms doesn't know about the GOT. */
2440 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2441 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2442 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2443 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2444 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2445 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2446 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2447 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2448 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2449 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2450 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2451 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2452 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2453 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2454 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2455 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2456 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2457 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2458 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2459 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2460 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2461 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2462 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2463 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2464 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2465 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2466 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2467 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2468 return 0;
2470 if (fixP->fx_addsy != NULL
2471 && symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_GNU_INDIRECT_FUNCTION)
2472 return 0;
2473 #endif
2474 return 1;
2477 static int
2478 intel_float_operand (const char *mnemonic)
2480 /* Note that the value returned is meaningful only for opcodes with (memory)
2481 operands, hence the code here is free to improperly handle opcodes that
2482 have no operands (for better performance and smaller code). */
2484 if (mnemonic[0] != 'f')
2485 return 0; /* non-math */
2487 switch (mnemonic[1])
2489 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2490 the fs segment override prefix not currently handled because no
2491 call path can make opcodes without operands get here */
2492 case 'i':
2493 return 2 /* integer op */;
2494 case 'l':
2495 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2496 return 3; /* fldcw/fldenv */
2497 break;
2498 case 'n':
2499 if (mnemonic[2] != 'o' /* fnop */)
2500 return 3; /* non-waiting control op */
2501 break;
2502 case 'r':
2503 if (mnemonic[2] == 's')
2504 return 3; /* frstor/frstpm */
2505 break;
2506 case 's':
2507 if (mnemonic[2] == 'a')
2508 return 3; /* fsave */
2509 if (mnemonic[2] == 't')
2511 switch (mnemonic[3])
2513 case 'c': /* fstcw */
2514 case 'd': /* fstdw */
2515 case 'e': /* fstenv */
2516 case 's': /* fsts[gw] */
2517 return 3;
2520 break;
2521 case 'x':
2522 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2523 return 0; /* fxsave/fxrstor are not really math ops */
2524 break;
2527 return 1;
2530 /* Build the VEX prefix. */
2532 static void
2533 build_vex_prefix (const template *t)
2535 unsigned int register_specifier;
2536 unsigned int implied_prefix;
2537 unsigned int vector_length;
2539 /* Check register specifier. */
2540 if (i.vex.register_specifier)
2542 register_specifier = i.vex.register_specifier->reg_num;
2543 if ((i.vex.register_specifier->reg_flags & RegRex))
2544 register_specifier += 8;
2545 register_specifier = ~register_specifier & 0xf;
2547 else
2548 register_specifier = 0xf;
2550 /* Use 2-byte VEX prefix by swappping destination and source
2551 operand. */
2552 if (!i.swap_operand
2553 && i.operands == i.reg_operands
2554 && i.tm.opcode_modifier.vex0f
2555 && i.tm.opcode_modifier.s
2556 && i.rex == REX_B)
2558 unsigned int xchg = i.operands - 1;
2559 union i386_op temp_op;
2560 i386_operand_type temp_type;
2562 temp_type = i.types[xchg];
2563 i.types[xchg] = i.types[0];
2564 i.types[0] = temp_type;
2565 temp_op = i.op[xchg];
2566 i.op[xchg] = i.op[0];
2567 i.op[0] = temp_op;
2569 gas_assert (i.rm.mode == 3);
2571 i.rex = REX_R;
2572 xchg = i.rm.regmem;
2573 i.rm.regmem = i.rm.reg;
2574 i.rm.reg = xchg;
2576 /* Use the next insn. */
2577 i.tm = t[1];
2580 vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
2582 switch ((i.tm.base_opcode >> 8) & 0xff)
2584 case 0:
2585 implied_prefix = 0;
2586 break;
2587 case DATA_PREFIX_OPCODE:
2588 implied_prefix = 1;
2589 break;
2590 case REPE_PREFIX_OPCODE:
2591 implied_prefix = 2;
2592 break;
2593 case REPNE_PREFIX_OPCODE:
2594 implied_prefix = 3;
2595 break;
2596 default:
2597 abort ();
2600 /* Use 2-byte VEX prefix if possible. */
2601 if (i.tm.opcode_modifier.vex0f
2602 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2604 /* 2-byte VEX prefix. */
2605 unsigned int r;
2607 i.vex.length = 2;
2608 i.vex.bytes[0] = 0xc5;
2610 /* Check the REX.R bit. */
2611 r = (i.rex & REX_R) ? 0 : 1;
2612 i.vex.bytes[1] = (r << 7
2613 | register_specifier << 3
2614 | vector_length << 2
2615 | implied_prefix);
2617 else
2619 /* 3-byte VEX prefix. */
2620 unsigned int m, w;
2622 if (i.tm.opcode_modifier.vex0f)
2623 m = 0x1;
2624 else if (i.tm.opcode_modifier.vex0f38)
2625 m = 0x2;
2626 else if (i.tm.opcode_modifier.vex0f3a)
2627 m = 0x3;
2628 else
2629 abort ();
2631 i.vex.length = 3;
2632 i.vex.bytes[0] = 0xc4;
2634 /* The high 3 bits of the second VEX byte are 1's compliment
2635 of RXB bits from REX. */
2636 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2638 /* Check the REX.W bit. */
2639 w = (i.rex & REX_W) ? 1 : 0;
2640 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2642 if (w)
2643 abort ();
2645 if (i.tm.opcode_modifier.vexw1)
2646 w = 1;
2649 i.vex.bytes[2] = (w << 7
2650 | register_specifier << 3
2651 | vector_length << 2
2652 | implied_prefix);
2656 static void
2657 process_immext (void)
2659 expressionS *exp;
2661 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2663 /* SSE3 Instructions have the fixed operands with an opcode
2664 suffix which is coded in the same place as an 8-bit immediate
2665 field would be. Here we check those operands and remove them
2666 afterwards. */
2667 unsigned int x;
2669 for (x = 0; x < i.operands; x++)
2670 if (i.op[x].regs->reg_num != x)
2671 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2672 register_prefix, i.op[x].regs->reg_name, x + 1,
2673 i.tm.name);
2675 i.operands = 0;
2678 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2679 which is coded in the same place as an 8-bit immediate field
2680 would be. Here we fake an 8-bit immediate operand from the
2681 opcode suffix stored in tm.extension_opcode.
2683 AVX instructions also use this encoding, for some of
2684 3 argument instructions. */
2686 gas_assert (i.imm_operands == 0
2687 && (i.operands <= 2
2688 || (i.tm.opcode_modifier.vex
2689 && i.operands <= 4)));
2691 exp = &im_expressions[i.imm_operands++];
2692 i.op[i.operands].imms = exp;
2693 i.types[i.operands] = imm8;
2694 i.operands++;
2695 exp->X_op = O_constant;
2696 exp->X_add_number = i.tm.extension_opcode;
2697 i.tm.extension_opcode = None;
2700 /* This is the guts of the machine-dependent assembler. LINE points to a
2701 machine dependent instruction. This function is supposed to emit
2702 the frags/bytes it assembles to. */
2704 void
2705 md_assemble (char *line)
2707 unsigned int j;
2708 char mnemonic[MAX_MNEM_SIZE];
2709 const template *t;
2711 /* Initialize globals. */
2712 memset (&i, '\0', sizeof (i));
2713 for (j = 0; j < MAX_OPERANDS; j++)
2714 i.reloc[j] = NO_RELOC;
2715 memset (disp_expressions, '\0', sizeof (disp_expressions));
2716 memset (im_expressions, '\0', sizeof (im_expressions));
2717 save_stack_p = save_stack;
2719 /* First parse an instruction mnemonic & call i386_operand for the operands.
2720 We assume that the scrubber has arranged it so that line[0] is the valid
2721 start of a (possibly prefixed) mnemonic. */
2723 line = parse_insn (line, mnemonic);
2724 if (line == NULL)
2725 return;
2727 line = parse_operands (line, mnemonic);
2728 this_operand = -1;
2729 if (line == NULL)
2730 return;
2732 /* Now we've parsed the mnemonic into a set of templates, and have the
2733 operands at hand. */
2735 /* All intel opcodes have reversed operands except for "bound" and
2736 "enter". We also don't reverse intersegment "jmp" and "call"
2737 instructions with 2 immediate operands so that the immediate segment
2738 precedes the offset, as it does when in AT&T mode. */
2739 if (intel_syntax
2740 && i.operands > 1
2741 && (strcmp (mnemonic, "bound") != 0)
2742 && (strcmp (mnemonic, "invlpga") != 0)
2743 && !(operand_type_check (i.types[0], imm)
2744 && operand_type_check (i.types[1], imm)))
2745 swap_operands ();
2747 /* The order of the immediates should be reversed
2748 for 2 immediates extrq and insertq instructions */
2749 if (i.imm_operands == 2
2750 && (strcmp (mnemonic, "extrq") == 0
2751 || strcmp (mnemonic, "insertq") == 0))
2752 swap_2_operands (0, 1);
2754 if (i.imm_operands)
2755 optimize_imm ();
2757 /* Don't optimize displacement for movabs since it only takes 64bit
2758 displacement. */
2759 if (i.disp_operands
2760 && (flag_code != CODE_64BIT
2761 || strcmp (mnemonic, "movabs") != 0))
2762 optimize_disp ();
2764 /* Next, we find a template that matches the given insn,
2765 making sure the overlap of the given operands types is consistent
2766 with the template operand types. */
2768 if (!(t = match_template ()))
2769 return;
2771 if (sse_check != sse_check_none
2772 && !i.tm.opcode_modifier.noavx
2773 && (i.tm.cpu_flags.bitfield.cpusse
2774 || i.tm.cpu_flags.bitfield.cpusse2
2775 || i.tm.cpu_flags.bitfield.cpusse3
2776 || i.tm.cpu_flags.bitfield.cpussse3
2777 || i.tm.cpu_flags.bitfield.cpusse4_1
2778 || i.tm.cpu_flags.bitfield.cpusse4_2))
2780 (sse_check == sse_check_warning
2781 ? as_warn
2782 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2785 /* Zap movzx and movsx suffix. The suffix has been set from
2786 "word ptr" or "byte ptr" on the source operand in Intel syntax
2787 or extracted from mnemonic in AT&T syntax. But we'll use
2788 the destination register to choose the suffix for encoding. */
2789 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2791 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2792 there is no suffix, the default will be byte extension. */
2793 if (i.reg_operands != 2
2794 && !i.suffix
2795 && intel_syntax)
2796 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2798 i.suffix = 0;
2801 if (i.tm.opcode_modifier.fwait)
2802 if (!add_prefix (FWAIT_OPCODE))
2803 return;
2805 /* Check string instruction segment overrides. */
2806 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2808 if (!check_string ())
2809 return;
2810 i.disp_operands = 0;
2813 if (!process_suffix ())
2814 return;
2816 /* Update operand types. */
2817 for (j = 0; j < i.operands; j++)
2818 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2820 /* Make still unresolved immediate matches conform to size of immediate
2821 given in i.suffix. */
2822 if (!finalize_imm ())
2823 return;
2825 if (i.types[0].bitfield.imm1)
2826 i.imm_operands = 0; /* kludge for shift insns. */
2828 /* We only need to check those implicit registers for instructions
2829 with 3 operands or less. */
2830 if (i.operands <= 3)
2831 for (j = 0; j < i.operands; j++)
2832 if (i.types[j].bitfield.inoutportreg
2833 || i.types[j].bitfield.shiftcount
2834 || i.types[j].bitfield.acc
2835 || i.types[j].bitfield.floatacc)
2836 i.reg_operands--;
2838 /* ImmExt should be processed after SSE2AVX. */
2839 if (!i.tm.opcode_modifier.sse2avx
2840 && i.tm.opcode_modifier.immext)
2841 process_immext ();
2843 /* For insns with operands there are more diddles to do to the opcode. */
2844 if (i.operands)
2846 if (!process_operands ())
2847 return;
2849 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2851 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2852 as_warn (_("translating to `%sp'"), i.tm.name);
2855 if (i.tm.opcode_modifier.vex)
2856 build_vex_prefix (t);
2858 /* Handle conversion of 'int $3' --> special int3 insn. */
2859 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2861 i.tm.base_opcode = INT3_OPCODE;
2862 i.imm_operands = 0;
2865 if ((i.tm.opcode_modifier.jump
2866 || i.tm.opcode_modifier.jumpbyte
2867 || i.tm.opcode_modifier.jumpdword)
2868 && i.op[0].disps->X_op == O_constant)
2870 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2871 the absolute address given by the constant. Since ix86 jumps and
2872 calls are pc relative, we need to generate a reloc. */
2873 i.op[0].disps->X_add_symbol = &abs_symbol;
2874 i.op[0].disps->X_op = O_symbol;
2877 if (i.tm.opcode_modifier.rex64)
2878 i.rex |= REX_W;
2880 /* For 8 bit registers we need an empty rex prefix. Also if the
2881 instruction already has a prefix, we need to convert old
2882 registers to new ones. */
2884 if ((i.types[0].bitfield.reg8
2885 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2886 || (i.types[1].bitfield.reg8
2887 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2888 || ((i.types[0].bitfield.reg8
2889 || i.types[1].bitfield.reg8)
2890 && i.rex != 0))
2892 int x;
2894 i.rex |= REX_OPCODE;
2895 for (x = 0; x < 2; x++)
2897 /* Look for 8 bit operand that uses old registers. */
2898 if (i.types[x].bitfield.reg8
2899 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2901 /* In case it is "hi" register, give up. */
2902 if (i.op[x].regs->reg_num > 3)
2903 as_bad (_("can't encode register '%s%s' in an "
2904 "instruction requiring REX prefix."),
2905 register_prefix, i.op[x].regs->reg_name);
2907 /* Otherwise it is equivalent to the extended register.
2908 Since the encoding doesn't change this is merely
2909 cosmetic cleanup for debug output. */
2911 i.op[x].regs = i.op[x].regs + 8;
2916 if (i.rex != 0)
2917 add_prefix (REX_OPCODE | i.rex);
2919 /* We are ready to output the insn. */
2920 output_insn ();
2923 static char *
2924 parse_insn (char *line, char *mnemonic)
2926 char *l = line;
2927 char *token_start = l;
2928 char *mnem_p;
2929 int supported;
2930 const template *t;
2931 char *dot_p = NULL;
2933 /* Non-zero if we found a prefix only acceptable with string insns. */
2934 const char *expecting_string_instruction = NULL;
2936 while (1)
2938 mnem_p = mnemonic;
2939 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2941 if (*mnem_p == '.')
2942 dot_p = mnem_p;
2943 mnem_p++;
2944 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2946 as_bad (_("no such instruction: `%s'"), token_start);
2947 return NULL;
2949 l++;
2951 if (!is_space_char (*l)
2952 && *l != END_OF_INSN
2953 && (intel_syntax
2954 || (*l != PREFIX_SEPARATOR
2955 && *l != ',')))
2957 as_bad (_("invalid character %s in mnemonic"),
2958 output_invalid (*l));
2959 return NULL;
2961 if (token_start == l)
2963 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2964 as_bad (_("expecting prefix; got nothing"));
2965 else
2966 as_bad (_("expecting mnemonic; got nothing"));
2967 return NULL;
2970 /* Look up instruction (or prefix) via hash table. */
2971 current_templates = hash_find (op_hash, mnemonic);
2973 if (*l != END_OF_INSN
2974 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2975 && current_templates
2976 && current_templates->start->opcode_modifier.isprefix)
2978 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2980 as_bad ((flag_code != CODE_64BIT
2981 ? _("`%s' is only supported in 64-bit mode")
2982 : _("`%s' is not supported in 64-bit mode")),
2983 current_templates->start->name);
2984 return NULL;
2986 /* If we are in 16-bit mode, do not allow addr16 or data16.
2987 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2988 if ((current_templates->start->opcode_modifier.size16
2989 || current_templates->start->opcode_modifier.size32)
2990 && flag_code != CODE_64BIT
2991 && (current_templates->start->opcode_modifier.size32
2992 ^ (flag_code == CODE_16BIT)))
2994 as_bad (_("redundant %s prefix"),
2995 current_templates->start->name);
2996 return NULL;
2998 /* Add prefix, checking for repeated prefixes. */
2999 switch (add_prefix (current_templates->start->base_opcode))
3001 case 0:
3002 return NULL;
3003 case 2:
3004 expecting_string_instruction = current_templates->start->name;
3005 break;
3007 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3008 token_start = ++l;
3010 else
3011 break;
3014 if (!current_templates)
3016 /* Check if we should swap operand in encoding. */
3017 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3018 i.swap_operand = 1;
3019 else
3020 goto check_suffix;
3021 mnem_p = dot_p;
3022 *dot_p = '\0';
3023 current_templates = hash_find (op_hash, mnemonic);
3026 if (!current_templates)
3028 check_suffix:
3029 /* See if we can get a match by trimming off a suffix. */
3030 switch (mnem_p[-1])
3032 case WORD_MNEM_SUFFIX:
3033 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3034 i.suffix = SHORT_MNEM_SUFFIX;
3035 else
3036 case BYTE_MNEM_SUFFIX:
3037 case QWORD_MNEM_SUFFIX:
3038 i.suffix = mnem_p[-1];
3039 mnem_p[-1] = '\0';
3040 current_templates = hash_find (op_hash, mnemonic);
3041 break;
3042 case SHORT_MNEM_SUFFIX:
3043 case LONG_MNEM_SUFFIX:
3044 if (!intel_syntax)
3046 i.suffix = mnem_p[-1];
3047 mnem_p[-1] = '\0';
3048 current_templates = hash_find (op_hash, mnemonic);
3050 break;
3052 /* Intel Syntax. */
3053 case 'd':
3054 if (intel_syntax)
3056 if (intel_float_operand (mnemonic) == 1)
3057 i.suffix = SHORT_MNEM_SUFFIX;
3058 else
3059 i.suffix = LONG_MNEM_SUFFIX;
3060 mnem_p[-1] = '\0';
3061 current_templates = hash_find (op_hash, mnemonic);
3063 break;
3065 if (!current_templates)
3067 as_bad (_("no such instruction: `%s'"), token_start);
3068 return NULL;
3072 if (current_templates->start->opcode_modifier.jump
3073 || current_templates->start->opcode_modifier.jumpbyte)
3075 /* Check for a branch hint. We allow ",pt" and ",pn" for
3076 predict taken and predict not taken respectively.
3077 I'm not sure that branch hints actually do anything on loop
3078 and jcxz insns (JumpByte) for current Pentium4 chips. They
3079 may work in the future and it doesn't hurt to accept them
3080 now. */
3081 if (l[0] == ',' && l[1] == 'p')
3083 if (l[2] == 't')
3085 if (!add_prefix (DS_PREFIX_OPCODE))
3086 return NULL;
3087 l += 3;
3089 else if (l[2] == 'n')
3091 if (!add_prefix (CS_PREFIX_OPCODE))
3092 return NULL;
3093 l += 3;
3097 /* Any other comma loses. */
3098 if (*l == ',')
3100 as_bad (_("invalid character %s in mnemonic"),
3101 output_invalid (*l));
3102 return NULL;
3105 /* Check if instruction is supported on specified architecture. */
3106 supported = 0;
3107 for (t = current_templates->start; t < current_templates->end; ++t)
3109 supported |= cpu_flags_match (t);
3110 if (supported == CPU_FLAGS_PERFECT_MATCH)
3111 goto skip;
3114 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3116 as_bad (flag_code == CODE_64BIT
3117 ? _("`%s' is not supported in 64-bit mode")
3118 : _("`%s' is only supported in 64-bit mode"),
3119 current_templates->start->name);
3120 return NULL;
3122 if (supported != CPU_FLAGS_PERFECT_MATCH)
3124 as_bad (_("`%s' is not supported on `%s%s'"),
3125 current_templates->start->name,
3126 cpu_arch_name ? cpu_arch_name : default_arch,
3127 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3128 return NULL;
3131 skip:
3132 if (!cpu_arch_flags.bitfield.cpui386
3133 && (flag_code != CODE_16BIT))
3135 as_warn (_("use .code16 to ensure correct addressing mode"));
3138 /* Check for rep/repne without a string instruction. */
3139 if (expecting_string_instruction)
3141 static templates override;
3143 for (t = current_templates->start; t < current_templates->end; ++t)
3144 if (t->opcode_modifier.isstring)
3145 break;
3146 if (t >= current_templates->end)
3148 as_bad (_("expecting string instruction after `%s'"),
3149 expecting_string_instruction);
3150 return NULL;
3152 for (override.start = t; t < current_templates->end; ++t)
3153 if (!t->opcode_modifier.isstring)
3154 break;
3155 override.end = t;
3156 current_templates = &override;
3159 return l;
3162 static char *
3163 parse_operands (char *l, const char *mnemonic)
3165 char *token_start;
3167 /* 1 if operand is pending after ','. */
3168 unsigned int expecting_operand = 0;
3170 /* Non-zero if operand parens not balanced. */
3171 unsigned int paren_not_balanced;
3173 while (*l != END_OF_INSN)
3175 /* Skip optional white space before operand. */
3176 if (is_space_char (*l))
3177 ++l;
3178 if (!is_operand_char (*l) && *l != END_OF_INSN)
3180 as_bad (_("invalid character %s before operand %d"),
3181 output_invalid (*l),
3182 i.operands + 1);
3183 return NULL;
3185 token_start = l; /* after white space */
3186 paren_not_balanced = 0;
3187 while (paren_not_balanced || *l != ',')
3189 if (*l == END_OF_INSN)
3191 if (paren_not_balanced)
3193 if (!intel_syntax)
3194 as_bad (_("unbalanced parenthesis in operand %d."),
3195 i.operands + 1);
3196 else
3197 as_bad (_("unbalanced brackets in operand %d."),
3198 i.operands + 1);
3199 return NULL;
3201 else
3202 break; /* we are done */
3204 else if (!is_operand_char (*l) && !is_space_char (*l))
3206 as_bad (_("invalid character %s in operand %d"),
3207 output_invalid (*l),
3208 i.operands + 1);
3209 return NULL;
3211 if (!intel_syntax)
3213 if (*l == '(')
3214 ++paren_not_balanced;
3215 if (*l == ')')
3216 --paren_not_balanced;
3218 else
3220 if (*l == '[')
3221 ++paren_not_balanced;
3222 if (*l == ']')
3223 --paren_not_balanced;
3225 l++;
3227 if (l != token_start)
3228 { /* Yes, we've read in another operand. */
3229 unsigned int operand_ok;
3230 this_operand = i.operands++;
3231 i.types[this_operand].bitfield.unspecified = 1;
3232 if (i.operands > MAX_OPERANDS)
3234 as_bad (_("spurious operands; (%d operands/instruction max)"),
3235 MAX_OPERANDS);
3236 return NULL;
3238 /* Now parse operand adding info to 'i' as we go along. */
3239 END_STRING_AND_SAVE (l);
3241 if (intel_syntax)
3242 operand_ok =
3243 i386_intel_operand (token_start,
3244 intel_float_operand (mnemonic));
3245 else
3246 operand_ok = i386_att_operand (token_start);
3248 RESTORE_END_STRING (l);
3249 if (!operand_ok)
3250 return NULL;
3252 else
3254 if (expecting_operand)
3256 expecting_operand_after_comma:
3257 as_bad (_("expecting operand after ','; got nothing"));
3258 return NULL;
3260 if (*l == ',')
3262 as_bad (_("expecting operand before ','; got nothing"));
3263 return NULL;
3267 /* Now *l must be either ',' or END_OF_INSN. */
3268 if (*l == ',')
3270 if (*++l == END_OF_INSN)
3272 /* Just skip it, if it's \n complain. */
3273 goto expecting_operand_after_comma;
3275 expecting_operand = 1;
3278 return l;
3281 static void
3282 swap_2_operands (int xchg1, int xchg2)
3284 union i386_op temp_op;
3285 i386_operand_type temp_type;
3286 enum bfd_reloc_code_real temp_reloc;
3288 temp_type = i.types[xchg2];
3289 i.types[xchg2] = i.types[xchg1];
3290 i.types[xchg1] = temp_type;
3291 temp_op = i.op[xchg2];
3292 i.op[xchg2] = i.op[xchg1];
3293 i.op[xchg1] = temp_op;
3294 temp_reloc = i.reloc[xchg2];
3295 i.reloc[xchg2] = i.reloc[xchg1];
3296 i.reloc[xchg1] = temp_reloc;
3299 static void
3300 swap_operands (void)
3302 switch (i.operands)
3304 case 5:
3305 case 4:
3306 swap_2_operands (1, i.operands - 2);
3307 case 3:
3308 case 2:
3309 swap_2_operands (0, i.operands - 1);
3310 break;
3311 default:
3312 abort ();
3315 if (i.mem_operands == 2)
3317 const seg_entry *temp_seg;
3318 temp_seg = i.seg[0];
3319 i.seg[0] = i.seg[1];
3320 i.seg[1] = temp_seg;
3324 /* Try to ensure constant immediates are represented in the smallest
3325 opcode possible. */
3326 static void
3327 optimize_imm (void)
3329 char guess_suffix = 0;
3330 int op;
3332 if (i.suffix)
3333 guess_suffix = i.suffix;
3334 else if (i.reg_operands)
3336 /* Figure out a suffix from the last register operand specified.
3337 We can't do this properly yet, ie. excluding InOutPortReg,
3338 but the following works for instructions with immediates.
3339 In any case, we can't set i.suffix yet. */
3340 for (op = i.operands; --op >= 0;)
3341 if (i.types[op].bitfield.reg8)
3343 guess_suffix = BYTE_MNEM_SUFFIX;
3344 break;
3346 else if (i.types[op].bitfield.reg16)
3348 guess_suffix = WORD_MNEM_SUFFIX;
3349 break;
3351 else if (i.types[op].bitfield.reg32)
3353 guess_suffix = LONG_MNEM_SUFFIX;
3354 break;
3356 else if (i.types[op].bitfield.reg64)
3358 guess_suffix = QWORD_MNEM_SUFFIX;
3359 break;
3362 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3363 guess_suffix = WORD_MNEM_SUFFIX;
3365 for (op = i.operands; --op >= 0;)
3366 if (operand_type_check (i.types[op], imm))
3368 switch (i.op[op].imms->X_op)
3370 case O_constant:
3371 /* If a suffix is given, this operand may be shortened. */
3372 switch (guess_suffix)
3374 case LONG_MNEM_SUFFIX:
3375 i.types[op].bitfield.imm32 = 1;
3376 i.types[op].bitfield.imm64 = 1;
3377 break;
3378 case WORD_MNEM_SUFFIX:
3379 i.types[op].bitfield.imm16 = 1;
3380 i.types[op].bitfield.imm32 = 1;
3381 i.types[op].bitfield.imm32s = 1;
3382 i.types[op].bitfield.imm64 = 1;
3383 break;
3384 case BYTE_MNEM_SUFFIX:
3385 i.types[op].bitfield.imm8 = 1;
3386 i.types[op].bitfield.imm8s = 1;
3387 i.types[op].bitfield.imm16 = 1;
3388 i.types[op].bitfield.imm32 = 1;
3389 i.types[op].bitfield.imm32s = 1;
3390 i.types[op].bitfield.imm64 = 1;
3391 break;
3394 /* If this operand is at most 16 bits, convert it
3395 to a signed 16 bit number before trying to see
3396 whether it will fit in an even smaller size.
3397 This allows a 16-bit operand such as $0xffe0 to
3398 be recognised as within Imm8S range. */
3399 if ((i.types[op].bitfield.imm16)
3400 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3402 i.op[op].imms->X_add_number =
3403 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3405 if ((i.types[op].bitfield.imm32)
3406 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3407 == 0))
3409 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3410 ^ ((offsetT) 1 << 31))
3411 - ((offsetT) 1 << 31));
3413 i.types[op]
3414 = operand_type_or (i.types[op],
3415 smallest_imm_type (i.op[op].imms->X_add_number));
3417 /* We must avoid matching of Imm32 templates when 64bit
3418 only immediate is available. */
3419 if (guess_suffix == QWORD_MNEM_SUFFIX)
3420 i.types[op].bitfield.imm32 = 0;
3421 break;
3423 case O_absent:
3424 case O_register:
3425 abort ();
3427 /* Symbols and expressions. */
3428 default:
3429 /* Convert symbolic operand to proper sizes for matching, but don't
3430 prevent matching a set of insns that only supports sizes other
3431 than those matching the insn suffix. */
3433 i386_operand_type mask, allowed;
3434 const template *t;
3436 operand_type_set (&mask, 0);
3437 operand_type_set (&allowed, 0);
3439 for (t = current_templates->start;
3440 t < current_templates->end;
3441 ++t)
3442 allowed = operand_type_or (allowed,
3443 t->operand_types[op]);
3444 switch (guess_suffix)
3446 case QWORD_MNEM_SUFFIX:
3447 mask.bitfield.imm64 = 1;
3448 mask.bitfield.imm32s = 1;
3449 break;
3450 case LONG_MNEM_SUFFIX:
3451 mask.bitfield.imm32 = 1;
3452 break;
3453 case WORD_MNEM_SUFFIX:
3454 mask.bitfield.imm16 = 1;
3455 break;
3456 case BYTE_MNEM_SUFFIX:
3457 mask.bitfield.imm8 = 1;
3458 break;
3459 default:
3460 break;
3462 allowed = operand_type_and (mask, allowed);
3463 if (!operand_type_all_zero (&allowed))
3464 i.types[op] = operand_type_and (i.types[op], mask);
3466 break;
3471 /* Try to use the smallest displacement type too. */
3472 static void
3473 optimize_disp (void)
3475 int op;
3477 for (op = i.operands; --op >= 0;)
3478 if (operand_type_check (i.types[op], disp))
3480 if (i.op[op].disps->X_op == O_constant)
3482 offsetT disp = i.op[op].disps->X_add_number;
3484 if (i.types[op].bitfield.disp16
3485 && (disp & ~(offsetT) 0xffff) == 0)
3487 /* If this operand is at most 16 bits, convert
3488 to a signed 16 bit number and don't use 64bit
3489 displacement. */
3490 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3491 i.types[op].bitfield.disp64 = 0;
3493 if (i.types[op].bitfield.disp32
3494 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3496 /* If this operand is at most 32 bits, convert
3497 to a signed 32 bit number and don't use 64bit
3498 displacement. */
3499 disp &= (((offsetT) 2 << 31) - 1);
3500 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3501 i.types[op].bitfield.disp64 = 0;
3503 if (!disp && i.types[op].bitfield.baseindex)
3505 i.types[op].bitfield.disp8 = 0;
3506 i.types[op].bitfield.disp16 = 0;
3507 i.types[op].bitfield.disp32 = 0;
3508 i.types[op].bitfield.disp32s = 0;
3509 i.types[op].bitfield.disp64 = 0;
3510 i.op[op].disps = 0;
3511 i.disp_operands--;
3513 else if (flag_code == CODE_64BIT)
3515 if (fits_in_signed_long (disp))
3517 i.types[op].bitfield.disp64 = 0;
3518 i.types[op].bitfield.disp32s = 1;
3520 if (fits_in_unsigned_long (disp))
3521 i.types[op].bitfield.disp32 = 1;
3523 if ((i.types[op].bitfield.disp32
3524 || i.types[op].bitfield.disp32s
3525 || i.types[op].bitfield.disp16)
3526 && fits_in_signed_byte (disp))
3527 i.types[op].bitfield.disp8 = 1;
3529 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3530 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3532 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3533 i.op[op].disps, 0, i.reloc[op]);
3534 i.types[op].bitfield.disp8 = 0;
3535 i.types[op].bitfield.disp16 = 0;
3536 i.types[op].bitfield.disp32 = 0;
3537 i.types[op].bitfield.disp32s = 0;
3538 i.types[op].bitfield.disp64 = 0;
3540 else
3541 /* We only support 64bit displacement on constants. */
3542 i.types[op].bitfield.disp64 = 0;
3546 static const template *
3547 match_template (void)
3549 /* Points to template once we've found it. */
3550 const template *t;
3551 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3552 i386_operand_type overlap4;
3553 unsigned int found_reverse_match;
3554 i386_opcode_modifier suffix_check;
3555 i386_operand_type operand_types [MAX_OPERANDS];
3556 int addr_prefix_disp;
3557 unsigned int j;
3558 unsigned int found_cpu_match;
3559 unsigned int check_register;
3561 #if MAX_OPERANDS != 5
3562 # error "MAX_OPERANDS must be 5."
3563 #endif
3565 found_reverse_match = 0;
3566 addr_prefix_disp = -1;
3568 memset (&suffix_check, 0, sizeof (suffix_check));
3569 if (i.suffix == BYTE_MNEM_SUFFIX)
3570 suffix_check.no_bsuf = 1;
3571 else if (i.suffix == WORD_MNEM_SUFFIX)
3572 suffix_check.no_wsuf = 1;
3573 else if (i.suffix == SHORT_MNEM_SUFFIX)
3574 suffix_check.no_ssuf = 1;
3575 else if (i.suffix == LONG_MNEM_SUFFIX)
3576 suffix_check.no_lsuf = 1;
3577 else if (i.suffix == QWORD_MNEM_SUFFIX)
3578 suffix_check.no_qsuf = 1;
3579 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3580 suffix_check.no_ldsuf = 1;
3582 for (t = current_templates->start; t < current_templates->end; t++)
3584 addr_prefix_disp = -1;
3586 /* Must have right number of operands. */
3587 if (i.operands != t->operands)
3588 continue;
3590 /* Check processor support. */
3591 found_cpu_match = (cpu_flags_match (t)
3592 == CPU_FLAGS_PERFECT_MATCH);
3593 if (!found_cpu_match)
3594 continue;
3596 /* Check old gcc support. */
3597 if (!old_gcc && t->opcode_modifier.oldgcc)
3598 continue;
3600 /* Check AT&T mnemonic. */
3601 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3602 continue;
3604 /* Check AT&T syntax Intel syntax. */
3605 if ((intel_syntax && t->opcode_modifier.attsyntax)
3606 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3607 continue;
3609 /* Check the suffix, except for some instructions in intel mode. */
3610 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3611 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3612 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3613 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3614 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3615 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3616 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3617 continue;
3619 if (!operand_size_match (t))
3620 continue;
3622 for (j = 0; j < MAX_OPERANDS; j++)
3623 operand_types[j] = t->operand_types[j];
3625 /* In general, don't allow 64-bit operands in 32-bit mode. */
3626 if (i.suffix == QWORD_MNEM_SUFFIX
3627 && flag_code != CODE_64BIT
3628 && (intel_syntax
3629 ? (!t->opcode_modifier.ignoresize
3630 && !intel_float_operand (t->name))
3631 : intel_float_operand (t->name) != 2)
3632 && ((!operand_types[0].bitfield.regmmx
3633 && !operand_types[0].bitfield.regxmm
3634 && !operand_types[0].bitfield.regymm)
3635 || (!operand_types[t->operands > 1].bitfield.regmmx
3636 && !!operand_types[t->operands > 1].bitfield.regxmm
3637 && !!operand_types[t->operands > 1].bitfield.regymm))
3638 && (t->base_opcode != 0x0fc7
3639 || t->extension_opcode != 1 /* cmpxchg8b */))
3640 continue;
3642 /* In general, don't allow 32-bit operands on pre-386. */
3643 else if (i.suffix == LONG_MNEM_SUFFIX
3644 && !cpu_arch_flags.bitfield.cpui386
3645 && (intel_syntax
3646 ? (!t->opcode_modifier.ignoresize
3647 && !intel_float_operand (t->name))
3648 : intel_float_operand (t->name) != 2)
3649 && ((!operand_types[0].bitfield.regmmx
3650 && !operand_types[0].bitfield.regxmm)
3651 || (!operand_types[t->operands > 1].bitfield.regmmx
3652 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3653 continue;
3655 /* Do not verify operands when there are none. */
3656 else
3658 if (!t->operands)
3659 /* We've found a match; break out of loop. */
3660 break;
3663 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3664 into Disp32/Disp16/Disp32 operand. */
3665 if (i.prefix[ADDR_PREFIX] != 0)
3667 /* There should be only one Disp operand. */
3668 switch (flag_code)
3670 case CODE_16BIT:
3671 for (j = 0; j < MAX_OPERANDS; j++)
3673 if (operand_types[j].bitfield.disp16)
3675 addr_prefix_disp = j;
3676 operand_types[j].bitfield.disp32 = 1;
3677 operand_types[j].bitfield.disp16 = 0;
3678 break;
3681 break;
3682 case CODE_32BIT:
3683 for (j = 0; j < MAX_OPERANDS; j++)
3685 if (operand_types[j].bitfield.disp32)
3687 addr_prefix_disp = j;
3688 operand_types[j].bitfield.disp32 = 0;
3689 operand_types[j].bitfield.disp16 = 1;
3690 break;
3693 break;
3694 case CODE_64BIT:
3695 for (j = 0; j < MAX_OPERANDS; j++)
3697 if (operand_types[j].bitfield.disp64)
3699 addr_prefix_disp = j;
3700 operand_types[j].bitfield.disp64 = 0;
3701 operand_types[j].bitfield.disp32 = 1;
3702 break;
3705 break;
3709 /* We check register size only if size of operands can be
3710 encoded the canonical way. */
3711 check_register = t->opcode_modifier.w;
3712 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3713 switch (t->operands)
3715 case 1:
3716 if (!operand_type_match (overlap0, i.types[0]))
3717 continue;
3718 break;
3719 case 2:
3720 /* xchg %eax, %eax is a special case. It is an aliase for nop
3721 only in 32bit mode and we can use opcode 0x90. In 64bit
3722 mode, we can't use 0x90 for xchg %eax, %eax since it should
3723 zero-extend %eax to %rax. */
3724 if (flag_code == CODE_64BIT
3725 && t->base_opcode == 0x90
3726 && operand_type_equal (&i.types [0], &acc32)
3727 && operand_type_equal (&i.types [1], &acc32))
3728 continue;
3729 if (i.swap_operand)
3731 /* If we swap operand in encoding, we either match
3732 the next one or reverse direction of operands. */
3733 if (t->opcode_modifier.s)
3734 continue;
3735 else if (t->opcode_modifier.d)
3736 goto check_reverse;
3739 case 3:
3740 /* If we swap operand in encoding, we match the next one. */
3741 if (i.swap_operand && t->opcode_modifier.s)
3742 continue;
3743 case 4:
3744 case 5:
3745 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3746 if (!operand_type_match (overlap0, i.types[0])
3747 || !operand_type_match (overlap1, i.types[1])
3748 || (check_register
3749 && !operand_type_register_match (overlap0, i.types[0],
3750 operand_types[0],
3751 overlap1, i.types[1],
3752 operand_types[1])))
3754 /* Check if other direction is valid ... */
3755 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3756 continue;
3758 check_reverse:
3759 /* Try reversing direction of operands. */
3760 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3761 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3762 if (!operand_type_match (overlap0, i.types[0])
3763 || !operand_type_match (overlap1, i.types[1])
3764 || (check_register
3765 && !operand_type_register_match (overlap0,
3766 i.types[0],
3767 operand_types[1],
3768 overlap1,
3769 i.types[1],
3770 operand_types[0])))
3772 /* Does not match either direction. */
3773 continue;
3775 /* found_reverse_match holds which of D or FloatDR
3776 we've found. */
3777 if (t->opcode_modifier.d)
3778 found_reverse_match = Opcode_D;
3779 else if (t->opcode_modifier.floatd)
3780 found_reverse_match = Opcode_FloatD;
3781 else
3782 found_reverse_match = 0;
3783 if (t->opcode_modifier.floatr)
3784 found_reverse_match |= Opcode_FloatR;
3786 else
3788 /* Found a forward 2 operand match here. */
3789 switch (t->operands)
3791 case 5:
3792 overlap4 = operand_type_and (i.types[4],
3793 operand_types[4]);
3794 case 4:
3795 overlap3 = operand_type_and (i.types[3],
3796 operand_types[3]);
3797 case 3:
3798 overlap2 = operand_type_and (i.types[2],
3799 operand_types[2]);
3800 break;
3803 switch (t->operands)
3805 case 5:
3806 if (!operand_type_match (overlap4, i.types[4])
3807 || !operand_type_register_match (overlap3,
3808 i.types[3],
3809 operand_types[3],
3810 overlap4,
3811 i.types[4],
3812 operand_types[4]))
3813 continue;
3814 case 4:
3815 if (!operand_type_match (overlap3, i.types[3])
3816 || (check_register
3817 && !operand_type_register_match (overlap2,
3818 i.types[2],
3819 operand_types[2],
3820 overlap3,
3821 i.types[3],
3822 operand_types[3])))
3823 continue;
3824 case 3:
3825 /* Here we make use of the fact that there are no
3826 reverse match 3 operand instructions, and all 3
3827 operand instructions only need to be checked for
3828 register consistency between operands 2 and 3. */
3829 if (!operand_type_match (overlap2, i.types[2])
3830 || (check_register
3831 && !operand_type_register_match (overlap1,
3832 i.types[1],
3833 operand_types[1],
3834 overlap2,
3835 i.types[2],
3836 operand_types[2])))
3837 continue;
3838 break;
3841 /* Found either forward/reverse 2, 3 or 4 operand match here:
3842 slip through to break. */
3844 if (!found_cpu_match)
3846 found_reverse_match = 0;
3847 continue;
3850 /* We've found a match; break out of loop. */
3851 break;
3854 if (t == current_templates->end)
3856 /* We found no match. */
3857 if (intel_syntax)
3858 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3859 current_templates->start->name);
3860 else
3861 as_bad (_("suffix or operands invalid for `%s'"),
3862 current_templates->start->name);
3863 return NULL;
3866 if (!quiet_warnings)
3868 if (!intel_syntax
3869 && (i.types[0].bitfield.jumpabsolute
3870 != operand_types[0].bitfield.jumpabsolute))
3872 as_warn (_("indirect %s without `*'"), t->name);
3875 if (t->opcode_modifier.isprefix
3876 && t->opcode_modifier.ignoresize)
3878 /* Warn them that a data or address size prefix doesn't
3879 affect assembly of the next line of code. */
3880 as_warn (_("stand-alone `%s' prefix"), t->name);
3884 /* Copy the template we found. */
3885 i.tm = *t;
3887 if (addr_prefix_disp != -1)
3888 i.tm.operand_types[addr_prefix_disp]
3889 = operand_types[addr_prefix_disp];
3891 if (found_reverse_match)
3893 /* If we found a reverse match we must alter the opcode
3894 direction bit. found_reverse_match holds bits to change
3895 (different for int & float insns). */
3897 i.tm.base_opcode ^= found_reverse_match;
3899 i.tm.operand_types[0] = operand_types[1];
3900 i.tm.operand_types[1] = operand_types[0];
3903 return t;
3906 static int
3907 check_string (void)
3909 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3910 if (i.tm.operand_types[mem_op].bitfield.esseg)
3912 if (i.seg[0] != NULL && i.seg[0] != &es)
3914 as_bad (_("`%s' operand %d must use `%ses' segment"),
3915 i.tm.name,
3916 mem_op + 1,
3917 register_prefix);
3918 return 0;
3920 /* There's only ever one segment override allowed per instruction.
3921 This instruction possibly has a legal segment override on the
3922 second operand, so copy the segment to where non-string
3923 instructions store it, allowing common code. */
3924 i.seg[0] = i.seg[1];
3926 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3928 if (i.seg[1] != NULL && i.seg[1] != &es)
3930 as_bad (_("`%s' operand %d must use `%ses' segment"),
3931 i.tm.name,
3932 mem_op + 2,
3933 register_prefix);
3934 return 0;
3937 return 1;
3940 static int
3941 process_suffix (void)
3943 /* If matched instruction specifies an explicit instruction mnemonic
3944 suffix, use it. */
3945 if (i.tm.opcode_modifier.size16)
3946 i.suffix = WORD_MNEM_SUFFIX;
3947 else if (i.tm.opcode_modifier.size32)
3948 i.suffix = LONG_MNEM_SUFFIX;
3949 else if (i.tm.opcode_modifier.size64)
3950 i.suffix = QWORD_MNEM_SUFFIX;
3951 else if (i.reg_operands)
3953 /* If there's no instruction mnemonic suffix we try to invent one
3954 based on register operands. */
3955 if (!i.suffix)
3957 /* We take i.suffix from the last register operand specified,
3958 Destination register type is more significant than source
3959 register type. crc32 in SSE4.2 prefers source register
3960 type. */
3961 if (i.tm.base_opcode == 0xf20f38f1)
3963 if (i.types[0].bitfield.reg16)
3964 i.suffix = WORD_MNEM_SUFFIX;
3965 else if (i.types[0].bitfield.reg32)
3966 i.suffix = LONG_MNEM_SUFFIX;
3967 else if (i.types[0].bitfield.reg64)
3968 i.suffix = QWORD_MNEM_SUFFIX;
3970 else if (i.tm.base_opcode == 0xf20f38f0)
3972 if (i.types[0].bitfield.reg8)
3973 i.suffix = BYTE_MNEM_SUFFIX;
3976 if (!i.suffix)
3978 int op;
3980 if (i.tm.base_opcode == 0xf20f38f1
3981 || i.tm.base_opcode == 0xf20f38f0)
3983 /* We have to know the operand size for crc32. */
3984 as_bad (_("ambiguous memory operand size for `%s`"),
3985 i.tm.name);
3986 return 0;
3989 for (op = i.operands; --op >= 0;)
3990 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3992 if (i.types[op].bitfield.reg8)
3994 i.suffix = BYTE_MNEM_SUFFIX;
3995 break;
3997 else if (i.types[op].bitfield.reg16)
3999 i.suffix = WORD_MNEM_SUFFIX;
4000 break;
4002 else if (i.types[op].bitfield.reg32)
4004 i.suffix = LONG_MNEM_SUFFIX;
4005 break;
4007 else if (i.types[op].bitfield.reg64)
4009 i.suffix = QWORD_MNEM_SUFFIX;
4010 break;
4015 else if (i.suffix == BYTE_MNEM_SUFFIX)
4017 if (!check_byte_reg ())
4018 return 0;
4020 else if (i.suffix == LONG_MNEM_SUFFIX)
4022 if (!check_long_reg ())
4023 return 0;
4025 else if (i.suffix == QWORD_MNEM_SUFFIX)
4027 if (intel_syntax
4028 && i.tm.opcode_modifier.ignoresize
4029 && i.tm.opcode_modifier.no_qsuf)
4030 i.suffix = 0;
4031 else if (!check_qword_reg ())
4032 return 0;
4034 else if (i.suffix == WORD_MNEM_SUFFIX)
4036 if (!check_word_reg ())
4037 return 0;
4039 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4040 || i.suffix == YMMWORD_MNEM_SUFFIX)
4042 /* Skip if the instruction has x/y suffix. match_template
4043 should check if it is a valid suffix. */
4045 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4046 /* Do nothing if the instruction is going to ignore the prefix. */
4048 else
4049 abort ();
4051 else if (i.tm.opcode_modifier.defaultsize
4052 && !i.suffix
4053 /* exclude fldenv/frstor/fsave/fstenv */
4054 && i.tm.opcode_modifier.no_ssuf)
4056 i.suffix = stackop_size;
4058 else if (intel_syntax
4059 && !i.suffix
4060 && (i.tm.operand_types[0].bitfield.jumpabsolute
4061 || i.tm.opcode_modifier.jumpbyte
4062 || i.tm.opcode_modifier.jumpintersegment
4063 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4064 && i.tm.extension_opcode <= 3)))
4066 switch (flag_code)
4068 case CODE_64BIT:
4069 if (!i.tm.opcode_modifier.no_qsuf)
4071 i.suffix = QWORD_MNEM_SUFFIX;
4072 break;
4074 case CODE_32BIT:
4075 if (!i.tm.opcode_modifier.no_lsuf)
4076 i.suffix = LONG_MNEM_SUFFIX;
4077 break;
4078 case CODE_16BIT:
4079 if (!i.tm.opcode_modifier.no_wsuf)
4080 i.suffix = WORD_MNEM_SUFFIX;
4081 break;
4085 if (!i.suffix)
4087 if (!intel_syntax)
4089 if (i.tm.opcode_modifier.w)
4091 as_bad (_("no instruction mnemonic suffix given and "
4092 "no register operands; can't size instruction"));
4093 return 0;
4096 else
4098 unsigned int suffixes;
4100 suffixes = !i.tm.opcode_modifier.no_bsuf;
4101 if (!i.tm.opcode_modifier.no_wsuf)
4102 suffixes |= 1 << 1;
4103 if (!i.tm.opcode_modifier.no_lsuf)
4104 suffixes |= 1 << 2;
4105 if (!i.tm.opcode_modifier.no_ldsuf)
4106 suffixes |= 1 << 3;
4107 if (!i.tm.opcode_modifier.no_ssuf)
4108 suffixes |= 1 << 4;
4109 if (!i.tm.opcode_modifier.no_qsuf)
4110 suffixes |= 1 << 5;
4112 /* There are more than suffix matches. */
4113 if (i.tm.opcode_modifier.w
4114 || ((suffixes & (suffixes - 1))
4115 && !i.tm.opcode_modifier.defaultsize
4116 && !i.tm.opcode_modifier.ignoresize))
4118 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4119 return 0;
4124 /* Change the opcode based on the operand size given by i.suffix;
4125 We don't need to change things for byte insns. */
4127 if (i.suffix
4128 && i.suffix != BYTE_MNEM_SUFFIX
4129 && i.suffix != XMMWORD_MNEM_SUFFIX
4130 && i.suffix != YMMWORD_MNEM_SUFFIX)
4132 /* It's not a byte, select word/dword operation. */
4133 if (i.tm.opcode_modifier.w)
4135 if (i.tm.opcode_modifier.shortform)
4136 i.tm.base_opcode |= 8;
4137 else
4138 i.tm.base_opcode |= 1;
4141 /* Now select between word & dword operations via the operand
4142 size prefix, except for instructions that will ignore this
4143 prefix anyway. */
4144 if (i.tm.opcode_modifier.addrprefixop0)
4146 /* The address size override prefix changes the size of the
4147 first operand. */
4148 if ((flag_code == CODE_32BIT
4149 && i.op->regs[0].reg_type.bitfield.reg16)
4150 || (flag_code != CODE_32BIT
4151 && i.op->regs[0].reg_type.bitfield.reg32))
4152 if (!add_prefix (ADDR_PREFIX_OPCODE))
4153 return 0;
4155 else if (i.suffix != QWORD_MNEM_SUFFIX
4156 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4157 && !i.tm.opcode_modifier.ignoresize
4158 && !i.tm.opcode_modifier.floatmf
4159 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4160 || (flag_code == CODE_64BIT
4161 && i.tm.opcode_modifier.jumpbyte)))
4163 unsigned int prefix = DATA_PREFIX_OPCODE;
4165 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4166 prefix = ADDR_PREFIX_OPCODE;
4168 if (!add_prefix (prefix))
4169 return 0;
4172 /* Set mode64 for an operand. */
4173 if (i.suffix == QWORD_MNEM_SUFFIX
4174 && flag_code == CODE_64BIT
4175 && !i.tm.opcode_modifier.norex64)
4177 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4178 need rex64. cmpxchg8b is also a special case. */
4179 if (! (i.operands == 2
4180 && i.tm.base_opcode == 0x90
4181 && i.tm.extension_opcode == None
4182 && operand_type_equal (&i.types [0], &acc64)
4183 && operand_type_equal (&i.types [1], &acc64))
4184 && ! (i.operands == 1
4185 && i.tm.base_opcode == 0xfc7
4186 && i.tm.extension_opcode == 1
4187 && !operand_type_check (i.types [0], reg)
4188 && operand_type_check (i.types [0], anymem)))
4189 i.rex |= REX_W;
4192 /* Size floating point instruction. */
4193 if (i.suffix == LONG_MNEM_SUFFIX)
4194 if (i.tm.opcode_modifier.floatmf)
4195 i.tm.base_opcode ^= 4;
4198 return 1;
4201 static int
4202 check_byte_reg (void)
4204 int op;
4206 for (op = i.operands; --op >= 0;)
4208 /* If this is an eight bit register, it's OK. If it's the 16 or
4209 32 bit version of an eight bit register, we will just use the
4210 low portion, and that's OK too. */
4211 if (i.types[op].bitfield.reg8)
4212 continue;
4214 /* Don't generate this warning if not needed. */
4215 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
4216 continue;
4218 /* crc32 doesn't generate this warning. */
4219 if (i.tm.base_opcode == 0xf20f38f0)
4220 continue;
4222 if ((i.types[op].bitfield.reg16
4223 || i.types[op].bitfield.reg32
4224 || i.types[op].bitfield.reg64)
4225 && i.op[op].regs->reg_num < 4)
4227 /* Prohibit these changes in the 64bit mode, since the
4228 lowering is more complicated. */
4229 if (flag_code == CODE_64BIT
4230 && !i.tm.operand_types[op].bitfield.inoutportreg)
4232 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4233 register_prefix, i.op[op].regs->reg_name,
4234 i.suffix);
4235 return 0;
4237 #if REGISTER_WARNINGS
4238 if (!quiet_warnings
4239 && !i.tm.operand_types[op].bitfield.inoutportreg)
4240 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4241 register_prefix,
4242 (i.op[op].regs + (i.types[op].bitfield.reg16
4243 ? REGNAM_AL - REGNAM_AX
4244 : REGNAM_AL - REGNAM_EAX))->reg_name,
4245 register_prefix,
4246 i.op[op].regs->reg_name,
4247 i.suffix);
4248 #endif
4249 continue;
4251 /* Any other register is bad. */
4252 if (i.types[op].bitfield.reg16
4253 || i.types[op].bitfield.reg32
4254 || i.types[op].bitfield.reg64
4255 || i.types[op].bitfield.regmmx
4256 || i.types[op].bitfield.regxmm
4257 || i.types[op].bitfield.regymm
4258 || i.types[op].bitfield.sreg2
4259 || i.types[op].bitfield.sreg3
4260 || i.types[op].bitfield.control
4261 || i.types[op].bitfield.debug
4262 || i.types[op].bitfield.test
4263 || i.types[op].bitfield.floatreg
4264 || i.types[op].bitfield.floatacc)
4266 as_bad (_("`%s%s' not allowed with `%s%c'"),
4267 register_prefix,
4268 i.op[op].regs->reg_name,
4269 i.tm.name,
4270 i.suffix);
4271 return 0;
4274 return 1;
4277 static int
4278 check_long_reg (void)
4280 int op;
4282 for (op = i.operands; --op >= 0;)
4283 /* Reject eight bit registers, except where the template requires
4284 them. (eg. movzb) */
4285 if (i.types[op].bitfield.reg8
4286 && (i.tm.operand_types[op].bitfield.reg16
4287 || i.tm.operand_types[op].bitfield.reg32
4288 || i.tm.operand_types[op].bitfield.acc))
4290 as_bad (_("`%s%s' not allowed with `%s%c'"),
4291 register_prefix,
4292 i.op[op].regs->reg_name,
4293 i.tm.name,
4294 i.suffix);
4295 return 0;
4297 /* Warn if the e prefix on a general reg is missing. */
4298 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4299 && i.types[op].bitfield.reg16
4300 && (i.tm.operand_types[op].bitfield.reg32
4301 || i.tm.operand_types[op].bitfield.acc))
4303 /* Prohibit these changes in the 64bit mode, since the
4304 lowering is more complicated. */
4305 if (flag_code == CODE_64BIT)
4307 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4308 register_prefix, i.op[op].regs->reg_name,
4309 i.suffix);
4310 return 0;
4312 #if REGISTER_WARNINGS
4313 else
4314 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4315 register_prefix,
4316 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4317 register_prefix,
4318 i.op[op].regs->reg_name,
4319 i.suffix);
4320 #endif
4322 /* Warn if the r prefix on a general reg is missing. */
4323 else if (i.types[op].bitfield.reg64
4324 && (i.tm.operand_types[op].bitfield.reg32
4325 || i.tm.operand_types[op].bitfield.acc))
4327 if (intel_syntax
4328 && i.tm.opcode_modifier.toqword
4329 && !i.types[0].bitfield.regxmm)
4331 /* Convert to QWORD. We want REX byte. */
4332 i.suffix = QWORD_MNEM_SUFFIX;
4334 else
4336 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4337 register_prefix, i.op[op].regs->reg_name,
4338 i.suffix);
4339 return 0;
4342 return 1;
4345 static int
4346 check_qword_reg (void)
4348 int op;
4350 for (op = i.operands; --op >= 0; )
4351 /* Reject eight bit registers, except where the template requires
4352 them. (eg. movzb) */
4353 if (i.types[op].bitfield.reg8
4354 && (i.tm.operand_types[op].bitfield.reg16
4355 || i.tm.operand_types[op].bitfield.reg32
4356 || i.tm.operand_types[op].bitfield.acc))
4358 as_bad (_("`%s%s' not allowed with `%s%c'"),
4359 register_prefix,
4360 i.op[op].regs->reg_name,
4361 i.tm.name,
4362 i.suffix);
4363 return 0;
4365 /* Warn if the e prefix on a general reg is missing. */
4366 else if ((i.types[op].bitfield.reg16
4367 || i.types[op].bitfield.reg32)
4368 && (i.tm.operand_types[op].bitfield.reg32
4369 || i.tm.operand_types[op].bitfield.acc))
4371 /* Prohibit these changes in the 64bit mode, since the
4372 lowering is more complicated. */
4373 if (intel_syntax
4374 && i.tm.opcode_modifier.todword
4375 && !i.types[0].bitfield.regxmm)
4377 /* Convert to DWORD. We don't want REX byte. */
4378 i.suffix = LONG_MNEM_SUFFIX;
4380 else
4382 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4383 register_prefix, i.op[op].regs->reg_name,
4384 i.suffix);
4385 return 0;
4388 return 1;
4391 static int
4392 check_word_reg (void)
4394 int op;
4395 for (op = i.operands; --op >= 0;)
4396 /* Reject eight bit registers, except where the template requires
4397 them. (eg. movzb) */
4398 if (i.types[op].bitfield.reg8
4399 && (i.tm.operand_types[op].bitfield.reg16
4400 || i.tm.operand_types[op].bitfield.reg32
4401 || i.tm.operand_types[op].bitfield.acc))
4403 as_bad (_("`%s%s' not allowed with `%s%c'"),
4404 register_prefix,
4405 i.op[op].regs->reg_name,
4406 i.tm.name,
4407 i.suffix);
4408 return 0;
4410 /* Warn if the e prefix on a general reg is present. */
4411 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4412 && i.types[op].bitfield.reg32
4413 && (i.tm.operand_types[op].bitfield.reg16
4414 || i.tm.operand_types[op].bitfield.acc))
4416 /* Prohibit these changes in the 64bit mode, since the
4417 lowering is more complicated. */
4418 if (flag_code == CODE_64BIT)
4420 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4421 register_prefix, i.op[op].regs->reg_name,
4422 i.suffix);
4423 return 0;
4425 else
4426 #if REGISTER_WARNINGS
4427 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4428 register_prefix,
4429 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4430 register_prefix,
4431 i.op[op].regs->reg_name,
4432 i.suffix);
4433 #endif
4435 return 1;
4438 static int
4439 update_imm (unsigned int j)
4441 i386_operand_type overlap = i.types[j];
4442 if ((overlap.bitfield.imm8
4443 || overlap.bitfield.imm8s
4444 || overlap.bitfield.imm16
4445 || overlap.bitfield.imm32
4446 || overlap.bitfield.imm32s
4447 || overlap.bitfield.imm64)
4448 && !operand_type_equal (&overlap, &imm8)
4449 && !operand_type_equal (&overlap, &imm8s)
4450 && !operand_type_equal (&overlap, &imm16)
4451 && !operand_type_equal (&overlap, &imm32)
4452 && !operand_type_equal (&overlap, &imm32s)
4453 && !operand_type_equal (&overlap, &imm64))
4455 if (i.suffix)
4457 i386_operand_type temp;
4459 operand_type_set (&temp, 0);
4460 if (i.suffix == BYTE_MNEM_SUFFIX)
4462 temp.bitfield.imm8 = overlap.bitfield.imm8;
4463 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4465 else if (i.suffix == WORD_MNEM_SUFFIX)
4466 temp.bitfield.imm16 = overlap.bitfield.imm16;
4467 else if (i.suffix == QWORD_MNEM_SUFFIX)
4469 temp.bitfield.imm64 = overlap.bitfield.imm64;
4470 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4472 else
4473 temp.bitfield.imm32 = overlap.bitfield.imm32;
4474 overlap = temp;
4476 else if (operand_type_equal (&overlap, &imm16_32_32s)
4477 || operand_type_equal (&overlap, &imm16_32)
4478 || operand_type_equal (&overlap, &imm16_32s))
4480 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4481 overlap = imm16;
4482 else
4483 overlap = imm32s;
4485 if (!operand_type_equal (&overlap, &imm8)
4486 && !operand_type_equal (&overlap, &imm8s)
4487 && !operand_type_equal (&overlap, &imm16)
4488 && !operand_type_equal (&overlap, &imm32)
4489 && !operand_type_equal (&overlap, &imm32s)
4490 && !operand_type_equal (&overlap, &imm64))
4492 as_bad (_("no instruction mnemonic suffix given; "
4493 "can't determine immediate size"));
4494 return 0;
4497 i.types[j] = overlap;
4499 return 1;
4502 static int
4503 finalize_imm (void)
4505 unsigned int j, n;
4507 /* Update the first 2 immediate operands. */
4508 n = i.operands > 2 ? 2 : i.operands;
4509 if (n)
4511 for (j = 0; j < n; j++)
4512 if (update_imm (j) == 0)
4513 return 0;
4515 /* The 3rd operand can't be immediate operand. */
4516 gas_assert (operand_type_check (i.types[2], imm) == 0);
4519 return 1;
4522 static int
4523 bad_implicit_operand (int xmm)
4525 const char *reg = xmm ? "xmm0" : "ymm0";
4526 if (intel_syntax)
4527 as_bad (_("the last operand of `%s' must be `%s%s'"),
4528 i.tm.name, register_prefix, reg);
4529 else
4530 as_bad (_("the first operand of `%s' must be `%s%s'"),
4531 i.tm.name, register_prefix, reg);
4532 return 0;
4535 static int
4536 process_operands (void)
4538 /* Default segment register this instruction will use for memory
4539 accesses. 0 means unknown. This is only for optimizing out
4540 unnecessary segment overrides. */
4541 const seg_entry *default_seg = 0;
4543 if (i.tm.opcode_modifier.sse2avx
4544 && (i.tm.opcode_modifier.vexnds
4545 || i.tm.opcode_modifier.vexndd))
4547 unsigned int dup = i.operands;
4548 unsigned int dest = dup - 1;
4549 unsigned int j;
4551 /* The destination must be an xmm register. */
4552 gas_assert (i.reg_operands
4553 && MAX_OPERANDS > dup
4554 && operand_type_equal (&i.types[dest], &regxmm));
4556 if (i.tm.opcode_modifier.firstxmm0)
4558 /* The first operand is implicit and must be xmm0. */
4559 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4560 if (i.op[0].regs->reg_num != 0)
4561 return bad_implicit_operand (1);
4563 if (i.tm.opcode_modifier.vex3sources)
4565 /* Keep xmm0 for instructions with VEX prefix and 3
4566 sources. */
4567 goto duplicate;
4569 else
4571 /* We remove the first xmm0 and keep the number of
4572 operands unchanged, which in fact duplicates the
4573 destination. */
4574 for (j = 1; j < i.operands; j++)
4576 i.op[j - 1] = i.op[j];
4577 i.types[j - 1] = i.types[j];
4578 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4582 else if (i.tm.opcode_modifier.implicit1stxmm0)
4584 gas_assert ((MAX_OPERANDS - 1) > dup
4585 && i.tm.opcode_modifier.vex3sources);
4587 /* Add the implicit xmm0 for instructions with VEX prefix
4588 and 3 sources. */
4589 for (j = i.operands; j > 0; j--)
4591 i.op[j] = i.op[j - 1];
4592 i.types[j] = i.types[j - 1];
4593 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4595 i.op[0].regs
4596 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4597 i.types[0] = regxmm;
4598 i.tm.operand_types[0] = regxmm;
4600 i.operands += 2;
4601 i.reg_operands += 2;
4602 i.tm.operands += 2;
4604 dup++;
4605 dest++;
4606 i.op[dup] = i.op[dest];
4607 i.types[dup] = i.types[dest];
4608 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4610 else
4612 duplicate:
4613 i.operands++;
4614 i.reg_operands++;
4615 i.tm.operands++;
4617 i.op[dup] = i.op[dest];
4618 i.types[dup] = i.types[dest];
4619 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4622 if (i.tm.opcode_modifier.immext)
4623 process_immext ();
4625 else if (i.tm.opcode_modifier.firstxmm0)
4627 unsigned int j;
4629 /* The first operand is implicit and must be xmm0/ymm0. */
4630 gas_assert (i.reg_operands
4631 && (operand_type_equal (&i.types[0], &regxmm)
4632 || operand_type_equal (&i.types[0], &regymm)));
4633 if (i.op[0].regs->reg_num != 0)
4634 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4636 for (j = 1; j < i.operands; j++)
4638 i.op[j - 1] = i.op[j];
4639 i.types[j - 1] = i.types[j];
4641 /* We need to adjust fields in i.tm since they are used by
4642 build_modrm_byte. */
4643 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4646 i.operands--;
4647 i.reg_operands--;
4648 i.tm.operands--;
4650 else if (i.tm.opcode_modifier.regkludge)
4652 /* The imul $imm, %reg instruction is converted into
4653 imul $imm, %reg, %reg, and the clr %reg instruction
4654 is converted into xor %reg, %reg. */
4656 unsigned int first_reg_op;
4658 if (operand_type_check (i.types[0], reg))
4659 first_reg_op = 0;
4660 else
4661 first_reg_op = 1;
4662 /* Pretend we saw the extra register operand. */
4663 gas_assert (i.reg_operands == 1
4664 && i.op[first_reg_op + 1].regs == 0);
4665 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4666 i.types[first_reg_op + 1] = i.types[first_reg_op];
4667 i.operands++;
4668 i.reg_operands++;
4671 if (i.tm.opcode_modifier.shortform)
4673 if (i.types[0].bitfield.sreg2
4674 || i.types[0].bitfield.sreg3)
4676 if (i.tm.base_opcode == POP_SEG_SHORT
4677 && i.op[0].regs->reg_num == 1)
4679 as_bad (_("you can't `pop %scs'"), register_prefix);
4680 return 0;
4682 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4683 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4684 i.rex |= REX_B;
4686 else
4688 /* The register or float register operand is in operand
4689 0 or 1. */
4690 unsigned int op;
4692 if (i.types[0].bitfield.floatreg
4693 || operand_type_check (i.types[0], reg))
4694 op = 0;
4695 else
4696 op = 1;
4697 /* Register goes in low 3 bits of opcode. */
4698 i.tm.base_opcode |= i.op[op].regs->reg_num;
4699 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4700 i.rex |= REX_B;
4701 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4703 /* Warn about some common errors, but press on regardless.
4704 The first case can be generated by gcc (<= 2.8.1). */
4705 if (i.operands == 2)
4707 /* Reversed arguments on faddp, fsubp, etc. */
4708 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4709 register_prefix, i.op[!intel_syntax].regs->reg_name,
4710 register_prefix, i.op[intel_syntax].regs->reg_name);
4712 else
4714 /* Extraneous `l' suffix on fp insn. */
4715 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4716 register_prefix, i.op[0].regs->reg_name);
4721 else if (i.tm.opcode_modifier.modrm)
4723 /* The opcode is completed (modulo i.tm.extension_opcode which
4724 must be put into the modrm byte). Now, we make the modrm and
4725 index base bytes based on all the info we've collected. */
4727 default_seg = build_modrm_byte ();
4729 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4731 default_seg = &ds;
4733 else if (i.tm.opcode_modifier.isstring)
4735 /* For the string instructions that allow a segment override
4736 on one of their operands, the default segment is ds. */
4737 default_seg = &ds;
4740 if (i.tm.base_opcode == 0x8d /* lea */
4741 && i.seg[0]
4742 && !quiet_warnings)
4743 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4745 /* If a segment was explicitly specified, and the specified segment
4746 is not the default, use an opcode prefix to select it. If we
4747 never figured out what the default segment is, then default_seg
4748 will be zero at this point, and the specified segment prefix will
4749 always be used. */
4750 if ((i.seg[0]) && (i.seg[0] != default_seg))
4752 if (!add_prefix (i.seg[0]->seg_prefix))
4753 return 0;
4755 return 1;
4758 static const seg_entry *
4759 build_modrm_byte (void)
4761 const seg_entry *default_seg = 0;
4762 unsigned int source, dest;
4763 int vex_3_sources;
4765 /* The first operand of instructions with VEX prefix and 3 sources
4766 must be VEX_Imm4. */
4767 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4768 if (vex_3_sources)
4770 unsigned int nds, reg;
4772 if (i.tm.opcode_modifier.veximmext
4773 && i.tm.opcode_modifier.immext)
4775 dest = i.operands - 2;
4776 gas_assert (dest == 3);
4778 else
4779 dest = i.operands - 1;
4780 nds = dest - 1;
4782 /* This instruction must have 4 register operands
4783 or 3 register operands plus 1 memory operand.
4784 It must have VexNDS and VexImmExt. */
4785 gas_assert ((i.reg_operands == 4
4786 || (i.reg_operands == 3 && i.mem_operands == 1))
4787 && i.tm.opcode_modifier.vexnds
4788 && i.tm.opcode_modifier.veximmext
4789 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
4790 || operand_type_equal (&i.tm.operand_types[dest], &regymm)));
4792 /* Generate an 8bit immediate operand to encode the register
4793 operand. */
4794 expressionS *exp = &im_expressions[i.imm_operands++];
4795 i.op[i.operands].imms = exp;
4796 i.types[i.operands] = imm8;
4797 i.operands++;
4798 /* If VexW1 is set, the first operand is the source and
4799 the second operand is encoded in the immediate operand. */
4800 if (i.tm.opcode_modifier.vexw1)
4802 source = 0;
4803 reg = 1;
4805 else
4807 source = 1;
4808 reg = 0;
4810 /* FMA4 swaps REG and NDS. */
4811 if (i.tm.cpu_flags.bitfield.cpufma4)
4813 unsigned int tmp;
4814 tmp = reg;
4815 reg = nds;
4816 nds = tmp;
4818 gas_assert ((operand_type_equal (&i.tm.operand_types[reg], &regxmm)
4819 || operand_type_equal (&i.tm.operand_types[reg],
4820 &regymm))
4821 && (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
4822 || operand_type_equal (&i.tm.operand_types[nds],
4823 &regymm)));
4824 exp->X_op = O_constant;
4825 exp->X_add_number
4826 = ((i.op[reg].regs->reg_num
4827 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
4828 i.vex.register_specifier = i.op[nds].regs;
4830 else
4831 source = dest = 0;
4833 /* i.reg_operands MUST be the number of real register operands;
4834 implicit registers do not count. If there are 3 register
4835 operands, it must be a instruction with VexNDS. For a
4836 instruction with VexNDD, the destination register is encoded
4837 in VEX prefix. If there are 4 register operands, it must be
4838 a instruction with VEX prefix and 3 sources. */
4839 if (i.mem_operands == 0
4840 && ((i.reg_operands == 2
4841 && !i.tm.opcode_modifier.vexndd)
4842 || (i.reg_operands == 3
4843 && i.tm.opcode_modifier.vexnds)
4844 || (i.reg_operands == 4 && vex_3_sources)))
4846 switch (i.operands)
4848 case 2:
4849 source = 0;
4850 break;
4851 case 3:
4852 /* When there are 3 operands, one of them may be immediate,
4853 which may be the first or the last operand. Otherwise,
4854 the first operand must be shift count register (cl) or it
4855 is an instruction with VexNDS. */
4856 gas_assert (i.imm_operands == 1
4857 || (i.imm_operands == 0
4858 && (i.tm.opcode_modifier.vexnds
4859 || i.types[0].bitfield.shiftcount)));
4860 if (operand_type_check (i.types[0], imm)
4861 || i.types[0].bitfield.shiftcount)
4862 source = 1;
4863 else
4864 source = 0;
4865 break;
4866 case 4:
4867 /* When there are 4 operands, the first two must be 8bit
4868 immediate operands. The source operand will be the 3rd
4869 one.
4871 For instructions with VexNDS, if the first operand
4872 an imm8, the source operand is the 2nd one. If the last
4873 operand is imm8, the source operand is the first one. */
4874 gas_assert ((i.imm_operands == 2
4875 && i.types[0].bitfield.imm8
4876 && i.types[1].bitfield.imm8)
4877 || (i.tm.opcode_modifier.vexnds
4878 && i.imm_operands == 1
4879 && (i.types[0].bitfield.imm8
4880 || i.types[i.operands - 1].bitfield.imm8)));
4881 if (i.tm.opcode_modifier.vexnds)
4883 if (i.types[0].bitfield.imm8)
4884 source = 1;
4885 else
4886 source = 0;
4888 else
4889 source = 2;
4890 break;
4891 case 5:
4892 break;
4893 default:
4894 abort ();
4897 if (!vex_3_sources)
4899 dest = source + 1;
4901 if (i.tm.opcode_modifier.vexnds)
4903 /* For instructions with VexNDS, the register-only
4904 source operand must be XMM or YMM register. It is
4905 encoded in VEX prefix. We need to clear RegMem bit
4906 before calling operand_type_equal. */
4907 i386_operand_type op = i.tm.operand_types[dest];
4908 op.bitfield.regmem = 0;
4909 if ((dest + 1) >= i.operands
4910 || (!operand_type_equal (&op, &regxmm)
4911 && !operand_type_equal (&op, &regymm)))
4912 abort ();
4913 i.vex.register_specifier = i.op[dest].regs;
4914 dest++;
4918 i.rm.mode = 3;
4919 /* One of the register operands will be encoded in the i.tm.reg
4920 field, the other in the combined i.tm.mode and i.tm.regmem
4921 fields. If no form of this instruction supports a memory
4922 destination operand, then we assume the source operand may
4923 sometimes be a memory operand and so we need to store the
4924 destination in the i.rm.reg field. */
4925 if (!i.tm.operand_types[dest].bitfield.regmem
4926 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4928 i.rm.reg = i.op[dest].regs->reg_num;
4929 i.rm.regmem = i.op[source].regs->reg_num;
4930 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4931 i.rex |= REX_R;
4932 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4933 i.rex |= REX_B;
4935 else
4937 i.rm.reg = i.op[source].regs->reg_num;
4938 i.rm.regmem = i.op[dest].regs->reg_num;
4939 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4940 i.rex |= REX_B;
4941 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4942 i.rex |= REX_R;
4944 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4946 if (!i.types[0].bitfield.control
4947 && !i.types[1].bitfield.control)
4948 abort ();
4949 i.rex &= ~(REX_R | REX_B);
4950 add_prefix (LOCK_PREFIX_OPCODE);
4953 else
4954 { /* If it's not 2 reg operands... */
4955 unsigned int mem;
4957 if (i.mem_operands)
4959 unsigned int fake_zero_displacement = 0;
4960 unsigned int op;
4962 for (op = 0; op < i.operands; op++)
4963 if (operand_type_check (i.types[op], anymem))
4964 break;
4965 gas_assert (op < i.operands);
4967 default_seg = &ds;
4969 if (i.base_reg == 0)
4971 i.rm.mode = 0;
4972 if (!i.disp_operands)
4973 fake_zero_displacement = 1;
4974 if (i.index_reg == 0)
4976 /* Operand is just <disp> */
4977 if (flag_code == CODE_64BIT)
4979 /* 64bit mode overwrites the 32bit absolute
4980 addressing by RIP relative addressing and
4981 absolute addressing is encoded by one of the
4982 redundant SIB forms. */
4983 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4984 i.sib.base = NO_BASE_REGISTER;
4985 i.sib.index = NO_INDEX_REGISTER;
4986 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4987 ? disp32s : disp32);
4989 else if ((flag_code == CODE_16BIT)
4990 ^ (i.prefix[ADDR_PREFIX] != 0))
4992 i.rm.regmem = NO_BASE_REGISTER_16;
4993 i.types[op] = disp16;
4995 else
4997 i.rm.regmem = NO_BASE_REGISTER;
4998 i.types[op] = disp32;
5001 else /* !i.base_reg && i.index_reg */
5003 if (i.index_reg->reg_num == RegEiz
5004 || i.index_reg->reg_num == RegRiz)
5005 i.sib.index = NO_INDEX_REGISTER;
5006 else
5007 i.sib.index = i.index_reg->reg_num;
5008 i.sib.base = NO_BASE_REGISTER;
5009 i.sib.scale = i.log2_scale_factor;
5010 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5011 i.types[op].bitfield.disp8 = 0;
5012 i.types[op].bitfield.disp16 = 0;
5013 i.types[op].bitfield.disp64 = 0;
5014 if (flag_code != CODE_64BIT)
5016 /* Must be 32 bit */
5017 i.types[op].bitfield.disp32 = 1;
5018 i.types[op].bitfield.disp32s = 0;
5020 else
5022 i.types[op].bitfield.disp32 = 0;
5023 i.types[op].bitfield.disp32s = 1;
5025 if ((i.index_reg->reg_flags & RegRex) != 0)
5026 i.rex |= REX_X;
5029 /* RIP addressing for 64bit mode. */
5030 else if (i.base_reg->reg_num == RegRip ||
5031 i.base_reg->reg_num == RegEip)
5033 i.rm.regmem = NO_BASE_REGISTER;
5034 i.types[op].bitfield.disp8 = 0;
5035 i.types[op].bitfield.disp16 = 0;
5036 i.types[op].bitfield.disp32 = 0;
5037 i.types[op].bitfield.disp32s = 1;
5038 i.types[op].bitfield.disp64 = 0;
5039 i.flags[op] |= Operand_PCrel;
5040 if (! i.disp_operands)
5041 fake_zero_displacement = 1;
5043 else if (i.base_reg->reg_type.bitfield.reg16)
5045 switch (i.base_reg->reg_num)
5047 case 3: /* (%bx) */
5048 if (i.index_reg == 0)
5049 i.rm.regmem = 7;
5050 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5051 i.rm.regmem = i.index_reg->reg_num - 6;
5052 break;
5053 case 5: /* (%bp) */
5054 default_seg = &ss;
5055 if (i.index_reg == 0)
5057 i.rm.regmem = 6;
5058 if (operand_type_check (i.types[op], disp) == 0)
5060 /* fake (%bp) into 0(%bp) */
5061 i.types[op].bitfield.disp8 = 1;
5062 fake_zero_displacement = 1;
5065 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5066 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5067 break;
5068 default: /* (%si) -> 4 or (%di) -> 5 */
5069 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5071 i.rm.mode = mode_from_disp_size (i.types[op]);
5073 else /* i.base_reg and 32/64 bit mode */
5075 if (flag_code == CODE_64BIT
5076 && operand_type_check (i.types[op], disp))
5078 i386_operand_type temp;
5079 operand_type_set (&temp, 0);
5080 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5081 i.types[op] = temp;
5082 if (i.prefix[ADDR_PREFIX] == 0)
5083 i.types[op].bitfield.disp32s = 1;
5084 else
5085 i.types[op].bitfield.disp32 = 1;
5088 i.rm.regmem = i.base_reg->reg_num;
5089 if ((i.base_reg->reg_flags & RegRex) != 0)
5090 i.rex |= REX_B;
5091 i.sib.base = i.base_reg->reg_num;
5092 /* x86-64 ignores REX prefix bit here to avoid decoder
5093 complications. */
5094 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5096 default_seg = &ss;
5097 if (i.disp_operands == 0)
5099 fake_zero_displacement = 1;
5100 i.types[op].bitfield.disp8 = 1;
5103 else if (i.base_reg->reg_num == ESP_REG_NUM)
5105 default_seg = &ss;
5107 i.sib.scale = i.log2_scale_factor;
5108 if (i.index_reg == 0)
5110 /* <disp>(%esp) becomes two byte modrm with no index
5111 register. We've already stored the code for esp
5112 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5113 Any base register besides %esp will not use the
5114 extra modrm byte. */
5115 i.sib.index = NO_INDEX_REGISTER;
5117 else
5119 if (i.index_reg->reg_num == RegEiz
5120 || i.index_reg->reg_num == RegRiz)
5121 i.sib.index = NO_INDEX_REGISTER;
5122 else
5123 i.sib.index = i.index_reg->reg_num;
5124 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5125 if ((i.index_reg->reg_flags & RegRex) != 0)
5126 i.rex |= REX_X;
5129 if (i.disp_operands
5130 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5131 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5132 i.rm.mode = 0;
5133 else
5134 i.rm.mode = mode_from_disp_size (i.types[op]);
5137 if (fake_zero_displacement)
5139 /* Fakes a zero displacement assuming that i.types[op]
5140 holds the correct displacement size. */
5141 expressionS *exp;
5143 gas_assert (i.op[op].disps == 0);
5144 exp = &disp_expressions[i.disp_operands++];
5145 i.op[op].disps = exp;
5146 exp->X_op = O_constant;
5147 exp->X_add_number = 0;
5148 exp->X_add_symbol = (symbolS *) 0;
5149 exp->X_op_symbol = (symbolS *) 0;
5152 mem = op;
5154 else
5155 mem = ~0;
5157 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5158 (if any) based on i.tm.extension_opcode. Again, we must be
5159 careful to make sure that segment/control/debug/test/MMX
5160 registers are coded into the i.rm.reg field. */
5161 if (i.reg_operands)
5163 unsigned int op;
5164 unsigned int vex_reg = ~0;
5166 for (op = 0; op < i.operands; op++)
5167 if (i.types[op].bitfield.reg8
5168 || i.types[op].bitfield.reg16
5169 || i.types[op].bitfield.reg32
5170 || i.types[op].bitfield.reg64
5171 || i.types[op].bitfield.regmmx
5172 || i.types[op].bitfield.regxmm
5173 || i.types[op].bitfield.regymm
5174 || i.types[op].bitfield.sreg2
5175 || i.types[op].bitfield.sreg3
5176 || i.types[op].bitfield.control
5177 || i.types[op].bitfield.debug
5178 || i.types[op].bitfield.test)
5179 break;
5181 if (vex_3_sources)
5182 op = dest;
5183 else if (i.tm.opcode_modifier.vexnds)
5185 /* For instructions with VexNDS, the register-only
5186 source operand is encoded in VEX prefix. */
5187 gas_assert (mem != (unsigned int) ~0);
5189 if (op > mem)
5191 vex_reg = op++;
5192 gas_assert (op < i.operands);
5194 else
5196 vex_reg = op + 1;
5197 gas_assert (vex_reg < i.operands);
5200 else if (i.tm.opcode_modifier.vexndd)
5202 /* For instructions with VexNDD, there should be
5203 no memory operand and the register destination
5204 is encoded in VEX prefix. */
5205 gas_assert (i.mem_operands == 0
5206 && (op + 2) == i.operands);
5207 vex_reg = op + 1;
5209 else
5210 gas_assert (op < i.operands);
5212 if (vex_reg != (unsigned int) ~0)
5214 gas_assert (i.reg_operands == 2);
5216 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5217 & regxmm)
5218 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5219 &regymm))
5220 abort ();
5221 i.vex.register_specifier = i.op[vex_reg].regs;
5224 /* If there is an extension opcode to put here, the
5225 register number must be put into the regmem field. */
5226 if (i.tm.extension_opcode != None)
5228 i.rm.regmem = i.op[op].regs->reg_num;
5229 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5230 i.rex |= REX_B;
5232 else
5234 i.rm.reg = i.op[op].regs->reg_num;
5235 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5236 i.rex |= REX_R;
5239 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5240 must set it to 3 to indicate this is a register operand
5241 in the regmem field. */
5242 if (!i.mem_operands)
5243 i.rm.mode = 3;
5246 /* Fill in i.rm.reg field with extension opcode (if any). */
5247 if (i.tm.extension_opcode != None)
5248 i.rm.reg = i.tm.extension_opcode;
5250 return default_seg;
5253 static void
5254 output_branch (void)
5256 char *p;
5257 int code16;
5258 int prefix;
5259 relax_substateT subtype;
5260 symbolS *sym;
5261 offsetT off;
5263 code16 = 0;
5264 if (flag_code == CODE_16BIT)
5265 code16 = CODE16;
5267 prefix = 0;
5268 if (i.prefix[DATA_PREFIX] != 0)
5270 prefix = 1;
5271 i.prefixes -= 1;
5272 code16 ^= CODE16;
5274 /* Pentium4 branch hints. */
5275 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5276 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5278 prefix++;
5279 i.prefixes--;
5281 if (i.prefix[REX_PREFIX] != 0)
5283 prefix++;
5284 i.prefixes--;
5287 if (i.prefixes != 0 && !intel_syntax)
5288 as_warn (_("skipping prefixes on this instruction"));
5290 /* It's always a symbol; End frag & setup for relax.
5291 Make sure there is enough room in this frag for the largest
5292 instruction we may generate in md_convert_frag. This is 2
5293 bytes for the opcode and room for the prefix and largest
5294 displacement. */
5295 frag_grow (prefix + 2 + 4);
5296 /* Prefix and 1 opcode byte go in fr_fix. */
5297 p = frag_more (prefix + 1);
5298 if (i.prefix[DATA_PREFIX] != 0)
5299 *p++ = DATA_PREFIX_OPCODE;
5300 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5301 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5302 *p++ = i.prefix[SEG_PREFIX];
5303 if (i.prefix[REX_PREFIX] != 0)
5304 *p++ = i.prefix[REX_PREFIX];
5305 *p = i.tm.base_opcode;
5307 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5308 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5309 else if (cpu_arch_flags.bitfield.cpui386)
5310 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5311 else
5312 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5313 subtype |= code16;
5315 sym = i.op[0].disps->X_add_symbol;
5316 off = i.op[0].disps->X_add_number;
5318 if (i.op[0].disps->X_op != O_constant
5319 && i.op[0].disps->X_op != O_symbol)
5321 /* Handle complex expressions. */
5322 sym = make_expr_symbol (i.op[0].disps);
5323 off = 0;
5326 /* 1 possible extra opcode + 4 byte displacement go in var part.
5327 Pass reloc in fr_var. */
5328 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5331 static void
5332 output_jump (void)
5334 char *p;
5335 int size;
5336 fixS *fixP;
5338 if (i.tm.opcode_modifier.jumpbyte)
5340 /* This is a loop or jecxz type instruction. */
5341 size = 1;
5342 if (i.prefix[ADDR_PREFIX] != 0)
5344 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5345 i.prefixes -= 1;
5347 /* Pentium4 branch hints. */
5348 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5349 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5351 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5352 i.prefixes--;
5355 else
5357 int code16;
5359 code16 = 0;
5360 if (flag_code == CODE_16BIT)
5361 code16 = CODE16;
5363 if (i.prefix[DATA_PREFIX] != 0)
5365 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5366 i.prefixes -= 1;
5367 code16 ^= CODE16;
5370 size = 4;
5371 if (code16)
5372 size = 2;
5375 if (i.prefix[REX_PREFIX] != 0)
5377 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5378 i.prefixes -= 1;
5381 if (i.prefixes != 0 && !intel_syntax)
5382 as_warn (_("skipping prefixes on this instruction"));
5384 p = frag_more (1 + size);
5385 *p++ = i.tm.base_opcode;
5387 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5388 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5390 /* All jumps handled here are signed, but don't use a signed limit
5391 check for 32 and 16 bit jumps as we want to allow wrap around at
5392 4G and 64k respectively. */
5393 if (size == 1)
5394 fixP->fx_signed = 1;
5397 static void
5398 output_interseg_jump (void)
5400 char *p;
5401 int size;
5402 int prefix;
5403 int code16;
5405 code16 = 0;
5406 if (flag_code == CODE_16BIT)
5407 code16 = CODE16;
5409 prefix = 0;
5410 if (i.prefix[DATA_PREFIX] != 0)
5412 prefix = 1;
5413 i.prefixes -= 1;
5414 code16 ^= CODE16;
5416 if (i.prefix[REX_PREFIX] != 0)
5418 prefix++;
5419 i.prefixes -= 1;
5422 size = 4;
5423 if (code16)
5424 size = 2;
5426 if (i.prefixes != 0 && !intel_syntax)
5427 as_warn (_("skipping prefixes on this instruction"));
5429 /* 1 opcode; 2 segment; offset */
5430 p = frag_more (prefix + 1 + 2 + size);
5432 if (i.prefix[DATA_PREFIX] != 0)
5433 *p++ = DATA_PREFIX_OPCODE;
5435 if (i.prefix[REX_PREFIX] != 0)
5436 *p++ = i.prefix[REX_PREFIX];
5438 *p++ = i.tm.base_opcode;
5439 if (i.op[1].imms->X_op == O_constant)
5441 offsetT n = i.op[1].imms->X_add_number;
5443 if (size == 2
5444 && !fits_in_unsigned_word (n)
5445 && !fits_in_signed_word (n))
5447 as_bad (_("16-bit jump out of range"));
5448 return;
5450 md_number_to_chars (p, n, size);
5452 else
5453 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5454 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5455 if (i.op[0].imms->X_op != O_constant)
5456 as_bad (_("can't handle non absolute segment in `%s'"),
5457 i.tm.name);
5458 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5461 static void
5462 output_insn (void)
5464 fragS *insn_start_frag;
5465 offsetT insn_start_off;
5467 /* Tie dwarf2 debug info to the address at the start of the insn.
5468 We can't do this after the insn has been output as the current
5469 frag may have been closed off. eg. by frag_var. */
5470 dwarf2_emit_insn (0);
5472 insn_start_frag = frag_now;
5473 insn_start_off = frag_now_fix ();
5475 /* Output jumps. */
5476 if (i.tm.opcode_modifier.jump)
5477 output_branch ();
5478 else if (i.tm.opcode_modifier.jumpbyte
5479 || i.tm.opcode_modifier.jumpdword)
5480 output_jump ();
5481 else if (i.tm.opcode_modifier.jumpintersegment)
5482 output_interseg_jump ();
5483 else
5485 /* Output normal instructions here. */
5486 char *p;
5487 unsigned char *q;
5488 unsigned int j;
5489 unsigned int prefix;
5491 /* Since the VEX prefix contains the implicit prefix, we don't
5492 need the explicit prefix. */
5493 if (!i.tm.opcode_modifier.vex)
5495 switch (i.tm.opcode_length)
5497 case 3:
5498 if (i.tm.base_opcode & 0xff000000)
5500 prefix = (i.tm.base_opcode >> 24) & 0xff;
5501 goto check_prefix;
5503 break;
5504 case 2:
5505 if ((i.tm.base_opcode & 0xff0000) != 0)
5507 prefix = (i.tm.base_opcode >> 16) & 0xff;
5508 if (i.tm.cpu_flags.bitfield.cpupadlock)
5510 check_prefix:
5511 if (prefix != REPE_PREFIX_OPCODE
5512 || (i.prefix[LOCKREP_PREFIX]
5513 != REPE_PREFIX_OPCODE))
5514 add_prefix (prefix);
5516 else
5517 add_prefix (prefix);
5519 break;
5520 case 1:
5521 break;
5522 default:
5523 abort ();
5526 /* The prefix bytes. */
5527 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5528 if (*q)
5529 FRAG_APPEND_1_CHAR (*q);
5532 if (i.tm.opcode_modifier.vex)
5534 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5535 if (*q)
5536 switch (j)
5538 case REX_PREFIX:
5539 /* REX byte is encoded in VEX prefix. */
5540 break;
5541 case SEG_PREFIX:
5542 case ADDR_PREFIX:
5543 FRAG_APPEND_1_CHAR (*q);
5544 break;
5545 default:
5546 /* There should be no other prefixes for instructions
5547 with VEX prefix. */
5548 abort ();
5551 /* Now the VEX prefix. */
5552 p = frag_more (i.vex.length);
5553 for (j = 0; j < i.vex.length; j++)
5554 p[j] = i.vex.bytes[j];
5557 /* Now the opcode; be careful about word order here! */
5558 if (i.tm.opcode_length == 1)
5560 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5562 else
5564 switch (i.tm.opcode_length)
5566 case 3:
5567 p = frag_more (3);
5568 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5569 break;
5570 case 2:
5571 p = frag_more (2);
5572 break;
5573 default:
5574 abort ();
5575 break;
5578 /* Put out high byte first: can't use md_number_to_chars! */
5579 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5580 *p = i.tm.base_opcode & 0xff;
5583 /* Now the modrm byte and sib byte (if present). */
5584 if (i.tm.opcode_modifier.modrm)
5586 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5587 | i.rm.reg << 3
5588 | i.rm.mode << 6));
5589 /* If i.rm.regmem == ESP (4)
5590 && i.rm.mode != (Register mode)
5591 && not 16 bit
5592 ==> need second modrm byte. */
5593 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5594 && i.rm.mode != 3
5595 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5596 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5597 | i.sib.index << 3
5598 | i.sib.scale << 6));
5601 if (i.disp_operands)
5602 output_disp (insn_start_frag, insn_start_off);
5604 if (i.imm_operands)
5605 output_imm (insn_start_frag, insn_start_off);
5608 #ifdef DEBUG386
5609 if (flag_debug)
5611 pi ("" /*line*/, &i);
5613 #endif /* DEBUG386 */
5616 /* Return the size of the displacement operand N. */
5618 static int
5619 disp_size (unsigned int n)
5621 int size = 4;
5622 if (i.types[n].bitfield.disp64)
5623 size = 8;
5624 else if (i.types[n].bitfield.disp8)
5625 size = 1;
5626 else if (i.types[n].bitfield.disp16)
5627 size = 2;
5628 return size;
5631 /* Return the size of the immediate operand N. */
5633 static int
5634 imm_size (unsigned int n)
5636 int size = 4;
5637 if (i.types[n].bitfield.imm64)
5638 size = 8;
5639 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5640 size = 1;
5641 else if (i.types[n].bitfield.imm16)
5642 size = 2;
5643 return size;
5646 static void
5647 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5649 char *p;
5650 unsigned int n;
5652 for (n = 0; n < i.operands; n++)
5654 if (operand_type_check (i.types[n], disp))
5656 if (i.op[n].disps->X_op == O_constant)
5658 int size = disp_size (n);
5659 offsetT val;
5661 val = offset_in_range (i.op[n].disps->X_add_number,
5662 size);
5663 p = frag_more (size);
5664 md_number_to_chars (p, val, size);
5666 else
5668 enum bfd_reloc_code_real reloc_type;
5669 int size = disp_size (n);
5670 int sign = i.types[n].bitfield.disp32s;
5671 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5673 /* We can't have 8 bit displacement here. */
5674 gas_assert (!i.types[n].bitfield.disp8);
5676 /* The PC relative address is computed relative
5677 to the instruction boundary, so in case immediate
5678 fields follows, we need to adjust the value. */
5679 if (pcrel && i.imm_operands)
5681 unsigned int n1;
5682 int sz = 0;
5684 for (n1 = 0; n1 < i.operands; n1++)
5685 if (operand_type_check (i.types[n1], imm))
5687 /* Only one immediate is allowed for PC
5688 relative address. */
5689 gas_assert (sz == 0);
5690 sz = imm_size (n1);
5691 i.op[n].disps->X_add_number -= sz;
5693 /* We should find the immediate. */
5694 gas_assert (sz != 0);
5697 p = frag_more (size);
5698 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5699 if (GOT_symbol
5700 && GOT_symbol == i.op[n].disps->X_add_symbol
5701 && (((reloc_type == BFD_RELOC_32
5702 || reloc_type == BFD_RELOC_X86_64_32S
5703 || (reloc_type == BFD_RELOC_64
5704 && object_64bit))
5705 && (i.op[n].disps->X_op == O_symbol
5706 || (i.op[n].disps->X_op == O_add
5707 && ((symbol_get_value_expression
5708 (i.op[n].disps->X_op_symbol)->X_op)
5709 == O_subtract))))
5710 || reloc_type == BFD_RELOC_32_PCREL))
5712 offsetT add;
5714 if (insn_start_frag == frag_now)
5715 add = (p - frag_now->fr_literal) - insn_start_off;
5716 else
5718 fragS *fr;
5720 add = insn_start_frag->fr_fix - insn_start_off;
5721 for (fr = insn_start_frag->fr_next;
5722 fr && fr != frag_now; fr = fr->fr_next)
5723 add += fr->fr_fix;
5724 add += p - frag_now->fr_literal;
5727 if (!object_64bit)
5729 reloc_type = BFD_RELOC_386_GOTPC;
5730 i.op[n].imms->X_add_number += add;
5732 else if (reloc_type == BFD_RELOC_64)
5733 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5734 else
5735 /* Don't do the adjustment for x86-64, as there
5736 the pcrel addressing is relative to the _next_
5737 insn, and that is taken care of in other code. */
5738 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5740 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5741 i.op[n].disps, pcrel, reloc_type);
5747 static void
5748 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5750 char *p;
5751 unsigned int n;
5753 for (n = 0; n < i.operands; n++)
5755 if (operand_type_check (i.types[n], imm))
5757 if (i.op[n].imms->X_op == O_constant)
5759 int size = imm_size (n);
5760 offsetT val;
5762 val = offset_in_range (i.op[n].imms->X_add_number,
5763 size);
5764 p = frag_more (size);
5765 md_number_to_chars (p, val, size);
5767 else
5769 /* Not absolute_section.
5770 Need a 32-bit fixup (don't support 8bit
5771 non-absolute imms). Try to support other
5772 sizes ... */
5773 enum bfd_reloc_code_real reloc_type;
5774 int size = imm_size (n);
5775 int sign;
5777 if (i.types[n].bitfield.imm32s
5778 && (i.suffix == QWORD_MNEM_SUFFIX
5779 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5780 sign = 1;
5781 else
5782 sign = 0;
5784 p = frag_more (size);
5785 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5787 /* This is tough to explain. We end up with this one if we
5788 * have operands that look like
5789 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5790 * obtain the absolute address of the GOT, and it is strongly
5791 * preferable from a performance point of view to avoid using
5792 * a runtime relocation for this. The actual sequence of
5793 * instructions often look something like:
5795 * call .L66
5796 * .L66:
5797 * popl %ebx
5798 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5800 * The call and pop essentially return the absolute address
5801 * of the label .L66 and store it in %ebx. The linker itself
5802 * will ultimately change the first operand of the addl so
5803 * that %ebx points to the GOT, but to keep things simple, the
5804 * .o file must have this operand set so that it generates not
5805 * the absolute address of .L66, but the absolute address of
5806 * itself. This allows the linker itself simply treat a GOTPC
5807 * relocation as asking for a pcrel offset to the GOT to be
5808 * added in, and the addend of the relocation is stored in the
5809 * operand field for the instruction itself.
5811 * Our job here is to fix the operand so that it would add
5812 * the correct offset so that %ebx would point to itself. The
5813 * thing that is tricky is that .-.L66 will point to the
5814 * beginning of the instruction, so we need to further modify
5815 * the operand so that it will point to itself. There are
5816 * other cases where you have something like:
5818 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5820 * and here no correction would be required. Internally in
5821 * the assembler we treat operands of this form as not being
5822 * pcrel since the '.' is explicitly mentioned, and I wonder
5823 * whether it would simplify matters to do it this way. Who
5824 * knows. In earlier versions of the PIC patches, the
5825 * pcrel_adjust field was used to store the correction, but
5826 * since the expression is not pcrel, I felt it would be
5827 * confusing to do it this way. */
5829 if ((reloc_type == BFD_RELOC_32
5830 || reloc_type == BFD_RELOC_X86_64_32S
5831 || reloc_type == BFD_RELOC_64)
5832 && GOT_symbol
5833 && GOT_symbol == i.op[n].imms->X_add_symbol
5834 && (i.op[n].imms->X_op == O_symbol
5835 || (i.op[n].imms->X_op == O_add
5836 && ((symbol_get_value_expression
5837 (i.op[n].imms->X_op_symbol)->X_op)
5838 == O_subtract))))
5840 offsetT add;
5842 if (insn_start_frag == frag_now)
5843 add = (p - frag_now->fr_literal) - insn_start_off;
5844 else
5846 fragS *fr;
5848 add = insn_start_frag->fr_fix - insn_start_off;
5849 for (fr = insn_start_frag->fr_next;
5850 fr && fr != frag_now; fr = fr->fr_next)
5851 add += fr->fr_fix;
5852 add += p - frag_now->fr_literal;
5855 if (!object_64bit)
5856 reloc_type = BFD_RELOC_386_GOTPC;
5857 else if (size == 4)
5858 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5859 else if (size == 8)
5860 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5861 i.op[n].imms->X_add_number += add;
5863 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5864 i.op[n].imms, 0, reloc_type);
5870 /* x86_cons_fix_new is called via the expression parsing code when a
5871 reloc is needed. We use this hook to get the correct .got reloc. */
5872 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5873 static int cons_sign = -1;
5875 void
5876 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5877 expressionS *exp)
5879 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5881 got_reloc = NO_RELOC;
5883 #ifdef TE_PE
5884 if (exp->X_op == O_secrel)
5886 exp->X_op = O_symbol;
5887 r = BFD_RELOC_32_SECREL;
5889 #endif
5891 fix_new_exp (frag, off, len, exp, 0, r);
5894 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5895 # define lex_got(reloc, adjust, types) NULL
5896 #else
5897 /* Parse operands of the form
5898 <symbol>@GOTOFF+<nnn>
5899 and similar .plt or .got references.
5901 If we find one, set up the correct relocation in RELOC and copy the
5902 input string, minus the `@GOTOFF' into a malloc'd buffer for
5903 parsing by the calling routine. Return this buffer, and if ADJUST
5904 is non-null set it to the length of the string we removed from the
5905 input line. Otherwise return NULL. */
5906 static char *
5907 lex_got (enum bfd_reloc_code_real *reloc,
5908 int *adjust,
5909 i386_operand_type *types)
5911 /* Some of the relocations depend on the size of what field is to
5912 be relocated. But in our callers i386_immediate and i386_displacement
5913 we don't yet know the operand size (this will be set by insn
5914 matching). Hence we record the word32 relocation here,
5915 and adjust the reloc according to the real size in reloc(). */
5916 static const struct {
5917 const char *str;
5918 const enum bfd_reloc_code_real rel[2];
5919 const i386_operand_type types64;
5920 } gotrel[] = {
5921 { "PLTOFF", { 0,
5922 BFD_RELOC_X86_64_PLTOFF64 },
5923 OPERAND_TYPE_IMM64 },
5924 { "PLT", { BFD_RELOC_386_PLT32,
5925 BFD_RELOC_X86_64_PLT32 },
5926 OPERAND_TYPE_IMM32_32S_DISP32 },
5927 { "GOTPLT", { 0,
5928 BFD_RELOC_X86_64_GOTPLT64 },
5929 OPERAND_TYPE_IMM64_DISP64 },
5930 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5931 BFD_RELOC_X86_64_GOTOFF64 },
5932 OPERAND_TYPE_IMM64_DISP64 },
5933 { "GOTPCREL", { 0,
5934 BFD_RELOC_X86_64_GOTPCREL },
5935 OPERAND_TYPE_IMM32_32S_DISP32 },
5936 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5937 BFD_RELOC_X86_64_TLSGD },
5938 OPERAND_TYPE_IMM32_32S_DISP32 },
5939 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5940 0 },
5941 OPERAND_TYPE_NONE },
5942 { "TLSLD", { 0,
5943 BFD_RELOC_X86_64_TLSLD },
5944 OPERAND_TYPE_IMM32_32S_DISP32 },
5945 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5946 BFD_RELOC_X86_64_GOTTPOFF },
5947 OPERAND_TYPE_IMM32_32S_DISP32 },
5948 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5949 BFD_RELOC_X86_64_TPOFF32 },
5950 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5951 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5952 0 },
5953 OPERAND_TYPE_NONE },
5954 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5955 BFD_RELOC_X86_64_DTPOFF32 },
5957 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5958 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5959 0 },
5960 OPERAND_TYPE_NONE },
5961 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5962 0 },
5963 OPERAND_TYPE_NONE },
5964 { "GOT", { BFD_RELOC_386_GOT32,
5965 BFD_RELOC_X86_64_GOT32 },
5966 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5967 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5968 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5969 OPERAND_TYPE_IMM32_32S_DISP32 },
5970 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5971 BFD_RELOC_X86_64_TLSDESC_CALL },
5972 OPERAND_TYPE_IMM32_32S_DISP32 },
5974 char *cp;
5975 unsigned int j;
5977 if (!IS_ELF)
5978 return NULL;
5980 for (cp = input_line_pointer; *cp != '@'; cp++)
5981 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5982 return NULL;
5984 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
5986 int len;
5988 len = strlen (gotrel[j].str);
5989 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5991 if (gotrel[j].rel[object_64bit] != 0)
5993 int first, second;
5994 char *tmpbuf, *past_reloc;
5996 *reloc = gotrel[j].rel[object_64bit];
5997 if (adjust)
5998 *adjust = len;
6000 if (types)
6002 if (flag_code != CODE_64BIT)
6004 types->bitfield.imm32 = 1;
6005 types->bitfield.disp32 = 1;
6007 else
6008 *types = gotrel[j].types64;
6011 if (GOT_symbol == NULL)
6012 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6014 /* The length of the first part of our input line. */
6015 first = cp - input_line_pointer;
6017 /* The second part goes from after the reloc token until
6018 (and including) an end_of_line char or comma. */
6019 past_reloc = cp + 1 + len;
6020 cp = past_reloc;
6021 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6022 ++cp;
6023 second = cp + 1 - past_reloc;
6025 /* Allocate and copy string. The trailing NUL shouldn't
6026 be necessary, but be safe. */
6027 tmpbuf = xmalloc (first + second + 2);
6028 memcpy (tmpbuf, input_line_pointer, first);
6029 if (second != 0 && *past_reloc != ' ')
6030 /* Replace the relocation token with ' ', so that
6031 errors like foo@GOTOFF1 will be detected. */
6032 tmpbuf[first++] = ' ';
6033 memcpy (tmpbuf + first, past_reloc, second);
6034 tmpbuf[first + second] = '\0';
6035 return tmpbuf;
6038 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6039 gotrel[j].str, 1 << (5 + object_64bit));
6040 return NULL;
6044 /* Might be a symbol version string. Don't as_bad here. */
6045 return NULL;
6048 void
6049 x86_cons (expressionS *exp, int size)
6051 intel_syntax = -intel_syntax;
6053 if (size == 4 || (object_64bit && size == 8))
6055 /* Handle @GOTOFF and the like in an expression. */
6056 char *save;
6057 char *gotfree_input_line;
6058 int adjust;
6060 save = input_line_pointer;
6061 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6062 if (gotfree_input_line)
6063 input_line_pointer = gotfree_input_line;
6065 expression (exp);
6067 if (gotfree_input_line)
6069 /* expression () has merrily parsed up to the end of line,
6070 or a comma - in the wrong buffer. Transfer how far
6071 input_line_pointer has moved to the right buffer. */
6072 input_line_pointer = (save
6073 + (input_line_pointer - gotfree_input_line)
6074 + adjust);
6075 free (gotfree_input_line);
6076 if (exp->X_op == O_constant
6077 || exp->X_op == O_absent
6078 || exp->X_op == O_illegal
6079 || exp->X_op == O_register
6080 || exp->X_op == O_big)
6082 char c = *input_line_pointer;
6083 *input_line_pointer = 0;
6084 as_bad (_("missing or invalid expression `%s'"), save);
6085 *input_line_pointer = c;
6089 else
6090 expression (exp);
6092 intel_syntax = -intel_syntax;
6094 if (intel_syntax)
6095 i386_intel_simplify (exp);
6097 #endif
6099 static void signed_cons (int size)
6101 if (flag_code == CODE_64BIT)
6102 cons_sign = 1;
6103 cons (size);
6104 cons_sign = -1;
6107 #ifdef TE_PE
6108 static void
6109 pe_directive_secrel (dummy)
6110 int dummy ATTRIBUTE_UNUSED;
6112 expressionS exp;
6116 expression (&exp);
6117 if (exp.X_op == O_symbol)
6118 exp.X_op = O_secrel;
6120 emit_expr (&exp, 4);
6122 while (*input_line_pointer++ == ',');
6124 input_line_pointer--;
6125 demand_empty_rest_of_line ();
6127 #endif
6129 static int
6130 i386_immediate (char *imm_start)
6132 char *save_input_line_pointer;
6133 char *gotfree_input_line;
6134 segT exp_seg = 0;
6135 expressionS *exp;
6136 i386_operand_type types;
6138 operand_type_set (&types, ~0);
6140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6142 as_bad (_("at most %d immediate operands are allowed"),
6143 MAX_IMMEDIATE_OPERANDS);
6144 return 0;
6147 exp = &im_expressions[i.imm_operands++];
6148 i.op[this_operand].imms = exp;
6150 if (is_space_char (*imm_start))
6151 ++imm_start;
6153 save_input_line_pointer = input_line_pointer;
6154 input_line_pointer = imm_start;
6156 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6157 if (gotfree_input_line)
6158 input_line_pointer = gotfree_input_line;
6160 exp_seg = expression (exp);
6162 SKIP_WHITESPACE ();
6163 if (*input_line_pointer)
6164 as_bad (_("junk `%s' after expression"), input_line_pointer);
6166 input_line_pointer = save_input_line_pointer;
6167 if (gotfree_input_line)
6169 free (gotfree_input_line);
6171 if (exp->X_op == O_constant || exp->X_op == O_register)
6172 exp->X_op = O_illegal;
6175 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6178 static int
6179 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6180 i386_operand_type types, const char *imm_start)
6182 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6184 as_bad (_("missing or invalid immediate expression `%s'"),
6185 imm_start);
6186 return 0;
6188 else if (exp->X_op == O_constant)
6190 /* Size it properly later. */
6191 i.types[this_operand].bitfield.imm64 = 1;
6192 /* If BFD64, sign extend val. */
6193 if (!use_rela_relocations
6194 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6195 exp->X_add_number
6196 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6198 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6199 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6200 && exp_seg != absolute_section
6201 && exp_seg != text_section
6202 && exp_seg != data_section
6203 && exp_seg != bss_section
6204 && exp_seg != undefined_section
6205 && !bfd_is_com_section (exp_seg))
6207 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6208 return 0;
6210 #endif
6211 else if (!intel_syntax && exp->X_op == O_register)
6213 as_bad (_("illegal immediate register operand %s"), imm_start);
6214 return 0;
6216 else
6218 /* This is an address. The size of the address will be
6219 determined later, depending on destination register,
6220 suffix, or the default for the section. */
6221 i.types[this_operand].bitfield.imm8 = 1;
6222 i.types[this_operand].bitfield.imm16 = 1;
6223 i.types[this_operand].bitfield.imm32 = 1;
6224 i.types[this_operand].bitfield.imm32s = 1;
6225 i.types[this_operand].bitfield.imm64 = 1;
6226 i.types[this_operand] = operand_type_and (i.types[this_operand],
6227 types);
6230 return 1;
6233 static char *
6234 i386_scale (char *scale)
6236 offsetT val;
6237 char *save = input_line_pointer;
6239 input_line_pointer = scale;
6240 val = get_absolute_expression ();
6242 switch (val)
6244 case 1:
6245 i.log2_scale_factor = 0;
6246 break;
6247 case 2:
6248 i.log2_scale_factor = 1;
6249 break;
6250 case 4:
6251 i.log2_scale_factor = 2;
6252 break;
6253 case 8:
6254 i.log2_scale_factor = 3;
6255 break;
6256 default:
6258 char sep = *input_line_pointer;
6260 *input_line_pointer = '\0';
6261 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6262 scale);
6263 *input_line_pointer = sep;
6264 input_line_pointer = save;
6265 return NULL;
6268 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6270 as_warn (_("scale factor of %d without an index register"),
6271 1 << i.log2_scale_factor);
6272 i.log2_scale_factor = 0;
6274 scale = input_line_pointer;
6275 input_line_pointer = save;
6276 return scale;
6279 static int
6280 i386_displacement (char *disp_start, char *disp_end)
6282 expressionS *exp;
6283 segT exp_seg = 0;
6284 char *save_input_line_pointer;
6285 char *gotfree_input_line;
6286 int override;
6287 i386_operand_type bigdisp, types = anydisp;
6288 int ret;
6290 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6292 as_bad (_("at most %d displacement operands are allowed"),
6293 MAX_MEMORY_OPERANDS);
6294 return 0;
6297 operand_type_set (&bigdisp, 0);
6298 if ((i.types[this_operand].bitfield.jumpabsolute)
6299 || (!current_templates->start->opcode_modifier.jump
6300 && !current_templates->start->opcode_modifier.jumpdword))
6302 bigdisp.bitfield.disp32 = 1;
6303 override = (i.prefix[ADDR_PREFIX] != 0);
6304 if (flag_code == CODE_64BIT)
6306 if (!override)
6308 bigdisp.bitfield.disp32s = 1;
6309 bigdisp.bitfield.disp64 = 1;
6312 else if ((flag_code == CODE_16BIT) ^ override)
6314 bigdisp.bitfield.disp32 = 0;
6315 bigdisp.bitfield.disp16 = 1;
6318 else
6320 /* For PC-relative branches, the width of the displacement
6321 is dependent upon data size, not address size. */
6322 override = (i.prefix[DATA_PREFIX] != 0);
6323 if (flag_code == CODE_64BIT)
6325 if (override || i.suffix == WORD_MNEM_SUFFIX)
6326 bigdisp.bitfield.disp16 = 1;
6327 else
6329 bigdisp.bitfield.disp32 = 1;
6330 bigdisp.bitfield.disp32s = 1;
6333 else
6335 if (!override)
6336 override = (i.suffix == (flag_code != CODE_16BIT
6337 ? WORD_MNEM_SUFFIX
6338 : LONG_MNEM_SUFFIX));
6339 bigdisp.bitfield.disp32 = 1;
6340 if ((flag_code == CODE_16BIT) ^ override)
6342 bigdisp.bitfield.disp32 = 0;
6343 bigdisp.bitfield.disp16 = 1;
6347 i.types[this_operand] = operand_type_or (i.types[this_operand],
6348 bigdisp);
6350 exp = &disp_expressions[i.disp_operands];
6351 i.op[this_operand].disps = exp;
6352 i.disp_operands++;
6353 save_input_line_pointer = input_line_pointer;
6354 input_line_pointer = disp_start;
6355 END_STRING_AND_SAVE (disp_end);
6357 #ifndef GCC_ASM_O_HACK
6358 #define GCC_ASM_O_HACK 0
6359 #endif
6360 #if GCC_ASM_O_HACK
6361 END_STRING_AND_SAVE (disp_end + 1);
6362 if (i.types[this_operand].bitfield.baseIndex
6363 && displacement_string_end[-1] == '+')
6365 /* This hack is to avoid a warning when using the "o"
6366 constraint within gcc asm statements.
6367 For instance:
6369 #define _set_tssldt_desc(n,addr,limit,type) \
6370 __asm__ __volatile__ ( \
6371 "movw %w2,%0\n\t" \
6372 "movw %w1,2+%0\n\t" \
6373 "rorl $16,%1\n\t" \
6374 "movb %b1,4+%0\n\t" \
6375 "movb %4,5+%0\n\t" \
6376 "movb $0,6+%0\n\t" \
6377 "movb %h1,7+%0\n\t" \
6378 "rorl $16,%1" \
6379 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6381 This works great except that the output assembler ends
6382 up looking a bit weird if it turns out that there is
6383 no offset. You end up producing code that looks like:
6385 #APP
6386 movw $235,(%eax)
6387 movw %dx,2+(%eax)
6388 rorl $16,%edx
6389 movb %dl,4+(%eax)
6390 movb $137,5+(%eax)
6391 movb $0,6+(%eax)
6392 movb %dh,7+(%eax)
6393 rorl $16,%edx
6394 #NO_APP
6396 So here we provide the missing zero. */
6398 *displacement_string_end = '0';
6400 #endif
6401 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6402 if (gotfree_input_line)
6403 input_line_pointer = gotfree_input_line;
6405 exp_seg = expression (exp);
6407 SKIP_WHITESPACE ();
6408 if (*input_line_pointer)
6409 as_bad (_("junk `%s' after expression"), input_line_pointer);
6410 #if GCC_ASM_O_HACK
6411 RESTORE_END_STRING (disp_end + 1);
6412 #endif
6413 input_line_pointer = save_input_line_pointer;
6414 if (gotfree_input_line)
6416 free (gotfree_input_line);
6418 if (exp->X_op == O_constant || exp->X_op == O_register)
6419 exp->X_op = O_illegal;
6422 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6424 RESTORE_END_STRING (disp_end);
6426 return ret;
6429 static int
6430 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6431 i386_operand_type types, const char *disp_start)
6433 i386_operand_type bigdisp;
6434 int ret = 1;
6436 /* We do this to make sure that the section symbol is in
6437 the symbol table. We will ultimately change the relocation
6438 to be relative to the beginning of the section. */
6439 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6440 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6441 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6443 if (exp->X_op != O_symbol)
6444 goto inv_disp;
6446 if (S_IS_LOCAL (exp->X_add_symbol)
6447 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6448 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6449 exp->X_op = O_subtract;
6450 exp->X_op_symbol = GOT_symbol;
6451 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6452 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6453 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6454 i.reloc[this_operand] = BFD_RELOC_64;
6455 else
6456 i.reloc[this_operand] = BFD_RELOC_32;
6459 else if (exp->X_op == O_absent
6460 || exp->X_op == O_illegal
6461 || exp->X_op == O_big)
6463 inv_disp:
6464 as_bad (_("missing or invalid displacement expression `%s'"),
6465 disp_start);
6466 ret = 0;
6469 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6470 else if (exp->X_op != O_constant
6471 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6472 && exp_seg != absolute_section
6473 && exp_seg != text_section
6474 && exp_seg != data_section
6475 && exp_seg != bss_section
6476 && exp_seg != undefined_section
6477 && !bfd_is_com_section (exp_seg))
6479 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6480 ret = 0;
6482 #endif
6484 /* Check if this is a displacement only operand. */
6485 bigdisp = i.types[this_operand];
6486 bigdisp.bitfield.disp8 = 0;
6487 bigdisp.bitfield.disp16 = 0;
6488 bigdisp.bitfield.disp32 = 0;
6489 bigdisp.bitfield.disp32s = 0;
6490 bigdisp.bitfield.disp64 = 0;
6491 if (operand_type_all_zero (&bigdisp))
6492 i.types[this_operand] = operand_type_and (i.types[this_operand],
6493 types);
6495 return ret;
6498 /* Make sure the memory operand we've been dealt is valid.
6499 Return 1 on success, 0 on a failure. */
6501 static int
6502 i386_index_check (const char *operand_string)
6504 int ok;
6505 const char *kind = "base/index";
6506 #if INFER_ADDR_PREFIX
6507 int fudged = 0;
6509 tryprefix:
6510 #endif
6511 ok = 1;
6512 if (current_templates->start->opcode_modifier.isstring
6513 && !current_templates->start->opcode_modifier.immext
6514 && (current_templates->end[-1].opcode_modifier.isstring
6515 || i.mem_operands))
6517 /* Memory operands of string insns are special in that they only allow
6518 a single register (rDI, rSI, or rBX) as their memory address. */
6519 unsigned int expected;
6521 kind = "string address";
6523 if (current_templates->start->opcode_modifier.w)
6525 i386_operand_type type = current_templates->end[-1].operand_types[0];
6527 if (!type.bitfield.baseindex
6528 || ((!i.mem_operands != !intel_syntax)
6529 && current_templates->end[-1].operand_types[1]
6530 .bitfield.baseindex))
6531 type = current_templates->end[-1].operand_types[1];
6532 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6534 else
6535 expected = 3 /* rBX */;
6537 if (!i.base_reg || i.index_reg
6538 || operand_type_check (i.types[this_operand], disp))
6539 ok = -1;
6540 else if (!(flag_code == CODE_64BIT
6541 ? i.prefix[ADDR_PREFIX]
6542 ? i.base_reg->reg_type.bitfield.reg32
6543 : i.base_reg->reg_type.bitfield.reg64
6544 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6545 ? i.base_reg->reg_type.bitfield.reg32
6546 : i.base_reg->reg_type.bitfield.reg16))
6547 ok = 0;
6548 else if (i.base_reg->reg_num != expected)
6549 ok = -1;
6551 if (ok < 0)
6553 unsigned int j;
6555 for (j = 0; j < i386_regtab_size; ++j)
6556 if ((flag_code == CODE_64BIT
6557 ? i.prefix[ADDR_PREFIX]
6558 ? i386_regtab[j].reg_type.bitfield.reg32
6559 : i386_regtab[j].reg_type.bitfield.reg64
6560 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6561 ? i386_regtab[j].reg_type.bitfield.reg32
6562 : i386_regtab[j].reg_type.bitfield.reg16)
6563 && i386_regtab[j].reg_num == expected)
6564 break;
6565 gas_assert (j < i386_regtab_size);
6566 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6567 operand_string,
6568 intel_syntax ? '[' : '(',
6569 register_prefix,
6570 i386_regtab[j].reg_name,
6571 intel_syntax ? ']' : ')');
6572 ok = 1;
6575 else if (flag_code == CODE_64BIT)
6577 if ((i.base_reg
6578 && ((i.prefix[ADDR_PREFIX] == 0
6579 && !i.base_reg->reg_type.bitfield.reg64)
6580 || (i.prefix[ADDR_PREFIX]
6581 && !i.base_reg->reg_type.bitfield.reg32))
6582 && (i.index_reg
6583 || i.base_reg->reg_num !=
6584 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6585 || (i.index_reg
6586 && (!i.index_reg->reg_type.bitfield.baseindex
6587 || (i.prefix[ADDR_PREFIX] == 0
6588 && i.index_reg->reg_num != RegRiz
6589 && !i.index_reg->reg_type.bitfield.reg64
6591 || (i.prefix[ADDR_PREFIX]
6592 && i.index_reg->reg_num != RegEiz
6593 && !i.index_reg->reg_type.bitfield.reg32))))
6594 ok = 0;
6596 else
6598 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6600 /* 16bit checks. */
6601 if ((i.base_reg
6602 && (!i.base_reg->reg_type.bitfield.reg16
6603 || !i.base_reg->reg_type.bitfield.baseindex))
6604 || (i.index_reg
6605 && (!i.index_reg->reg_type.bitfield.reg16
6606 || !i.index_reg->reg_type.bitfield.baseindex
6607 || !(i.base_reg
6608 && i.base_reg->reg_num < 6
6609 && i.index_reg->reg_num >= 6
6610 && i.log2_scale_factor == 0))))
6611 ok = 0;
6613 else
6615 /* 32bit checks. */
6616 if ((i.base_reg
6617 && !i.base_reg->reg_type.bitfield.reg32)
6618 || (i.index_reg
6619 && ((!i.index_reg->reg_type.bitfield.reg32
6620 && i.index_reg->reg_num != RegEiz)
6621 || !i.index_reg->reg_type.bitfield.baseindex)))
6622 ok = 0;
6625 if (!ok)
6627 #if INFER_ADDR_PREFIX
6628 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6630 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6631 i.prefixes += 1;
6632 /* Change the size of any displacement too. At most one of
6633 Disp16 or Disp32 is set.
6634 FIXME. There doesn't seem to be any real need for separate
6635 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6636 Removing them would probably clean up the code quite a lot. */
6637 if (flag_code != CODE_64BIT
6638 && (i.types[this_operand].bitfield.disp16
6639 || i.types[this_operand].bitfield.disp32))
6640 i.types[this_operand]
6641 = operand_type_xor (i.types[this_operand], disp16_32);
6642 fudged = 1;
6643 goto tryprefix;
6645 if (fudged)
6646 as_bad (_("`%s' is not a valid %s expression"),
6647 operand_string,
6648 kind);
6649 else
6650 #endif
6651 as_bad (_("`%s' is not a valid %s-bit %s expression"),
6652 operand_string,
6653 flag_code_names[i.prefix[ADDR_PREFIX]
6654 ? flag_code == CODE_32BIT
6655 ? CODE_16BIT
6656 : CODE_32BIT
6657 : flag_code],
6658 kind);
6660 return ok;
6663 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
6664 on error. */
6666 static int
6667 i386_att_operand (char *operand_string)
6669 const reg_entry *r;
6670 char *end_op;
6671 char *op_string = operand_string;
6673 if (is_space_char (*op_string))
6674 ++op_string;
6676 /* We check for an absolute prefix (differentiating,
6677 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6678 if (*op_string == ABSOLUTE_PREFIX)
6680 ++op_string;
6681 if (is_space_char (*op_string))
6682 ++op_string;
6683 i.types[this_operand].bitfield.jumpabsolute = 1;
6686 /* Check if operand is a register. */
6687 if ((r = parse_register (op_string, &end_op)) != NULL)
6689 i386_operand_type temp;
6691 /* Check for a segment override by searching for ':' after a
6692 segment register. */
6693 op_string = end_op;
6694 if (is_space_char (*op_string))
6695 ++op_string;
6696 if (*op_string == ':'
6697 && (r->reg_type.bitfield.sreg2
6698 || r->reg_type.bitfield.sreg3))
6700 switch (r->reg_num)
6702 case 0:
6703 i.seg[i.mem_operands] = &es;
6704 break;
6705 case 1:
6706 i.seg[i.mem_operands] = &cs;
6707 break;
6708 case 2:
6709 i.seg[i.mem_operands] = &ss;
6710 break;
6711 case 3:
6712 i.seg[i.mem_operands] = &ds;
6713 break;
6714 case 4:
6715 i.seg[i.mem_operands] = &fs;
6716 break;
6717 case 5:
6718 i.seg[i.mem_operands] = &gs;
6719 break;
6722 /* Skip the ':' and whitespace. */
6723 ++op_string;
6724 if (is_space_char (*op_string))
6725 ++op_string;
6727 if (!is_digit_char (*op_string)
6728 && !is_identifier_char (*op_string)
6729 && *op_string != '('
6730 && *op_string != ABSOLUTE_PREFIX)
6732 as_bad (_("bad memory operand `%s'"), op_string);
6733 return 0;
6735 /* Handle case of %es:*foo. */
6736 if (*op_string == ABSOLUTE_PREFIX)
6738 ++op_string;
6739 if (is_space_char (*op_string))
6740 ++op_string;
6741 i.types[this_operand].bitfield.jumpabsolute = 1;
6743 goto do_memory_reference;
6745 if (*op_string)
6747 as_bad (_("junk `%s' after register"), op_string);
6748 return 0;
6750 temp = r->reg_type;
6751 temp.bitfield.baseindex = 0;
6752 i.types[this_operand] = operand_type_or (i.types[this_operand],
6753 temp);
6754 i.types[this_operand].bitfield.unspecified = 0;
6755 i.op[this_operand].regs = r;
6756 i.reg_operands++;
6758 else if (*op_string == REGISTER_PREFIX)
6760 as_bad (_("bad register name `%s'"), op_string);
6761 return 0;
6763 else if (*op_string == IMMEDIATE_PREFIX)
6765 ++op_string;
6766 if (i.types[this_operand].bitfield.jumpabsolute)
6768 as_bad (_("immediate operand illegal with absolute jump"));
6769 return 0;
6771 if (!i386_immediate (op_string))
6772 return 0;
6774 else if (is_digit_char (*op_string)
6775 || is_identifier_char (*op_string)
6776 || *op_string == '(')
6778 /* This is a memory reference of some sort. */
6779 char *base_string;
6781 /* Start and end of displacement string expression (if found). */
6782 char *displacement_string_start;
6783 char *displacement_string_end;
6785 do_memory_reference:
6786 if ((i.mem_operands == 1
6787 && !current_templates->start->opcode_modifier.isstring)
6788 || i.mem_operands == 2)
6790 as_bad (_("too many memory references for `%s'"),
6791 current_templates->start->name);
6792 return 0;
6795 /* Check for base index form. We detect the base index form by
6796 looking for an ')' at the end of the operand, searching
6797 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6798 after the '('. */
6799 base_string = op_string + strlen (op_string);
6801 --base_string;
6802 if (is_space_char (*base_string))
6803 --base_string;
6805 /* If we only have a displacement, set-up for it to be parsed later. */
6806 displacement_string_start = op_string;
6807 displacement_string_end = base_string + 1;
6809 if (*base_string == ')')
6811 char *temp_string;
6812 unsigned int parens_balanced = 1;
6813 /* We've already checked that the number of left & right ()'s are
6814 equal, so this loop will not be infinite. */
6817 base_string--;
6818 if (*base_string == ')')
6819 parens_balanced++;
6820 if (*base_string == '(')
6821 parens_balanced--;
6823 while (parens_balanced);
6825 temp_string = base_string;
6827 /* Skip past '(' and whitespace. */
6828 ++base_string;
6829 if (is_space_char (*base_string))
6830 ++base_string;
6832 if (*base_string == ','
6833 || ((i.base_reg = parse_register (base_string, &end_op))
6834 != NULL))
6836 displacement_string_end = temp_string;
6838 i.types[this_operand].bitfield.baseindex = 1;
6840 if (i.base_reg)
6842 base_string = end_op;
6843 if (is_space_char (*base_string))
6844 ++base_string;
6847 /* There may be an index reg or scale factor here. */
6848 if (*base_string == ',')
6850 ++base_string;
6851 if (is_space_char (*base_string))
6852 ++base_string;
6854 if ((i.index_reg = parse_register (base_string, &end_op))
6855 != NULL)
6857 base_string = end_op;
6858 if (is_space_char (*base_string))
6859 ++base_string;
6860 if (*base_string == ',')
6862 ++base_string;
6863 if (is_space_char (*base_string))
6864 ++base_string;
6866 else if (*base_string != ')')
6868 as_bad (_("expecting `,' or `)' "
6869 "after index register in `%s'"),
6870 operand_string);
6871 return 0;
6874 else if (*base_string == REGISTER_PREFIX)
6876 as_bad (_("bad register name `%s'"), base_string);
6877 return 0;
6880 /* Check for scale factor. */
6881 if (*base_string != ')')
6883 char *end_scale = i386_scale (base_string);
6885 if (!end_scale)
6886 return 0;
6888 base_string = end_scale;
6889 if (is_space_char (*base_string))
6890 ++base_string;
6891 if (*base_string != ')')
6893 as_bad (_("expecting `)' "
6894 "after scale factor in `%s'"),
6895 operand_string);
6896 return 0;
6899 else if (!i.index_reg)
6901 as_bad (_("expecting index register or scale factor "
6902 "after `,'; got '%c'"),
6903 *base_string);
6904 return 0;
6907 else if (*base_string != ')')
6909 as_bad (_("expecting `,' or `)' "
6910 "after base register in `%s'"),
6911 operand_string);
6912 return 0;
6915 else if (*base_string == REGISTER_PREFIX)
6917 as_bad (_("bad register name `%s'"), base_string);
6918 return 0;
6922 /* If there's an expression beginning the operand, parse it,
6923 assuming displacement_string_start and
6924 displacement_string_end are meaningful. */
6925 if (displacement_string_start != displacement_string_end)
6927 if (!i386_displacement (displacement_string_start,
6928 displacement_string_end))
6929 return 0;
6932 /* Special case for (%dx) while doing input/output op. */
6933 if (i.base_reg
6934 && operand_type_equal (&i.base_reg->reg_type,
6935 &reg16_inoutportreg)
6936 && i.index_reg == 0
6937 && i.log2_scale_factor == 0
6938 && i.seg[i.mem_operands] == 0
6939 && !operand_type_check (i.types[this_operand], disp))
6941 i.types[this_operand] = inoutportreg;
6942 return 1;
6945 if (i386_index_check (operand_string) == 0)
6946 return 0;
6947 i.types[this_operand].bitfield.mem = 1;
6948 i.mem_operands++;
6950 else
6952 /* It's not a memory operand; argh! */
6953 as_bad (_("invalid char %s beginning operand %d `%s'"),
6954 output_invalid (*op_string),
6955 this_operand + 1,
6956 op_string);
6957 return 0;
6959 return 1; /* Normal return. */
6962 /* md_estimate_size_before_relax()
6964 Called just before relax() for rs_machine_dependent frags. The x86
6965 assembler uses these frags to handle variable size jump
6966 instructions.
6968 Any symbol that is now undefined will not become defined.
6969 Return the correct fr_subtype in the frag.
6970 Return the initial "guess for variable size of frag" to caller.
6971 The guess is actually the growth beyond the fixed part. Whatever
6972 we do to grow the fixed or variable part contributes to our
6973 returned value. */
6976 md_estimate_size_before_relax (fragP, segment)
6977 fragS *fragP;
6978 segT segment;
6980 /* We've already got fragP->fr_subtype right; all we have to do is
6981 check for un-relaxable symbols. On an ELF system, we can't relax
6982 an externally visible symbol, because it may be overridden by a
6983 shared library. */
6984 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6985 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6986 || (IS_ELF
6987 && (S_IS_EXTERNAL (fragP->fr_symbol)
6988 || S_IS_WEAK (fragP->fr_symbol)
6989 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
6990 & BSF_GNU_INDIRECT_FUNCTION))))
6991 #endif
6992 #if defined (OBJ_COFF) && defined (TE_PE)
6993 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
6994 && S_IS_WEAK (fragP->fr_symbol))
6995 #endif
6998 /* Symbol is undefined in this segment, or we need to keep a
6999 reloc so that weak symbols can be overridden. */
7000 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7001 enum bfd_reloc_code_real reloc_type;
7002 unsigned char *opcode;
7003 int old_fr_fix;
7005 if (fragP->fr_var != NO_RELOC)
7006 reloc_type = fragP->fr_var;
7007 else if (size == 2)
7008 reloc_type = BFD_RELOC_16_PCREL;
7009 else
7010 reloc_type = BFD_RELOC_32_PCREL;
7012 old_fr_fix = fragP->fr_fix;
7013 opcode = (unsigned char *) fragP->fr_opcode;
7015 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7017 case UNCOND_JUMP:
7018 /* Make jmp (0xeb) a (d)word displacement jump. */
7019 opcode[0] = 0xe9;
7020 fragP->fr_fix += size;
7021 fix_new (fragP, old_fr_fix, size,
7022 fragP->fr_symbol,
7023 fragP->fr_offset, 1,
7024 reloc_type);
7025 break;
7027 case COND_JUMP86:
7028 if (size == 2
7029 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7031 /* Negate the condition, and branch past an
7032 unconditional jump. */
7033 opcode[0] ^= 1;
7034 opcode[1] = 3;
7035 /* Insert an unconditional jump. */
7036 opcode[2] = 0xe9;
7037 /* We added two extra opcode bytes, and have a two byte
7038 offset. */
7039 fragP->fr_fix += 2 + 2;
7040 fix_new (fragP, old_fr_fix + 2, 2,
7041 fragP->fr_symbol,
7042 fragP->fr_offset, 1,
7043 reloc_type);
7044 break;
7046 /* Fall through. */
7048 case COND_JUMP:
7049 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7051 fixS *fixP;
7053 fragP->fr_fix += 1;
7054 fixP = fix_new (fragP, old_fr_fix, 1,
7055 fragP->fr_symbol,
7056 fragP->fr_offset, 1,
7057 BFD_RELOC_8_PCREL);
7058 fixP->fx_signed = 1;
7059 break;
7062 /* This changes the byte-displacement jump 0x7N
7063 to the (d)word-displacement jump 0x0f,0x8N. */
7064 opcode[1] = opcode[0] + 0x10;
7065 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7066 /* We've added an opcode byte. */
7067 fragP->fr_fix += 1 + size;
7068 fix_new (fragP, old_fr_fix + 1, size,
7069 fragP->fr_symbol,
7070 fragP->fr_offset, 1,
7071 reloc_type);
7072 break;
7074 default:
7075 BAD_CASE (fragP->fr_subtype);
7076 break;
7078 frag_wane (fragP);
7079 return fragP->fr_fix - old_fr_fix;
7082 /* Guess size depending on current relax state. Initially the relax
7083 state will correspond to a short jump and we return 1, because
7084 the variable part of the frag (the branch offset) is one byte
7085 long. However, we can relax a section more than once and in that
7086 case we must either set fr_subtype back to the unrelaxed state,
7087 or return the value for the appropriate branch. */
7088 return md_relax_table[fragP->fr_subtype].rlx_length;
7091 /* Called after relax() is finished.
7093 In: Address of frag.
7094 fr_type == rs_machine_dependent.
7095 fr_subtype is what the address relaxed to.
7097 Out: Any fixSs and constants are set up.
7098 Caller will turn frag into a ".space 0". */
7100 void
7101 md_convert_frag (abfd, sec, fragP)
7102 bfd *abfd ATTRIBUTE_UNUSED;
7103 segT sec ATTRIBUTE_UNUSED;
7104 fragS *fragP;
7106 unsigned char *opcode;
7107 unsigned char *where_to_put_displacement = NULL;
7108 offsetT target_address;
7109 offsetT opcode_address;
7110 unsigned int extension = 0;
7111 offsetT displacement_from_opcode_start;
7113 opcode = (unsigned char *) fragP->fr_opcode;
7115 /* Address we want to reach in file space. */
7116 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7118 /* Address opcode resides at in file space. */
7119 opcode_address = fragP->fr_address + fragP->fr_fix;
7121 /* Displacement from opcode start to fill into instruction. */
7122 displacement_from_opcode_start = target_address - opcode_address;
7124 if ((fragP->fr_subtype & BIG) == 0)
7126 /* Don't have to change opcode. */
7127 extension = 1; /* 1 opcode + 1 displacement */
7128 where_to_put_displacement = &opcode[1];
7130 else
7132 if (no_cond_jump_promotion
7133 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7134 as_warn_where (fragP->fr_file, fragP->fr_line,
7135 _("long jump required"));
7137 switch (fragP->fr_subtype)
7139 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7140 extension = 4; /* 1 opcode + 4 displacement */
7141 opcode[0] = 0xe9;
7142 where_to_put_displacement = &opcode[1];
7143 break;
7145 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7146 extension = 2; /* 1 opcode + 2 displacement */
7147 opcode[0] = 0xe9;
7148 where_to_put_displacement = &opcode[1];
7149 break;
7151 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7152 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7153 extension = 5; /* 2 opcode + 4 displacement */
7154 opcode[1] = opcode[0] + 0x10;
7155 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7156 where_to_put_displacement = &opcode[2];
7157 break;
7159 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7160 extension = 3; /* 2 opcode + 2 displacement */
7161 opcode[1] = opcode[0] + 0x10;
7162 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7163 where_to_put_displacement = &opcode[2];
7164 break;
7166 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7167 extension = 4;
7168 opcode[0] ^= 1;
7169 opcode[1] = 3;
7170 opcode[2] = 0xe9;
7171 where_to_put_displacement = &opcode[3];
7172 break;
7174 default:
7175 BAD_CASE (fragP->fr_subtype);
7176 break;
7180 /* If size if less then four we are sure that the operand fits,
7181 but if it's 4, then it could be that the displacement is larger
7182 then -/+ 2GB. */
7183 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7184 && object_64bit
7185 && ((addressT) (displacement_from_opcode_start - extension
7186 + ((addressT) 1 << 31))
7187 > (((addressT) 2 << 31) - 1)))
7189 as_bad_where (fragP->fr_file, fragP->fr_line,
7190 _("jump target out of range"));
7191 /* Make us emit 0. */
7192 displacement_from_opcode_start = extension;
7194 /* Now put displacement after opcode. */
7195 md_number_to_chars ((char *) where_to_put_displacement,
7196 (valueT) (displacement_from_opcode_start - extension),
7197 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7198 fragP->fr_fix += extension;
7201 /* Apply a fixup (fixS) to segment data, once it has been determined
7202 by our caller that we have all the info we need to fix it up.
7204 On the 386, immediates, displacements, and data pointers are all in
7205 the same (little-endian) format, so we don't need to care about which
7206 we are handling. */
7208 void
7209 md_apply_fix (fixP, valP, seg)
7210 /* The fix we're to put in. */
7211 fixS *fixP;
7212 /* Pointer to the value of the bits. */
7213 valueT *valP;
7214 /* Segment fix is from. */
7215 segT seg ATTRIBUTE_UNUSED;
7217 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7218 valueT value = *valP;
7220 #if !defined (TE_Mach)
7221 if (fixP->fx_pcrel)
7223 switch (fixP->fx_r_type)
7225 default:
7226 break;
7228 case BFD_RELOC_64:
7229 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7230 break;
7231 case BFD_RELOC_32:
7232 case BFD_RELOC_X86_64_32S:
7233 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7234 break;
7235 case BFD_RELOC_16:
7236 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7237 break;
7238 case BFD_RELOC_8:
7239 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7240 break;
7244 if (fixP->fx_addsy != NULL
7245 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7246 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7247 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7248 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7249 && !use_rela_relocations)
7251 /* This is a hack. There should be a better way to handle this.
7252 This covers for the fact that bfd_install_relocation will
7253 subtract the current location (for partial_inplace, PC relative
7254 relocations); see more below. */
7255 #ifndef OBJ_AOUT
7256 if (IS_ELF
7257 #ifdef TE_PE
7258 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7259 #endif
7261 value += fixP->fx_where + fixP->fx_frag->fr_address;
7262 #endif
7263 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7264 if (IS_ELF)
7266 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7268 if ((sym_seg == seg
7269 || (symbol_section_p (fixP->fx_addsy)
7270 && sym_seg != absolute_section))
7271 && !TC_FORCE_RELOCATION (fixP))
7273 /* Yes, we add the values in twice. This is because
7274 bfd_install_relocation subtracts them out again. I think
7275 bfd_install_relocation is broken, but I don't dare change
7276 it. FIXME. */
7277 value += fixP->fx_where + fixP->fx_frag->fr_address;
7280 #endif
7281 #if defined (OBJ_COFF) && defined (TE_PE)
7282 /* For some reason, the PE format does not store a
7283 section address offset for a PC relative symbol. */
7284 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7285 || S_IS_WEAK (fixP->fx_addsy))
7286 value += md_pcrel_from (fixP);
7287 #endif
7289 #if defined (OBJ_COFF) && defined (TE_PE)
7290 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7292 value -= S_GET_VALUE (fixP->fx_addsy);
7294 #endif
7296 /* Fix a few things - the dynamic linker expects certain values here,
7297 and we must not disappoint it. */
7298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7299 if (IS_ELF && fixP->fx_addsy)
7300 switch (fixP->fx_r_type)
7302 case BFD_RELOC_386_PLT32:
7303 case BFD_RELOC_X86_64_PLT32:
7304 /* Make the jump instruction point to the address of the operand. At
7305 runtime we merely add the offset to the actual PLT entry. */
7306 value = -4;
7307 break;
7309 case BFD_RELOC_386_TLS_GD:
7310 case BFD_RELOC_386_TLS_LDM:
7311 case BFD_RELOC_386_TLS_IE_32:
7312 case BFD_RELOC_386_TLS_IE:
7313 case BFD_RELOC_386_TLS_GOTIE:
7314 case BFD_RELOC_386_TLS_GOTDESC:
7315 case BFD_RELOC_X86_64_TLSGD:
7316 case BFD_RELOC_X86_64_TLSLD:
7317 case BFD_RELOC_X86_64_GOTTPOFF:
7318 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7319 value = 0; /* Fully resolved at runtime. No addend. */
7320 /* Fallthrough */
7321 case BFD_RELOC_386_TLS_LE:
7322 case BFD_RELOC_386_TLS_LDO_32:
7323 case BFD_RELOC_386_TLS_LE_32:
7324 case BFD_RELOC_X86_64_DTPOFF32:
7325 case BFD_RELOC_X86_64_DTPOFF64:
7326 case BFD_RELOC_X86_64_TPOFF32:
7327 case BFD_RELOC_X86_64_TPOFF64:
7328 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7329 break;
7331 case BFD_RELOC_386_TLS_DESC_CALL:
7332 case BFD_RELOC_X86_64_TLSDESC_CALL:
7333 value = 0; /* Fully resolved at runtime. No addend. */
7334 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7335 fixP->fx_done = 0;
7336 return;
7338 case BFD_RELOC_386_GOT32:
7339 case BFD_RELOC_X86_64_GOT32:
7340 value = 0; /* Fully resolved at runtime. No addend. */
7341 break;
7343 case BFD_RELOC_VTABLE_INHERIT:
7344 case BFD_RELOC_VTABLE_ENTRY:
7345 fixP->fx_done = 0;
7346 return;
7348 default:
7349 break;
7351 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7352 *valP = value;
7353 #endif /* !defined (TE_Mach) */
7355 /* Are we finished with this relocation now? */
7356 if (fixP->fx_addsy == NULL)
7357 fixP->fx_done = 1;
7358 #if defined (OBJ_COFF) && defined (TE_PE)
7359 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7361 fixP->fx_done = 0;
7362 /* Remember value for tc_gen_reloc. */
7363 fixP->fx_addnumber = value;
7364 /* Clear out the frag for now. */
7365 value = 0;
7367 #endif
7368 else if (use_rela_relocations)
7370 fixP->fx_no_overflow = 1;
7371 /* Remember value for tc_gen_reloc. */
7372 fixP->fx_addnumber = value;
7373 value = 0;
7376 md_number_to_chars (p, value, fixP->fx_size);
7379 char *
7380 md_atof (int type, char *litP, int *sizeP)
7382 /* This outputs the LITTLENUMs in REVERSE order;
7383 in accord with the bigendian 386. */
7384 return ieee_md_atof (type, litP, sizeP, FALSE);
7387 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7389 static char *
7390 output_invalid (int c)
7392 if (ISPRINT (c))
7393 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7394 "'%c'", c);
7395 else
7396 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7397 "(0x%x)", (unsigned char) c);
7398 return output_invalid_buf;
7401 /* REG_STRING starts *before* REGISTER_PREFIX. */
7403 static const reg_entry *
7404 parse_real_register (char *reg_string, char **end_op)
7406 char *s = reg_string;
7407 char *p;
7408 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7409 const reg_entry *r;
7411 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7412 if (*s == REGISTER_PREFIX)
7413 ++s;
7415 if (is_space_char (*s))
7416 ++s;
7418 p = reg_name_given;
7419 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7421 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7422 return (const reg_entry *) NULL;
7423 s++;
7426 /* For naked regs, make sure that we are not dealing with an identifier.
7427 This prevents confusing an identifier like `eax_var' with register
7428 `eax'. */
7429 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7430 return (const reg_entry *) NULL;
7432 *end_op = s;
7434 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7436 /* Handle floating point regs, allowing spaces in the (i) part. */
7437 if (r == i386_regtab /* %st is first entry of table */)
7439 if (is_space_char (*s))
7440 ++s;
7441 if (*s == '(')
7443 ++s;
7444 if (is_space_char (*s))
7445 ++s;
7446 if (*s >= '0' && *s <= '7')
7448 int fpr = *s - '0';
7449 ++s;
7450 if (is_space_char (*s))
7451 ++s;
7452 if (*s == ')')
7454 *end_op = s + 1;
7455 r = hash_find (reg_hash, "st(0)");
7456 know (r);
7457 return r + fpr;
7460 /* We have "%st(" then garbage. */
7461 return (const reg_entry *) NULL;
7465 if (r == NULL || allow_pseudo_reg)
7466 return r;
7468 if (operand_type_all_zero (&r->reg_type))
7469 return (const reg_entry *) NULL;
7471 if ((r->reg_type.bitfield.reg32
7472 || r->reg_type.bitfield.sreg3
7473 || r->reg_type.bitfield.control
7474 || r->reg_type.bitfield.debug
7475 || r->reg_type.bitfield.test)
7476 && !cpu_arch_flags.bitfield.cpui386)
7477 return (const reg_entry *) NULL;
7479 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7480 return (const reg_entry *) NULL;
7482 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7483 return (const reg_entry *) NULL;
7485 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7486 return (const reg_entry *) NULL;
7488 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7489 if (!allow_index_reg
7490 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7491 return (const reg_entry *) NULL;
7493 if (((r->reg_flags & (RegRex64 | RegRex))
7494 || r->reg_type.bitfield.reg64)
7495 && (!cpu_arch_flags.bitfield.cpulm
7496 || !operand_type_equal (&r->reg_type, &control))
7497 && flag_code != CODE_64BIT)
7498 return (const reg_entry *) NULL;
7500 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7501 return (const reg_entry *) NULL;
7503 return r;
7506 /* REG_STRING starts *before* REGISTER_PREFIX. */
7508 static const reg_entry *
7509 parse_register (char *reg_string, char **end_op)
7511 const reg_entry *r;
7513 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7514 r = parse_real_register (reg_string, end_op);
7515 else
7516 r = NULL;
7517 if (!r)
7519 char *save = input_line_pointer;
7520 char c;
7521 symbolS *symbolP;
7523 input_line_pointer = reg_string;
7524 c = get_symbol_end ();
7525 symbolP = symbol_find (reg_string);
7526 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7528 const expressionS *e = symbol_get_value_expression (symbolP);
7530 know (e->X_op == O_register);
7531 know (e->X_add_number >= 0
7532 && (valueT) e->X_add_number < i386_regtab_size);
7533 r = i386_regtab + e->X_add_number;
7534 *end_op = input_line_pointer;
7536 *input_line_pointer = c;
7537 input_line_pointer = save;
7539 return r;
7543 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7545 const reg_entry *r;
7546 char *end = input_line_pointer;
7548 *end = *nextcharP;
7549 r = parse_register (name, &input_line_pointer);
7550 if (r && end <= input_line_pointer)
7552 *nextcharP = *input_line_pointer;
7553 *input_line_pointer = 0;
7554 e->X_op = O_register;
7555 e->X_add_number = r - i386_regtab;
7556 return 1;
7558 input_line_pointer = end;
7559 *end = 0;
7560 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7563 void
7564 md_operand (expressionS *e)
7566 char *end;
7567 const reg_entry *r;
7569 switch (*input_line_pointer)
7571 case REGISTER_PREFIX:
7572 r = parse_real_register (input_line_pointer, &end);
7573 if (r)
7575 e->X_op = O_register;
7576 e->X_add_number = r - i386_regtab;
7577 input_line_pointer = end;
7579 break;
7581 case '[':
7582 gas_assert (intel_syntax);
7583 end = input_line_pointer++;
7584 expression (e);
7585 if (*input_line_pointer == ']')
7587 ++input_line_pointer;
7588 e->X_op_symbol = make_expr_symbol (e);
7589 e->X_add_symbol = NULL;
7590 e->X_add_number = 0;
7591 e->X_op = O_index;
7593 else
7595 e->X_op = O_absent;
7596 input_line_pointer = end;
7598 break;
7603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7604 const char *md_shortopts = "kVQ:sqn";
7605 #else
7606 const char *md_shortopts = "qn";
7607 #endif
7609 #define OPTION_32 (OPTION_MD_BASE + 0)
7610 #define OPTION_64 (OPTION_MD_BASE + 1)
7611 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7612 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7613 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7614 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7615 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7616 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7617 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7618 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7619 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7620 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7622 struct option md_longopts[] =
7624 {"32", no_argument, NULL, OPTION_32},
7625 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7626 || defined (TE_PE) || defined (TE_PEP))
7627 {"64", no_argument, NULL, OPTION_64},
7628 #endif
7629 {"divide", no_argument, NULL, OPTION_DIVIDE},
7630 {"march", required_argument, NULL, OPTION_MARCH},
7631 {"mtune", required_argument, NULL, OPTION_MTUNE},
7632 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7633 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7634 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7635 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7636 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7637 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
7638 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7639 {NULL, no_argument, NULL, 0}
7641 size_t md_longopts_size = sizeof (md_longopts);
7644 md_parse_option (int c, char *arg)
7646 unsigned int i;
7647 char *arch, *next;
7649 switch (c)
7651 case 'n':
7652 optimize_align_code = 0;
7653 break;
7655 case 'q':
7656 quiet_warnings = 1;
7657 break;
7659 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7660 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7661 should be emitted or not. FIXME: Not implemented. */
7662 case 'Q':
7663 break;
7665 /* -V: SVR4 argument to print version ID. */
7666 case 'V':
7667 print_version_id ();
7668 break;
7670 /* -k: Ignore for FreeBSD compatibility. */
7671 case 'k':
7672 break;
7674 case 's':
7675 /* -s: On i386 Solaris, this tells the native assembler to use
7676 .stab instead of .stab.excl. We always use .stab anyhow. */
7677 break;
7678 #endif
7679 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7680 || defined (TE_PE) || defined (TE_PEP))
7681 case OPTION_64:
7683 const char **list, **l;
7685 list = bfd_target_list ();
7686 for (l = list; *l != NULL; l++)
7687 if (CONST_STRNEQ (*l, "elf64-x86-64")
7688 || strcmp (*l, "coff-x86-64") == 0
7689 || strcmp (*l, "pe-x86-64") == 0
7690 || strcmp (*l, "pei-x86-64") == 0)
7692 default_arch = "x86_64";
7693 break;
7695 if (*l == NULL)
7696 as_fatal (_("No compiled in support for x86_64"));
7697 free (list);
7699 break;
7700 #endif
7702 case OPTION_32:
7703 default_arch = "i386";
7704 break;
7706 case OPTION_DIVIDE:
7707 #ifdef SVR4_COMMENT_CHARS
7709 char *n, *t;
7710 const char *s;
7712 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7713 t = n;
7714 for (s = i386_comment_chars; *s != '\0'; s++)
7715 if (*s != '/')
7716 *t++ = *s;
7717 *t = '\0';
7718 i386_comment_chars = n;
7720 #endif
7721 break;
7723 case OPTION_MARCH:
7724 arch = xstrdup (arg);
7727 if (*arch == '.')
7728 as_fatal (_("Invalid -march= option: `%s'"), arg);
7729 next = strchr (arch, '+');
7730 if (next)
7731 *next++ = '\0';
7732 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7734 if (strcmp (arch, cpu_arch [i].name) == 0)
7736 /* Processor. */
7737 cpu_arch_name = cpu_arch[i].name;
7738 cpu_sub_arch_name = NULL;
7739 cpu_arch_flags = cpu_arch[i].flags;
7740 cpu_arch_isa = cpu_arch[i].type;
7741 cpu_arch_isa_flags = cpu_arch[i].flags;
7742 if (!cpu_arch_tune_set)
7744 cpu_arch_tune = cpu_arch_isa;
7745 cpu_arch_tune_flags = cpu_arch_isa_flags;
7747 break;
7749 else if (*cpu_arch [i].name == '.'
7750 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7752 /* ISA entension. */
7753 i386_cpu_flags flags;
7754 flags = cpu_flags_or (cpu_arch_flags,
7755 cpu_arch[i].flags);
7756 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
7758 if (cpu_sub_arch_name)
7760 char *name = cpu_sub_arch_name;
7761 cpu_sub_arch_name = concat (name,
7762 cpu_arch[i].name,
7763 (const char *) NULL);
7764 free (name);
7766 else
7767 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7768 cpu_arch_flags = flags;
7770 break;
7774 if (i >= ARRAY_SIZE (cpu_arch))
7775 as_fatal (_("Invalid -march= option: `%s'"), arg);
7777 arch = next;
7779 while (next != NULL );
7780 break;
7782 case OPTION_MTUNE:
7783 if (*arg == '.')
7784 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7785 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7787 if (strcmp (arg, cpu_arch [i].name) == 0)
7789 cpu_arch_tune_set = 1;
7790 cpu_arch_tune = cpu_arch [i].type;
7791 cpu_arch_tune_flags = cpu_arch[i].flags;
7792 break;
7795 if (i >= ARRAY_SIZE (cpu_arch))
7796 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7797 break;
7799 case OPTION_MMNEMONIC:
7800 if (strcasecmp (arg, "att") == 0)
7801 intel_mnemonic = 0;
7802 else if (strcasecmp (arg, "intel") == 0)
7803 intel_mnemonic = 1;
7804 else
7805 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7806 break;
7808 case OPTION_MSYNTAX:
7809 if (strcasecmp (arg, "att") == 0)
7810 intel_syntax = 0;
7811 else if (strcasecmp (arg, "intel") == 0)
7812 intel_syntax = 1;
7813 else
7814 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7815 break;
7817 case OPTION_MINDEX_REG:
7818 allow_index_reg = 1;
7819 break;
7821 case OPTION_MNAKED_REG:
7822 allow_naked_reg = 1;
7823 break;
7825 case OPTION_MOLD_GCC:
7826 old_gcc = 1;
7827 break;
7829 case OPTION_MSSE2AVX:
7830 sse2avx = 1;
7831 break;
7833 case OPTION_MSSE_CHECK:
7834 if (strcasecmp (arg, "error") == 0)
7835 sse_check = sse_check_error;
7836 else if (strcasecmp (arg, "warning") == 0)
7837 sse_check = sse_check_warning;
7838 else if (strcasecmp (arg, "none") == 0)
7839 sse_check = sse_check_none;
7840 else
7841 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7842 break;
7844 default:
7845 return 0;
7847 return 1;
7850 void
7851 md_show_usage (stream)
7852 FILE *stream;
7854 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7855 fprintf (stream, _("\
7856 -Q ignored\n\
7857 -V print assembler version number\n\
7858 -k ignored\n"));
7859 #endif
7860 fprintf (stream, _("\
7861 -n Do not optimize code alignment\n\
7862 -q quieten some warnings\n"));
7863 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7864 fprintf (stream, _("\
7865 -s ignored\n"));
7866 #endif
7867 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7868 || defined (TE_PE) || defined (TE_PEP))
7869 fprintf (stream, _("\
7870 --32/--64 generate 32bit/64bit code\n"));
7871 #endif
7872 #ifdef SVR4_COMMENT_CHARS
7873 fprintf (stream, _("\
7874 --divide do not treat `/' as a comment character\n"));
7875 #else
7876 fprintf (stream, _("\
7877 --divide ignored\n"));
7878 #endif
7879 fprintf (stream, _("\
7880 -march=CPU[,+EXTENSION...]\n\
7881 generate code for CPU and EXTENSION, CPU is one of:\n\
7882 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7883 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7884 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
7885 generic32, generic64\n\
7886 EXTENSION is combination of:\n\
7887 mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
7888 avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
7889 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
7890 svme, abm, padlock, fma4\n"));
7891 fprintf (stream, _("\
7892 -mtune=CPU optimize for CPU, CPU is one of:\n\
7893 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7894 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7895 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
7896 generic32, generic64\n"));
7897 fprintf (stream, _("\
7898 -msse2avx encode SSE instructions with VEX prefix\n"));
7899 fprintf (stream, _("\
7900 -msse-check=[none|error|warning]\n\
7901 check SSE instructions\n"));
7902 fprintf (stream, _("\
7903 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
7904 fprintf (stream, _("\
7905 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
7906 fprintf (stream, _("\
7907 -mindex-reg support pseudo index registers\n"));
7908 fprintf (stream, _("\
7909 -mnaked-reg don't require `%%' prefix for registers\n"));
7910 fprintf (stream, _("\
7911 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7914 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7915 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7916 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
7918 /* Pick the target format to use. */
7920 const char *
7921 i386_target_format (void)
7923 if (!strcmp (default_arch, "x86_64"))
7925 set_code_flag (CODE_64BIT);
7926 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
7928 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7929 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7930 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7931 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7932 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7933 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7934 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
7935 cpu_arch_isa_flags.bitfield.cpummx= 1;
7936 cpu_arch_isa_flags.bitfield.cpusse = 1;
7937 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7939 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
7941 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7942 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7943 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7944 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7945 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7946 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7947 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
7948 cpu_arch_tune_flags.bitfield.cpummx= 1;
7949 cpu_arch_tune_flags.bitfield.cpusse = 1;
7950 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7953 else if (!strcmp (default_arch, "i386"))
7955 set_code_flag (CODE_32BIT);
7956 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
7958 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7959 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7960 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7962 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
7964 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7965 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7966 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7969 else
7970 as_fatal (_("Unknown architecture"));
7971 switch (OUTPUT_FLAVOR)
7973 #if defined (TE_PE) || defined (TE_PEP)
7974 case bfd_target_coff_flavour:
7975 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
7976 #endif
7977 #ifdef OBJ_MAYBE_AOUT
7978 case bfd_target_aout_flavour:
7979 return AOUT_TARGET_FORMAT;
7980 #endif
7981 #ifdef OBJ_MAYBE_COFF
7982 case bfd_target_coff_flavour:
7983 return "coff-i386";
7984 #endif
7985 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7986 case bfd_target_elf_flavour:
7988 if (flag_code == CODE_64BIT)
7990 object_64bit = 1;
7991 use_rela_relocations = 1;
7993 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7995 #endif
7996 #if defined (OBJ_MACH_O)
7997 case bfd_target_mach_o_flavour:
7998 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
7999 #endif
8000 default:
8001 abort ();
8002 return NULL;
8006 #endif /* OBJ_MAYBE_ more than one */
8008 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8009 void
8010 i386_elf_emit_arch_note (void)
8012 if (IS_ELF && cpu_arch_name != NULL)
8014 char *p;
8015 asection *seg = now_seg;
8016 subsegT subseg = now_subseg;
8017 Elf_Internal_Note i_note;
8018 Elf_External_Note e_note;
8019 asection *note_secp;
8020 int len;
8022 /* Create the .note section. */
8023 note_secp = subseg_new (".note", 0);
8024 bfd_set_section_flags (stdoutput,
8025 note_secp,
8026 SEC_HAS_CONTENTS | SEC_READONLY);
8028 /* Process the arch string. */
8029 len = strlen (cpu_arch_name);
8031 i_note.namesz = len + 1;
8032 i_note.descsz = 0;
8033 i_note.type = NT_ARCH;
8034 p = frag_more (sizeof (e_note.namesz));
8035 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8036 p = frag_more (sizeof (e_note.descsz));
8037 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8038 p = frag_more (sizeof (e_note.type));
8039 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8040 p = frag_more (len + 1);
8041 strcpy (p, cpu_arch_name);
8043 frag_align (2, 0, 0);
8045 subseg_set (seg, subseg);
8048 #endif
8050 symbolS *
8051 md_undefined_symbol (name)
8052 char *name;
8054 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8055 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8056 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8057 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8059 if (!GOT_symbol)
8061 if (symbol_find (name))
8062 as_bad (_("GOT already in symbol table"));
8063 GOT_symbol = symbol_new (name, undefined_section,
8064 (valueT) 0, &zero_address_frag);
8066 return GOT_symbol;
8068 return 0;
8071 /* Round up a section size to the appropriate boundary. */
8073 valueT
8074 md_section_align (segment, size)
8075 segT segment ATTRIBUTE_UNUSED;
8076 valueT size;
8078 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8079 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8081 /* For a.out, force the section size to be aligned. If we don't do
8082 this, BFD will align it for us, but it will not write out the
8083 final bytes of the section. This may be a bug in BFD, but it is
8084 easier to fix it here since that is how the other a.out targets
8085 work. */
8086 int align;
8088 align = bfd_get_section_alignment (stdoutput, segment);
8089 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8091 #endif
8093 return size;
8096 /* On the i386, PC-relative offsets are relative to the start of the
8097 next instruction. That is, the address of the offset, plus its
8098 size, since the offset is always the last part of the insn. */
8100 long
8101 md_pcrel_from (fixS *fixP)
8103 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8106 #ifndef I386COFF
8108 static void
8109 s_bss (int ignore ATTRIBUTE_UNUSED)
8111 int temp;
8113 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8114 if (IS_ELF)
8115 obj_elf_section_change_hook ();
8116 #endif
8117 temp = get_absolute_expression ();
8118 subseg_set (bss_section, (subsegT) temp);
8119 demand_empty_rest_of_line ();
8122 #endif
8124 void
8125 i386_validate_fix (fixS *fixp)
8127 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8129 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8131 if (!object_64bit)
8132 abort ();
8133 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8135 else
8137 if (!object_64bit)
8138 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8139 else
8140 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8142 fixp->fx_subsy = 0;
8146 arelent *
8147 tc_gen_reloc (section, fixp)
8148 asection *section ATTRIBUTE_UNUSED;
8149 fixS *fixp;
8151 arelent *rel;
8152 bfd_reloc_code_real_type code;
8154 switch (fixp->fx_r_type)
8156 case BFD_RELOC_X86_64_PLT32:
8157 case BFD_RELOC_X86_64_GOT32:
8158 case BFD_RELOC_X86_64_GOTPCREL:
8159 case BFD_RELOC_386_PLT32:
8160 case BFD_RELOC_386_GOT32:
8161 case BFD_RELOC_386_GOTOFF:
8162 case BFD_RELOC_386_GOTPC:
8163 case BFD_RELOC_386_TLS_GD:
8164 case BFD_RELOC_386_TLS_LDM:
8165 case BFD_RELOC_386_TLS_LDO_32:
8166 case BFD_RELOC_386_TLS_IE_32:
8167 case BFD_RELOC_386_TLS_IE:
8168 case BFD_RELOC_386_TLS_GOTIE:
8169 case BFD_RELOC_386_TLS_LE_32:
8170 case BFD_RELOC_386_TLS_LE:
8171 case BFD_RELOC_386_TLS_GOTDESC:
8172 case BFD_RELOC_386_TLS_DESC_CALL:
8173 case BFD_RELOC_X86_64_TLSGD:
8174 case BFD_RELOC_X86_64_TLSLD:
8175 case BFD_RELOC_X86_64_DTPOFF32:
8176 case BFD_RELOC_X86_64_DTPOFF64:
8177 case BFD_RELOC_X86_64_GOTTPOFF:
8178 case BFD_RELOC_X86_64_TPOFF32:
8179 case BFD_RELOC_X86_64_TPOFF64:
8180 case BFD_RELOC_X86_64_GOTOFF64:
8181 case BFD_RELOC_X86_64_GOTPC32:
8182 case BFD_RELOC_X86_64_GOT64:
8183 case BFD_RELOC_X86_64_GOTPCREL64:
8184 case BFD_RELOC_X86_64_GOTPC64:
8185 case BFD_RELOC_X86_64_GOTPLT64:
8186 case BFD_RELOC_X86_64_PLTOFF64:
8187 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8188 case BFD_RELOC_X86_64_TLSDESC_CALL:
8189 case BFD_RELOC_RVA:
8190 case BFD_RELOC_VTABLE_ENTRY:
8191 case BFD_RELOC_VTABLE_INHERIT:
8192 #ifdef TE_PE
8193 case BFD_RELOC_32_SECREL:
8194 #endif
8195 code = fixp->fx_r_type;
8196 break;
8197 case BFD_RELOC_X86_64_32S:
8198 if (!fixp->fx_pcrel)
8200 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8201 code = fixp->fx_r_type;
8202 break;
8204 default:
8205 if (fixp->fx_pcrel)
8207 switch (fixp->fx_size)
8209 default:
8210 as_bad_where (fixp->fx_file, fixp->fx_line,
8211 _("can not do %d byte pc-relative relocation"),
8212 fixp->fx_size);
8213 code = BFD_RELOC_32_PCREL;
8214 break;
8215 case 1: code = BFD_RELOC_8_PCREL; break;
8216 case 2: code = BFD_RELOC_16_PCREL; break;
8217 case 4: code = BFD_RELOC_32_PCREL; break;
8218 #ifdef BFD64
8219 case 8: code = BFD_RELOC_64_PCREL; break;
8220 #endif
8223 else
8225 switch (fixp->fx_size)
8227 default:
8228 as_bad_where (fixp->fx_file, fixp->fx_line,
8229 _("can not do %d byte relocation"),
8230 fixp->fx_size);
8231 code = BFD_RELOC_32;
8232 break;
8233 case 1: code = BFD_RELOC_8; break;
8234 case 2: code = BFD_RELOC_16; break;
8235 case 4: code = BFD_RELOC_32; break;
8236 #ifdef BFD64
8237 case 8: code = BFD_RELOC_64; break;
8238 #endif
8241 break;
8244 if ((code == BFD_RELOC_32
8245 || code == BFD_RELOC_32_PCREL
8246 || code == BFD_RELOC_X86_64_32S)
8247 && GOT_symbol
8248 && fixp->fx_addsy == GOT_symbol)
8250 if (!object_64bit)
8251 code = BFD_RELOC_386_GOTPC;
8252 else
8253 code = BFD_RELOC_X86_64_GOTPC32;
8255 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8256 && GOT_symbol
8257 && fixp->fx_addsy == GOT_symbol)
8259 code = BFD_RELOC_X86_64_GOTPC64;
8262 rel = (arelent *) xmalloc (sizeof (arelent));
8263 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8264 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8266 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8268 if (!use_rela_relocations)
8270 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8271 vtable entry to be used in the relocation's section offset. */
8272 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8273 rel->address = fixp->fx_offset;
8274 #if defined (OBJ_COFF) && defined (TE_PE)
8275 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8276 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8277 else
8278 #endif
8279 rel->addend = 0;
8281 /* Use the rela in 64bit mode. */
8282 else
8284 if (!fixp->fx_pcrel)
8285 rel->addend = fixp->fx_offset;
8286 else
8287 switch (code)
8289 case BFD_RELOC_X86_64_PLT32:
8290 case BFD_RELOC_X86_64_GOT32:
8291 case BFD_RELOC_X86_64_GOTPCREL:
8292 case BFD_RELOC_X86_64_TLSGD:
8293 case BFD_RELOC_X86_64_TLSLD:
8294 case BFD_RELOC_X86_64_GOTTPOFF:
8295 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8296 case BFD_RELOC_X86_64_TLSDESC_CALL:
8297 rel->addend = fixp->fx_offset - fixp->fx_size;
8298 break;
8299 default:
8300 rel->addend = (section->vma
8301 - fixp->fx_size
8302 + fixp->fx_addnumber
8303 + md_pcrel_from (fixp));
8304 break;
8308 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8309 if (rel->howto == NULL)
8311 as_bad_where (fixp->fx_file, fixp->fx_line,
8312 _("cannot represent relocation type %s"),
8313 bfd_get_reloc_code_name (code));
8314 /* Set howto to a garbage value so that we can keep going. */
8315 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8316 gas_assert (rel->howto != NULL);
8319 return rel;
8322 #include "tc-i386-intel.c"
8324 void
8325 tc_x86_parse_to_dw2regnum (expressionS *exp)
8327 int saved_naked_reg;
8328 char saved_register_dot;
8330 saved_naked_reg = allow_naked_reg;
8331 allow_naked_reg = 1;
8332 saved_register_dot = register_chars['.'];
8333 register_chars['.'] = '.';
8334 allow_pseudo_reg = 1;
8335 expression_and_evaluate (exp);
8336 allow_pseudo_reg = 0;
8337 register_chars['.'] = saved_register_dot;
8338 allow_naked_reg = saved_naked_reg;
8340 if (exp->X_op == O_register && exp->X_add_number >= 0)
8342 if ((addressT) exp->X_add_number < i386_regtab_size)
8344 exp->X_op = O_constant;
8345 exp->X_add_number = i386_regtab[exp->X_add_number]
8346 .dw2_regnum[flag_code >> 1];
8348 else
8349 exp->X_op = O_illegal;
8353 void
8354 tc_x86_frame_initial_instructions (void)
8356 static unsigned int sp_regno[2];
8358 if (!sp_regno[flag_code >> 1])
8360 char *saved_input = input_line_pointer;
8361 char sp[][4] = {"esp", "rsp"};
8362 expressionS exp;
8364 input_line_pointer = sp[flag_code >> 1];
8365 tc_x86_parse_to_dw2regnum (&exp);
8366 gas_assert (exp.X_op == O_constant);
8367 sp_regno[flag_code >> 1] = exp.X_add_number;
8368 input_line_pointer = saved_input;
8371 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8372 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8376 i386_elf_section_type (const char *str, size_t len)
8378 if (flag_code == CODE_64BIT
8379 && len == sizeof ("unwind") - 1
8380 && strncmp (str, "unwind", 6) == 0)
8381 return SHT_X86_64_UNWIND;
8383 return -1;
8386 #ifdef TE_SOLARIS
8387 void
8388 i386_solaris_fix_up_eh_frame (segT sec)
8390 if (flag_code == CODE_64BIT)
8391 elf_section_type (sec) = SHT_X86_64_UNWIND;
8393 #endif
8395 #ifdef TE_PE
8396 void
8397 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8399 expressionS expr;
8401 expr.X_op = O_secrel;
8402 expr.X_add_symbol = symbol;
8403 expr.X_add_number = 0;
8404 emit_expr (&expr, size);
8406 #endif
8408 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8409 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8411 bfd_vma
8412 x86_64_section_letter (int letter, char **ptr_msg)
8414 if (flag_code == CODE_64BIT)
8416 if (letter == 'l')
8417 return SHF_X86_64_LARGE;
8419 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8421 else
8422 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8423 return -1;
8426 bfd_vma
8427 x86_64_section_word (char *str, size_t len)
8429 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8430 return SHF_X86_64_LARGE;
8432 return -1;
8435 static void
8436 handle_large_common (int small ATTRIBUTE_UNUSED)
8438 if (flag_code != CODE_64BIT)
8440 s_comm_internal (0, elf_common_parse);
8441 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8443 else
8445 static segT lbss_section;
8446 asection *saved_com_section_ptr = elf_com_section_ptr;
8447 asection *saved_bss_section = bss_section;
8449 if (lbss_section == NULL)
8451 flagword applicable;
8452 segT seg = now_seg;
8453 subsegT subseg = now_subseg;
8455 /* The .lbss section is for local .largecomm symbols. */
8456 lbss_section = subseg_new (".lbss", 0);
8457 applicable = bfd_applicable_section_flags (stdoutput);
8458 bfd_set_section_flags (stdoutput, lbss_section,
8459 applicable & SEC_ALLOC);
8460 seg_info (lbss_section)->bss = 1;
8462 subseg_set (seg, subseg);
8465 elf_com_section_ptr = &_bfd_elf_large_com_section;
8466 bss_section = lbss_section;
8468 s_comm_internal (0, elf_common_parse);
8470 elf_com_section_ptr = saved_com_section_ptr;
8471 bss_section = saved_bss_section;
8474 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */