* readelf.c (decode_arm_unwind): Implement decoding of remaining
[binutils.git] / gold / symtab.cc
blobd4ac297792a9b4d9089fb7e34b5cc333dbdbb9e3
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
44 namespace gold
47 // Class Symbol.
49 // Initialize fields in Symbol. This initializes everything except u_
50 // and source_.
52 void
53 Symbol::init_fields(const char* name, const char* version,
54 elfcpp::STT type, elfcpp::STB binding,
55 elfcpp::STV visibility, unsigned char nonvis)
57 this->name_ = name;
58 this->version_ = version;
59 this->symtab_index_ = 0;
60 this->dynsym_index_ = 0;
61 this->got_offsets_.init();
62 this->plt_offset_ = -1U;
63 this->type_ = type;
64 this->binding_ = binding;
65 this->visibility_ = visibility;
66 this->nonvis_ = nonvis;
67 this->is_def_ = false;
68 this->is_forwarder_ = false;
69 this->has_alias_ = false;
70 this->needs_dynsym_entry_ = false;
71 this->in_reg_ = false;
72 this->in_dyn_ = false;
73 this->has_warning_ = false;
74 this->is_copied_from_dynobj_ = false;
75 this->is_forced_local_ = false;
76 this->is_ordinary_shndx_ = false;
77 this->in_real_elf_ = false;
78 this->is_defined_in_discarded_section_ = false;
79 this->undef_binding_set_ = false;
80 this->undef_binding_weak_ = false;
83 // Return the demangled version of the symbol's name, but only
84 // if the --demangle flag was set.
86 static std::string
87 demangle(const char* name)
89 if (!parameters->options().do_demangle())
90 return name;
92 // cplus_demangle allocates memory for the result it returns,
93 // and returns NULL if the name is already demangled.
94 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
95 if (demangled_name == NULL)
96 return name;
98 std::string retval(demangled_name);
99 free(demangled_name);
100 return retval;
103 std::string
104 Symbol::demangled_name() const
106 return demangle(this->name());
109 // Initialize the fields in the base class Symbol for SYM in OBJECT.
111 template<int size, bool big_endian>
112 void
113 Symbol::init_base_object(const char* name, const char* version, Object* object,
114 const elfcpp::Sym<size, big_endian>& sym,
115 unsigned int st_shndx, bool is_ordinary)
117 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
118 sym.get_st_visibility(), sym.get_st_nonvis());
119 this->u_.from_object.object = object;
120 this->u_.from_object.shndx = st_shndx;
121 this->is_ordinary_shndx_ = is_ordinary;
122 this->source_ = FROM_OBJECT;
123 this->in_reg_ = !object->is_dynamic();
124 this->in_dyn_ = object->is_dynamic();
125 this->in_real_elf_ = object->pluginobj() == NULL;
128 // Initialize the fields in the base class Symbol for a symbol defined
129 // in an Output_data.
131 void
132 Symbol::init_base_output_data(const char* name, const char* version,
133 Output_data* od, elfcpp::STT type,
134 elfcpp::STB binding, elfcpp::STV visibility,
135 unsigned char nonvis, bool offset_is_from_end)
137 this->init_fields(name, version, type, binding, visibility, nonvis);
138 this->u_.in_output_data.output_data = od;
139 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
140 this->source_ = IN_OUTPUT_DATA;
141 this->in_reg_ = true;
142 this->in_real_elf_ = true;
145 // Initialize the fields in the base class Symbol for a symbol defined
146 // in an Output_segment.
148 void
149 Symbol::init_base_output_segment(const char* name, const char* version,
150 Output_segment* os, elfcpp::STT type,
151 elfcpp::STB binding, elfcpp::STV visibility,
152 unsigned char nonvis,
153 Segment_offset_base offset_base)
155 this->init_fields(name, version, type, binding, visibility, nonvis);
156 this->u_.in_output_segment.output_segment = os;
157 this->u_.in_output_segment.offset_base = offset_base;
158 this->source_ = IN_OUTPUT_SEGMENT;
159 this->in_reg_ = true;
160 this->in_real_elf_ = true;
163 // Initialize the fields in the base class Symbol for a symbol defined
164 // as a constant.
166 void
167 Symbol::init_base_constant(const char* name, const char* version,
168 elfcpp::STT type, elfcpp::STB binding,
169 elfcpp::STV visibility, unsigned char nonvis)
171 this->init_fields(name, version, type, binding, visibility, nonvis);
172 this->source_ = IS_CONSTANT;
173 this->in_reg_ = true;
174 this->in_real_elf_ = true;
177 // Initialize the fields in the base class Symbol for an undefined
178 // symbol.
180 void
181 Symbol::init_base_undefined(const char* name, const char* version,
182 elfcpp::STT type, elfcpp::STB binding,
183 elfcpp::STV visibility, unsigned char nonvis)
185 this->init_fields(name, version, type, binding, visibility, nonvis);
186 this->dynsym_index_ = -1U;
187 this->source_ = IS_UNDEFINED;
188 this->in_reg_ = true;
189 this->in_real_elf_ = true;
192 // Allocate a common symbol in the base.
194 void
195 Symbol::allocate_base_common(Output_data* od)
197 gold_assert(this->is_common());
198 this->source_ = IN_OUTPUT_DATA;
199 this->u_.in_output_data.output_data = od;
200 this->u_.in_output_data.offset_is_from_end = false;
203 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<int size>
206 template<bool big_endian>
207 void
208 Sized_symbol<size>::init_object(const char* name, const char* version,
209 Object* object,
210 const elfcpp::Sym<size, big_endian>& sym,
211 unsigned int st_shndx, bool is_ordinary)
213 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
214 this->value_ = sym.get_st_value();
215 this->symsize_ = sym.get_st_size();
218 // Initialize the fields in Sized_symbol for a symbol defined in an
219 // Output_data.
221 template<int size>
222 void
223 Sized_symbol<size>::init_output_data(const char* name, const char* version,
224 Output_data* od, Value_type value,
225 Size_type symsize, elfcpp::STT type,
226 elfcpp::STB binding,
227 elfcpp::STV visibility,
228 unsigned char nonvis,
229 bool offset_is_from_end)
231 this->init_base_output_data(name, version, od, type, binding, visibility,
232 nonvis, offset_is_from_end);
233 this->value_ = value;
234 this->symsize_ = symsize;
237 // Initialize the fields in Sized_symbol for a symbol defined in an
238 // Output_segment.
240 template<int size>
241 void
242 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
243 Output_segment* os, Value_type value,
244 Size_type symsize, elfcpp::STT type,
245 elfcpp::STB binding,
246 elfcpp::STV visibility,
247 unsigned char nonvis,
248 Segment_offset_base offset_base)
250 this->init_base_output_segment(name, version, os, type, binding, visibility,
251 nonvis, offset_base);
252 this->value_ = value;
253 this->symsize_ = symsize;
256 // Initialize the fields in Sized_symbol for a symbol defined as a
257 // constant.
259 template<int size>
260 void
261 Sized_symbol<size>::init_constant(const char* name, const char* version,
262 Value_type value, Size_type symsize,
263 elfcpp::STT type, elfcpp::STB binding,
264 elfcpp::STV visibility, unsigned char nonvis)
266 this->init_base_constant(name, version, type, binding, visibility, nonvis);
267 this->value_ = value;
268 this->symsize_ = symsize;
271 // Initialize the fields in Sized_symbol for an undefined symbol.
273 template<int size>
274 void
275 Sized_symbol<size>::init_undefined(const char* name, const char* version,
276 elfcpp::STT type, elfcpp::STB binding,
277 elfcpp::STV visibility, unsigned char nonvis)
279 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
280 this->value_ = 0;
281 this->symsize_ = 0;
284 // Return true if SHNDX represents a common symbol.
286 bool
287 Symbol::is_common_shndx(unsigned int shndx)
289 return (shndx == elfcpp::SHN_COMMON
290 || shndx == parameters->target().small_common_shndx()
291 || shndx == parameters->target().large_common_shndx());
294 // Allocate a common symbol.
296 template<int size>
297 void
298 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
300 this->allocate_base_common(od);
301 this->value_ = value;
304 // The ""'s around str ensure str is a string literal, so sizeof works.
305 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
307 // Return true if this symbol should be added to the dynamic symbol
308 // table.
310 inline bool
311 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
313 // If the symbol is only present on plugin files, the plugin decided we
314 // don't need it.
315 if (!this->in_real_elf())
316 return false;
318 // If the symbol is used by a dynamic relocation, we need to add it.
319 if (this->needs_dynsym_entry())
320 return true;
322 // If this symbol's section is not added, the symbol need not be added.
323 // The section may have been GCed. Note that export_dynamic is being
324 // overridden here. This should not be done for shared objects.
325 if (parameters->options().gc_sections()
326 && !parameters->options().shared()
327 && this->source() == Symbol::FROM_OBJECT
328 && !this->object()->is_dynamic())
330 Relobj* relobj = static_cast<Relobj*>(this->object());
331 bool is_ordinary;
332 unsigned int shndx = this->shndx(&is_ordinary);
333 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
334 && !relobj->is_section_included(shndx)
335 && !symtab->is_section_folded(relobj, shndx))
336 return false;
339 // If the symbol was forced local in a version script, do not add it.
340 if (this->is_forced_local())
341 return false;
343 // If the symbol was forced dynamic in a --dynamic-list file, add it.
344 if (parameters->options().in_dynamic_list(this->name()))
345 return true;
347 // If dynamic-list-data was specified, add any STT_OBJECT.
348 if (parameters->options().dynamic_list_data()
349 && !this->is_from_dynobj()
350 && this->type() == elfcpp::STT_OBJECT)
351 return true;
353 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
354 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
355 if ((parameters->options().dynamic_list_cpp_new()
356 || parameters->options().dynamic_list_cpp_typeinfo())
357 && !this->is_from_dynobj())
359 // TODO(csilvers): We could probably figure out if we're an operator
360 // new/delete or typeinfo without the need to demangle.
361 char* demangled_name = cplus_demangle(this->name(),
362 DMGL_ANSI | DMGL_PARAMS);
363 if (demangled_name == NULL)
365 // Not a C++ symbol, so it can't satisfy these flags
367 else if (parameters->options().dynamic_list_cpp_new()
368 && (strprefix(demangled_name, "operator new")
369 || strprefix(demangled_name, "operator delete")))
371 free(demangled_name);
372 return true;
374 else if (parameters->options().dynamic_list_cpp_typeinfo()
375 && (strprefix(demangled_name, "typeinfo name for")
376 || strprefix(demangled_name, "typeinfo for")))
378 free(demangled_name);
379 return true;
381 else
382 free(demangled_name);
385 // If exporting all symbols or building a shared library,
386 // and the symbol is defined in a regular object and is
387 // externally visible, we need to add it.
388 if ((parameters->options().export_dynamic() || parameters->options().shared())
389 && !this->is_from_dynobj()
390 && this->is_externally_visible())
391 return true;
393 return false;
396 // Return true if the final value of this symbol is known at link
397 // time.
399 bool
400 Symbol::final_value_is_known() const
402 // If we are not generating an executable, then no final values are
403 // known, since they will change at runtime.
404 if (parameters->options().output_is_position_independent()
405 || parameters->options().relocatable())
406 return false;
408 // If the symbol is not from an object file, and is not undefined,
409 // then it is defined, and known.
410 if (this->source_ != FROM_OBJECT)
412 if (this->source_ != IS_UNDEFINED)
413 return true;
415 else
417 // If the symbol is from a dynamic object, then the final value
418 // is not known.
419 if (this->object()->is_dynamic())
420 return false;
422 // If the symbol is not undefined (it is defined or common),
423 // then the final value is known.
424 if (!this->is_undefined())
425 return true;
428 // If the symbol is undefined, then whether the final value is known
429 // depends on whether we are doing a static link. If we are doing a
430 // dynamic link, then the final value could be filled in at runtime.
431 // This could reasonably be the case for a weak undefined symbol.
432 return parameters->doing_static_link();
435 // Return the output section where this symbol is defined.
437 Output_section*
438 Symbol::output_section() const
440 switch (this->source_)
442 case FROM_OBJECT:
444 unsigned int shndx = this->u_.from_object.shndx;
445 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
447 gold_assert(!this->u_.from_object.object->is_dynamic());
448 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
449 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
450 return relobj->output_section(shndx);
452 return NULL;
455 case IN_OUTPUT_DATA:
456 return this->u_.in_output_data.output_data->output_section();
458 case IN_OUTPUT_SEGMENT:
459 case IS_CONSTANT:
460 case IS_UNDEFINED:
461 return NULL;
463 default:
464 gold_unreachable();
468 // Set the symbol's output section. This is used for symbols defined
469 // in scripts. This should only be called after the symbol table has
470 // been finalized.
472 void
473 Symbol::set_output_section(Output_section* os)
475 switch (this->source_)
477 case FROM_OBJECT:
478 case IN_OUTPUT_DATA:
479 gold_assert(this->output_section() == os);
480 break;
481 case IS_CONSTANT:
482 this->source_ = IN_OUTPUT_DATA;
483 this->u_.in_output_data.output_data = os;
484 this->u_.in_output_data.offset_is_from_end = false;
485 break;
486 case IN_OUTPUT_SEGMENT:
487 case IS_UNDEFINED:
488 default:
489 gold_unreachable();
493 // Class Symbol_table.
495 Symbol_table::Symbol_table(unsigned int count,
496 const Version_script_info& version_script)
497 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
498 forwarders_(), commons_(), tls_commons_(), small_commons_(),
499 large_commons_(), forced_locals_(), warnings_(),
500 version_script_(version_script), gc_(NULL), icf_(NULL)
502 namepool_.reserve(count);
505 Symbol_table::~Symbol_table()
509 // The symbol table key equality function. This is called with
510 // Stringpool keys.
512 inline bool
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
514 const Symbol_table_key& k2) const
516 return k1.first == k2.first && k1.second == k2.second;
519 bool
520 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
522 return (parameters->options().icf_enabled()
523 && this->icf_->is_section_folded(obj, shndx));
526 // For symbols that have been listed with -u option, add them to the
527 // work list to avoid gc'ing them.
529 void
530 Symbol_table::gc_mark_undef_symbols(Layout* layout)
532 for (options::String_set::const_iterator p =
533 parameters->options().undefined_begin();
534 p != parameters->options().undefined_end();
535 ++p)
537 const char* name = p->c_str();
538 Symbol* sym = this->lookup(name);
539 gold_assert(sym != NULL);
540 if (sym->source() == Symbol::FROM_OBJECT
541 && !sym->object()->is_dynamic())
543 Relobj* obj = static_cast<Relobj*>(sym->object());
544 bool is_ordinary;
545 unsigned int shndx = sym->shndx(&is_ordinary);
546 if (is_ordinary)
548 gold_assert(this->gc_ != NULL);
549 this->gc_->worklist().push(Section_id(obj, shndx));
554 for (Script_options::referenced_const_iterator p =
555 layout->script_options()->referenced_begin();
556 p != layout->script_options()->referenced_end();
557 ++p)
559 Symbol* sym = this->lookup(p->c_str());
560 gold_assert(sym != NULL);
561 if (sym->source() == Symbol::FROM_OBJECT
562 && !sym->object()->is_dynamic())
564 Relobj* obj = static_cast<Relobj*>(sym->object());
565 bool is_ordinary;
566 unsigned int shndx = sym->shndx(&is_ordinary);
567 if (is_ordinary)
569 gold_assert(this->gc_ != NULL);
570 this->gc_->worklist().push(Section_id(obj, shndx));
576 void
577 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
579 if (!sym->is_from_dynobj()
580 && sym->is_externally_visible())
582 //Add the object and section to the work list.
583 Relobj* obj = static_cast<Relobj*>(sym->object());
584 bool is_ordinary;
585 unsigned int shndx = sym->shndx(&is_ordinary);
586 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
588 gold_assert(this->gc_!= NULL);
589 this->gc_->worklist().push(Section_id(obj, shndx));
594 // When doing garbage collection, keep symbols that have been seen in
595 // dynamic objects.
596 inline void
597 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
599 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
600 && !sym->object()->is_dynamic())
602 Relobj* obj = static_cast<Relobj*>(sym->object());
603 bool is_ordinary;
604 unsigned int shndx = sym->shndx(&is_ordinary);
605 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
607 gold_assert(this->gc_ != NULL);
608 this->gc_->worklist().push(Section_id(obj, shndx));
613 // Make TO a symbol which forwards to FROM.
615 void
616 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
618 gold_assert(from != to);
619 gold_assert(!from->is_forwarder() && !to->is_forwarder());
620 this->forwarders_[from] = to;
621 from->set_forwarder();
624 // Resolve the forwards from FROM, returning the real symbol.
626 Symbol*
627 Symbol_table::resolve_forwards(const Symbol* from) const
629 gold_assert(from->is_forwarder());
630 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
631 this->forwarders_.find(from);
632 gold_assert(p != this->forwarders_.end());
633 return p->second;
636 // Look up a symbol by name.
638 Symbol*
639 Symbol_table::lookup(const char* name, const char* version) const
641 Stringpool::Key name_key;
642 name = this->namepool_.find(name, &name_key);
643 if (name == NULL)
644 return NULL;
646 Stringpool::Key version_key = 0;
647 if (version != NULL)
649 version = this->namepool_.find(version, &version_key);
650 if (version == NULL)
651 return NULL;
654 Symbol_table_key key(name_key, version_key);
655 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
656 if (p == this->table_.end())
657 return NULL;
658 return p->second;
661 // Resolve a Symbol with another Symbol. This is only used in the
662 // unusual case where there are references to both an unversioned
663 // symbol and a symbol with a version, and we then discover that that
664 // version is the default version. Because this is unusual, we do
665 // this the slow way, by converting back to an ELF symbol.
667 template<int size, bool big_endian>
668 void
669 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
671 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
672 elfcpp::Sym_write<size, big_endian> esym(buf);
673 // We don't bother to set the st_name or the st_shndx field.
674 esym.put_st_value(from->value());
675 esym.put_st_size(from->symsize());
676 esym.put_st_info(from->binding(), from->type());
677 esym.put_st_other(from->visibility(), from->nonvis());
678 bool is_ordinary;
679 unsigned int shndx = from->shndx(&is_ordinary);
680 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
681 from->version());
682 if (from->in_reg())
683 to->set_in_reg();
684 if (from->in_dyn())
685 to->set_in_dyn();
686 if (parameters->options().gc_sections())
687 this->gc_mark_dyn_syms(to);
690 // Record that a symbol is forced to be local by a version script or
691 // by visibility.
693 void
694 Symbol_table::force_local(Symbol* sym)
696 if (!sym->is_defined() && !sym->is_common())
697 return;
698 if (sym->is_forced_local())
700 // We already got this one.
701 return;
703 sym->set_is_forced_local();
704 this->forced_locals_.push_back(sym);
707 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
708 // is only called for undefined symbols, when at least one --wrap
709 // option was used.
711 const char*
712 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
714 // For some targets, we need to ignore a specific character when
715 // wrapping, and add it back later.
716 char prefix = '\0';
717 if (name[0] == parameters->target().wrap_char())
719 prefix = name[0];
720 ++name;
723 if (parameters->options().is_wrap(name))
725 // Turn NAME into __wrap_NAME.
726 std::string s;
727 if (prefix != '\0')
728 s += prefix;
729 s += "__wrap_";
730 s += name;
732 // This will give us both the old and new name in NAMEPOOL_, but
733 // that is OK. Only the versions we need will wind up in the
734 // real string table in the output file.
735 return this->namepool_.add(s.c_str(), true, name_key);
738 const char* const real_prefix = "__real_";
739 const size_t real_prefix_length = strlen(real_prefix);
740 if (strncmp(name, real_prefix, real_prefix_length) == 0
741 && parameters->options().is_wrap(name + real_prefix_length))
743 // Turn __real_NAME into NAME.
744 std::string s;
745 if (prefix != '\0')
746 s += prefix;
747 s += name + real_prefix_length;
748 return this->namepool_.add(s.c_str(), true, name_key);
751 return name;
754 // This is called when we see a symbol NAME/VERSION, and the symbol
755 // already exists in the symbol table, and VERSION is marked as being
756 // the default version. SYM is the NAME/VERSION symbol we just added.
757 // DEFAULT_IS_NEW is true if this is the first time we have seen the
758 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
760 template<int size, bool big_endian>
761 void
762 Symbol_table::define_default_version(Sized_symbol<size>* sym,
763 bool default_is_new,
764 Symbol_table_type::iterator pdef)
766 if (default_is_new)
768 // This is the first time we have seen NAME/NULL. Make
769 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
770 // version.
771 pdef->second = sym;
772 sym->set_is_default();
774 else if (pdef->second == sym)
776 // NAME/NULL already points to NAME/VERSION. Don't mark the
777 // symbol as the default if it is not already the default.
779 else
781 // This is the unfortunate case where we already have entries
782 // for both NAME/VERSION and NAME/NULL. We now see a symbol
783 // NAME/VERSION where VERSION is the default version. We have
784 // already resolved this new symbol with the existing
785 // NAME/VERSION symbol.
787 // It's possible that NAME/NULL and NAME/VERSION are both
788 // defined in regular objects. This can only happen if one
789 // object file defines foo and another defines foo@@ver. This
790 // is somewhat obscure, but we call it a multiple definition
791 // error.
793 // It's possible that NAME/NULL actually has a version, in which
794 // case it won't be the same as VERSION. This happens with
795 // ver_test_7.so in the testsuite for the symbol t2_2. We see
796 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
797 // then see an unadorned t2_2 in an object file and give it
798 // version VER1 from the version script. This looks like a
799 // default definition for VER1, so it looks like we should merge
800 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
801 // not obvious that this is an error, either. So we just punt.
803 // If one of the symbols has non-default visibility, and the
804 // other is defined in a shared object, then they are different
805 // symbols.
807 // Otherwise, we just resolve the symbols as though they were
808 // the same.
810 if (pdef->second->version() != NULL)
811 gold_assert(pdef->second->version() != sym->version());
812 else if (sym->visibility() != elfcpp::STV_DEFAULT
813 && pdef->second->is_from_dynobj())
815 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
816 && sym->is_from_dynobj())
818 else
820 const Sized_symbol<size>* symdef;
821 symdef = this->get_sized_symbol<size>(pdef->second);
822 Symbol_table::resolve<size, big_endian>(sym, symdef);
823 this->make_forwarder(pdef->second, sym);
824 pdef->second = sym;
825 sym->set_is_default();
830 // Add one symbol from OBJECT to the symbol table. NAME is symbol
831 // name and VERSION is the version; both are canonicalized. DEF is
832 // whether this is the default version. ST_SHNDX is the symbol's
833 // section index; IS_ORDINARY is whether this is a normal section
834 // rather than a special code.
836 // If IS_DEFAULT_VERSION is true, then this is the definition of a
837 // default version of a symbol. That means that any lookup of
838 // NAME/NULL and any lookup of NAME/VERSION should always return the
839 // same symbol. This is obvious for references, but in particular we
840 // want to do this for definitions: overriding NAME/NULL should also
841 // override NAME/VERSION. If we don't do that, it would be very hard
842 // to override functions in a shared library which uses versioning.
844 // We implement this by simply making both entries in the hash table
845 // point to the same Symbol structure. That is easy enough if this is
846 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
847 // that we have seen both already, in which case they will both have
848 // independent entries in the symbol table. We can't simply change
849 // the symbol table entry, because we have pointers to the entries
850 // attached to the object files. So we mark the entry attached to the
851 // object file as a forwarder, and record it in the forwarders_ map.
852 // Note that entries in the hash table will never be marked as
853 // forwarders.
855 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
856 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
857 // for a special section code. ST_SHNDX may be modified if the symbol
858 // is defined in a section being discarded.
860 template<int size, bool big_endian>
861 Sized_symbol<size>*
862 Symbol_table::add_from_object(Object* object,
863 const char* name,
864 Stringpool::Key name_key,
865 const char* version,
866 Stringpool::Key version_key,
867 bool is_default_version,
868 const elfcpp::Sym<size, big_endian>& sym,
869 unsigned int st_shndx,
870 bool is_ordinary,
871 unsigned int orig_st_shndx)
873 // Print a message if this symbol is being traced.
874 if (parameters->options().is_trace_symbol(name))
876 if (orig_st_shndx == elfcpp::SHN_UNDEF)
877 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
878 else
879 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
882 // For an undefined symbol, we may need to adjust the name using
883 // --wrap.
884 if (orig_st_shndx == elfcpp::SHN_UNDEF
885 && parameters->options().any_wrap())
887 const char* wrap_name = this->wrap_symbol(name, &name_key);
888 if (wrap_name != name)
890 // If we see a reference to malloc with version GLIBC_2.0,
891 // and we turn it into a reference to __wrap_malloc, then we
892 // discard the version number. Otherwise the user would be
893 // required to specify the correct version for
894 // __wrap_malloc.
895 version = NULL;
896 version_key = 0;
897 name = wrap_name;
901 Symbol* const snull = NULL;
902 std::pair<typename Symbol_table_type::iterator, bool> ins =
903 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
904 snull));
906 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
907 std::make_pair(this->table_.end(), false);
908 if (is_default_version)
910 const Stringpool::Key vnull_key = 0;
911 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
912 vnull_key),
913 snull));
916 // ins.first: an iterator, which is a pointer to a pair.
917 // ins.first->first: the key (a pair of name and version).
918 // ins.first->second: the value (Symbol*).
919 // ins.second: true if new entry was inserted, false if not.
921 Sized_symbol<size>* ret;
922 bool was_undefined;
923 bool was_common;
924 if (!ins.second)
926 // We already have an entry for NAME/VERSION.
927 ret = this->get_sized_symbol<size>(ins.first->second);
928 gold_assert(ret != NULL);
930 was_undefined = ret->is_undefined();
931 was_common = ret->is_common();
933 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
934 version);
935 if (parameters->options().gc_sections())
936 this->gc_mark_dyn_syms(ret);
938 if (is_default_version)
939 this->define_default_version<size, big_endian>(ret, insdefault.second,
940 insdefault.first);
942 else
944 // This is the first time we have seen NAME/VERSION.
945 gold_assert(ins.first->second == NULL);
947 if (is_default_version && !insdefault.second)
949 // We already have an entry for NAME/NULL. If we override
950 // it, then change it to NAME/VERSION.
951 ret = this->get_sized_symbol<size>(insdefault.first->second);
953 was_undefined = ret->is_undefined();
954 was_common = ret->is_common();
956 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
957 version);
958 if (parameters->options().gc_sections())
959 this->gc_mark_dyn_syms(ret);
960 ins.first->second = ret;
962 else
964 was_undefined = false;
965 was_common = false;
967 Sized_target<size, big_endian>* target =
968 parameters->sized_target<size, big_endian>();
969 if (!target->has_make_symbol())
970 ret = new Sized_symbol<size>();
971 else
973 ret = target->make_symbol();
974 if (ret == NULL)
976 // This means that we don't want a symbol table
977 // entry after all.
978 if (!is_default_version)
979 this->table_.erase(ins.first);
980 else
982 this->table_.erase(insdefault.first);
983 // Inserting INSDEFAULT invalidated INS.
984 this->table_.erase(std::make_pair(name_key,
985 version_key));
987 return NULL;
991 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
993 ins.first->second = ret;
994 if (is_default_version)
996 // This is the first time we have seen NAME/NULL. Point
997 // it at the new entry for NAME/VERSION.
998 gold_assert(insdefault.second);
999 insdefault.first->second = ret;
1003 if (is_default_version)
1004 ret->set_is_default();
1007 // Record every time we see a new undefined symbol, to speed up
1008 // archive groups.
1009 if (!was_undefined && ret->is_undefined())
1011 ++this->saw_undefined_;
1012 if (parameters->options().has_plugins())
1013 parameters->options().plugins()->new_undefined_symbol(ret);
1016 // Keep track of common symbols, to speed up common symbol
1017 // allocation.
1018 if (!was_common && ret->is_common())
1020 if (ret->type() == elfcpp::STT_TLS)
1021 this->tls_commons_.push_back(ret);
1022 else if (!is_ordinary
1023 && st_shndx == parameters->target().small_common_shndx())
1024 this->small_commons_.push_back(ret);
1025 else if (!is_ordinary
1026 && st_shndx == parameters->target().large_common_shndx())
1027 this->large_commons_.push_back(ret);
1028 else
1029 this->commons_.push_back(ret);
1032 // If we're not doing a relocatable link, then any symbol with
1033 // hidden or internal visibility is local.
1034 if ((ret->visibility() == elfcpp::STV_HIDDEN
1035 || ret->visibility() == elfcpp::STV_INTERNAL)
1036 && (ret->binding() == elfcpp::STB_GLOBAL
1037 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1038 || ret->binding() == elfcpp::STB_WEAK)
1039 && !parameters->options().relocatable())
1040 this->force_local(ret);
1042 return ret;
1045 // Add all the symbols in a relocatable object to the hash table.
1047 template<int size, bool big_endian>
1048 void
1049 Symbol_table::add_from_relobj(
1050 Sized_relobj<size, big_endian>* relobj,
1051 const unsigned char* syms,
1052 size_t count,
1053 size_t symndx_offset,
1054 const char* sym_names,
1055 size_t sym_name_size,
1056 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1057 size_t* defined)
1059 *defined = 0;
1061 gold_assert(size == parameters->target().get_size());
1063 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1065 const bool just_symbols = relobj->just_symbols();
1067 const unsigned char* p = syms;
1068 for (size_t i = 0; i < count; ++i, p += sym_size)
1070 (*sympointers)[i] = NULL;
1072 elfcpp::Sym<size, big_endian> sym(p);
1074 unsigned int st_name = sym.get_st_name();
1075 if (st_name >= sym_name_size)
1077 relobj->error(_("bad global symbol name offset %u at %zu"),
1078 st_name, i);
1079 continue;
1082 const char* name = sym_names + st_name;
1084 bool is_ordinary;
1085 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1086 sym.get_st_shndx(),
1087 &is_ordinary);
1088 unsigned int orig_st_shndx = st_shndx;
1089 if (!is_ordinary)
1090 orig_st_shndx = elfcpp::SHN_UNDEF;
1092 if (st_shndx != elfcpp::SHN_UNDEF)
1093 ++*defined;
1095 // A symbol defined in a section which we are not including must
1096 // be treated as an undefined symbol.
1097 bool is_defined_in_discarded_section = false;
1098 if (st_shndx != elfcpp::SHN_UNDEF
1099 && is_ordinary
1100 && !relobj->is_section_included(st_shndx)
1101 && !this->is_section_folded(relobj, st_shndx))
1103 st_shndx = elfcpp::SHN_UNDEF;
1104 is_defined_in_discarded_section = true;
1107 // In an object file, an '@' in the name separates the symbol
1108 // name from the version name. If there are two '@' characters,
1109 // this is the default version.
1110 const char* ver = strchr(name, '@');
1111 Stringpool::Key ver_key = 0;
1112 int namelen = 0;
1113 // IS_DEFAULT_VERSION: is the version default?
1114 // IS_FORCED_LOCAL: is the symbol forced local?
1115 bool is_default_version = false;
1116 bool is_forced_local = false;
1118 if (ver != NULL)
1120 // The symbol name is of the form foo@VERSION or foo@@VERSION
1121 namelen = ver - name;
1122 ++ver;
1123 if (*ver == '@')
1125 is_default_version = true;
1126 ++ver;
1128 ver = this->namepool_.add(ver, true, &ver_key);
1130 // We don't want to assign a version to an undefined symbol,
1131 // even if it is listed in the version script. FIXME: What
1132 // about a common symbol?
1133 else
1135 namelen = strlen(name);
1136 if (!this->version_script_.empty()
1137 && st_shndx != elfcpp::SHN_UNDEF)
1139 // The symbol name did not have a version, but the
1140 // version script may assign a version anyway.
1141 std::string version;
1142 bool is_global;
1143 if (this->version_script_.get_symbol_version(name, &version,
1144 &is_global))
1146 if (!is_global)
1147 is_forced_local = true;
1148 else if (!version.empty())
1150 ver = this->namepool_.add_with_length(version.c_str(),
1151 version.length(),
1152 true,
1153 &ver_key);
1154 is_default_version = true;
1160 elfcpp::Sym<size, big_endian>* psym = &sym;
1161 unsigned char symbuf[sym_size];
1162 elfcpp::Sym<size, big_endian> sym2(symbuf);
1163 if (just_symbols)
1165 memcpy(symbuf, p, sym_size);
1166 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1167 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1169 // Symbol values in object files are section relative.
1170 // This is normally what we want, but since here we are
1171 // converting the symbol to absolute we need to add the
1172 // section address. The section address in an object
1173 // file is normally zero, but people can use a linker
1174 // script to change it.
1175 sw.put_st_value(sym.get_st_value()
1176 + relobj->section_address(orig_st_shndx));
1178 st_shndx = elfcpp::SHN_ABS;
1179 is_ordinary = false;
1180 psym = &sym2;
1183 // Fix up visibility if object has no-export set.
1184 if (relobj->no_export()
1185 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1187 // We may have copied symbol already above.
1188 if (psym != &sym2)
1190 memcpy(symbuf, p, sym_size);
1191 psym = &sym2;
1194 elfcpp::STV visibility = sym2.get_st_visibility();
1195 if (visibility == elfcpp::STV_DEFAULT
1196 || visibility == elfcpp::STV_PROTECTED)
1198 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1199 unsigned char nonvis = sym2.get_st_nonvis();
1200 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1204 Stringpool::Key name_key;
1205 name = this->namepool_.add_with_length(name, namelen, true,
1206 &name_key);
1208 Sized_symbol<size>* res;
1209 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1210 is_default_version, *psym, st_shndx,
1211 is_ordinary, orig_st_shndx);
1213 // If building a shared library using garbage collection, do not
1214 // treat externally visible symbols as garbage.
1215 if (parameters->options().gc_sections()
1216 && parameters->options().shared())
1217 this->gc_mark_symbol_for_shlib(res);
1219 if (is_forced_local)
1220 this->force_local(res);
1222 if (is_defined_in_discarded_section)
1223 res->set_is_defined_in_discarded_section();
1225 (*sympointers)[i] = res;
1229 // Add a symbol from a plugin-claimed file.
1231 template<int size, bool big_endian>
1232 Symbol*
1233 Symbol_table::add_from_pluginobj(
1234 Sized_pluginobj<size, big_endian>* obj,
1235 const char* name,
1236 const char* ver,
1237 elfcpp::Sym<size, big_endian>* sym)
1239 unsigned int st_shndx = sym->get_st_shndx();
1240 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1242 Stringpool::Key ver_key = 0;
1243 bool is_default_version = false;
1244 bool is_forced_local = false;
1246 if (ver != NULL)
1248 ver = this->namepool_.add(ver, true, &ver_key);
1250 // We don't want to assign a version to an undefined symbol,
1251 // even if it is listed in the version script. FIXME: What
1252 // about a common symbol?
1253 else
1255 if (!this->version_script_.empty()
1256 && st_shndx != elfcpp::SHN_UNDEF)
1258 // The symbol name did not have a version, but the
1259 // version script may assign a version anyway.
1260 std::string version;
1261 bool is_global;
1262 if (this->version_script_.get_symbol_version(name, &version,
1263 &is_global))
1265 if (!is_global)
1266 is_forced_local = true;
1267 else if (!version.empty())
1269 ver = this->namepool_.add_with_length(version.c_str(),
1270 version.length(),
1271 true,
1272 &ver_key);
1273 is_default_version = true;
1279 Stringpool::Key name_key;
1280 name = this->namepool_.add(name, true, &name_key);
1282 Sized_symbol<size>* res;
1283 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1284 is_default_version, *sym, st_shndx,
1285 is_ordinary, st_shndx);
1287 if (is_forced_local)
1288 this->force_local(res);
1290 return res;
1293 // Add all the symbols in a dynamic object to the hash table.
1295 template<int size, bool big_endian>
1296 void
1297 Symbol_table::add_from_dynobj(
1298 Sized_dynobj<size, big_endian>* dynobj,
1299 const unsigned char* syms,
1300 size_t count,
1301 const char* sym_names,
1302 size_t sym_name_size,
1303 const unsigned char* versym,
1304 size_t versym_size,
1305 const std::vector<const char*>* version_map,
1306 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1307 size_t* defined)
1309 *defined = 0;
1311 gold_assert(size == parameters->target().get_size());
1313 if (dynobj->just_symbols())
1315 gold_error(_("--just-symbols does not make sense with a shared object"));
1316 return;
1319 if (versym != NULL && versym_size / 2 < count)
1321 dynobj->error(_("too few symbol versions"));
1322 return;
1325 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1327 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1328 // weak aliases. This is necessary because if the dynamic object
1329 // provides the same variable under two names, one of which is a
1330 // weak definition, and the regular object refers to the weak
1331 // definition, we have to put both the weak definition and the
1332 // strong definition into the dynamic symbol table. Given a weak
1333 // definition, the only way that we can find the corresponding
1334 // strong definition, if any, is to search the symbol table.
1335 std::vector<Sized_symbol<size>*> object_symbols;
1337 const unsigned char* p = syms;
1338 const unsigned char* vs = versym;
1339 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1341 elfcpp::Sym<size, big_endian> sym(p);
1343 if (sympointers != NULL)
1344 (*sympointers)[i] = NULL;
1346 // Ignore symbols with local binding or that have
1347 // internal or hidden visibility.
1348 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1349 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1350 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1351 continue;
1353 // A protected symbol in a shared library must be treated as a
1354 // normal symbol when viewed from outside the shared library.
1355 // Implement this by overriding the visibility here.
1356 elfcpp::Sym<size, big_endian>* psym = &sym;
1357 unsigned char symbuf[sym_size];
1358 elfcpp::Sym<size, big_endian> sym2(symbuf);
1359 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1361 memcpy(symbuf, p, sym_size);
1362 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1363 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1364 psym = &sym2;
1367 unsigned int st_name = psym->get_st_name();
1368 if (st_name >= sym_name_size)
1370 dynobj->error(_("bad symbol name offset %u at %zu"),
1371 st_name, i);
1372 continue;
1375 const char* name = sym_names + st_name;
1377 bool is_ordinary;
1378 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1379 &is_ordinary);
1381 if (st_shndx != elfcpp::SHN_UNDEF)
1382 ++*defined;
1384 Sized_symbol<size>* res;
1386 if (versym == NULL)
1388 Stringpool::Key name_key;
1389 name = this->namepool_.add(name, true, &name_key);
1390 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1391 false, *psym, st_shndx, is_ordinary,
1392 st_shndx);
1394 else
1396 // Read the version information.
1398 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1400 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1401 v &= elfcpp::VERSYM_VERSION;
1403 // The Sun documentation says that V can be VER_NDX_LOCAL,
1404 // or VER_NDX_GLOBAL, or a version index. The meaning of
1405 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1406 // The old GNU linker will happily generate VER_NDX_LOCAL
1407 // for an undefined symbol. I don't know what the Sun
1408 // linker will generate.
1410 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1411 && st_shndx != elfcpp::SHN_UNDEF)
1413 // This symbol should not be visible outside the object.
1414 continue;
1417 // At this point we are definitely going to add this symbol.
1418 Stringpool::Key name_key;
1419 name = this->namepool_.add(name, true, &name_key);
1421 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1422 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1424 // This symbol does not have a version.
1425 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1426 false, *psym, st_shndx, is_ordinary,
1427 st_shndx);
1429 else
1431 if (v >= version_map->size())
1433 dynobj->error(_("versym for symbol %zu out of range: %u"),
1434 i, v);
1435 continue;
1438 const char* version = (*version_map)[v];
1439 if (version == NULL)
1441 dynobj->error(_("versym for symbol %zu has no name: %u"),
1442 i, v);
1443 continue;
1446 Stringpool::Key version_key;
1447 version = this->namepool_.add(version, true, &version_key);
1449 // If this is an absolute symbol, and the version name
1450 // and symbol name are the same, then this is the
1451 // version definition symbol. These symbols exist to
1452 // support using -u to pull in particular versions. We
1453 // do not want to record a version for them.
1454 if (st_shndx == elfcpp::SHN_ABS
1455 && !is_ordinary
1456 && name_key == version_key)
1457 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1458 false, *psym, st_shndx, is_ordinary,
1459 st_shndx);
1460 else
1462 const bool is_default_version =
1463 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1464 res = this->add_from_object(dynobj, name, name_key, version,
1465 version_key, is_default_version,
1466 *psym, st_shndx,
1467 is_ordinary, st_shndx);
1472 // Note that it is possible that RES was overridden by an
1473 // earlier object, in which case it can't be aliased here.
1474 if (st_shndx != elfcpp::SHN_UNDEF
1475 && is_ordinary
1476 && psym->get_st_type() == elfcpp::STT_OBJECT
1477 && res->source() == Symbol::FROM_OBJECT
1478 && res->object() == dynobj)
1479 object_symbols.push_back(res);
1481 if (sympointers != NULL)
1482 (*sympointers)[i] = res;
1485 this->record_weak_aliases(&object_symbols);
1488 // This is used to sort weak aliases. We sort them first by section
1489 // index, then by offset, then by weak ahead of strong.
1491 template<int size>
1492 class Weak_alias_sorter
1494 public:
1495 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1498 template<int size>
1499 bool
1500 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1501 const Sized_symbol<size>* s2) const
1503 bool is_ordinary;
1504 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1505 gold_assert(is_ordinary);
1506 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1507 gold_assert(is_ordinary);
1508 if (s1_shndx != s2_shndx)
1509 return s1_shndx < s2_shndx;
1511 if (s1->value() != s2->value())
1512 return s1->value() < s2->value();
1513 if (s1->binding() != s2->binding())
1515 if (s1->binding() == elfcpp::STB_WEAK)
1516 return true;
1517 if (s2->binding() == elfcpp::STB_WEAK)
1518 return false;
1520 return std::string(s1->name()) < std::string(s2->name());
1523 // SYMBOLS is a list of object symbols from a dynamic object. Look
1524 // for any weak aliases, and record them so that if we add the weak
1525 // alias to the dynamic symbol table, we also add the corresponding
1526 // strong symbol.
1528 template<int size>
1529 void
1530 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1532 // Sort the vector by section index, then by offset, then by weak
1533 // ahead of strong.
1534 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1536 // Walk through the vector. For each weak definition, record
1537 // aliases.
1538 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1539 symbols->begin();
1540 p != symbols->end();
1541 ++p)
1543 if ((*p)->binding() != elfcpp::STB_WEAK)
1544 continue;
1546 // Build a circular list of weak aliases. Each symbol points to
1547 // the next one in the circular list.
1549 Sized_symbol<size>* from_sym = *p;
1550 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1551 for (q = p + 1; q != symbols->end(); ++q)
1553 bool dummy;
1554 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1555 || (*q)->value() != from_sym->value())
1556 break;
1558 this->weak_aliases_[from_sym] = *q;
1559 from_sym->set_has_alias();
1560 from_sym = *q;
1563 if (from_sym != *p)
1565 this->weak_aliases_[from_sym] = *p;
1566 from_sym->set_has_alias();
1569 p = q - 1;
1573 // Create and return a specially defined symbol. If ONLY_IF_REF is
1574 // true, then only create the symbol if there is a reference to it.
1575 // If this does not return NULL, it sets *POLDSYM to the existing
1576 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1577 // resolve the newly created symbol to the old one. This
1578 // canonicalizes *PNAME and *PVERSION.
1580 template<int size, bool big_endian>
1581 Sized_symbol<size>*
1582 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1583 bool only_if_ref,
1584 Sized_symbol<size>** poldsym,
1585 bool* resolve_oldsym)
1587 *resolve_oldsym = false;
1589 // If the caller didn't give us a version, see if we get one from
1590 // the version script.
1591 std::string v;
1592 bool is_default_version = false;
1593 if (*pversion == NULL)
1595 bool is_global;
1596 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1598 if (is_global && !v.empty())
1600 *pversion = v.c_str();
1601 // If we get the version from a version script, then we
1602 // are also the default version.
1603 is_default_version = true;
1608 Symbol* oldsym;
1609 Sized_symbol<size>* sym;
1611 bool add_to_table = false;
1612 typename Symbol_table_type::iterator add_loc = this->table_.end();
1613 bool add_def_to_table = false;
1614 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1616 if (only_if_ref)
1618 oldsym = this->lookup(*pname, *pversion);
1619 if (oldsym == NULL && is_default_version)
1620 oldsym = this->lookup(*pname, NULL);
1621 if (oldsym == NULL || !oldsym->is_undefined())
1622 return NULL;
1624 *pname = oldsym->name();
1625 if (!is_default_version)
1626 *pversion = oldsym->version();
1628 else
1630 // Canonicalize NAME and VERSION.
1631 Stringpool::Key name_key;
1632 *pname = this->namepool_.add(*pname, true, &name_key);
1634 Stringpool::Key version_key = 0;
1635 if (*pversion != NULL)
1636 *pversion = this->namepool_.add(*pversion, true, &version_key);
1638 Symbol* const snull = NULL;
1639 std::pair<typename Symbol_table_type::iterator, bool> ins =
1640 this->table_.insert(std::make_pair(std::make_pair(name_key,
1641 version_key),
1642 snull));
1644 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1645 std::make_pair(this->table_.end(), false);
1646 if (is_default_version)
1648 const Stringpool::Key vnull = 0;
1649 insdefault =
1650 this->table_.insert(std::make_pair(std::make_pair(name_key,
1651 vnull),
1652 snull));
1655 if (!ins.second)
1657 // We already have a symbol table entry for NAME/VERSION.
1658 oldsym = ins.first->second;
1659 gold_assert(oldsym != NULL);
1661 if (is_default_version)
1663 Sized_symbol<size>* soldsym =
1664 this->get_sized_symbol<size>(oldsym);
1665 this->define_default_version<size, big_endian>(soldsym,
1666 insdefault.second,
1667 insdefault.first);
1670 else
1672 // We haven't seen this symbol before.
1673 gold_assert(ins.first->second == NULL);
1675 add_to_table = true;
1676 add_loc = ins.first;
1678 if (is_default_version && !insdefault.second)
1680 // We are adding NAME/VERSION, and it is the default
1681 // version. We already have an entry for NAME/NULL.
1682 oldsym = insdefault.first->second;
1683 *resolve_oldsym = true;
1685 else
1687 oldsym = NULL;
1689 if (is_default_version)
1691 add_def_to_table = true;
1692 add_def_loc = insdefault.first;
1698 const Target& target = parameters->target();
1699 if (!target.has_make_symbol())
1700 sym = new Sized_symbol<size>();
1701 else
1703 Sized_target<size, big_endian>* sized_target =
1704 parameters->sized_target<size, big_endian>();
1705 sym = sized_target->make_symbol();
1706 if (sym == NULL)
1707 return NULL;
1710 if (add_to_table)
1711 add_loc->second = sym;
1712 else
1713 gold_assert(oldsym != NULL);
1715 if (add_def_to_table)
1716 add_def_loc->second = sym;
1718 *poldsym = this->get_sized_symbol<size>(oldsym);
1720 return sym;
1723 // Define a symbol based on an Output_data.
1725 Symbol*
1726 Symbol_table::define_in_output_data(const char* name,
1727 const char* version,
1728 Defined defined,
1729 Output_data* od,
1730 uint64_t value,
1731 uint64_t symsize,
1732 elfcpp::STT type,
1733 elfcpp::STB binding,
1734 elfcpp::STV visibility,
1735 unsigned char nonvis,
1736 bool offset_is_from_end,
1737 bool only_if_ref)
1739 if (parameters->target().get_size() == 32)
1741 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1742 return this->do_define_in_output_data<32>(name, version, defined, od,
1743 value, symsize, type, binding,
1744 visibility, nonvis,
1745 offset_is_from_end,
1746 only_if_ref);
1747 #else
1748 gold_unreachable();
1749 #endif
1751 else if (parameters->target().get_size() == 64)
1753 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1754 return this->do_define_in_output_data<64>(name, version, defined, od,
1755 value, symsize, type, binding,
1756 visibility, nonvis,
1757 offset_is_from_end,
1758 only_if_ref);
1759 #else
1760 gold_unreachable();
1761 #endif
1763 else
1764 gold_unreachable();
1767 // Define a symbol in an Output_data, sized version.
1769 template<int size>
1770 Sized_symbol<size>*
1771 Symbol_table::do_define_in_output_data(
1772 const char* name,
1773 const char* version,
1774 Defined defined,
1775 Output_data* od,
1776 typename elfcpp::Elf_types<size>::Elf_Addr value,
1777 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1778 elfcpp::STT type,
1779 elfcpp::STB binding,
1780 elfcpp::STV visibility,
1781 unsigned char nonvis,
1782 bool offset_is_from_end,
1783 bool only_if_ref)
1785 Sized_symbol<size>* sym;
1786 Sized_symbol<size>* oldsym;
1787 bool resolve_oldsym;
1789 if (parameters->target().is_big_endian())
1791 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1792 sym = this->define_special_symbol<size, true>(&name, &version,
1793 only_if_ref, &oldsym,
1794 &resolve_oldsym);
1795 #else
1796 gold_unreachable();
1797 #endif
1799 else
1801 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1802 sym = this->define_special_symbol<size, false>(&name, &version,
1803 only_if_ref, &oldsym,
1804 &resolve_oldsym);
1805 #else
1806 gold_unreachable();
1807 #endif
1810 if (sym == NULL)
1811 return NULL;
1813 sym->init_output_data(name, version, od, value, symsize, type, binding,
1814 visibility, nonvis, offset_is_from_end);
1816 if (oldsym == NULL)
1818 if (binding == elfcpp::STB_LOCAL
1819 || this->version_script_.symbol_is_local(name))
1820 this->force_local(sym);
1821 else if (version != NULL)
1822 sym->set_is_default();
1823 return sym;
1826 if (Symbol_table::should_override_with_special(oldsym, defined))
1827 this->override_with_special(oldsym, sym);
1829 if (resolve_oldsym)
1830 return sym;
1831 else
1833 delete sym;
1834 return oldsym;
1838 // Define a symbol based on an Output_segment.
1840 Symbol*
1841 Symbol_table::define_in_output_segment(const char* name,
1842 const char* version,
1843 Defined defined,
1844 Output_segment* os,
1845 uint64_t value,
1846 uint64_t symsize,
1847 elfcpp::STT type,
1848 elfcpp::STB binding,
1849 elfcpp::STV visibility,
1850 unsigned char nonvis,
1851 Symbol::Segment_offset_base offset_base,
1852 bool only_if_ref)
1854 if (parameters->target().get_size() == 32)
1856 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1857 return this->do_define_in_output_segment<32>(name, version, defined, os,
1858 value, symsize, type,
1859 binding, visibility, nonvis,
1860 offset_base, only_if_ref);
1861 #else
1862 gold_unreachable();
1863 #endif
1865 else if (parameters->target().get_size() == 64)
1867 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1868 return this->do_define_in_output_segment<64>(name, version, defined, os,
1869 value, symsize, type,
1870 binding, visibility, nonvis,
1871 offset_base, only_if_ref);
1872 #else
1873 gold_unreachable();
1874 #endif
1876 else
1877 gold_unreachable();
1880 // Define a symbol in an Output_segment, sized version.
1882 template<int size>
1883 Sized_symbol<size>*
1884 Symbol_table::do_define_in_output_segment(
1885 const char* name,
1886 const char* version,
1887 Defined defined,
1888 Output_segment* os,
1889 typename elfcpp::Elf_types<size>::Elf_Addr value,
1890 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1891 elfcpp::STT type,
1892 elfcpp::STB binding,
1893 elfcpp::STV visibility,
1894 unsigned char nonvis,
1895 Symbol::Segment_offset_base offset_base,
1896 bool only_if_ref)
1898 Sized_symbol<size>* sym;
1899 Sized_symbol<size>* oldsym;
1900 bool resolve_oldsym;
1902 if (parameters->target().is_big_endian())
1904 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1905 sym = this->define_special_symbol<size, true>(&name, &version,
1906 only_if_ref, &oldsym,
1907 &resolve_oldsym);
1908 #else
1909 gold_unreachable();
1910 #endif
1912 else
1914 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1915 sym = this->define_special_symbol<size, false>(&name, &version,
1916 only_if_ref, &oldsym,
1917 &resolve_oldsym);
1918 #else
1919 gold_unreachable();
1920 #endif
1923 if (sym == NULL)
1924 return NULL;
1926 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1927 visibility, nonvis, offset_base);
1929 if (oldsym == NULL)
1931 if (binding == elfcpp::STB_LOCAL
1932 || this->version_script_.symbol_is_local(name))
1933 this->force_local(sym);
1934 else if (version != NULL)
1935 sym->set_is_default();
1936 return sym;
1939 if (Symbol_table::should_override_with_special(oldsym, defined))
1940 this->override_with_special(oldsym, sym);
1942 if (resolve_oldsym)
1943 return sym;
1944 else
1946 delete sym;
1947 return oldsym;
1951 // Define a special symbol with a constant value. It is a multiple
1952 // definition error if this symbol is already defined.
1954 Symbol*
1955 Symbol_table::define_as_constant(const char* name,
1956 const char* version,
1957 Defined defined,
1958 uint64_t value,
1959 uint64_t symsize,
1960 elfcpp::STT type,
1961 elfcpp::STB binding,
1962 elfcpp::STV visibility,
1963 unsigned char nonvis,
1964 bool only_if_ref,
1965 bool force_override)
1967 if (parameters->target().get_size() == 32)
1969 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1970 return this->do_define_as_constant<32>(name, version, defined, value,
1971 symsize, type, binding,
1972 visibility, nonvis, only_if_ref,
1973 force_override);
1974 #else
1975 gold_unreachable();
1976 #endif
1978 else if (parameters->target().get_size() == 64)
1980 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1981 return this->do_define_as_constant<64>(name, version, defined, value,
1982 symsize, type, binding,
1983 visibility, nonvis, only_if_ref,
1984 force_override);
1985 #else
1986 gold_unreachable();
1987 #endif
1989 else
1990 gold_unreachable();
1993 // Define a symbol as a constant, sized version.
1995 template<int size>
1996 Sized_symbol<size>*
1997 Symbol_table::do_define_as_constant(
1998 const char* name,
1999 const char* version,
2000 Defined defined,
2001 typename elfcpp::Elf_types<size>::Elf_Addr value,
2002 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2003 elfcpp::STT type,
2004 elfcpp::STB binding,
2005 elfcpp::STV visibility,
2006 unsigned char nonvis,
2007 bool only_if_ref,
2008 bool force_override)
2010 Sized_symbol<size>* sym;
2011 Sized_symbol<size>* oldsym;
2012 bool resolve_oldsym;
2014 if (parameters->target().is_big_endian())
2016 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2017 sym = this->define_special_symbol<size, true>(&name, &version,
2018 only_if_ref, &oldsym,
2019 &resolve_oldsym);
2020 #else
2021 gold_unreachable();
2022 #endif
2024 else
2026 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2027 sym = this->define_special_symbol<size, false>(&name, &version,
2028 only_if_ref, &oldsym,
2029 &resolve_oldsym);
2030 #else
2031 gold_unreachable();
2032 #endif
2035 if (sym == NULL)
2036 return NULL;
2038 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2039 nonvis);
2041 if (oldsym == NULL)
2043 // Version symbols are absolute symbols with name == version.
2044 // We don't want to force them to be local.
2045 if ((version == NULL
2046 || name != version
2047 || value != 0)
2048 && (binding == elfcpp::STB_LOCAL
2049 || this->version_script_.symbol_is_local(name)))
2050 this->force_local(sym);
2051 else if (version != NULL
2052 && (name != version || value != 0))
2053 sym->set_is_default();
2054 return sym;
2057 if (force_override
2058 || Symbol_table::should_override_with_special(oldsym, defined))
2059 this->override_with_special(oldsym, sym);
2061 if (resolve_oldsym)
2062 return sym;
2063 else
2065 delete sym;
2066 return oldsym;
2070 // Define a set of symbols in output sections.
2072 void
2073 Symbol_table::define_symbols(const Layout* layout, int count,
2074 const Define_symbol_in_section* p,
2075 bool only_if_ref)
2077 for (int i = 0; i < count; ++i, ++p)
2079 Output_section* os = layout->find_output_section(p->output_section);
2080 if (os != NULL)
2081 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2082 p->size, p->type, p->binding,
2083 p->visibility, p->nonvis,
2084 p->offset_is_from_end,
2085 only_if_ref || p->only_if_ref);
2086 else
2087 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2088 p->type, p->binding, p->visibility, p->nonvis,
2089 only_if_ref || p->only_if_ref,
2090 false);
2094 // Define a set of symbols in output segments.
2096 void
2097 Symbol_table::define_symbols(const Layout* layout, int count,
2098 const Define_symbol_in_segment* p,
2099 bool only_if_ref)
2101 for (int i = 0; i < count; ++i, ++p)
2103 Output_segment* os = layout->find_output_segment(p->segment_type,
2104 p->segment_flags_set,
2105 p->segment_flags_clear);
2106 if (os != NULL)
2107 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2108 p->size, p->type, p->binding,
2109 p->visibility, p->nonvis,
2110 p->offset_base,
2111 only_if_ref || p->only_if_ref);
2112 else
2113 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2114 p->type, p->binding, p->visibility, p->nonvis,
2115 only_if_ref || p->only_if_ref,
2116 false);
2120 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2121 // symbol should be defined--typically a .dyn.bss section. VALUE is
2122 // the offset within POSD.
2124 template<int size>
2125 void
2126 Symbol_table::define_with_copy_reloc(
2127 Sized_symbol<size>* csym,
2128 Output_data* posd,
2129 typename elfcpp::Elf_types<size>::Elf_Addr value)
2131 gold_assert(csym->is_from_dynobj());
2132 gold_assert(!csym->is_copied_from_dynobj());
2133 Object* object = csym->object();
2134 gold_assert(object->is_dynamic());
2135 Dynobj* dynobj = static_cast<Dynobj*>(object);
2137 // Our copied variable has to override any variable in a shared
2138 // library.
2139 elfcpp::STB binding = csym->binding();
2140 if (binding == elfcpp::STB_WEAK)
2141 binding = elfcpp::STB_GLOBAL;
2143 this->define_in_output_data(csym->name(), csym->version(), COPY,
2144 posd, value, csym->symsize(),
2145 csym->type(), binding,
2146 csym->visibility(), csym->nonvis(),
2147 false, false);
2149 csym->set_is_copied_from_dynobj();
2150 csym->set_needs_dynsym_entry();
2152 this->copied_symbol_dynobjs_[csym] = dynobj;
2154 // We have now defined all aliases, but we have not entered them all
2155 // in the copied_symbol_dynobjs_ map.
2156 if (csym->has_alias())
2158 Symbol* sym = csym;
2159 while (true)
2161 sym = this->weak_aliases_[sym];
2162 if (sym == csym)
2163 break;
2164 gold_assert(sym->output_data() == posd);
2166 sym->set_is_copied_from_dynobj();
2167 this->copied_symbol_dynobjs_[sym] = dynobj;
2172 // SYM is defined using a COPY reloc. Return the dynamic object where
2173 // the original definition was found.
2175 Dynobj*
2176 Symbol_table::get_copy_source(const Symbol* sym) const
2178 gold_assert(sym->is_copied_from_dynobj());
2179 Copied_symbol_dynobjs::const_iterator p =
2180 this->copied_symbol_dynobjs_.find(sym);
2181 gold_assert(p != this->copied_symbol_dynobjs_.end());
2182 return p->second;
2185 // Add any undefined symbols named on the command line.
2187 void
2188 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2190 if (parameters->options().any_undefined()
2191 || layout->script_options()->any_unreferenced())
2193 if (parameters->target().get_size() == 32)
2195 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2196 this->do_add_undefined_symbols_from_command_line<32>(layout);
2197 #else
2198 gold_unreachable();
2199 #endif
2201 else if (parameters->target().get_size() == 64)
2203 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2204 this->do_add_undefined_symbols_from_command_line<64>(layout);
2205 #else
2206 gold_unreachable();
2207 #endif
2209 else
2210 gold_unreachable();
2214 template<int size>
2215 void
2216 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2218 for (options::String_set::const_iterator p =
2219 parameters->options().undefined_begin();
2220 p != parameters->options().undefined_end();
2221 ++p)
2222 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2224 for (Script_options::referenced_const_iterator p =
2225 layout->script_options()->referenced_begin();
2226 p != layout->script_options()->referenced_end();
2227 ++p)
2228 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2231 template<int size>
2232 void
2233 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2235 if (this->lookup(name) != NULL)
2236 return;
2238 const char* version = NULL;
2240 Sized_symbol<size>* sym;
2241 Sized_symbol<size>* oldsym;
2242 bool resolve_oldsym;
2243 if (parameters->target().is_big_endian())
2245 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2246 sym = this->define_special_symbol<size, true>(&name, &version,
2247 false, &oldsym,
2248 &resolve_oldsym);
2249 #else
2250 gold_unreachable();
2251 #endif
2253 else
2255 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2256 sym = this->define_special_symbol<size, false>(&name, &version,
2257 false, &oldsym,
2258 &resolve_oldsym);
2259 #else
2260 gold_unreachable();
2261 #endif
2264 gold_assert(oldsym == NULL);
2266 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2267 elfcpp::STV_DEFAULT, 0);
2268 ++this->saw_undefined_;
2271 // Set the dynamic symbol indexes. INDEX is the index of the first
2272 // global dynamic symbol. Pointers to the symbols are stored into the
2273 // vector SYMS. The names are added to DYNPOOL. This returns an
2274 // updated dynamic symbol index.
2276 unsigned int
2277 Symbol_table::set_dynsym_indexes(unsigned int index,
2278 std::vector<Symbol*>* syms,
2279 Stringpool* dynpool,
2280 Versions* versions)
2282 for (Symbol_table_type::iterator p = this->table_.begin();
2283 p != this->table_.end();
2284 ++p)
2286 Symbol* sym = p->second;
2288 // Note that SYM may already have a dynamic symbol index, since
2289 // some symbols appear more than once in the symbol table, with
2290 // and without a version.
2292 if (!sym->should_add_dynsym_entry(this))
2293 sym->set_dynsym_index(-1U);
2294 else if (!sym->has_dynsym_index())
2296 sym->set_dynsym_index(index);
2297 ++index;
2298 syms->push_back(sym);
2299 dynpool->add(sym->name(), false, NULL);
2301 // Record any version information.
2302 if (sym->version() != NULL)
2303 versions->record_version(this, dynpool, sym);
2305 // If the symbol is defined in a dynamic object and is
2306 // referenced in a regular object, then mark the dynamic
2307 // object as needed. This is used to implement --as-needed.
2308 if (sym->is_from_dynobj() && sym->in_reg())
2309 sym->object()->set_is_needed();
2313 // Finish up the versions. In some cases this may add new dynamic
2314 // symbols.
2315 index = versions->finalize(this, index, syms);
2317 return index;
2320 // Set the final values for all the symbols. The index of the first
2321 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2322 // file offset OFF. Add their names to POOL. Return the new file
2323 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2325 off_t
2326 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2327 size_t dyncount, Stringpool* pool,
2328 unsigned int* plocal_symcount)
2330 off_t ret;
2332 gold_assert(*plocal_symcount != 0);
2333 this->first_global_index_ = *plocal_symcount;
2335 this->dynamic_offset_ = dynoff;
2336 this->first_dynamic_global_index_ = dyn_global_index;
2337 this->dynamic_count_ = dyncount;
2339 if (parameters->target().get_size() == 32)
2341 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2342 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2343 #else
2344 gold_unreachable();
2345 #endif
2347 else if (parameters->target().get_size() == 64)
2349 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2350 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2351 #else
2352 gold_unreachable();
2353 #endif
2355 else
2356 gold_unreachable();
2358 // Now that we have the final symbol table, we can reliably note
2359 // which symbols should get warnings.
2360 this->warnings_.note_warnings(this);
2362 return ret;
2365 // SYM is going into the symbol table at *PINDEX. Add the name to
2366 // POOL, update *PINDEX and *POFF.
2368 template<int size>
2369 void
2370 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2371 unsigned int* pindex, off_t* poff)
2373 sym->set_symtab_index(*pindex);
2374 pool->add(sym->name(), false, NULL);
2375 ++*pindex;
2376 *poff += elfcpp::Elf_sizes<size>::sym_size;
2379 // Set the final value for all the symbols. This is called after
2380 // Layout::finalize, so all the output sections have their final
2381 // address.
2383 template<int size>
2384 off_t
2385 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2386 unsigned int* plocal_symcount)
2388 off = align_address(off, size >> 3);
2389 this->offset_ = off;
2391 unsigned int index = *plocal_symcount;
2392 const unsigned int orig_index = index;
2394 // First do all the symbols which have been forced to be local, as
2395 // they must appear before all global symbols.
2396 for (Forced_locals::iterator p = this->forced_locals_.begin();
2397 p != this->forced_locals_.end();
2398 ++p)
2400 Symbol* sym = *p;
2401 gold_assert(sym->is_forced_local());
2402 if (this->sized_finalize_symbol<size>(sym))
2404 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2405 ++*plocal_symcount;
2409 // Now do all the remaining symbols.
2410 for (Symbol_table_type::iterator p = this->table_.begin();
2411 p != this->table_.end();
2412 ++p)
2414 Symbol* sym = p->second;
2415 if (this->sized_finalize_symbol<size>(sym))
2416 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2419 this->output_count_ = index - orig_index;
2421 return off;
2424 // Compute the final value of SYM and store status in location PSTATUS.
2425 // During relaxation, this may be called multiple times for a symbol to
2426 // compute its would-be final value in each relaxation pass.
2428 template<int size>
2429 typename Sized_symbol<size>::Value_type
2430 Symbol_table::compute_final_value(
2431 const Sized_symbol<size>* sym,
2432 Compute_final_value_status* pstatus) const
2434 typedef typename Sized_symbol<size>::Value_type Value_type;
2435 Value_type value;
2437 switch (sym->source())
2439 case Symbol::FROM_OBJECT:
2441 bool is_ordinary;
2442 unsigned int shndx = sym->shndx(&is_ordinary);
2444 if (!is_ordinary
2445 && shndx != elfcpp::SHN_ABS
2446 && !Symbol::is_common_shndx(shndx))
2448 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2449 return 0;
2452 Object* symobj = sym->object();
2453 if (symobj->is_dynamic())
2455 value = 0;
2456 shndx = elfcpp::SHN_UNDEF;
2458 else if (symobj->pluginobj() != NULL)
2460 value = 0;
2461 shndx = elfcpp::SHN_UNDEF;
2463 else if (shndx == elfcpp::SHN_UNDEF)
2464 value = 0;
2465 else if (!is_ordinary
2466 && (shndx == elfcpp::SHN_ABS
2467 || Symbol::is_common_shndx(shndx)))
2468 value = sym->value();
2469 else
2471 Relobj* relobj = static_cast<Relobj*>(symobj);
2472 Output_section* os = relobj->output_section(shndx);
2474 if (this->is_section_folded(relobj, shndx))
2476 gold_assert(os == NULL);
2477 // Get the os of the section it is folded onto.
2478 Section_id folded = this->icf_->get_folded_section(relobj,
2479 shndx);
2480 gold_assert(folded.first != NULL);
2481 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2482 unsigned folded_shndx = folded.second;
2484 os = folded_obj->output_section(folded_shndx);
2485 gold_assert(os != NULL);
2487 // Replace (relobj, shndx) with canonical ICF input section.
2488 shndx = folded_shndx;
2489 relobj = folded_obj;
2492 uint64_t secoff64 = relobj->output_section_offset(shndx);
2493 if (os == NULL)
2495 bool static_or_reloc = (parameters->doing_static_link() ||
2496 parameters->options().relocatable());
2497 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2499 *pstatus = CFVS_NO_OUTPUT_SECTION;
2500 return 0;
2503 if (secoff64 == -1ULL)
2505 // The section needs special handling (e.g., a merge section).
2507 value = os->output_address(relobj, shndx, sym->value());
2509 else
2511 Value_type secoff =
2512 convert_types<Value_type, uint64_t>(secoff64);
2513 if (sym->type() == elfcpp::STT_TLS)
2514 value = sym->value() + os->tls_offset() + secoff;
2515 else
2516 value = sym->value() + os->address() + secoff;
2520 break;
2522 case Symbol::IN_OUTPUT_DATA:
2524 Output_data* od = sym->output_data();
2525 value = sym->value();
2526 if (sym->type() != elfcpp::STT_TLS)
2527 value += od->address();
2528 else
2530 Output_section* os = od->output_section();
2531 gold_assert(os != NULL);
2532 value += os->tls_offset() + (od->address() - os->address());
2534 if (sym->offset_is_from_end())
2535 value += od->data_size();
2537 break;
2539 case Symbol::IN_OUTPUT_SEGMENT:
2541 Output_segment* os = sym->output_segment();
2542 value = sym->value();
2543 if (sym->type() != elfcpp::STT_TLS)
2544 value += os->vaddr();
2545 switch (sym->offset_base())
2547 case Symbol::SEGMENT_START:
2548 break;
2549 case Symbol::SEGMENT_END:
2550 value += os->memsz();
2551 break;
2552 case Symbol::SEGMENT_BSS:
2553 value += os->filesz();
2554 break;
2555 default:
2556 gold_unreachable();
2559 break;
2561 case Symbol::IS_CONSTANT:
2562 value = sym->value();
2563 break;
2565 case Symbol::IS_UNDEFINED:
2566 value = 0;
2567 break;
2569 default:
2570 gold_unreachable();
2573 *pstatus = CFVS_OK;
2574 return value;
2577 // Finalize the symbol SYM. This returns true if the symbol should be
2578 // added to the symbol table, false otherwise.
2580 template<int size>
2581 bool
2582 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2584 typedef typename Sized_symbol<size>::Value_type Value_type;
2586 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2588 // The default version of a symbol may appear twice in the symbol
2589 // table. We only need to finalize it once.
2590 if (sym->has_symtab_index())
2591 return false;
2593 if (!sym->in_reg())
2595 gold_assert(!sym->has_symtab_index());
2596 sym->set_symtab_index(-1U);
2597 gold_assert(sym->dynsym_index() == -1U);
2598 return false;
2601 // If the symbol is only present on plugin files, the plugin decided we
2602 // don't need it.
2603 if (!sym->in_real_elf())
2605 gold_assert(!sym->has_symtab_index());
2606 sym->set_symtab_index(-1U);
2607 return false;
2610 // Compute final symbol value.
2611 Compute_final_value_status status;
2612 Value_type value = this->compute_final_value(sym, &status);
2614 switch (status)
2616 case CFVS_OK:
2617 break;
2618 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2620 bool is_ordinary;
2621 unsigned int shndx = sym->shndx(&is_ordinary);
2622 gold_error(_("%s: unsupported symbol section 0x%x"),
2623 sym->demangled_name().c_str(), shndx);
2625 break;
2626 case CFVS_NO_OUTPUT_SECTION:
2627 sym->set_symtab_index(-1U);
2628 return false;
2629 default:
2630 gold_unreachable();
2633 sym->set_value(value);
2635 if (parameters->options().strip_all()
2636 || !parameters->options().should_retain_symbol(sym->name()))
2638 sym->set_symtab_index(-1U);
2639 return false;
2642 return true;
2645 // Write out the global symbols.
2647 void
2648 Symbol_table::write_globals(const Stringpool* sympool,
2649 const Stringpool* dynpool,
2650 Output_symtab_xindex* symtab_xindex,
2651 Output_symtab_xindex* dynsym_xindex,
2652 Output_file* of) const
2654 switch (parameters->size_and_endianness())
2656 #ifdef HAVE_TARGET_32_LITTLE
2657 case Parameters::TARGET_32_LITTLE:
2658 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2659 dynsym_xindex, of);
2660 break;
2661 #endif
2662 #ifdef HAVE_TARGET_32_BIG
2663 case Parameters::TARGET_32_BIG:
2664 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2665 dynsym_xindex, of);
2666 break;
2667 #endif
2668 #ifdef HAVE_TARGET_64_LITTLE
2669 case Parameters::TARGET_64_LITTLE:
2670 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2671 dynsym_xindex, of);
2672 break;
2673 #endif
2674 #ifdef HAVE_TARGET_64_BIG
2675 case Parameters::TARGET_64_BIG:
2676 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2677 dynsym_xindex, of);
2678 break;
2679 #endif
2680 default:
2681 gold_unreachable();
2685 // Write out the global symbols.
2687 template<int size, bool big_endian>
2688 void
2689 Symbol_table::sized_write_globals(const Stringpool* sympool,
2690 const Stringpool* dynpool,
2691 Output_symtab_xindex* symtab_xindex,
2692 Output_symtab_xindex* dynsym_xindex,
2693 Output_file* of) const
2695 const Target& target = parameters->target();
2697 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2699 const unsigned int output_count = this->output_count_;
2700 const section_size_type oview_size = output_count * sym_size;
2701 const unsigned int first_global_index = this->first_global_index_;
2702 unsigned char* psyms;
2703 if (this->offset_ == 0 || output_count == 0)
2704 psyms = NULL;
2705 else
2706 psyms = of->get_output_view(this->offset_, oview_size);
2708 const unsigned int dynamic_count = this->dynamic_count_;
2709 const section_size_type dynamic_size = dynamic_count * sym_size;
2710 const unsigned int first_dynamic_global_index =
2711 this->first_dynamic_global_index_;
2712 unsigned char* dynamic_view;
2713 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2714 dynamic_view = NULL;
2715 else
2716 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2718 for (Symbol_table_type::const_iterator p = this->table_.begin();
2719 p != this->table_.end();
2720 ++p)
2722 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2724 // Possibly warn about unresolved symbols in shared libraries.
2725 this->warn_about_undefined_dynobj_symbol(sym);
2727 unsigned int sym_index = sym->symtab_index();
2728 unsigned int dynsym_index;
2729 if (dynamic_view == NULL)
2730 dynsym_index = -1U;
2731 else
2732 dynsym_index = sym->dynsym_index();
2734 if (sym_index == -1U && dynsym_index == -1U)
2736 // This symbol is not included in the output file.
2737 continue;
2740 unsigned int shndx;
2741 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2742 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2743 elfcpp::STB binding = sym->binding();
2744 switch (sym->source())
2746 case Symbol::FROM_OBJECT:
2748 bool is_ordinary;
2749 unsigned int in_shndx = sym->shndx(&is_ordinary);
2751 if (!is_ordinary
2752 && in_shndx != elfcpp::SHN_ABS
2753 && !Symbol::is_common_shndx(in_shndx))
2755 gold_error(_("%s: unsupported symbol section 0x%x"),
2756 sym->demangled_name().c_str(), in_shndx);
2757 shndx = in_shndx;
2759 else
2761 Object* symobj = sym->object();
2762 if (symobj->is_dynamic())
2764 if (sym->needs_dynsym_value())
2765 dynsym_value = target.dynsym_value(sym);
2766 shndx = elfcpp::SHN_UNDEF;
2767 if (sym->is_undef_binding_weak())
2768 binding = elfcpp::STB_WEAK;
2769 else
2770 binding = elfcpp::STB_GLOBAL;
2772 else if (symobj->pluginobj() != NULL)
2773 shndx = elfcpp::SHN_UNDEF;
2774 else if (in_shndx == elfcpp::SHN_UNDEF
2775 || (!is_ordinary
2776 && (in_shndx == elfcpp::SHN_ABS
2777 || Symbol::is_common_shndx(in_shndx))))
2778 shndx = in_shndx;
2779 else
2781 Relobj* relobj = static_cast<Relobj*>(symobj);
2782 Output_section* os = relobj->output_section(in_shndx);
2783 if (this->is_section_folded(relobj, in_shndx))
2785 // This global symbol must be written out even though
2786 // it is folded.
2787 // Get the os of the section it is folded onto.
2788 Section_id folded =
2789 this->icf_->get_folded_section(relobj, in_shndx);
2790 gold_assert(folded.first !=NULL);
2791 Relobj* folded_obj =
2792 reinterpret_cast<Relobj*>(folded.first);
2793 os = folded_obj->output_section(folded.second);
2794 gold_assert(os != NULL);
2796 gold_assert(os != NULL);
2797 shndx = os->out_shndx();
2799 if (shndx >= elfcpp::SHN_LORESERVE)
2801 if (sym_index != -1U)
2802 symtab_xindex->add(sym_index, shndx);
2803 if (dynsym_index != -1U)
2804 dynsym_xindex->add(dynsym_index, shndx);
2805 shndx = elfcpp::SHN_XINDEX;
2808 // In object files symbol values are section
2809 // relative.
2810 if (parameters->options().relocatable())
2811 sym_value -= os->address();
2815 break;
2817 case Symbol::IN_OUTPUT_DATA:
2818 shndx = sym->output_data()->out_shndx();
2819 if (shndx >= elfcpp::SHN_LORESERVE)
2821 if (sym_index != -1U)
2822 symtab_xindex->add(sym_index, shndx);
2823 if (dynsym_index != -1U)
2824 dynsym_xindex->add(dynsym_index, shndx);
2825 shndx = elfcpp::SHN_XINDEX;
2827 break;
2829 case Symbol::IN_OUTPUT_SEGMENT:
2830 shndx = elfcpp::SHN_ABS;
2831 break;
2833 case Symbol::IS_CONSTANT:
2834 shndx = elfcpp::SHN_ABS;
2835 break;
2837 case Symbol::IS_UNDEFINED:
2838 shndx = elfcpp::SHN_UNDEF;
2839 break;
2841 default:
2842 gold_unreachable();
2845 if (sym_index != -1U)
2847 sym_index -= first_global_index;
2848 gold_assert(sym_index < output_count);
2849 unsigned char* ps = psyms + (sym_index * sym_size);
2850 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2851 binding, sympool, ps);
2854 if (dynsym_index != -1U)
2856 dynsym_index -= first_dynamic_global_index;
2857 gold_assert(dynsym_index < dynamic_count);
2858 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2859 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2860 binding, dynpool, pd);
2864 of->write_output_view(this->offset_, oview_size, psyms);
2865 if (dynamic_view != NULL)
2866 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2869 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2870 // strtab holding the name.
2872 template<int size, bool big_endian>
2873 void
2874 Symbol_table::sized_write_symbol(
2875 Sized_symbol<size>* sym,
2876 typename elfcpp::Elf_types<size>::Elf_Addr value,
2877 unsigned int shndx,
2878 elfcpp::STB binding,
2879 const Stringpool* pool,
2880 unsigned char* p) const
2882 elfcpp::Sym_write<size, big_endian> osym(p);
2883 osym.put_st_name(pool->get_offset(sym->name()));
2884 osym.put_st_value(value);
2885 // Use a symbol size of zero for undefined symbols from shared libraries.
2886 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2887 osym.put_st_size(0);
2888 else
2889 osym.put_st_size(sym->symsize());
2890 elfcpp::STT type = sym->type();
2891 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2892 if (type == elfcpp::STT_GNU_IFUNC
2893 && sym->is_from_dynobj())
2894 type = elfcpp::STT_FUNC;
2895 // A version script may have overridden the default binding.
2896 if (sym->is_forced_local())
2897 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2898 else
2899 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2900 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2901 osym.put_st_shndx(shndx);
2904 // Check for unresolved symbols in shared libraries. This is
2905 // controlled by the --allow-shlib-undefined option.
2907 // We only warn about libraries for which we have seen all the
2908 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2909 // which were not seen in this link. If we didn't see a DT_NEEDED
2910 // entry, we aren't going to be able to reliably report whether the
2911 // symbol is undefined.
2913 // We also don't warn about libraries found in a system library
2914 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2915 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2916 // can have undefined references satisfied by ld-linux.so.
2918 inline void
2919 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2921 bool dummy;
2922 if (sym->source() == Symbol::FROM_OBJECT
2923 && sym->object()->is_dynamic()
2924 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2925 && sym->binding() != elfcpp::STB_WEAK
2926 && !parameters->options().allow_shlib_undefined()
2927 && !parameters->target().is_defined_by_abi(sym)
2928 && !sym->object()->is_in_system_directory())
2930 // A very ugly cast.
2931 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2932 if (!dynobj->has_unknown_needed_entries())
2933 gold_undefined_symbol(sym);
2937 // Write out a section symbol. Return the update offset.
2939 void
2940 Symbol_table::write_section_symbol(const Output_section* os,
2941 Output_symtab_xindex* symtab_xindex,
2942 Output_file* of,
2943 off_t offset) const
2945 switch (parameters->size_and_endianness())
2947 #ifdef HAVE_TARGET_32_LITTLE
2948 case Parameters::TARGET_32_LITTLE:
2949 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2950 offset);
2951 break;
2952 #endif
2953 #ifdef HAVE_TARGET_32_BIG
2954 case Parameters::TARGET_32_BIG:
2955 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2956 offset);
2957 break;
2958 #endif
2959 #ifdef HAVE_TARGET_64_LITTLE
2960 case Parameters::TARGET_64_LITTLE:
2961 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2962 offset);
2963 break;
2964 #endif
2965 #ifdef HAVE_TARGET_64_BIG
2966 case Parameters::TARGET_64_BIG:
2967 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2968 offset);
2969 break;
2970 #endif
2971 default:
2972 gold_unreachable();
2976 // Write out a section symbol, specialized for size and endianness.
2978 template<int size, bool big_endian>
2979 void
2980 Symbol_table::sized_write_section_symbol(const Output_section* os,
2981 Output_symtab_xindex* symtab_xindex,
2982 Output_file* of,
2983 off_t offset) const
2985 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2987 unsigned char* pov = of->get_output_view(offset, sym_size);
2989 elfcpp::Sym_write<size, big_endian> osym(pov);
2990 osym.put_st_name(0);
2991 if (parameters->options().relocatable())
2992 osym.put_st_value(0);
2993 else
2994 osym.put_st_value(os->address());
2995 osym.put_st_size(0);
2996 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2997 elfcpp::STT_SECTION));
2998 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3000 unsigned int shndx = os->out_shndx();
3001 if (shndx >= elfcpp::SHN_LORESERVE)
3003 symtab_xindex->add(os->symtab_index(), shndx);
3004 shndx = elfcpp::SHN_XINDEX;
3006 osym.put_st_shndx(shndx);
3008 of->write_output_view(offset, sym_size, pov);
3011 // Print statistical information to stderr. This is used for --stats.
3013 void
3014 Symbol_table::print_stats() const
3016 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3017 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3018 program_name, this->table_.size(), this->table_.bucket_count());
3019 #else
3020 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3021 program_name, this->table_.size());
3022 #endif
3023 this->namepool_.print_stats("symbol table stringpool");
3026 // We check for ODR violations by looking for symbols with the same
3027 // name for which the debugging information reports that they were
3028 // defined in different source locations. When comparing the source
3029 // location, we consider instances with the same base filename to be
3030 // the same. This is because different object files/shared libraries
3031 // can include the same header file using different paths, and
3032 // different optimization settings can make the line number appear to
3033 // be a couple lines off, and we don't want to report an ODR violation
3034 // in those cases.
3036 // This struct is used to compare line information, as returned by
3037 // Dwarf_line_info::one_addr2line. It implements a < comparison
3038 // operator used with std::set.
3040 struct Odr_violation_compare
3042 bool
3043 operator()(const std::string& s1, const std::string& s2) const
3045 // Inputs should be of the form "dirname/filename:linenum" where
3046 // "dirname/" is optional. We want to compare just the filename.
3048 // Find the last '/' and ':' in each string.
3049 std::string::size_type s1begin = s1.rfind('/');
3050 std::string::size_type s2begin = s2.rfind('/');
3051 std::string::size_type s1end = s1.rfind(':');
3052 std::string::size_type s2end = s2.rfind(':');
3053 // If there was no '/' in a string, start at the beginning.
3054 if (s1begin == std::string::npos)
3055 s1begin = 0;
3056 if (s2begin == std::string::npos)
3057 s2begin = 0;
3058 // If the ':' appeared in the directory name, compare to the end
3059 // of the string.
3060 if (s1end < s1begin)
3061 s1end = s1.size();
3062 if (s2end < s2begin)
3063 s2end = s2.size();
3064 // Compare takes lengths, not end indices.
3065 return s1.compare(s1begin, s1end - s1begin,
3066 s2, s2begin, s2end - s2begin) < 0;
3070 // Check candidate_odr_violations_ to find symbols with the same name
3071 // but apparently different definitions (different source-file/line-no).
3073 void
3074 Symbol_table::detect_odr_violations(const Task* task,
3075 const char* output_file_name) const
3077 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3078 it != candidate_odr_violations_.end();
3079 ++it)
3081 const char* symbol_name = it->first;
3082 // Maps from symbol location to a sample object file we found
3083 // that location in. We use a sorted map so the location order
3084 // is deterministic, but we only store an arbitrary object file
3085 // to avoid copying lots of names.
3086 std::map<std::string, std::string, Odr_violation_compare> line_nums;
3088 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3089 locs = it->second.begin();
3090 locs != it->second.end();
3091 ++locs)
3093 // We need to lock the object in order to read it. This
3094 // means that we have to run in a singleton Task. If we
3095 // want to run this in a general Task for better
3096 // performance, we will need one Task for object, plus
3097 // appropriate locking to ensure that we don't conflict with
3098 // other uses of the object. Also note, one_addr2line is not
3099 // currently thread-safe.
3100 Task_lock_obj<Object> tl(task, locs->object);
3101 // 16 is the size of the object-cache that one_addr2line should use.
3102 std::string lineno = Dwarf_line_info::one_addr2line(
3103 locs->object, locs->shndx, locs->offset, 16);
3104 if (!lineno.empty())
3106 std::string& sample_object = line_nums[lineno];
3107 if (sample_object.empty())
3108 sample_object = locs->object->name();
3112 if (line_nums.size() > 1)
3114 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3115 "places (possible ODR violation):"),
3116 output_file_name, demangle(symbol_name).c_str());
3117 for (std::map<std::string, std::string>::const_iterator it2 =
3118 line_nums.begin();
3119 it2 != line_nums.end();
3120 ++it2)
3121 fprintf(stderr, _(" %s from %s\n"),
3122 it2->first.c_str(), it2->second.c_str());
3125 // We only call one_addr2line() in this function, so we can clear its cache.
3126 Dwarf_line_info::clear_addr2line_cache();
3129 // Warnings functions.
3131 // Add a new warning.
3133 void
3134 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3135 const std::string& warning)
3137 name = symtab->canonicalize_name(name);
3138 this->warnings_[name].set(obj, warning);
3141 // Look through the warnings and mark the symbols for which we should
3142 // warn. This is called during Layout::finalize when we know the
3143 // sources for all the symbols.
3145 void
3146 Warnings::note_warnings(Symbol_table* symtab)
3148 for (Warning_table::iterator p = this->warnings_.begin();
3149 p != this->warnings_.end();
3150 ++p)
3152 Symbol* sym = symtab->lookup(p->first, NULL);
3153 if (sym != NULL
3154 && sym->source() == Symbol::FROM_OBJECT
3155 && sym->object() == p->second.object)
3156 sym->set_has_warning();
3160 // Issue a warning. This is called when we see a relocation against a
3161 // symbol for which has a warning.
3163 template<int size, bool big_endian>
3164 void
3165 Warnings::issue_warning(const Symbol* sym,
3166 const Relocate_info<size, big_endian>* relinfo,
3167 size_t relnum, off_t reloffset) const
3169 gold_assert(sym->has_warning());
3170 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3171 gold_assert(p != this->warnings_.end());
3172 gold_warning_at_location(relinfo, relnum, reloffset,
3173 "%s", p->second.text.c_str());
3176 // Instantiate the templates we need. We could use the configure
3177 // script to restrict this to only the ones needed for implemented
3178 // targets.
3180 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3181 template
3182 void
3183 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3184 #endif
3186 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3187 template
3188 void
3189 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3190 #endif
3192 #ifdef HAVE_TARGET_32_LITTLE
3193 template
3194 void
3195 Symbol_table::add_from_relobj<32, false>(
3196 Sized_relobj<32, false>* relobj,
3197 const unsigned char* syms,
3198 size_t count,
3199 size_t symndx_offset,
3200 const char* sym_names,
3201 size_t sym_name_size,
3202 Sized_relobj<32, false>::Symbols* sympointers,
3203 size_t* defined);
3204 #endif
3206 #ifdef HAVE_TARGET_32_BIG
3207 template
3208 void
3209 Symbol_table::add_from_relobj<32, true>(
3210 Sized_relobj<32, true>* relobj,
3211 const unsigned char* syms,
3212 size_t count,
3213 size_t symndx_offset,
3214 const char* sym_names,
3215 size_t sym_name_size,
3216 Sized_relobj<32, true>::Symbols* sympointers,
3217 size_t* defined);
3218 #endif
3220 #ifdef HAVE_TARGET_64_LITTLE
3221 template
3222 void
3223 Symbol_table::add_from_relobj<64, false>(
3224 Sized_relobj<64, false>* relobj,
3225 const unsigned char* syms,
3226 size_t count,
3227 size_t symndx_offset,
3228 const char* sym_names,
3229 size_t sym_name_size,
3230 Sized_relobj<64, false>::Symbols* sympointers,
3231 size_t* defined);
3232 #endif
3234 #ifdef HAVE_TARGET_64_BIG
3235 template
3236 void
3237 Symbol_table::add_from_relobj<64, true>(
3238 Sized_relobj<64, true>* relobj,
3239 const unsigned char* syms,
3240 size_t count,
3241 size_t symndx_offset,
3242 const char* sym_names,
3243 size_t sym_name_size,
3244 Sized_relobj<64, true>::Symbols* sympointers,
3245 size_t* defined);
3246 #endif
3248 #ifdef HAVE_TARGET_32_LITTLE
3249 template
3250 Symbol*
3251 Symbol_table::add_from_pluginobj<32, false>(
3252 Sized_pluginobj<32, false>* obj,
3253 const char* name,
3254 const char* ver,
3255 elfcpp::Sym<32, false>* sym);
3256 #endif
3258 #ifdef HAVE_TARGET_32_BIG
3259 template
3260 Symbol*
3261 Symbol_table::add_from_pluginobj<32, true>(
3262 Sized_pluginobj<32, true>* obj,
3263 const char* name,
3264 const char* ver,
3265 elfcpp::Sym<32, true>* sym);
3266 #endif
3268 #ifdef HAVE_TARGET_64_LITTLE
3269 template
3270 Symbol*
3271 Symbol_table::add_from_pluginobj<64, false>(
3272 Sized_pluginobj<64, false>* obj,
3273 const char* name,
3274 const char* ver,
3275 elfcpp::Sym<64, false>* sym);
3276 #endif
3278 #ifdef HAVE_TARGET_64_BIG
3279 template
3280 Symbol*
3281 Symbol_table::add_from_pluginobj<64, true>(
3282 Sized_pluginobj<64, true>* obj,
3283 const char* name,
3284 const char* ver,
3285 elfcpp::Sym<64, true>* sym);
3286 #endif
3288 #ifdef HAVE_TARGET_32_LITTLE
3289 template
3290 void
3291 Symbol_table::add_from_dynobj<32, false>(
3292 Sized_dynobj<32, false>* dynobj,
3293 const unsigned char* syms,
3294 size_t count,
3295 const char* sym_names,
3296 size_t sym_name_size,
3297 const unsigned char* versym,
3298 size_t versym_size,
3299 const std::vector<const char*>* version_map,
3300 Sized_relobj<32, false>::Symbols* sympointers,
3301 size_t* defined);
3302 #endif
3304 #ifdef HAVE_TARGET_32_BIG
3305 template
3306 void
3307 Symbol_table::add_from_dynobj<32, true>(
3308 Sized_dynobj<32, true>* dynobj,
3309 const unsigned char* syms,
3310 size_t count,
3311 const char* sym_names,
3312 size_t sym_name_size,
3313 const unsigned char* versym,
3314 size_t versym_size,
3315 const std::vector<const char*>* version_map,
3316 Sized_relobj<32, true>::Symbols* sympointers,
3317 size_t* defined);
3318 #endif
3320 #ifdef HAVE_TARGET_64_LITTLE
3321 template
3322 void
3323 Symbol_table::add_from_dynobj<64, false>(
3324 Sized_dynobj<64, false>* dynobj,
3325 const unsigned char* syms,
3326 size_t count,
3327 const char* sym_names,
3328 size_t sym_name_size,
3329 const unsigned char* versym,
3330 size_t versym_size,
3331 const std::vector<const char*>* version_map,
3332 Sized_relobj<64, false>::Symbols* sympointers,
3333 size_t* defined);
3334 #endif
3336 #ifdef HAVE_TARGET_64_BIG
3337 template
3338 void
3339 Symbol_table::add_from_dynobj<64, true>(
3340 Sized_dynobj<64, true>* dynobj,
3341 const unsigned char* syms,
3342 size_t count,
3343 const char* sym_names,
3344 size_t sym_name_size,
3345 const unsigned char* versym,
3346 size_t versym_size,
3347 const std::vector<const char*>* version_map,
3348 Sized_relobj<64, true>::Symbols* sympointers,
3349 size_t* defined);
3350 #endif
3352 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3353 template
3354 void
3355 Symbol_table::define_with_copy_reloc<32>(
3356 Sized_symbol<32>* sym,
3357 Output_data* posd,
3358 elfcpp::Elf_types<32>::Elf_Addr value);
3359 #endif
3361 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3362 template
3363 void
3364 Symbol_table::define_with_copy_reloc<64>(
3365 Sized_symbol<64>* sym,
3366 Output_data* posd,
3367 elfcpp::Elf_types<64>::Elf_Addr value);
3368 #endif
3370 #ifdef HAVE_TARGET_32_LITTLE
3371 template
3372 void
3373 Warnings::issue_warning<32, false>(const Symbol* sym,
3374 const Relocate_info<32, false>* relinfo,
3375 size_t relnum, off_t reloffset) const;
3376 #endif
3378 #ifdef HAVE_TARGET_32_BIG
3379 template
3380 void
3381 Warnings::issue_warning<32, true>(const Symbol* sym,
3382 const Relocate_info<32, true>* relinfo,
3383 size_t relnum, off_t reloffset) const;
3384 #endif
3386 #ifdef HAVE_TARGET_64_LITTLE
3387 template
3388 void
3389 Warnings::issue_warning<64, false>(const Symbol* sym,
3390 const Relocate_info<64, false>* relinfo,
3391 size_t relnum, off_t reloffset) const;
3392 #endif
3394 #ifdef HAVE_TARGET_64_BIG
3395 template
3396 void
3397 Warnings::issue_warning<64, true>(const Symbol* sym,
3398 const Relocate_info<64, true>* relinfo,
3399 size_t relnum, off_t reloffset) const;
3400 #endif
3402 } // End namespace gold.