Touches most files in bfd/, so likely will be blamed for everything..
[binutils.git] / bfd / linker.c
blob233ea48d53780c5c0be84a5a93014b16ac865d18
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
29 SECTION
30 Linker Functions
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static boolean generic_link_read_symbols
410 PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_fill_link_order
430 PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 struct bfd_link_order *));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *, boolean));
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
438 upon. */
440 /* Routine to create an entry in the link hash table. */
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444 struct bfd_hash_entry *entry;
445 struct bfd_hash_table *table;
446 const char *string;
448 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
450 /* Allocate the structure if it has not already been allocated by a
451 subclass. */
452 if (ret == (struct bfd_link_hash_entry *) NULL)
453 ret = ((struct bfd_link_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455 if (ret == (struct bfd_link_hash_entry *) NULL)
456 return NULL;
458 /* Call the allocation method of the superclass. */
459 ret = ((struct bfd_link_hash_entry *)
460 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
462 if (ret)
464 /* Initialize the local fields. */
465 ret->type = bfd_link_hash_new;
466 ret->next = NULL;
469 return (struct bfd_hash_entry *) ret;
472 /* Initialize a link hash table. The BFD argument is the one
473 responsible for creating this table. */
475 boolean
476 _bfd_link_hash_table_init (table, abfd, newfunc)
477 struct bfd_link_hash_table *table;
478 bfd *abfd;
479 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480 struct bfd_hash_table *,
481 const char *));
483 table->creator = abfd->xvec;
484 table->undefs = NULL;
485 table->undefs_tail = NULL;
486 table->type = bfd_link_generic_hash_table;
488 return bfd_hash_table_init (&table->table, newfunc);
491 /* Look up a symbol in a link hash table. If follow is true, we
492 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
493 the real symbol. */
495 struct bfd_link_hash_entry *
496 bfd_link_hash_lookup (table, string, create, copy, follow)
497 struct bfd_link_hash_table *table;
498 const char *string;
499 boolean create;
500 boolean copy;
501 boolean follow;
503 struct bfd_link_hash_entry *ret;
505 ret = ((struct bfd_link_hash_entry *)
506 bfd_hash_lookup (&table->table, string, create, copy));
508 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
510 while (ret->type == bfd_link_hash_indirect
511 || ret->type == bfd_link_hash_warning)
512 ret = ret->u.i.link;
515 return ret;
518 /* Look up a symbol in the main linker hash table if the symbol might
519 be wrapped. This should only be used for references to an
520 undefined symbol, not for definitions of a symbol. */
522 struct bfd_link_hash_entry *
523 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
524 bfd *abfd;
525 struct bfd_link_info *info;
526 const char *string;
527 boolean create;
528 boolean copy;
529 boolean follow;
531 bfd_size_type amt;
533 if (info->wrap_hash != NULL)
535 const char *l;
537 l = string;
538 if (*l == bfd_get_symbol_leading_char (abfd))
539 ++l;
541 #undef WRAP
542 #define WRAP "__wrap_"
544 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
546 char *n;
547 struct bfd_link_hash_entry *h;
549 /* This symbol is being wrapped. We want to replace all
550 references to SYM with references to __wrap_SYM. */
552 amt = strlen (l) + sizeof WRAP + 1;
553 n = (char *) bfd_malloc (amt);
554 if (n == NULL)
555 return NULL;
557 /* Note that symbol_leading_char may be '\0'. */
558 n[0] = bfd_get_symbol_leading_char (abfd);
559 n[1] = '\0';
560 strcat (n, WRAP);
561 strcat (n, l);
562 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
563 free (n);
564 return h;
567 #undef WRAP
569 #undef REAL
570 #define REAL "__real_"
572 if (*l == '_'
573 && strncmp (l, REAL, sizeof REAL - 1) == 0
574 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
575 false, false) != NULL)
577 char *n;
578 struct bfd_link_hash_entry *h;
580 /* This is a reference to __real_SYM, where SYM is being
581 wrapped. We want to replace all references to __real_SYM
582 with references to SYM. */
584 amt = strlen (l + sizeof REAL - 1) + 2;
585 n = (char *) bfd_malloc (amt);
586 if (n == NULL)
587 return NULL;
589 /* Note that symbol_leading_char may be '\0'. */
590 n[0] = bfd_get_symbol_leading_char (abfd);
591 n[1] = '\0';
592 strcat (n, l + sizeof REAL - 1);
593 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
594 free (n);
595 return h;
598 #undef REAL
601 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
604 /* Traverse a generic link hash table. The only reason this is not a
605 macro is to do better type checking. This code presumes that an
606 argument passed as a struct bfd_hash_entry * may be caught as a
607 struct bfd_link_hash_entry * with no explicit cast required on the
608 call. */
610 void
611 bfd_link_hash_traverse (table, func, info)
612 struct bfd_link_hash_table *table;
613 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
614 PTR info;
616 bfd_hash_traverse (&table->table,
617 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
618 func),
619 info);
622 /* Add a symbol to the linker hash table undefs list. */
624 INLINE void
625 bfd_link_add_undef (table, h)
626 struct bfd_link_hash_table *table;
627 struct bfd_link_hash_entry *h;
629 BFD_ASSERT (h->next == NULL);
630 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
631 table->undefs_tail->next = h;
632 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
633 table->undefs = h;
634 table->undefs_tail = h;
637 /* Routine to create an entry in an generic link hash table. */
639 struct bfd_hash_entry *
640 _bfd_generic_link_hash_newfunc (entry, table, string)
641 struct bfd_hash_entry *entry;
642 struct bfd_hash_table *table;
643 const char *string;
645 struct generic_link_hash_entry *ret =
646 (struct generic_link_hash_entry *) entry;
648 /* Allocate the structure if it has not already been allocated by a
649 subclass. */
650 if (ret == (struct generic_link_hash_entry *) NULL)
651 ret = ((struct generic_link_hash_entry *)
652 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
653 if (ret == (struct generic_link_hash_entry *) NULL)
654 return NULL;
656 /* Call the allocation method of the superclass. */
657 ret = ((struct generic_link_hash_entry *)
658 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
659 table, string));
661 if (ret)
663 /* Set local fields. */
664 ret->written = false;
665 ret->sym = NULL;
668 return (struct bfd_hash_entry *) ret;
671 /* Create an generic link hash table. */
673 struct bfd_link_hash_table *
674 _bfd_generic_link_hash_table_create (abfd)
675 bfd *abfd;
677 struct generic_link_hash_table *ret;
678 bfd_size_type amt = sizeof (struct generic_link_hash_table);
680 ret = (struct generic_link_hash_table *) bfd_alloc (abfd, amt);
681 if (ret == NULL)
682 return (struct bfd_link_hash_table *) NULL;
683 if (! _bfd_link_hash_table_init (&ret->root, abfd,
684 _bfd_generic_link_hash_newfunc))
686 free (ret);
687 return (struct bfd_link_hash_table *) NULL;
689 return &ret->root;
692 /* Grab the symbols for an object file when doing a generic link. We
693 store the symbols in the outsymbols field. We need to keep them
694 around for the entire link to ensure that we only read them once.
695 If we read them multiple times, we might wind up with relocs and
696 the hash table pointing to different instances of the symbol
697 structure. */
699 static boolean
700 generic_link_read_symbols (abfd)
701 bfd *abfd;
703 if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
705 long symsize;
706 long symcount;
708 symsize = bfd_get_symtab_upper_bound (abfd);
709 if (symsize < 0)
710 return false;
711 bfd_get_outsymbols (abfd) =
712 (asymbol **) bfd_alloc (abfd, (bfd_size_type) symsize);
713 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
714 return false;
715 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
716 if (symcount < 0)
717 return false;
718 bfd_get_symcount (abfd) = symcount;
721 return true;
724 /* Generic function to add symbols to from an object file to the
725 global hash table. This version does not automatically collect
726 constructors by name. */
728 boolean
729 _bfd_generic_link_add_symbols (abfd, info)
730 bfd *abfd;
731 struct bfd_link_info *info;
733 return generic_link_add_symbols (abfd, info, false);
736 /* Generic function to add symbols from an object file to the global
737 hash table. This version automatically collects constructors by
738 name, as the collect2 program does. It should be used for any
739 target which does not provide some other mechanism for setting up
740 constructors and destructors; these are approximately those targets
741 for which gcc uses collect2 and do not support stabs. */
743 boolean
744 _bfd_generic_link_add_symbols_collect (abfd, info)
745 bfd *abfd;
746 struct bfd_link_info *info;
748 return generic_link_add_symbols (abfd, info, true);
751 /* Add symbols from an object file to the global hash table. */
753 static boolean
754 generic_link_add_symbols (abfd, info, collect)
755 bfd *abfd;
756 struct bfd_link_info *info;
757 boolean collect;
759 boolean ret;
761 switch (bfd_get_format (abfd))
763 case bfd_object:
764 ret = generic_link_add_object_symbols (abfd, info, collect);
765 break;
766 case bfd_archive:
767 ret = (_bfd_generic_link_add_archive_symbols
768 (abfd, info,
769 (collect
770 ? generic_link_check_archive_element_collect
771 : generic_link_check_archive_element_no_collect)));
772 break;
773 default:
774 bfd_set_error (bfd_error_wrong_format);
775 ret = false;
778 return ret;
781 /* Add symbols from an object file to the global hash table. */
783 static boolean
784 generic_link_add_object_symbols (abfd, info, collect)
785 bfd *abfd;
786 struct bfd_link_info *info;
787 boolean collect;
789 bfd_size_type symcount;
790 struct symbol_cache_entry **outsyms;
792 if (! generic_link_read_symbols (abfd))
793 return false;
794 symcount = _bfd_generic_link_get_symcount (abfd);
795 outsyms = _bfd_generic_link_get_symbols (abfd);
796 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
799 /* We build a hash table of all symbols defined in an archive. */
801 /* An archive symbol may be defined by multiple archive elements.
802 This linked list is used to hold the elements. */
804 struct archive_list
806 struct archive_list *next;
807 unsigned int indx;
810 /* An entry in an archive hash table. */
812 struct archive_hash_entry
814 struct bfd_hash_entry root;
815 /* Where the symbol is defined. */
816 struct archive_list *defs;
819 /* An archive hash table itself. */
821 struct archive_hash_table
823 struct bfd_hash_table table;
826 static struct bfd_hash_entry *archive_hash_newfunc
827 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
828 static boolean archive_hash_table_init
829 PARAMS ((struct archive_hash_table *,
830 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
831 struct bfd_hash_table *,
832 const char *)));
834 /* Create a new entry for an archive hash table. */
836 static struct bfd_hash_entry *
837 archive_hash_newfunc (entry, table, string)
838 struct bfd_hash_entry *entry;
839 struct bfd_hash_table *table;
840 const char *string;
842 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
844 /* Allocate the structure if it has not already been allocated by a
845 subclass. */
846 if (ret == (struct archive_hash_entry *) NULL)
847 ret = ((struct archive_hash_entry *)
848 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
849 if (ret == (struct archive_hash_entry *) NULL)
850 return NULL;
852 /* Call the allocation method of the superclass. */
853 ret = ((struct archive_hash_entry *)
854 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
856 if (ret)
858 /* Initialize the local fields. */
859 ret->defs = (struct archive_list *) NULL;
862 return (struct bfd_hash_entry *) ret;
865 /* Initialize an archive hash table. */
867 static boolean
868 archive_hash_table_init (table, newfunc)
869 struct archive_hash_table *table;
870 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
871 struct bfd_hash_table *,
872 const char *));
874 return bfd_hash_table_init (&table->table, newfunc);
877 /* Look up an entry in an archive hash table. */
879 #define archive_hash_lookup(t, string, create, copy) \
880 ((struct archive_hash_entry *) \
881 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
883 /* Allocate space in an archive hash table. */
885 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
887 /* Free an archive hash table. */
889 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
891 /* Generic function to add symbols from an archive file to the global
892 hash file. This function presumes that the archive symbol table
893 has already been read in (this is normally done by the
894 bfd_check_format entry point). It looks through the undefined and
895 common symbols and searches the archive symbol table for them. If
896 it finds an entry, it includes the associated object file in the
897 link.
899 The old linker looked through the archive symbol table for
900 undefined symbols. We do it the other way around, looking through
901 undefined symbols for symbols defined in the archive. The
902 advantage of the newer scheme is that we only have to look through
903 the list of undefined symbols once, whereas the old method had to
904 re-search the symbol table each time a new object file was added.
906 The CHECKFN argument is used to see if an object file should be
907 included. CHECKFN should set *PNEEDED to true if the object file
908 should be included, and must also call the bfd_link_info
909 add_archive_element callback function and handle adding the symbols
910 to the global hash table. CHECKFN should only return false if some
911 sort of error occurs.
913 For some formats, such as a.out, it is possible to look through an
914 object file but not actually include it in the link. The
915 archive_pass field in a BFD is used to avoid checking the symbols
916 of an object files too many times. When an object is included in
917 the link, archive_pass is set to -1. If an object is scanned but
918 not included, archive_pass is set to the pass number. The pass
919 number is incremented each time a new object file is included. The
920 pass number is used because when a new object file is included it
921 may create new undefined symbols which cause a previously examined
922 object file to be included. */
924 boolean
925 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
926 bfd *abfd;
927 struct bfd_link_info *info;
928 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
929 boolean *pneeded));
931 carsym *arsyms;
932 carsym *arsym_end;
933 register carsym *arsym;
934 int pass;
935 struct archive_hash_table arsym_hash;
936 unsigned int indx;
937 struct bfd_link_hash_entry **pundef;
939 if (! bfd_has_map (abfd))
941 /* An empty archive is a special case. */
942 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
943 return true;
944 bfd_set_error (bfd_error_no_armap);
945 return false;
948 arsyms = bfd_ardata (abfd)->symdefs;
949 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
951 /* In order to quickly determine whether an symbol is defined in
952 this archive, we build a hash table of the symbols. */
953 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
954 return false;
955 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
957 struct archive_hash_entry *arh;
958 struct archive_list *l, **pp;
960 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
961 if (arh == (struct archive_hash_entry *) NULL)
962 goto error_return;
963 l = ((struct archive_list *)
964 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
965 if (l == NULL)
966 goto error_return;
967 l->indx = indx;
968 for (pp = &arh->defs;
969 *pp != (struct archive_list *) NULL;
970 pp = &(*pp)->next)
972 *pp = l;
973 l->next = NULL;
976 /* The archive_pass field in the archive itself is used to
977 initialize PASS, sine we may search the same archive multiple
978 times. */
979 pass = abfd->archive_pass + 1;
981 /* New undefined symbols are added to the end of the list, so we
982 only need to look through it once. */
983 pundef = &info->hash->undefs;
984 while (*pundef != (struct bfd_link_hash_entry *) NULL)
986 struct bfd_link_hash_entry *h;
987 struct archive_hash_entry *arh;
988 struct archive_list *l;
990 h = *pundef;
992 /* When a symbol is defined, it is not necessarily removed from
993 the list. */
994 if (h->type != bfd_link_hash_undefined
995 && h->type != bfd_link_hash_common)
997 /* Remove this entry from the list, for general cleanliness
998 and because we are going to look through the list again
999 if we search any more libraries. We can't remove the
1000 entry if it is the tail, because that would lose any
1001 entries we add to the list later on (it would also cause
1002 us to lose track of whether the symbol has been
1003 referenced). */
1004 if (*pundef != info->hash->undefs_tail)
1005 *pundef = (*pundef)->next;
1006 else
1007 pundef = &(*pundef)->next;
1008 continue;
1011 /* Look for this symbol in the archive symbol map. */
1012 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1013 if (arh == (struct archive_hash_entry *) NULL)
1015 /* If we haven't found the exact symbol we're looking for,
1016 let's look for its import thunk */
1017 if (info->pei386_auto_import)
1019 bfd_size_type amt = strlen (h->root.string) + 10;
1020 char *buf = (char *) bfd_malloc (amt);
1021 if (buf == NULL)
1022 return false;
1024 sprintf (buf, "__imp_%s", h->root.string);
1025 arh = archive_hash_lookup (&arsym_hash, buf, false, false);
1026 free(buf);
1028 if (arh == (struct archive_hash_entry *) NULL)
1030 pundef = &(*pundef)->next;
1031 continue;
1034 /* Look at all the objects which define this symbol. */
1035 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1037 bfd *element;
1038 boolean needed;
1040 /* If the symbol has gotten defined along the way, quit. */
1041 if (h->type != bfd_link_hash_undefined
1042 && h->type != bfd_link_hash_common)
1043 break;
1045 element = bfd_get_elt_at_index (abfd, l->indx);
1046 if (element == (bfd *) NULL)
1047 goto error_return;
1049 /* If we've already included this element, or if we've
1050 already checked it on this pass, continue. */
1051 if (element->archive_pass == -1
1052 || element->archive_pass == pass)
1053 continue;
1055 /* If we can't figure this element out, just ignore it. */
1056 if (! bfd_check_format (element, bfd_object))
1058 element->archive_pass = -1;
1059 continue;
1062 /* CHECKFN will see if this element should be included, and
1063 go ahead and include it if appropriate. */
1064 if (! (*checkfn) (element, info, &needed))
1065 goto error_return;
1067 if (! needed)
1068 element->archive_pass = pass;
1069 else
1071 element->archive_pass = -1;
1073 /* Increment the pass count to show that we may need to
1074 recheck object files which were already checked. */
1075 ++pass;
1079 pundef = &(*pundef)->next;
1082 archive_hash_table_free (&arsym_hash);
1084 /* Save PASS in case we are called again. */
1085 abfd->archive_pass = pass;
1087 return true;
1089 error_return:
1090 archive_hash_table_free (&arsym_hash);
1091 return false;
1094 /* See if we should include an archive element. This version is used
1095 when we do not want to automatically collect constructors based on
1096 the symbol name, presumably because we have some other mechanism
1097 for finding them. */
1099 static boolean
1100 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1101 bfd *abfd;
1102 struct bfd_link_info *info;
1103 boolean *pneeded;
1105 return generic_link_check_archive_element (abfd, info, pneeded, false);
1108 /* See if we should include an archive element. This version is used
1109 when we want to automatically collect constructors based on the
1110 symbol name, as collect2 does. */
1112 static boolean
1113 generic_link_check_archive_element_collect (abfd, info, pneeded)
1114 bfd *abfd;
1115 struct bfd_link_info *info;
1116 boolean *pneeded;
1118 return generic_link_check_archive_element (abfd, info, pneeded, true);
1121 /* See if we should include an archive element. Optionally collect
1122 constructors. */
1124 static boolean
1125 generic_link_check_archive_element (abfd, info, pneeded, collect)
1126 bfd *abfd;
1127 struct bfd_link_info *info;
1128 boolean *pneeded;
1129 boolean collect;
1131 asymbol **pp, **ppend;
1133 *pneeded = false;
1135 if (! generic_link_read_symbols (abfd))
1136 return false;
1138 pp = _bfd_generic_link_get_symbols (abfd);
1139 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1140 for (; pp < ppend; pp++)
1142 asymbol *p;
1143 struct bfd_link_hash_entry *h;
1145 p = *pp;
1147 /* We are only interested in globally visible symbols. */
1148 if (! bfd_is_com_section (p->section)
1149 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1150 continue;
1152 /* We are only interested if we know something about this
1153 symbol, and it is undefined or common. An undefined weak
1154 symbol (type bfd_link_hash_undefweak) is not considered to be
1155 a reference when pulling files out of an archive. See the
1156 SVR4 ABI, p. 4-27. */
1157 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1158 false, true);
1159 if (h == (struct bfd_link_hash_entry *) NULL
1160 || (h->type != bfd_link_hash_undefined
1161 && h->type != bfd_link_hash_common))
1162 continue;
1164 /* P is a symbol we are looking for. */
1166 if (! bfd_is_com_section (p->section))
1168 bfd_size_type symcount;
1169 asymbol **symbols;
1171 /* This object file defines this symbol, so pull it in. */
1172 if (! (*info->callbacks->add_archive_element) (info, abfd,
1173 bfd_asymbol_name (p)))
1174 return false;
1175 symcount = _bfd_generic_link_get_symcount (abfd);
1176 symbols = _bfd_generic_link_get_symbols (abfd);
1177 if (! generic_link_add_symbol_list (abfd, info, symcount,
1178 symbols, collect))
1179 return false;
1180 *pneeded = true;
1181 return true;
1184 /* P is a common symbol. */
1186 if (h->type == bfd_link_hash_undefined)
1188 bfd *symbfd;
1189 bfd_vma size;
1190 unsigned int power;
1192 symbfd = h->u.undef.abfd;
1193 if (symbfd == (bfd *) NULL)
1195 /* This symbol was created as undefined from outside
1196 BFD. We assume that we should link in the object
1197 file. This is for the -u option in the linker. */
1198 if (! (*info->callbacks->add_archive_element)
1199 (info, abfd, bfd_asymbol_name (p)))
1200 return false;
1201 *pneeded = true;
1202 return true;
1205 /* Turn the symbol into a common symbol but do not link in
1206 the object file. This is how a.out works. Object
1207 formats that require different semantics must implement
1208 this function differently. This symbol is already on the
1209 undefs list. We add the section to a common section
1210 attached to symbfd to ensure that it is in a BFD which
1211 will be linked in. */
1212 h->type = bfd_link_hash_common;
1213 h->u.c.p =
1214 ((struct bfd_link_hash_common_entry *)
1215 bfd_hash_allocate (&info->hash->table,
1216 sizeof (struct bfd_link_hash_common_entry)));
1217 if (h->u.c.p == NULL)
1218 return false;
1220 size = bfd_asymbol_value (p);
1221 h->u.c.size = size;
1223 power = bfd_log2 (size);
1224 if (power > 4)
1225 power = 4;
1226 h->u.c.p->alignment_power = power;
1228 if (p->section == bfd_com_section_ptr)
1229 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1230 else
1231 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1232 p->section->name);
1233 h->u.c.p->section->flags = SEC_ALLOC;
1235 else
1237 /* Adjust the size of the common symbol if necessary. This
1238 is how a.out works. Object formats that require
1239 different semantics must implement this function
1240 differently. */
1241 if (bfd_asymbol_value (p) > h->u.c.size)
1242 h->u.c.size = bfd_asymbol_value (p);
1246 /* This archive element is not needed. */
1247 return true;
1250 /* Add the symbols from an object file to the global hash table. ABFD
1251 is the object file. INFO is the linker information. SYMBOL_COUNT
1252 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1253 is true if constructors should be automatically collected by name
1254 as is done by collect2. */
1256 static boolean
1257 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1258 bfd *abfd;
1259 struct bfd_link_info *info;
1260 bfd_size_type symbol_count;
1261 asymbol **symbols;
1262 boolean collect;
1264 asymbol **pp, **ppend;
1266 pp = symbols;
1267 ppend = symbols + symbol_count;
1268 for (; pp < ppend; pp++)
1270 asymbol *p;
1272 p = *pp;
1274 if ((p->flags & (BSF_INDIRECT
1275 | BSF_WARNING
1276 | BSF_GLOBAL
1277 | BSF_CONSTRUCTOR
1278 | BSF_WEAK)) != 0
1279 || bfd_is_und_section (bfd_get_section (p))
1280 || bfd_is_com_section (bfd_get_section (p))
1281 || bfd_is_ind_section (bfd_get_section (p)))
1283 const char *name;
1284 const char *string;
1285 struct generic_link_hash_entry *h;
1287 name = bfd_asymbol_name (p);
1288 if (((p->flags & BSF_INDIRECT) != 0
1289 || bfd_is_ind_section (p->section))
1290 && pp + 1 < ppend)
1292 pp++;
1293 string = bfd_asymbol_name (*pp);
1295 else if ((p->flags & BSF_WARNING) != 0
1296 && pp + 1 < ppend)
1298 /* The name of P is actually the warning string, and the
1299 next symbol is the one to warn about. */
1300 string = name;
1301 pp++;
1302 name = bfd_asymbol_name (*pp);
1304 else
1305 string = NULL;
1307 h = NULL;
1308 if (! (_bfd_generic_link_add_one_symbol
1309 (info, abfd, name, p->flags, bfd_get_section (p),
1310 p->value, string, false, collect,
1311 (struct bfd_link_hash_entry **) &h)))
1312 return false;
1314 /* If this is a constructor symbol, and the linker didn't do
1315 anything with it, then we want to just pass the symbol
1316 through to the output file. This will happen when
1317 linking with -r. */
1318 if ((p->flags & BSF_CONSTRUCTOR) != 0
1319 && (h == NULL || h->root.type == bfd_link_hash_new))
1321 p->udata.p = NULL;
1322 continue;
1325 /* Save the BFD symbol so that we don't lose any backend
1326 specific information that may be attached to it. We only
1327 want this one if it gives more information than the
1328 existing one; we don't want to replace a defined symbol
1329 with an undefined one. This routine may be called with a
1330 hash table other than the generic hash table, so we only
1331 do this if we are certain that the hash table is a
1332 generic one. */
1333 if (info->hash->creator == abfd->xvec)
1335 if (h->sym == (asymbol *) NULL
1336 || (! bfd_is_und_section (bfd_get_section (p))
1337 && (! bfd_is_com_section (bfd_get_section (p))
1338 || bfd_is_und_section (bfd_get_section (h->sym)))))
1340 h->sym = p;
1341 /* BSF_OLD_COMMON is a hack to support COFF reloc
1342 reading, and it should go away when the COFF
1343 linker is switched to the new version. */
1344 if (bfd_is_com_section (bfd_get_section (p)))
1345 p->flags |= BSF_OLD_COMMON;
1349 /* Store a back pointer from the symbol to the hash
1350 table entry for the benefit of relaxation code until
1351 it gets rewritten to not use asymbol structures.
1352 Setting this is also used to check whether these
1353 symbols were set up by the generic linker. */
1354 p->udata.p = (PTR) h;
1358 return true;
1361 /* We use a state table to deal with adding symbols from an object
1362 file. The first index into the state table describes the symbol
1363 from the object file. The second index into the state table is the
1364 type of the symbol in the hash table. */
1366 /* The symbol from the object file is turned into one of these row
1367 values. */
1369 enum link_row
1371 UNDEF_ROW, /* Undefined. */
1372 UNDEFW_ROW, /* Weak undefined. */
1373 DEF_ROW, /* Defined. */
1374 DEFW_ROW, /* Weak defined. */
1375 COMMON_ROW, /* Common. */
1376 INDR_ROW, /* Indirect. */
1377 WARN_ROW, /* Warning. */
1378 SET_ROW /* Member of set. */
1381 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1382 #undef FAIL
1384 /* The actions to take in the state table. */
1386 enum link_action
1388 FAIL, /* Abort. */
1389 UND, /* Mark symbol undefined. */
1390 WEAK, /* Mark symbol weak undefined. */
1391 DEF, /* Mark symbol defined. */
1392 DEFW, /* Mark symbol weak defined. */
1393 COM, /* Mark symbol common. */
1394 REF, /* Mark defined symbol referenced. */
1395 CREF, /* Possibly warn about common reference to defined symbol. */
1396 CDEF, /* Define existing common symbol. */
1397 NOACT, /* No action. */
1398 BIG, /* Mark symbol common using largest size. */
1399 MDEF, /* Multiple definition error. */
1400 MIND, /* Multiple indirect symbols. */
1401 IND, /* Make indirect symbol. */
1402 CIND, /* Make indirect symbol from existing common symbol. */
1403 SET, /* Add value to set. */
1404 MWARN, /* Make warning symbol. */
1405 WARN, /* Issue warning. */
1406 CWARN, /* Warn if referenced, else MWARN. */
1407 CYCLE, /* Repeat with symbol pointed to. */
1408 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1409 WARNC /* Issue warning and then CYCLE. */
1412 /* The state table itself. The first index is a link_row and the
1413 second index is a bfd_link_hash_type. */
1415 static const enum link_action link_action[8][8] =
1417 /* current\prev new undef undefw def defw com indr warn */
1418 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1419 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1420 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1421 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1422 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1423 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1424 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, MWARN },
1425 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1428 /* Most of the entries in the LINK_ACTION table are straightforward,
1429 but a few are somewhat subtle.
1431 A reference to an indirect symbol (UNDEF_ROW/indr or
1432 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1433 symbol and to the symbol the indirect symbol points to.
1435 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1436 causes the warning to be issued.
1438 A common definition of an indirect symbol (COMMON_ROW/indr) is
1439 treated as a multiple definition error. Likewise for an indirect
1440 definition of a common symbol (INDR_ROW/com).
1442 An indirect definition of a warning (INDR_ROW/warn) does not cause
1443 the warning to be issued.
1445 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1446 warning is created for the symbol the indirect symbol points to.
1448 Adding an entry to a set does not count as a reference to a set,
1449 and no warning is issued (SET_ROW/warn). */
1451 /* Return the BFD in which a hash entry has been defined, if known. */
1453 static bfd *
1454 hash_entry_bfd (h)
1455 struct bfd_link_hash_entry *h;
1457 while (h->type == bfd_link_hash_warning)
1458 h = h->u.i.link;
1459 switch (h->type)
1461 default:
1462 return NULL;
1463 case bfd_link_hash_undefined:
1464 case bfd_link_hash_undefweak:
1465 return h->u.undef.abfd;
1466 case bfd_link_hash_defined:
1467 case bfd_link_hash_defweak:
1468 return h->u.def.section->owner;
1469 case bfd_link_hash_common:
1470 return h->u.c.p->section->owner;
1472 /*NOTREACHED*/
1475 /* Add a symbol to the global hash table.
1476 ABFD is the BFD the symbol comes from.
1477 NAME is the name of the symbol.
1478 FLAGS is the BSF_* bits associated with the symbol.
1479 SECTION is the section in which the symbol is defined; this may be
1480 bfd_und_section_ptr or bfd_com_section_ptr.
1481 VALUE is the value of the symbol, relative to the section.
1482 STRING is used for either an indirect symbol, in which case it is
1483 the name of the symbol to indirect to, or a warning symbol, in
1484 which case it is the warning string.
1485 COPY is true if NAME or STRING must be copied into locally
1486 allocated memory if they need to be saved.
1487 COLLECT is true if we should automatically collect gcc constructor
1488 or destructor names as collect2 does.
1489 HASHP, if not NULL, is a place to store the created hash table
1490 entry; if *HASHP is not NULL, the caller has already looked up
1491 the hash table entry, and stored it in *HASHP. */
1493 boolean
1494 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1495 string, copy, collect, hashp)
1496 struct bfd_link_info *info;
1497 bfd *abfd;
1498 const char *name;
1499 flagword flags;
1500 asection *section;
1501 bfd_vma value;
1502 const char *string;
1503 boolean copy;
1504 boolean collect;
1505 struct bfd_link_hash_entry **hashp;
1507 enum link_row row;
1508 struct bfd_link_hash_entry *h;
1509 boolean cycle;
1511 if (bfd_is_ind_section (section)
1512 || (flags & BSF_INDIRECT) != 0)
1513 row = INDR_ROW;
1514 else if ((flags & BSF_WARNING) != 0)
1515 row = WARN_ROW;
1516 else if ((flags & BSF_CONSTRUCTOR) != 0)
1517 row = SET_ROW;
1518 else if (bfd_is_und_section (section))
1520 if ((flags & BSF_WEAK) != 0)
1521 row = UNDEFW_ROW;
1522 else
1523 row = UNDEF_ROW;
1525 else if ((flags & BSF_WEAK) != 0)
1526 row = DEFW_ROW;
1527 else if (bfd_is_com_section (section))
1528 row = COMMON_ROW;
1529 else
1530 row = DEF_ROW;
1532 if (hashp != NULL && *hashp != NULL)
1533 h = *hashp;
1534 else
1536 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1537 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1538 else
1539 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1540 if (h == NULL)
1542 if (hashp != NULL)
1543 *hashp = NULL;
1544 return false;
1548 if (info->notice_all
1549 || (info->notice_hash != (struct bfd_hash_table *) NULL
1550 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1551 != (struct bfd_hash_entry *) NULL)))
1553 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1554 value))
1555 return false;
1558 if (hashp != (struct bfd_link_hash_entry **) NULL)
1559 *hashp = h;
1563 enum link_action action;
1565 cycle = false;
1566 action = link_action[(int) row][(int) h->type];
1567 switch (action)
1569 case FAIL:
1570 abort ();
1572 case NOACT:
1573 /* Do nothing. */
1574 break;
1576 case UND:
1577 /* Make a new undefined symbol. */
1578 h->type = bfd_link_hash_undefined;
1579 h->u.undef.abfd = abfd;
1580 bfd_link_add_undef (info->hash, h);
1581 break;
1583 case WEAK:
1584 /* Make a new weak undefined symbol. */
1585 h->type = bfd_link_hash_undefweak;
1586 h->u.undef.abfd = abfd;
1587 break;
1589 case CDEF:
1590 /* We have found a definition for a symbol which was
1591 previously common. */
1592 BFD_ASSERT (h->type == bfd_link_hash_common);
1593 if (! ((*info->callbacks->multiple_common)
1594 (info, h->root.string,
1595 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1596 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1597 return false;
1598 /* Fall through. */
1599 case DEF:
1600 case DEFW:
1602 enum bfd_link_hash_type oldtype;
1604 /* Define a symbol. */
1605 oldtype = h->type;
1606 if (action == DEFW)
1607 h->type = bfd_link_hash_defweak;
1608 else
1609 h->type = bfd_link_hash_defined;
1610 h->u.def.section = section;
1611 h->u.def.value = value;
1613 /* If we have been asked to, we act like collect2 and
1614 identify all functions that might be global
1615 constructors and destructors and pass them up in a
1616 callback. We only do this for certain object file
1617 types, since many object file types can handle this
1618 automatically. */
1619 if (collect && name[0] == '_')
1621 const char *s;
1623 /* A constructor or destructor name starts like this:
1624 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1625 the second are the same character (we accept any
1626 character there, in case a new object file format
1627 comes along with even worse naming restrictions). */
1629 #define CONS_PREFIX "GLOBAL_"
1630 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1632 s = name + 1;
1633 while (*s == '_')
1634 ++s;
1635 if (s[0] == 'G'
1636 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1638 char c;
1640 c = s[CONS_PREFIX_LEN + 1];
1641 if ((c == 'I' || c == 'D')
1642 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1644 /* If this is a definition of a symbol which
1645 was previously weakly defined, we are in
1646 trouble. We have already added a
1647 constructor entry for the weak defined
1648 symbol, and now we are trying to add one
1649 for the new symbol. Fortunately, this case
1650 should never arise in practice. */
1651 if (oldtype == bfd_link_hash_defweak)
1652 abort ();
1654 if (! ((*info->callbacks->constructor)
1655 (info,
1656 c == 'I' ? true : false,
1657 h->root.string, abfd, section, value)))
1658 return false;
1664 break;
1666 case COM:
1667 /* We have found a common definition for a symbol. */
1668 if (h->type == bfd_link_hash_new)
1669 bfd_link_add_undef (info->hash, h);
1670 h->type = bfd_link_hash_common;
1671 h->u.c.p =
1672 ((struct bfd_link_hash_common_entry *)
1673 bfd_hash_allocate (&info->hash->table,
1674 sizeof (struct bfd_link_hash_common_entry)));
1675 if (h->u.c.p == NULL)
1676 return false;
1678 h->u.c.size = value;
1680 /* Select a default alignment based on the size. This may
1681 be overridden by the caller. */
1683 unsigned int power;
1685 power = bfd_log2 (value);
1686 if (power > 4)
1687 power = 4;
1688 h->u.c.p->alignment_power = power;
1691 /* The section of a common symbol is only used if the common
1692 symbol is actually allocated. It basically provides a
1693 hook for the linker script to decide which output section
1694 the common symbols should be put in. In most cases, the
1695 section of a common symbol will be bfd_com_section_ptr,
1696 the code here will choose a common symbol section named
1697 "COMMON", and the linker script will contain *(COMMON) in
1698 the appropriate place. A few targets use separate common
1699 sections for small symbols, and they require special
1700 handling. */
1701 if (section == bfd_com_section_ptr)
1703 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1704 h->u.c.p->section->flags = SEC_ALLOC;
1706 else if (section->owner != abfd)
1708 h->u.c.p->section = bfd_make_section_old_way (abfd,
1709 section->name);
1710 h->u.c.p->section->flags = SEC_ALLOC;
1712 else
1713 h->u.c.p->section = section;
1714 break;
1716 case REF:
1717 /* A reference to a defined symbol. */
1718 if (h->next == NULL && info->hash->undefs_tail != h)
1719 h->next = h;
1720 break;
1722 case BIG:
1723 /* We have found a common definition for a symbol which
1724 already had a common definition. Use the maximum of the
1725 two sizes, and use the section required by the larger symbol. */
1726 BFD_ASSERT (h->type == bfd_link_hash_common);
1727 if (! ((*info->callbacks->multiple_common)
1728 (info, h->root.string,
1729 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1730 abfd, bfd_link_hash_common, value)))
1731 return false;
1732 if (value > h->u.c.size)
1734 unsigned int power;
1736 h->u.c.size = value;
1738 /* Select a default alignment based on the size. This may
1739 be overridden by the caller. */
1740 power = bfd_log2 (value);
1741 if (power > 4)
1742 power = 4;
1743 h->u.c.p->alignment_power = power;
1745 /* Some systems have special treatment for small commons,
1746 hence we want to select the section used by the larger
1747 symbol. This makes sure the symbol does not go in a
1748 small common section if it is now too large. */
1749 if (section == bfd_com_section_ptr)
1751 h->u.c.p->section
1752 = bfd_make_section_old_way (abfd, "COMMON");
1753 h->u.c.p->section->flags = SEC_ALLOC;
1755 else if (section->owner != abfd)
1757 h->u.c.p->section
1758 = bfd_make_section_old_way (abfd, section->name);
1759 h->u.c.p->section->flags = SEC_ALLOC;
1761 else
1762 h->u.c.p->section = section;
1764 break;
1766 case CREF:
1768 bfd *obfd;
1770 /* We have found a common definition for a symbol which
1771 was already defined. FIXME: It would nice if we could
1772 report the BFD which defined an indirect symbol, but we
1773 don't have anywhere to store the information. */
1774 if (h->type == bfd_link_hash_defined
1775 || h->type == bfd_link_hash_defweak)
1776 obfd = h->u.def.section->owner;
1777 else
1778 obfd = NULL;
1779 if (! ((*info->callbacks->multiple_common)
1780 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1781 abfd, bfd_link_hash_common, value)))
1782 return false;
1784 break;
1786 case MIND:
1787 /* Multiple indirect symbols. This is OK if they both point
1788 to the same symbol. */
1789 if (strcmp (h->u.i.link->root.string, string) == 0)
1790 break;
1791 /* Fall through. */
1792 case MDEF:
1793 /* Handle a multiple definition. */
1795 asection *msec = NULL;
1796 bfd_vma mval = 0;
1798 switch (h->type)
1800 case bfd_link_hash_defined:
1801 msec = h->u.def.section;
1802 mval = h->u.def.value;
1803 break;
1804 case bfd_link_hash_indirect:
1805 msec = bfd_ind_section_ptr;
1806 mval = 0;
1807 break;
1808 default:
1809 abort ();
1812 /* Ignore a redefinition of an absolute symbol to the same
1813 value; it's harmless. */
1814 if (h->type == bfd_link_hash_defined
1815 && bfd_is_abs_section (msec)
1816 && bfd_is_abs_section (section)
1817 && value == mval)
1818 break;
1820 if (! ((*info->callbacks->multiple_definition)
1821 (info, h->root.string, msec->owner, msec, mval, abfd,
1822 section, value)))
1823 return false;
1825 break;
1827 case CIND:
1828 /* Create an indirect symbol from an existing common symbol. */
1829 BFD_ASSERT (h->type == bfd_link_hash_common);
1830 if (! ((*info->callbacks->multiple_common)
1831 (info, h->root.string,
1832 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1833 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1834 return false;
1835 /* Fall through. */
1836 case IND:
1837 /* Create an indirect symbol. */
1839 struct bfd_link_hash_entry *inh;
1841 /* STRING is the name of the symbol we want to indirect
1842 to. */
1843 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1844 copy, false);
1845 if (inh == (struct bfd_link_hash_entry *) NULL)
1846 return false;
1847 if (inh->type == bfd_link_hash_indirect
1848 && inh->u.i.link == h)
1850 (*_bfd_error_handler)
1851 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1852 bfd_get_filename (abfd), name, string);
1853 bfd_set_error (bfd_error_invalid_operation);
1854 return false;
1856 if (inh->type == bfd_link_hash_new)
1858 inh->type = bfd_link_hash_undefined;
1859 inh->u.undef.abfd = abfd;
1860 bfd_link_add_undef (info->hash, inh);
1863 /* If the indirect symbol has been referenced, we need to
1864 push the reference down to the symbol we are
1865 referencing. */
1866 if (h->type != bfd_link_hash_new)
1868 row = UNDEF_ROW;
1869 cycle = true;
1872 h->type = bfd_link_hash_indirect;
1873 h->u.i.link = inh;
1875 break;
1877 case SET:
1878 /* Add an entry to a set. */
1879 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1880 abfd, section, value))
1881 return false;
1882 break;
1884 case WARNC:
1885 /* Issue a warning and cycle. */
1886 if (h->u.i.warning != NULL)
1888 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1889 h->root.string, abfd,
1890 (asection *) NULL,
1891 (bfd_vma) 0))
1892 return false;
1893 /* Only issue a warning once. */
1894 h->u.i.warning = NULL;
1896 /* Fall through. */
1897 case CYCLE:
1898 /* Try again with the referenced symbol. */
1899 h = h->u.i.link;
1900 cycle = true;
1901 break;
1903 case REFC:
1904 /* A reference to an indirect symbol. */
1905 if (h->next == NULL && info->hash->undefs_tail != h)
1906 h->next = h;
1907 h = h->u.i.link;
1908 cycle = true;
1909 break;
1911 case WARN:
1912 /* Issue a warning. */
1913 if (! (*info->callbacks->warning) (info, string, h->root.string,
1914 hash_entry_bfd (h),
1915 (asection *) NULL, (bfd_vma) 0))
1916 return false;
1917 break;
1919 case CWARN:
1920 /* Warn if this symbol has been referenced already,
1921 otherwise add a warning. A symbol has been referenced if
1922 the next field is not NULL, or it is the tail of the
1923 undefined symbol list. The REF case above helps to
1924 ensure this. */
1925 if (h->next != NULL || info->hash->undefs_tail == h)
1927 if (! (*info->callbacks->warning) (info, string, h->root.string,
1928 hash_entry_bfd (h),
1929 (asection *) NULL,
1930 (bfd_vma) 0))
1931 return false;
1932 break;
1934 /* Fall through. */
1935 case MWARN:
1936 /* Make a warning symbol. */
1938 struct bfd_link_hash_entry *sub;
1940 /* STRING is the warning to give. */
1941 sub = ((struct bfd_link_hash_entry *)
1942 ((*info->hash->table.newfunc)
1943 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1944 h->root.string)));
1945 if (sub == NULL)
1946 return false;
1947 *sub = *h;
1948 sub->type = bfd_link_hash_warning;
1949 sub->u.i.link = h;
1950 if (! copy)
1951 sub->u.i.warning = string;
1952 else
1954 char *w;
1956 w = bfd_hash_allocate (&info->hash->table,
1957 strlen (string) + 1);
1958 if (w == NULL)
1959 return false;
1960 strcpy (w, string);
1961 sub->u.i.warning = w;
1964 bfd_hash_replace (&info->hash->table,
1965 (struct bfd_hash_entry *) h,
1966 (struct bfd_hash_entry *) sub);
1967 if (hashp != NULL)
1968 *hashp = sub;
1970 break;
1973 while (cycle);
1975 return true;
1978 /* Generic final link routine. */
1980 boolean
1981 _bfd_generic_final_link (abfd, info)
1982 bfd *abfd;
1983 struct bfd_link_info *info;
1985 bfd *sub;
1986 asection *o;
1987 struct bfd_link_order *p;
1988 size_t outsymalloc;
1989 struct generic_write_global_symbol_info wginfo;
1991 bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1992 bfd_get_symcount (abfd) = 0;
1993 outsymalloc = 0;
1995 /* Mark all sections which will be included in the output file. */
1996 for (o = abfd->sections; o != NULL; o = o->next)
1997 for (p = o->link_order_head; p != NULL; p = p->next)
1998 if (p->type == bfd_indirect_link_order)
1999 p->u.indirect.section->linker_mark = true;
2001 /* Build the output symbol table. */
2002 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
2003 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2004 return false;
2006 /* Accumulate the global symbols. */
2007 wginfo.info = info;
2008 wginfo.output_bfd = abfd;
2009 wginfo.psymalloc = &outsymalloc;
2010 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2011 _bfd_generic_link_write_global_symbol,
2012 (PTR) &wginfo);
2014 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2015 shouldn't really need one, since we have SYMCOUNT, but some old
2016 code still expects one. */
2017 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2018 return false;
2020 if (info->relocateable)
2022 /* Allocate space for the output relocs for each section. */
2023 for (o = abfd->sections;
2024 o != (asection *) NULL;
2025 o = o->next)
2027 o->reloc_count = 0;
2028 for (p = o->link_order_head;
2029 p != (struct bfd_link_order *) NULL;
2030 p = p->next)
2032 if (p->type == bfd_section_reloc_link_order
2033 || p->type == bfd_symbol_reloc_link_order)
2034 ++o->reloc_count;
2035 else if (p->type == bfd_indirect_link_order)
2037 asection *input_section;
2038 bfd *input_bfd;
2039 long relsize;
2040 arelent **relocs;
2041 asymbol **symbols;
2042 long reloc_count;
2044 input_section = p->u.indirect.section;
2045 input_bfd = input_section->owner;
2046 relsize = bfd_get_reloc_upper_bound (input_bfd,
2047 input_section);
2048 if (relsize < 0)
2049 return false;
2050 relocs = (arelent **) bfd_malloc ((bfd_size_type) relsize);
2051 if (!relocs && relsize != 0)
2052 return false;
2053 symbols = _bfd_generic_link_get_symbols (input_bfd);
2054 reloc_count = bfd_canonicalize_reloc (input_bfd,
2055 input_section,
2056 relocs,
2057 symbols);
2058 if (reloc_count < 0)
2059 return false;
2060 BFD_ASSERT ((unsigned long) reloc_count
2061 == input_section->reloc_count);
2062 o->reloc_count += reloc_count;
2063 free (relocs);
2066 if (o->reloc_count > 0)
2068 bfd_size_type amt;
2070 amt = o->reloc_count;
2071 amt *= sizeof (arelent *);
2072 o->orelocation = (arelent **) bfd_alloc (abfd, amt);
2073 if (!o->orelocation)
2074 return false;
2075 o->flags |= SEC_RELOC;
2076 /* Reset the count so that it can be used as an index
2077 when putting in the output relocs. */
2078 o->reloc_count = 0;
2083 /* Handle all the link order information for the sections. */
2084 for (o = abfd->sections;
2085 o != (asection *) NULL;
2086 o = o->next)
2088 for (p = o->link_order_head;
2089 p != (struct bfd_link_order *) NULL;
2090 p = p->next)
2092 switch (p->type)
2094 case bfd_section_reloc_link_order:
2095 case bfd_symbol_reloc_link_order:
2096 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2097 return false;
2098 break;
2099 case bfd_indirect_link_order:
2100 if (! default_indirect_link_order (abfd, info, o, p, true))
2101 return false;
2102 break;
2103 default:
2104 if (! _bfd_default_link_order (abfd, info, o, p))
2105 return false;
2106 break;
2111 return true;
2114 /* Add an output symbol to the output BFD. */
2116 static boolean
2117 generic_add_output_symbol (output_bfd, psymalloc, sym)
2118 bfd *output_bfd;
2119 size_t *psymalloc;
2120 asymbol *sym;
2122 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2124 asymbol **newsyms;
2125 bfd_size_type amt;
2127 if (*psymalloc == 0)
2128 *psymalloc = 124;
2129 else
2130 *psymalloc *= 2;
2131 amt = *psymalloc;
2132 amt *= sizeof (asymbol *);
2133 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2134 if (newsyms == (asymbol **) NULL)
2135 return false;
2136 bfd_get_outsymbols (output_bfd) = newsyms;
2139 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2140 if (sym != NULL)
2141 ++ bfd_get_symcount (output_bfd);
2143 return true;
2146 /* Handle the symbols for an input BFD. */
2148 boolean
2149 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2150 bfd *output_bfd;
2151 bfd *input_bfd;
2152 struct bfd_link_info *info;
2153 size_t *psymalloc;
2155 asymbol **sym_ptr;
2156 asymbol **sym_end;
2158 if (! generic_link_read_symbols (input_bfd))
2159 return false;
2161 /* Create a filename symbol if we are supposed to. */
2162 if (info->create_object_symbols_section != (asection *) NULL)
2164 asection *sec;
2166 for (sec = input_bfd->sections;
2167 sec != (asection *) NULL;
2168 sec = sec->next)
2170 if (sec->output_section == info->create_object_symbols_section)
2172 asymbol *newsym;
2174 newsym = bfd_make_empty_symbol (input_bfd);
2175 if (!newsym)
2176 return false;
2177 newsym->name = input_bfd->filename;
2178 newsym->value = 0;
2179 newsym->flags = BSF_LOCAL | BSF_FILE;
2180 newsym->section = sec;
2182 if (! generic_add_output_symbol (output_bfd, psymalloc,
2183 newsym))
2184 return false;
2186 break;
2191 /* Adjust the values of the globally visible symbols, and write out
2192 local symbols. */
2193 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2194 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2195 for (; sym_ptr < sym_end; sym_ptr++)
2197 asymbol *sym;
2198 struct generic_link_hash_entry *h;
2199 boolean output;
2201 h = (struct generic_link_hash_entry *) NULL;
2202 sym = *sym_ptr;
2203 if ((sym->flags & (BSF_INDIRECT
2204 | BSF_WARNING
2205 | BSF_GLOBAL
2206 | BSF_CONSTRUCTOR
2207 | BSF_WEAK)) != 0
2208 || bfd_is_und_section (bfd_get_section (sym))
2209 || bfd_is_com_section (bfd_get_section (sym))
2210 || bfd_is_ind_section (bfd_get_section (sym)))
2212 if (sym->udata.p != NULL)
2213 h = (struct generic_link_hash_entry *) sym->udata.p;
2214 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2216 /* This case normally means that the main linker code
2217 deliberately ignored this constructor symbol. We
2218 should just pass it through. This will screw up if
2219 the constructor symbol is from a different,
2220 non-generic, object file format, but the case will
2221 only arise when linking with -r, which will probably
2222 fail anyhow, since there will be no way to represent
2223 the relocs in the output format being used. */
2224 h = NULL;
2226 else if (bfd_is_und_section (bfd_get_section (sym)))
2227 h = ((struct generic_link_hash_entry *)
2228 bfd_wrapped_link_hash_lookup (output_bfd, info,
2229 bfd_asymbol_name (sym),
2230 false, false, true));
2231 else
2232 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2233 bfd_asymbol_name (sym),
2234 false, false, true);
2236 if (h != (struct generic_link_hash_entry *) NULL)
2238 /* Force all references to this symbol to point to
2239 the same area in memory. It is possible that
2240 this routine will be called with a hash table
2241 other than a generic hash table, so we double
2242 check that. */
2243 if (info->hash->creator == input_bfd->xvec)
2245 if (h->sym != (asymbol *) NULL)
2246 *sym_ptr = sym = h->sym;
2249 switch (h->root.type)
2251 default:
2252 case bfd_link_hash_new:
2253 abort ();
2254 case bfd_link_hash_undefined:
2255 break;
2256 case bfd_link_hash_undefweak:
2257 sym->flags |= BSF_WEAK;
2258 break;
2259 case bfd_link_hash_indirect:
2260 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2261 /* fall through */
2262 case bfd_link_hash_defined:
2263 sym->flags |= BSF_GLOBAL;
2264 sym->flags &=~ BSF_CONSTRUCTOR;
2265 sym->value = h->root.u.def.value;
2266 sym->section = h->root.u.def.section;
2267 break;
2268 case bfd_link_hash_defweak:
2269 sym->flags |= BSF_WEAK;
2270 sym->flags &=~ BSF_CONSTRUCTOR;
2271 sym->value = h->root.u.def.value;
2272 sym->section = h->root.u.def.section;
2273 break;
2274 case bfd_link_hash_common:
2275 sym->value = h->root.u.c.size;
2276 sym->flags |= BSF_GLOBAL;
2277 if (! bfd_is_com_section (sym->section))
2279 BFD_ASSERT (bfd_is_und_section (sym->section));
2280 sym->section = bfd_com_section_ptr;
2282 /* We do not set the section of the symbol to
2283 h->root.u.c.p->section. That value was saved so
2284 that we would know where to allocate the symbol
2285 if it was defined. In this case the type is
2286 still bfd_link_hash_common, so we did not define
2287 it, so we do not want to use that section. */
2288 break;
2293 /* This switch is straight from the old code in
2294 write_file_locals in ldsym.c. */
2295 if (info->strip == strip_all
2296 || (info->strip == strip_some
2297 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2298 false, false)
2299 == (struct bfd_hash_entry *) NULL)))
2300 output = false;
2301 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2303 /* If this symbol is marked as occurring now, rather
2304 than at the end, output it now. This is used for
2305 COFF C_EXT FCN symbols. FIXME: There must be a
2306 better way. */
2307 if (bfd_asymbol_bfd (sym) == input_bfd
2308 && (sym->flags & BSF_NOT_AT_END) != 0)
2309 output = true;
2310 else
2311 output = false;
2313 else if (bfd_is_ind_section (sym->section))
2314 output = false;
2315 else if ((sym->flags & BSF_DEBUGGING) != 0)
2317 if (info->strip == strip_none)
2318 output = true;
2319 else
2320 output = false;
2322 else if (bfd_is_und_section (sym->section)
2323 || bfd_is_com_section (sym->section))
2324 output = false;
2325 else if ((sym->flags & BSF_LOCAL) != 0)
2327 if ((sym->flags & BSF_WARNING) != 0)
2328 output = false;
2329 else
2331 switch (info->discard)
2333 default:
2334 case discard_all:
2335 output = false;
2336 break;
2337 case discard_sec_merge:
2338 output = true;
2339 if (info->relocateable
2340 || ! (sym->section->flags & SEC_MERGE))
2341 break;
2342 /* FALLTHROUGH */
2343 case discard_l:
2344 if (bfd_is_local_label (input_bfd, sym))
2345 output = false;
2346 else
2347 output = true;
2348 break;
2349 case discard_none:
2350 output = true;
2351 break;
2355 else if ((sym->flags & BSF_CONSTRUCTOR))
2357 if (info->strip != strip_all)
2358 output = true;
2359 else
2360 output = false;
2362 else
2363 abort ();
2365 /* If this symbol is in a section which is not being included
2366 in the output file, then we don't want to output the symbol.
2368 Gross. .bss and similar sections won't have the linker_mark
2369 field set. */
2370 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2371 && sym->section->linker_mark == false)
2372 output = false;
2374 if (output)
2376 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2377 return false;
2378 if (h != (struct generic_link_hash_entry *) NULL)
2379 h->written = true;
2383 return true;
2386 /* Set the section and value of a generic BFD symbol based on a linker
2387 hash table entry. */
2389 static void
2390 set_symbol_from_hash (sym, h)
2391 asymbol *sym;
2392 struct bfd_link_hash_entry *h;
2394 switch (h->type)
2396 default:
2397 abort ();
2398 break;
2399 case bfd_link_hash_new:
2400 /* This can happen when a constructor symbol is seen but we are
2401 not building constructors. */
2402 if (sym->section != NULL)
2404 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406 else
2408 sym->flags |= BSF_CONSTRUCTOR;
2409 sym->section = bfd_abs_section_ptr;
2410 sym->value = 0;
2412 break;
2413 case bfd_link_hash_undefined:
2414 sym->section = bfd_und_section_ptr;
2415 sym->value = 0;
2416 break;
2417 case bfd_link_hash_undefweak:
2418 sym->section = bfd_und_section_ptr;
2419 sym->value = 0;
2420 sym->flags |= BSF_WEAK;
2421 break;
2422 case bfd_link_hash_defined:
2423 sym->section = h->u.def.section;
2424 sym->value = h->u.def.value;
2425 break;
2426 case bfd_link_hash_defweak:
2427 sym->flags |= BSF_WEAK;
2428 sym->section = h->u.def.section;
2429 sym->value = h->u.def.value;
2430 break;
2431 case bfd_link_hash_common:
2432 sym->value = h->u.c.size;
2433 if (sym->section == NULL)
2434 sym->section = bfd_com_section_ptr;
2435 else if (! bfd_is_com_section (sym->section))
2437 BFD_ASSERT (bfd_is_und_section (sym->section));
2438 sym->section = bfd_com_section_ptr;
2440 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2441 break;
2442 case bfd_link_hash_indirect:
2443 case bfd_link_hash_warning:
2444 /* FIXME: What should we do here? */
2445 break;
2449 /* Write out a global symbol, if it hasn't already been written out.
2450 This is called for each symbol in the hash table. */
2452 boolean
2453 _bfd_generic_link_write_global_symbol (h, data)
2454 struct generic_link_hash_entry *h;
2455 PTR data;
2457 struct generic_write_global_symbol_info *wginfo =
2458 (struct generic_write_global_symbol_info *) data;
2459 asymbol *sym;
2461 if (h->written)
2462 return true;
2464 h->written = true;
2466 if (wginfo->info->strip == strip_all
2467 || (wginfo->info->strip == strip_some
2468 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2469 false, false) == NULL))
2470 return true;
2472 if (h->sym != (asymbol *) NULL)
2473 sym = h->sym;
2474 else
2476 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2477 if (!sym)
2478 return false;
2479 sym->name = h->root.root.string;
2480 sym->flags = 0;
2483 set_symbol_from_hash (sym, &h->root);
2485 sym->flags |= BSF_GLOBAL;
2487 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2488 sym))
2490 /* FIXME: No way to return failure. */
2491 abort ();
2494 return true;
2497 /* Create a relocation. */
2499 boolean
2500 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2501 bfd *abfd;
2502 struct bfd_link_info *info;
2503 asection *sec;
2504 struct bfd_link_order *link_order;
2506 arelent *r;
2508 if (! info->relocateable)
2509 abort ();
2510 if (sec->orelocation == (arelent **) NULL)
2511 abort ();
2513 r = (arelent *) bfd_alloc (abfd, (bfd_size_type) sizeof (arelent));
2514 if (r == (arelent *) NULL)
2515 return false;
2517 r->address = link_order->offset;
2518 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2519 if (r->howto == 0)
2521 bfd_set_error (bfd_error_bad_value);
2522 return false;
2525 /* Get the symbol to use for the relocation. */
2526 if (link_order->type == bfd_section_reloc_link_order)
2527 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2528 else
2530 struct generic_link_hash_entry *h;
2532 h = ((struct generic_link_hash_entry *)
2533 bfd_wrapped_link_hash_lookup (abfd, info,
2534 link_order->u.reloc.p->u.name,
2535 false, false, true));
2536 if (h == (struct generic_link_hash_entry *) NULL
2537 || ! h->written)
2539 if (! ((*info->callbacks->unattached_reloc)
2540 (info, link_order->u.reloc.p->u.name,
2541 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2542 return false;
2543 bfd_set_error (bfd_error_bad_value);
2544 return false;
2546 r->sym_ptr_ptr = &h->sym;
2549 /* If this is an inplace reloc, write the addend to the object file.
2550 Otherwise, store it in the reloc addend. */
2551 if (! r->howto->partial_inplace)
2552 r->addend = link_order->u.reloc.p->addend;
2553 else
2555 bfd_size_type size;
2556 bfd_reloc_status_type rstat;
2557 bfd_byte *buf;
2558 boolean ok;
2559 file_ptr loc;
2561 size = bfd_get_reloc_size (r->howto);
2562 buf = (bfd_byte *) bfd_zmalloc (size);
2563 if (buf == (bfd_byte *) NULL)
2564 return false;
2565 rstat = _bfd_relocate_contents (r->howto, abfd,
2566 (bfd_vma) link_order->u.reloc.p->addend,
2567 buf);
2568 switch (rstat)
2570 case bfd_reloc_ok:
2571 break;
2572 default:
2573 case bfd_reloc_outofrange:
2574 abort ();
2575 case bfd_reloc_overflow:
2576 if (! ((*info->callbacks->reloc_overflow)
2577 (info,
2578 (link_order->type == bfd_section_reloc_link_order
2579 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580 : link_order->u.reloc.p->u.name),
2581 r->howto->name, link_order->u.reloc.p->addend,
2582 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2584 free (buf);
2585 return false;
2587 break;
2589 loc = link_order->offset * bfd_octets_per_byte (abfd);
2590 ok = bfd_set_section_contents (abfd, sec, (PTR) buf, loc,
2591 (bfd_size_type) size);
2592 free (buf);
2593 if (! ok)
2594 return false;
2596 r->addend = 0;
2599 sec->orelocation[sec->reloc_count] = r;
2600 ++sec->reloc_count;
2602 return true;
2605 /* Allocate a new link_order for a section. */
2607 struct bfd_link_order *
2608 bfd_new_link_order (abfd, section)
2609 bfd *abfd;
2610 asection *section;
2612 bfd_size_type amt = sizeof (struct bfd_link_order);
2613 struct bfd_link_order *new = (struct bfd_link_order *) bfd_alloc (abfd, amt);
2614 if (!new)
2615 return NULL;
2617 new->type = bfd_undefined_link_order;
2618 new->offset = 0;
2619 new->size = 0;
2620 new->next = (struct bfd_link_order *) NULL;
2622 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2623 section->link_order_tail->next = new;
2624 else
2625 section->link_order_head = new;
2626 section->link_order_tail = new;
2628 return new;
2631 /* Default link order processing routine. Note that we can not handle
2632 the reloc_link_order types here, since they depend upon the details
2633 of how the particular backends generates relocs. */
2635 boolean
2636 _bfd_default_link_order (abfd, info, sec, link_order)
2637 bfd *abfd;
2638 struct bfd_link_info *info;
2639 asection *sec;
2640 struct bfd_link_order *link_order;
2642 file_ptr loc;
2644 switch (link_order->type)
2646 case bfd_undefined_link_order:
2647 case bfd_section_reloc_link_order:
2648 case bfd_symbol_reloc_link_order:
2649 default:
2650 abort ();
2651 case bfd_indirect_link_order:
2652 return default_indirect_link_order (abfd, info, sec, link_order,
2653 false);
2654 case bfd_fill_link_order:
2655 return default_fill_link_order (abfd, info, sec, link_order);
2656 case bfd_data_link_order:
2657 loc = link_order->offset * bfd_octets_per_byte (abfd);
2658 return bfd_set_section_contents (abfd, sec,
2659 (PTR) link_order->u.data.contents,
2660 loc, link_order->size);
2664 /* Default routine to handle a bfd_fill_link_order. */
2666 static boolean
2667 default_fill_link_order (abfd, info, sec, link_order)
2668 bfd *abfd;
2669 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2670 asection *sec;
2671 struct bfd_link_order *link_order;
2673 bfd_size_type size;
2674 unsigned char *space;
2675 size_t i;
2676 unsigned int fill;
2677 file_ptr loc;
2678 boolean result;
2680 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2682 size = link_order->size;
2683 if (size == 0)
2684 return true;
2686 space = (unsigned char *) bfd_malloc (size);
2687 if (space == NULL)
2688 return false;
2690 fill = link_order->u.fill.value;
2691 for (i = 0; i < size; i += 4)
2692 space[i] = fill >> 24;
2693 for (i = 1; i < size; i += 4)
2694 space[i] = fill >> 16;
2695 for (i = 2; i < size; i += 4)
2696 space[i] = fill >> 8;
2697 for (i = 3; i < size; i += 4)
2698 space[i] = fill;
2700 loc = link_order->offset * bfd_octets_per_byte (abfd);
2701 result = bfd_set_section_contents (abfd, sec, space, loc, size);
2703 free (space);
2704 return result;
2707 /* Default routine to handle a bfd_indirect_link_order. */
2709 static boolean
2710 default_indirect_link_order (output_bfd, info, output_section, link_order,
2711 generic_linker)
2712 bfd *output_bfd;
2713 struct bfd_link_info *info;
2714 asection *output_section;
2715 struct bfd_link_order *link_order;
2716 boolean generic_linker;
2718 asection *input_section;
2719 bfd *input_bfd;
2720 bfd_byte *contents = NULL;
2721 bfd_byte *new_contents;
2722 bfd_size_type sec_size;
2723 file_ptr loc;
2725 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2727 if (link_order->size == 0)
2728 return true;
2730 input_section = link_order->u.indirect.section;
2731 input_bfd = input_section->owner;
2733 BFD_ASSERT (input_section->output_section == output_section);
2734 BFD_ASSERT (input_section->output_offset == link_order->offset);
2735 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2737 if (info->relocateable
2738 && input_section->reloc_count > 0
2739 && output_section->orelocation == (arelent **) NULL)
2741 /* Space has not been allocated for the output relocations.
2742 This can happen when we are called by a specific backend
2743 because somebody is attempting to link together different
2744 types of object files. Handling this case correctly is
2745 difficult, and sometimes impossible. */
2746 (*_bfd_error_handler)
2747 (_("Attempt to do relocateable link with %s input and %s output"),
2748 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2749 bfd_set_error (bfd_error_wrong_format);
2750 return false;
2753 if (! generic_linker)
2755 asymbol **sympp;
2756 asymbol **symppend;
2758 /* Get the canonical symbols. The generic linker will always
2759 have retrieved them by this point, but we are being called by
2760 a specific linker, presumably because we are linking
2761 different types of object files together. */
2762 if (! generic_link_read_symbols (input_bfd))
2763 return false;
2765 /* Since we have been called by a specific linker, rather than
2766 the generic linker, the values of the symbols will not be
2767 right. They will be the values as seen in the input file,
2768 not the values of the final link. We need to fix them up
2769 before we can relocate the section. */
2770 sympp = _bfd_generic_link_get_symbols (input_bfd);
2771 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2772 for (; sympp < symppend; sympp++)
2774 asymbol *sym;
2775 struct bfd_link_hash_entry *h;
2777 sym = *sympp;
2779 if ((sym->flags & (BSF_INDIRECT
2780 | BSF_WARNING
2781 | BSF_GLOBAL
2782 | BSF_CONSTRUCTOR
2783 | BSF_WEAK)) != 0
2784 || bfd_is_und_section (bfd_get_section (sym))
2785 || bfd_is_com_section (bfd_get_section (sym))
2786 || bfd_is_ind_section (bfd_get_section (sym)))
2788 /* sym->udata may have been set by
2789 generic_link_add_symbol_list. */
2790 if (sym->udata.p != NULL)
2791 h = (struct bfd_link_hash_entry *) sym->udata.p;
2792 else if (bfd_is_und_section (bfd_get_section (sym)))
2793 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2794 bfd_asymbol_name (sym),
2795 false, false, true);
2796 else
2797 h = bfd_link_hash_lookup (info->hash,
2798 bfd_asymbol_name (sym),
2799 false, false, true);
2800 if (h != NULL)
2801 set_symbol_from_hash (sym, h);
2806 /* Get and relocate the section contents. */
2807 sec_size = bfd_section_size (input_bfd, input_section);
2808 contents = ((bfd_byte *) bfd_malloc (sec_size));
2809 if (contents == NULL && sec_size != 0)
2810 goto error_return;
2811 new_contents = (bfd_get_relocated_section_contents
2812 (output_bfd, info, link_order, contents, info->relocateable,
2813 _bfd_generic_link_get_symbols (input_bfd)));
2814 if (!new_contents)
2815 goto error_return;
2817 /* Output the section contents. */
2818 loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2819 if (! bfd_set_section_contents (output_bfd, output_section,
2820 (PTR) new_contents, loc, link_order->size))
2821 goto error_return;
2823 if (contents != NULL)
2824 free (contents);
2825 return true;
2827 error_return:
2828 if (contents != NULL)
2829 free (contents);
2830 return false;
2833 /* A little routine to count the number of relocs in a link_order
2834 list. */
2836 unsigned int
2837 _bfd_count_link_order_relocs (link_order)
2838 struct bfd_link_order *link_order;
2840 register unsigned int c;
2841 register struct bfd_link_order *l;
2843 c = 0;
2844 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2846 if (l->type == bfd_section_reloc_link_order
2847 || l->type == bfd_symbol_reloc_link_order)
2848 ++c;
2851 return c;
2855 FUNCTION
2856 bfd_link_split_section
2858 SYNOPSIS
2859 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2861 DESCRIPTION
2862 Return nonzero if @var{sec} should be split during a
2863 reloceatable or final link.
2865 .#define bfd_link_split_section(abfd, sec) \
2866 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2871 boolean
2872 _bfd_generic_link_split_section (abfd, sec)
2873 bfd *abfd ATTRIBUTE_UNUSED;
2874 asection *sec ATTRIBUTE_UNUSED;
2876 return false;