Add -Wshadow to the gcc command line options used when compiling the binutils.
[binutils.git] / gold / x86_64.cc
blob00fbf3fc1fe84dae6856fc2262ad1d71aae58960
1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
43 namespace
46 using namespace gold;
48 class Output_data_plt_x86_64;
50 // The x86_64 target class.
51 // See the ABI at
52 // http://www.x86-64.org/documentation/abi.pdf
53 // TLS info comes from
54 // http://people.redhat.com/drepper/tls.pdf
55 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
57 class Target_x86_64 : public Target_freebsd<64, false>
59 public:
60 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
61 // uses only Elf64_Rela relocation entries with explicit addends."
62 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
64 Target_x86_64()
65 : Target_freebsd<64, false>(&x86_64_info),
66 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
67 copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
68 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
69 { }
71 // Hook for a new output section.
72 void
73 do_new_output_section(Output_section*) const;
75 // Scan the relocations to look for symbol adjustments.
76 void
77 gc_process_relocs(Symbol_table* symtab,
78 Layout* layout,
79 Sized_relobj<64, false>* object,
80 unsigned int data_shndx,
81 unsigned int sh_type,
82 const unsigned char* prelocs,
83 size_t reloc_count,
84 Output_section* output_section,
85 bool needs_special_offset_handling,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols);
89 // Scan the relocations to look for symbol adjustments.
90 void
91 scan_relocs(Symbol_table* symtab,
92 Layout* layout,
93 Sized_relobj<64, false>* object,
94 unsigned int data_shndx,
95 unsigned int sh_type,
96 const unsigned char* prelocs,
97 size_t reloc_count,
98 Output_section* output_section,
99 bool needs_special_offset_handling,
100 size_t local_symbol_count,
101 const unsigned char* plocal_symbols);
103 // Finalize the sections.
104 void
105 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
107 // Return the value to use for a dynamic which requires special
108 // treatment.
109 uint64_t
110 do_dynsym_value(const Symbol*) const;
112 // Relocate a section.
113 void
114 relocate_section(const Relocate_info<64, false>*,
115 unsigned int sh_type,
116 const unsigned char* prelocs,
117 size_t reloc_count,
118 Output_section* output_section,
119 bool needs_special_offset_handling,
120 unsigned char* view,
121 elfcpp::Elf_types<64>::Elf_Addr view_address,
122 section_size_type view_size,
123 const Reloc_symbol_changes*);
125 // Scan the relocs during a relocatable link.
126 void
127 scan_relocatable_relocs(Symbol_table* symtab,
128 Layout* layout,
129 Sized_relobj<64, false>* object,
130 unsigned int data_shndx,
131 unsigned int sh_type,
132 const unsigned char* prelocs,
133 size_t reloc_count,
134 Output_section* output_section,
135 bool needs_special_offset_handling,
136 size_t local_symbol_count,
137 const unsigned char* plocal_symbols,
138 Relocatable_relocs*);
140 // Relocate a section during a relocatable link.
141 void
142 relocate_for_relocatable(const Relocate_info<64, false>*,
143 unsigned int sh_type,
144 const unsigned char* prelocs,
145 size_t reloc_count,
146 Output_section* output_section,
147 off_t offset_in_output_section,
148 const Relocatable_relocs*,
149 unsigned char* view,
150 elfcpp::Elf_types<64>::Elf_Addr view_address,
151 section_size_type view_size,
152 unsigned char* reloc_view,
153 section_size_type reloc_view_size);
155 // Return a string used to fill a code section with nops.
156 std::string
157 do_code_fill(section_size_type length) const;
159 // Return whether SYM is defined by the ABI.
160 bool
161 do_is_defined_by_abi(const Symbol* sym) const
162 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
164 // Adjust -fstack-split code which calls non-stack-split code.
165 void
166 do_calls_non_split(Relobj* object, unsigned int shndx,
167 section_offset_type fnoffset, section_size_type fnsize,
168 unsigned char* view, section_size_type view_size,
169 std::string* from, std::string* to) const;
171 // Return the size of the GOT section.
172 section_size_type
173 got_size()
175 gold_assert(this->got_ != NULL);
176 return this->got_->data_size();
179 private:
180 // The class which scans relocations.
181 class Scan
183 public:
184 Scan()
185 : issued_non_pic_error_(false)
188 inline void
189 local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
190 Sized_relobj<64, false>* object,
191 unsigned int data_shndx,
192 Output_section* output_section,
193 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
194 const elfcpp::Sym<64, false>& lsym);
196 inline void
197 global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
198 Sized_relobj<64, false>* object,
199 unsigned int data_shndx,
200 Output_section* output_section,
201 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
202 Symbol* gsym);
204 private:
205 static void
206 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
208 static void
209 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
210 Symbol*);
212 void
213 check_non_pic(Relobj*, unsigned int r_type);
215 // Whether we have issued an error about a non-PIC compilation.
216 bool issued_non_pic_error_;
219 // The class which implements relocation.
220 class Relocate
222 public:
223 Relocate()
224 : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
227 ~Relocate()
229 if (this->skip_call_tls_get_addr_)
231 // FIXME: This needs to specify the location somehow.
232 gold_error(_("missing expected TLS relocation"));
236 // Do a relocation. Return false if the caller should not issue
237 // any warnings about this relocation.
238 inline bool
239 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
240 size_t relnum, const elfcpp::Rela<64, false>&,
241 unsigned int r_type, const Sized_symbol<64>*,
242 const Symbol_value<64>*,
243 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
244 section_size_type);
246 private:
247 // Do a TLS relocation.
248 inline void
249 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
250 size_t relnum, const elfcpp::Rela<64, false>&,
251 unsigned int r_type, const Sized_symbol<64>*,
252 const Symbol_value<64>*,
253 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
254 section_size_type);
256 // Do a TLS General-Dynamic to Initial-Exec transition.
257 inline void
258 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
259 Output_segment* tls_segment,
260 const elfcpp::Rela<64, false>&, unsigned int r_type,
261 elfcpp::Elf_types<64>::Elf_Addr value,
262 unsigned char* view,
263 elfcpp::Elf_types<64>::Elf_Addr,
264 section_size_type view_size);
266 // Do a TLS General-Dynamic to Local-Exec transition.
267 inline void
268 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
269 Output_segment* tls_segment,
270 const elfcpp::Rela<64, false>&, unsigned int r_type,
271 elfcpp::Elf_types<64>::Elf_Addr value,
272 unsigned char* view,
273 section_size_type view_size);
275 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
276 inline void
277 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
278 Output_segment* tls_segment,
279 const elfcpp::Rela<64, false>&, unsigned int r_type,
280 elfcpp::Elf_types<64>::Elf_Addr value,
281 unsigned char* view,
282 elfcpp::Elf_types<64>::Elf_Addr,
283 section_size_type view_size);
285 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
286 inline void
287 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
288 Output_segment* tls_segment,
289 const elfcpp::Rela<64, false>&, unsigned int r_type,
290 elfcpp::Elf_types<64>::Elf_Addr value,
291 unsigned char* view,
292 section_size_type view_size);
294 // Do a TLS Local-Dynamic to Local-Exec transition.
295 inline void
296 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
297 Output_segment* tls_segment,
298 const elfcpp::Rela<64, false>&, unsigned int r_type,
299 elfcpp::Elf_types<64>::Elf_Addr value,
300 unsigned char* view,
301 section_size_type view_size);
303 // Do a TLS Initial-Exec to Local-Exec transition.
304 static inline void
305 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
306 Output_segment* tls_segment,
307 const elfcpp::Rela<64, false>&, unsigned int r_type,
308 elfcpp::Elf_types<64>::Elf_Addr value,
309 unsigned char* view,
310 section_size_type view_size);
312 // This is set if we should skip the next reloc, which should be a
313 // PLT32 reloc against ___tls_get_addr.
314 bool skip_call_tls_get_addr_;
316 // This is set if we see a relocation which could load the address
317 // of the TLS block. Whether we see such a relocation determines
318 // how we handle the R_X86_64_DTPOFF32 relocation, which is used
319 // in debugging sections.
320 bool saw_tls_block_reloc_;
323 // A class which returns the size required for a relocation type,
324 // used while scanning relocs during a relocatable link.
325 class Relocatable_size_for_reloc
327 public:
328 unsigned int
329 get_size_for_reloc(unsigned int, Relobj*);
332 // Adjust TLS relocation type based on the options and whether this
333 // is a local symbol.
334 static tls::Tls_optimization
335 optimize_tls_reloc(bool is_final, int r_type);
337 // Get the GOT section, creating it if necessary.
338 Output_data_got<64, false>*
339 got_section(Symbol_table*, Layout*);
341 // Get the GOT PLT section.
342 Output_data_space*
343 got_plt_section() const
345 gold_assert(this->got_plt_ != NULL);
346 return this->got_plt_;
349 // Create the PLT section.
350 void
351 make_plt_section(Symbol_table* symtab, Layout* layout);
353 // Create a PLT entry for a global symbol.
354 void
355 make_plt_entry(Symbol_table*, Layout*, Symbol*);
357 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
358 void
359 define_tls_base_symbol(Symbol_table*, Layout*);
361 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
362 void
363 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
365 // Create a GOT entry for the TLS module index.
366 unsigned int
367 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
368 Sized_relobj<64, false>* object);
370 // Get the PLT section.
371 Output_data_plt_x86_64*
372 plt_section() const
374 gold_assert(this->plt_ != NULL);
375 return this->plt_;
378 // Get the dynamic reloc section, creating it if necessary.
379 Reloc_section*
380 rela_dyn_section(Layout*);
382 // Add a potential copy relocation.
383 void
384 copy_reloc(Symbol_table* symtab, Layout* layout,
385 Sized_relobj<64, false>* object,
386 unsigned int shndx, Output_section* output_section,
387 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
389 this->copy_relocs_.copy_reloc(symtab, layout,
390 symtab->get_sized_symbol<64>(sym),
391 object, shndx, output_section,
392 reloc, this->rela_dyn_section(layout));
395 // Information about this specific target which we pass to the
396 // general Target structure.
397 static const Target::Target_info x86_64_info;
399 enum Got_type
401 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
402 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
403 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
404 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
407 // The GOT section.
408 Output_data_got<64, false>* got_;
409 // The PLT section.
410 Output_data_plt_x86_64* plt_;
411 // The GOT PLT section.
412 Output_data_space* got_plt_;
413 // The dynamic reloc section.
414 Reloc_section* rela_dyn_;
415 // Relocs saved to avoid a COPY reloc.
416 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
417 // Space for variables copied with a COPY reloc.
418 Output_data_space* dynbss_;
419 // Offset of the GOT entry for the TLS module index.
420 unsigned int got_mod_index_offset_;
421 // True if the _TLS_MODULE_BASE_ symbol has been defined.
422 bool tls_base_symbol_defined_;
425 const Target::Target_info Target_x86_64::x86_64_info =
427 64, // size
428 false, // is_big_endian
429 elfcpp::EM_X86_64, // machine_code
430 false, // has_make_symbol
431 false, // has_resolve
432 true, // has_code_fill
433 true, // is_default_stack_executable
434 '\0', // wrap_char
435 "/lib/ld64.so.1", // program interpreter
436 0x400000, // default_text_segment_address
437 0x1000, // abi_pagesize (overridable by -z max-page-size)
438 0x1000, // common_pagesize (overridable by -z common-page-size)
439 elfcpp::SHN_UNDEF, // small_common_shndx
440 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
441 0, // small_common_section_flags
442 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
443 NULL, // attributes_section
444 NULL // attributes_vendor
447 // This is called when a new output section is created. This is where
448 // we handle the SHF_X86_64_LARGE.
450 void
451 Target_x86_64::do_new_output_section(Output_section *os) const
453 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
454 os->set_is_large_section();
457 // Get the GOT section, creating it if necessary.
459 Output_data_got<64, false>*
460 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
462 if (this->got_ == NULL)
464 gold_assert(symtab != NULL && layout != NULL);
466 this->got_ = new Output_data_got<64, false>();
468 Output_section* os;
469 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
470 (elfcpp::SHF_ALLOC
471 | elfcpp::SHF_WRITE),
472 this->got_, false);
473 os->set_is_relro();
475 // The old GNU linker creates a .got.plt section. We just
476 // create another set of data in the .got section. Note that we
477 // always create a PLT if we create a GOT, although the PLT
478 // might be empty.
479 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
480 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
481 (elfcpp::SHF_ALLOC
482 | elfcpp::SHF_WRITE),
483 this->got_plt_, false);
484 os->set_is_relro();
486 // The first three entries are reserved.
487 this->got_plt_->set_current_data_size(3 * 8);
489 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
490 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
491 this->got_plt_,
492 0, 0, elfcpp::STT_OBJECT,
493 elfcpp::STB_LOCAL,
494 elfcpp::STV_HIDDEN, 0,
495 false, false);
498 return this->got_;
501 // Get the dynamic reloc section, creating it if necessary.
503 Target_x86_64::Reloc_section*
504 Target_x86_64::rela_dyn_section(Layout* layout)
506 if (this->rela_dyn_ == NULL)
508 gold_assert(layout != NULL);
509 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
510 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
511 elfcpp::SHF_ALLOC, this->rela_dyn_, true);
513 return this->rela_dyn_;
516 // A class to handle the PLT data.
518 class Output_data_plt_x86_64 : public Output_section_data
520 public:
521 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
523 Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
524 Output_data_space*);
526 // Add an entry to the PLT.
527 void
528 add_entry(Symbol* gsym);
530 // Add the reserved TLSDESC_PLT entry to the PLT.
531 void
532 reserve_tlsdesc_entry(unsigned int got_offset)
533 { this->tlsdesc_got_offset_ = got_offset; }
535 // Return true if a TLSDESC_PLT entry has been reserved.
536 bool
537 has_tlsdesc_entry() const
538 { return this->tlsdesc_got_offset_ != -1U; }
540 // Return the GOT offset for the reserved TLSDESC_PLT entry.
541 unsigned int
542 get_tlsdesc_got_offset() const
543 { return this->tlsdesc_got_offset_; }
545 // Return the offset of the reserved TLSDESC_PLT entry.
546 unsigned int
547 get_tlsdesc_plt_offset() const
548 { return (this->count_ + 1) * plt_entry_size; }
550 // Return the .rel.plt section data.
551 const Reloc_section*
552 rel_plt() const
553 { return this->rel_; }
555 protected:
556 void
557 do_adjust_output_section(Output_section* os);
559 // Write to a map file.
560 void
561 do_print_to_mapfile(Mapfile* mapfile) const
562 { mapfile->print_output_data(this, _("** PLT")); }
564 private:
565 // The size of an entry in the PLT.
566 static const int plt_entry_size = 16;
568 // The first entry in the PLT.
569 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
570 // procedure linkage table for both programs and shared objects."
571 static unsigned char first_plt_entry[plt_entry_size];
573 // Other entries in the PLT for an executable.
574 static unsigned char plt_entry[plt_entry_size];
576 // The reserved TLSDESC entry in the PLT for an executable.
577 static unsigned char tlsdesc_plt_entry[plt_entry_size];
579 // Set the final size.
580 void
581 set_final_data_size();
583 // Write out the PLT data.
584 void
585 do_write(Output_file*);
587 // The reloc section.
588 Reloc_section* rel_;
589 // The .got section.
590 Output_data_got<64, false>* got_;
591 // The .got.plt section.
592 Output_data_space* got_plt_;
593 // The number of PLT entries.
594 unsigned int count_;
595 // Offset of the reserved TLSDESC_GOT entry when needed.
596 unsigned int tlsdesc_got_offset_;
599 // Create the PLT section. The ordinary .got section is an argument,
600 // since we need to refer to the start. We also create our own .got
601 // section just for PLT entries.
603 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
604 Output_data_got<64, false>* got,
605 Output_data_space* got_plt)
606 : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
607 tlsdesc_got_offset_(-1U)
609 this->rel_ = new Reloc_section(false);
610 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
611 elfcpp::SHF_ALLOC, this->rel_, true);
614 void
615 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
617 os->set_entsize(plt_entry_size);
620 // Add an entry to the PLT.
622 void
623 Output_data_plt_x86_64::add_entry(Symbol* gsym)
625 gold_assert(!gsym->has_plt_offset());
627 // Note that when setting the PLT offset we skip the initial
628 // reserved PLT entry.
629 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
631 ++this->count_;
633 section_offset_type got_offset = this->got_plt_->current_data_size();
635 // Every PLT entry needs a GOT entry which points back to the PLT
636 // entry (this will be changed by the dynamic linker, normally
637 // lazily when the function is called).
638 this->got_plt_->set_current_data_size(got_offset + 8);
640 // Every PLT entry needs a reloc.
641 gsym->set_needs_dynsym_entry();
642 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
643 got_offset, 0);
645 // Note that we don't need to save the symbol. The contents of the
646 // PLT are independent of which symbols are used. The symbols only
647 // appear in the relocations.
650 // Set the final size.
651 void
652 Output_data_plt_x86_64::set_final_data_size()
654 unsigned int count = this->count_;
655 if (this->has_tlsdesc_entry())
656 ++count;
657 this->set_data_size((count + 1) * plt_entry_size);
660 // The first entry in the PLT for an executable.
662 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
664 // From AMD64 ABI Draft 0.98, page 76
665 0xff, 0x35, // pushq contents of memory address
666 0, 0, 0, 0, // replaced with address of .got + 8
667 0xff, 0x25, // jmp indirect
668 0, 0, 0, 0, // replaced with address of .got + 16
669 0x90, 0x90, 0x90, 0x90 // noop (x4)
672 // Subsequent entries in the PLT for an executable.
674 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
676 // From AMD64 ABI Draft 0.98, page 76
677 0xff, 0x25, // jmpq indirect
678 0, 0, 0, 0, // replaced with address of symbol in .got
679 0x68, // pushq immediate
680 0, 0, 0, 0, // replaced with offset into relocation table
681 0xe9, // jmpq relative
682 0, 0, 0, 0 // replaced with offset to start of .plt
685 // The reserved TLSDESC entry in the PLT for an executable.
687 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
689 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
690 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
691 0xff, 0x35, // pushq x(%rip)
692 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
693 0xff, 0x25, // jmpq *y(%rip)
694 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
695 0x0f, 0x1f, // nop
696 0x40, 0
699 // Write out the PLT. This uses the hand-coded instructions above,
700 // and adjusts them as needed. This is specified by the AMD64 ABI.
702 void
703 Output_data_plt_x86_64::do_write(Output_file* of)
705 const off_t off = this->offset();
706 const section_size_type oview_size =
707 convert_to_section_size_type(this->data_size());
708 unsigned char* const oview = of->get_output_view(off, oview_size);
710 const off_t got_file_offset = this->got_plt_->offset();
711 const section_size_type got_size =
712 convert_to_section_size_type(this->got_plt_->data_size());
713 unsigned char* const got_view = of->get_output_view(got_file_offset,
714 got_size);
716 unsigned char* pov = oview;
718 // The base address of the .plt section.
719 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
720 // The base address of the .got section.
721 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
722 // The base address of the PLT portion of the .got section,
723 // which is where the GOT pointer will point, and where the
724 // three reserved GOT entries are located.
725 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
727 memcpy(pov, first_plt_entry, plt_entry_size);
728 // We do a jmp relative to the PC at the end of this instruction.
729 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
730 (got_address + 8
731 - (plt_address + 6)));
732 elfcpp::Swap<32, false>::writeval(pov + 8,
733 (got_address + 16
734 - (plt_address + 12)));
735 pov += plt_entry_size;
737 unsigned char* got_pov = got_view;
739 memset(got_pov, 0, 24);
740 got_pov += 24;
742 unsigned int plt_offset = plt_entry_size;
743 unsigned int got_offset = 24;
744 const unsigned int count = this->count_;
745 for (unsigned int plt_index = 0;
746 plt_index < count;
747 ++plt_index,
748 pov += plt_entry_size,
749 got_pov += 8,
750 plt_offset += plt_entry_size,
751 got_offset += 8)
753 // Set and adjust the PLT entry itself.
754 memcpy(pov, plt_entry, plt_entry_size);
755 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
756 (got_address + got_offset
757 - (plt_address + plt_offset
758 + 6)));
760 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
761 elfcpp::Swap<32, false>::writeval(pov + 12,
762 - (plt_offset + plt_entry_size));
764 // Set the entry in the GOT.
765 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
768 if (this->has_tlsdesc_entry())
770 // Set and adjust the reserved TLSDESC PLT entry.
771 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
772 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
773 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
774 (got_address + 8
775 - (plt_address + plt_offset
776 + 6)));
777 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
778 (got_base
779 + tlsdesc_got_offset
780 - (plt_address + plt_offset
781 + 12)));
782 pov += plt_entry_size;
785 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
786 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
788 of->write_output_view(off, oview_size, oview);
789 of->write_output_view(got_file_offset, got_size, got_view);
792 // Create the PLT section.
794 void
795 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
797 if (this->plt_ == NULL)
799 // Create the GOT sections first.
800 this->got_section(symtab, layout);
802 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
803 this->got_plt_);
804 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
805 (elfcpp::SHF_ALLOC
806 | elfcpp::SHF_EXECINSTR),
807 this->plt_, false);
811 // Create a PLT entry for a global symbol.
813 void
814 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
815 Symbol* gsym)
817 if (gsym->has_plt_offset())
818 return;
820 if (this->plt_ == NULL)
821 this->make_plt_section(symtab, layout);
823 this->plt_->add_entry(gsym);
826 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
828 void
829 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
831 if (this->tls_base_symbol_defined_)
832 return;
834 Output_segment* tls_segment = layout->tls_segment();
835 if (tls_segment != NULL)
837 bool is_exec = parameters->options().output_is_executable();
838 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
839 tls_segment, 0, 0,
840 elfcpp::STT_TLS,
841 elfcpp::STB_LOCAL,
842 elfcpp::STV_HIDDEN, 0,
843 (is_exec
844 ? Symbol::SEGMENT_END
845 : Symbol::SEGMENT_START),
846 true);
848 this->tls_base_symbol_defined_ = true;
851 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
853 void
854 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
855 Layout* layout)
857 if (this->plt_ == NULL)
858 this->make_plt_section(symtab, layout);
860 if (!this->plt_->has_tlsdesc_entry())
862 // Allocate the TLSDESC_GOT entry.
863 Output_data_got<64, false>* got = this->got_section(symtab, layout);
864 unsigned int got_offset = got->add_constant(0);
866 // Allocate the TLSDESC_PLT entry.
867 this->plt_->reserve_tlsdesc_entry(got_offset);
871 // Create a GOT entry for the TLS module index.
873 unsigned int
874 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
875 Sized_relobj<64, false>* object)
877 if (this->got_mod_index_offset_ == -1U)
879 gold_assert(symtab != NULL && layout != NULL && object != NULL);
880 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
881 Output_data_got<64, false>* got = this->got_section(symtab, layout);
882 unsigned int got_offset = got->add_constant(0);
883 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
884 got_offset, 0);
885 got->add_constant(0);
886 this->got_mod_index_offset_ = got_offset;
888 return this->got_mod_index_offset_;
891 // Optimize the TLS relocation type based on what we know about the
892 // symbol. IS_FINAL is true if the final address of this symbol is
893 // known at link time.
895 tls::Tls_optimization
896 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
898 // If we are generating a shared library, then we can't do anything
899 // in the linker.
900 if (parameters->options().shared())
901 return tls::TLSOPT_NONE;
903 switch (r_type)
905 case elfcpp::R_X86_64_TLSGD:
906 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
907 case elfcpp::R_X86_64_TLSDESC_CALL:
908 // These are General-Dynamic which permits fully general TLS
909 // access. Since we know that we are generating an executable,
910 // we can convert this to Initial-Exec. If we also know that
911 // this is a local symbol, we can further switch to Local-Exec.
912 if (is_final)
913 return tls::TLSOPT_TO_LE;
914 return tls::TLSOPT_TO_IE;
916 case elfcpp::R_X86_64_TLSLD:
917 // This is Local-Dynamic, which refers to a local symbol in the
918 // dynamic TLS block. Since we know that we generating an
919 // executable, we can switch to Local-Exec.
920 return tls::TLSOPT_TO_LE;
922 case elfcpp::R_X86_64_DTPOFF32:
923 case elfcpp::R_X86_64_DTPOFF64:
924 // Another Local-Dynamic reloc.
925 return tls::TLSOPT_TO_LE;
927 case elfcpp::R_X86_64_GOTTPOFF:
928 // These are Initial-Exec relocs which get the thread offset
929 // from the GOT. If we know that we are linking against the
930 // local symbol, we can switch to Local-Exec, which links the
931 // thread offset into the instruction.
932 if (is_final)
933 return tls::TLSOPT_TO_LE;
934 return tls::TLSOPT_NONE;
936 case elfcpp::R_X86_64_TPOFF32:
937 // When we already have Local-Exec, there is nothing further we
938 // can do.
939 return tls::TLSOPT_NONE;
941 default:
942 gold_unreachable();
946 // Report an unsupported relocation against a local symbol.
948 void
949 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
950 unsigned int r_type)
952 gold_error(_("%s: unsupported reloc %u against local symbol"),
953 object->name().c_str(), r_type);
956 // We are about to emit a dynamic relocation of type R_TYPE. If the
957 // dynamic linker does not support it, issue an error. The GNU linker
958 // only issues a non-PIC error for an allocated read-only section.
959 // Here we know the section is allocated, but we don't know that it is
960 // read-only. But we check for all the relocation types which the
961 // glibc dynamic linker supports, so it seems appropriate to issue an
962 // error even if the section is not read-only.
964 void
965 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
967 switch (r_type)
969 // These are the relocation types supported by glibc for x86_64.
970 case elfcpp::R_X86_64_RELATIVE:
971 case elfcpp::R_X86_64_GLOB_DAT:
972 case elfcpp::R_X86_64_JUMP_SLOT:
973 case elfcpp::R_X86_64_DTPMOD64:
974 case elfcpp::R_X86_64_DTPOFF64:
975 case elfcpp::R_X86_64_TPOFF64:
976 case elfcpp::R_X86_64_64:
977 case elfcpp::R_X86_64_32:
978 case elfcpp::R_X86_64_PC32:
979 case elfcpp::R_X86_64_COPY:
980 return;
982 default:
983 // This prevents us from issuing more than one error per reloc
984 // section. But we can still wind up issuing more than one
985 // error per object file.
986 if (this->issued_non_pic_error_)
987 return;
988 gold_assert(parameters->options().output_is_position_independent());
989 object->error(_("requires unsupported dynamic reloc; "
990 "recompile with -fPIC"));
991 this->issued_non_pic_error_ = true;
992 return;
994 case elfcpp::R_X86_64_NONE:
995 gold_unreachable();
999 // Scan a relocation for a local symbol.
1001 inline void
1002 Target_x86_64::Scan::local(Symbol_table* symtab,
1003 Layout* layout,
1004 Target_x86_64* target,
1005 Sized_relobj<64, false>* object,
1006 unsigned int data_shndx,
1007 Output_section* output_section,
1008 const elfcpp::Rela<64, false>& reloc,
1009 unsigned int r_type,
1010 const elfcpp::Sym<64, false>& lsym)
1012 switch (r_type)
1014 case elfcpp::R_X86_64_NONE:
1015 case elfcpp::R_386_GNU_VTINHERIT:
1016 case elfcpp::R_386_GNU_VTENTRY:
1017 break;
1019 case elfcpp::R_X86_64_64:
1020 // If building a shared library (or a position-independent
1021 // executable), we need to create a dynamic relocation for this
1022 // location. The relocation applied at link time will apply the
1023 // link-time value, so we flag the location with an
1024 // R_X86_64_RELATIVE relocation so the dynamic loader can
1025 // relocate it easily.
1026 if (parameters->options().output_is_position_independent())
1028 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1029 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1030 rela_dyn->add_local_relative(object, r_sym,
1031 elfcpp::R_X86_64_RELATIVE,
1032 output_section, data_shndx,
1033 reloc.get_r_offset(),
1034 reloc.get_r_addend());
1036 break;
1038 case elfcpp::R_X86_64_32:
1039 case elfcpp::R_X86_64_32S:
1040 case elfcpp::R_X86_64_16:
1041 case elfcpp::R_X86_64_8:
1042 // If building a shared library (or a position-independent
1043 // executable), we need to create a dynamic relocation for this
1044 // location. We can't use an R_X86_64_RELATIVE relocation
1045 // because that is always a 64-bit relocation.
1046 if (parameters->options().output_is_position_independent())
1048 this->check_non_pic(object, r_type);
1050 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1051 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1052 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1053 rela_dyn->add_local(object, r_sym, r_type, output_section,
1054 data_shndx, reloc.get_r_offset(),
1055 reloc.get_r_addend());
1056 else
1058 gold_assert(lsym.get_st_value() == 0);
1059 unsigned int shndx = lsym.get_st_shndx();
1060 bool is_ordinary;
1061 shndx = object->adjust_sym_shndx(r_sym, shndx,
1062 &is_ordinary);
1063 if (!is_ordinary)
1064 object->error(_("section symbol %u has bad shndx %u"),
1065 r_sym, shndx);
1066 else
1067 rela_dyn->add_local_section(object, shndx,
1068 r_type, output_section,
1069 data_shndx, reloc.get_r_offset(),
1070 reloc.get_r_addend());
1073 break;
1075 case elfcpp::R_X86_64_PC64:
1076 case elfcpp::R_X86_64_PC32:
1077 case elfcpp::R_X86_64_PC16:
1078 case elfcpp::R_X86_64_PC8:
1079 break;
1081 case elfcpp::R_X86_64_PLT32:
1082 // Since we know this is a local symbol, we can handle this as a
1083 // PC32 reloc.
1084 break;
1086 case elfcpp::R_X86_64_GOTPC32:
1087 case elfcpp::R_X86_64_GOTOFF64:
1088 case elfcpp::R_X86_64_GOTPC64:
1089 case elfcpp::R_X86_64_PLTOFF64:
1090 // We need a GOT section.
1091 target->got_section(symtab, layout);
1092 // For PLTOFF64, we'd normally want a PLT section, but since we
1093 // know this is a local symbol, no PLT is needed.
1094 break;
1096 case elfcpp::R_X86_64_GOT64:
1097 case elfcpp::R_X86_64_GOT32:
1098 case elfcpp::R_X86_64_GOTPCREL64:
1099 case elfcpp::R_X86_64_GOTPCREL:
1100 case elfcpp::R_X86_64_GOTPLT64:
1102 // The symbol requires a GOT entry.
1103 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1104 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1105 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1107 // If we are generating a shared object, we need to add a
1108 // dynamic relocation for this symbol's GOT entry.
1109 if (parameters->options().output_is_position_independent())
1111 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1112 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1113 if (r_type != elfcpp::R_X86_64_GOT32)
1114 rela_dyn->add_local_relative(
1115 object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1116 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1117 else
1119 this->check_non_pic(object, r_type);
1121 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1122 rela_dyn->add_local(
1123 object, r_sym, r_type, got,
1124 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1128 // For GOTPLT64, we'd normally want a PLT section, but since
1129 // we know this is a local symbol, no PLT is needed.
1131 break;
1133 case elfcpp::R_X86_64_COPY:
1134 case elfcpp::R_X86_64_GLOB_DAT:
1135 case elfcpp::R_X86_64_JUMP_SLOT:
1136 case elfcpp::R_X86_64_RELATIVE:
1137 // These are outstanding tls relocs, which are unexpected when linking
1138 case elfcpp::R_X86_64_TPOFF64:
1139 case elfcpp::R_X86_64_DTPMOD64:
1140 case elfcpp::R_X86_64_TLSDESC:
1141 gold_error(_("%s: unexpected reloc %u in object file"),
1142 object->name().c_str(), r_type);
1143 break;
1145 // These are initial tls relocs, which are expected when linking
1146 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1147 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1148 case elfcpp::R_X86_64_TLSDESC_CALL:
1149 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1150 case elfcpp::R_X86_64_DTPOFF32:
1151 case elfcpp::R_X86_64_DTPOFF64:
1152 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1153 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1155 bool output_is_shared = parameters->options().shared();
1156 const tls::Tls_optimization optimized_type
1157 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1158 switch (r_type)
1160 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1161 if (optimized_type == tls::TLSOPT_NONE)
1163 // Create a pair of GOT entries for the module index and
1164 // dtv-relative offset.
1165 Output_data_got<64, false>* got
1166 = target->got_section(symtab, layout);
1167 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1168 unsigned int shndx = lsym.get_st_shndx();
1169 bool is_ordinary;
1170 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1171 if (!is_ordinary)
1172 object->error(_("local symbol %u has bad shndx %u"),
1173 r_sym, shndx);
1174 else
1175 got->add_local_pair_with_rela(object, r_sym,
1176 shndx,
1177 GOT_TYPE_TLS_PAIR,
1178 target->rela_dyn_section(layout),
1179 elfcpp::R_X86_64_DTPMOD64, 0);
1181 else if (optimized_type != tls::TLSOPT_TO_LE)
1182 unsupported_reloc_local(object, r_type);
1183 break;
1185 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1186 target->define_tls_base_symbol(symtab, layout);
1187 if (optimized_type == tls::TLSOPT_NONE)
1189 // Create reserved PLT and GOT entries for the resolver.
1190 target->reserve_tlsdesc_entries(symtab, layout);
1192 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1193 Output_data_got<64, false>* got
1194 = target->got_section(symtab, layout);
1195 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1196 unsigned int shndx = lsym.get_st_shndx();
1197 bool is_ordinary;
1198 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1199 if (!is_ordinary)
1200 object->error(_("local symbol %u has bad shndx %u"),
1201 r_sym, shndx);
1202 else
1203 got->add_local_pair_with_rela(object, r_sym,
1204 shndx,
1205 GOT_TYPE_TLS_DESC,
1206 target->rela_dyn_section(layout),
1207 elfcpp::R_X86_64_TLSDESC, 0);
1209 else if (optimized_type != tls::TLSOPT_TO_LE)
1210 unsupported_reloc_local(object, r_type);
1211 break;
1213 case elfcpp::R_X86_64_TLSDESC_CALL:
1214 break;
1216 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1217 if (optimized_type == tls::TLSOPT_NONE)
1219 // Create a GOT entry for the module index.
1220 target->got_mod_index_entry(symtab, layout, object);
1222 else if (optimized_type != tls::TLSOPT_TO_LE)
1223 unsupported_reloc_local(object, r_type);
1224 break;
1226 case elfcpp::R_X86_64_DTPOFF32:
1227 case elfcpp::R_X86_64_DTPOFF64:
1228 break;
1230 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1231 layout->set_has_static_tls();
1232 if (optimized_type == tls::TLSOPT_NONE)
1234 // Create a GOT entry for the tp-relative offset.
1235 Output_data_got<64, false>* got
1236 = target->got_section(symtab, layout);
1237 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1238 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1239 target->rela_dyn_section(layout),
1240 elfcpp::R_X86_64_TPOFF64);
1242 else if (optimized_type != tls::TLSOPT_TO_LE)
1243 unsupported_reloc_local(object, r_type);
1244 break;
1246 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1247 layout->set_has_static_tls();
1248 if (output_is_shared)
1249 unsupported_reloc_local(object, r_type);
1250 break;
1252 default:
1253 gold_unreachable();
1256 break;
1258 case elfcpp::R_X86_64_SIZE32:
1259 case elfcpp::R_X86_64_SIZE64:
1260 default:
1261 gold_error(_("%s: unsupported reloc %u against local symbol"),
1262 object->name().c_str(), r_type);
1263 break;
1268 // Report an unsupported relocation against a global symbol.
1270 void
1271 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1272 unsigned int r_type,
1273 Symbol* gsym)
1275 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1276 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1279 // Scan a relocation for a global symbol.
1281 inline void
1282 Target_x86_64::Scan::global(Symbol_table* symtab,
1283 Layout* layout,
1284 Target_x86_64* target,
1285 Sized_relobj<64, false>* object,
1286 unsigned int data_shndx,
1287 Output_section* output_section,
1288 const elfcpp::Rela<64, false>& reloc,
1289 unsigned int r_type,
1290 Symbol* gsym)
1292 switch (r_type)
1294 case elfcpp::R_X86_64_NONE:
1295 case elfcpp::R_386_GNU_VTINHERIT:
1296 case elfcpp::R_386_GNU_VTENTRY:
1297 break;
1299 case elfcpp::R_X86_64_64:
1300 case elfcpp::R_X86_64_32:
1301 case elfcpp::R_X86_64_32S:
1302 case elfcpp::R_X86_64_16:
1303 case elfcpp::R_X86_64_8:
1305 // Make a PLT entry if necessary.
1306 if (gsym->needs_plt_entry())
1308 target->make_plt_entry(symtab, layout, gsym);
1309 // Since this is not a PC-relative relocation, we may be
1310 // taking the address of a function. In that case we need to
1311 // set the entry in the dynamic symbol table to the address of
1312 // the PLT entry.
1313 if (gsym->is_from_dynobj() && !parameters->options().shared())
1314 gsym->set_needs_dynsym_value();
1316 // Make a dynamic relocation if necessary.
1317 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1319 if (gsym->may_need_copy_reloc())
1321 target->copy_reloc(symtab, layout, object,
1322 data_shndx, output_section, gsym, reloc);
1324 else if (r_type == elfcpp::R_X86_64_64
1325 && gsym->can_use_relative_reloc(false))
1327 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1328 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1329 output_section, object,
1330 data_shndx, reloc.get_r_offset(),
1331 reloc.get_r_addend());
1333 else
1335 this->check_non_pic(object, r_type);
1336 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1337 rela_dyn->add_global(gsym, r_type, output_section, object,
1338 data_shndx, reloc.get_r_offset(),
1339 reloc.get_r_addend());
1343 break;
1345 case elfcpp::R_X86_64_PC64:
1346 case elfcpp::R_X86_64_PC32:
1347 case elfcpp::R_X86_64_PC16:
1348 case elfcpp::R_X86_64_PC8:
1350 // Make a PLT entry if necessary.
1351 if (gsym->needs_plt_entry())
1352 target->make_plt_entry(symtab, layout, gsym);
1353 // Make a dynamic relocation if necessary.
1354 int flags = Symbol::NON_PIC_REF;
1355 if (gsym->is_func())
1356 flags |= Symbol::FUNCTION_CALL;
1357 if (gsym->needs_dynamic_reloc(flags))
1359 if (gsym->may_need_copy_reloc())
1361 target->copy_reloc(symtab, layout, object,
1362 data_shndx, output_section, gsym, reloc);
1364 else
1366 this->check_non_pic(object, r_type);
1367 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1368 rela_dyn->add_global(gsym, r_type, output_section, object,
1369 data_shndx, reloc.get_r_offset(),
1370 reloc.get_r_addend());
1374 break;
1376 case elfcpp::R_X86_64_GOT64:
1377 case elfcpp::R_X86_64_GOT32:
1378 case elfcpp::R_X86_64_GOTPCREL64:
1379 case elfcpp::R_X86_64_GOTPCREL:
1380 case elfcpp::R_X86_64_GOTPLT64:
1382 // The symbol requires a GOT entry.
1383 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1384 if (gsym->final_value_is_known())
1385 got->add_global(gsym, GOT_TYPE_STANDARD);
1386 else
1388 // If this symbol is not fully resolved, we need to add a
1389 // dynamic relocation for it.
1390 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1391 if (gsym->is_from_dynobj()
1392 || gsym->is_undefined()
1393 || gsym->is_preemptible())
1394 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1395 elfcpp::R_X86_64_GLOB_DAT);
1396 else
1398 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1399 rela_dyn->add_global_relative(
1400 gsym, elfcpp::R_X86_64_RELATIVE, got,
1401 gsym->got_offset(GOT_TYPE_STANDARD), 0);
1404 // For GOTPLT64, we also need a PLT entry (but only if the
1405 // symbol is not fully resolved).
1406 if (r_type == elfcpp::R_X86_64_GOTPLT64
1407 && !gsym->final_value_is_known())
1408 target->make_plt_entry(symtab, layout, gsym);
1410 break;
1412 case elfcpp::R_X86_64_PLT32:
1413 // If the symbol is fully resolved, this is just a PC32 reloc.
1414 // Otherwise we need a PLT entry.
1415 if (gsym->final_value_is_known())
1416 break;
1417 // If building a shared library, we can also skip the PLT entry
1418 // if the symbol is defined in the output file and is protected
1419 // or hidden.
1420 if (gsym->is_defined()
1421 && !gsym->is_from_dynobj()
1422 && !gsym->is_preemptible())
1423 break;
1424 target->make_plt_entry(symtab, layout, gsym);
1425 break;
1427 case elfcpp::R_X86_64_GOTPC32:
1428 case elfcpp::R_X86_64_GOTOFF64:
1429 case elfcpp::R_X86_64_GOTPC64:
1430 case elfcpp::R_X86_64_PLTOFF64:
1431 // We need a GOT section.
1432 target->got_section(symtab, layout);
1433 // For PLTOFF64, we also need a PLT entry (but only if the
1434 // symbol is not fully resolved).
1435 if (r_type == elfcpp::R_X86_64_PLTOFF64
1436 && !gsym->final_value_is_known())
1437 target->make_plt_entry(symtab, layout, gsym);
1438 break;
1440 case elfcpp::R_X86_64_COPY:
1441 case elfcpp::R_X86_64_GLOB_DAT:
1442 case elfcpp::R_X86_64_JUMP_SLOT:
1443 case elfcpp::R_X86_64_RELATIVE:
1444 // These are outstanding tls relocs, which are unexpected when linking
1445 case elfcpp::R_X86_64_TPOFF64:
1446 case elfcpp::R_X86_64_DTPMOD64:
1447 case elfcpp::R_X86_64_TLSDESC:
1448 gold_error(_("%s: unexpected reloc %u in object file"),
1449 object->name().c_str(), r_type);
1450 break;
1452 // These are initial tls relocs, which are expected for global()
1453 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1454 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1455 case elfcpp::R_X86_64_TLSDESC_CALL:
1456 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1457 case elfcpp::R_X86_64_DTPOFF32:
1458 case elfcpp::R_X86_64_DTPOFF64:
1459 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1460 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1462 const bool is_final = gsym->final_value_is_known();
1463 const tls::Tls_optimization optimized_type
1464 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1465 switch (r_type)
1467 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1468 if (optimized_type == tls::TLSOPT_NONE)
1470 // Create a pair of GOT entries for the module index and
1471 // dtv-relative offset.
1472 Output_data_got<64, false>* got
1473 = target->got_section(symtab, layout);
1474 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1475 target->rela_dyn_section(layout),
1476 elfcpp::R_X86_64_DTPMOD64,
1477 elfcpp::R_X86_64_DTPOFF64);
1479 else if (optimized_type == tls::TLSOPT_TO_IE)
1481 // Create a GOT entry for the tp-relative offset.
1482 Output_data_got<64, false>* got
1483 = target->got_section(symtab, layout);
1484 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1485 target->rela_dyn_section(layout),
1486 elfcpp::R_X86_64_TPOFF64);
1488 else if (optimized_type != tls::TLSOPT_TO_LE)
1489 unsupported_reloc_global(object, r_type, gsym);
1490 break;
1492 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1493 target->define_tls_base_symbol(symtab, layout);
1494 if (optimized_type == tls::TLSOPT_NONE)
1496 // Create reserved PLT and GOT entries for the resolver.
1497 target->reserve_tlsdesc_entries(symtab, layout);
1499 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1500 Output_data_got<64, false>* got
1501 = target->got_section(symtab, layout);
1502 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1503 target->rela_dyn_section(layout),
1504 elfcpp::R_X86_64_TLSDESC, 0);
1506 else if (optimized_type == tls::TLSOPT_TO_IE)
1508 // Create a GOT entry for the tp-relative offset.
1509 Output_data_got<64, false>* got
1510 = target->got_section(symtab, layout);
1511 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1512 target->rela_dyn_section(layout),
1513 elfcpp::R_X86_64_TPOFF64);
1515 else if (optimized_type != tls::TLSOPT_TO_LE)
1516 unsupported_reloc_global(object, r_type, gsym);
1517 break;
1519 case elfcpp::R_X86_64_TLSDESC_CALL:
1520 break;
1522 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1523 if (optimized_type == tls::TLSOPT_NONE)
1525 // Create a GOT entry for the module index.
1526 target->got_mod_index_entry(symtab, layout, object);
1528 else if (optimized_type != tls::TLSOPT_TO_LE)
1529 unsupported_reloc_global(object, r_type, gsym);
1530 break;
1532 case elfcpp::R_X86_64_DTPOFF32:
1533 case elfcpp::R_X86_64_DTPOFF64:
1534 break;
1536 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1537 layout->set_has_static_tls();
1538 if (optimized_type == tls::TLSOPT_NONE)
1540 // Create a GOT entry for the tp-relative offset.
1541 Output_data_got<64, false>* got
1542 = target->got_section(symtab, layout);
1543 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1544 target->rela_dyn_section(layout),
1545 elfcpp::R_X86_64_TPOFF64);
1547 else if (optimized_type != tls::TLSOPT_TO_LE)
1548 unsupported_reloc_global(object, r_type, gsym);
1549 break;
1551 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1552 layout->set_has_static_tls();
1553 if (parameters->options().shared())
1554 unsupported_reloc_local(object, r_type);
1555 break;
1557 default:
1558 gold_unreachable();
1561 break;
1563 case elfcpp::R_X86_64_SIZE32:
1564 case elfcpp::R_X86_64_SIZE64:
1565 default:
1566 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1567 object->name().c_str(), r_type,
1568 gsym->demangled_name().c_str());
1569 break;
1573 void
1574 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
1575 Layout* layout,
1576 Sized_relobj<64, false>* object,
1577 unsigned int data_shndx,
1578 unsigned int sh_type,
1579 const unsigned char* prelocs,
1580 size_t reloc_count,
1581 Output_section* output_section,
1582 bool needs_special_offset_handling,
1583 size_t local_symbol_count,
1584 const unsigned char* plocal_symbols)
1587 if (sh_type == elfcpp::SHT_REL)
1589 return;
1592 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1593 Target_x86_64::Scan>(
1594 symtab,
1595 layout,
1596 this,
1597 object,
1598 data_shndx,
1599 prelocs,
1600 reloc_count,
1601 output_section,
1602 needs_special_offset_handling,
1603 local_symbol_count,
1604 plocal_symbols);
1607 // Scan relocations for a section.
1609 void
1610 Target_x86_64::scan_relocs(Symbol_table* symtab,
1611 Layout* layout,
1612 Sized_relobj<64, false>* object,
1613 unsigned int data_shndx,
1614 unsigned int sh_type,
1615 const unsigned char* prelocs,
1616 size_t reloc_count,
1617 Output_section* output_section,
1618 bool needs_special_offset_handling,
1619 size_t local_symbol_count,
1620 const unsigned char* plocal_symbols)
1622 if (sh_type == elfcpp::SHT_REL)
1624 gold_error(_("%s: unsupported REL reloc section"),
1625 object->name().c_str());
1626 return;
1629 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1630 Target_x86_64::Scan>(
1631 symtab,
1632 layout,
1633 this,
1634 object,
1635 data_shndx,
1636 prelocs,
1637 reloc_count,
1638 output_section,
1639 needs_special_offset_handling,
1640 local_symbol_count,
1641 plocal_symbols);
1644 // Finalize the sections.
1646 void
1647 Target_x86_64::do_finalize_sections(
1648 Layout* layout,
1649 const Input_objects*,
1650 Symbol_table*)
1652 // Fill in some more dynamic tags.
1653 Output_data_dynamic* const odyn = layout->dynamic_data();
1654 if (odyn != NULL)
1656 if (this->got_plt_ != NULL
1657 && this->got_plt_->output_section() != NULL)
1658 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1660 if (this->plt_ != NULL
1661 && this->plt_->output_section() != NULL)
1663 const Output_data* od = this->plt_->rel_plt();
1664 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1665 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1666 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1667 if (this->plt_->has_tlsdesc_entry())
1669 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1670 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1671 this->got_->finalize_data_size();
1672 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1673 this->plt_, plt_offset);
1674 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1675 this->got_, got_offset);
1679 if (this->rela_dyn_ != NULL
1680 && this->rela_dyn_->output_section() != NULL)
1682 const Output_data* od = this->rela_dyn_;
1683 odyn->add_section_address(elfcpp::DT_RELA, od);
1684 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1685 odyn->add_constant(elfcpp::DT_RELAENT,
1686 elfcpp::Elf_sizes<64>::rela_size);
1689 if (!parameters->options().shared())
1691 // The value of the DT_DEBUG tag is filled in by the dynamic
1692 // linker at run time, and used by the debugger.
1693 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1697 // Emit any relocs we saved in an attempt to avoid generating COPY
1698 // relocs.
1699 if (this->copy_relocs_.any_saved_relocs())
1700 this->copy_relocs_.emit(this->rela_dyn_section(layout));
1703 // Perform a relocation.
1705 inline bool
1706 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1707 Target_x86_64* target,
1708 Output_section*,
1709 size_t relnum,
1710 const elfcpp::Rela<64, false>& rela,
1711 unsigned int r_type,
1712 const Sized_symbol<64>* gsym,
1713 const Symbol_value<64>* psymval,
1714 unsigned char* view,
1715 elfcpp::Elf_types<64>::Elf_Addr address,
1716 section_size_type view_size)
1718 if (this->skip_call_tls_get_addr_)
1720 if ((r_type != elfcpp::R_X86_64_PLT32
1721 && r_type != elfcpp::R_X86_64_PC32)
1722 || gsym == NULL
1723 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1725 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1726 _("missing expected TLS relocation"));
1728 else
1730 this->skip_call_tls_get_addr_ = false;
1731 return false;
1735 // Pick the value to use for symbols defined in shared objects.
1736 Symbol_value<64> symval;
1737 if (gsym != NULL
1738 && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1739 || r_type == elfcpp::R_X86_64_PC32
1740 || r_type == elfcpp::R_X86_64_PC16
1741 || r_type == elfcpp::R_X86_64_PC8))
1743 symval.set_output_value(target->plt_section()->address()
1744 + gsym->plt_offset());
1745 psymval = &symval;
1748 const Sized_relobj<64, false>* object = relinfo->object;
1749 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1751 // Get the GOT offset if needed.
1752 // The GOT pointer points to the end of the GOT section.
1753 // We need to subtract the size of the GOT section to get
1754 // the actual offset to use in the relocation.
1755 bool have_got_offset = false;
1756 unsigned int got_offset = 0;
1757 switch (r_type)
1759 case elfcpp::R_X86_64_GOT32:
1760 case elfcpp::R_X86_64_GOT64:
1761 case elfcpp::R_X86_64_GOTPLT64:
1762 case elfcpp::R_X86_64_GOTPCREL:
1763 case elfcpp::R_X86_64_GOTPCREL64:
1764 if (gsym != NULL)
1766 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1767 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1769 else
1771 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1772 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1773 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1774 - target->got_size());
1776 have_got_offset = true;
1777 break;
1779 default:
1780 break;
1783 switch (r_type)
1785 case elfcpp::R_X86_64_NONE:
1786 case elfcpp::R_386_GNU_VTINHERIT:
1787 case elfcpp::R_386_GNU_VTENTRY:
1788 break;
1790 case elfcpp::R_X86_64_64:
1791 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1792 break;
1794 case elfcpp::R_X86_64_PC64:
1795 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1796 address);
1797 break;
1799 case elfcpp::R_X86_64_32:
1800 // FIXME: we need to verify that value + addend fits into 32 bits:
1801 // uint64_t x = value + addend;
1802 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1803 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1804 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1805 break;
1807 case elfcpp::R_X86_64_32S:
1808 // FIXME: we need to verify that value + addend fits into 32 bits:
1809 // int64_t x = value + addend; // note this quantity is signed!
1810 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1811 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1812 break;
1814 case elfcpp::R_X86_64_PC32:
1815 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1816 address);
1817 break;
1819 case elfcpp::R_X86_64_16:
1820 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1821 break;
1823 case elfcpp::R_X86_64_PC16:
1824 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1825 address);
1826 break;
1828 case elfcpp::R_X86_64_8:
1829 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1830 break;
1832 case elfcpp::R_X86_64_PC8:
1833 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1834 address);
1835 break;
1837 case elfcpp::R_X86_64_PLT32:
1838 gold_assert(gsym == NULL
1839 || gsym->has_plt_offset()
1840 || gsym->final_value_is_known()
1841 || (gsym->is_defined()
1842 && !gsym->is_from_dynobj()
1843 && !gsym->is_preemptible()));
1844 // Note: while this code looks the same as for R_X86_64_PC32, it
1845 // behaves differently because psymval was set to point to
1846 // the PLT entry, rather than the symbol, in Scan::global().
1847 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1848 address);
1849 break;
1851 case elfcpp::R_X86_64_PLTOFF64:
1853 gold_assert(gsym);
1854 gold_assert(gsym->has_plt_offset()
1855 || gsym->final_value_is_known());
1856 elfcpp::Elf_types<64>::Elf_Addr got_address;
1857 got_address = target->got_section(NULL, NULL)->address();
1858 Relocate_functions<64, false>::rela64(view, object, psymval,
1859 addend - got_address);
1862 case elfcpp::R_X86_64_GOT32:
1863 gold_assert(have_got_offset);
1864 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1865 break;
1867 case elfcpp::R_X86_64_GOTPC32:
1869 gold_assert(gsym);
1870 elfcpp::Elf_types<64>::Elf_Addr value;
1871 value = target->got_plt_section()->address();
1872 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1874 break;
1876 case elfcpp::R_X86_64_GOT64:
1877 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1878 // Since we always add a PLT entry, this is equivalent.
1879 case elfcpp::R_X86_64_GOTPLT64:
1880 gold_assert(have_got_offset);
1881 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1882 break;
1884 case elfcpp::R_X86_64_GOTPC64:
1886 gold_assert(gsym);
1887 elfcpp::Elf_types<64>::Elf_Addr value;
1888 value = target->got_plt_section()->address();
1889 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1891 break;
1893 case elfcpp::R_X86_64_GOTOFF64:
1895 elfcpp::Elf_types<64>::Elf_Addr value;
1896 value = (psymval->value(object, 0)
1897 - target->got_plt_section()->address());
1898 Relocate_functions<64, false>::rela64(view, value, addend);
1900 break;
1902 case elfcpp::R_X86_64_GOTPCREL:
1904 gold_assert(have_got_offset);
1905 elfcpp::Elf_types<64>::Elf_Addr value;
1906 value = target->got_plt_section()->address() + got_offset;
1907 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1909 break;
1911 case elfcpp::R_X86_64_GOTPCREL64:
1913 gold_assert(have_got_offset);
1914 elfcpp::Elf_types<64>::Elf_Addr value;
1915 value = target->got_plt_section()->address() + got_offset;
1916 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1918 break;
1920 case elfcpp::R_X86_64_COPY:
1921 case elfcpp::R_X86_64_GLOB_DAT:
1922 case elfcpp::R_X86_64_JUMP_SLOT:
1923 case elfcpp::R_X86_64_RELATIVE:
1924 // These are outstanding tls relocs, which are unexpected when linking
1925 case elfcpp::R_X86_64_TPOFF64:
1926 case elfcpp::R_X86_64_DTPMOD64:
1927 case elfcpp::R_X86_64_TLSDESC:
1928 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1929 _("unexpected reloc %u in object file"),
1930 r_type);
1931 break;
1933 // These are initial tls relocs, which are expected when linking
1934 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1935 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1936 case elfcpp::R_X86_64_TLSDESC_CALL:
1937 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1938 case elfcpp::R_X86_64_DTPOFF32:
1939 case elfcpp::R_X86_64_DTPOFF64:
1940 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1941 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1942 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1943 view, address, view_size);
1944 break;
1946 case elfcpp::R_X86_64_SIZE32:
1947 case elfcpp::R_X86_64_SIZE64:
1948 default:
1949 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1950 _("unsupported reloc %u"),
1951 r_type);
1952 break;
1955 return true;
1958 // Perform a TLS relocation.
1960 inline void
1961 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1962 Target_x86_64* target,
1963 size_t relnum,
1964 const elfcpp::Rela<64, false>& rela,
1965 unsigned int r_type,
1966 const Sized_symbol<64>* gsym,
1967 const Symbol_value<64>* psymval,
1968 unsigned char* view,
1969 elfcpp::Elf_types<64>::Elf_Addr address,
1970 section_size_type view_size)
1972 Output_segment* tls_segment = relinfo->layout->tls_segment();
1974 const Sized_relobj<64, false>* object = relinfo->object;
1975 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1977 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1979 const bool is_final = (gsym == NULL
1980 ? !parameters->options().output_is_position_independent()
1981 : gsym->final_value_is_known());
1982 const tls::Tls_optimization optimized_type
1983 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1984 switch (r_type)
1986 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1987 this->saw_tls_block_reloc_ = true;
1988 if (optimized_type == tls::TLSOPT_TO_LE)
1990 gold_assert(tls_segment != NULL);
1991 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1992 rela, r_type, value, view,
1993 view_size);
1994 break;
1996 else
1998 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1999 ? GOT_TYPE_TLS_OFFSET
2000 : GOT_TYPE_TLS_PAIR);
2001 unsigned int got_offset;
2002 if (gsym != NULL)
2004 gold_assert(gsym->has_got_offset(got_type));
2005 got_offset = gsym->got_offset(got_type) - target->got_size();
2007 else
2009 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2010 gold_assert(object->local_has_got_offset(r_sym, got_type));
2011 got_offset = (object->local_got_offset(r_sym, got_type)
2012 - target->got_size());
2014 if (optimized_type == tls::TLSOPT_TO_IE)
2016 gold_assert(tls_segment != NULL);
2017 value = target->got_plt_section()->address() + got_offset;
2018 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2019 value, view, address, view_size);
2020 break;
2022 else if (optimized_type == tls::TLSOPT_NONE)
2024 // Relocate the field with the offset of the pair of GOT
2025 // entries.
2026 value = target->got_plt_section()->address() + got_offset;
2027 Relocate_functions<64, false>::pcrela32(view, value, addend,
2028 address);
2029 break;
2032 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2033 _("unsupported reloc %u"), r_type);
2034 break;
2036 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2037 case elfcpp::R_X86_64_TLSDESC_CALL:
2038 this->saw_tls_block_reloc_ = true;
2039 if (optimized_type == tls::TLSOPT_TO_LE)
2041 gold_assert(tls_segment != NULL);
2042 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2043 rela, r_type, value, view,
2044 view_size);
2045 break;
2047 else
2049 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2050 ? GOT_TYPE_TLS_OFFSET
2051 : GOT_TYPE_TLS_DESC);
2052 unsigned int got_offset;
2053 if (gsym != NULL)
2055 gold_assert(gsym->has_got_offset(got_type));
2056 got_offset = gsym->got_offset(got_type) - target->got_size();
2058 else
2060 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2061 gold_assert(object->local_has_got_offset(r_sym, got_type));
2062 got_offset = (object->local_got_offset(r_sym, got_type)
2063 - target->got_size());
2065 if (optimized_type == tls::TLSOPT_TO_IE)
2067 gold_assert(tls_segment != NULL);
2068 value = target->got_plt_section()->address() + got_offset;
2069 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2070 rela, r_type, value, view, address,
2071 view_size);
2072 break;
2074 else if (optimized_type == tls::TLSOPT_NONE)
2076 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2078 // Relocate the field with the offset of the pair of GOT
2079 // entries.
2080 value = target->got_plt_section()->address() + got_offset;
2081 Relocate_functions<64, false>::pcrela32(view, value, addend,
2082 address);
2084 break;
2087 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2088 _("unsupported reloc %u"), r_type);
2089 break;
2091 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2092 this->saw_tls_block_reloc_ = true;
2093 if (optimized_type == tls::TLSOPT_TO_LE)
2095 gold_assert(tls_segment != NULL);
2096 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2097 value, view, view_size);
2098 break;
2100 else if (optimized_type == tls::TLSOPT_NONE)
2102 // Relocate the field with the offset of the GOT entry for
2103 // the module index.
2104 unsigned int got_offset;
2105 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2106 - target->got_size());
2107 value = target->got_plt_section()->address() + got_offset;
2108 Relocate_functions<64, false>::pcrela32(view, value, addend,
2109 address);
2110 break;
2112 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2113 _("unsupported reloc %u"), r_type);
2114 break;
2116 case elfcpp::R_X86_64_DTPOFF32:
2117 if (optimized_type == tls::TLSOPT_TO_LE)
2119 // This relocation type is used in debugging information.
2120 // In that case we need to not optimize the value. If we
2121 // haven't seen a TLSLD reloc, then we assume we should not
2122 // optimize this reloc.
2123 if (this->saw_tls_block_reloc_)
2125 gold_assert(tls_segment != NULL);
2126 value -= tls_segment->memsz();
2129 Relocate_functions<64, false>::rela32(view, value, addend);
2130 break;
2132 case elfcpp::R_X86_64_DTPOFF64:
2133 if (optimized_type == tls::TLSOPT_TO_LE)
2135 // See R_X86_64_DTPOFF32, just above, for why we test this.
2136 if (this->saw_tls_block_reloc_)
2138 gold_assert(tls_segment != NULL);
2139 value -= tls_segment->memsz();
2142 Relocate_functions<64, false>::rela64(view, value, addend);
2143 break;
2145 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2146 if (optimized_type == tls::TLSOPT_TO_LE)
2148 gold_assert(tls_segment != NULL);
2149 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2150 rela, r_type, value, view,
2151 view_size);
2152 break;
2154 else if (optimized_type == tls::TLSOPT_NONE)
2156 // Relocate the field with the offset of the GOT entry for
2157 // the tp-relative offset of the symbol.
2158 unsigned int got_offset;
2159 if (gsym != NULL)
2161 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2162 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2163 - target->got_size());
2165 else
2167 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2168 gold_assert(object->local_has_got_offset(r_sym,
2169 GOT_TYPE_TLS_OFFSET));
2170 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2171 - target->got_size());
2173 value = target->got_plt_section()->address() + got_offset;
2174 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2175 break;
2177 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2178 _("unsupported reloc type %u"),
2179 r_type);
2180 break;
2182 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2183 value -= tls_segment->memsz();
2184 Relocate_functions<64, false>::rela32(view, value, addend);
2185 break;
2189 // Do a relocation in which we convert a TLS General-Dynamic to an
2190 // Initial-Exec.
2192 inline void
2193 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2194 size_t relnum,
2195 Output_segment*,
2196 const elfcpp::Rela<64, false>& rela,
2197 unsigned int,
2198 elfcpp::Elf_types<64>::Elf_Addr value,
2199 unsigned char* view,
2200 elfcpp::Elf_types<64>::Elf_Addr address,
2201 section_size_type view_size)
2203 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2204 // .word 0x6666; rex64; call __tls_get_addr
2205 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2207 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2208 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2210 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2211 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2212 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2213 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2215 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2217 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2218 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2220 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2221 // We can skip it.
2222 this->skip_call_tls_get_addr_ = true;
2225 // Do a relocation in which we convert a TLS General-Dynamic to a
2226 // Local-Exec.
2228 inline void
2229 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2230 size_t relnum,
2231 Output_segment* tls_segment,
2232 const elfcpp::Rela<64, false>& rela,
2233 unsigned int,
2234 elfcpp::Elf_types<64>::Elf_Addr value,
2235 unsigned char* view,
2236 section_size_type view_size)
2238 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2239 // .word 0x6666; rex64; call __tls_get_addr
2240 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2242 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2243 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2245 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2246 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2247 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2248 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2250 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2252 value -= tls_segment->memsz();
2253 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2255 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2256 // We can skip it.
2257 this->skip_call_tls_get_addr_ = true;
2260 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2262 inline void
2263 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2264 const Relocate_info<64, false>* relinfo,
2265 size_t relnum,
2266 Output_segment*,
2267 const elfcpp::Rela<64, false>& rela,
2268 unsigned int r_type,
2269 elfcpp::Elf_types<64>::Elf_Addr value,
2270 unsigned char* view,
2271 elfcpp::Elf_types<64>::Elf_Addr address,
2272 section_size_type view_size)
2274 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2276 // leaq foo@tlsdesc(%rip), %rax
2277 // ==> movq foo@gottpoff(%rip), %rax
2278 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2279 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2280 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2281 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2282 view[-2] = 0x8b;
2283 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2284 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2286 else
2288 // call *foo@tlscall(%rax)
2289 // ==> nop; nop
2290 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2291 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2292 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2293 view[0] == 0xff && view[1] == 0x10);
2294 view[0] = 0x66;
2295 view[1] = 0x90;
2299 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2301 inline void
2302 Target_x86_64::Relocate::tls_desc_gd_to_le(
2303 const Relocate_info<64, false>* relinfo,
2304 size_t relnum,
2305 Output_segment* tls_segment,
2306 const elfcpp::Rela<64, false>& rela,
2307 unsigned int r_type,
2308 elfcpp::Elf_types<64>::Elf_Addr value,
2309 unsigned char* view,
2310 section_size_type view_size)
2312 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2314 // leaq foo@tlsdesc(%rip), %rax
2315 // ==> movq foo@tpoff, %rax
2316 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2317 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2318 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2319 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2320 view[-2] = 0xc7;
2321 view[-1] = 0xc0;
2322 value -= tls_segment->memsz();
2323 Relocate_functions<64, false>::rela32(view, value, 0);
2325 else
2327 // call *foo@tlscall(%rax)
2328 // ==> nop; nop
2329 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2330 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2331 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2332 view[0] == 0xff && view[1] == 0x10);
2333 view[0] = 0x66;
2334 view[1] = 0x90;
2338 inline void
2339 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2340 size_t relnum,
2341 Output_segment*,
2342 const elfcpp::Rela<64, false>& rela,
2343 unsigned int,
2344 elfcpp::Elf_types<64>::Elf_Addr,
2345 unsigned char* view,
2346 section_size_type view_size)
2348 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2349 // ... leq foo@dtpoff(%rax),%reg
2350 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2352 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2353 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2355 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2356 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2358 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2360 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2362 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2363 // We can skip it.
2364 this->skip_call_tls_get_addr_ = true;
2367 // Do a relocation in which we convert a TLS Initial-Exec to a
2368 // Local-Exec.
2370 inline void
2371 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2372 size_t relnum,
2373 Output_segment* tls_segment,
2374 const elfcpp::Rela<64, false>& rela,
2375 unsigned int,
2376 elfcpp::Elf_types<64>::Elf_Addr value,
2377 unsigned char* view,
2378 section_size_type view_size)
2380 // We need to examine the opcodes to figure out which instruction we
2381 // are looking at.
2383 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
2384 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
2386 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2387 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2389 unsigned char op1 = view[-3];
2390 unsigned char op2 = view[-2];
2391 unsigned char op3 = view[-1];
2392 unsigned char reg = op3 >> 3;
2394 if (op2 == 0x8b)
2396 // movq
2397 if (op1 == 0x4c)
2398 view[-3] = 0x49;
2399 view[-2] = 0xc7;
2400 view[-1] = 0xc0 | reg;
2402 else if (reg == 4)
2404 // Special handling for %rsp.
2405 if (op1 == 0x4c)
2406 view[-3] = 0x49;
2407 view[-2] = 0x81;
2408 view[-1] = 0xc0 | reg;
2410 else
2412 // addq
2413 if (op1 == 0x4c)
2414 view[-3] = 0x4d;
2415 view[-2] = 0x8d;
2416 view[-1] = 0x80 | reg | (reg << 3);
2419 value -= tls_segment->memsz();
2420 Relocate_functions<64, false>::rela32(view, value, 0);
2423 // Relocate section data.
2425 void
2426 Target_x86_64::relocate_section(
2427 const Relocate_info<64, false>* relinfo,
2428 unsigned int sh_type,
2429 const unsigned char* prelocs,
2430 size_t reloc_count,
2431 Output_section* output_section,
2432 bool needs_special_offset_handling,
2433 unsigned char* view,
2434 elfcpp::Elf_types<64>::Elf_Addr address,
2435 section_size_type view_size,
2436 const Reloc_symbol_changes* reloc_symbol_changes)
2438 gold_assert(sh_type == elfcpp::SHT_RELA);
2440 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2441 Target_x86_64::Relocate>(
2442 relinfo,
2443 this,
2444 prelocs,
2445 reloc_count,
2446 output_section,
2447 needs_special_offset_handling,
2448 view,
2449 address,
2450 view_size,
2451 reloc_symbol_changes);
2454 // Return the size of a relocation while scanning during a relocatable
2455 // link.
2457 unsigned int
2458 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2459 unsigned int r_type,
2460 Relobj* object)
2462 switch (r_type)
2464 case elfcpp::R_X86_64_NONE:
2465 case elfcpp::R_386_GNU_VTINHERIT:
2466 case elfcpp::R_386_GNU_VTENTRY:
2467 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2468 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2469 case elfcpp::R_X86_64_TLSDESC_CALL:
2470 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2471 case elfcpp::R_X86_64_DTPOFF32:
2472 case elfcpp::R_X86_64_DTPOFF64:
2473 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2474 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2475 return 0;
2477 case elfcpp::R_X86_64_64:
2478 case elfcpp::R_X86_64_PC64:
2479 case elfcpp::R_X86_64_GOTOFF64:
2480 case elfcpp::R_X86_64_GOTPC64:
2481 case elfcpp::R_X86_64_PLTOFF64:
2482 case elfcpp::R_X86_64_GOT64:
2483 case elfcpp::R_X86_64_GOTPCREL64:
2484 case elfcpp::R_X86_64_GOTPCREL:
2485 case elfcpp::R_X86_64_GOTPLT64:
2486 return 8;
2488 case elfcpp::R_X86_64_32:
2489 case elfcpp::R_X86_64_32S:
2490 case elfcpp::R_X86_64_PC32:
2491 case elfcpp::R_X86_64_PLT32:
2492 case elfcpp::R_X86_64_GOTPC32:
2493 case elfcpp::R_X86_64_GOT32:
2494 return 4;
2496 case elfcpp::R_X86_64_16:
2497 case elfcpp::R_X86_64_PC16:
2498 return 2;
2500 case elfcpp::R_X86_64_8:
2501 case elfcpp::R_X86_64_PC8:
2502 return 1;
2504 case elfcpp::R_X86_64_COPY:
2505 case elfcpp::R_X86_64_GLOB_DAT:
2506 case elfcpp::R_X86_64_JUMP_SLOT:
2507 case elfcpp::R_X86_64_RELATIVE:
2508 // These are outstanding tls relocs, which are unexpected when linking
2509 case elfcpp::R_X86_64_TPOFF64:
2510 case elfcpp::R_X86_64_DTPMOD64:
2511 case elfcpp::R_X86_64_TLSDESC:
2512 object->error(_("unexpected reloc %u in object file"), r_type);
2513 return 0;
2515 case elfcpp::R_X86_64_SIZE32:
2516 case elfcpp::R_X86_64_SIZE64:
2517 default:
2518 object->error(_("unsupported reloc %u against local symbol"), r_type);
2519 return 0;
2523 // Scan the relocs during a relocatable link.
2525 void
2526 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
2527 Layout* layout,
2528 Sized_relobj<64, false>* object,
2529 unsigned int data_shndx,
2530 unsigned int sh_type,
2531 const unsigned char* prelocs,
2532 size_t reloc_count,
2533 Output_section* output_section,
2534 bool needs_special_offset_handling,
2535 size_t local_symbol_count,
2536 const unsigned char* plocal_symbols,
2537 Relocatable_relocs* rr)
2539 gold_assert(sh_type == elfcpp::SHT_RELA);
2541 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2542 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2544 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2545 Scan_relocatable_relocs>(
2546 symtab,
2547 layout,
2548 object,
2549 data_shndx,
2550 prelocs,
2551 reloc_count,
2552 output_section,
2553 needs_special_offset_handling,
2554 local_symbol_count,
2555 plocal_symbols,
2556 rr);
2559 // Relocate a section during a relocatable link.
2561 void
2562 Target_x86_64::relocate_for_relocatable(
2563 const Relocate_info<64, false>* relinfo,
2564 unsigned int sh_type,
2565 const unsigned char* prelocs,
2566 size_t reloc_count,
2567 Output_section* output_section,
2568 off_t offset_in_output_section,
2569 const Relocatable_relocs* rr,
2570 unsigned char* view,
2571 elfcpp::Elf_types<64>::Elf_Addr view_address,
2572 section_size_type view_size,
2573 unsigned char* reloc_view,
2574 section_size_type reloc_view_size)
2576 gold_assert(sh_type == elfcpp::SHT_RELA);
2578 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2579 relinfo,
2580 prelocs,
2581 reloc_count,
2582 output_section,
2583 offset_in_output_section,
2585 view,
2586 view_address,
2587 view_size,
2588 reloc_view,
2589 reloc_view_size);
2592 // Return the value to use for a dynamic which requires special
2593 // treatment. This is how we support equality comparisons of function
2594 // pointers across shared library boundaries, as described in the
2595 // processor specific ABI supplement.
2597 uint64_t
2598 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2600 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2601 return this->plt_section()->address() + gsym->plt_offset();
2604 // Return a string used to fill a code section with nops to take up
2605 // the specified length.
2607 std::string
2608 Target_x86_64::do_code_fill(section_size_type length) const
2610 if (length >= 16)
2612 // Build a jmpq instruction to skip over the bytes.
2613 unsigned char jmp[5];
2614 jmp[0] = 0xe9;
2615 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2616 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2617 + std::string(length - 5, '\0'));
2620 // Nop sequences of various lengths.
2621 const char nop1[1] = { 0x90 }; // nop
2622 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2623 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
2624 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
2625 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
2626 0x00 };
2627 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
2628 0x00, 0x00 };
2629 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
2630 0x00, 0x00, 0x00 };
2631 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
2632 0x00, 0x00, 0x00, 0x00 };
2633 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
2634 0x00, 0x00, 0x00, 0x00,
2635 0x00 };
2636 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2637 0x84, 0x00, 0x00, 0x00,
2638 0x00, 0x00 };
2639 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2640 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2641 0x00, 0x00, 0x00 };
2642 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2643 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2644 0x00, 0x00, 0x00, 0x00 };
2645 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2646 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2647 0x00, 0x00, 0x00, 0x00,
2648 0x00 };
2649 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2650 0x66, 0x2e, 0x0f, 0x1f, // data16
2651 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2652 0x00, 0x00 };
2653 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2654 0x66, 0x66, 0x2e, 0x0f, // data16; data16
2655 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2656 0x00, 0x00, 0x00 };
2658 const char* nops[16] = {
2659 NULL,
2660 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2661 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2664 return std::string(nops[length], length);
2667 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2668 // compiled with -fstack-split. The function calls non-stack-split
2669 // code. We have to change the function so that it always ensures
2670 // that it has enough stack space to run some random function.
2672 void
2673 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2674 section_offset_type fnoffset,
2675 section_size_type fnsize,
2676 unsigned char* view,
2677 section_size_type view_size,
2678 std::string* from,
2679 std::string* to) const
2681 // The function starts with a comparison of the stack pointer and a
2682 // field in the TCB. This is followed by a jump.
2684 // cmp %fs:NN,%rsp
2685 if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2686 && fnsize > 9)
2688 // We will call __morestack if the carry flag is set after this
2689 // comparison. We turn the comparison into an stc instruction
2690 // and some nops.
2691 view[fnoffset] = '\xf9';
2692 this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2694 // lea NN(%rsp),%r10
2695 else if (this->match_view(view, view_size, fnoffset, "\x4c\x8d\x94\x24", 4)
2696 && fnsize > 8)
2698 // This is loading an offset from the stack pointer for a
2699 // comparison. The offset is negative, so we decrease the
2700 // offset by the amount of space we need for the stack. This
2701 // means we will avoid calling __morestack if there happens to
2702 // be plenty of space on the stack already.
2703 unsigned char* pval = view + fnoffset + 4;
2704 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2705 val -= parameters->options().split_stack_adjust_size();
2706 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2708 else
2710 if (!object->has_no_split_stack())
2711 object->error(_("failed to match split-stack sequence at "
2712 "section %u offset %0zx"),
2713 shndx, static_cast<size_t>(fnoffset));
2714 return;
2717 // We have to change the function so that it calls
2718 // __morestack_non_split instead of __morestack. The former will
2719 // allocate additional stack space.
2720 *from = "__morestack";
2721 *to = "__morestack_non_split";
2724 // The selector for x86_64 object files.
2726 class Target_selector_x86_64 : public Target_selector_freebsd
2728 public:
2729 Target_selector_x86_64()
2730 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2731 "elf64-x86-64-freebsd")
2734 Target*
2735 do_instantiate_target()
2736 { return new Target_x86_64(); }
2740 Target_selector_x86_64 target_selector_x86_64;
2742 } // End anonymous namespace.