Add -Wshadow to the gcc command line options used when compiling the binutils.
[binutils.git] / gold / resolve.cc
blob1d77a926356643bb3b2e1ad18e595f2fd4b89677
1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* aversion)
42 if (aversion == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = aversion;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == aversion || this->version_ == NULL);
62 this->version_ = aversion;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV avisibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (avisibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = avisibility;
81 else if (this->visibility_ > avisibility)
82 this->visibility_ = avisibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* aobject, const char* aversion)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = aobject;
96 this->override_version(aversion);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (aobject->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* aobject, const char* aversion)
118 this->override_base(sym, st_shndx, is_ordinary, aobject, aversion);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* aobject, const char* aversion)
133 tosym->override(fromsym, st_shndx, is_ordinary, aobject, aversion);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, aobject, aversion);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
176 unsigned int bits;
178 switch (binding)
180 case elfcpp::STB_GLOBAL:
181 case elfcpp::STB_GNU_UNIQUE:
182 bits = global_flag;
183 break;
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
198 gold_error(_("unsupported symbol binding"));
199 bits = global_flag;
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
207 switch (shndx)
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
213 case elfcpp::SHN_COMMON:
214 if (!is_ordinary)
215 bits |= common_flag;
216 break;
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
228 return bits;
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
248 if (parameters->target().has_resolve())
250 Sized_target<size, big_endian>* sized_target;
251 sized_target = parameters->sized_target<size, big_endian>();
252 sized_target->resolve(to, sym, object, version);
253 return;
256 if (!object->is_dynamic())
258 // Record that we've seen this symbol in a regular object.
259 to->set_in_reg();
261 else if (st_shndx == elfcpp::SHN_UNDEF
262 && (to->visibility() == elfcpp::STV_HIDDEN
263 || to->visibility() == elfcpp::STV_INTERNAL))
265 // A dynamic object cannot reference a hidden or internal symbol
266 // defined in another object.
267 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
268 (to->visibility() == elfcpp::STV_HIDDEN
269 ? "hidden"
270 : "internal"),
271 to->demangled_name().c_str(),
272 to->object()->name().c_str(),
273 object->name().c_str());
274 return;
276 else
278 // Record that we've seen this symbol in a dynamic object.
279 to->set_in_dyn();
282 // Record if we've seen this symbol in a real ELF object (i.e., the
283 // symbol is referenced from outside the world known to the plugin).
284 if (object->pluginobj() == NULL)
285 to->set_in_real_elf();
287 // If we're processing replacement files, allow new symbols to override
288 // the placeholders from the plugin objects.
289 if (to->source() == Symbol::FROM_OBJECT)
291 Pluginobj* obj = to->object()->pluginobj();
292 if (obj != NULL
293 && parameters->options().plugins()->in_replacement_phase())
295 this->override(to, sym, st_shndx, is_ordinary, object, version);
296 return;
300 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
301 object->is_dynamic(),
302 st_shndx, is_ordinary,
303 sym.get_st_type());
305 bool adjust_common_sizes;
306 typename Sized_symbol<size>::Size_type tosize = to->symsize();
307 if (Symbol_table::should_override(to, frombits, object,
308 &adjust_common_sizes))
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311 if (adjust_common_sizes && tosize > to->symsize())
312 to->set_symsize(tosize);
314 else
316 if (adjust_common_sizes && sym.get_st_size() > tosize)
317 to->set_symsize(sym.get_st_size());
318 // The ELF ABI says that even for a reference to a symbol we
319 // merge the visibility.
320 to->override_visibility(sym.get_st_visibility());
323 if (adjust_common_sizes && parameters->options().warn_common())
325 if (tosize > sym.get_st_size())
326 Symbol_table::report_resolve_problem(false,
327 _("common of '%s' overriding "
328 "smaller common"),
329 to, object);
330 else if (tosize < sym.get_st_size())
331 Symbol_table::report_resolve_problem(false,
332 _("common of '%s' overidden by "
333 "larger common"),
334 to, object);
335 else
336 Symbol_table::report_resolve_problem(false,
337 _("multiple common of '%s'"),
338 to, object);
341 // A new weak undefined reference, merging with an old weak
342 // reference, could be a One Definition Rule (ODR) violation --
343 // especially if the types or sizes of the references differ. We'll
344 // store such pairs and look them up later to make sure they
345 // actually refer to the same lines of code. (Note: not all ODR
346 // violations can be found this way, and not everything this finds
347 // is an ODR violation. But it's helpful to warn about.)
348 bool to_is_ordinary;
349 if (parameters->options().detect_odr_violations()
350 && sym.get_st_bind() == elfcpp::STB_WEAK
351 && to->binding() == elfcpp::STB_WEAK
352 && orig_st_shndx != elfcpp::SHN_UNDEF
353 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
354 && to_is_ordinary
355 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
356 && to->symsize() != 0
357 && (sym.get_st_type() != to->type()
358 || sym.get_st_size() != to->symsize())
359 // C does not have a concept of ODR, so we only need to do this
360 // on C++ symbols. These have (mangled) names starting with _Z.
361 && to->name()[0] == '_' && to->name()[1] == 'Z')
363 Symbol_location fromloc
364 = { object, orig_st_shndx, sym.get_st_value() };
365 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
366 to->value() };
367 this->candidate_odr_violations_[to->name()].insert(fromloc);
368 this->candidate_odr_violations_[to->name()].insert(toloc);
372 // Handle the core of symbol resolution. This is called with the
373 // existing symbol, TO, and a bitflag describing the new symbol. This
374 // returns true if we should override the existing symbol with the new
375 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
376 // true if we should set the symbol size to the maximum of the TO and
377 // FROM sizes. It handles error conditions.
379 bool
380 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
381 Object* object, bool* adjust_common_sizes)
383 *adjust_common_sizes = false;
385 unsigned int tobits;
386 if (to->source() == Symbol::IS_UNDEFINED)
387 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
388 to->type());
389 else if (to->source() != Symbol::FROM_OBJECT)
390 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
391 to->type());
392 else
394 bool is_ordinary;
395 unsigned int shndx = to->shndx(&is_ordinary);
396 tobits = symbol_to_bits(to->binding(),
397 to->object()->is_dynamic(),
398 shndx,
399 is_ordinary,
400 to->type());
403 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
405 // We use a giant switch table for symbol resolution. This code is
406 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
407 // cases; 3) it is easy to change the handling of a particular case.
408 // The alternative would be a series of conditionals, but it is easy
409 // to get the ordering wrong. This could also be done as a table,
410 // but that is no easier to understand than this large switch
411 // statement.
413 // These are the values generated by the bit codes.
414 enum
416 DEF = global_flag | regular_flag | def_flag,
417 WEAK_DEF = weak_flag | regular_flag | def_flag,
418 DYN_DEF = global_flag | dynamic_flag | def_flag,
419 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
420 UNDEF = global_flag | regular_flag | undef_flag,
421 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
422 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
423 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
424 COMMON = global_flag | regular_flag | common_flag,
425 WEAK_COMMON = weak_flag | regular_flag | common_flag,
426 DYN_COMMON = global_flag | dynamic_flag | common_flag,
427 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
430 switch (tobits * 16 + frombits)
432 case DEF * 16 + DEF:
433 // Two definitions of the same symbol.
435 // If either symbol is defined by an object included using
436 // --just-symbols, then don't warn. This is for compatibility
437 // with the GNU linker. FIXME: This is a hack.
438 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
439 || object->just_symbols())
440 return false;
442 Symbol_table::report_resolve_problem(true,
443 _("multiple definition of '%s'"),
444 to, object);
445 return false;
447 case WEAK_DEF * 16 + DEF:
448 // We've seen a weak definition, and now we see a strong
449 // definition. In the original SVR4 linker, this was treated as
450 // a multiple definition error. In the Solaris linker and the
451 // GNU linker, a weak definition followed by a regular
452 // definition causes the weak definition to be overridden. We
453 // are currently compatible with the GNU linker. In the future
454 // we should add a target specific option to change this.
455 // FIXME.
456 return true;
458 case DYN_DEF * 16 + DEF:
459 case DYN_WEAK_DEF * 16 + DEF:
460 // We've seen a definition in a dynamic object, and now we see a
461 // definition in a regular object. The definition in the
462 // regular object overrides the definition in the dynamic
463 // object.
464 return true;
466 case UNDEF * 16 + DEF:
467 case WEAK_UNDEF * 16 + DEF:
468 case DYN_UNDEF * 16 + DEF:
469 case DYN_WEAK_UNDEF * 16 + DEF:
470 // We've seen an undefined reference, and now we see a
471 // definition. We use the definition.
472 return true;
474 case COMMON * 16 + DEF:
475 case WEAK_COMMON * 16 + DEF:
476 case DYN_COMMON * 16 + DEF:
477 case DYN_WEAK_COMMON * 16 + DEF:
478 // We've seen a common symbol and now we see a definition. The
479 // definition overrides.
480 if (parameters->options().warn_common())
481 Symbol_table::report_resolve_problem(false,
482 _("definition of '%s' overriding "
483 "common"),
484 to, object);
485 return true;
487 case DEF * 16 + WEAK_DEF:
488 case WEAK_DEF * 16 + WEAK_DEF:
489 // We've seen a definition and now we see a weak definition. We
490 // ignore the new weak definition.
491 return false;
493 case DYN_DEF * 16 + WEAK_DEF:
494 case DYN_WEAK_DEF * 16 + WEAK_DEF:
495 // We've seen a dynamic definition and now we see a regular weak
496 // definition. The regular weak definition overrides.
497 return true;
499 case UNDEF * 16 + WEAK_DEF:
500 case WEAK_UNDEF * 16 + WEAK_DEF:
501 case DYN_UNDEF * 16 + WEAK_DEF:
502 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
503 // A weak definition of a currently undefined symbol.
504 return true;
506 case COMMON * 16 + WEAK_DEF:
507 case WEAK_COMMON * 16 + WEAK_DEF:
508 // A weak definition does not override a common definition.
509 return false;
511 case DYN_COMMON * 16 + WEAK_DEF:
512 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
513 // A weak definition does override a definition in a dynamic
514 // object.
515 if (parameters->options().warn_common())
516 Symbol_table::report_resolve_problem(false,
517 _("definition of '%s' overriding "
518 "dynamic common definition"),
519 to, object);
520 return true;
522 case DEF * 16 + DYN_DEF:
523 case WEAK_DEF * 16 + DYN_DEF:
524 case DYN_DEF * 16 + DYN_DEF:
525 case DYN_WEAK_DEF * 16 + DYN_DEF:
526 // Ignore a dynamic definition if we already have a definition.
527 return false;
529 case UNDEF * 16 + DYN_DEF:
530 case WEAK_UNDEF * 16 + DYN_DEF:
531 case DYN_UNDEF * 16 + DYN_DEF:
532 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
533 // Use a dynamic definition if we have a reference.
534 return true;
536 case COMMON * 16 + DYN_DEF:
537 case WEAK_COMMON * 16 + DYN_DEF:
538 case DYN_COMMON * 16 + DYN_DEF:
539 case DYN_WEAK_COMMON * 16 + DYN_DEF:
540 // Ignore a dynamic definition if we already have a common
541 // definition.
542 return false;
544 case DEF * 16 + DYN_WEAK_DEF:
545 case WEAK_DEF * 16 + DYN_WEAK_DEF:
546 case DYN_DEF * 16 + DYN_WEAK_DEF:
547 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
548 // Ignore a weak dynamic definition if we already have a
549 // definition.
550 return false;
552 case UNDEF * 16 + DYN_WEAK_DEF:
553 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
554 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
555 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
556 // Use a weak dynamic definition if we have a reference.
557 return true;
559 case COMMON * 16 + DYN_WEAK_DEF:
560 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
561 case DYN_COMMON * 16 + DYN_WEAK_DEF:
562 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
563 // Ignore a weak dynamic definition if we already have a common
564 // definition.
565 return false;
567 case DEF * 16 + UNDEF:
568 case WEAK_DEF * 16 + UNDEF:
569 case DYN_DEF * 16 + UNDEF:
570 case DYN_WEAK_DEF * 16 + UNDEF:
571 case UNDEF * 16 + UNDEF:
572 // A new undefined reference tells us nothing.
573 return false;
575 case WEAK_UNDEF * 16 + UNDEF:
576 case DYN_UNDEF * 16 + UNDEF:
577 case DYN_WEAK_UNDEF * 16 + UNDEF:
578 // A strong undef overrides a dynamic or weak undef.
579 return true;
581 case COMMON * 16 + UNDEF:
582 case WEAK_COMMON * 16 + UNDEF:
583 case DYN_COMMON * 16 + UNDEF:
584 case DYN_WEAK_COMMON * 16 + UNDEF:
585 // A new undefined reference tells us nothing.
586 return false;
588 case DEF * 16 + WEAK_UNDEF:
589 case WEAK_DEF * 16 + WEAK_UNDEF:
590 case DYN_DEF * 16 + WEAK_UNDEF:
591 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
592 case UNDEF * 16 + WEAK_UNDEF:
593 case WEAK_UNDEF * 16 + WEAK_UNDEF:
594 case DYN_UNDEF * 16 + WEAK_UNDEF:
595 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
596 case COMMON * 16 + WEAK_UNDEF:
597 case WEAK_COMMON * 16 + WEAK_UNDEF:
598 case DYN_COMMON * 16 + WEAK_UNDEF:
599 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
600 // A new weak undefined reference tells us nothing.
601 return false;
603 case DEF * 16 + DYN_UNDEF:
604 case WEAK_DEF * 16 + DYN_UNDEF:
605 case DYN_DEF * 16 + DYN_UNDEF:
606 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
607 case UNDEF * 16 + DYN_UNDEF:
608 case WEAK_UNDEF * 16 + DYN_UNDEF:
609 case DYN_UNDEF * 16 + DYN_UNDEF:
610 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
611 case COMMON * 16 + DYN_UNDEF:
612 case WEAK_COMMON * 16 + DYN_UNDEF:
613 case DYN_COMMON * 16 + DYN_UNDEF:
614 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
615 // A new dynamic undefined reference tells us nothing.
616 return false;
618 case DEF * 16 + DYN_WEAK_UNDEF:
619 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
620 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
621 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
622 case UNDEF * 16 + DYN_WEAK_UNDEF:
623 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
624 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
625 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
626 case COMMON * 16 + DYN_WEAK_UNDEF:
627 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
628 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
629 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
630 // A new weak dynamic undefined reference tells us nothing.
631 return false;
633 case DEF * 16 + COMMON:
634 // A common symbol does not override a definition.
635 if (parameters->options().warn_common())
636 Symbol_table::report_resolve_problem(false,
637 _("common '%s' overridden by "
638 "previous definition"),
639 to, object);
640 return false;
642 case WEAK_DEF * 16 + COMMON:
643 case DYN_DEF * 16 + COMMON:
644 case DYN_WEAK_DEF * 16 + COMMON:
645 // A common symbol does override a weak definition or a dynamic
646 // definition.
647 return true;
649 case UNDEF * 16 + COMMON:
650 case WEAK_UNDEF * 16 + COMMON:
651 case DYN_UNDEF * 16 + COMMON:
652 case DYN_WEAK_UNDEF * 16 + COMMON:
653 // A common symbol is a definition for a reference.
654 return true;
656 case COMMON * 16 + COMMON:
657 // Set the size to the maximum.
658 *adjust_common_sizes = true;
659 return false;
661 case WEAK_COMMON * 16 + COMMON:
662 // I'm not sure just what a weak common symbol means, but
663 // presumably it can be overridden by a regular common symbol.
664 return true;
666 case DYN_COMMON * 16 + COMMON:
667 case DYN_WEAK_COMMON * 16 + COMMON:
668 // Use the real common symbol, but adjust the size if necessary.
669 *adjust_common_sizes = true;
670 return true;
672 case DEF * 16 + WEAK_COMMON:
673 case WEAK_DEF * 16 + WEAK_COMMON:
674 case DYN_DEF * 16 + WEAK_COMMON:
675 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
676 // Whatever a weak common symbol is, it won't override a
677 // definition.
678 return false;
680 case UNDEF * 16 + WEAK_COMMON:
681 case WEAK_UNDEF * 16 + WEAK_COMMON:
682 case DYN_UNDEF * 16 + WEAK_COMMON:
683 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
684 // A weak common symbol is better than an undefined symbol.
685 return true;
687 case COMMON * 16 + WEAK_COMMON:
688 case WEAK_COMMON * 16 + WEAK_COMMON:
689 case DYN_COMMON * 16 + WEAK_COMMON:
690 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
691 // Ignore a weak common symbol in the presence of a real common
692 // symbol.
693 return false;
695 case DEF * 16 + DYN_COMMON:
696 case WEAK_DEF * 16 + DYN_COMMON:
697 case DYN_DEF * 16 + DYN_COMMON:
698 case DYN_WEAK_DEF * 16 + DYN_COMMON:
699 // Ignore a dynamic common symbol in the presence of a
700 // definition.
701 return false;
703 case UNDEF * 16 + DYN_COMMON:
704 case WEAK_UNDEF * 16 + DYN_COMMON:
705 case DYN_UNDEF * 16 + DYN_COMMON:
706 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
707 // A dynamic common symbol is a definition of sorts.
708 return true;
710 case COMMON * 16 + DYN_COMMON:
711 case WEAK_COMMON * 16 + DYN_COMMON:
712 case DYN_COMMON * 16 + DYN_COMMON:
713 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
714 // Set the size to the maximum.
715 *adjust_common_sizes = true;
716 return false;
718 case DEF * 16 + DYN_WEAK_COMMON:
719 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
720 case DYN_DEF * 16 + DYN_WEAK_COMMON:
721 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
722 // A common symbol is ignored in the face of a definition.
723 return false;
725 case UNDEF * 16 + DYN_WEAK_COMMON:
726 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
727 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
728 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
729 // I guess a weak common symbol is better than a definition.
730 return true;
732 case COMMON * 16 + DYN_WEAK_COMMON:
733 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
734 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
735 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
736 // Set the size to the maximum.
737 *adjust_common_sizes = true;
738 return false;
740 default:
741 gold_unreachable();
745 // Issue an error or warning due to symbol resolution. IS_ERROR
746 // indicates an error rather than a warning. MSG is the error
747 // message; it is expected to have a %s for the symbol name. TO is
748 // the existing symbol. OBJECT is where the new symbol was found.
750 // FIXME: We should have better location information here. When the
751 // symbol is defined, we should be able to pull the location from the
752 // debug info if there is any.
754 void
755 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
756 const Symbol* to, Object* object)
758 std::string demangled(to->demangled_name());
759 size_t len = strlen(msg) + demangled.length() + 10;
760 char* buf = new char[len];
761 snprintf(buf, len, msg, demangled.c_str());
763 const char* objname;
764 if (object != NULL)
765 objname = object->name().c_str();
766 else
767 objname = _("command line");
769 if (is_error)
770 gold_error("%s: %s", objname, buf);
771 else
772 gold_warning("%s: %s", objname, buf);
774 delete[] buf;
776 if (to->source() == Symbol::FROM_OBJECT)
777 objname = to->object()->name().c_str();
778 else
779 objname = _("command line");
780 gold_info("%s: %s: previous definition here", program_name, objname);
783 // A special case of should_override which is only called for a strong
784 // defined symbol from a regular object file. This is used when
785 // defining special symbols.
787 bool
788 Symbol_table::should_override_with_special(const Symbol* to)
790 bool adjust_common_sizes;
791 unsigned int frombits = global_flag | regular_flag | def_flag;
792 bool ret = Symbol_table::should_override(to, frombits, NULL,
793 &adjust_common_sizes);
794 gold_assert(!adjust_common_sizes);
795 return ret;
798 // Override symbol base with a special symbol.
800 void
801 Symbol::override_base_with_special(const Symbol* from)
803 gold_assert(this->name_ == from->name_ || this->has_alias());
805 this->source_ = from->source_;
806 switch (from->source_)
808 case FROM_OBJECT:
809 this->u_.from_object = from->u_.from_object;
810 break;
811 case IN_OUTPUT_DATA:
812 this->u_.in_output_data = from->u_.in_output_data;
813 break;
814 case IN_OUTPUT_SEGMENT:
815 this->u_.in_output_segment = from->u_.in_output_segment;
816 break;
817 case IS_CONSTANT:
818 case IS_UNDEFINED:
819 break;
820 default:
821 gold_unreachable();
822 break;
825 this->override_version(from->version_);
826 this->type_ = from->type_;
827 this->binding_ = from->binding_;
828 this->override_visibility(from->visibility_);
829 this->nonvis_ = from->nonvis_;
831 // Special symbols are always considered to be regular symbols.
832 this->in_reg_ = true;
834 if (from->needs_dynsym_entry_)
835 this->needs_dynsym_entry_ = true;
836 if (from->needs_dynsym_value_)
837 this->needs_dynsym_value_ = true;
839 // We shouldn't see these flags. If we do, we need to handle them
840 // somehow.
841 gold_assert(!from->is_target_special_ || this->is_target_special_);
842 gold_assert(!from->is_forwarder_);
843 gold_assert(!from->has_plt_offset_);
844 gold_assert(!from->has_warning_);
845 gold_assert(!from->is_copied_from_dynobj_);
846 gold_assert(!from->is_forced_local_);
849 // Override a symbol with a special symbol.
851 template<int size>
852 void
853 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
855 this->override_base_with_special(from);
856 this->value_ = from->value_;
857 this->symsize_ = from->symsize_;
860 // Override TOSYM with the special symbol FROMSYM. This handles all
861 // aliases of TOSYM.
863 template<int size>
864 void
865 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
866 const Sized_symbol<size>* fromsym)
868 tosym->override_with_special(fromsym);
869 if (tosym->has_alias())
871 Symbol* sym = this->weak_aliases_[tosym];
872 gold_assert(sym != NULL);
873 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
876 ssym->override_with_special(fromsym);
877 sym = this->weak_aliases_[ssym];
878 gold_assert(sym != NULL);
879 ssym = this->get_sized_symbol<size>(sym);
881 while (ssym != tosym);
883 if (tosym->binding() == elfcpp::STB_LOCAL
884 || ((tosym->visibility() == elfcpp::STV_HIDDEN
885 || tosym->visibility() == elfcpp::STV_INTERNAL)
886 && (tosym->binding() == elfcpp::STB_GLOBAL
887 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
888 || tosym->binding() == elfcpp::STB_WEAK)
889 && !parameters->options().relocatable()))
890 this->force_local(tosym);
893 // Instantiate the templates we need. We could use the configure
894 // script to restrict this to only the ones needed for implemented
895 // targets.
897 #ifdef HAVE_TARGET_32_LITTLE
898 template
899 void
900 Symbol_table::resolve<32, false>(
901 Sized_symbol<32>* to,
902 const elfcpp::Sym<32, false>& sym,
903 unsigned int st_shndx,
904 bool is_ordinary,
905 unsigned int orig_st_shndx,
906 Object* object,
907 const char* version);
908 #endif
910 #ifdef HAVE_TARGET_32_BIG
911 template
912 void
913 Symbol_table::resolve<32, true>(
914 Sized_symbol<32>* to,
915 const elfcpp::Sym<32, true>& sym,
916 unsigned int st_shndx,
917 bool is_ordinary,
918 unsigned int orig_st_shndx,
919 Object* object,
920 const char* version);
921 #endif
923 #ifdef HAVE_TARGET_64_LITTLE
924 template
925 void
926 Symbol_table::resolve<64, false>(
927 Sized_symbol<64>* to,
928 const elfcpp::Sym<64, false>& sym,
929 unsigned int st_shndx,
930 bool is_ordinary,
931 unsigned int orig_st_shndx,
932 Object* object,
933 const char* version);
934 #endif
936 #ifdef HAVE_TARGET_64_BIG
937 template
938 void
939 Symbol_table::resolve<64, true>(
940 Sized_symbol<64>* to,
941 const elfcpp::Sym<64, true>& sym,
942 unsigned int st_shndx,
943 bool is_ordinary,
944 unsigned int orig_st_shndx,
945 Object* object,
946 const char* version);
947 #endif
949 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
950 template
951 void
952 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
953 const Sized_symbol<32>*);
954 #endif
956 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
957 template
958 void
959 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
960 const Sized_symbol<64>*);
961 #endif
963 } // End namespace gold.