Add -Wshadow to the gcc command line options used when compiling the binutils.
[binutils.git] / gas / config / tc-arm.c
blob16e65d21375be00ca96599d358027334bbea2269
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
36 #include "opcode/arm.h"
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
43 #include "dwarf2dbg.h"
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
51 static struct
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
80 #endif /* OBJ_ELF */
82 /* Results from operand parsing worker functions. */
84 typedef enum
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
91 enum arm_float_abi
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 #if defined __XSCALE__
101 #define CPU_DEFAULT ARM_ARCH_XSCALE
102 #else
103 #if defined __thumb__
104 #define CPU_DEFAULT ARM_ARCH_V5T
105 #endif
106 #endif
107 #endif
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 static arm_feature_set cpu_variant;
130 static arm_feature_set arm_arch_used;
131 static arm_feature_set thumb_arch_used;
133 /* Flags stored in private area of BFD structure. */
134 static int uses_apcs_26 = FALSE;
135 static int atpcs = FALSE;
136 static int support_interwork = FALSE;
137 static int uses_apcs_float = FALSE;
138 static int pic_code = FALSE;
139 static int fix_v4bx = FALSE;
140 /* Warn on using deprecated features. */
141 static int warn_on_deprecated = TRUE;
144 /* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
147 static const arm_feature_set *legacy_cpu = NULL;
148 static const arm_feature_set *legacy_fpu = NULL;
150 static const arm_feature_set *mcpu_cpu_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static const arm_feature_set *march_fpu_opt = NULL;
154 static const arm_feature_set *mfpu_opt = NULL;
155 static const arm_feature_set *object_arch = NULL;
157 /* Constants for known architecture features. */
158 static const arm_feature_set fpu_default = FPU_DEFAULT;
159 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
161 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
163 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
168 #ifdef CPU_DEFAULT
169 static const arm_feature_set cpu_default = CPU_DEFAULT;
170 #endif
172 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180 static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
190 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
191 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
192 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
193 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
194 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
202 static const arm_feature_set arm_arch_any = ARM_ANY;
203 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
204 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
205 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
207 static const arm_feature_set arm_cext_iwmmxt2 =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
209 static const arm_feature_set arm_cext_iwmmxt =
210 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
211 static const arm_feature_set arm_cext_xscale =
212 ARM_FEATURE (0, ARM_CEXT_XSCALE);
213 static const arm_feature_set arm_cext_maverick =
214 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
215 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
216 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
217 static const arm_feature_set fpu_vfp_ext_v1xd =
218 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
219 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
220 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
221 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
222 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
223 static const arm_feature_set fpu_vfp_ext_d32 =
224 ARM_FEATURE (0, FPU_VFP_EXT_D32);
225 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
226 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
227 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
229 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
230 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
246 bfd_boolean
247 arm_is_eabi (void)
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
251 #endif
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263 /* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266 #define MODE_RECORDED (1 << 4)
268 /* Specifies the intrinsic IT insn behavior mode. */
269 enum implicit_it_mode
271 IMPLICIT_IT_MODE_NEVER = 0x00,
272 IMPLICIT_IT_MODE_ARM = 0x01,
273 IMPLICIT_IT_MODE_THUMB = 0x02,
274 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
276 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
278 /* If unified_syntax is true, we are processing the new unified
279 ARM/Thumb syntax. Important differences from the old ARM mode:
281 - Immediate operands do not require a # prefix.
282 - Conditional affixes always appear at the end of the
283 instruction. (For backward compatibility, those instructions
284 that formerly had them in the middle, continue to accept them
285 there.)
286 - The IT instruction may appear, and if it does is validated
287 against subsequent conditional affixes. It does not generate
288 machine code.
290 Important differences from the old Thumb mode:
292 - Immediate operands do not require a # prefix.
293 - Most of the V6T2 instructions are only available in unified mode.
294 - The .N and .W suffixes are recognized and honored (it is an error
295 if they cannot be honored).
296 - All instructions set the flags if and only if they have an 's' affix.
297 - Conditional affixes may be used. They are validated against
298 preceding IT instructions. Unlike ARM mode, you cannot use a
299 conditional affix except in the scope of an IT instruction. */
301 static bfd_boolean unified_syntax = FALSE;
303 enum neon_el_type
305 NT_invtype,
306 NT_untyped,
307 NT_integer,
308 NT_float,
309 NT_poly,
310 NT_signed,
311 NT_unsigned
314 struct neon_type_el
316 enum neon_el_type type;
317 unsigned size;
320 #define NEON_MAX_TYPE_ELS 4
322 struct neon_type
324 struct neon_type_el el[NEON_MAX_TYPE_ELS];
325 unsigned elems;
328 enum it_instruction_type
330 OUTSIDE_IT_INSN,
331 INSIDE_IT_INSN,
332 INSIDE_IT_LAST_INSN,
333 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
334 if inside, should be the last one. */
335 NEUTRAL_IT_INSN, /* This could be either inside or outside,
336 i.e. BKPT and NOP. */
337 IT_INSN /* The IT insn has been parsed. */
340 struct arm_it
342 const char * error;
343 unsigned long instruction;
344 int size;
345 int size_req;
346 int cond;
347 /* "uncond_value" is set to the value in place of the conditional field in
348 unconditional versions of the instruction, or -1 if nothing is
349 appropriate. */
350 int uncond_value;
351 struct neon_type vectype;
352 /* Set to the opcode if the instruction needs relaxation.
353 Zero if the instruction is not relaxed. */
354 unsigned long relax;
355 struct
357 bfd_reloc_code_real_type type;
358 expressionS exp;
359 int pc_rel;
360 } reloc;
362 enum it_instruction_type it_insn_type;
364 struct
366 unsigned reg;
367 signed int imm;
368 struct neon_type_el vectype;
369 unsigned present : 1; /* Operand present. */
370 unsigned isreg : 1; /* Operand was a register. */
371 unsigned immisreg : 1; /* .imm field is a second register. */
372 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
373 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
374 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
375 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
376 instructions. This allows us to disambiguate ARM <-> vector insns. */
377 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
378 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
379 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
380 unsigned issingle : 1; /* Operand is VFP single-precision register. */
381 unsigned hasreloc : 1; /* Operand has relocation suffix. */
382 unsigned writeback : 1; /* Operand has trailing ! */
383 unsigned preind : 1; /* Preindexed address. */
384 unsigned postind : 1; /* Postindexed address. */
385 unsigned negative : 1; /* Index register was negated. */
386 unsigned shifted : 1; /* Shift applied to operation. */
387 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
388 } operands[6];
391 static struct arm_it inst;
393 #define NUM_FLOAT_VALS 8
395 const char * fp_const[] =
397 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400 /* Number of littlenums required to hold an extended precision number. */
401 #define MAX_LITTLENUMS 6
403 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
405 #define FAIL (-1)
406 #define SUCCESS (0)
408 #define SUFF_S 1
409 #define SUFF_D 2
410 #define SUFF_E 3
411 #define SUFF_P 4
413 #define CP_T_X 0x00008000
414 #define CP_T_Y 0x00400000
416 #define CONDS_BIT 0x00100000
417 #define LOAD_BIT 0x00100000
419 #define DOUBLE_LOAD_FLAG 0x00000001
421 struct asm_cond
423 const char * template_name;
424 unsigned long value;
427 #define COND_ALWAYS 0xE
429 struct asm_psr
431 const char * template_name;
432 unsigned long field;
435 struct asm_barrier_opt
437 const char * template_name;
438 unsigned long value;
441 /* The bit that distinguishes CPSR and SPSR. */
442 #define SPSR_BIT (1 << 22)
444 /* The individual PSR flag bits. */
445 #define PSR_c (1 << 16)
446 #define PSR_x (1 << 17)
447 #define PSR_s (1 << 18)
448 #define PSR_f (1 << 19)
450 struct reloc_entry
452 char * name;
453 bfd_reloc_code_real_type reloc;
456 enum vfp_reg_pos
458 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
459 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
462 enum vfp_ldstm_type
464 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467 /* Bits for DEFINED field in neon_typed_alias. */
468 #define NTA_HASTYPE 1
469 #define NTA_HASINDEX 2
471 struct neon_typed_alias
473 unsigned char defined;
474 unsigned char index;
475 struct neon_type_el eltype;
478 /* ARM register categories. This includes coprocessor numbers and various
479 architecture extensions' registers. */
480 enum arm_reg_type
482 REG_TYPE_RN,
483 REG_TYPE_CP,
484 REG_TYPE_CN,
485 REG_TYPE_FN,
486 REG_TYPE_VFS,
487 REG_TYPE_VFD,
488 REG_TYPE_NQ,
489 REG_TYPE_VFSD,
490 REG_TYPE_NDQ,
491 REG_TYPE_NSDQ,
492 REG_TYPE_VFC,
493 REG_TYPE_MVF,
494 REG_TYPE_MVD,
495 REG_TYPE_MVFX,
496 REG_TYPE_MVDX,
497 REG_TYPE_MVAX,
498 REG_TYPE_DSPSC,
499 REG_TYPE_MMXWR,
500 REG_TYPE_MMXWC,
501 REG_TYPE_MMXWCG,
502 REG_TYPE_XSCALE,
505 /* Structure for a hash table entry for a register.
506 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
507 information which states whether a vector type or index is specified (for a
508 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
509 struct reg_entry
511 const char * name;
512 unsigned char number;
513 unsigned char type;
514 unsigned char builtin;
515 struct neon_typed_alias * neon;
518 /* Diagnostics used when we don't get a register of the expected type. */
519 const char * const reg_expected_msgs[] =
521 N_("ARM register expected"),
522 N_("bad or missing co-processor number"),
523 N_("co-processor register expected"),
524 N_("FPA register expected"),
525 N_("VFP single precision register expected"),
526 N_("VFP/Neon double precision register expected"),
527 N_("Neon quad precision register expected"),
528 N_("VFP single or double precision register expected"),
529 N_("Neon double or quad precision register expected"),
530 N_("VFP single, double or Neon quad precision register expected"),
531 N_("VFP system register expected"),
532 N_("Maverick MVF register expected"),
533 N_("Maverick MVD register expected"),
534 N_("Maverick MVFX register expected"),
535 N_("Maverick MVDX register expected"),
536 N_("Maverick MVAX register expected"),
537 N_("Maverick DSPSC register expected"),
538 N_("iWMMXt data register expected"),
539 N_("iWMMXt control register expected"),
540 N_("iWMMXt scalar register expected"),
541 N_("XScale accumulator register expected"),
544 /* Some well known registers that we refer to directly elsewhere. */
545 #define REG_SP 13
546 #define REG_LR 14
547 #define REG_PC 15
549 /* ARM instructions take 4bytes in the object file, Thumb instructions
550 take 2: */
551 #define INSN_SIZE 4
553 struct asm_opcode
555 /* Basic string to match. */
556 const char * template_name;
558 /* Parameters to instruction. */
559 unsigned char operands[8];
561 /* Conditional tag - see opcode_lookup. */
562 unsigned int tag : 4;
564 /* Basic instruction code. */
565 unsigned int avalue : 28;
567 /* Thumb-format instruction code. */
568 unsigned int tvalue;
570 /* Which architecture variant provides this instruction. */
571 const arm_feature_set * avariant;
572 const arm_feature_set * tvariant;
574 /* Function to call to encode instruction in ARM format. */
575 void (* aencode) (void);
577 /* Function to call to encode instruction in Thumb format. */
578 void (* tencode) (void);
581 /* Defines for various bits that we will want to toggle. */
582 #define INST_IMMEDIATE 0x02000000
583 #define OFFSET_REG 0x02000000
584 #define HWOFFSET_IMM 0x00400000
585 #define SHIFT_BY_REG 0x00000010
586 #define PRE_INDEX 0x01000000
587 #define INDEX_UP 0x00800000
588 #define WRITE_BACK 0x00200000
589 #define LDM_TYPE_2_OR_3 0x00400000
590 #define CPSI_MMOD 0x00020000
592 #define LITERAL_MASK 0xf000f000
593 #define OPCODE_MASK 0xfe1fffff
594 #define V4_STR_BIT 0x00000020
596 #define T2_SUBS_PC_LR 0xf3de8f00
598 #define DATA_OP_SHIFT 21
600 #define T2_OPCODE_MASK 0xfe1fffff
601 #define T2_DATA_OP_SHIFT 21
603 /* Codes to distinguish the arithmetic instructions. */
604 #define OPCODE_AND 0
605 #define OPCODE_EOR 1
606 #define OPCODE_SUB 2
607 #define OPCODE_RSB 3
608 #define OPCODE_ADD 4
609 #define OPCODE_ADC 5
610 #define OPCODE_SBC 6
611 #define OPCODE_RSC 7
612 #define OPCODE_TST 8
613 #define OPCODE_TEQ 9
614 #define OPCODE_CMP 10
615 #define OPCODE_CMN 11
616 #define OPCODE_ORR 12
617 #define OPCODE_MOV 13
618 #define OPCODE_BIC 14
619 #define OPCODE_MVN 15
621 #define T2_OPCODE_AND 0
622 #define T2_OPCODE_BIC 1
623 #define T2_OPCODE_ORR 2
624 #define T2_OPCODE_ORN 3
625 #define T2_OPCODE_EOR 4
626 #define T2_OPCODE_ADD 8
627 #define T2_OPCODE_ADC 10
628 #define T2_OPCODE_SBC 11
629 #define T2_OPCODE_SUB 13
630 #define T2_OPCODE_RSB 14
632 #define T_OPCODE_MUL 0x4340
633 #define T_OPCODE_TST 0x4200
634 #define T_OPCODE_CMN 0x42c0
635 #define T_OPCODE_NEG 0x4240
636 #define T_OPCODE_MVN 0x43c0
638 #define T_OPCODE_ADD_R3 0x1800
639 #define T_OPCODE_SUB_R3 0x1a00
640 #define T_OPCODE_ADD_HI 0x4400
641 #define T_OPCODE_ADD_ST 0xb000
642 #define T_OPCODE_SUB_ST 0xb080
643 #define T_OPCODE_ADD_SP 0xa800
644 #define T_OPCODE_ADD_PC 0xa000
645 #define T_OPCODE_ADD_I8 0x3000
646 #define T_OPCODE_SUB_I8 0x3800
647 #define T_OPCODE_ADD_I3 0x1c00
648 #define T_OPCODE_SUB_I3 0x1e00
650 #define T_OPCODE_ASR_R 0x4100
651 #define T_OPCODE_LSL_R 0x4080
652 #define T_OPCODE_LSR_R 0x40c0
653 #define T_OPCODE_ROR_R 0x41c0
654 #define T_OPCODE_ASR_I 0x1000
655 #define T_OPCODE_LSL_I 0x0000
656 #define T_OPCODE_LSR_I 0x0800
658 #define T_OPCODE_MOV_I8 0x2000
659 #define T_OPCODE_CMP_I8 0x2800
660 #define T_OPCODE_CMP_LR 0x4280
661 #define T_OPCODE_MOV_HR 0x4600
662 #define T_OPCODE_CMP_HR 0x4500
664 #define T_OPCODE_LDR_PC 0x4800
665 #define T_OPCODE_LDR_SP 0x9800
666 #define T_OPCODE_STR_SP 0x9000
667 #define T_OPCODE_LDR_IW 0x6800
668 #define T_OPCODE_STR_IW 0x6000
669 #define T_OPCODE_LDR_IH 0x8800
670 #define T_OPCODE_STR_IH 0x8000
671 #define T_OPCODE_LDR_IB 0x7800
672 #define T_OPCODE_STR_IB 0x7000
673 #define T_OPCODE_LDR_RW 0x5800
674 #define T_OPCODE_STR_RW 0x5000
675 #define T_OPCODE_LDR_RH 0x5a00
676 #define T_OPCODE_STR_RH 0x5200
677 #define T_OPCODE_LDR_RB 0x5c00
678 #define T_OPCODE_STR_RB 0x5400
680 #define T_OPCODE_PUSH 0xb400
681 #define T_OPCODE_POP 0xbc00
683 #define T_OPCODE_BRANCH 0xe000
685 #define THUMB_SIZE 2 /* Size of thumb instruction. */
686 #define THUMB_PP_PC_LR 0x0100
687 #define THUMB_LOAD_BIT 0x0800
688 #define THUMB2_LOAD_BIT 0x00100000
690 #define BAD_ARGS _("bad arguments to instruction")
691 #define BAD_SP _("r13 not allowed here")
692 #define BAD_PC _("r15 not allowed here")
693 #define BAD_COND _("instruction cannot be conditional")
694 #define BAD_OVERLAP _("registers may not be the same")
695 #define BAD_HIREG _("lo register required")
696 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
697 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
698 #define BAD_BRANCH _("branch must be last instruction in IT block")
699 #define BAD_NOT_IT _("instruction not allowed in IT block")
700 #define BAD_FPU _("selected FPU does not support instruction")
701 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
702 #define BAD_IT_COND _("incorrect condition in IT block")
703 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
704 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
706 static struct hash_control * arm_ops_hsh;
707 static struct hash_control * arm_cond_hsh;
708 static struct hash_control * arm_shift_hsh;
709 static struct hash_control * arm_psr_hsh;
710 static struct hash_control * arm_v7m_psr_hsh;
711 static struct hash_control * arm_reg_hsh;
712 static struct hash_control * arm_reloc_hsh;
713 static struct hash_control * arm_barrier_opt_hsh;
715 /* Stuff needed to resolve the label ambiguity
718 label: <insn>
719 may differ from:
721 label:
722 <insn> */
724 symbolS * last_label_seen;
725 static int label_is_thumb_function_name = FALSE;
727 /* Literal pool structure. Held on a per-section
728 and per-sub-section basis. */
730 #define MAX_LITERAL_POOL_SIZE 1024
731 typedef struct literal_pool
733 expressionS literals [MAX_LITERAL_POOL_SIZE];
734 unsigned int next_free_entry;
735 unsigned int id;
736 symbolS * symbol;
737 segT section;
738 subsegT sub_section;
739 struct literal_pool * next;
740 } literal_pool;
742 /* Pointer to a linked list of literal pools. */
743 literal_pool * list_of_pools = NULL;
745 #ifdef OBJ_ELF
746 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
747 #else
748 static struct current_it now_it;
749 #endif
751 static inline int
752 now_it_compatible (int cond)
754 return (cond & ~1) == (now_it.cc & ~1);
757 static inline int
758 conditional_insn (void)
760 return inst.cond != COND_ALWAYS;
763 static int in_it_block (void);
765 static int handle_it_state (void);
767 static void force_automatic_it_block_close (void);
769 static void it_fsm_post_encode (void);
771 #define set_it_insn_type(type) \
772 do \
774 inst.it_insn_type = type; \
775 if (handle_it_state () == FAIL) \
776 return; \
778 while (0)
780 #define set_it_insn_type_nonvoid(type, failret) \
781 do \
783 inst.it_insn_type = type; \
784 if (handle_it_state () == FAIL) \
785 return failret; \
787 while(0)
789 #define set_it_insn_type_last() \
790 do \
792 if (inst.cond == COND_ALWAYS) \
793 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
794 else \
795 set_it_insn_type (INSIDE_IT_LAST_INSN); \
797 while (0)
799 /* Pure syntax. */
801 /* This array holds the chars that always start a comment. If the
802 pre-processor is disabled, these aren't very useful. */
803 const char comment_chars[] = "@";
805 /* This array holds the chars that only start a comment at the beginning of
806 a line. If the line seems to have the form '# 123 filename'
807 .line and .file directives will appear in the pre-processed output. */
808 /* Note that input_file.c hand checks for '#' at the beginning of the
809 first line of the input file. This is because the compiler outputs
810 #NO_APP at the beginning of its output. */
811 /* Also note that comments like this one will always work. */
812 const char line_comment_chars[] = "#";
814 const char line_separator_chars[] = ";";
816 /* Chars that can be used to separate mant
817 from exp in floating point numbers. */
818 const char EXP_CHARS[] = "eE";
820 /* Chars that mean this number is a floating point constant. */
821 /* As in 0f12.456 */
822 /* or 0d1.2345e12 */
824 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
826 /* Prefix characters that indicate the start of an immediate
827 value. */
828 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
830 /* Separator character handling. */
832 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
834 static inline int
835 skip_past_char (char ** str, char c)
837 if (**str == c)
839 (*str)++;
840 return SUCCESS;
842 else
843 return FAIL;
846 #define skip_past_comma(str) skip_past_char (str, ',')
848 /* Arithmetic expressions (possibly involving symbols). */
850 /* Return TRUE if anything in the expression is a bignum. */
852 static int
853 walk_no_bignums (symbolS * sp)
855 if (symbol_get_value_expression (sp)->X_op == O_big)
856 return 1;
858 if (symbol_get_value_expression (sp)->X_add_symbol)
860 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
861 || (symbol_get_value_expression (sp)->X_op_symbol
862 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
865 return 0;
868 static int in_my_get_expression = 0;
870 /* Third argument to my_get_expression. */
871 #define GE_NO_PREFIX 0
872 #define GE_IMM_PREFIX 1
873 #define GE_OPT_PREFIX 2
874 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
875 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
876 #define GE_OPT_PREFIX_BIG 3
878 static int
879 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
881 char * save_in;
882 segT seg;
884 /* In unified syntax, all prefixes are optional. */
885 if (unified_syntax)
886 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
887 : GE_OPT_PREFIX;
889 switch (prefix_mode)
891 case GE_NO_PREFIX: break;
892 case GE_IMM_PREFIX:
893 if (!is_immediate_prefix (**str))
895 inst.error = _("immediate expression requires a # prefix");
896 return FAIL;
898 (*str)++;
899 break;
900 case GE_OPT_PREFIX:
901 case GE_OPT_PREFIX_BIG:
902 if (is_immediate_prefix (**str))
903 (*str)++;
904 break;
905 default: abort ();
908 memset (ep, 0, sizeof (expressionS));
910 save_in = input_line_pointer;
911 input_line_pointer = *str;
912 in_my_get_expression = 1;
913 seg = expression (ep);
914 in_my_get_expression = 0;
916 if (ep->X_op == O_illegal || ep->X_op == O_absent)
918 /* We found a bad or missing expression in md_operand(). */
919 *str = input_line_pointer;
920 input_line_pointer = save_in;
921 if (inst.error == NULL)
922 inst.error = (ep->X_op == O_absent
923 ? _("missing expression") :_("bad expression"));
924 return 1;
927 #ifdef OBJ_AOUT
928 if (seg != absolute_section
929 && seg != text_section
930 && seg != data_section
931 && seg != bss_section
932 && seg != undefined_section)
934 inst.error = _("bad segment");
935 *str = input_line_pointer;
936 input_line_pointer = save_in;
937 return 1;
939 #endif
941 /* Get rid of any bignums now, so that we don't generate an error for which
942 we can't establish a line number later on. Big numbers are never valid
943 in instructions, which is where this routine is always called. */
944 if (prefix_mode != GE_OPT_PREFIX_BIG
945 && (ep->X_op == O_big
946 || (ep->X_add_symbol
947 && (walk_no_bignums (ep->X_add_symbol)
948 || (ep->X_op_symbol
949 && walk_no_bignums (ep->X_op_symbol))))))
951 inst.error = _("invalid constant");
952 *str = input_line_pointer;
953 input_line_pointer = save_in;
954 return 1;
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 0;
962 /* Turn a string in input_line_pointer into a floating point constant
963 of type TYPE, and store the appropriate bytes in *LITP. The number
964 of LITTLENUMS emitted is stored in *SIZEP. An error message is
965 returned, or NULL on OK.
967 Note that fp constants aren't represent in the normal way on the ARM.
968 In big endian mode, things are as expected. However, in little endian
969 mode fp constants are big-endian word-wise, and little-endian byte-wise
970 within the words. For example, (double) 1.1 in big endian mode is
971 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
972 the byte sequence 99 99 f1 3f 9a 99 99 99.
974 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
976 char *
977 md_atof (int type, char * litP, int * sizeP)
979 int prec;
980 LITTLENUM_TYPE words[MAX_LITTLENUMS];
981 char *t;
982 int i;
984 switch (type)
986 case 'f':
987 case 'F':
988 case 's':
989 case 'S':
990 prec = 2;
991 break;
993 case 'd':
994 case 'D':
995 case 'r':
996 case 'R':
997 prec = 4;
998 break;
1000 case 'x':
1001 case 'X':
1002 prec = 5;
1003 break;
1005 case 'p':
1006 case 'P':
1007 prec = 5;
1008 break;
1010 default:
1011 *sizeP = 0;
1012 return _("Unrecognized or unsupported floating point constant");
1015 t = atof_ieee (input_line_pointer, type, words);
1016 if (t)
1017 input_line_pointer = t;
1018 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1020 if (target_big_endian)
1022 for (i = 0; i < prec; i++)
1024 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1025 litP += sizeof (LITTLENUM_TYPE);
1028 else
1030 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1031 for (i = prec - 1; i >= 0; i--)
1033 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1034 litP += sizeof (LITTLENUM_TYPE);
1036 else
1037 /* For a 4 byte float the order of elements in `words' is 1 0.
1038 For an 8 byte float the order is 1 0 3 2. */
1039 for (i = 0; i < prec; i += 2)
1041 md_number_to_chars (litP, (valueT) words[i + 1],
1042 sizeof (LITTLENUM_TYPE));
1043 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1044 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1045 litP += 2 * sizeof (LITTLENUM_TYPE);
1049 return NULL;
1052 /* We handle all bad expressions here, so that we can report the faulty
1053 instruction in the error message. */
1054 void
1055 md_operand (expressionS * exp)
1057 if (in_my_get_expression)
1058 exp->X_op = O_illegal;
1061 /* Immediate values. */
1063 /* Generic immediate-value read function for use in directives.
1064 Accepts anything that 'expression' can fold to a constant.
1065 *val receives the number. */
1066 #ifdef OBJ_ELF
1067 static int
1068 immediate_for_directive (int *val)
1070 expressionS exp;
1071 exp.X_op = O_illegal;
1073 if (is_immediate_prefix (*input_line_pointer))
1075 input_line_pointer++;
1076 expression (&exp);
1079 if (exp.X_op != O_constant)
1081 as_bad (_("expected #constant"));
1082 ignore_rest_of_line ();
1083 return FAIL;
1085 *val = exp.X_add_number;
1086 return SUCCESS;
1088 #endif
1090 /* Register parsing. */
1092 /* Generic register parser. CCP points to what should be the
1093 beginning of a register name. If it is indeed a valid register
1094 name, advance CCP over it and return the reg_entry structure;
1095 otherwise return NULL. Does not issue diagnostics. */
1097 static struct reg_entry *
1098 arm_reg_parse_multi (char **ccp)
1100 char *start = *ccp;
1101 char *p;
1102 struct reg_entry *reg;
1104 #ifdef REGISTER_PREFIX
1105 if (*start != REGISTER_PREFIX)
1106 return NULL;
1107 start++;
1108 #endif
1109 #ifdef OPTIONAL_REGISTER_PREFIX
1110 if (*start == OPTIONAL_REGISTER_PREFIX)
1111 start++;
1112 #endif
1114 p = start;
1115 if (!ISALPHA (*p) || !is_name_beginner (*p))
1116 return NULL;
1119 p++;
1120 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1122 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1124 if (!reg)
1125 return NULL;
1127 *ccp = p;
1128 return reg;
1131 static int
1132 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1133 enum arm_reg_type type)
1135 /* Alternative syntaxes are accepted for a few register classes. */
1136 switch (type)
1138 case REG_TYPE_MVF:
1139 case REG_TYPE_MVD:
1140 case REG_TYPE_MVFX:
1141 case REG_TYPE_MVDX:
1142 /* Generic coprocessor register names are allowed for these. */
1143 if (reg && reg->type == REG_TYPE_CN)
1144 return reg->number;
1145 break;
1147 case REG_TYPE_CP:
1148 /* For backward compatibility, a bare number is valid here. */
1150 unsigned long processor = strtoul (start, ccp, 10);
1151 if (*ccp != start && processor <= 15)
1152 return processor;
1155 case REG_TYPE_MMXWC:
1156 /* WC includes WCG. ??? I'm not sure this is true for all
1157 instructions that take WC registers. */
1158 if (reg && reg->type == REG_TYPE_MMXWCG)
1159 return reg->number;
1160 break;
1162 default:
1163 break;
1166 return FAIL;
1169 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1170 return value is the register number or FAIL. */
1172 static int
1173 arm_reg_parse (char **ccp, enum arm_reg_type type)
1175 char *start = *ccp;
1176 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1177 int ret;
1179 /* Do not allow a scalar (reg+index) to parse as a register. */
1180 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1181 return FAIL;
1183 if (reg && reg->type == type)
1184 return reg->number;
1186 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1187 return ret;
1189 *ccp = start;
1190 return FAIL;
1193 /* Parse a Neon type specifier. *STR should point at the leading '.'
1194 character. Does no verification at this stage that the type fits the opcode
1195 properly. E.g.,
1197 .i32.i32.s16
1198 .s32.f32
1199 .u16
1201 Can all be legally parsed by this function.
1203 Fills in neon_type struct pointer with parsed information, and updates STR
1204 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1205 type, FAIL if not. */
1207 static int
1208 parse_neon_type (struct neon_type *type, char **str)
1210 char *ptr = *str;
1212 if (type)
1213 type->elems = 0;
1215 while (type->elems < NEON_MAX_TYPE_ELS)
1217 enum neon_el_type thistype = NT_untyped;
1218 unsigned thissize = -1u;
1220 if (*ptr != '.')
1221 break;
1223 ptr++;
1225 /* Just a size without an explicit type. */
1226 if (ISDIGIT (*ptr))
1227 goto parsesize;
1229 switch (TOLOWER (*ptr))
1231 case 'i': thistype = NT_integer; break;
1232 case 'f': thistype = NT_float; break;
1233 case 'p': thistype = NT_poly; break;
1234 case 's': thistype = NT_signed; break;
1235 case 'u': thistype = NT_unsigned; break;
1236 case 'd':
1237 thistype = NT_float;
1238 thissize = 64;
1239 ptr++;
1240 goto done;
1241 default:
1242 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1243 return FAIL;
1246 ptr++;
1248 /* .f is an abbreviation for .f32. */
1249 if (thistype == NT_float && !ISDIGIT (*ptr))
1250 thissize = 32;
1251 else
1253 parsesize:
1254 thissize = strtoul (ptr, &ptr, 10);
1256 if (thissize != 8 && thissize != 16 && thissize != 32
1257 && thissize != 64)
1259 as_bad (_("bad size %d in type specifier"), thissize);
1260 return FAIL;
1264 done:
1265 if (type)
1267 type->el[type->elems].type = thistype;
1268 type->el[type->elems].size = thissize;
1269 type->elems++;
1273 /* Empty/missing type is not a successful parse. */
1274 if (type->elems == 0)
1275 return FAIL;
1277 *str = ptr;
1279 return SUCCESS;
1282 /* Errors may be set multiple times during parsing or bit encoding
1283 (particularly in the Neon bits), but usually the earliest error which is set
1284 will be the most meaningful. Avoid overwriting it with later (cascading)
1285 errors by calling this function. */
1287 static void
1288 first_error (const char *err)
1290 if (!inst.error)
1291 inst.error = err;
1294 /* Parse a single type, e.g. ".s32", leading period included. */
1295 static int
1296 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1298 char *str = *ccp;
1299 struct neon_type optype;
1301 if (*str == '.')
1303 if (parse_neon_type (&optype, &str) == SUCCESS)
1305 if (optype.elems == 1)
1306 *vectype = optype.el[0];
1307 else
1309 first_error (_("only one type should be specified for operand"));
1310 return FAIL;
1313 else
1315 first_error (_("vector type expected"));
1316 return FAIL;
1319 else
1320 return FAIL;
1322 *ccp = str;
1324 return SUCCESS;
1327 /* Special meanings for indices (which have a range of 0-7), which will fit into
1328 a 4-bit integer. */
1330 #define NEON_ALL_LANES 15
1331 #define NEON_INTERLEAVE_LANES 14
1333 /* Parse either a register or a scalar, with an optional type. Return the
1334 register number, and optionally fill in the actual type of the register
1335 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1336 type/index information in *TYPEINFO. */
1338 static int
1339 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1340 enum arm_reg_type *rtype,
1341 struct neon_typed_alias *typeinfo)
1343 char *str = *ccp;
1344 struct reg_entry *reg = arm_reg_parse_multi (&str);
1345 struct neon_typed_alias atype;
1346 struct neon_type_el parsetype;
1348 atype.defined = 0;
1349 atype.index = -1;
1350 atype.eltype.type = NT_invtype;
1351 atype.eltype.size = -1;
1353 /* Try alternate syntax for some types of register. Note these are mutually
1354 exclusive with the Neon syntax extensions. */
1355 if (reg == NULL)
1357 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1358 if (altreg != FAIL)
1359 *ccp = str;
1360 if (typeinfo)
1361 *typeinfo = atype;
1362 return altreg;
1365 /* Undo polymorphism when a set of register types may be accepted. */
1366 if ((type == REG_TYPE_NDQ
1367 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1368 || (type == REG_TYPE_VFSD
1369 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1370 || (type == REG_TYPE_NSDQ
1371 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1372 || reg->type == REG_TYPE_NQ))
1373 || (type == REG_TYPE_MMXWC
1374 && (reg->type == REG_TYPE_MMXWCG)))
1375 type = (enum arm_reg_type) reg->type;
1377 if (type != reg->type)
1378 return FAIL;
1380 if (reg->neon)
1381 atype = *reg->neon;
1383 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1385 if ((atype.defined & NTA_HASTYPE) != 0)
1387 first_error (_("can't redefine type for operand"));
1388 return FAIL;
1390 atype.defined |= NTA_HASTYPE;
1391 atype.eltype = parsetype;
1394 if (skip_past_char (&str, '[') == SUCCESS)
1396 if (type != REG_TYPE_VFD)
1398 first_error (_("only D registers may be indexed"));
1399 return FAIL;
1402 if ((atype.defined & NTA_HASINDEX) != 0)
1404 first_error (_("can't change index for operand"));
1405 return FAIL;
1408 atype.defined |= NTA_HASINDEX;
1410 if (skip_past_char (&str, ']') == SUCCESS)
1411 atype.index = NEON_ALL_LANES;
1412 else
1414 expressionS exp;
1416 my_get_expression (&exp, &str, GE_NO_PREFIX);
1418 if (exp.X_op != O_constant)
1420 first_error (_("constant expression required"));
1421 return FAIL;
1424 if (skip_past_char (&str, ']') == FAIL)
1425 return FAIL;
1427 atype.index = exp.X_add_number;
1431 if (typeinfo)
1432 *typeinfo = atype;
1434 if (rtype)
1435 *rtype = type;
1437 *ccp = str;
1439 return reg->number;
1442 /* Like arm_reg_parse, but allow allow the following extra features:
1443 - If RTYPE is non-zero, return the (possibly restricted) type of the
1444 register (e.g. Neon double or quad reg when either has been requested).
1445 - If this is a Neon vector type with additional type information, fill
1446 in the struct pointed to by VECTYPE (if non-NULL).
1447 This function will fault on encountering a scalar. */
1449 static int
1450 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1451 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1453 struct neon_typed_alias atype;
1454 char *str = *ccp;
1455 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1457 if (reg == FAIL)
1458 return FAIL;
1460 /* Do not allow a scalar (reg+index) to parse as a register. */
1461 if ((atype.defined & NTA_HASINDEX) != 0)
1463 first_error (_("register operand expected, but got scalar"));
1464 return FAIL;
1467 if (vectype)
1468 *vectype = atype.eltype;
1470 *ccp = str;
1472 return reg;
1475 #define NEON_SCALAR_REG(X) ((X) >> 4)
1476 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1478 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1479 have enough information to be able to do a good job bounds-checking. So, we
1480 just do easy checks here, and do further checks later. */
1482 static int
1483 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1485 int reg;
1486 char *str = *ccp;
1487 struct neon_typed_alias atype;
1489 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1491 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1492 return FAIL;
1494 if (atype.index == NEON_ALL_LANES)
1496 first_error (_("scalar must have an index"));
1497 return FAIL;
1499 else if (atype.index >= 64 / elsize)
1501 first_error (_("scalar index out of range"));
1502 return FAIL;
1505 if (type)
1506 *type = atype.eltype;
1508 *ccp = str;
1510 return reg * 16 + atype.index;
1513 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1515 static long
1516 parse_reg_list (char ** strp)
1518 char * str = * strp;
1519 long range = 0;
1520 int another_range;
1522 /* We come back here if we get ranges concatenated by '+' or '|'. */
1525 another_range = 0;
1527 if (*str == '{')
1529 int in_range = 0;
1530 int cur_reg = -1;
1532 str++;
1535 int reg;
1537 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1539 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1540 return FAIL;
1543 if (in_range)
1545 int i;
1547 if (reg <= cur_reg)
1549 first_error (_("bad range in register list"));
1550 return FAIL;
1553 for (i = cur_reg + 1; i < reg; i++)
1555 if (range & (1 << i))
1556 as_tsktsk
1557 (_("Warning: duplicated register (r%d) in register list"),
1559 else
1560 range |= 1 << i;
1562 in_range = 0;
1565 if (range & (1 << reg))
1566 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1567 reg);
1568 else if (reg <= cur_reg)
1569 as_tsktsk (_("Warning: register range not in ascending order"));
1571 range |= 1 << reg;
1572 cur_reg = reg;
1574 while (skip_past_comma (&str) != FAIL
1575 || (in_range = 1, *str++ == '-'));
1576 str--;
1578 if (*str++ != '}')
1580 first_error (_("missing `}'"));
1581 return FAIL;
1584 else
1586 expressionS exp;
1588 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1589 return FAIL;
1591 if (exp.X_op == O_constant)
1593 if (exp.X_add_number
1594 != (exp.X_add_number & 0x0000ffff))
1596 inst.error = _("invalid register mask");
1597 return FAIL;
1600 if ((range & exp.X_add_number) != 0)
1602 int regno = range & exp.X_add_number;
1604 regno &= -regno;
1605 regno = (1 << regno) - 1;
1606 as_tsktsk
1607 (_("Warning: duplicated register (r%d) in register list"),
1608 regno);
1611 range |= exp.X_add_number;
1613 else
1615 if (inst.reloc.type != 0)
1617 inst.error = _("expression too complex");
1618 return FAIL;
1621 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1622 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1623 inst.reloc.pc_rel = 0;
1627 if (*str == '|' || *str == '+')
1629 str++;
1630 another_range = 1;
1633 while (another_range);
1635 *strp = str;
1636 return range;
1639 /* Types of registers in a list. */
1641 enum reg_list_els
1643 REGLIST_VFP_S,
1644 REGLIST_VFP_D,
1645 REGLIST_NEON_D
1648 /* Parse a VFP register list. If the string is invalid return FAIL.
1649 Otherwise return the number of registers, and set PBASE to the first
1650 register. Parses registers of type ETYPE.
1651 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1652 - Q registers can be used to specify pairs of D registers
1653 - { } can be omitted from around a singleton register list
1654 FIXME: This is not implemented, as it would require backtracking in
1655 some cases, e.g.:
1656 vtbl.8 d3,d4,d5
1657 This could be done (the meaning isn't really ambiguous), but doesn't
1658 fit in well with the current parsing framework.
1659 - 32 D registers may be used (also true for VFPv3).
1660 FIXME: Types are ignored in these register lists, which is probably a
1661 bug. */
1663 static int
1664 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1666 char *str = *ccp;
1667 int base_reg;
1668 int new_base;
1669 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1670 int max_regs = 0;
1671 int count = 0;
1672 int warned = 0;
1673 unsigned long mask = 0;
1674 int i;
1676 if (*str != '{')
1678 inst.error = _("expecting {");
1679 return FAIL;
1682 str++;
1684 switch (etype)
1686 case REGLIST_VFP_S:
1687 regtype = REG_TYPE_VFS;
1688 max_regs = 32;
1689 break;
1691 case REGLIST_VFP_D:
1692 regtype = REG_TYPE_VFD;
1693 break;
1695 case REGLIST_NEON_D:
1696 regtype = REG_TYPE_NDQ;
1697 break;
1700 if (etype != REGLIST_VFP_S)
1702 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1703 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1705 max_regs = 32;
1706 if (thumb_mode)
1707 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1708 fpu_vfp_ext_d32);
1709 else
1710 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1711 fpu_vfp_ext_d32);
1713 else
1714 max_regs = 16;
1717 base_reg = max_regs;
1721 int setmask = 1, addregs = 1;
1723 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1725 if (new_base == FAIL)
1727 first_error (_(reg_expected_msgs[regtype]));
1728 return FAIL;
1731 if (new_base >= max_regs)
1733 first_error (_("register out of range in list"));
1734 return FAIL;
1737 /* Note: a value of 2 * n is returned for the register Q<n>. */
1738 if (regtype == REG_TYPE_NQ)
1740 setmask = 3;
1741 addregs = 2;
1744 if (new_base < base_reg)
1745 base_reg = new_base;
1747 if (mask & (setmask << new_base))
1749 first_error (_("invalid register list"));
1750 return FAIL;
1753 if ((mask >> new_base) != 0 && ! warned)
1755 as_tsktsk (_("register list not in ascending order"));
1756 warned = 1;
1759 mask |= setmask << new_base;
1760 count += addregs;
1762 if (*str == '-') /* We have the start of a range expression */
1764 int high_range;
1766 str++;
1768 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1769 == FAIL)
1771 inst.error = gettext (reg_expected_msgs[regtype]);
1772 return FAIL;
1775 if (high_range >= max_regs)
1777 first_error (_("register out of range in list"));
1778 return FAIL;
1781 if (regtype == REG_TYPE_NQ)
1782 high_range = high_range + 1;
1784 if (high_range <= new_base)
1786 inst.error = _("register range not in ascending order");
1787 return FAIL;
1790 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1792 if (mask & (setmask << new_base))
1794 inst.error = _("invalid register list");
1795 return FAIL;
1798 mask |= setmask << new_base;
1799 count += addregs;
1803 while (skip_past_comma (&str) != FAIL);
1805 str++;
1807 /* Sanity check -- should have raised a parse error above. */
1808 if (count == 0 || count > max_regs)
1809 abort ();
1811 *pbase = base_reg;
1813 /* Final test -- the registers must be consecutive. */
1814 mask >>= base_reg;
1815 for (i = 0; i < count; i++)
1817 if ((mask & (1u << i)) == 0)
1819 inst.error = _("non-contiguous register range");
1820 return FAIL;
1824 *ccp = str;
1826 return count;
1829 /* True if two alias types are the same. */
1831 static bfd_boolean
1832 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1834 if (!a && !b)
1835 return TRUE;
1837 if (!a || !b)
1838 return FALSE;
1840 if (a->defined != b->defined)
1841 return FALSE;
1843 if ((a->defined & NTA_HASTYPE) != 0
1844 && (a->eltype.type != b->eltype.type
1845 || a->eltype.size != b->eltype.size))
1846 return FALSE;
1848 if ((a->defined & NTA_HASINDEX) != 0
1849 && (a->index != b->index))
1850 return FALSE;
1852 return TRUE;
1855 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1856 The base register is put in *PBASE.
1857 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1858 the return value.
1859 The register stride (minus one) is put in bit 4 of the return value.
1860 Bits [6:5] encode the list length (minus one).
1861 The type of the list elements is put in *ELTYPE, if non-NULL. */
1863 #define NEON_LANE(X) ((X) & 0xf)
1864 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1865 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1867 static int
1868 parse_neon_el_struct_list (char **str, unsigned *pbase,
1869 struct neon_type_el *eltype)
1871 char *ptr = *str;
1872 int base_reg = -1;
1873 int reg_incr = -1;
1874 int count = 0;
1875 int lane = -1;
1876 int leading_brace = 0;
1877 enum arm_reg_type rtype = REG_TYPE_NDQ;
1878 int addregs = 1;
1879 const char *const incr_error = _("register stride must be 1 or 2");
1880 const char *const type_error = _("mismatched element/structure types in list");
1881 struct neon_typed_alias firsttype;
1883 if (skip_past_char (&ptr, '{') == SUCCESS)
1884 leading_brace = 1;
1888 struct neon_typed_alias atype;
1889 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1891 if (getreg == FAIL)
1893 first_error (_(reg_expected_msgs[rtype]));
1894 return FAIL;
1897 if (base_reg == -1)
1899 base_reg = getreg;
1900 if (rtype == REG_TYPE_NQ)
1902 reg_incr = 1;
1903 addregs = 2;
1905 firsttype = atype;
1907 else if (reg_incr == -1)
1909 reg_incr = getreg - base_reg;
1910 if (reg_incr < 1 || reg_incr > 2)
1912 first_error (_(incr_error));
1913 return FAIL;
1916 else if (getreg != base_reg + reg_incr * count)
1918 first_error (_(incr_error));
1919 return FAIL;
1922 if (! neon_alias_types_same (&atype, &firsttype))
1924 first_error (_(type_error));
1925 return FAIL;
1928 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1929 modes. */
1930 if (ptr[0] == '-')
1932 struct neon_typed_alias htype;
1933 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1934 if (lane == -1)
1935 lane = NEON_INTERLEAVE_LANES;
1936 else if (lane != NEON_INTERLEAVE_LANES)
1938 first_error (_(type_error));
1939 return FAIL;
1941 if (reg_incr == -1)
1942 reg_incr = 1;
1943 else if (reg_incr != 1)
1945 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1946 return FAIL;
1948 ptr++;
1949 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1950 if (hireg == FAIL)
1952 first_error (_(reg_expected_msgs[rtype]));
1953 return FAIL;
1955 if (! neon_alias_types_same (&htype, &firsttype))
1957 first_error (_(type_error));
1958 return FAIL;
1960 count += hireg + dregs - getreg;
1961 continue;
1964 /* If we're using Q registers, we can't use [] or [n] syntax. */
1965 if (rtype == REG_TYPE_NQ)
1967 count += 2;
1968 continue;
1971 if ((atype.defined & NTA_HASINDEX) != 0)
1973 if (lane == -1)
1974 lane = atype.index;
1975 else if (lane != atype.index)
1977 first_error (_(type_error));
1978 return FAIL;
1981 else if (lane == -1)
1982 lane = NEON_INTERLEAVE_LANES;
1983 else if (lane != NEON_INTERLEAVE_LANES)
1985 first_error (_(type_error));
1986 return FAIL;
1988 count++;
1990 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1992 /* No lane set by [x]. We must be interleaving structures. */
1993 if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
1996 /* Sanity check. */
1997 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1998 || (count > 1 && reg_incr == -1))
2000 first_error (_("error parsing element/structure list"));
2001 return FAIL;
2004 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2006 first_error (_("expected }"));
2007 return FAIL;
2010 if (reg_incr == -1)
2011 reg_incr = 1;
2013 if (eltype)
2014 *eltype = firsttype.eltype;
2016 *pbase = base_reg;
2017 *str = ptr;
2019 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2022 /* Parse an explicit relocation suffix on an expression. This is
2023 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2024 arm_reloc_hsh contains no entries, so this function can only
2025 succeed if there is no () after the word. Returns -1 on error,
2026 BFD_RELOC_UNUSED if there wasn't any suffix. */
2027 static int
2028 parse_reloc (char **str)
2030 struct reloc_entry *r;
2031 char *p, *q;
2033 if (**str != '(')
2034 return BFD_RELOC_UNUSED;
2036 p = *str + 1;
2037 q = p;
2039 while (*q && *q != ')' && *q != ',')
2040 q++;
2041 if (*q != ')')
2042 return -1;
2044 if ((r = (struct reloc_entry *)
2045 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2046 return -1;
2048 *str = q + 1;
2049 return r->reloc;
2052 /* Directives: register aliases. */
2054 static struct reg_entry *
2055 insert_reg_alias (char *str, int number, int type)
2057 struct reg_entry *new_reg;
2058 const char *name;
2060 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2062 if (new_reg->builtin)
2063 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2065 /* Only warn about a redefinition if it's not defined as the
2066 same register. */
2067 else if (new_reg->number != number || new_reg->type != type)
2068 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2070 return NULL;
2073 name = xstrdup (str);
2074 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2076 new_reg->name = name;
2077 new_reg->number = number;
2078 new_reg->type = type;
2079 new_reg->builtin = FALSE;
2080 new_reg->neon = NULL;
2082 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2083 abort ();
2085 return new_reg;
2088 static void
2089 insert_neon_reg_alias (char *str, int number, int type,
2090 struct neon_typed_alias *atype)
2092 struct reg_entry *reg = insert_reg_alias (str, number, type);
2094 if (!reg)
2096 first_error (_("attempt to redefine typed alias"));
2097 return;
2100 if (atype)
2102 reg->neon = (struct neon_typed_alias *)
2103 xmalloc (sizeof (struct neon_typed_alias));
2104 *reg->neon = *atype;
2108 /* Look for the .req directive. This is of the form:
2110 new_register_name .req existing_register_name
2112 If we find one, or if it looks sufficiently like one that we want to
2113 handle any error here, return TRUE. Otherwise return FALSE. */
2115 static bfd_boolean
2116 create_register_alias (char * newname, char *p)
2118 struct reg_entry *old;
2119 char *oldname, *nbuf;
2120 size_t nlen;
2122 /* The input scrubber ensures that whitespace after the mnemonic is
2123 collapsed to single spaces. */
2124 oldname = p;
2125 if (strncmp (oldname, " .req ", 6) != 0)
2126 return FALSE;
2128 oldname += 6;
2129 if (*oldname == '\0')
2130 return FALSE;
2132 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2133 if (!old)
2135 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2136 return TRUE;
2139 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2140 the desired alias name, and p points to its end. If not, then
2141 the desired alias name is in the global original_case_string. */
2142 #ifdef TC_CASE_SENSITIVE
2143 nlen = p - newname;
2144 #else
2145 newname = original_case_string;
2146 nlen = strlen (newname);
2147 #endif
2149 nbuf = (char *) alloca (nlen + 1);
2150 memcpy (nbuf, newname, nlen);
2151 nbuf[nlen] = '\0';
2153 /* Create aliases under the new name as stated; an all-lowercase
2154 version of the new name; and an all-uppercase version of the new
2155 name. */
2156 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2158 for (p = nbuf; *p; p++)
2159 *p = TOUPPER (*p);
2161 if (strncmp (nbuf, newname, nlen))
2163 /* If this attempt to create an additional alias fails, do not bother
2164 trying to create the all-lower case alias. We will fail and issue
2165 a second, duplicate error message. This situation arises when the
2166 programmer does something like:
2167 foo .req r0
2168 Foo .req r1
2169 The second .req creates the "Foo" alias but then fails to create
2170 the artificial FOO alias because it has already been created by the
2171 first .req. */
2172 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2173 return TRUE;
2176 for (p = nbuf; *p; p++)
2177 *p = TOLOWER (*p);
2179 if (strncmp (nbuf, newname, nlen))
2180 insert_reg_alias (nbuf, old->number, old->type);
2183 return TRUE;
2186 /* Create a Neon typed/indexed register alias using directives, e.g.:
2187 X .dn d5.s32[1]
2188 Y .qn 6.s16
2189 Z .dn d7
2190 T .dn Z[0]
2191 These typed registers can be used instead of the types specified after the
2192 Neon mnemonic, so long as all operands given have types. Types can also be
2193 specified directly, e.g.:
2194 vadd d0.s32, d1.s32, d2.s32 */
2196 static bfd_boolean
2197 create_neon_reg_alias (char *newname, char *p)
2199 enum arm_reg_type basetype;
2200 struct reg_entry *basereg;
2201 struct reg_entry mybasereg;
2202 struct neon_type ntype;
2203 struct neon_typed_alias typeinfo;
2204 char *namebuf, *nameend;
2205 int namelen;
2207 typeinfo.defined = 0;
2208 typeinfo.eltype.type = NT_invtype;
2209 typeinfo.eltype.size = -1;
2210 typeinfo.index = -1;
2212 nameend = p;
2214 if (strncmp (p, " .dn ", 5) == 0)
2215 basetype = REG_TYPE_VFD;
2216 else if (strncmp (p, " .qn ", 5) == 0)
2217 basetype = REG_TYPE_NQ;
2218 else
2219 return FALSE;
2221 p += 5;
2223 if (*p == '\0')
2224 return FALSE;
2226 basereg = arm_reg_parse_multi (&p);
2228 if (basereg && basereg->type != basetype)
2230 as_bad (_("bad type for register"));
2231 return FALSE;
2234 if (basereg == NULL)
2236 expressionS exp;
2237 /* Try parsing as an integer. */
2238 my_get_expression (&exp, &p, GE_NO_PREFIX);
2239 if (exp.X_op != O_constant)
2241 as_bad (_("expression must be constant"));
2242 return FALSE;
2244 basereg = &mybasereg;
2245 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2246 : exp.X_add_number;
2247 basereg->neon = 0;
2250 if (basereg->neon)
2251 typeinfo = *basereg->neon;
2253 if (parse_neon_type (&ntype, &p) == SUCCESS)
2255 /* We got a type. */
2256 if (typeinfo.defined & NTA_HASTYPE)
2258 as_bad (_("can't redefine the type of a register alias"));
2259 return FALSE;
2262 typeinfo.defined |= NTA_HASTYPE;
2263 if (ntype.elems != 1)
2265 as_bad (_("you must specify a single type only"));
2266 return FALSE;
2268 typeinfo.eltype = ntype.el[0];
2271 if (skip_past_char (&p, '[') == SUCCESS)
2273 expressionS exp;
2274 /* We got a scalar index. */
2276 if (typeinfo.defined & NTA_HASINDEX)
2278 as_bad (_("can't redefine the index of a scalar alias"));
2279 return FALSE;
2282 my_get_expression (&exp, &p, GE_NO_PREFIX);
2284 if (exp.X_op != O_constant)
2286 as_bad (_("scalar index must be constant"));
2287 return FALSE;
2290 typeinfo.defined |= NTA_HASINDEX;
2291 typeinfo.index = exp.X_add_number;
2293 if (skip_past_char (&p, ']') == FAIL)
2295 as_bad (_("expecting ]"));
2296 return FALSE;
2300 namelen = nameend - newname;
2301 namebuf = (char *) alloca (namelen + 1);
2302 strncpy (namebuf, newname, namelen);
2303 namebuf[namelen] = '\0';
2305 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2306 typeinfo.defined != 0 ? &typeinfo : NULL);
2308 /* Insert name in all uppercase. */
2309 for (p = namebuf; *p; p++)
2310 *p = TOUPPER (*p);
2312 if (strncmp (namebuf, newname, namelen))
2313 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2314 typeinfo.defined != 0 ? &typeinfo : NULL);
2316 /* Insert name in all lowercase. */
2317 for (p = namebuf; *p; p++)
2318 *p = TOLOWER (*p);
2320 if (strncmp (namebuf, newname, namelen))
2321 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2322 typeinfo.defined != 0 ? &typeinfo : NULL);
2324 return TRUE;
2327 /* Should never be called, as .req goes between the alias and the
2328 register name, not at the beginning of the line. */
2330 static void
2331 s_req (int a ATTRIBUTE_UNUSED)
2333 as_bad (_("invalid syntax for .req directive"));
2336 static void
2337 s_dn (int a ATTRIBUTE_UNUSED)
2339 as_bad (_("invalid syntax for .dn directive"));
2342 static void
2343 s_qn (int a ATTRIBUTE_UNUSED)
2345 as_bad (_("invalid syntax for .qn directive"));
2348 /* The .unreq directive deletes an alias which was previously defined
2349 by .req. For example:
2351 my_alias .req r11
2352 .unreq my_alias */
2354 static void
2355 s_unreq (int a ATTRIBUTE_UNUSED)
2357 char * name;
2358 char saved_char;
2360 name = input_line_pointer;
2362 while (*input_line_pointer != 0
2363 && *input_line_pointer != ' '
2364 && *input_line_pointer != '\n')
2365 ++input_line_pointer;
2367 saved_char = *input_line_pointer;
2368 *input_line_pointer = 0;
2370 if (!*name)
2371 as_bad (_("invalid syntax for .unreq directive"));
2372 else
2374 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2375 name);
2377 if (!reg)
2378 as_bad (_("unknown register alias '%s'"), name);
2379 else if (reg->builtin)
2380 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2381 name);
2382 else
2384 char * p;
2385 char * nbuf;
2387 hash_delete (arm_reg_hsh, name, FALSE);
2388 free ((char *) reg->name);
2389 if (reg->neon)
2390 free (reg->neon);
2391 free (reg);
2393 /* Also locate the all upper case and all lower case versions.
2394 Do not complain if we cannot find one or the other as it
2395 was probably deleted above. */
2397 nbuf = strdup (name);
2398 for (p = nbuf; *p; p++)
2399 *p = TOUPPER (*p);
2400 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2401 if (reg)
2403 hash_delete (arm_reg_hsh, nbuf, FALSE);
2404 free ((char *) reg->name);
2405 if (reg->neon)
2406 free (reg->neon);
2407 free (reg);
2410 for (p = nbuf; *p; p++)
2411 *p = TOLOWER (*p);
2412 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2413 if (reg)
2415 hash_delete (arm_reg_hsh, nbuf, FALSE);
2416 free ((char *) reg->name);
2417 if (reg->neon)
2418 free (reg->neon);
2419 free (reg);
2422 free (nbuf);
2426 *input_line_pointer = saved_char;
2427 demand_empty_rest_of_line ();
2430 /* Directives: Instruction set selection. */
2432 #ifdef OBJ_ELF
2433 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2434 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2435 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2436 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2438 /* Create a new mapping symbol for the transition to STATE. */
2440 static void
2441 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2443 symbolS * symbolP;
2444 const char * symname;
2445 int type;
2447 switch (state)
2449 case MAP_DATA:
2450 symname = "$d";
2451 type = BSF_NO_FLAGS;
2452 break;
2453 case MAP_ARM:
2454 symname = "$a";
2455 type = BSF_NO_FLAGS;
2456 break;
2457 case MAP_THUMB:
2458 symname = "$t";
2459 type = BSF_NO_FLAGS;
2460 break;
2461 default:
2462 abort ();
2465 symbolP = symbol_new (symname, now_seg, value, frag);
2466 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2468 switch (state)
2470 case MAP_ARM:
2471 THUMB_SET_FUNC (symbolP, 0);
2472 ARM_SET_THUMB (symbolP, 0);
2473 ARM_SET_INTERWORK (symbolP, support_interwork);
2474 break;
2476 case MAP_THUMB:
2477 THUMB_SET_FUNC (symbolP, 1);
2478 ARM_SET_THUMB (symbolP, 1);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2482 case MAP_DATA:
2483 default:
2484 break;
2487 /* Save the mapping symbols for future reference. Also check that
2488 we do not place two mapping symbols at the same offset within a
2489 frag. We'll handle overlap between frags in
2490 check_mapping_symbols. */
2491 if (value == 0)
2493 know (frag->tc_frag_data.first_map == NULL);
2494 frag->tc_frag_data.first_map = symbolP;
2496 if (frag->tc_frag_data.last_map != NULL)
2497 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2498 frag->tc_frag_data.last_map = symbolP;
2501 /* We must sometimes convert a region marked as code to data during
2502 code alignment, if an odd number of bytes have to be padded. The
2503 code mapping symbol is pushed to an aligned address. */
2505 static void
2506 insert_data_mapping_symbol (enum mstate state,
2507 valueT value, fragS *frag, offsetT bytes)
2509 /* If there was already a mapping symbol, remove it. */
2510 if (frag->tc_frag_data.last_map != NULL
2511 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2513 symbolS *symp = frag->tc_frag_data.last_map;
2515 if (value == 0)
2517 know (frag->tc_frag_data.first_map == symp);
2518 frag->tc_frag_data.first_map = NULL;
2520 frag->tc_frag_data.last_map = NULL;
2521 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2524 make_mapping_symbol (MAP_DATA, value, frag);
2525 make_mapping_symbol (state, value + bytes, frag);
2528 static void mapping_state_2 (enum mstate state, int max_chars);
2530 /* Set the mapping state to STATE. Only call this when about to
2531 emit some STATE bytes to the file. */
2533 void
2534 mapping_state (enum mstate state)
2536 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2538 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2540 if (mapstate == state)
2541 /* The mapping symbol has already been emitted.
2542 There is nothing else to do. */
2543 return;
2544 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2545 /* This case will be evaluated later in the next else. */
2546 return;
2547 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2548 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2550 /* Only add the symbol if the offset is > 0:
2551 if we're at the first frag, check it's size > 0;
2552 if we're not at the first frag, then for sure
2553 the offset is > 0. */
2554 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2555 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2557 if (add_symbol)
2558 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2561 mapping_state_2 (state, 0);
2562 #undef TRANSITION
2565 /* Same as mapping_state, but MAX_CHARS bytes have already been
2566 allocated. Put the mapping symbol that far back. */
2568 static void
2569 mapping_state_2 (enum mstate state, int max_chars)
2571 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2573 if (!SEG_NORMAL (now_seg))
2574 return;
2576 if (mapstate == state)
2577 /* The mapping symbol has already been emitted.
2578 There is nothing else to do. */
2579 return;
2581 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2582 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2584 #else
2585 #define mapping_state(x) ((void)0)
2586 #define mapping_state_2(x, y) ((void)0)
2587 #endif
2589 /* Find the real, Thumb encoded start of a Thumb function. */
2591 #ifdef OBJ_COFF
2592 static symbolS *
2593 find_real_start (symbolS * symbolP)
2595 char * real_start;
2596 const char * name = S_GET_NAME (symbolP);
2597 symbolS * new_target;
2599 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2600 #define STUB_NAME ".real_start_of"
2602 if (name == NULL)
2603 abort ();
2605 /* The compiler may generate BL instructions to local labels because
2606 it needs to perform a branch to a far away location. These labels
2607 do not have a corresponding ".real_start_of" label. We check
2608 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2609 the ".real_start_of" convention for nonlocal branches. */
2610 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2611 return symbolP;
2613 real_start = ACONCAT ((STUB_NAME, name, NULL));
2614 new_target = symbol_find (real_start);
2616 if (new_target == NULL)
2618 as_warn (_("Failed to find real start of function: %s\n"), name);
2619 new_target = symbolP;
2622 return new_target;
2624 #endif
2626 static void
2627 opcode_select (int width)
2629 switch (width)
2631 case 16:
2632 if (! thumb_mode)
2634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2635 as_bad (_("selected processor does not support THUMB opcodes"));
2637 thumb_mode = 1;
2638 /* No need to force the alignment, since we will have been
2639 coming from ARM mode, which is word-aligned. */
2640 record_alignment (now_seg, 1);
2642 break;
2644 case 32:
2645 if (thumb_mode)
2647 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2648 as_bad (_("selected processor does not support ARM opcodes"));
2650 thumb_mode = 0;
2652 if (!need_pass_2)
2653 frag_align (2, 0, 0);
2655 record_alignment (now_seg, 1);
2657 break;
2659 default:
2660 as_bad (_("invalid instruction size selected (%d)"), width);
2664 static void
2665 s_arm (int ignore ATTRIBUTE_UNUSED)
2667 opcode_select (32);
2668 demand_empty_rest_of_line ();
2671 static void
2672 s_thumb (int ignore ATTRIBUTE_UNUSED)
2674 opcode_select (16);
2675 demand_empty_rest_of_line ();
2678 static void
2679 s_code (int unused ATTRIBUTE_UNUSED)
2681 int temp;
2683 temp = get_absolute_expression ();
2684 switch (temp)
2686 case 16:
2687 case 32:
2688 opcode_select (temp);
2689 break;
2691 default:
2692 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2696 static void
2697 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2699 /* If we are not already in thumb mode go into it, EVEN if
2700 the target processor does not support thumb instructions.
2701 This is used by gcc/config/arm/lib1funcs.asm for example
2702 to compile interworking support functions even if the
2703 target processor should not support interworking. */
2704 if (! thumb_mode)
2706 thumb_mode = 2;
2707 record_alignment (now_seg, 1);
2710 demand_empty_rest_of_line ();
2713 static void
2714 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2716 s_thumb (0);
2718 /* The following label is the name/address of the start of a Thumb function.
2719 We need to know this for the interworking support. */
2720 label_is_thumb_function_name = TRUE;
2723 /* Perform a .set directive, but also mark the alias as
2724 being a thumb function. */
2726 static void
2727 s_thumb_set (int equiv)
2729 /* XXX the following is a duplicate of the code for s_set() in read.c
2730 We cannot just call that code as we need to get at the symbol that
2731 is created. */
2732 char * name;
2733 char delim;
2734 char * end_name;
2735 symbolS * symbolP;
2737 /* Especial apologies for the random logic:
2738 This just grew, and could be parsed much more simply!
2739 Dean - in haste. */
2740 name = input_line_pointer;
2741 delim = get_symbol_end ();
2742 end_name = input_line_pointer;
2743 *end_name = delim;
2745 if (*input_line_pointer != ',')
2747 *end_name = 0;
2748 as_bad (_("expected comma after name \"%s\""), name);
2749 *end_name = delim;
2750 ignore_rest_of_line ();
2751 return;
2754 input_line_pointer++;
2755 *end_name = 0;
2757 if (name[0] == '.' && name[1] == '\0')
2759 /* XXX - this should not happen to .thumb_set. */
2760 abort ();
2763 if ((symbolP = symbol_find (name)) == NULL
2764 && (symbolP = md_undefined_symbol (name)) == NULL)
2766 #ifndef NO_LISTING
2767 /* When doing symbol listings, play games with dummy fragments living
2768 outside the normal fragment chain to record the file and line info
2769 for this symbol. */
2770 if (listing & LISTING_SYMBOLS)
2772 extern struct list_info_struct * listing_tail;
2773 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2775 memset (dummy_frag, 0, sizeof (fragS));
2776 dummy_frag->fr_type = rs_fill;
2777 dummy_frag->line = listing_tail;
2778 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2779 dummy_frag->fr_symbol = symbolP;
2781 else
2782 #endif
2783 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2785 #ifdef OBJ_COFF
2786 /* "set" symbols are local unless otherwise specified. */
2787 SF_SET_LOCAL (symbolP);
2788 #endif /* OBJ_COFF */
2789 } /* Make a new symbol. */
2791 symbol_table_insert (symbolP);
2793 * end_name = delim;
2795 if (equiv
2796 && S_IS_DEFINED (symbolP)
2797 && S_GET_SEGMENT (symbolP) != reg_section)
2798 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2800 pseudo_set (symbolP);
2802 demand_empty_rest_of_line ();
2804 /* XXX Now we come to the Thumb specific bit of code. */
2806 THUMB_SET_FUNC (symbolP, 1);
2807 ARM_SET_THUMB (symbolP, 1);
2808 #if defined OBJ_ELF || defined OBJ_COFF
2809 ARM_SET_INTERWORK (symbolP, support_interwork);
2810 #endif
2813 /* Directives: Mode selection. */
2815 /* .syntax [unified|divided] - choose the new unified syntax
2816 (same for Arm and Thumb encoding, modulo slight differences in what
2817 can be represented) or the old divergent syntax for each mode. */
2818 static void
2819 s_syntax (int unused ATTRIBUTE_UNUSED)
2821 char *name, delim;
2823 name = input_line_pointer;
2824 delim = get_symbol_end ();
2826 if (!strcasecmp (name, "unified"))
2827 unified_syntax = TRUE;
2828 else if (!strcasecmp (name, "divided"))
2829 unified_syntax = FALSE;
2830 else
2832 as_bad (_("unrecognized syntax mode \"%s\""), name);
2833 return;
2835 *input_line_pointer = delim;
2836 demand_empty_rest_of_line ();
2839 /* Directives: sectioning and alignment. */
2841 /* Same as s_align_ptwo but align 0 => align 2. */
2843 static void
2844 s_align (int unused ATTRIBUTE_UNUSED)
2846 int temp;
2847 bfd_boolean fill_p;
2848 long temp_fill;
2849 long max_alignment = 15;
2851 temp = get_absolute_expression ();
2852 if (temp > max_alignment)
2853 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2854 else if (temp < 0)
2856 as_bad (_("alignment negative. 0 assumed."));
2857 temp = 0;
2860 if (*input_line_pointer == ',')
2862 input_line_pointer++;
2863 temp_fill = get_absolute_expression ();
2864 fill_p = TRUE;
2866 else
2868 fill_p = FALSE;
2869 temp_fill = 0;
2872 if (!temp)
2873 temp = 2;
2875 /* Only make a frag if we HAVE to. */
2876 if (temp && !need_pass_2)
2878 if (!fill_p && subseg_text_p (now_seg))
2879 frag_align_code (temp, 0);
2880 else
2881 frag_align (temp, (int) temp_fill, 0);
2883 demand_empty_rest_of_line ();
2885 record_alignment (now_seg, temp);
2888 static void
2889 s_bss (int ignore ATTRIBUTE_UNUSED)
2891 /* We don't support putting frags in the BSS segment, we fake it by
2892 marking in_bss, then looking at s_skip for clues. */
2893 subseg_set (bss_section, 0);
2894 demand_empty_rest_of_line ();
2896 #ifdef md_elf_section_change_hook
2897 md_elf_section_change_hook ();
2898 #endif
2901 static void
2902 s_even (int ignore ATTRIBUTE_UNUSED)
2904 /* Never make frag if expect extra pass. */
2905 if (!need_pass_2)
2906 frag_align (1, 0, 0);
2908 record_alignment (now_seg, 1);
2910 demand_empty_rest_of_line ();
2913 /* Directives: Literal pools. */
2915 static literal_pool *
2916 find_literal_pool (void)
2918 literal_pool * pool;
2920 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2922 if (pool->section == now_seg
2923 && pool->sub_section == now_subseg)
2924 break;
2927 return pool;
2930 static literal_pool *
2931 find_or_make_literal_pool (void)
2933 /* Next literal pool ID number. */
2934 static unsigned int latest_pool_num = 1;
2935 literal_pool * pool;
2937 pool = find_literal_pool ();
2939 if (pool == NULL)
2941 /* Create a new pool. */
2942 pool = (literal_pool *) xmalloc (sizeof (* pool));
2943 if (! pool)
2944 return NULL;
2946 pool->next_free_entry = 0;
2947 pool->section = now_seg;
2948 pool->sub_section = now_subseg;
2949 pool->next = list_of_pools;
2950 pool->symbol = NULL;
2952 /* Add it to the list. */
2953 list_of_pools = pool;
2956 /* New pools, and emptied pools, will have a NULL symbol. */
2957 if (pool->symbol == NULL)
2959 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2960 (valueT) 0, &zero_address_frag);
2961 pool->id = latest_pool_num ++;
2964 /* Done. */
2965 return pool;
2968 /* Add the literal in the global 'inst'
2969 structure to the relevant literal pool. */
2971 static int
2972 add_to_lit_pool (void)
2974 literal_pool * pool;
2975 unsigned int entry;
2977 pool = find_or_make_literal_pool ();
2979 /* Check if this literal value is already in the pool. */
2980 for (entry = 0; entry < pool->next_free_entry; entry ++)
2982 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2983 && (inst.reloc.exp.X_op == O_constant)
2984 && (pool->literals[entry].X_add_number
2985 == inst.reloc.exp.X_add_number)
2986 && (pool->literals[entry].X_unsigned
2987 == inst.reloc.exp.X_unsigned))
2988 break;
2990 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2991 && (inst.reloc.exp.X_op == O_symbol)
2992 && (pool->literals[entry].X_add_number
2993 == inst.reloc.exp.X_add_number)
2994 && (pool->literals[entry].X_add_symbol
2995 == inst.reloc.exp.X_add_symbol)
2996 && (pool->literals[entry].X_op_symbol
2997 == inst.reloc.exp.X_op_symbol))
2998 break;
3001 /* Do we need to create a new entry? */
3002 if (entry == pool->next_free_entry)
3004 if (entry >= MAX_LITERAL_POOL_SIZE)
3006 inst.error = _("literal pool overflow");
3007 return FAIL;
3010 pool->literals[entry] = inst.reloc.exp;
3011 pool->next_free_entry += 1;
3014 inst.reloc.exp.X_op = O_symbol;
3015 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3016 inst.reloc.exp.X_add_symbol = pool->symbol;
3018 return SUCCESS;
3021 /* Can't use symbol_new here, so have to create a symbol and then at
3022 a later date assign it a value. Thats what these functions do. */
3024 static void
3025 symbol_locate (symbolS * symbolP,
3026 const char * name, /* It is copied, the caller can modify. */
3027 segT segment, /* Segment identifier (SEG_<something>). */
3028 valueT valu, /* Symbol value. */
3029 fragS * frag) /* Associated fragment. */
3031 unsigned int name_length;
3032 char * preserved_copy_of_name;
3034 name_length = strlen (name) + 1; /* +1 for \0. */
3035 obstack_grow (&notes, name, name_length);
3036 preserved_copy_of_name = (char *) obstack_finish (&notes);
3038 #ifdef tc_canonicalize_symbol_name
3039 preserved_copy_of_name =
3040 tc_canonicalize_symbol_name (preserved_copy_of_name);
3041 #endif
3043 S_SET_NAME (symbolP, preserved_copy_of_name);
3045 S_SET_SEGMENT (symbolP, segment);
3046 S_SET_VALUE (symbolP, valu);
3047 symbol_clear_list_pointers (symbolP);
3049 symbol_set_frag (symbolP, frag);
3051 /* Link to end of symbol chain. */
3053 extern int symbol_table_frozen;
3055 if (symbol_table_frozen)
3056 abort ();
3059 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3061 obj_symbol_new_hook (symbolP);
3063 #ifdef tc_symbol_new_hook
3064 tc_symbol_new_hook (symbolP);
3065 #endif
3067 #ifdef DEBUG_SYMS
3068 verify_symbol_chain (symbol_rootP, symbol_lastP);
3069 #endif /* DEBUG_SYMS */
3073 static void
3074 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3076 unsigned int entry;
3077 literal_pool * pool;
3078 char sym_name[20];
3080 pool = find_literal_pool ();
3081 if (pool == NULL
3082 || pool->symbol == NULL
3083 || pool->next_free_entry == 0)
3084 return;
3086 mapping_state (MAP_DATA);
3088 /* Align pool as you have word accesses.
3089 Only make a frag if we have to. */
3090 if (!need_pass_2)
3091 frag_align (2, 0, 0);
3093 record_alignment (now_seg, 2);
3095 sprintf (sym_name, "$$lit_\002%x", pool->id);
3097 symbol_locate (pool->symbol, sym_name, now_seg,
3098 (valueT) frag_now_fix (), frag_now);
3099 symbol_table_insert (pool->symbol);
3101 ARM_SET_THUMB (pool->symbol, thumb_mode);
3103 #if defined OBJ_COFF || defined OBJ_ELF
3104 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3105 #endif
3107 for (entry = 0; entry < pool->next_free_entry; entry ++)
3108 /* First output the expression in the instruction to the pool. */
3109 emit_expr (&(pool->literals[entry]), 4); /* .word */
3111 /* Mark the pool as empty. */
3112 pool->next_free_entry = 0;
3113 pool->symbol = NULL;
3116 #ifdef OBJ_ELF
3117 /* Forward declarations for functions below, in the MD interface
3118 section. */
3119 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3120 static valueT create_unwind_entry (int);
3121 static void start_unwind_section (const segT, int);
3122 static void add_unwind_opcode (valueT, int);
3123 static void flush_pending_unwind (void);
3125 /* Directives: Data. */
3127 static void
3128 s_arm_elf_cons (int nbytes)
3130 expressionS exp;
3132 #ifdef md_flush_pending_output
3133 md_flush_pending_output ();
3134 #endif
3136 if (is_it_end_of_statement ())
3138 demand_empty_rest_of_line ();
3139 return;
3142 #ifdef md_cons_align
3143 md_cons_align (nbytes);
3144 #endif
3146 mapping_state (MAP_DATA);
3149 int reloc;
3150 char *base = input_line_pointer;
3152 expression (& exp);
3154 if (exp.X_op != O_symbol)
3155 emit_expr (&exp, (unsigned int) nbytes);
3156 else
3158 char *before_reloc = input_line_pointer;
3159 reloc = parse_reloc (&input_line_pointer);
3160 if (reloc == -1)
3162 as_bad (_("unrecognized relocation suffix"));
3163 ignore_rest_of_line ();
3164 return;
3166 else if (reloc == BFD_RELOC_UNUSED)
3167 emit_expr (&exp, (unsigned int) nbytes);
3168 else
3170 reloc_howto_type *howto = (reloc_howto_type *)
3171 bfd_reloc_type_lookup (stdoutput,
3172 (bfd_reloc_code_real_type) reloc);
3173 int size = bfd_get_reloc_size (howto);
3175 if (reloc == BFD_RELOC_ARM_PLT32)
3177 as_bad (_("(plt) is only valid on branch targets"));
3178 reloc = BFD_RELOC_UNUSED;
3179 size = 0;
3182 if (size > nbytes)
3183 as_bad (_("%s relocations do not fit in %d bytes"),
3184 howto->name, nbytes);
3185 else
3187 /* We've parsed an expression stopping at O_symbol.
3188 But there may be more expression left now that we
3189 have parsed the relocation marker. Parse it again.
3190 XXX Surely there is a cleaner way to do this. */
3191 char *p = input_line_pointer;
3192 int offset;
3193 char *save_buf = (char *) alloca (input_line_pointer - base);
3194 memcpy (save_buf, base, input_line_pointer - base);
3195 memmove (base + (input_line_pointer - before_reloc),
3196 base, before_reloc - base);
3198 input_line_pointer = base + (input_line_pointer-before_reloc);
3199 expression (&exp);
3200 memcpy (base, save_buf, p - base);
3202 offset = nbytes - size;
3203 p = frag_more ((int) nbytes);
3204 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3205 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3210 while (*input_line_pointer++ == ',');
3212 /* Put terminator back into stream. */
3213 input_line_pointer --;
3214 demand_empty_rest_of_line ();
3217 /* Emit an expression containing a 32-bit thumb instruction.
3218 Implementation based on put_thumb32_insn. */
3220 static void
3221 emit_thumb32_expr (expressionS * exp)
3223 expressionS exp_high = *exp;
3225 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3226 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3227 exp->X_add_number &= 0xffff;
3228 emit_expr (exp, (unsigned int) THUMB_SIZE);
3231 /* Guess the instruction size based on the opcode. */
3233 static int
3234 thumb_insn_size (int opcode)
3236 if ((unsigned int) opcode < 0xe800u)
3237 return 2;
3238 else if ((unsigned int) opcode >= 0xe8000000u)
3239 return 4;
3240 else
3241 return 0;
3244 static bfd_boolean
3245 emit_insn (expressionS *exp, int nbytes)
3247 int size = 0;
3249 if (exp->X_op == O_constant)
3251 size = nbytes;
3253 if (size == 0)
3254 size = thumb_insn_size (exp->X_add_number);
3256 if (size != 0)
3258 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3260 as_bad (_(".inst.n operand too big. "\
3261 "Use .inst.w instead"));
3262 size = 0;
3264 else
3266 if (now_it.state == AUTOMATIC_IT_BLOCK)
3267 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3268 else
3269 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3271 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3272 emit_thumb32_expr (exp);
3273 else
3274 emit_expr (exp, (unsigned int) size);
3276 it_fsm_post_encode ();
3279 else
3280 as_bad (_("cannot determine Thumb instruction size. " \
3281 "Use .inst.n/.inst.w instead"));
3283 else
3284 as_bad (_("constant expression required"));
3286 return (size != 0);
3289 /* Like s_arm_elf_cons but do not use md_cons_align and
3290 set the mapping state to MAP_ARM/MAP_THUMB. */
3292 static void
3293 s_arm_elf_inst (int nbytes)
3295 if (is_it_end_of_statement ())
3297 demand_empty_rest_of_line ();
3298 return;
3301 /* Calling mapping_state () here will not change ARM/THUMB,
3302 but will ensure not to be in DATA state. */
3304 if (thumb_mode)
3305 mapping_state (MAP_THUMB);
3306 else
3308 if (nbytes != 0)
3310 as_bad (_("width suffixes are invalid in ARM mode"));
3311 ignore_rest_of_line ();
3312 return;
3315 nbytes = 4;
3317 mapping_state (MAP_ARM);
3322 expressionS exp;
3324 expression (& exp);
3326 if (! emit_insn (& exp, nbytes))
3328 ignore_rest_of_line ();
3329 return;
3332 while (*input_line_pointer++ == ',');
3334 /* Put terminator back into stream. */
3335 input_line_pointer --;
3336 demand_empty_rest_of_line ();
3339 /* Parse a .rel31 directive. */
3341 static void
3342 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3344 expressionS exp;
3345 char *p;
3346 valueT highbit;
3348 highbit = 0;
3349 if (*input_line_pointer == '1')
3350 highbit = 0x80000000;
3351 else if (*input_line_pointer != '0')
3352 as_bad (_("expected 0 or 1"));
3354 input_line_pointer++;
3355 if (*input_line_pointer != ',')
3356 as_bad (_("missing comma"));
3357 input_line_pointer++;
3359 #ifdef md_flush_pending_output
3360 md_flush_pending_output ();
3361 #endif
3363 #ifdef md_cons_align
3364 md_cons_align (4);
3365 #endif
3367 mapping_state (MAP_DATA);
3369 expression (&exp);
3371 p = frag_more (4);
3372 md_number_to_chars (p, highbit, 4);
3373 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3374 BFD_RELOC_ARM_PREL31);
3376 demand_empty_rest_of_line ();
3379 /* Directives: AEABI stack-unwind tables. */
3381 /* Parse an unwind_fnstart directive. Simply records the current location. */
3383 static void
3384 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3386 demand_empty_rest_of_line ();
3387 if (unwind.proc_start)
3389 as_bad (_("duplicate .fnstart directive"));
3390 return;
3393 /* Mark the start of the function. */
3394 unwind.proc_start = expr_build_dot ();
3396 /* Reset the rest of the unwind info. */
3397 unwind.opcode_count = 0;
3398 unwind.table_entry = NULL;
3399 unwind.personality_routine = NULL;
3400 unwind.personality_index = -1;
3401 unwind.frame_size = 0;
3402 unwind.fp_offset = 0;
3403 unwind.fp_reg = REG_SP;
3404 unwind.fp_used = 0;
3405 unwind.sp_restored = 0;
3409 /* Parse a handlerdata directive. Creates the exception handling table entry
3410 for the function. */
3412 static void
3413 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3415 demand_empty_rest_of_line ();
3416 if (!unwind.proc_start)
3417 as_bad (MISSING_FNSTART);
3419 if (unwind.table_entry)
3420 as_bad (_("duplicate .handlerdata directive"));
3422 create_unwind_entry (1);
3425 /* Parse an unwind_fnend directive. Generates the index table entry. */
3427 static void
3428 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3430 long where;
3431 char *ptr;
3432 valueT val;
3433 unsigned int marked_pr_dependency;
3435 demand_empty_rest_of_line ();
3437 if (!unwind.proc_start)
3439 as_bad (_(".fnend directive without .fnstart"));
3440 return;
3443 /* Add eh table entry. */
3444 if (unwind.table_entry == NULL)
3445 val = create_unwind_entry (0);
3446 else
3447 val = 0;
3449 /* Add index table entry. This is two words. */
3450 start_unwind_section (unwind.saved_seg, 1);
3451 frag_align (2, 0, 0);
3452 record_alignment (now_seg, 2);
3454 ptr = frag_more (8);
3455 where = frag_now_fix () - 8;
3457 /* Self relative offset of the function start. */
3458 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3459 BFD_RELOC_ARM_PREL31);
3461 /* Indicate dependency on EHABI-defined personality routines to the
3462 linker, if it hasn't been done already. */
3463 marked_pr_dependency
3464 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3465 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3466 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3468 static const char *const name[] =
3470 "__aeabi_unwind_cpp_pr0",
3471 "__aeabi_unwind_cpp_pr1",
3472 "__aeabi_unwind_cpp_pr2"
3474 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3475 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3476 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3477 |= 1 << unwind.personality_index;
3480 if (val)
3481 /* Inline exception table entry. */
3482 md_number_to_chars (ptr + 4, val, 4);
3483 else
3484 /* Self relative offset of the table entry. */
3485 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3486 BFD_RELOC_ARM_PREL31);
3488 /* Restore the original section. */
3489 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3491 unwind.proc_start = NULL;
3495 /* Parse an unwind_cantunwind directive. */
3497 static void
3498 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3500 demand_empty_rest_of_line ();
3501 if (!unwind.proc_start)
3502 as_bad (MISSING_FNSTART);
3504 if (unwind.personality_routine || unwind.personality_index != -1)
3505 as_bad (_("personality routine specified for cantunwind frame"));
3507 unwind.personality_index = -2;
3511 /* Parse a personalityindex directive. */
3513 static void
3514 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3516 expressionS exp;
3518 if (!unwind.proc_start)
3519 as_bad (MISSING_FNSTART);
3521 if (unwind.personality_routine || unwind.personality_index != -1)
3522 as_bad (_("duplicate .personalityindex directive"));
3524 expression (&exp);
3526 if (exp.X_op != O_constant
3527 || exp.X_add_number < 0 || exp.X_add_number > 15)
3529 as_bad (_("bad personality routine number"));
3530 ignore_rest_of_line ();
3531 return;
3534 unwind.personality_index = exp.X_add_number;
3536 demand_empty_rest_of_line ();
3540 /* Parse a personality directive. */
3542 static void
3543 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3545 char *name, *p, c;
3547 if (!unwind.proc_start)
3548 as_bad (MISSING_FNSTART);
3550 if (unwind.personality_routine || unwind.personality_index != -1)
3551 as_bad (_("duplicate .personality directive"));
3553 name = input_line_pointer;
3554 c = get_symbol_end ();
3555 p = input_line_pointer;
3556 unwind.personality_routine = symbol_find_or_make (name);
3557 *p = c;
3558 demand_empty_rest_of_line ();
3562 /* Parse a directive saving core registers. */
3564 static void
3565 s_arm_unwind_save_core (void)
3567 valueT op;
3568 long range;
3569 int n;
3571 range = parse_reg_list (&input_line_pointer);
3572 if (range == FAIL)
3574 as_bad (_("expected register list"));
3575 ignore_rest_of_line ();
3576 return;
3579 demand_empty_rest_of_line ();
3581 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3582 into .unwind_save {..., sp...}. We aren't bothered about the value of
3583 ip because it is clobbered by calls. */
3584 if (unwind.sp_restored && unwind.fp_reg == 12
3585 && (range & 0x3000) == 0x1000)
3587 unwind.opcode_count--;
3588 unwind.sp_restored = 0;
3589 range = (range | 0x2000) & ~0x1000;
3590 unwind.pending_offset = 0;
3593 /* Pop r4-r15. */
3594 if (range & 0xfff0)
3596 /* See if we can use the short opcodes. These pop a block of up to 8
3597 registers starting with r4, plus maybe r14. */
3598 for (n = 0; n < 8; n++)
3600 /* Break at the first non-saved register. */
3601 if ((range & (1 << (n + 4))) == 0)
3602 break;
3604 /* See if there are any other bits set. */
3605 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3607 /* Use the long form. */
3608 op = 0x8000 | ((range >> 4) & 0xfff);
3609 add_unwind_opcode (op, 2);
3611 else
3613 /* Use the short form. */
3614 if (range & 0x4000)
3615 op = 0xa8; /* Pop r14. */
3616 else
3617 op = 0xa0; /* Do not pop r14. */
3618 op |= (n - 1);
3619 add_unwind_opcode (op, 1);
3623 /* Pop r0-r3. */
3624 if (range & 0xf)
3626 op = 0xb100 | (range & 0xf);
3627 add_unwind_opcode (op, 2);
3630 /* Record the number of bytes pushed. */
3631 for (n = 0; n < 16; n++)
3633 if (range & (1 << n))
3634 unwind.frame_size += 4;
3639 /* Parse a directive saving FPA registers. */
3641 static void
3642 s_arm_unwind_save_fpa (int reg)
3644 expressionS exp;
3645 int num_regs;
3646 valueT op;
3648 /* Get Number of registers to transfer. */
3649 if (skip_past_comma (&input_line_pointer) != FAIL)
3650 expression (&exp);
3651 else
3652 exp.X_op = O_illegal;
3654 if (exp.X_op != O_constant)
3656 as_bad (_("expected , <constant>"));
3657 ignore_rest_of_line ();
3658 return;
3661 num_regs = exp.X_add_number;
3663 if (num_regs < 1 || num_regs > 4)
3665 as_bad (_("number of registers must be in the range [1:4]"));
3666 ignore_rest_of_line ();
3667 return;
3670 demand_empty_rest_of_line ();
3672 if (reg == 4)
3674 /* Short form. */
3675 op = 0xb4 | (num_regs - 1);
3676 add_unwind_opcode (op, 1);
3678 else
3680 /* Long form. */
3681 op = 0xc800 | (reg << 4) | (num_regs - 1);
3682 add_unwind_opcode (op, 2);
3684 unwind.frame_size += num_regs * 12;
3688 /* Parse a directive saving VFP registers for ARMv6 and above. */
3690 static void
3691 s_arm_unwind_save_vfp_armv6 (void)
3693 int count;
3694 unsigned int start;
3695 valueT op;
3696 int num_vfpv3_regs = 0;
3697 int num_regs_below_16;
3699 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3700 if (count == FAIL)
3702 as_bad (_("expected register list"));
3703 ignore_rest_of_line ();
3704 return;
3707 demand_empty_rest_of_line ();
3709 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3710 than FSTMX/FLDMX-style ones). */
3712 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3713 if (start >= 16)
3714 num_vfpv3_regs = count;
3715 else if (start + count > 16)
3716 num_vfpv3_regs = start + count - 16;
3718 if (num_vfpv3_regs > 0)
3720 int start_offset = start > 16 ? start - 16 : 0;
3721 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3722 add_unwind_opcode (op, 2);
3725 /* Generate opcode for registers numbered in the range 0 .. 15. */
3726 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3727 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3728 if (num_regs_below_16 > 0)
3730 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3731 add_unwind_opcode (op, 2);
3734 unwind.frame_size += count * 8;
3738 /* Parse a directive saving VFP registers for pre-ARMv6. */
3740 static void
3741 s_arm_unwind_save_vfp (void)
3743 int count;
3744 unsigned int reg;
3745 valueT op;
3747 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3748 if (count == FAIL)
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3755 demand_empty_rest_of_line ();
3757 if (reg == 8)
3759 /* Short form. */
3760 op = 0xb8 | (count - 1);
3761 add_unwind_opcode (op, 1);
3763 else
3765 /* Long form. */
3766 op = 0xb300 | (reg << 4) | (count - 1);
3767 add_unwind_opcode (op, 2);
3769 unwind.frame_size += count * 8 + 4;
3773 /* Parse a directive saving iWMMXt data registers. */
3775 static void
3776 s_arm_unwind_save_mmxwr (void)
3778 int reg;
3779 int hi_reg;
3780 int i;
3781 unsigned mask = 0;
3782 valueT op;
3784 if (*input_line_pointer == '{')
3785 input_line_pointer++;
3789 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3791 if (reg == FAIL)
3793 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3794 goto error;
3797 if (mask >> reg)
3798 as_tsktsk (_("register list not in ascending order"));
3799 mask |= 1 << reg;
3801 if (*input_line_pointer == '-')
3803 input_line_pointer++;
3804 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3805 if (hi_reg == FAIL)
3807 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3808 goto error;
3810 else if (reg >= hi_reg)
3812 as_bad (_("bad register range"));
3813 goto error;
3815 for (; reg < hi_reg; reg++)
3816 mask |= 1 << reg;
3819 while (skip_past_comma (&input_line_pointer) != FAIL);
3821 if (*input_line_pointer == '}')
3822 input_line_pointer++;
3824 demand_empty_rest_of_line ();
3826 /* Generate any deferred opcodes because we're going to be looking at
3827 the list. */
3828 flush_pending_unwind ();
3830 for (i = 0; i < 16; i++)
3832 if (mask & (1 << i))
3833 unwind.frame_size += 8;
3836 /* Attempt to combine with a previous opcode. We do this because gcc
3837 likes to output separate unwind directives for a single block of
3838 registers. */
3839 if (unwind.opcode_count > 0)
3841 i = unwind.opcodes[unwind.opcode_count - 1];
3842 if ((i & 0xf8) == 0xc0)
3844 i &= 7;
3845 /* Only merge if the blocks are contiguous. */
3846 if (i < 6)
3848 if ((mask & 0xfe00) == (1 << 9))
3850 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3851 unwind.opcode_count--;
3854 else if (i == 6 && unwind.opcode_count >= 2)
3856 i = unwind.opcodes[unwind.opcode_count - 2];
3857 reg = i >> 4;
3858 i &= 0xf;
3860 op = 0xffff << (reg - 1);
3861 if (reg > 0
3862 && ((mask & op) == (1u << (reg - 1))))
3864 op = (1 << (reg + i + 1)) - 1;
3865 op &= ~((1 << reg) - 1);
3866 mask |= op;
3867 unwind.opcode_count -= 2;
3873 hi_reg = 15;
3874 /* We want to generate opcodes in the order the registers have been
3875 saved, ie. descending order. */
3876 for (reg = 15; reg >= -1; reg--)
3878 /* Save registers in blocks. */
3879 if (reg < 0
3880 || !(mask & (1 << reg)))
3882 /* We found an unsaved reg. Generate opcodes to save the
3883 preceding block. */
3884 if (reg != hi_reg)
3886 if (reg == 9)
3888 /* Short form. */
3889 op = 0xc0 | (hi_reg - 10);
3890 add_unwind_opcode (op, 1);
3892 else
3894 /* Long form. */
3895 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3896 add_unwind_opcode (op, 2);
3899 hi_reg = reg - 1;
3903 return;
3904 error:
3905 ignore_rest_of_line ();
3908 static void
3909 s_arm_unwind_save_mmxwcg (void)
3911 int reg;
3912 int hi_reg;
3913 unsigned mask = 0;
3914 valueT op;
3916 if (*input_line_pointer == '{')
3917 input_line_pointer++;
3921 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3923 if (reg == FAIL)
3925 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3926 goto error;
3929 reg -= 8;
3930 if (mask >> reg)
3931 as_tsktsk (_("register list not in ascending order"));
3932 mask |= 1 << reg;
3934 if (*input_line_pointer == '-')
3936 input_line_pointer++;
3937 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3938 if (hi_reg == FAIL)
3940 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3941 goto error;
3943 else if (reg >= hi_reg)
3945 as_bad (_("bad register range"));
3946 goto error;
3948 for (; reg < hi_reg; reg++)
3949 mask |= 1 << reg;
3952 while (skip_past_comma (&input_line_pointer) != FAIL);
3954 if (*input_line_pointer == '}')
3955 input_line_pointer++;
3957 demand_empty_rest_of_line ();
3959 /* Generate any deferred opcodes because we're going to be looking at
3960 the list. */
3961 flush_pending_unwind ();
3963 for (reg = 0; reg < 16; reg++)
3965 if (mask & (1 << reg))
3966 unwind.frame_size += 4;
3968 op = 0xc700 | mask;
3969 add_unwind_opcode (op, 2);
3970 return;
3971 error:
3972 ignore_rest_of_line ();
3976 /* Parse an unwind_save directive.
3977 If the argument is non-zero, this is a .vsave directive. */
3979 static void
3980 s_arm_unwind_save (int arch_v6)
3982 char *peek;
3983 struct reg_entry *reg;
3984 bfd_boolean had_brace = FALSE;
3986 if (!unwind.proc_start)
3987 as_bad (MISSING_FNSTART);
3989 /* Figure out what sort of save we have. */
3990 peek = input_line_pointer;
3992 if (*peek == '{')
3994 had_brace = TRUE;
3995 peek++;
3998 reg = arm_reg_parse_multi (&peek);
4000 if (!reg)
4002 as_bad (_("register expected"));
4003 ignore_rest_of_line ();
4004 return;
4007 switch (reg->type)
4009 case REG_TYPE_FN:
4010 if (had_brace)
4012 as_bad (_("FPA .unwind_save does not take a register list"));
4013 ignore_rest_of_line ();
4014 return;
4016 input_line_pointer = peek;
4017 s_arm_unwind_save_fpa (reg->number);
4018 return;
4020 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4021 case REG_TYPE_VFD:
4022 if (arch_v6)
4023 s_arm_unwind_save_vfp_armv6 ();
4024 else
4025 s_arm_unwind_save_vfp ();
4026 return;
4027 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4028 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4030 default:
4031 as_bad (_(".unwind_save does not support this kind of register"));
4032 ignore_rest_of_line ();
4037 /* Parse an unwind_movsp directive. */
4039 static void
4040 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4042 int reg;
4043 valueT op;
4044 int offset;
4046 if (!unwind.proc_start)
4047 as_bad (MISSING_FNSTART);
4049 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4050 if (reg == FAIL)
4052 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4053 ignore_rest_of_line ();
4054 return;
4057 /* Optional constant. */
4058 if (skip_past_comma (&input_line_pointer) != FAIL)
4060 if (immediate_for_directive (&offset) == FAIL)
4061 return;
4063 else
4064 offset = 0;
4066 demand_empty_rest_of_line ();
4068 if (reg == REG_SP || reg == REG_PC)
4070 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4071 return;
4074 if (unwind.fp_reg != REG_SP)
4075 as_bad (_("unexpected .unwind_movsp directive"));
4077 /* Generate opcode to restore the value. */
4078 op = 0x90 | reg;
4079 add_unwind_opcode (op, 1);
4081 /* Record the information for later. */
4082 unwind.fp_reg = reg;
4083 unwind.fp_offset = unwind.frame_size - offset;
4084 unwind.sp_restored = 1;
4087 /* Parse an unwind_pad directive. */
4089 static void
4090 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4092 int offset;
4094 if (!unwind.proc_start)
4095 as_bad (MISSING_FNSTART);
4097 if (immediate_for_directive (&offset) == FAIL)
4098 return;
4100 if (offset & 3)
4102 as_bad (_("stack increment must be multiple of 4"));
4103 ignore_rest_of_line ();
4104 return;
4107 /* Don't generate any opcodes, just record the details for later. */
4108 unwind.frame_size += offset;
4109 unwind.pending_offset += offset;
4111 demand_empty_rest_of_line ();
4114 /* Parse an unwind_setfp directive. */
4116 static void
4117 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4119 int sp_reg;
4120 int fp_reg;
4121 int offset;
4123 if (!unwind.proc_start)
4124 as_bad (MISSING_FNSTART);
4126 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4127 if (skip_past_comma (&input_line_pointer) == FAIL)
4128 sp_reg = FAIL;
4129 else
4130 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4132 if (fp_reg == FAIL || sp_reg == FAIL)
4134 as_bad (_("expected <reg>, <reg>"));
4135 ignore_rest_of_line ();
4136 return;
4139 /* Optional constant. */
4140 if (skip_past_comma (&input_line_pointer) != FAIL)
4142 if (immediate_for_directive (&offset) == FAIL)
4143 return;
4145 else
4146 offset = 0;
4148 demand_empty_rest_of_line ();
4150 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4152 as_bad (_("register must be either sp or set by a previous"
4153 "unwind_movsp directive"));
4154 return;
4157 /* Don't generate any opcodes, just record the information for later. */
4158 unwind.fp_reg = fp_reg;
4159 unwind.fp_used = 1;
4160 if (sp_reg == REG_SP)
4161 unwind.fp_offset = unwind.frame_size - offset;
4162 else
4163 unwind.fp_offset -= offset;
4166 /* Parse an unwind_raw directive. */
4168 static void
4169 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4171 expressionS exp;
4172 /* This is an arbitrary limit. */
4173 unsigned char op[16];
4174 int count;
4176 if (!unwind.proc_start)
4177 as_bad (MISSING_FNSTART);
4179 expression (&exp);
4180 if (exp.X_op == O_constant
4181 && skip_past_comma (&input_line_pointer) != FAIL)
4183 unwind.frame_size += exp.X_add_number;
4184 expression (&exp);
4186 else
4187 exp.X_op = O_illegal;
4189 if (exp.X_op != O_constant)
4191 as_bad (_("expected <offset>, <opcode>"));
4192 ignore_rest_of_line ();
4193 return;
4196 count = 0;
4198 /* Parse the opcode. */
4199 for (;;)
4201 if (count >= 16)
4203 as_bad (_("unwind opcode too long"));
4204 ignore_rest_of_line ();
4206 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4208 as_bad (_("invalid unwind opcode"));
4209 ignore_rest_of_line ();
4210 return;
4212 op[count++] = exp.X_add_number;
4214 /* Parse the next byte. */
4215 if (skip_past_comma (&input_line_pointer) == FAIL)
4216 break;
4218 expression (&exp);
4221 /* Add the opcode bytes in reverse order. */
4222 while (count--)
4223 add_unwind_opcode (op[count], 1);
4225 demand_empty_rest_of_line ();
4229 /* Parse a .eabi_attribute directive. */
4231 static void
4232 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4234 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4236 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4237 attributes_set_explicitly[tag] = 1;
4239 #endif /* OBJ_ELF */
4241 static void s_arm_arch (int);
4242 static void s_arm_object_arch (int);
4243 static void s_arm_cpu (int);
4244 static void s_arm_fpu (int);
4246 #ifdef TE_PE
4248 static void
4249 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4251 expressionS exp;
4255 expression (&exp);
4256 if (exp.X_op == O_symbol)
4257 exp.X_op = O_secrel;
4259 emit_expr (&exp, 4);
4261 while (*input_line_pointer++ == ',');
4263 input_line_pointer--;
4264 demand_empty_rest_of_line ();
4266 #endif /* TE_PE */
4268 /* This table describes all the machine specific pseudo-ops the assembler
4269 has to support. The fields are:
4270 pseudo-op name without dot
4271 function to call to execute this pseudo-op
4272 Integer arg to pass to the function. */
4274 const pseudo_typeS md_pseudo_table[] =
4276 /* Never called because '.req' does not start a line. */
4277 { "req", s_req, 0 },
4278 /* Following two are likewise never called. */
4279 { "dn", s_dn, 0 },
4280 { "qn", s_qn, 0 },
4281 { "unreq", s_unreq, 0 },
4282 { "bss", s_bss, 0 },
4283 { "align", s_align, 0 },
4284 { "arm", s_arm, 0 },
4285 { "thumb", s_thumb, 0 },
4286 { "code", s_code, 0 },
4287 { "force_thumb", s_force_thumb, 0 },
4288 { "thumb_func", s_thumb_func, 0 },
4289 { "thumb_set", s_thumb_set, 0 },
4290 { "even", s_even, 0 },
4291 { "ltorg", s_ltorg, 0 },
4292 { "pool", s_ltorg, 0 },
4293 { "syntax", s_syntax, 0 },
4294 { "cpu", s_arm_cpu, 0 },
4295 { "arch", s_arm_arch, 0 },
4296 { "object_arch", s_arm_object_arch, 0 },
4297 { "fpu", s_arm_fpu, 0 },
4298 #ifdef OBJ_ELF
4299 { "word", s_arm_elf_cons, 4 },
4300 { "long", s_arm_elf_cons, 4 },
4301 { "inst.n", s_arm_elf_inst, 2 },
4302 { "inst.w", s_arm_elf_inst, 4 },
4303 { "inst", s_arm_elf_inst, 0 },
4304 { "rel31", s_arm_rel31, 0 },
4305 { "fnstart", s_arm_unwind_fnstart, 0 },
4306 { "fnend", s_arm_unwind_fnend, 0 },
4307 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4308 { "personality", s_arm_unwind_personality, 0 },
4309 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4310 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4311 { "save", s_arm_unwind_save, 0 },
4312 { "vsave", s_arm_unwind_save, 1 },
4313 { "movsp", s_arm_unwind_movsp, 0 },
4314 { "pad", s_arm_unwind_pad, 0 },
4315 { "setfp", s_arm_unwind_setfp, 0 },
4316 { "unwind_raw", s_arm_unwind_raw, 0 },
4317 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4318 #else
4319 { "word", cons, 4},
4321 /* These are used for dwarf. */
4322 {"2byte", cons, 2},
4323 {"4byte", cons, 4},
4324 {"8byte", cons, 8},
4325 /* These are used for dwarf2. */
4326 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4327 { "loc", dwarf2_directive_loc, 0 },
4328 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4329 #endif
4330 { "extend", float_cons, 'x' },
4331 { "ldouble", float_cons, 'x' },
4332 { "packed", float_cons, 'p' },
4333 #ifdef TE_PE
4334 {"secrel32", pe_directive_secrel, 0},
4335 #endif
4336 { 0, 0, 0 }
4339 /* Parser functions used exclusively in instruction operands. */
4341 /* Generic immediate-value read function for use in insn parsing.
4342 STR points to the beginning of the immediate (the leading #);
4343 VAL receives the value; if the value is outside [MIN, MAX]
4344 issue an error. PREFIX_OPT is true if the immediate prefix is
4345 optional. */
4347 static int
4348 parse_immediate (char **str, int *val, int min, int max,
4349 bfd_boolean prefix_opt)
4351 expressionS exp;
4352 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4353 if (exp.X_op != O_constant)
4355 inst.error = _("constant expression required");
4356 return FAIL;
4359 if (exp.X_add_number < min || exp.X_add_number > max)
4361 inst.error = _("immediate value out of range");
4362 return FAIL;
4365 *val = exp.X_add_number;
4366 return SUCCESS;
4369 /* Less-generic immediate-value read function with the possibility of loading a
4370 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4371 instructions. Puts the result directly in inst.operands[i]. */
4373 static int
4374 parse_big_immediate (char **str, int i)
4376 expressionS exp;
4377 char *ptr = *str;
4379 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4381 if (exp.X_op == O_constant)
4383 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4384 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4385 O_constant. We have to be careful not to break compilation for
4386 32-bit X_add_number, though. */
4387 if ((exp.X_add_number & ~0xffffffffl) != 0)
4389 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4390 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4391 inst.operands[i].regisimm = 1;
4394 else if (exp.X_op == O_big
4395 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4396 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4398 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4399 /* Bignums have their least significant bits in
4400 generic_bignum[0]. Make sure we put 32 bits in imm and
4401 32 bits in reg, in a (hopefully) portable way. */
4402 gas_assert (parts != 0);
4403 inst.operands[i].imm = 0;
4404 for (j = 0; j < parts; j++, idx++)
4405 inst.operands[i].imm |= generic_bignum[idx]
4406 << (LITTLENUM_NUMBER_OF_BITS * j);
4407 inst.operands[i].reg = 0;
4408 for (j = 0; j < parts; j++, idx++)
4409 inst.operands[i].reg |= generic_bignum[idx]
4410 << (LITTLENUM_NUMBER_OF_BITS * j);
4411 inst.operands[i].regisimm = 1;
4413 else
4414 return FAIL;
4416 *str = ptr;
4418 return SUCCESS;
4421 /* Returns the pseudo-register number of an FPA immediate constant,
4422 or FAIL if there isn't a valid constant here. */
4424 static int
4425 parse_fpa_immediate (char ** str)
4427 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4428 char * save_in;
4429 expressionS exp;
4430 int i;
4431 int j;
4433 /* First try and match exact strings, this is to guarantee
4434 that some formats will work even for cross assembly. */
4436 for (i = 0; fp_const[i]; i++)
4438 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4440 char *start = *str;
4442 *str += strlen (fp_const[i]);
4443 if (is_end_of_line[(unsigned char) **str])
4444 return i + 8;
4445 *str = start;
4449 /* Just because we didn't get a match doesn't mean that the constant
4450 isn't valid, just that it is in a format that we don't
4451 automatically recognize. Try parsing it with the standard
4452 expression routines. */
4454 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4456 /* Look for a raw floating point number. */
4457 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4458 && is_end_of_line[(unsigned char) *save_in])
4460 for (i = 0; i < NUM_FLOAT_VALS; i++)
4462 for (j = 0; j < MAX_LITTLENUMS; j++)
4464 if (words[j] != fp_values[i][j])
4465 break;
4468 if (j == MAX_LITTLENUMS)
4470 *str = save_in;
4471 return i + 8;
4476 /* Try and parse a more complex expression, this will probably fail
4477 unless the code uses a floating point prefix (eg "0f"). */
4478 save_in = input_line_pointer;
4479 input_line_pointer = *str;
4480 if (expression (&exp) == absolute_section
4481 && exp.X_op == O_big
4482 && exp.X_add_number < 0)
4484 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4485 Ditto for 15. */
4486 if (gen_to_words (words, 5, (long) 15) == 0)
4488 for (i = 0; i < NUM_FLOAT_VALS; i++)
4490 for (j = 0; j < MAX_LITTLENUMS; j++)
4492 if (words[j] != fp_values[i][j])
4493 break;
4496 if (j == MAX_LITTLENUMS)
4498 *str = input_line_pointer;
4499 input_line_pointer = save_in;
4500 return i + 8;
4506 *str = input_line_pointer;
4507 input_line_pointer = save_in;
4508 inst.error = _("invalid FPA immediate expression");
4509 return FAIL;
4512 /* Returns 1 if a number has "quarter-precision" float format
4513 0baBbbbbbc defgh000 00000000 00000000. */
4515 static int
4516 is_quarter_float (unsigned imm)
4518 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4519 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4522 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4523 0baBbbbbbc defgh000 00000000 00000000.
4524 The zero and minus-zero cases need special handling, since they can't be
4525 encoded in the "quarter-precision" float format, but can nonetheless be
4526 loaded as integer constants. */
4528 static unsigned
4529 parse_qfloat_immediate (char **ccp, int *immed)
4531 char *str = *ccp;
4532 char *fpnum;
4533 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4534 int found_fpchar = 0;
4536 skip_past_char (&str, '#');
4538 /* We must not accidentally parse an integer as a floating-point number. Make
4539 sure that the value we parse is not an integer by checking for special
4540 characters '.' or 'e'.
4541 FIXME: This is a horrible hack, but doing better is tricky because type
4542 information isn't in a very usable state at parse time. */
4543 fpnum = str;
4544 skip_whitespace (fpnum);
4546 if (strncmp (fpnum, "0x", 2) == 0)
4547 return FAIL;
4548 else
4550 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4551 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4553 found_fpchar = 1;
4554 break;
4557 if (!found_fpchar)
4558 return FAIL;
4561 if ((str = atof_ieee (str, 's', words)) != NULL)
4563 unsigned fpword = 0;
4564 int i;
4566 /* Our FP word must be 32 bits (single-precision FP). */
4567 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4569 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4570 fpword |= words[i];
4573 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4574 *immed = fpword;
4575 else
4576 return FAIL;
4578 *ccp = str;
4580 return SUCCESS;
4583 return FAIL;
4586 /* Shift operands. */
4587 enum shift_kind
4589 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4592 struct asm_shift_name
4594 const char *name;
4595 enum shift_kind kind;
4598 /* Third argument to parse_shift. */
4599 enum parse_shift_mode
4601 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4602 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4603 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4604 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4605 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4608 /* Parse a <shift> specifier on an ARM data processing instruction.
4609 This has three forms:
4611 (LSL|LSR|ASL|ASR|ROR) Rs
4612 (LSL|LSR|ASL|ASR|ROR) #imm
4615 Note that ASL is assimilated to LSL in the instruction encoding, and
4616 RRX to ROR #0 (which cannot be written as such). */
4618 static int
4619 parse_shift (char **str, int i, enum parse_shift_mode mode)
4621 const struct asm_shift_name *shift_name;
4622 enum shift_kind shift;
4623 char *s = *str;
4624 char *p = s;
4625 int reg;
4627 for (p = *str; ISALPHA (*p); p++)
4630 if (p == *str)
4632 inst.error = _("shift expression expected");
4633 return FAIL;
4636 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4637 p - *str);
4639 if (shift_name == NULL)
4641 inst.error = _("shift expression expected");
4642 return FAIL;
4645 shift = shift_name->kind;
4647 switch (mode)
4649 case NO_SHIFT_RESTRICT:
4650 case SHIFT_IMMEDIATE: break;
4652 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4653 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4655 inst.error = _("'LSL' or 'ASR' required");
4656 return FAIL;
4658 break;
4660 case SHIFT_LSL_IMMEDIATE:
4661 if (shift != SHIFT_LSL)
4663 inst.error = _("'LSL' required");
4664 return FAIL;
4666 break;
4668 case SHIFT_ASR_IMMEDIATE:
4669 if (shift != SHIFT_ASR)
4671 inst.error = _("'ASR' required");
4672 return FAIL;
4674 break;
4676 default: abort ();
4679 if (shift != SHIFT_RRX)
4681 /* Whitespace can appear here if the next thing is a bare digit. */
4682 skip_whitespace (p);
4684 if (mode == NO_SHIFT_RESTRICT
4685 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4687 inst.operands[i].imm = reg;
4688 inst.operands[i].immisreg = 1;
4690 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4691 return FAIL;
4693 inst.operands[i].shift_kind = shift;
4694 inst.operands[i].shifted = 1;
4695 *str = p;
4696 return SUCCESS;
4699 /* Parse a <shifter_operand> for an ARM data processing instruction:
4701 #<immediate>
4702 #<immediate>, <rotate>
4703 <Rm>
4704 <Rm>, <shift>
4706 where <shift> is defined by parse_shift above, and <rotate> is a
4707 multiple of 2 between 0 and 30. Validation of immediate operands
4708 is deferred to md_apply_fix. */
4710 static int
4711 parse_shifter_operand (char **str, int i)
4713 int value;
4714 expressionS exp;
4716 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4718 inst.operands[i].reg = value;
4719 inst.operands[i].isreg = 1;
4721 /* parse_shift will override this if appropriate */
4722 inst.reloc.exp.X_op = O_constant;
4723 inst.reloc.exp.X_add_number = 0;
4725 if (skip_past_comma (str) == FAIL)
4726 return SUCCESS;
4728 /* Shift operation on register. */
4729 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4732 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4733 return FAIL;
4735 if (skip_past_comma (str) == SUCCESS)
4737 /* #x, y -- ie explicit rotation by Y. */
4738 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4739 return FAIL;
4741 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4743 inst.error = _("constant expression expected");
4744 return FAIL;
4747 value = exp.X_add_number;
4748 if (value < 0 || value > 30 || value % 2 != 0)
4750 inst.error = _("invalid rotation");
4751 return FAIL;
4753 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4755 inst.error = _("invalid constant");
4756 return FAIL;
4759 /* Convert to decoded value. md_apply_fix will put it back. */
4760 inst.reloc.exp.X_add_number
4761 = (((inst.reloc.exp.X_add_number << (32 - value))
4762 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4765 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4766 inst.reloc.pc_rel = 0;
4767 return SUCCESS;
4770 /* Group relocation information. Each entry in the table contains the
4771 textual name of the relocation as may appear in assembler source
4772 and must end with a colon.
4773 Along with this textual name are the relocation codes to be used if
4774 the corresponding instruction is an ALU instruction (ADD or SUB only),
4775 an LDR, an LDRS, or an LDC. */
4777 struct group_reloc_table_entry
4779 const char *name;
4780 int alu_code;
4781 int ldr_code;
4782 int ldrs_code;
4783 int ldc_code;
4786 typedef enum
4788 /* Varieties of non-ALU group relocation. */
4790 GROUP_LDR,
4791 GROUP_LDRS,
4792 GROUP_LDC
4793 } group_reloc_type;
4795 static struct group_reloc_table_entry group_reloc_table[] =
4796 { /* Program counter relative: */
4797 { "pc_g0_nc",
4798 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4799 0, /* LDR */
4800 0, /* LDRS */
4801 0 }, /* LDC */
4802 { "pc_g0",
4803 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4804 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4805 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4806 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4807 { "pc_g1_nc",
4808 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4809 0, /* LDR */
4810 0, /* LDRS */
4811 0 }, /* LDC */
4812 { "pc_g1",
4813 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4814 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4815 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4816 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4817 { "pc_g2",
4818 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4819 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4820 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4821 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4822 /* Section base relative */
4823 { "sb_g0_nc",
4824 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4825 0, /* LDR */
4826 0, /* LDRS */
4827 0 }, /* LDC */
4828 { "sb_g0",
4829 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4830 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4831 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4832 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4833 { "sb_g1_nc",
4834 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4835 0, /* LDR */
4836 0, /* LDRS */
4837 0 }, /* LDC */
4838 { "sb_g1",
4839 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4840 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4841 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4842 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4843 { "sb_g2",
4844 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4845 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4846 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4847 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4849 /* Given the address of a pointer pointing to the textual name of a group
4850 relocation as may appear in assembler source, attempt to find its details
4851 in group_reloc_table. The pointer will be updated to the character after
4852 the trailing colon. On failure, FAIL will be returned; SUCCESS
4853 otherwise. On success, *entry will be updated to point at the relevant
4854 group_reloc_table entry. */
4856 static int
4857 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4859 unsigned int i;
4860 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4862 int length = strlen (group_reloc_table[i].name);
4864 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4865 && (*str)[length] == ':')
4867 *out = &group_reloc_table[i];
4868 *str += (length + 1);
4869 return SUCCESS;
4873 return FAIL;
4876 /* Parse a <shifter_operand> for an ARM data processing instruction
4877 (as for parse_shifter_operand) where group relocations are allowed:
4879 #<immediate>
4880 #<immediate>, <rotate>
4881 #:<group_reloc>:<expression>
4882 <Rm>
4883 <Rm>, <shift>
4885 where <group_reloc> is one of the strings defined in group_reloc_table.
4886 The hashes are optional.
4888 Everything else is as for parse_shifter_operand. */
4890 static parse_operand_result
4891 parse_shifter_operand_group_reloc (char **str, int i)
4893 /* Determine if we have the sequence of characters #: or just :
4894 coming next. If we do, then we check for a group relocation.
4895 If we don't, punt the whole lot to parse_shifter_operand. */
4897 if (((*str)[0] == '#' && (*str)[1] == ':')
4898 || (*str)[0] == ':')
4900 struct group_reloc_table_entry *entry;
4902 if ((*str)[0] == '#')
4903 (*str) += 2;
4904 else
4905 (*str)++;
4907 /* Try to parse a group relocation. Anything else is an error. */
4908 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4910 inst.error = _("unknown group relocation");
4911 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4914 /* We now have the group relocation table entry corresponding to
4915 the name in the assembler source. Next, we parse the expression. */
4916 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4919 /* Record the relocation type (always the ALU variant here). */
4920 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4921 gas_assert (inst.reloc.type != 0);
4923 return PARSE_OPERAND_SUCCESS;
4925 else
4926 return parse_shifter_operand (str, i) == SUCCESS
4927 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4929 /* Never reached. */
4932 /* Parse all forms of an ARM address expression. Information is written
4933 to inst.operands[i] and/or inst.reloc.
4935 Preindexed addressing (.preind=1):
4937 [Rn, #offset] .reg=Rn .reloc.exp=offset
4938 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4939 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4940 .shift_kind=shift .reloc.exp=shift_imm
4942 These three may have a trailing ! which causes .writeback to be set also.
4944 Postindexed addressing (.postind=1, .writeback=1):
4946 [Rn], #offset .reg=Rn .reloc.exp=offset
4947 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4948 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4949 .shift_kind=shift .reloc.exp=shift_imm
4951 Unindexed addressing (.preind=0, .postind=0):
4953 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4955 Other:
4957 [Rn]{!} shorthand for [Rn,#0]{!}
4958 =immediate .isreg=0 .reloc.exp=immediate
4959 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4961 It is the caller's responsibility to check for addressing modes not
4962 supported by the instruction, and to set inst.reloc.type. */
4964 static parse_operand_result
4965 parse_address_main (char **str, int i, int group_relocations,
4966 group_reloc_type group_type)
4968 char *p = *str;
4969 int reg;
4971 if (skip_past_char (&p, '[') == FAIL)
4973 if (skip_past_char (&p, '=') == FAIL)
4975 /* Bare address - translate to PC-relative offset. */
4976 inst.reloc.pc_rel = 1;
4977 inst.operands[i].reg = REG_PC;
4978 inst.operands[i].isreg = 1;
4979 inst.operands[i].preind = 1;
4981 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
4983 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4984 return PARSE_OPERAND_FAIL;
4986 *str = p;
4987 return PARSE_OPERAND_SUCCESS;
4990 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4992 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4993 return PARSE_OPERAND_FAIL;
4995 inst.operands[i].reg = reg;
4996 inst.operands[i].isreg = 1;
4998 if (skip_past_comma (&p) == SUCCESS)
5000 inst.operands[i].preind = 1;
5002 if (*p == '+') p++;
5003 else if (*p == '-') p++, inst.operands[i].negative = 1;
5005 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5007 inst.operands[i].imm = reg;
5008 inst.operands[i].immisreg = 1;
5010 if (skip_past_comma (&p) == SUCCESS)
5011 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5012 return PARSE_OPERAND_FAIL;
5014 else if (skip_past_char (&p, ':') == SUCCESS)
5016 /* FIXME: '@' should be used here, but it's filtered out by generic
5017 code before we get to see it here. This may be subject to
5018 change. */
5019 expressionS exp;
5020 my_get_expression (&exp, &p, GE_NO_PREFIX);
5021 if (exp.X_op != O_constant)
5023 inst.error = _("alignment must be constant");
5024 return PARSE_OPERAND_FAIL;
5026 inst.operands[i].imm = exp.X_add_number << 8;
5027 inst.operands[i].immisalign = 1;
5028 /* Alignments are not pre-indexes. */
5029 inst.operands[i].preind = 0;
5031 else
5033 if (inst.operands[i].negative)
5035 inst.operands[i].negative = 0;
5036 p--;
5039 if (group_relocations
5040 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5042 struct group_reloc_table_entry *entry;
5044 /* Skip over the #: or : sequence. */
5045 if (*p == '#')
5046 p += 2;
5047 else
5048 p++;
5050 /* Try to parse a group relocation. Anything else is an
5051 error. */
5052 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5054 inst.error = _("unknown group relocation");
5055 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5058 /* We now have the group relocation table entry corresponding to
5059 the name in the assembler source. Next, we parse the
5060 expression. */
5061 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5062 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5064 /* Record the relocation type. */
5065 switch (group_type)
5067 case GROUP_LDR:
5068 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5069 break;
5071 case GROUP_LDRS:
5072 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5073 break;
5075 case GROUP_LDC:
5076 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5077 break;
5079 default:
5080 gas_assert (0);
5083 if (inst.reloc.type == 0)
5085 inst.error = _("this group relocation is not allowed on this instruction");
5086 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5089 else
5090 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5091 return PARSE_OPERAND_FAIL;
5095 if (skip_past_char (&p, ']') == FAIL)
5097 inst.error = _("']' expected");
5098 return PARSE_OPERAND_FAIL;
5101 if (skip_past_char (&p, '!') == SUCCESS)
5102 inst.operands[i].writeback = 1;
5104 else if (skip_past_comma (&p) == SUCCESS)
5106 if (skip_past_char (&p, '{') == SUCCESS)
5108 /* [Rn], {expr} - unindexed, with option */
5109 if (parse_immediate (&p, &inst.operands[i].imm,
5110 0, 255, TRUE) == FAIL)
5111 return PARSE_OPERAND_FAIL;
5113 if (skip_past_char (&p, '}') == FAIL)
5115 inst.error = _("'}' expected at end of 'option' field");
5116 return PARSE_OPERAND_FAIL;
5118 if (inst.operands[i].preind)
5120 inst.error = _("cannot combine index with option");
5121 return PARSE_OPERAND_FAIL;
5123 *str = p;
5124 return PARSE_OPERAND_SUCCESS;
5126 else
5128 inst.operands[i].postind = 1;
5129 inst.operands[i].writeback = 1;
5131 if (inst.operands[i].preind)
5133 inst.error = _("cannot combine pre- and post-indexing");
5134 return PARSE_OPERAND_FAIL;
5137 if (*p == '+') p++;
5138 else if (*p == '-') p++, inst.operands[i].negative = 1;
5140 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5142 /* We might be using the immediate for alignment already. If we
5143 are, OR the register number into the low-order bits. */
5144 if (inst.operands[i].immisalign)
5145 inst.operands[i].imm |= reg;
5146 else
5147 inst.operands[i].imm = reg;
5148 inst.operands[i].immisreg = 1;
5150 if (skip_past_comma (&p) == SUCCESS)
5151 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5152 return PARSE_OPERAND_FAIL;
5154 else
5156 if (inst.operands[i].negative)
5158 inst.operands[i].negative = 0;
5159 p--;
5161 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5162 return PARSE_OPERAND_FAIL;
5167 /* If at this point neither .preind nor .postind is set, we have a
5168 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5169 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5171 inst.operands[i].preind = 1;
5172 inst.reloc.exp.X_op = O_constant;
5173 inst.reloc.exp.X_add_number = 0;
5175 *str = p;
5176 return PARSE_OPERAND_SUCCESS;
5179 static int
5180 parse_address (char **str, int i)
5182 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5183 ? SUCCESS : FAIL;
5186 static parse_operand_result
5187 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5189 return parse_address_main (str, i, 1, type);
5192 /* Parse an operand for a MOVW or MOVT instruction. */
5193 static int
5194 parse_half (char **str)
5196 char * p;
5198 p = *str;
5199 skip_past_char (&p, '#');
5200 if (strncasecmp (p, ":lower16:", 9) == 0)
5201 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5202 else if (strncasecmp (p, ":upper16:", 9) == 0)
5203 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5205 if (inst.reloc.type != BFD_RELOC_UNUSED)
5207 p += 9;
5208 skip_whitespace (p);
5211 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5212 return FAIL;
5214 if (inst.reloc.type == BFD_RELOC_UNUSED)
5216 if (inst.reloc.exp.X_op != O_constant)
5218 inst.error = _("constant expression expected");
5219 return FAIL;
5221 if (inst.reloc.exp.X_add_number < 0
5222 || inst.reloc.exp.X_add_number > 0xffff)
5224 inst.error = _("immediate value out of range");
5225 return FAIL;
5228 *str = p;
5229 return SUCCESS;
5232 /* Miscellaneous. */
5234 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5235 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5236 static int
5237 parse_psr (char **str)
5239 char *p;
5240 unsigned long psr_field;
5241 const struct asm_psr *psr;
5242 char *start;
5244 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5245 feature for ease of use and backwards compatibility. */
5246 p = *str;
5247 if (strncasecmp (p, "SPSR", 4) == 0)
5248 psr_field = SPSR_BIT;
5249 else if (strncasecmp (p, "CPSR", 4) == 0)
5250 psr_field = 0;
5251 else
5253 start = p;
5255 p++;
5256 while (ISALNUM (*p) || *p == '_');
5258 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5259 p - start);
5260 if (!psr)
5261 return FAIL;
5263 *str = p;
5264 return psr->field;
5267 p += 4;
5268 if (*p == '_')
5270 /* A suffix follows. */
5271 p++;
5272 start = p;
5275 p++;
5276 while (ISALNUM (*p) || *p == '_');
5278 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5279 p - start);
5280 if (!psr)
5281 goto error;
5283 psr_field |= psr->field;
5285 else
5287 if (ISALNUM (*p))
5288 goto error; /* Garbage after "[CS]PSR". */
5290 psr_field |= (PSR_c | PSR_f);
5292 *str = p;
5293 return psr_field;
5295 error:
5296 inst.error = _("flag for {c}psr instruction expected");
5297 return FAIL;
5300 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5301 value suitable for splatting into the AIF field of the instruction. */
5303 static int
5304 parse_cps_flags (char **str)
5306 int val = 0;
5307 int saw_a_flag = 0;
5308 char *s = *str;
5310 for (;;)
5311 switch (*s++)
5313 case '\0': case ',':
5314 goto done;
5316 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5317 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5318 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5320 default:
5321 inst.error = _("unrecognized CPS flag");
5322 return FAIL;
5325 done:
5326 if (saw_a_flag == 0)
5328 inst.error = _("missing CPS flags");
5329 return FAIL;
5332 *str = s - 1;
5333 return val;
5336 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5337 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5339 static int
5340 parse_endian_specifier (char **str)
5342 int little_endian;
5343 char *s = *str;
5345 if (strncasecmp (s, "BE", 2))
5346 little_endian = 0;
5347 else if (strncasecmp (s, "LE", 2))
5348 little_endian = 1;
5349 else
5351 inst.error = _("valid endian specifiers are be or le");
5352 return FAIL;
5355 if (ISALNUM (s[2]) || s[2] == '_')
5357 inst.error = _("valid endian specifiers are be or le");
5358 return FAIL;
5361 *str = s + 2;
5362 return little_endian;
5365 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5366 value suitable for poking into the rotate field of an sxt or sxta
5367 instruction, or FAIL on error. */
5369 static int
5370 parse_ror (char **str)
5372 int rot;
5373 char *s = *str;
5375 if (strncasecmp (s, "ROR", 3) == 0)
5376 s += 3;
5377 else
5379 inst.error = _("missing rotation field after comma");
5380 return FAIL;
5383 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5384 return FAIL;
5386 switch (rot)
5388 case 0: *str = s; return 0x0;
5389 case 8: *str = s; return 0x1;
5390 case 16: *str = s; return 0x2;
5391 case 24: *str = s; return 0x3;
5393 default:
5394 inst.error = _("rotation can only be 0, 8, 16, or 24");
5395 return FAIL;
5399 /* Parse a conditional code (from conds[] below). The value returned is in the
5400 range 0 .. 14, or FAIL. */
5401 static int
5402 parse_cond (char **str)
5404 char *q;
5405 const struct asm_cond *c;
5406 int n;
5407 /* Condition codes are always 2 characters, so matching up to
5408 3 characters is sufficient. */
5409 char cond[3];
5411 q = *str;
5412 n = 0;
5413 while (ISALPHA (*q) && n < 3)
5415 cond[n] = TOLOWER (*q);
5416 q++;
5417 n++;
5420 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5421 if (!c)
5423 inst.error = _("condition required");
5424 return FAIL;
5427 *str = q;
5428 return c->value;
5431 /* Parse an option for a barrier instruction. Returns the encoding for the
5432 option, or FAIL. */
5433 static int
5434 parse_barrier (char **str)
5436 char *p, *q;
5437 const struct asm_barrier_opt *o;
5439 p = q = *str;
5440 while (ISALPHA (*q))
5441 q++;
5443 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5444 q - p);
5445 if (!o)
5446 return FAIL;
5448 *str = q;
5449 return o->value;
5452 /* Parse the operands of a table branch instruction. Similar to a memory
5453 operand. */
5454 static int
5455 parse_tb (char **str)
5457 char * p = *str;
5458 int reg;
5460 if (skip_past_char (&p, '[') == FAIL)
5462 inst.error = _("'[' expected");
5463 return FAIL;
5466 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5468 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5469 return FAIL;
5471 inst.operands[0].reg = reg;
5473 if (skip_past_comma (&p) == FAIL)
5475 inst.error = _("',' expected");
5476 return FAIL;
5479 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5481 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5482 return FAIL;
5484 inst.operands[0].imm = reg;
5486 if (skip_past_comma (&p) == SUCCESS)
5488 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5489 return FAIL;
5490 if (inst.reloc.exp.X_add_number != 1)
5492 inst.error = _("invalid shift");
5493 return FAIL;
5495 inst.operands[0].shifted = 1;
5498 if (skip_past_char (&p, ']') == FAIL)
5500 inst.error = _("']' expected");
5501 return FAIL;
5503 *str = p;
5504 return SUCCESS;
5507 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5508 information on the types the operands can take and how they are encoded.
5509 Up to four operands may be read; this function handles setting the
5510 ".present" field for each read operand itself.
5511 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5512 else returns FAIL. */
5514 static int
5515 parse_neon_mov (char **str, int *which_operand)
5517 int i = *which_operand, val;
5518 enum arm_reg_type rtype;
5519 char *ptr = *str;
5520 struct neon_type_el optype;
5522 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5524 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5525 inst.operands[i].reg = val;
5526 inst.operands[i].isscalar = 1;
5527 inst.operands[i].vectype = optype;
5528 inst.operands[i++].present = 1;
5530 if (skip_past_comma (&ptr) == FAIL)
5531 goto wanted_comma;
5533 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5534 goto wanted_arm;
5536 inst.operands[i].reg = val;
5537 inst.operands[i].isreg = 1;
5538 inst.operands[i].present = 1;
5540 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5541 != FAIL)
5543 /* Cases 0, 1, 2, 3, 5 (D only). */
5544 if (skip_past_comma (&ptr) == FAIL)
5545 goto wanted_comma;
5547 inst.operands[i].reg = val;
5548 inst.operands[i].isreg = 1;
5549 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5550 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5551 inst.operands[i].isvec = 1;
5552 inst.operands[i].vectype = optype;
5553 inst.operands[i++].present = 1;
5555 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5557 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5558 Case 13: VMOV <Sd>, <Rm> */
5559 inst.operands[i].reg = val;
5560 inst.operands[i].isreg = 1;
5561 inst.operands[i].present = 1;
5563 if (rtype == REG_TYPE_NQ)
5565 first_error (_("can't use Neon quad register here"));
5566 return FAIL;
5568 else if (rtype != REG_TYPE_VFS)
5570 i++;
5571 if (skip_past_comma (&ptr) == FAIL)
5572 goto wanted_comma;
5573 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5574 goto wanted_arm;
5575 inst.operands[i].reg = val;
5576 inst.operands[i].isreg = 1;
5577 inst.operands[i].present = 1;
5580 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5581 &optype)) != FAIL)
5583 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5584 Case 1: VMOV<c><q> <Dd>, <Dm>
5585 Case 8: VMOV.F32 <Sd>, <Sm>
5586 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5588 inst.operands[i].reg = val;
5589 inst.operands[i].isreg = 1;
5590 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5591 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5592 inst.operands[i].isvec = 1;
5593 inst.operands[i].vectype = optype;
5594 inst.operands[i].present = 1;
5596 if (skip_past_comma (&ptr) == SUCCESS)
5598 /* Case 15. */
5599 i++;
5601 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5602 goto wanted_arm;
5604 inst.operands[i].reg = val;
5605 inst.operands[i].isreg = 1;
5606 inst.operands[i++].present = 1;
5608 if (skip_past_comma (&ptr) == FAIL)
5609 goto wanted_comma;
5611 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5612 goto wanted_arm;
5614 inst.operands[i].reg = val;
5615 inst.operands[i].isreg = 1;
5616 inst.operands[i++].present = 1;
5619 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5620 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5621 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5622 Case 10: VMOV.F32 <Sd>, #<imm>
5623 Case 11: VMOV.F64 <Dd>, #<imm> */
5624 inst.operands[i].immisfloat = 1;
5625 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5629 else
5631 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5632 return FAIL;
5635 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5637 /* Cases 6, 7. */
5638 inst.operands[i].reg = val;
5639 inst.operands[i].isreg = 1;
5640 inst.operands[i++].present = 1;
5642 if (skip_past_comma (&ptr) == FAIL)
5643 goto wanted_comma;
5645 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5647 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5648 inst.operands[i].reg = val;
5649 inst.operands[i].isscalar = 1;
5650 inst.operands[i].present = 1;
5651 inst.operands[i].vectype = optype;
5653 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5655 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5656 inst.operands[i].reg = val;
5657 inst.operands[i].isreg = 1;
5658 inst.operands[i++].present = 1;
5660 if (skip_past_comma (&ptr) == FAIL)
5661 goto wanted_comma;
5663 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5664 == FAIL)
5666 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5667 return FAIL;
5670 inst.operands[i].reg = val;
5671 inst.operands[i].isreg = 1;
5672 inst.operands[i].isvec = 1;
5673 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5674 inst.operands[i].vectype = optype;
5675 inst.operands[i].present = 1;
5677 if (rtype == REG_TYPE_VFS)
5679 /* Case 14. */
5680 i++;
5681 if (skip_past_comma (&ptr) == FAIL)
5682 goto wanted_comma;
5683 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5684 &optype)) == FAIL)
5686 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5687 return FAIL;
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i].isvec = 1;
5692 inst.operands[i].issingle = 1;
5693 inst.operands[i].vectype = optype;
5694 inst.operands[i].present = 1;
5697 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5698 != FAIL)
5700 /* Case 13. */
5701 inst.operands[i].reg = val;
5702 inst.operands[i].isreg = 1;
5703 inst.operands[i].isvec = 1;
5704 inst.operands[i].issingle = 1;
5705 inst.operands[i].vectype = optype;
5706 inst.operands[i++].present = 1;
5709 else
5711 first_error (_("parse error"));
5712 return FAIL;
5715 /* Successfully parsed the operands. Update args. */
5716 *which_operand = i;
5717 *str = ptr;
5718 return SUCCESS;
5720 wanted_comma:
5721 first_error (_("expected comma"));
5722 return FAIL;
5724 wanted_arm:
5725 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5726 return FAIL;
5729 /* Matcher codes for parse_operands. */
5730 enum operand_parse_code
5732 OP_stop, /* end of line */
5734 OP_RR, /* ARM register */
5735 OP_RRnpc, /* ARM register, not r15 */
5736 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5737 OP_RRw, /* ARM register, not r15, optional trailing ! */
5738 OP_RCP, /* Coprocessor number */
5739 OP_RCN, /* Coprocessor register */
5740 OP_RF, /* FPA register */
5741 OP_RVS, /* VFP single precision register */
5742 OP_RVD, /* VFP double precision register (0..15) */
5743 OP_RND, /* Neon double precision register (0..31) */
5744 OP_RNQ, /* Neon quad precision register */
5745 OP_RVSD, /* VFP single or double precision register */
5746 OP_RNDQ, /* Neon double or quad precision register */
5747 OP_RNSDQ, /* Neon single, double or quad precision register */
5748 OP_RNSC, /* Neon scalar D[X] */
5749 OP_RVC, /* VFP control register */
5750 OP_RMF, /* Maverick F register */
5751 OP_RMD, /* Maverick D register */
5752 OP_RMFX, /* Maverick FX register */
5753 OP_RMDX, /* Maverick DX register */
5754 OP_RMAX, /* Maverick AX register */
5755 OP_RMDS, /* Maverick DSPSC register */
5756 OP_RIWR, /* iWMMXt wR register */
5757 OP_RIWC, /* iWMMXt wC register */
5758 OP_RIWG, /* iWMMXt wCG register */
5759 OP_RXA, /* XScale accumulator register */
5761 OP_REGLST, /* ARM register list */
5762 OP_VRSLST, /* VFP single-precision register list */
5763 OP_VRDLST, /* VFP double-precision register list */
5764 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5765 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5766 OP_NSTRLST, /* Neon element/structure list */
5768 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5769 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5770 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5771 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5772 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5773 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5774 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5775 OP_VMOV, /* Neon VMOV operands. */
5776 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5777 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5778 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5780 OP_I0, /* immediate zero */
5781 OP_I7, /* immediate value 0 .. 7 */
5782 OP_I15, /* 0 .. 15 */
5783 OP_I16, /* 1 .. 16 */
5784 OP_I16z, /* 0 .. 16 */
5785 OP_I31, /* 0 .. 31 */
5786 OP_I31w, /* 0 .. 31, optional trailing ! */
5787 OP_I32, /* 1 .. 32 */
5788 OP_I32z, /* 0 .. 32 */
5789 OP_I63, /* 0 .. 63 */
5790 OP_I63s, /* -64 .. 63 */
5791 OP_I64, /* 1 .. 64 */
5792 OP_I64z, /* 0 .. 64 */
5793 OP_I255, /* 0 .. 255 */
5795 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5796 OP_I7b, /* 0 .. 7 */
5797 OP_I15b, /* 0 .. 15 */
5798 OP_I31b, /* 0 .. 31 */
5800 OP_SH, /* shifter operand */
5801 OP_SHG, /* shifter operand with possible group relocation */
5802 OP_ADDR, /* Memory address expression (any mode) */
5803 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5804 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5805 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5806 OP_EXP, /* arbitrary expression */
5807 OP_EXPi, /* same, with optional immediate prefix */
5808 OP_EXPr, /* same, with optional relocation suffix */
5809 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5811 OP_CPSF, /* CPS flags */
5812 OP_ENDI, /* Endianness specifier */
5813 OP_PSR, /* CPSR/SPSR mask for msr */
5814 OP_COND, /* conditional code */
5815 OP_TB, /* Table branch. */
5817 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5818 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5820 OP_RRnpc_I0, /* ARM register or literal 0 */
5821 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5822 OP_RR_EXi, /* ARM register or expression with imm prefix */
5823 OP_RF_IF, /* FPA register or immediate */
5824 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5825 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5827 /* Optional operands. */
5828 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5829 OP_oI31b, /* 0 .. 31 */
5830 OP_oI32b, /* 1 .. 32 */
5831 OP_oIffffb, /* 0 .. 65535 */
5832 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5834 OP_oRR, /* ARM register */
5835 OP_oRRnpc, /* ARM register, not the PC */
5836 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5837 OP_oRND, /* Optional Neon double precision register */
5838 OP_oRNQ, /* Optional Neon quad precision register */
5839 OP_oRNDQ, /* Optional Neon double or quad precision register */
5840 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5841 OP_oSHll, /* LSL immediate */
5842 OP_oSHar, /* ASR immediate */
5843 OP_oSHllar, /* LSL or ASR immediate */
5844 OP_oROR, /* ROR 0/8/16/24 */
5845 OP_oBARRIER, /* Option argument for a barrier instruction. */
5847 OP_FIRST_OPTIONAL = OP_oI7b
5850 /* Generic instruction operand parser. This does no encoding and no
5851 semantic validation; it merely squirrels values away in the inst
5852 structure. Returns SUCCESS or FAIL depending on whether the
5853 specified grammar matched. */
5854 static int
5855 parse_operands (char *str, const unsigned char *pattern)
5857 unsigned const char *upat = pattern;
5858 char *backtrack_pos = 0;
5859 const char *backtrack_error = 0;
5860 int i, val, backtrack_index = 0;
5861 enum arm_reg_type rtype;
5862 parse_operand_result result;
5864 #define po_char_or_fail(chr) \
5865 do \
5867 if (skip_past_char (&str, chr) == FAIL) \
5868 goto bad_args; \
5870 while (0)
5872 #define po_reg_or_fail(regtype) \
5873 do \
5875 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5876 & inst.operands[i].vectype); \
5877 if (val == FAIL) \
5879 first_error (_(reg_expected_msgs[regtype])); \
5880 goto failure; \
5882 inst.operands[i].reg = val; \
5883 inst.operands[i].isreg = 1; \
5884 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5885 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5886 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5887 || rtype == REG_TYPE_VFD \
5888 || rtype == REG_TYPE_NQ); \
5890 while (0)
5892 #define po_reg_or_goto(regtype, label) \
5893 do \
5895 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5896 & inst.operands[i].vectype); \
5897 if (val == FAIL) \
5898 goto label; \
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
5908 while (0)
5910 #define po_imm_or_fail(min, max, popt) \
5911 do \
5913 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5914 goto failure; \
5915 inst.operands[i].imm = val; \
5917 while (0)
5919 #define po_scalar_or_goto(elsz, label) \
5920 do \
5922 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5923 if (val == FAIL) \
5924 goto label; \
5925 inst.operands[i].reg = val; \
5926 inst.operands[i].isscalar = 1; \
5928 while (0)
5930 #define po_misc_or_fail(expr) \
5931 do \
5933 if (expr) \
5934 goto failure; \
5936 while (0)
5938 #define po_misc_or_fail_no_backtrack(expr) \
5939 do \
5941 result = expr; \
5942 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5943 backtrack_pos = 0; \
5944 if (result != PARSE_OPERAND_SUCCESS) \
5945 goto failure; \
5947 while (0)
5949 skip_whitespace (str);
5951 for (i = 0; upat[i] != OP_stop; i++)
5953 if (upat[i] >= OP_FIRST_OPTIONAL)
5955 /* Remember where we are in case we need to backtrack. */
5956 gas_assert (!backtrack_pos);
5957 backtrack_pos = str;
5958 backtrack_error = inst.error;
5959 backtrack_index = i;
5962 if (i > 0 && (i > 1 || inst.operands[0].present))
5963 po_char_or_fail (',');
5965 switch (upat[i])
5967 /* Registers */
5968 case OP_oRRnpc:
5969 case OP_RRnpc:
5970 case OP_oRR:
5971 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5972 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5973 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5974 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5975 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5976 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5977 case OP_oRND:
5978 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5979 case OP_RVC:
5980 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5981 break;
5982 /* Also accept generic coprocessor regs for unknown registers. */
5983 coproc_reg:
5984 po_reg_or_fail (REG_TYPE_CN);
5985 break;
5986 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5987 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5988 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5989 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5990 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5991 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5992 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5993 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5994 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5995 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5996 case OP_oRNQ:
5997 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5998 case OP_oRNDQ:
5999 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6000 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6001 case OP_oRNSDQ:
6002 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6004 /* Neon scalar. Using an element size of 8 means that some invalid
6005 scalars are accepted here, so deal with those in later code. */
6006 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6008 /* WARNING: We can expand to two operands here. This has the potential
6009 to totally confuse the backtracking mechanism! It will be OK at
6010 least as long as we don't try to use optional args as well,
6011 though. */
6012 case OP_NILO:
6014 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
6015 inst.operands[i].present = 1;
6016 i++;
6017 skip_past_comma (&str);
6018 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
6019 break;
6020 one_reg_only:
6021 /* Optional register operand was omitted. Unfortunately, it's in
6022 operands[i-1] and we need it to be in inst.operands[i]. Fix that
6023 here (this is a bit grotty). */
6024 inst.operands[i] = inst.operands[i-1];
6025 inst.operands[i-1].present = 0;
6026 break;
6027 try_imm:
6028 /* There's a possibility of getting a 64-bit immediate here, so
6029 we need special handling. */
6030 if (parse_big_immediate (&str, i) == FAIL)
6032 inst.error = _("immediate value is out of range");
6033 goto failure;
6036 break;
6038 case OP_RNDQ_I0:
6040 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6041 break;
6042 try_imm0:
6043 po_imm_or_fail (0, 0, TRUE);
6045 break;
6047 case OP_RVSD_I0:
6048 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6049 break;
6051 case OP_RR_RNSC:
6053 po_scalar_or_goto (8, try_rr);
6054 break;
6055 try_rr:
6056 po_reg_or_fail (REG_TYPE_RN);
6058 break;
6060 case OP_RNSDQ_RNSC:
6062 po_scalar_or_goto (8, try_nsdq);
6063 break;
6064 try_nsdq:
6065 po_reg_or_fail (REG_TYPE_NSDQ);
6067 break;
6069 case OP_RNDQ_RNSC:
6071 po_scalar_or_goto (8, try_ndq);
6072 break;
6073 try_ndq:
6074 po_reg_or_fail (REG_TYPE_NDQ);
6076 break;
6078 case OP_RND_RNSC:
6080 po_scalar_or_goto (8, try_vfd);
6081 break;
6082 try_vfd:
6083 po_reg_or_fail (REG_TYPE_VFD);
6085 break;
6087 case OP_VMOV:
6088 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6089 not careful then bad things might happen. */
6090 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6091 break;
6093 case OP_RNDQ_IMVNb:
6095 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
6096 break;
6097 try_mvnimm:
6098 /* There's a possibility of getting a 64-bit immediate here, so
6099 we need special handling. */
6100 if (parse_big_immediate (&str, i) == FAIL)
6102 inst.error = _("immediate value is out of range");
6103 goto failure;
6106 break;
6108 case OP_RNDQ_I63b:
6110 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6111 break;
6112 try_shimm:
6113 po_imm_or_fail (0, 63, TRUE);
6115 break;
6117 case OP_RRnpcb:
6118 po_char_or_fail ('[');
6119 po_reg_or_fail (REG_TYPE_RN);
6120 po_char_or_fail (']');
6121 break;
6123 case OP_RRw:
6124 case OP_oRRw:
6125 po_reg_or_fail (REG_TYPE_RN);
6126 if (skip_past_char (&str, '!') == SUCCESS)
6127 inst.operands[i].writeback = 1;
6128 break;
6130 /* Immediates */
6131 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6132 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6133 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6134 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6135 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6136 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6137 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6138 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6139 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6140 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6141 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6142 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6144 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6145 case OP_oI7b:
6146 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6147 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6148 case OP_oI31b:
6149 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6150 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6151 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6153 /* Immediate variants */
6154 case OP_oI255c:
6155 po_char_or_fail ('{');
6156 po_imm_or_fail (0, 255, TRUE);
6157 po_char_or_fail ('}');
6158 break;
6160 case OP_I31w:
6161 /* The expression parser chokes on a trailing !, so we have
6162 to find it first and zap it. */
6164 char *s = str;
6165 while (*s && *s != ',')
6166 s++;
6167 if (s[-1] == '!')
6169 s[-1] = '\0';
6170 inst.operands[i].writeback = 1;
6172 po_imm_or_fail (0, 31, TRUE);
6173 if (str == s - 1)
6174 str = s;
6176 break;
6178 /* Expressions */
6179 case OP_EXPi: EXPi:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_OPT_PREFIX));
6182 break;
6184 case OP_EXP:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 break;
6189 case OP_EXPr: EXPr:
6190 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6191 GE_NO_PREFIX));
6192 if (inst.reloc.exp.X_op == O_symbol)
6194 val = parse_reloc (&str);
6195 if (val == -1)
6197 inst.error = _("unrecognized relocation suffix");
6198 goto failure;
6200 else if (val != BFD_RELOC_UNUSED)
6202 inst.operands[i].imm = val;
6203 inst.operands[i].hasreloc = 1;
6206 break;
6208 /* Operand for MOVW or MOVT. */
6209 case OP_HALF:
6210 po_misc_or_fail (parse_half (&str));
6211 break;
6213 /* Register or expression. */
6214 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6215 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6217 /* Register or immediate. */
6218 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6219 I0: po_imm_or_fail (0, 0, FALSE); break;
6221 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6223 if (!is_immediate_prefix (*str))
6224 goto bad_args;
6225 str++;
6226 val = parse_fpa_immediate (&str);
6227 if (val == FAIL)
6228 goto failure;
6229 /* FPA immediates are encoded as registers 8-15.
6230 parse_fpa_immediate has already applied the offset. */
6231 inst.operands[i].reg = val;
6232 inst.operands[i].isreg = 1;
6233 break;
6235 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6236 I32z: po_imm_or_fail (0, 32, FALSE); break;
6238 /* Two kinds of register. */
6239 case OP_RIWR_RIWC:
6241 struct reg_entry *rege = arm_reg_parse_multi (&str);
6242 if (!rege
6243 || (rege->type != REG_TYPE_MMXWR
6244 && rege->type != REG_TYPE_MMXWC
6245 && rege->type != REG_TYPE_MMXWCG))
6247 inst.error = _("iWMMXt data or control register expected");
6248 goto failure;
6250 inst.operands[i].reg = rege->number;
6251 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6253 break;
6255 case OP_RIWC_RIWG:
6257 struct reg_entry *rege = arm_reg_parse_multi (&str);
6258 if (!rege
6259 || (rege->type != REG_TYPE_MMXWC
6260 && rege->type != REG_TYPE_MMXWCG))
6262 inst.error = _("iWMMXt control register expected");
6263 goto failure;
6265 inst.operands[i].reg = rege->number;
6266 inst.operands[i].isreg = 1;
6268 break;
6270 /* Misc */
6271 case OP_CPSF: val = parse_cps_flags (&str); break;
6272 case OP_ENDI: val = parse_endian_specifier (&str); break;
6273 case OP_oROR: val = parse_ror (&str); break;
6274 case OP_PSR: val = parse_psr (&str); break;
6275 case OP_COND: val = parse_cond (&str); break;
6276 case OP_oBARRIER:val = parse_barrier (&str); break;
6278 case OP_RVC_PSR:
6279 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6280 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6281 break;
6282 try_psr:
6283 val = parse_psr (&str);
6284 break;
6286 case OP_APSR_RR:
6287 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6288 break;
6289 try_apsr:
6290 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6291 instruction). */
6292 if (strncasecmp (str, "APSR_", 5) == 0)
6294 unsigned found = 0;
6295 str += 5;
6296 while (found < 15)
6297 switch (*str++)
6299 case 'c': found = (found & 1) ? 16 : found | 1; break;
6300 case 'n': found = (found & 2) ? 16 : found | 2; break;
6301 case 'z': found = (found & 4) ? 16 : found | 4; break;
6302 case 'v': found = (found & 8) ? 16 : found | 8; break;
6303 default: found = 16;
6305 if (found != 15)
6306 goto failure;
6307 inst.operands[i].isvec = 1;
6308 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6309 inst.operands[i].reg = REG_PC;
6311 else
6312 goto failure;
6313 break;
6315 case OP_TB:
6316 po_misc_or_fail (parse_tb (&str));
6317 break;
6319 /* Register lists. */
6320 case OP_REGLST:
6321 val = parse_reg_list (&str);
6322 if (*str == '^')
6324 inst.operands[1].writeback = 1;
6325 str++;
6327 break;
6329 case OP_VRSLST:
6330 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6331 break;
6333 case OP_VRDLST:
6334 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6335 break;
6337 case OP_VRSDLST:
6338 /* Allow Q registers too. */
6339 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6340 REGLIST_NEON_D);
6341 if (val == FAIL)
6343 inst.error = NULL;
6344 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6345 REGLIST_VFP_S);
6346 inst.operands[i].issingle = 1;
6348 break;
6350 case OP_NRDLST:
6351 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6352 REGLIST_NEON_D);
6353 break;
6355 case OP_NSTRLST:
6356 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6357 &inst.operands[i].vectype);
6358 break;
6360 /* Addressing modes */
6361 case OP_ADDR:
6362 po_misc_or_fail (parse_address (&str, i));
6363 break;
6365 case OP_ADDRGLDR:
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str, i, GROUP_LDR));
6368 break;
6370 case OP_ADDRGLDRS:
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str, i, GROUP_LDRS));
6373 break;
6375 case OP_ADDRGLDC:
6376 po_misc_or_fail_no_backtrack (
6377 parse_address_group_reloc (&str, i, GROUP_LDC));
6378 break;
6380 case OP_SH:
6381 po_misc_or_fail (parse_shifter_operand (&str, i));
6382 break;
6384 case OP_SHG:
6385 po_misc_or_fail_no_backtrack (
6386 parse_shifter_operand_group_reloc (&str, i));
6387 break;
6389 case OP_oSHll:
6390 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6391 break;
6393 case OP_oSHar:
6394 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6395 break;
6397 case OP_oSHllar:
6398 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6399 break;
6401 default:
6402 as_fatal (_("unhandled operand code %d"), upat[i]);
6405 /* Various value-based sanity checks and shared operations. We
6406 do not signal immediate failures for the register constraints;
6407 this allows a syntax error to take precedence. */
6408 switch (upat[i])
6410 case OP_oRRnpc:
6411 case OP_RRnpc:
6412 case OP_RRnpcb:
6413 case OP_RRw:
6414 case OP_oRRw:
6415 case OP_RRnpc_I0:
6416 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6417 inst.error = BAD_PC;
6418 break;
6420 case OP_CPSF:
6421 case OP_ENDI:
6422 case OP_oROR:
6423 case OP_PSR:
6424 case OP_RVC_PSR:
6425 case OP_COND:
6426 case OP_oBARRIER:
6427 case OP_REGLST:
6428 case OP_VRSLST:
6429 case OP_VRDLST:
6430 case OP_VRSDLST:
6431 case OP_NRDLST:
6432 case OP_NSTRLST:
6433 if (val == FAIL)
6434 goto failure;
6435 inst.operands[i].imm = val;
6436 break;
6438 default:
6439 break;
6442 /* If we get here, this operand was successfully parsed. */
6443 inst.operands[i].present = 1;
6444 continue;
6446 bad_args:
6447 inst.error = BAD_ARGS;
6449 failure:
6450 if (!backtrack_pos)
6452 /* The parse routine should already have set inst.error, but set a
6453 default here just in case. */
6454 if (!inst.error)
6455 inst.error = _("syntax error");
6456 return FAIL;
6459 /* Do not backtrack over a trailing optional argument that
6460 absorbed some text. We will only fail again, with the
6461 'garbage following instruction' error message, which is
6462 probably less helpful than the current one. */
6463 if (backtrack_index == i && backtrack_pos != str
6464 && upat[i+1] == OP_stop)
6466 if (!inst.error)
6467 inst.error = _("syntax error");
6468 return FAIL;
6471 /* Try again, skipping the optional argument at backtrack_pos. */
6472 str = backtrack_pos;
6473 inst.error = backtrack_error;
6474 inst.operands[backtrack_index].present = 0;
6475 i = backtrack_index;
6476 backtrack_pos = 0;
6479 /* Check that we have parsed all the arguments. */
6480 if (*str != '\0' && !inst.error)
6481 inst.error = _("garbage following instruction");
6483 return inst.error ? FAIL : SUCCESS;
6486 #undef po_char_or_fail
6487 #undef po_reg_or_fail
6488 #undef po_reg_or_goto
6489 #undef po_imm_or_fail
6490 #undef po_scalar_or_fail
6492 /* Shorthand macro for instruction encoding functions issuing errors. */
6493 #define constraint(expr, err) \
6494 do \
6496 if (expr) \
6498 inst.error = err; \
6499 return; \
6502 while (0)
6504 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6505 instructions are unpredictable if these registers are used. This
6506 is the BadReg predicate in ARM's Thumb-2 documentation. */
6507 #define reject_bad_reg(reg) \
6508 do \
6509 if (reg == REG_SP || reg == REG_PC) \
6511 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6512 return; \
6514 while (0)
6516 /* If REG is R13 (the stack pointer), warn that its use is
6517 deprecated. */
6518 #define warn_deprecated_sp(reg) \
6519 do \
6520 if (warn_on_deprecated && reg == REG_SP) \
6521 as_warn (_("use of r13 is deprecated")); \
6522 while (0)
6524 /* Functions for operand encoding. ARM, then Thumb. */
6526 #define rotate_left(v, n) (v << n | v >> (32 - n))
6528 /* If VAL can be encoded in the immediate field of an ARM instruction,
6529 return the encoded form. Otherwise, return FAIL. */
6531 static unsigned int
6532 encode_arm_immediate (unsigned int val)
6534 unsigned int a, i;
6536 for (i = 0; i < 32; i += 2)
6537 if ((a = rotate_left (val, i)) <= 0xff)
6538 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6540 return FAIL;
6543 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6544 return the encoded form. Otherwise, return FAIL. */
6545 static unsigned int
6546 encode_thumb32_immediate (unsigned int val)
6548 unsigned int a, i;
6550 if (val <= 0xff)
6551 return val;
6553 for (i = 1; i <= 24; i++)
6555 a = val >> i;
6556 if ((val & ~(0xff << i)) == 0)
6557 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6560 a = val & 0xff;
6561 if (val == ((a << 16) | a))
6562 return 0x100 | a;
6563 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6564 return 0x300 | a;
6566 a = val & 0xff00;
6567 if (val == ((a << 16) | a))
6568 return 0x200 | (a >> 8);
6570 return FAIL;
6572 /* Encode a VFP SP or DP register number into inst.instruction. */
6574 static void
6575 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6577 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6578 && reg > 15)
6580 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6582 if (thumb_mode)
6583 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6584 fpu_vfp_ext_d32);
6585 else
6586 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6587 fpu_vfp_ext_d32);
6589 else
6591 first_error (_("D register out of range for selected VFP version"));
6592 return;
6596 switch (pos)
6598 case VFP_REG_Sd:
6599 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6600 break;
6602 case VFP_REG_Sn:
6603 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6604 break;
6606 case VFP_REG_Sm:
6607 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6608 break;
6610 case VFP_REG_Dd:
6611 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6612 break;
6614 case VFP_REG_Dn:
6615 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6616 break;
6618 case VFP_REG_Dm:
6619 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6620 break;
6622 default:
6623 abort ();
6627 /* Encode a <shift> in an ARM-format instruction. The immediate,
6628 if any, is handled by md_apply_fix. */
6629 static void
6630 encode_arm_shift (int i)
6632 if (inst.operands[i].shift_kind == SHIFT_RRX)
6633 inst.instruction |= SHIFT_ROR << 5;
6634 else
6636 inst.instruction |= inst.operands[i].shift_kind << 5;
6637 if (inst.operands[i].immisreg)
6639 inst.instruction |= SHIFT_BY_REG;
6640 inst.instruction |= inst.operands[i].imm << 8;
6642 else
6643 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6647 static void
6648 encode_arm_shifter_operand (int i)
6650 if (inst.operands[i].isreg)
6652 inst.instruction |= inst.operands[i].reg;
6653 encode_arm_shift (i);
6655 else
6656 inst.instruction |= INST_IMMEDIATE;
6659 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6660 static void
6661 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6663 gas_assert (inst.operands[i].isreg);
6664 inst.instruction |= inst.operands[i].reg << 16;
6666 if (inst.operands[i].preind)
6668 if (is_t)
6670 inst.error = _("instruction does not accept preindexed addressing");
6671 return;
6673 inst.instruction |= PRE_INDEX;
6674 if (inst.operands[i].writeback)
6675 inst.instruction |= WRITE_BACK;
6678 else if (inst.operands[i].postind)
6680 gas_assert (inst.operands[i].writeback);
6681 if (is_t)
6682 inst.instruction |= WRITE_BACK;
6684 else /* unindexed - only for coprocessor */
6686 inst.error = _("instruction does not accept unindexed addressing");
6687 return;
6690 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6691 && (((inst.instruction & 0x000f0000) >> 16)
6692 == ((inst.instruction & 0x0000f000) >> 12)))
6693 as_warn ((inst.instruction & LOAD_BIT)
6694 ? _("destination register same as write-back base")
6695 : _("source register same as write-back base"));
6698 /* inst.operands[i] was set up by parse_address. Encode it into an
6699 ARM-format mode 2 load or store instruction. If is_t is true,
6700 reject forms that cannot be used with a T instruction (i.e. not
6701 post-indexed). */
6702 static void
6703 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6705 encode_arm_addr_mode_common (i, is_t);
6707 if (inst.operands[i].immisreg)
6709 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6710 inst.instruction |= inst.operands[i].imm;
6711 if (!inst.operands[i].negative)
6712 inst.instruction |= INDEX_UP;
6713 if (inst.operands[i].shifted)
6715 if (inst.operands[i].shift_kind == SHIFT_RRX)
6716 inst.instruction |= SHIFT_ROR << 5;
6717 else
6719 inst.instruction |= inst.operands[i].shift_kind << 5;
6720 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6724 else /* immediate offset in inst.reloc */
6726 if (inst.reloc.type == BFD_RELOC_UNUSED)
6727 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6731 /* inst.operands[i] was set up by parse_address. Encode it into an
6732 ARM-format mode 3 load or store instruction. Reject forms that
6733 cannot be used with such instructions. If is_t is true, reject
6734 forms that cannot be used with a T instruction (i.e. not
6735 post-indexed). */
6736 static void
6737 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6739 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6741 inst.error = _("instruction does not accept scaled register index");
6742 return;
6745 encode_arm_addr_mode_common (i, is_t);
6747 if (inst.operands[i].immisreg)
6749 inst.instruction |= inst.operands[i].imm;
6750 if (!inst.operands[i].negative)
6751 inst.instruction |= INDEX_UP;
6753 else /* immediate offset in inst.reloc */
6755 inst.instruction |= HWOFFSET_IMM;
6756 if (inst.reloc.type == BFD_RELOC_UNUSED)
6757 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6761 /* inst.operands[i] was set up by parse_address. Encode it into an
6762 ARM-format instruction. Reject all forms which cannot be encoded
6763 into a coprocessor load/store instruction. If wb_ok is false,
6764 reject use of writeback; if unind_ok is false, reject use of
6765 unindexed addressing. If reloc_override is not 0, use it instead
6766 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6767 (in which case it is preserved). */
6769 static int
6770 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6772 inst.instruction |= inst.operands[i].reg << 16;
6774 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6776 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6778 gas_assert (!inst.operands[i].writeback);
6779 if (!unind_ok)
6781 inst.error = _("instruction does not support unindexed addressing");
6782 return FAIL;
6784 inst.instruction |= inst.operands[i].imm;
6785 inst.instruction |= INDEX_UP;
6786 return SUCCESS;
6789 if (inst.operands[i].preind)
6790 inst.instruction |= PRE_INDEX;
6792 if (inst.operands[i].writeback)
6794 if (inst.operands[i].reg == REG_PC)
6796 inst.error = _("pc may not be used with write-back");
6797 return FAIL;
6799 if (!wb_ok)
6801 inst.error = _("instruction does not support writeback");
6802 return FAIL;
6804 inst.instruction |= WRITE_BACK;
6807 if (reloc_override)
6808 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6809 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6810 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6811 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6813 if (thumb_mode)
6814 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6815 else
6816 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6819 return SUCCESS;
6822 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6823 Determine whether it can be performed with a move instruction; if
6824 it can, convert inst.instruction to that move instruction and
6825 return TRUE; if it can't, convert inst.instruction to a literal-pool
6826 load and return FALSE. If this is not a valid thing to do in the
6827 current context, set inst.error and return TRUE.
6829 inst.operands[i] describes the destination register. */
6831 static bfd_boolean
6832 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6834 unsigned long tbit;
6836 if (thumb_p)
6837 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6838 else
6839 tbit = LOAD_BIT;
6841 if ((inst.instruction & tbit) == 0)
6843 inst.error = _("invalid pseudo operation");
6844 return TRUE;
6846 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6848 inst.error = _("constant expression expected");
6849 return TRUE;
6851 if (inst.reloc.exp.X_op == O_constant)
6853 if (thumb_p)
6855 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6857 /* This can be done with a mov(1) instruction. */
6858 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6859 inst.instruction |= inst.reloc.exp.X_add_number;
6860 return TRUE;
6863 else
6865 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6866 if (value != FAIL)
6868 /* This can be done with a mov instruction. */
6869 inst.instruction &= LITERAL_MASK;
6870 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6871 inst.instruction |= value & 0xfff;
6872 return TRUE;
6875 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6876 if (value != FAIL)
6878 /* This can be done with a mvn instruction. */
6879 inst.instruction &= LITERAL_MASK;
6880 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6881 inst.instruction |= value & 0xfff;
6882 return TRUE;
6887 if (add_to_lit_pool () == FAIL)
6889 inst.error = _("literal pool insertion failed");
6890 return TRUE;
6892 inst.operands[1].reg = REG_PC;
6893 inst.operands[1].isreg = 1;
6894 inst.operands[1].preind = 1;
6895 inst.reloc.pc_rel = 1;
6896 inst.reloc.type = (thumb_p
6897 ? BFD_RELOC_ARM_THUMB_OFFSET
6898 : (mode_3
6899 ? BFD_RELOC_ARM_HWLITERAL
6900 : BFD_RELOC_ARM_LITERAL));
6901 return FALSE;
6904 /* Functions for instruction encoding, sorted by sub-architecture.
6905 First some generics; their names are taken from the conventional
6906 bit positions for register arguments in ARM format instructions. */
6908 static void
6909 do_noargs (void)
6913 static void
6914 do_rd (void)
6916 inst.instruction |= inst.operands[0].reg << 12;
6919 static void
6920 do_rd_rm (void)
6922 inst.instruction |= inst.operands[0].reg << 12;
6923 inst.instruction |= inst.operands[1].reg;
6926 static void
6927 do_rd_rn (void)
6929 inst.instruction |= inst.operands[0].reg << 12;
6930 inst.instruction |= inst.operands[1].reg << 16;
6933 static void
6934 do_rn_rd (void)
6936 inst.instruction |= inst.operands[0].reg << 16;
6937 inst.instruction |= inst.operands[1].reg << 12;
6940 static void
6941 do_rd_rm_rn (void)
6943 unsigned Rn = inst.operands[2].reg;
6944 /* Enforce restrictions on SWP instruction. */
6945 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6946 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6947 _("Rn must not overlap other operands"));
6948 inst.instruction |= inst.operands[0].reg << 12;
6949 inst.instruction |= inst.operands[1].reg;
6950 inst.instruction |= Rn << 16;
6953 static void
6954 do_rd_rn_rm (void)
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 inst.instruction |= inst.operands[1].reg << 16;
6958 inst.instruction |= inst.operands[2].reg;
6961 static void
6962 do_rm_rd_rn (void)
6964 inst.instruction |= inst.operands[0].reg;
6965 inst.instruction |= inst.operands[1].reg << 12;
6966 inst.instruction |= inst.operands[2].reg << 16;
6969 static void
6970 do_imm0 (void)
6972 inst.instruction |= inst.operands[0].imm;
6975 static void
6976 do_rd_cpaddr (void)
6978 inst.instruction |= inst.operands[0].reg << 12;
6979 encode_arm_cp_address (1, TRUE, TRUE, 0);
6982 /* ARM instructions, in alphabetical order by function name (except
6983 that wrapper functions appear immediately after the function they
6984 wrap). */
6986 /* This is a pseudo-op of the form "adr rd, label" to be converted
6987 into a relative address of the form "add rd, pc, #label-.-8". */
6989 static void
6990 do_adr (void)
6992 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6994 /* Frag hacking will turn this into a sub instruction if the offset turns
6995 out to be negative. */
6996 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6997 inst.reloc.pc_rel = 1;
6998 inst.reloc.exp.X_add_number -= 8;
7001 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7002 into a relative address of the form:
7003 add rd, pc, #low(label-.-8)"
7004 add rd, rd, #high(label-.-8)" */
7006 static void
7007 do_adrl (void)
7009 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7011 /* Frag hacking will turn this into a sub instruction if the offset turns
7012 out to be negative. */
7013 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7014 inst.reloc.pc_rel = 1;
7015 inst.size = INSN_SIZE * 2;
7016 inst.reloc.exp.X_add_number -= 8;
7019 static void
7020 do_arit (void)
7022 if (!inst.operands[1].present)
7023 inst.operands[1].reg = inst.operands[0].reg;
7024 inst.instruction |= inst.operands[0].reg << 12;
7025 inst.instruction |= inst.operands[1].reg << 16;
7026 encode_arm_shifter_operand (2);
7029 static void
7030 do_barrier (void)
7032 if (inst.operands[0].present)
7034 constraint ((inst.instruction & 0xf0) != 0x40
7035 && inst.operands[0].imm != 0xf,
7036 _("bad barrier type"));
7037 inst.instruction |= inst.operands[0].imm;
7039 else
7040 inst.instruction |= 0xf;
7043 static void
7044 do_bfc (void)
7046 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7047 constraint (msb > 32, _("bit-field extends past end of register"));
7048 /* The instruction encoding stores the LSB and MSB,
7049 not the LSB and width. */
7050 inst.instruction |= inst.operands[0].reg << 12;
7051 inst.instruction |= inst.operands[1].imm << 7;
7052 inst.instruction |= (msb - 1) << 16;
7055 static void
7056 do_bfi (void)
7058 unsigned int msb;
7060 /* #0 in second position is alternative syntax for bfc, which is
7061 the same instruction but with REG_PC in the Rm field. */
7062 if (!inst.operands[1].isreg)
7063 inst.operands[1].reg = REG_PC;
7065 msb = inst.operands[2].imm + inst.operands[3].imm;
7066 constraint (msb > 32, _("bit-field extends past end of register"));
7067 /* The instruction encoding stores the LSB and MSB,
7068 not the LSB and width. */
7069 inst.instruction |= inst.operands[0].reg << 12;
7070 inst.instruction |= inst.operands[1].reg;
7071 inst.instruction |= inst.operands[2].imm << 7;
7072 inst.instruction |= (msb - 1) << 16;
7075 static void
7076 do_bfx (void)
7078 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7079 _("bit-field extends past end of register"));
7080 inst.instruction |= inst.operands[0].reg << 12;
7081 inst.instruction |= inst.operands[1].reg;
7082 inst.instruction |= inst.operands[2].imm << 7;
7083 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7086 /* ARM V5 breakpoint instruction (argument parse)
7087 BKPT <16 bit unsigned immediate>
7088 Instruction is not conditional.
7089 The bit pattern given in insns[] has the COND_ALWAYS condition,
7090 and it is an error if the caller tried to override that. */
7092 static void
7093 do_bkpt (void)
7095 /* Top 12 of 16 bits to bits 19:8. */
7096 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7098 /* Bottom 4 of 16 bits to bits 3:0. */
7099 inst.instruction |= inst.operands[0].imm & 0xf;
7102 static void
7103 encode_branch (int default_reloc)
7105 if (inst.operands[0].hasreloc)
7107 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7108 _("the only suffix valid here is '(plt)'"));
7109 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7111 else
7113 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7115 inst.reloc.pc_rel = 1;
7118 static void
7119 do_branch (void)
7121 #ifdef OBJ_ELF
7122 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7123 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7124 else
7125 #endif
7126 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7129 static void
7130 do_bl (void)
7132 #ifdef OBJ_ELF
7133 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7135 if (inst.cond == COND_ALWAYS)
7136 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7137 else
7138 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7140 else
7141 #endif
7142 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7145 /* ARM V5 branch-link-exchange instruction (argument parse)
7146 BLX <target_addr> ie BLX(1)
7147 BLX{<condition>} <Rm> ie BLX(2)
7148 Unfortunately, there are two different opcodes for this mnemonic.
7149 So, the insns[].value is not used, and the code here zaps values
7150 into inst.instruction.
7151 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7153 static void
7154 do_blx (void)
7156 if (inst.operands[0].isreg)
7158 /* Arg is a register; the opcode provided by insns[] is correct.
7159 It is not illegal to do "blx pc", just useless. */
7160 if (inst.operands[0].reg == REG_PC)
7161 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7163 inst.instruction |= inst.operands[0].reg;
7165 else
7167 /* Arg is an address; this instruction cannot be executed
7168 conditionally, and the opcode must be adjusted.
7169 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7170 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7171 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7172 inst.instruction = 0xfa000000;
7173 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7177 static void
7178 do_bx (void)
7180 bfd_boolean want_reloc;
7182 if (inst.operands[0].reg == REG_PC)
7183 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7185 inst.instruction |= inst.operands[0].reg;
7186 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7187 it is for ARMv4t or earlier. */
7188 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7189 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7190 want_reloc = TRUE;
7192 #ifdef OBJ_ELF
7193 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7194 #endif
7195 want_reloc = FALSE;
7197 if (want_reloc)
7198 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7202 /* ARM v5TEJ. Jump to Jazelle code. */
7204 static void
7205 do_bxj (void)
7207 if (inst.operands[0].reg == REG_PC)
7208 as_tsktsk (_("use of r15 in bxj is not really useful"));
7210 inst.instruction |= inst.operands[0].reg;
7213 /* Co-processor data operation:
7214 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7215 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7216 static void
7217 do_cdp (void)
7219 inst.instruction |= inst.operands[0].reg << 8;
7220 inst.instruction |= inst.operands[1].imm << 20;
7221 inst.instruction |= inst.operands[2].reg << 12;
7222 inst.instruction |= inst.operands[3].reg << 16;
7223 inst.instruction |= inst.operands[4].reg;
7224 inst.instruction |= inst.operands[5].imm << 5;
7227 static void
7228 do_cmp (void)
7230 inst.instruction |= inst.operands[0].reg << 16;
7231 encode_arm_shifter_operand (1);
7234 /* Transfer between coprocessor and ARM registers.
7235 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7236 MRC2
7237 MCR{cond}
7238 MCR2
7240 No special properties. */
7242 static void
7243 do_co_reg (void)
7245 unsigned Rd;
7247 Rd = inst.operands[2].reg;
7248 if (thumb_mode)
7250 if (inst.instruction == 0xee000010
7251 || inst.instruction == 0xfe000010)
7252 /* MCR, MCR2 */
7253 reject_bad_reg (Rd);
7254 else
7255 /* MRC, MRC2 */
7256 constraint (Rd == REG_SP, BAD_SP);
7258 else
7260 /* MCR */
7261 if (inst.instruction == 0xe000010)
7262 constraint (Rd == REG_PC, BAD_PC);
7266 inst.instruction |= inst.operands[0].reg << 8;
7267 inst.instruction |= inst.operands[1].imm << 21;
7268 inst.instruction |= Rd << 12;
7269 inst.instruction |= inst.operands[3].reg << 16;
7270 inst.instruction |= inst.operands[4].reg;
7271 inst.instruction |= inst.operands[5].imm << 5;
7274 /* Transfer between coprocessor register and pair of ARM registers.
7275 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7276 MCRR2
7277 MRRC{cond}
7278 MRRC2
7280 Two XScale instructions are special cases of these:
7282 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7283 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7285 Result unpredictable if Rd or Rn is R15. */
7287 static void
7288 do_co_reg2c (void)
7290 unsigned Rd, Rn;
7292 Rd = inst.operands[2].reg;
7293 Rn = inst.operands[3].reg;
7295 if (thumb_mode)
7297 reject_bad_reg (Rd);
7298 reject_bad_reg (Rn);
7300 else
7302 constraint (Rd == REG_PC, BAD_PC);
7303 constraint (Rn == REG_PC, BAD_PC);
7306 inst.instruction |= inst.operands[0].reg << 8;
7307 inst.instruction |= inst.operands[1].imm << 4;
7308 inst.instruction |= Rd << 12;
7309 inst.instruction |= Rn << 16;
7310 inst.instruction |= inst.operands[4].reg;
7313 static void
7314 do_cpsi (void)
7316 inst.instruction |= inst.operands[0].imm << 6;
7317 if (inst.operands[1].present)
7319 inst.instruction |= CPSI_MMOD;
7320 inst.instruction |= inst.operands[1].imm;
7324 static void
7325 do_dbg (void)
7327 inst.instruction |= inst.operands[0].imm;
7330 static void
7331 do_it (void)
7333 /* There is no IT instruction in ARM mode. We
7334 process it to do the validation as if in
7335 thumb mode, just in case the code gets
7336 assembled for thumb using the unified syntax. */
7338 inst.size = 0;
7339 if (unified_syntax)
7341 set_it_insn_type (IT_INSN);
7342 now_it.mask = (inst.instruction & 0xf) | 0x10;
7343 now_it.cc = inst.operands[0].imm;
7347 static void
7348 do_ldmstm (void)
7350 int base_reg = inst.operands[0].reg;
7351 int range = inst.operands[1].imm;
7353 inst.instruction |= base_reg << 16;
7354 inst.instruction |= range;
7356 if (inst.operands[1].writeback)
7357 inst.instruction |= LDM_TYPE_2_OR_3;
7359 if (inst.operands[0].writeback)
7361 inst.instruction |= WRITE_BACK;
7362 /* Check for unpredictable uses of writeback. */
7363 if (inst.instruction & LOAD_BIT)
7365 /* Not allowed in LDM type 2. */
7366 if ((inst.instruction & LDM_TYPE_2_OR_3)
7367 && ((range & (1 << REG_PC)) == 0))
7368 as_warn (_("writeback of base register is UNPREDICTABLE"));
7369 /* Only allowed if base reg not in list for other types. */
7370 else if (range & (1 << base_reg))
7371 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7373 else /* STM. */
7375 /* Not allowed for type 2. */
7376 if (inst.instruction & LDM_TYPE_2_OR_3)
7377 as_warn (_("writeback of base register is UNPREDICTABLE"));
7378 /* Only allowed if base reg not in list, or first in list. */
7379 else if ((range & (1 << base_reg))
7380 && (range & ((1 << base_reg) - 1)))
7381 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7386 /* ARMv5TE load-consecutive (argument parse)
7387 Mode is like LDRH.
7389 LDRccD R, mode
7390 STRccD R, mode. */
7392 static void
7393 do_ldrd (void)
7395 constraint (inst.operands[0].reg % 2 != 0,
7396 _("first destination register must be even"));
7397 constraint (inst.operands[1].present
7398 && inst.operands[1].reg != inst.operands[0].reg + 1,
7399 _("can only load two consecutive registers"));
7400 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7401 constraint (!inst.operands[2].isreg, _("'[' expected"));
7403 if (!inst.operands[1].present)
7404 inst.operands[1].reg = inst.operands[0].reg + 1;
7406 if (inst.instruction & LOAD_BIT)
7408 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7409 register and the first register written; we have to diagnose
7410 overlap between the base and the second register written here. */
7412 if (inst.operands[2].reg == inst.operands[1].reg
7413 && (inst.operands[2].writeback || inst.operands[2].postind))
7414 as_warn (_("base register written back, and overlaps "
7415 "second destination register"));
7417 /* For an index-register load, the index register must not overlap the
7418 destination (even if not write-back). */
7419 else if (inst.operands[2].immisreg
7420 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7421 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7422 as_warn (_("index register overlaps destination register"));
7425 inst.instruction |= inst.operands[0].reg << 12;
7426 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7429 static void
7430 do_ldrex (void)
7432 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7433 || inst.operands[1].postind || inst.operands[1].writeback
7434 || inst.operands[1].immisreg || inst.operands[1].shifted
7435 || inst.operands[1].negative
7436 /* This can arise if the programmer has written
7437 strex rN, rM, foo
7438 or if they have mistakenly used a register name as the last
7439 operand, eg:
7440 strex rN, rM, rX
7441 It is very difficult to distinguish between these two cases
7442 because "rX" might actually be a label. ie the register
7443 name has been occluded by a symbol of the same name. So we
7444 just generate a general 'bad addressing mode' type error
7445 message and leave it up to the programmer to discover the
7446 true cause and fix their mistake. */
7447 || (inst.operands[1].reg == REG_PC),
7448 BAD_ADDR_MODE);
7450 constraint (inst.reloc.exp.X_op != O_constant
7451 || inst.reloc.exp.X_add_number != 0,
7452 _("offset must be zero in ARM encoding"));
7454 inst.instruction |= inst.operands[0].reg << 12;
7455 inst.instruction |= inst.operands[1].reg << 16;
7456 inst.reloc.type = BFD_RELOC_UNUSED;
7459 static void
7460 do_ldrexd (void)
7462 constraint (inst.operands[0].reg % 2 != 0,
7463 _("even register required"));
7464 constraint (inst.operands[1].present
7465 && inst.operands[1].reg != inst.operands[0].reg + 1,
7466 _("can only load two consecutive registers"));
7467 /* If op 1 were present and equal to PC, this function wouldn't
7468 have been called in the first place. */
7469 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7471 inst.instruction |= inst.operands[0].reg << 12;
7472 inst.instruction |= inst.operands[2].reg << 16;
7475 static void
7476 do_ldst (void)
7478 inst.instruction |= inst.operands[0].reg << 12;
7479 if (!inst.operands[1].isreg)
7480 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7481 return;
7482 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7485 static void
7486 do_ldstt (void)
7488 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7489 reject [Rn,...]. */
7490 if (inst.operands[1].preind)
7492 constraint (inst.reloc.exp.X_op != O_constant
7493 || inst.reloc.exp.X_add_number != 0,
7494 _("this instruction requires a post-indexed address"));
7496 inst.operands[1].preind = 0;
7497 inst.operands[1].postind = 1;
7498 inst.operands[1].writeback = 1;
7500 inst.instruction |= inst.operands[0].reg << 12;
7501 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7504 /* Halfword and signed-byte load/store operations. */
7506 static void
7507 do_ldstv4 (void)
7509 inst.instruction |= inst.operands[0].reg << 12;
7510 if (!inst.operands[1].isreg)
7511 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7512 return;
7513 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7516 static void
7517 do_ldsttv4 (void)
7519 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7520 reject [Rn,...]. */
7521 if (inst.operands[1].preind)
7523 constraint (inst.reloc.exp.X_op != O_constant
7524 || inst.reloc.exp.X_add_number != 0,
7525 _("this instruction requires a post-indexed address"));
7527 inst.operands[1].preind = 0;
7528 inst.operands[1].postind = 1;
7529 inst.operands[1].writeback = 1;
7531 inst.instruction |= inst.operands[0].reg << 12;
7532 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7535 /* Co-processor register load/store.
7536 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7537 static void
7538 do_lstc (void)
7540 inst.instruction |= inst.operands[0].reg << 8;
7541 inst.instruction |= inst.operands[1].reg << 12;
7542 encode_arm_cp_address (2, TRUE, TRUE, 0);
7545 static void
7546 do_mlas (void)
7548 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7549 if (inst.operands[0].reg == inst.operands[1].reg
7550 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7551 && !(inst.instruction & 0x00400000))
7552 as_tsktsk (_("Rd and Rm should be different in mla"));
7554 inst.instruction |= inst.operands[0].reg << 16;
7555 inst.instruction |= inst.operands[1].reg;
7556 inst.instruction |= inst.operands[2].reg << 8;
7557 inst.instruction |= inst.operands[3].reg << 12;
7560 static void
7561 do_mov (void)
7563 inst.instruction |= inst.operands[0].reg << 12;
7564 encode_arm_shifter_operand (1);
7567 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7568 static void
7569 do_mov16 (void)
7571 bfd_vma imm;
7572 bfd_boolean top;
7574 top = (inst.instruction & 0x00400000) != 0;
7575 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7576 _(":lower16: not allowed this instruction"));
7577 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7578 _(":upper16: not allowed instruction"));
7579 inst.instruction |= inst.operands[0].reg << 12;
7580 if (inst.reloc.type == BFD_RELOC_UNUSED)
7582 imm = inst.reloc.exp.X_add_number;
7583 /* The value is in two pieces: 0:11, 16:19. */
7584 inst.instruction |= (imm & 0x00000fff);
7585 inst.instruction |= (imm & 0x0000f000) << 4;
7589 static void do_vfp_nsyn_opcode (const char *);
7591 static int
7592 do_vfp_nsyn_mrs (void)
7594 if (inst.operands[0].isvec)
7596 if (inst.operands[1].reg != 1)
7597 first_error (_("operand 1 must be FPSCR"));
7598 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7599 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7600 do_vfp_nsyn_opcode ("fmstat");
7602 else if (inst.operands[1].isvec)
7603 do_vfp_nsyn_opcode ("fmrx");
7604 else
7605 return FAIL;
7607 return SUCCESS;
7610 static int
7611 do_vfp_nsyn_msr (void)
7613 if (inst.operands[0].isvec)
7614 do_vfp_nsyn_opcode ("fmxr");
7615 else
7616 return FAIL;
7618 return SUCCESS;
7621 static void
7622 do_vmrs (void)
7624 unsigned Rt = inst.operands[0].reg;
7626 if (thumb_mode && inst.operands[0].reg == REG_SP)
7628 inst.error = BAD_SP;
7629 return;
7632 /* APSR_ sets isvec. All other refs to PC are illegal. */
7633 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7635 inst.error = BAD_PC;
7636 return;
7639 if (inst.operands[1].reg != 1)
7640 first_error (_("operand 1 must be FPSCR"));
7642 inst.instruction |= (Rt << 12);
7645 static void
7646 do_vmsr (void)
7648 unsigned Rt = inst.operands[1].reg;
7650 if (thumb_mode)
7651 reject_bad_reg (Rt);
7652 else if (Rt == REG_PC)
7654 inst.error = BAD_PC;
7655 return;
7658 if (inst.operands[0].reg != 1)
7659 first_error (_("operand 0 must be FPSCR"));
7661 inst.instruction |= (Rt << 12);
7664 static void
7665 do_mrs (void)
7667 if (do_vfp_nsyn_mrs () == SUCCESS)
7668 return;
7670 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7671 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7672 != (PSR_c|PSR_f),
7673 _("'CPSR' or 'SPSR' expected"));
7674 inst.instruction |= inst.operands[0].reg << 12;
7675 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7678 /* Two possible forms:
7679 "{C|S}PSR_<field>, Rm",
7680 "{C|S}PSR_f, #expression". */
7682 static void
7683 do_msr (void)
7685 if (do_vfp_nsyn_msr () == SUCCESS)
7686 return;
7688 inst.instruction |= inst.operands[0].imm;
7689 if (inst.operands[1].isreg)
7690 inst.instruction |= inst.operands[1].reg;
7691 else
7693 inst.instruction |= INST_IMMEDIATE;
7694 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7695 inst.reloc.pc_rel = 0;
7699 static void
7700 do_mul (void)
7702 if (!inst.operands[2].present)
7703 inst.operands[2].reg = inst.operands[0].reg;
7704 inst.instruction |= inst.operands[0].reg << 16;
7705 inst.instruction |= inst.operands[1].reg;
7706 inst.instruction |= inst.operands[2].reg << 8;
7708 if (inst.operands[0].reg == inst.operands[1].reg
7709 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7710 as_tsktsk (_("Rd and Rm should be different in mul"));
7713 /* Long Multiply Parser
7714 UMULL RdLo, RdHi, Rm, Rs
7715 SMULL RdLo, RdHi, Rm, Rs
7716 UMLAL RdLo, RdHi, Rm, Rs
7717 SMLAL RdLo, RdHi, Rm, Rs. */
7719 static void
7720 do_mull (void)
7722 inst.instruction |= inst.operands[0].reg << 12;
7723 inst.instruction |= inst.operands[1].reg << 16;
7724 inst.instruction |= inst.operands[2].reg;
7725 inst.instruction |= inst.operands[3].reg << 8;
7727 /* rdhi and rdlo must be different. */
7728 if (inst.operands[0].reg == inst.operands[1].reg)
7729 as_tsktsk (_("rdhi and rdlo must be different"));
7731 /* rdhi, rdlo and rm must all be different before armv6. */
7732 if ((inst.operands[0].reg == inst.operands[2].reg
7733 || inst.operands[1].reg == inst.operands[2].reg)
7734 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7735 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7738 static void
7739 do_nop (void)
7741 if (inst.operands[0].present
7742 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7744 /* Architectural NOP hints are CPSR sets with no bits selected. */
7745 inst.instruction &= 0xf0000000;
7746 inst.instruction |= 0x0320f000;
7747 if (inst.operands[0].present)
7748 inst.instruction |= inst.operands[0].imm;
7752 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7753 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7754 Condition defaults to COND_ALWAYS.
7755 Error if Rd, Rn or Rm are R15. */
7757 static void
7758 do_pkhbt (void)
7760 inst.instruction |= inst.operands[0].reg << 12;
7761 inst.instruction |= inst.operands[1].reg << 16;
7762 inst.instruction |= inst.operands[2].reg;
7763 if (inst.operands[3].present)
7764 encode_arm_shift (3);
7767 /* ARM V6 PKHTB (Argument Parse). */
7769 static void
7770 do_pkhtb (void)
7772 if (!inst.operands[3].present)
7774 /* If the shift specifier is omitted, turn the instruction
7775 into pkhbt rd, rm, rn. */
7776 inst.instruction &= 0xfff00010;
7777 inst.instruction |= inst.operands[0].reg << 12;
7778 inst.instruction |= inst.operands[1].reg;
7779 inst.instruction |= inst.operands[2].reg << 16;
7781 else
7783 inst.instruction |= inst.operands[0].reg << 12;
7784 inst.instruction |= inst.operands[1].reg << 16;
7785 inst.instruction |= inst.operands[2].reg;
7786 encode_arm_shift (3);
7790 /* ARMv5TE: Preload-Cache
7792 PLD <addr_mode>
7794 Syntactically, like LDR with B=1, W=0, L=1. */
7796 static void
7797 do_pld (void)
7799 constraint (!inst.operands[0].isreg,
7800 _("'[' expected after PLD mnemonic"));
7801 constraint (inst.operands[0].postind,
7802 _("post-indexed expression used in preload instruction"));
7803 constraint (inst.operands[0].writeback,
7804 _("writeback used in preload instruction"));
7805 constraint (!inst.operands[0].preind,
7806 _("unindexed addressing used in preload instruction"));
7807 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7810 /* ARMv7: PLI <addr_mode> */
7811 static void
7812 do_pli (void)
7814 constraint (!inst.operands[0].isreg,
7815 _("'[' expected after PLI mnemonic"));
7816 constraint (inst.operands[0].postind,
7817 _("post-indexed expression used in preload instruction"));
7818 constraint (inst.operands[0].writeback,
7819 _("writeback used in preload instruction"));
7820 constraint (!inst.operands[0].preind,
7821 _("unindexed addressing used in preload instruction"));
7822 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7823 inst.instruction &= ~PRE_INDEX;
7826 static void
7827 do_push_pop (void)
7829 inst.operands[1] = inst.operands[0];
7830 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7831 inst.operands[0].isreg = 1;
7832 inst.operands[0].writeback = 1;
7833 inst.operands[0].reg = REG_SP;
7834 do_ldmstm ();
7837 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7838 word at the specified address and the following word
7839 respectively.
7840 Unconditionally executed.
7841 Error if Rn is R15. */
7843 static void
7844 do_rfe (void)
7846 inst.instruction |= inst.operands[0].reg << 16;
7847 if (inst.operands[0].writeback)
7848 inst.instruction |= WRITE_BACK;
7851 /* ARM V6 ssat (argument parse). */
7853 static void
7854 do_ssat (void)
7856 inst.instruction |= inst.operands[0].reg << 12;
7857 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7858 inst.instruction |= inst.operands[2].reg;
7860 if (inst.operands[3].present)
7861 encode_arm_shift (3);
7864 /* ARM V6 usat (argument parse). */
7866 static void
7867 do_usat (void)
7869 inst.instruction |= inst.operands[0].reg << 12;
7870 inst.instruction |= inst.operands[1].imm << 16;
7871 inst.instruction |= inst.operands[2].reg;
7873 if (inst.operands[3].present)
7874 encode_arm_shift (3);
7877 /* ARM V6 ssat16 (argument parse). */
7879 static void
7880 do_ssat16 (void)
7882 inst.instruction |= inst.operands[0].reg << 12;
7883 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7884 inst.instruction |= inst.operands[2].reg;
7887 static void
7888 do_usat16 (void)
7890 inst.instruction |= inst.operands[0].reg << 12;
7891 inst.instruction |= inst.operands[1].imm << 16;
7892 inst.instruction |= inst.operands[2].reg;
7895 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7896 preserving the other bits.
7898 setend <endian_specifier>, where <endian_specifier> is either
7899 BE or LE. */
7901 static void
7902 do_setend (void)
7904 if (inst.operands[0].imm)
7905 inst.instruction |= 0x200;
7908 static void
7909 do_shift (void)
7911 unsigned int Rm = (inst.operands[1].present
7912 ? inst.operands[1].reg
7913 : inst.operands[0].reg);
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= Rm;
7917 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7919 inst.instruction |= inst.operands[2].reg << 8;
7920 inst.instruction |= SHIFT_BY_REG;
7922 else
7923 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7926 static void
7927 do_smc (void)
7929 inst.reloc.type = BFD_RELOC_ARM_SMC;
7930 inst.reloc.pc_rel = 0;
7933 static void
7934 do_swi (void)
7936 inst.reloc.type = BFD_RELOC_ARM_SWI;
7937 inst.reloc.pc_rel = 0;
7940 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7941 SMLAxy{cond} Rd,Rm,Rs,Rn
7942 SMLAWy{cond} Rd,Rm,Rs,Rn
7943 Error if any register is R15. */
7945 static void
7946 do_smla (void)
7948 inst.instruction |= inst.operands[0].reg << 16;
7949 inst.instruction |= inst.operands[1].reg;
7950 inst.instruction |= inst.operands[2].reg << 8;
7951 inst.instruction |= inst.operands[3].reg << 12;
7954 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7955 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7956 Error if any register is R15.
7957 Warning if Rdlo == Rdhi. */
7959 static void
7960 do_smlal (void)
7962 inst.instruction |= inst.operands[0].reg << 12;
7963 inst.instruction |= inst.operands[1].reg << 16;
7964 inst.instruction |= inst.operands[2].reg;
7965 inst.instruction |= inst.operands[3].reg << 8;
7967 if (inst.operands[0].reg == inst.operands[1].reg)
7968 as_tsktsk (_("rdhi and rdlo must be different"));
7971 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7972 SMULxy{cond} Rd,Rm,Rs
7973 Error if any register is R15. */
7975 static void
7976 do_smul (void)
7978 inst.instruction |= inst.operands[0].reg << 16;
7979 inst.instruction |= inst.operands[1].reg;
7980 inst.instruction |= inst.operands[2].reg << 8;
7983 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7984 the same for both ARM and Thumb-2. */
7986 static void
7987 do_srs (void)
7989 int reg;
7991 if (inst.operands[0].present)
7993 reg = inst.operands[0].reg;
7994 constraint (reg != REG_SP, _("SRS base register must be r13"));
7996 else
7997 reg = REG_SP;
7999 inst.instruction |= reg << 16;
8000 inst.instruction |= inst.operands[1].imm;
8001 if (inst.operands[0].writeback || inst.operands[1].writeback)
8002 inst.instruction |= WRITE_BACK;
8005 /* ARM V6 strex (argument parse). */
8007 static void
8008 do_strex (void)
8010 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8011 || inst.operands[2].postind || inst.operands[2].writeback
8012 || inst.operands[2].immisreg || inst.operands[2].shifted
8013 || inst.operands[2].negative
8014 /* See comment in do_ldrex(). */
8015 || (inst.operands[2].reg == REG_PC),
8016 BAD_ADDR_MODE);
8018 constraint (inst.operands[0].reg == inst.operands[1].reg
8019 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8021 constraint (inst.reloc.exp.X_op != O_constant
8022 || inst.reloc.exp.X_add_number != 0,
8023 _("offset must be zero in ARM encoding"));
8025 inst.instruction |= inst.operands[0].reg << 12;
8026 inst.instruction |= inst.operands[1].reg;
8027 inst.instruction |= inst.operands[2].reg << 16;
8028 inst.reloc.type = BFD_RELOC_UNUSED;
8031 static void
8032 do_strexd (void)
8034 constraint (inst.operands[1].reg % 2 != 0,
8035 _("even register required"));
8036 constraint (inst.operands[2].present
8037 && inst.operands[2].reg != inst.operands[1].reg + 1,
8038 _("can only store two consecutive registers"));
8039 /* If op 2 were present and equal to PC, this function wouldn't
8040 have been called in the first place. */
8041 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8043 constraint (inst.operands[0].reg == inst.operands[1].reg
8044 || inst.operands[0].reg == inst.operands[1].reg + 1
8045 || inst.operands[0].reg == inst.operands[3].reg,
8046 BAD_OVERLAP);
8048 inst.instruction |= inst.operands[0].reg << 12;
8049 inst.instruction |= inst.operands[1].reg;
8050 inst.instruction |= inst.operands[3].reg << 16;
8053 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8054 extends it to 32-bits, and adds the result to a value in another
8055 register. You can specify a rotation by 0, 8, 16, or 24 bits
8056 before extracting the 16-bit value.
8057 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8058 Condition defaults to COND_ALWAYS.
8059 Error if any register uses R15. */
8061 static void
8062 do_sxtah (void)
8064 inst.instruction |= inst.operands[0].reg << 12;
8065 inst.instruction |= inst.operands[1].reg << 16;
8066 inst.instruction |= inst.operands[2].reg;
8067 inst.instruction |= inst.operands[3].imm << 10;
8070 /* ARM V6 SXTH.
8072 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8073 Condition defaults to COND_ALWAYS.
8074 Error if any register uses R15. */
8076 static void
8077 do_sxth (void)
8079 inst.instruction |= inst.operands[0].reg << 12;
8080 inst.instruction |= inst.operands[1].reg;
8081 inst.instruction |= inst.operands[2].imm << 10;
8084 /* VFP instructions. In a logical order: SP variant first, monad
8085 before dyad, arithmetic then move then load/store. */
8087 static void
8088 do_vfp_sp_monadic (void)
8090 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8091 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8094 static void
8095 do_vfp_sp_dyadic (void)
8097 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8098 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8099 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8102 static void
8103 do_vfp_sp_compare_z (void)
8105 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8108 static void
8109 do_vfp_dp_sp_cvt (void)
8111 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8112 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8115 static void
8116 do_vfp_sp_dp_cvt (void)
8118 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8119 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8122 static void
8123 do_vfp_reg_from_sp (void)
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8129 static void
8130 do_vfp_reg2_from_sp2 (void)
8132 constraint (inst.operands[2].imm != 2,
8133 _("only two consecutive VFP SP registers allowed here"));
8134 inst.instruction |= inst.operands[0].reg << 12;
8135 inst.instruction |= inst.operands[1].reg << 16;
8136 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8139 static void
8140 do_vfp_sp_from_reg (void)
8142 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8143 inst.instruction |= inst.operands[1].reg << 12;
8146 static void
8147 do_vfp_sp2_from_reg2 (void)
8149 constraint (inst.operands[0].imm != 2,
8150 _("only two consecutive VFP SP registers allowed here"));
8151 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8152 inst.instruction |= inst.operands[1].reg << 12;
8153 inst.instruction |= inst.operands[2].reg << 16;
8156 static void
8157 do_vfp_sp_ldst (void)
8159 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8160 encode_arm_cp_address (1, FALSE, TRUE, 0);
8163 static void
8164 do_vfp_dp_ldst (void)
8166 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8167 encode_arm_cp_address (1, FALSE, TRUE, 0);
8171 static void
8172 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8174 if (inst.operands[0].writeback)
8175 inst.instruction |= WRITE_BACK;
8176 else
8177 constraint (ldstm_type != VFP_LDSTMIA,
8178 _("this addressing mode requires base-register writeback"));
8179 inst.instruction |= inst.operands[0].reg << 16;
8180 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8181 inst.instruction |= inst.operands[1].imm;
8184 static void
8185 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8187 int count;
8189 if (inst.operands[0].writeback)
8190 inst.instruction |= WRITE_BACK;
8191 else
8192 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8193 _("this addressing mode requires base-register writeback"));
8195 inst.instruction |= inst.operands[0].reg << 16;
8196 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8198 count = inst.operands[1].imm << 1;
8199 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8200 count += 1;
8202 inst.instruction |= count;
8205 static void
8206 do_vfp_sp_ldstmia (void)
8208 vfp_sp_ldstm (VFP_LDSTMIA);
8211 static void
8212 do_vfp_sp_ldstmdb (void)
8214 vfp_sp_ldstm (VFP_LDSTMDB);
8217 static void
8218 do_vfp_dp_ldstmia (void)
8220 vfp_dp_ldstm (VFP_LDSTMIA);
8223 static void
8224 do_vfp_dp_ldstmdb (void)
8226 vfp_dp_ldstm (VFP_LDSTMDB);
8229 static void
8230 do_vfp_xp_ldstmia (void)
8232 vfp_dp_ldstm (VFP_LDSTMIAX);
8235 static void
8236 do_vfp_xp_ldstmdb (void)
8238 vfp_dp_ldstm (VFP_LDSTMDBX);
8241 static void
8242 do_vfp_dp_rd_rm (void)
8244 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8245 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8248 static void
8249 do_vfp_dp_rn_rd (void)
8251 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8252 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8255 static void
8256 do_vfp_dp_rd_rn (void)
8258 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8259 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8262 static void
8263 do_vfp_dp_rd_rn_rm (void)
8265 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8266 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8267 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8270 static void
8271 do_vfp_dp_rd (void)
8273 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8276 static void
8277 do_vfp_dp_rm_rd_rn (void)
8279 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8280 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8281 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8284 /* VFPv3 instructions. */
8285 static void
8286 do_vfp_sp_const (void)
8288 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8289 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8290 inst.instruction |= (inst.operands[1].imm & 0x0f);
8293 static void
8294 do_vfp_dp_const (void)
8296 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8297 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8298 inst.instruction |= (inst.operands[1].imm & 0x0f);
8301 static void
8302 vfp_conv (int srcsize)
8304 unsigned immbits = srcsize - inst.operands[1].imm;
8305 inst.instruction |= (immbits & 1) << 5;
8306 inst.instruction |= (immbits >> 1);
8309 static void
8310 do_vfp_sp_conv_16 (void)
8312 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8313 vfp_conv (16);
8316 static void
8317 do_vfp_dp_conv_16 (void)
8319 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8320 vfp_conv (16);
8323 static void
8324 do_vfp_sp_conv_32 (void)
8326 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8327 vfp_conv (32);
8330 static void
8331 do_vfp_dp_conv_32 (void)
8333 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8334 vfp_conv (32);
8337 /* FPA instructions. Also in a logical order. */
8339 static void
8340 do_fpa_cmp (void)
8342 inst.instruction |= inst.operands[0].reg << 16;
8343 inst.instruction |= inst.operands[1].reg;
8346 static void
8347 do_fpa_ldmstm (void)
8349 inst.instruction |= inst.operands[0].reg << 12;
8350 switch (inst.operands[1].imm)
8352 case 1: inst.instruction |= CP_T_X; break;
8353 case 2: inst.instruction |= CP_T_Y; break;
8354 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8355 case 4: break;
8356 default: abort ();
8359 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8361 /* The instruction specified "ea" or "fd", so we can only accept
8362 [Rn]{!}. The instruction does not really support stacking or
8363 unstacking, so we have to emulate these by setting appropriate
8364 bits and offsets. */
8365 constraint (inst.reloc.exp.X_op != O_constant
8366 || inst.reloc.exp.X_add_number != 0,
8367 _("this instruction does not support indexing"));
8369 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8370 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8372 if (!(inst.instruction & INDEX_UP))
8373 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8375 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8377 inst.operands[2].preind = 0;
8378 inst.operands[2].postind = 1;
8382 encode_arm_cp_address (2, TRUE, TRUE, 0);
8385 /* iWMMXt instructions: strictly in alphabetical order. */
8387 static void
8388 do_iwmmxt_tandorc (void)
8390 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8393 static void
8394 do_iwmmxt_textrc (void)
8396 inst.instruction |= inst.operands[0].reg << 12;
8397 inst.instruction |= inst.operands[1].imm;
8400 static void
8401 do_iwmmxt_textrm (void)
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].imm;
8408 static void
8409 do_iwmmxt_tinsr (void)
8411 inst.instruction |= inst.operands[0].reg << 16;
8412 inst.instruction |= inst.operands[1].reg << 12;
8413 inst.instruction |= inst.operands[2].imm;
8416 static void
8417 do_iwmmxt_tmia (void)
8419 inst.instruction |= inst.operands[0].reg << 5;
8420 inst.instruction |= inst.operands[1].reg;
8421 inst.instruction |= inst.operands[2].reg << 12;
8424 static void
8425 do_iwmmxt_waligni (void)
8427 inst.instruction |= inst.operands[0].reg << 12;
8428 inst.instruction |= inst.operands[1].reg << 16;
8429 inst.instruction |= inst.operands[2].reg;
8430 inst.instruction |= inst.operands[3].imm << 20;
8433 static void
8434 do_iwmmxt_wmerge (void)
8436 inst.instruction |= inst.operands[0].reg << 12;
8437 inst.instruction |= inst.operands[1].reg << 16;
8438 inst.instruction |= inst.operands[2].reg;
8439 inst.instruction |= inst.operands[3].imm << 21;
8442 static void
8443 do_iwmmxt_wmov (void)
8445 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8446 inst.instruction |= inst.operands[0].reg << 12;
8447 inst.instruction |= inst.operands[1].reg << 16;
8448 inst.instruction |= inst.operands[1].reg;
8451 static void
8452 do_iwmmxt_wldstbh (void)
8454 int reloc;
8455 inst.instruction |= inst.operands[0].reg << 12;
8456 if (thumb_mode)
8457 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8458 else
8459 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8460 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8463 static void
8464 do_iwmmxt_wldstw (void)
8466 /* RIWR_RIWC clears .isreg for a control register. */
8467 if (!inst.operands[0].isreg)
8469 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8470 inst.instruction |= 0xf0000000;
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 encode_arm_cp_address (1, TRUE, TRUE, 0);
8477 static void
8478 do_iwmmxt_wldstd (void)
8480 inst.instruction |= inst.operands[0].reg << 12;
8481 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8482 && inst.operands[1].immisreg)
8484 inst.instruction &= ~0x1a000ff;
8485 inst.instruction |= (0xf << 28);
8486 if (inst.operands[1].preind)
8487 inst.instruction |= PRE_INDEX;
8488 if (!inst.operands[1].negative)
8489 inst.instruction |= INDEX_UP;
8490 if (inst.operands[1].writeback)
8491 inst.instruction |= WRITE_BACK;
8492 inst.instruction |= inst.operands[1].reg << 16;
8493 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8494 inst.instruction |= inst.operands[1].imm;
8496 else
8497 encode_arm_cp_address (1, TRUE, FALSE, 0);
8500 static void
8501 do_iwmmxt_wshufh (void)
8503 inst.instruction |= inst.operands[0].reg << 12;
8504 inst.instruction |= inst.operands[1].reg << 16;
8505 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8506 inst.instruction |= (inst.operands[2].imm & 0x0f);
8509 static void
8510 do_iwmmxt_wzero (void)
8512 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8513 inst.instruction |= inst.operands[0].reg;
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[0].reg << 16;
8518 static void
8519 do_iwmmxt_wrwrwr_or_imm5 (void)
8521 if (inst.operands[2].isreg)
8522 do_rd_rn_rm ();
8523 else {
8524 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8525 _("immediate operand requires iWMMXt2"));
8526 do_rd_rn ();
8527 if (inst.operands[2].imm == 0)
8529 switch ((inst.instruction >> 20) & 0xf)
8531 case 4:
8532 case 5:
8533 case 6:
8534 case 7:
8535 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8536 inst.operands[2].imm = 16;
8537 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8538 break;
8539 case 8:
8540 case 9:
8541 case 10:
8542 case 11:
8543 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8544 inst.operands[2].imm = 32;
8545 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8546 break;
8547 case 12:
8548 case 13:
8549 case 14:
8550 case 15:
8552 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8553 unsigned long wrn;
8554 wrn = (inst.instruction >> 16) & 0xf;
8555 inst.instruction &= 0xff0fff0f;
8556 inst.instruction |= wrn;
8557 /* Bail out here; the instruction is now assembled. */
8558 return;
8562 /* Map 32 -> 0, etc. */
8563 inst.operands[2].imm &= 0x1f;
8564 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8568 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8569 operations first, then control, shift, and load/store. */
8571 /* Insns like "foo X,Y,Z". */
8573 static void
8574 do_mav_triple (void)
8576 inst.instruction |= inst.operands[0].reg << 16;
8577 inst.instruction |= inst.operands[1].reg;
8578 inst.instruction |= inst.operands[2].reg << 12;
8581 /* Insns like "foo W,X,Y,Z".
8582 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8584 static void
8585 do_mav_quad (void)
8587 inst.instruction |= inst.operands[0].reg << 5;
8588 inst.instruction |= inst.operands[1].reg << 12;
8589 inst.instruction |= inst.operands[2].reg << 16;
8590 inst.instruction |= inst.operands[3].reg;
8593 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8594 static void
8595 do_mav_dspsc (void)
8597 inst.instruction |= inst.operands[1].reg << 12;
8600 /* Maverick shift immediate instructions.
8601 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8602 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8604 static void
8605 do_mav_shift (void)
8607 int imm = inst.operands[2].imm;
8609 inst.instruction |= inst.operands[0].reg << 12;
8610 inst.instruction |= inst.operands[1].reg << 16;
8612 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8613 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8614 Bit 4 should be 0. */
8615 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8617 inst.instruction |= imm;
8620 /* XScale instructions. Also sorted arithmetic before move. */
8622 /* Xscale multiply-accumulate (argument parse)
8623 MIAcc acc0,Rm,Rs
8624 MIAPHcc acc0,Rm,Rs
8625 MIAxycc acc0,Rm,Rs. */
8627 static void
8628 do_xsc_mia (void)
8630 inst.instruction |= inst.operands[1].reg;
8631 inst.instruction |= inst.operands[2].reg << 12;
8634 /* Xscale move-accumulator-register (argument parse)
8636 MARcc acc0,RdLo,RdHi. */
8638 static void
8639 do_xsc_mar (void)
8641 inst.instruction |= inst.operands[1].reg << 12;
8642 inst.instruction |= inst.operands[2].reg << 16;
8645 /* Xscale move-register-accumulator (argument parse)
8647 MRAcc RdLo,RdHi,acc0. */
8649 static void
8650 do_xsc_mra (void)
8652 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8653 inst.instruction |= inst.operands[0].reg << 12;
8654 inst.instruction |= inst.operands[1].reg << 16;
8657 /* Encoding functions relevant only to Thumb. */
8659 /* inst.operands[i] is a shifted-register operand; encode
8660 it into inst.instruction in the format used by Thumb32. */
8662 static void
8663 encode_thumb32_shifted_operand (int i)
8665 unsigned int value = inst.reloc.exp.X_add_number;
8666 unsigned int shift = inst.operands[i].shift_kind;
8668 constraint (inst.operands[i].immisreg,
8669 _("shift by register not allowed in thumb mode"));
8670 inst.instruction |= inst.operands[i].reg;
8671 if (shift == SHIFT_RRX)
8672 inst.instruction |= SHIFT_ROR << 4;
8673 else
8675 constraint (inst.reloc.exp.X_op != O_constant,
8676 _("expression too complex"));
8678 constraint (value > 32
8679 || (value == 32 && (shift == SHIFT_LSL
8680 || shift == SHIFT_ROR)),
8681 _("shift expression is too large"));
8683 if (value == 0)
8684 shift = SHIFT_LSL;
8685 else if (value == 32)
8686 value = 0;
8688 inst.instruction |= shift << 4;
8689 inst.instruction |= (value & 0x1c) << 10;
8690 inst.instruction |= (value & 0x03) << 6;
8695 /* inst.operands[i] was set up by parse_address. Encode it into a
8696 Thumb32 format load or store instruction. Reject forms that cannot
8697 be used with such instructions. If is_t is true, reject forms that
8698 cannot be used with a T instruction; if is_d is true, reject forms
8699 that cannot be used with a D instruction. */
8701 static void
8702 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8704 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8706 constraint (!inst.operands[i].isreg,
8707 _("Instruction does not support =N addresses"));
8709 inst.instruction |= inst.operands[i].reg << 16;
8710 if (inst.operands[i].immisreg)
8712 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8713 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8714 constraint (inst.operands[i].negative,
8715 _("Thumb does not support negative register indexing"));
8716 constraint (inst.operands[i].postind,
8717 _("Thumb does not support register post-indexing"));
8718 constraint (inst.operands[i].writeback,
8719 _("Thumb does not support register indexing with writeback"));
8720 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8721 _("Thumb supports only LSL in shifted register indexing"));
8723 inst.instruction |= inst.operands[i].imm;
8724 if (inst.operands[i].shifted)
8726 constraint (inst.reloc.exp.X_op != O_constant,
8727 _("expression too complex"));
8728 constraint (inst.reloc.exp.X_add_number < 0
8729 || inst.reloc.exp.X_add_number > 3,
8730 _("shift out of range"));
8731 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8733 inst.reloc.type = BFD_RELOC_UNUSED;
8735 else if (inst.operands[i].preind)
8737 constraint (is_pc && inst.operands[i].writeback,
8738 _("cannot use writeback with PC-relative addressing"));
8739 constraint (is_t && inst.operands[i].writeback,
8740 _("cannot use writeback with this instruction"));
8742 if (is_d)
8744 inst.instruction |= 0x01000000;
8745 if (inst.operands[i].writeback)
8746 inst.instruction |= 0x00200000;
8748 else
8750 inst.instruction |= 0x00000c00;
8751 if (inst.operands[i].writeback)
8752 inst.instruction |= 0x00000100;
8754 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8756 else if (inst.operands[i].postind)
8758 gas_assert (inst.operands[i].writeback);
8759 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8760 constraint (is_t, _("cannot use post-indexing with this instruction"));
8762 if (is_d)
8763 inst.instruction |= 0x00200000;
8764 else
8765 inst.instruction |= 0x00000900;
8766 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8768 else /* unindexed - only for coprocessor */
8769 inst.error = _("instruction does not accept unindexed addressing");
8772 /* Table of Thumb instructions which exist in both 16- and 32-bit
8773 encodings (the latter only in post-V6T2 cores). The index is the
8774 value used in the insns table below. When there is more than one
8775 possible 16-bit encoding for the instruction, this table always
8776 holds variant (1).
8777 Also contains several pseudo-instructions used during relaxation. */
8778 #define T16_32_TAB \
8779 X(_adc, 4140, eb400000), \
8780 X(_adcs, 4140, eb500000), \
8781 X(_add, 1c00, eb000000), \
8782 X(_adds, 1c00, eb100000), \
8783 X(_addi, 0000, f1000000), \
8784 X(_addis, 0000, f1100000), \
8785 X(_add_pc,000f, f20f0000), \
8786 X(_add_sp,000d, f10d0000), \
8787 X(_adr, 000f, f20f0000), \
8788 X(_and, 4000, ea000000), \
8789 X(_ands, 4000, ea100000), \
8790 X(_asr, 1000, fa40f000), \
8791 X(_asrs, 1000, fa50f000), \
8792 X(_b, e000, f000b000), \
8793 X(_bcond, d000, f0008000), \
8794 X(_bic, 4380, ea200000), \
8795 X(_bics, 4380, ea300000), \
8796 X(_cmn, 42c0, eb100f00), \
8797 X(_cmp, 2800, ebb00f00), \
8798 X(_cpsie, b660, f3af8400), \
8799 X(_cpsid, b670, f3af8600), \
8800 X(_cpy, 4600, ea4f0000), \
8801 X(_dec_sp,80dd, f1ad0d00), \
8802 X(_eor, 4040, ea800000), \
8803 X(_eors, 4040, ea900000), \
8804 X(_inc_sp,00dd, f10d0d00), \
8805 X(_ldmia, c800, e8900000), \
8806 X(_ldr, 6800, f8500000), \
8807 X(_ldrb, 7800, f8100000), \
8808 X(_ldrh, 8800, f8300000), \
8809 X(_ldrsb, 5600, f9100000), \
8810 X(_ldrsh, 5e00, f9300000), \
8811 X(_ldr_pc,4800, f85f0000), \
8812 X(_ldr_pc2,4800, f85f0000), \
8813 X(_ldr_sp,9800, f85d0000), \
8814 X(_lsl, 0000, fa00f000), \
8815 X(_lsls, 0000, fa10f000), \
8816 X(_lsr, 0800, fa20f000), \
8817 X(_lsrs, 0800, fa30f000), \
8818 X(_mov, 2000, ea4f0000), \
8819 X(_movs, 2000, ea5f0000), \
8820 X(_mul, 4340, fb00f000), \
8821 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8822 X(_mvn, 43c0, ea6f0000), \
8823 X(_mvns, 43c0, ea7f0000), \
8824 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8825 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8826 X(_orr, 4300, ea400000), \
8827 X(_orrs, 4300, ea500000), \
8828 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8829 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8830 X(_rev, ba00, fa90f080), \
8831 X(_rev16, ba40, fa90f090), \
8832 X(_revsh, bac0, fa90f0b0), \
8833 X(_ror, 41c0, fa60f000), \
8834 X(_rors, 41c0, fa70f000), \
8835 X(_sbc, 4180, eb600000), \
8836 X(_sbcs, 4180, eb700000), \
8837 X(_stmia, c000, e8800000), \
8838 X(_str, 6000, f8400000), \
8839 X(_strb, 7000, f8000000), \
8840 X(_strh, 8000, f8200000), \
8841 X(_str_sp,9000, f84d0000), \
8842 X(_sub, 1e00, eba00000), \
8843 X(_subs, 1e00, ebb00000), \
8844 X(_subi, 8000, f1a00000), \
8845 X(_subis, 8000, f1b00000), \
8846 X(_sxtb, b240, fa4ff080), \
8847 X(_sxth, b200, fa0ff080), \
8848 X(_tst, 4200, ea100f00), \
8849 X(_uxtb, b2c0, fa5ff080), \
8850 X(_uxth, b280, fa1ff080), \
8851 X(_nop, bf00, f3af8000), \
8852 X(_yield, bf10, f3af8001), \
8853 X(_wfe, bf20, f3af8002), \
8854 X(_wfi, bf30, f3af8003), \
8855 X(_sev, bf40, f3af8004),
8857 /* To catch errors in encoding functions, the codes are all offset by
8858 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8859 as 16-bit instructions. */
8860 #define X(a,b,c) T_MNEM##a
8861 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8862 #undef X
8864 #define X(a,b,c) 0x##b
8865 static const unsigned short thumb_op16[] = { T16_32_TAB };
8866 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8867 #undef X
8869 #define X(a,b,c) 0x##c
8870 static const unsigned int thumb_op32[] = { T16_32_TAB };
8871 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8872 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8873 #undef X
8874 #undef T16_32_TAB
8876 /* Thumb instruction encoders, in alphabetical order. */
8878 /* ADDW or SUBW. */
8880 static void
8881 do_t_add_sub_w (void)
8883 int Rd, Rn;
8885 Rd = inst.operands[0].reg;
8886 Rn = inst.operands[1].reg;
8888 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8889 is the SP-{plus,minus}-immediate form of the instruction. */
8890 if (Rn == REG_SP)
8891 constraint (Rd == REG_PC, BAD_PC);
8892 else
8893 reject_bad_reg (Rd);
8895 inst.instruction |= (Rn << 16) | (Rd << 8);
8896 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8899 /* Parse an add or subtract instruction. We get here with inst.instruction
8900 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8902 static void
8903 do_t_add_sub (void)
8905 int Rd, Rs, Rn;
8907 Rd = inst.operands[0].reg;
8908 Rs = (inst.operands[1].present
8909 ? inst.operands[1].reg /* Rd, Rs, foo */
8910 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8912 if (Rd == REG_PC)
8913 set_it_insn_type_last ();
8915 if (unified_syntax)
8917 bfd_boolean flags;
8918 bfd_boolean narrow;
8919 int opcode;
8921 flags = (inst.instruction == T_MNEM_adds
8922 || inst.instruction == T_MNEM_subs);
8923 if (flags)
8924 narrow = !in_it_block ();
8925 else
8926 narrow = in_it_block ();
8927 if (!inst.operands[2].isreg)
8929 int add;
8931 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8933 add = (inst.instruction == T_MNEM_add
8934 || inst.instruction == T_MNEM_adds);
8935 opcode = 0;
8936 if (inst.size_req != 4)
8938 /* Attempt to use a narrow opcode, with relaxation if
8939 appropriate. */
8940 if (Rd == REG_SP && Rs == REG_SP && !flags)
8941 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8942 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8943 opcode = T_MNEM_add_sp;
8944 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8945 opcode = T_MNEM_add_pc;
8946 else if (Rd <= 7 && Rs <= 7 && narrow)
8948 if (flags)
8949 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8950 else
8951 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8953 if (opcode)
8955 inst.instruction = THUMB_OP16(opcode);
8956 inst.instruction |= (Rd << 4) | Rs;
8957 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8958 if (inst.size_req != 2)
8959 inst.relax = opcode;
8961 else
8962 constraint (inst.size_req == 2, BAD_HIREG);
8964 if (inst.size_req == 4
8965 || (inst.size_req != 2 && !opcode))
8967 if (Rd == REG_PC)
8969 constraint (add, BAD_PC);
8970 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8971 _("only SUBS PC, LR, #const allowed"));
8972 constraint (inst.reloc.exp.X_op != O_constant,
8973 _("expression too complex"));
8974 constraint (inst.reloc.exp.X_add_number < 0
8975 || inst.reloc.exp.X_add_number > 0xff,
8976 _("immediate value out of range"));
8977 inst.instruction = T2_SUBS_PC_LR
8978 | inst.reloc.exp.X_add_number;
8979 inst.reloc.type = BFD_RELOC_UNUSED;
8980 return;
8982 else if (Rs == REG_PC)
8984 /* Always use addw/subw. */
8985 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8986 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8988 else
8990 inst.instruction = THUMB_OP32 (inst.instruction);
8991 inst.instruction = (inst.instruction & 0xe1ffffff)
8992 | 0x10000000;
8993 if (flags)
8994 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8995 else
8996 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8998 inst.instruction |= Rd << 8;
8999 inst.instruction |= Rs << 16;
9002 else
9004 Rn = inst.operands[2].reg;
9005 /* See if we can do this with a 16-bit instruction. */
9006 if (!inst.operands[2].shifted && inst.size_req != 4)
9008 if (Rd > 7 || Rs > 7 || Rn > 7)
9009 narrow = FALSE;
9011 if (narrow)
9013 inst.instruction = ((inst.instruction == T_MNEM_adds
9014 || inst.instruction == T_MNEM_add)
9015 ? T_OPCODE_ADD_R3
9016 : T_OPCODE_SUB_R3);
9017 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9018 return;
9021 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9023 /* Thumb-1 cores (except v6-M) require at least one high
9024 register in a narrow non flag setting add. */
9025 if (Rd > 7 || Rn > 7
9026 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9027 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9029 if (Rd == Rn)
9031 Rn = Rs;
9032 Rs = Rd;
9034 inst.instruction = T_OPCODE_ADD_HI;
9035 inst.instruction |= (Rd & 8) << 4;
9036 inst.instruction |= (Rd & 7);
9037 inst.instruction |= Rn << 3;
9038 return;
9043 constraint (Rd == REG_PC, BAD_PC);
9044 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9045 constraint (Rs == REG_PC, BAD_PC);
9046 reject_bad_reg (Rn);
9048 /* If we get here, it can't be done in 16 bits. */
9049 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9050 _("shift must be constant"));
9051 inst.instruction = THUMB_OP32 (inst.instruction);
9052 inst.instruction |= Rd << 8;
9053 inst.instruction |= Rs << 16;
9054 encode_thumb32_shifted_operand (2);
9057 else
9059 constraint (inst.instruction == T_MNEM_adds
9060 || inst.instruction == T_MNEM_subs,
9061 BAD_THUMB32);
9063 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9065 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9066 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9067 BAD_HIREG);
9069 inst.instruction = (inst.instruction == T_MNEM_add
9070 ? 0x0000 : 0x8000);
9071 inst.instruction |= (Rd << 4) | Rs;
9072 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9073 return;
9076 Rn = inst.operands[2].reg;
9077 constraint (inst.operands[2].shifted, _("unshifted register required"));
9079 /* We now have Rd, Rs, and Rn set to registers. */
9080 if (Rd > 7 || Rs > 7 || Rn > 7)
9082 /* Can't do this for SUB. */
9083 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9084 inst.instruction = T_OPCODE_ADD_HI;
9085 inst.instruction |= (Rd & 8) << 4;
9086 inst.instruction |= (Rd & 7);
9087 if (Rs == Rd)
9088 inst.instruction |= Rn << 3;
9089 else if (Rn == Rd)
9090 inst.instruction |= Rs << 3;
9091 else
9092 constraint (1, _("dest must overlap one source register"));
9094 else
9096 inst.instruction = (inst.instruction == T_MNEM_add
9097 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9098 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9103 static void
9104 do_t_adr (void)
9106 unsigned Rd;
9108 Rd = inst.operands[0].reg;
9109 reject_bad_reg (Rd);
9111 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9113 /* Defer to section relaxation. */
9114 inst.relax = inst.instruction;
9115 inst.instruction = THUMB_OP16 (inst.instruction);
9116 inst.instruction |= Rd << 4;
9118 else if (unified_syntax && inst.size_req != 2)
9120 /* Generate a 32-bit opcode. */
9121 inst.instruction = THUMB_OP32 (inst.instruction);
9122 inst.instruction |= Rd << 8;
9123 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9124 inst.reloc.pc_rel = 1;
9126 else
9128 /* Generate a 16-bit opcode. */
9129 inst.instruction = THUMB_OP16 (inst.instruction);
9130 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9131 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9132 inst.reloc.pc_rel = 1;
9134 inst.instruction |= Rd << 4;
9138 /* Arithmetic instructions for which there is just one 16-bit
9139 instruction encoding, and it allows only two low registers.
9140 For maximal compatibility with ARM syntax, we allow three register
9141 operands even when Thumb-32 instructions are not available, as long
9142 as the first two are identical. For instance, both "sbc r0,r1" and
9143 "sbc r0,r0,r1" are allowed. */
9144 static void
9145 do_t_arit3 (void)
9147 int Rd, Rs, Rn;
9149 Rd = inst.operands[0].reg;
9150 Rs = (inst.operands[1].present
9151 ? inst.operands[1].reg /* Rd, Rs, foo */
9152 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9153 Rn = inst.operands[2].reg;
9155 reject_bad_reg (Rd);
9156 reject_bad_reg (Rs);
9157 if (inst.operands[2].isreg)
9158 reject_bad_reg (Rn);
9160 if (unified_syntax)
9162 if (!inst.operands[2].isreg)
9164 /* For an immediate, we always generate a 32-bit opcode;
9165 section relaxation will shrink it later if possible. */
9166 inst.instruction = THUMB_OP32 (inst.instruction);
9167 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9168 inst.instruction |= Rd << 8;
9169 inst.instruction |= Rs << 16;
9170 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9172 else
9174 bfd_boolean narrow;
9176 /* See if we can do this with a 16-bit instruction. */
9177 if (THUMB_SETS_FLAGS (inst.instruction))
9178 narrow = !in_it_block ();
9179 else
9180 narrow = in_it_block ();
9182 if (Rd > 7 || Rn > 7 || Rs > 7)
9183 narrow = FALSE;
9184 if (inst.operands[2].shifted)
9185 narrow = FALSE;
9186 if (inst.size_req == 4)
9187 narrow = FALSE;
9189 if (narrow
9190 && Rd == Rs)
9192 inst.instruction = THUMB_OP16 (inst.instruction);
9193 inst.instruction |= Rd;
9194 inst.instruction |= Rn << 3;
9195 return;
9198 /* If we get here, it can't be done in 16 bits. */
9199 constraint (inst.operands[2].shifted
9200 && inst.operands[2].immisreg,
9201 _("shift must be constant"));
9202 inst.instruction = THUMB_OP32 (inst.instruction);
9203 inst.instruction |= Rd << 8;
9204 inst.instruction |= Rs << 16;
9205 encode_thumb32_shifted_operand (2);
9208 else
9210 /* On its face this is a lie - the instruction does set the
9211 flags. However, the only supported mnemonic in this mode
9212 says it doesn't. */
9213 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9215 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9216 _("unshifted register required"));
9217 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9218 constraint (Rd != Rs,
9219 _("dest and source1 must be the same register"));
9221 inst.instruction = THUMB_OP16 (inst.instruction);
9222 inst.instruction |= Rd;
9223 inst.instruction |= Rn << 3;
9227 /* Similarly, but for instructions where the arithmetic operation is
9228 commutative, so we can allow either of them to be different from
9229 the destination operand in a 16-bit instruction. For instance, all
9230 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9231 accepted. */
9232 static void
9233 do_t_arit3c (void)
9235 int Rd, Rs, Rn;
9237 Rd = inst.operands[0].reg;
9238 Rs = (inst.operands[1].present
9239 ? inst.operands[1].reg /* Rd, Rs, foo */
9240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9241 Rn = inst.operands[2].reg;
9243 reject_bad_reg (Rd);
9244 reject_bad_reg (Rs);
9245 if (inst.operands[2].isreg)
9246 reject_bad_reg (Rn);
9248 if (unified_syntax)
9250 if (!inst.operands[2].isreg)
9252 /* For an immediate, we always generate a 32-bit opcode;
9253 section relaxation will shrink it later if possible. */
9254 inst.instruction = THUMB_OP32 (inst.instruction);
9255 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9256 inst.instruction |= Rd << 8;
9257 inst.instruction |= Rs << 16;
9258 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9260 else
9262 bfd_boolean narrow;
9264 /* See if we can do this with a 16-bit instruction. */
9265 if (THUMB_SETS_FLAGS (inst.instruction))
9266 narrow = !in_it_block ();
9267 else
9268 narrow = in_it_block ();
9270 if (Rd > 7 || Rn > 7 || Rs > 7)
9271 narrow = FALSE;
9272 if (inst.operands[2].shifted)
9273 narrow = FALSE;
9274 if (inst.size_req == 4)
9275 narrow = FALSE;
9277 if (narrow)
9279 if (Rd == Rs)
9281 inst.instruction = THUMB_OP16 (inst.instruction);
9282 inst.instruction |= Rd;
9283 inst.instruction |= Rn << 3;
9284 return;
9286 if (Rd == Rn)
9288 inst.instruction = THUMB_OP16 (inst.instruction);
9289 inst.instruction |= Rd;
9290 inst.instruction |= Rs << 3;
9291 return;
9295 /* If we get here, it can't be done in 16 bits. */
9296 constraint (inst.operands[2].shifted
9297 && inst.operands[2].immisreg,
9298 _("shift must be constant"));
9299 inst.instruction = THUMB_OP32 (inst.instruction);
9300 inst.instruction |= Rd << 8;
9301 inst.instruction |= Rs << 16;
9302 encode_thumb32_shifted_operand (2);
9305 else
9307 /* On its face this is a lie - the instruction does set the
9308 flags. However, the only supported mnemonic in this mode
9309 says it doesn't. */
9310 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9312 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9313 _("unshifted register required"));
9314 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9316 inst.instruction = THUMB_OP16 (inst.instruction);
9317 inst.instruction |= Rd;
9319 if (Rd == Rs)
9320 inst.instruction |= Rn << 3;
9321 else if (Rd == Rn)
9322 inst.instruction |= Rs << 3;
9323 else
9324 constraint (1, _("dest must overlap one source register"));
9328 static void
9329 do_t_barrier (void)
9331 if (inst.operands[0].present)
9333 constraint ((inst.instruction & 0xf0) != 0x40
9334 && inst.operands[0].imm != 0xf,
9335 _("bad barrier type"));
9336 inst.instruction |= inst.operands[0].imm;
9338 else
9339 inst.instruction |= 0xf;
9342 static void
9343 do_t_bfc (void)
9345 unsigned Rd;
9346 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9347 constraint (msb > 32, _("bit-field extends past end of register"));
9348 /* The instruction encoding stores the LSB and MSB,
9349 not the LSB and width. */
9350 Rd = inst.operands[0].reg;
9351 reject_bad_reg (Rd);
9352 inst.instruction |= Rd << 8;
9353 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9354 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9355 inst.instruction |= msb - 1;
9358 static void
9359 do_t_bfi (void)
9361 int Rd, Rn;
9362 unsigned int msb;
9364 Rd = inst.operands[0].reg;
9365 reject_bad_reg (Rd);
9367 /* #0 in second position is alternative syntax for bfc, which is
9368 the same instruction but with REG_PC in the Rm field. */
9369 if (!inst.operands[1].isreg)
9370 Rn = REG_PC;
9371 else
9373 Rn = inst.operands[1].reg;
9374 reject_bad_reg (Rn);
9377 msb = inst.operands[2].imm + inst.operands[3].imm;
9378 constraint (msb > 32, _("bit-field extends past end of register"));
9379 /* The instruction encoding stores the LSB and MSB,
9380 not the LSB and width. */
9381 inst.instruction |= Rd << 8;
9382 inst.instruction |= Rn << 16;
9383 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9384 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9385 inst.instruction |= msb - 1;
9388 static void
9389 do_t_bfx (void)
9391 unsigned Rd, Rn;
9393 Rd = inst.operands[0].reg;
9394 Rn = inst.operands[1].reg;
9396 reject_bad_reg (Rd);
9397 reject_bad_reg (Rn);
9399 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9400 _("bit-field extends past end of register"));
9401 inst.instruction |= Rd << 8;
9402 inst.instruction |= Rn << 16;
9403 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9404 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9405 inst.instruction |= inst.operands[3].imm - 1;
9408 /* ARM V5 Thumb BLX (argument parse)
9409 BLX <target_addr> which is BLX(1)
9410 BLX <Rm> which is BLX(2)
9411 Unfortunately, there are two different opcodes for this mnemonic.
9412 So, the insns[].value is not used, and the code here zaps values
9413 into inst.instruction.
9415 ??? How to take advantage of the additional two bits of displacement
9416 available in Thumb32 mode? Need new relocation? */
9418 static void
9419 do_t_blx (void)
9421 set_it_insn_type_last ();
9423 if (inst.operands[0].isreg)
9425 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9426 /* We have a register, so this is BLX(2). */
9427 inst.instruction |= inst.operands[0].reg << 3;
9429 else
9431 /* No register. This must be BLX(1). */
9432 inst.instruction = 0xf000e800;
9433 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9434 inst.reloc.pc_rel = 1;
9438 static void
9439 do_t_branch (void)
9441 int opcode;
9442 int cond;
9444 cond = inst.cond;
9445 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9447 if (in_it_block ())
9449 /* Conditional branches inside IT blocks are encoded as unconditional
9450 branches. */
9451 cond = COND_ALWAYS;
9453 else
9454 cond = inst.cond;
9456 if (cond != COND_ALWAYS)
9457 opcode = T_MNEM_bcond;
9458 else
9459 opcode = inst.instruction;
9461 if (unified_syntax && inst.size_req == 4)
9463 inst.instruction = THUMB_OP32(opcode);
9464 if (cond == COND_ALWAYS)
9465 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9466 else
9468 gas_assert (cond != 0xF);
9469 inst.instruction |= cond << 22;
9470 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9473 else
9475 inst.instruction = THUMB_OP16(opcode);
9476 if (cond == COND_ALWAYS)
9477 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9478 else
9480 inst.instruction |= cond << 8;
9481 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9483 /* Allow section relaxation. */
9484 if (unified_syntax && inst.size_req != 2)
9485 inst.relax = opcode;
9488 inst.reloc.pc_rel = 1;
9491 static void
9492 do_t_bkpt (void)
9494 constraint (inst.cond != COND_ALWAYS,
9495 _("instruction is always unconditional"));
9496 if (inst.operands[0].present)
9498 constraint (inst.operands[0].imm > 255,
9499 _("immediate value out of range"));
9500 inst.instruction |= inst.operands[0].imm;
9501 set_it_insn_type (NEUTRAL_IT_INSN);
9505 static void
9506 do_t_branch23 (void)
9508 set_it_insn_type_last ();
9509 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9510 inst.reloc.pc_rel = 1;
9512 #if defined(OBJ_COFF)
9513 /* If the destination of the branch is a defined symbol which does not have
9514 the THUMB_FUNC attribute, then we must be calling a function which has
9515 the (interfacearm) attribute. We look for the Thumb entry point to that
9516 function and change the branch to refer to that function instead. */
9517 if ( inst.reloc.exp.X_op == O_symbol
9518 && inst.reloc.exp.X_add_symbol != NULL
9519 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9520 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9521 inst.reloc.exp.X_add_symbol =
9522 find_real_start (inst.reloc.exp.X_add_symbol);
9523 #endif
9526 static void
9527 do_t_bx (void)
9529 set_it_insn_type_last ();
9530 inst.instruction |= inst.operands[0].reg << 3;
9531 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9532 should cause the alignment to be checked once it is known. This is
9533 because BX PC only works if the instruction is word aligned. */
9536 static void
9537 do_t_bxj (void)
9539 int Rm;
9541 set_it_insn_type_last ();
9542 Rm = inst.operands[0].reg;
9543 reject_bad_reg (Rm);
9544 inst.instruction |= Rm << 16;
9547 static void
9548 do_t_clz (void)
9550 unsigned Rd;
9551 unsigned Rm;
9553 Rd = inst.operands[0].reg;
9554 Rm = inst.operands[1].reg;
9556 reject_bad_reg (Rd);
9557 reject_bad_reg (Rm);
9559 inst.instruction |= Rd << 8;
9560 inst.instruction |= Rm << 16;
9561 inst.instruction |= Rm;
9564 static void
9565 do_t_cps (void)
9567 set_it_insn_type (OUTSIDE_IT_INSN);
9568 inst.instruction |= inst.operands[0].imm;
9571 static void
9572 do_t_cpsi (void)
9574 set_it_insn_type (OUTSIDE_IT_INSN);
9575 if (unified_syntax
9576 && (inst.operands[1].present || inst.size_req == 4)
9577 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9579 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9580 inst.instruction = 0xf3af8000;
9581 inst.instruction |= imod << 9;
9582 inst.instruction |= inst.operands[0].imm << 5;
9583 if (inst.operands[1].present)
9584 inst.instruction |= 0x100 | inst.operands[1].imm;
9586 else
9588 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9589 && (inst.operands[0].imm & 4),
9590 _("selected processor does not support 'A' form "
9591 "of this instruction"));
9592 constraint (inst.operands[1].present || inst.size_req == 4,
9593 _("Thumb does not support the 2-argument "
9594 "form of this instruction"));
9595 inst.instruction |= inst.operands[0].imm;
9599 /* THUMB CPY instruction (argument parse). */
9601 static void
9602 do_t_cpy (void)
9604 if (inst.size_req == 4)
9606 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9607 inst.instruction |= inst.operands[0].reg << 8;
9608 inst.instruction |= inst.operands[1].reg;
9610 else
9612 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9613 inst.instruction |= (inst.operands[0].reg & 0x7);
9614 inst.instruction |= inst.operands[1].reg << 3;
9618 static void
9619 do_t_cbz (void)
9621 set_it_insn_type (OUTSIDE_IT_INSN);
9622 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9623 inst.instruction |= inst.operands[0].reg;
9624 inst.reloc.pc_rel = 1;
9625 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9628 static void
9629 do_t_dbg (void)
9631 inst.instruction |= inst.operands[0].imm;
9634 static void
9635 do_t_div (void)
9637 unsigned Rd, Rn, Rm;
9639 Rd = inst.operands[0].reg;
9640 Rn = (inst.operands[1].present
9641 ? inst.operands[1].reg : Rd);
9642 Rm = inst.operands[2].reg;
9644 reject_bad_reg (Rd);
9645 reject_bad_reg (Rn);
9646 reject_bad_reg (Rm);
9648 inst.instruction |= Rd << 8;
9649 inst.instruction |= Rn << 16;
9650 inst.instruction |= Rm;
9653 static void
9654 do_t_hint (void)
9656 if (unified_syntax && inst.size_req == 4)
9657 inst.instruction = THUMB_OP32 (inst.instruction);
9658 else
9659 inst.instruction = THUMB_OP16 (inst.instruction);
9662 static void
9663 do_t_it (void)
9665 unsigned int cond = inst.operands[0].imm;
9667 set_it_insn_type (IT_INSN);
9668 now_it.mask = (inst.instruction & 0xf) | 0x10;
9669 now_it.cc = cond;
9671 /* If the condition is a negative condition, invert the mask. */
9672 if ((cond & 0x1) == 0x0)
9674 unsigned int mask = inst.instruction & 0x000f;
9676 if ((mask & 0x7) == 0)
9677 /* no conversion needed */;
9678 else if ((mask & 0x3) == 0)
9679 mask ^= 0x8;
9680 else if ((mask & 0x1) == 0)
9681 mask ^= 0xC;
9682 else
9683 mask ^= 0xE;
9685 inst.instruction &= 0xfff0;
9686 inst.instruction |= mask;
9689 inst.instruction |= cond << 4;
9692 /* Helper function used for both push/pop and ldm/stm. */
9693 static void
9694 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9696 bfd_boolean load;
9698 load = (inst.instruction & (1 << 20)) != 0;
9700 if (mask & (1 << 13))
9701 inst.error = _("SP not allowed in register list");
9702 if (load)
9704 if (mask & (1 << 15))
9706 if (mask & (1 << 14))
9707 inst.error = _("LR and PC should not both be in register list");
9708 else
9709 set_it_insn_type_last ();
9712 if ((mask & (1 << base)) != 0
9713 && writeback)
9714 as_warn (_("base register should not be in register list "
9715 "when written back"));
9717 else
9719 if (mask & (1 << 15))
9720 inst.error = _("PC not allowed in register list");
9722 if (mask & (1 << base))
9723 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9726 if ((mask & (mask - 1)) == 0)
9728 /* Single register transfers implemented as str/ldr. */
9729 if (writeback)
9731 if (inst.instruction & (1 << 23))
9732 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9733 else
9734 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9736 else
9738 if (inst.instruction & (1 << 23))
9739 inst.instruction = 0x00800000; /* ia -> [base] */
9740 else
9741 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9744 inst.instruction |= 0xf8400000;
9745 if (load)
9746 inst.instruction |= 0x00100000;
9748 mask = ffs (mask) - 1;
9749 mask <<= 12;
9751 else if (writeback)
9752 inst.instruction |= WRITE_BACK;
9754 inst.instruction |= mask;
9755 inst.instruction |= base << 16;
9758 static void
9759 do_t_ldmstm (void)
9761 /* This really doesn't seem worth it. */
9762 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9763 _("expression too complex"));
9764 constraint (inst.operands[1].writeback,
9765 _("Thumb load/store multiple does not support {reglist}^"));
9767 if (unified_syntax)
9769 bfd_boolean narrow;
9770 unsigned mask;
9772 narrow = FALSE;
9773 /* See if we can use a 16-bit instruction. */
9774 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9775 && inst.size_req != 4
9776 && !(inst.operands[1].imm & ~0xff))
9778 mask = 1 << inst.operands[0].reg;
9780 if (inst.operands[0].reg <= 7
9781 && (inst.instruction == T_MNEM_stmia
9782 ? inst.operands[0].writeback
9783 : (inst.operands[0].writeback
9784 == !(inst.operands[1].imm & mask))))
9786 if (inst.instruction == T_MNEM_stmia
9787 && (inst.operands[1].imm & mask)
9788 && (inst.operands[1].imm & (mask - 1)))
9789 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9790 inst.operands[0].reg);
9792 inst.instruction = THUMB_OP16 (inst.instruction);
9793 inst.instruction |= inst.operands[0].reg << 8;
9794 inst.instruction |= inst.operands[1].imm;
9795 narrow = TRUE;
9797 else if (inst.operands[0] .reg == REG_SP
9798 && inst.operands[0].writeback)
9800 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9801 ? T_MNEM_push : T_MNEM_pop);
9802 inst.instruction |= inst.operands[1].imm;
9803 narrow = TRUE;
9807 if (!narrow)
9809 if (inst.instruction < 0xffff)
9810 inst.instruction = THUMB_OP32 (inst.instruction);
9812 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9813 inst.operands[0].writeback);
9816 else
9818 constraint (inst.operands[0].reg > 7
9819 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9820 constraint (inst.instruction != T_MNEM_ldmia
9821 && inst.instruction != T_MNEM_stmia,
9822 _("Thumb-2 instruction only valid in unified syntax"));
9823 if (inst.instruction == T_MNEM_stmia)
9825 if (!inst.operands[0].writeback)
9826 as_warn (_("this instruction will write back the base register"));
9827 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9828 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9829 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9830 inst.operands[0].reg);
9832 else
9834 if (!inst.operands[0].writeback
9835 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9836 as_warn (_("this instruction will write back the base register"));
9837 else if (inst.operands[0].writeback
9838 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9839 as_warn (_("this instruction will not write back the base register"));
9842 inst.instruction = THUMB_OP16 (inst.instruction);
9843 inst.instruction |= inst.operands[0].reg << 8;
9844 inst.instruction |= inst.operands[1].imm;
9848 static void
9849 do_t_ldrex (void)
9851 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9852 || inst.operands[1].postind || inst.operands[1].writeback
9853 || inst.operands[1].immisreg || inst.operands[1].shifted
9854 || inst.operands[1].negative,
9855 BAD_ADDR_MODE);
9857 inst.instruction |= inst.operands[0].reg << 12;
9858 inst.instruction |= inst.operands[1].reg << 16;
9859 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9862 static void
9863 do_t_ldrexd (void)
9865 if (!inst.operands[1].present)
9867 constraint (inst.operands[0].reg == REG_LR,
9868 _("r14 not allowed as first register "
9869 "when second register is omitted"));
9870 inst.operands[1].reg = inst.operands[0].reg + 1;
9872 constraint (inst.operands[0].reg == inst.operands[1].reg,
9873 BAD_OVERLAP);
9875 inst.instruction |= inst.operands[0].reg << 12;
9876 inst.instruction |= inst.operands[1].reg << 8;
9877 inst.instruction |= inst.operands[2].reg << 16;
9880 static void
9881 do_t_ldst (void)
9883 unsigned long opcode;
9884 int Rn;
9886 if (inst.operands[0].isreg
9887 && !inst.operands[0].preind
9888 && inst.operands[0].reg == REG_PC)
9889 set_it_insn_type_last ();
9891 opcode = inst.instruction;
9892 if (unified_syntax)
9894 if (!inst.operands[1].isreg)
9896 if (opcode <= 0xffff)
9897 inst.instruction = THUMB_OP32 (opcode);
9898 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9899 return;
9901 if (inst.operands[1].isreg
9902 && !inst.operands[1].writeback
9903 && !inst.operands[1].shifted && !inst.operands[1].postind
9904 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9905 && opcode <= 0xffff
9906 && inst.size_req != 4)
9908 /* Insn may have a 16-bit form. */
9909 Rn = inst.operands[1].reg;
9910 if (inst.operands[1].immisreg)
9912 inst.instruction = THUMB_OP16 (opcode);
9913 /* [Rn, Rik] */
9914 if (Rn <= 7 && inst.operands[1].imm <= 7)
9915 goto op16;
9917 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9918 && opcode != T_MNEM_ldrsb)
9919 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9920 || (Rn == REG_SP && opcode == T_MNEM_str))
9922 /* [Rn, #const] */
9923 if (Rn > 7)
9925 if (Rn == REG_PC)
9927 if (inst.reloc.pc_rel)
9928 opcode = T_MNEM_ldr_pc2;
9929 else
9930 opcode = T_MNEM_ldr_pc;
9932 else
9934 if (opcode == T_MNEM_ldr)
9935 opcode = T_MNEM_ldr_sp;
9936 else
9937 opcode = T_MNEM_str_sp;
9939 inst.instruction = inst.operands[0].reg << 8;
9941 else
9943 inst.instruction = inst.operands[0].reg;
9944 inst.instruction |= inst.operands[1].reg << 3;
9946 inst.instruction |= THUMB_OP16 (opcode);
9947 if (inst.size_req == 2)
9948 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9949 else
9950 inst.relax = opcode;
9951 return;
9954 /* Definitely a 32-bit variant. */
9955 inst.instruction = THUMB_OP32 (opcode);
9956 inst.instruction |= inst.operands[0].reg << 12;
9957 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9958 return;
9961 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9963 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9965 /* Only [Rn,Rm] is acceptable. */
9966 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9967 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9968 || inst.operands[1].postind || inst.operands[1].shifted
9969 || inst.operands[1].negative,
9970 _("Thumb does not support this addressing mode"));
9971 inst.instruction = THUMB_OP16 (inst.instruction);
9972 goto op16;
9975 inst.instruction = THUMB_OP16 (inst.instruction);
9976 if (!inst.operands[1].isreg)
9977 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9978 return;
9980 constraint (!inst.operands[1].preind
9981 || inst.operands[1].shifted
9982 || inst.operands[1].writeback,
9983 _("Thumb does not support this addressing mode"));
9984 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9986 constraint (inst.instruction & 0x0600,
9987 _("byte or halfword not valid for base register"));
9988 constraint (inst.operands[1].reg == REG_PC
9989 && !(inst.instruction & THUMB_LOAD_BIT),
9990 _("r15 based store not allowed"));
9991 constraint (inst.operands[1].immisreg,
9992 _("invalid base register for register offset"));
9994 if (inst.operands[1].reg == REG_PC)
9995 inst.instruction = T_OPCODE_LDR_PC;
9996 else if (inst.instruction & THUMB_LOAD_BIT)
9997 inst.instruction = T_OPCODE_LDR_SP;
9998 else
9999 inst.instruction = T_OPCODE_STR_SP;
10001 inst.instruction |= inst.operands[0].reg << 8;
10002 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10003 return;
10006 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10007 if (!inst.operands[1].immisreg)
10009 /* Immediate offset. */
10010 inst.instruction |= inst.operands[0].reg;
10011 inst.instruction |= inst.operands[1].reg << 3;
10012 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10013 return;
10016 /* Register offset. */
10017 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10018 constraint (inst.operands[1].negative,
10019 _("Thumb does not support this addressing mode"));
10021 op16:
10022 switch (inst.instruction)
10024 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10025 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10026 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10027 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10028 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10029 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10030 case 0x5600 /* ldrsb */:
10031 case 0x5e00 /* ldrsh */: break;
10032 default: abort ();
10035 inst.instruction |= inst.operands[0].reg;
10036 inst.instruction |= inst.operands[1].reg << 3;
10037 inst.instruction |= inst.operands[1].imm << 6;
10040 static void
10041 do_t_ldstd (void)
10043 if (!inst.operands[1].present)
10045 inst.operands[1].reg = inst.operands[0].reg + 1;
10046 constraint (inst.operands[0].reg == REG_LR,
10047 _("r14 not allowed here"));
10049 inst.instruction |= inst.operands[0].reg << 12;
10050 inst.instruction |= inst.operands[1].reg << 8;
10051 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10054 static void
10055 do_t_ldstt (void)
10057 inst.instruction |= inst.operands[0].reg << 12;
10058 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10061 static void
10062 do_t_mla (void)
10064 unsigned Rd, Rn, Rm, Ra;
10066 Rd = inst.operands[0].reg;
10067 Rn = inst.operands[1].reg;
10068 Rm = inst.operands[2].reg;
10069 Ra = inst.operands[3].reg;
10071 reject_bad_reg (Rd);
10072 reject_bad_reg (Rn);
10073 reject_bad_reg (Rm);
10074 reject_bad_reg (Ra);
10076 inst.instruction |= Rd << 8;
10077 inst.instruction |= Rn << 16;
10078 inst.instruction |= Rm;
10079 inst.instruction |= Ra << 12;
10082 static void
10083 do_t_mlal (void)
10085 unsigned RdLo, RdHi, Rn, Rm;
10087 RdLo = inst.operands[0].reg;
10088 RdHi = inst.operands[1].reg;
10089 Rn = inst.operands[2].reg;
10090 Rm = inst.operands[3].reg;
10092 reject_bad_reg (RdLo);
10093 reject_bad_reg (RdHi);
10094 reject_bad_reg (Rn);
10095 reject_bad_reg (Rm);
10097 inst.instruction |= RdLo << 12;
10098 inst.instruction |= RdHi << 8;
10099 inst.instruction |= Rn << 16;
10100 inst.instruction |= Rm;
10103 static void
10104 do_t_mov_cmp (void)
10106 unsigned Rn, Rm;
10108 Rn = inst.operands[0].reg;
10109 Rm = inst.operands[1].reg;
10111 if (Rn == REG_PC)
10112 set_it_insn_type_last ();
10114 if (unified_syntax)
10116 int r0off = (inst.instruction == T_MNEM_mov
10117 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10118 unsigned long opcode;
10119 bfd_boolean narrow;
10120 bfd_boolean low_regs;
10122 low_regs = (Rn <= 7 && Rm <= 7);
10123 opcode = inst.instruction;
10124 if (in_it_block ())
10125 narrow = opcode != T_MNEM_movs;
10126 else
10127 narrow = opcode != T_MNEM_movs || low_regs;
10128 if (inst.size_req == 4
10129 || inst.operands[1].shifted)
10130 narrow = FALSE;
10132 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10133 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10134 && !inst.operands[1].shifted
10135 && Rn == REG_PC
10136 && Rm == REG_LR)
10138 inst.instruction = T2_SUBS_PC_LR;
10139 return;
10142 if (opcode == T_MNEM_cmp)
10144 constraint (Rn == REG_PC, BAD_PC);
10145 if (narrow)
10147 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10148 but valid. */
10149 warn_deprecated_sp (Rm);
10150 /* R15 was documented as a valid choice for Rm in ARMv6,
10151 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10152 tools reject R15, so we do too. */
10153 constraint (Rm == REG_PC, BAD_PC);
10155 else
10156 reject_bad_reg (Rm);
10158 else if (opcode == T_MNEM_mov
10159 || opcode == T_MNEM_movs)
10161 if (inst.operands[1].isreg)
10163 if (opcode == T_MNEM_movs)
10165 reject_bad_reg (Rn);
10166 reject_bad_reg (Rm);
10168 else if ((Rn == REG_SP || Rn == REG_PC)
10169 && (Rm == REG_SP || Rm == REG_PC))
10170 reject_bad_reg (Rm);
10172 else
10173 reject_bad_reg (Rn);
10176 if (!inst.operands[1].isreg)
10178 /* Immediate operand. */
10179 if (!in_it_block () && opcode == T_MNEM_mov)
10180 narrow = 0;
10181 if (low_regs && narrow)
10183 inst.instruction = THUMB_OP16 (opcode);
10184 inst.instruction |= Rn << 8;
10185 if (inst.size_req == 2)
10186 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10187 else
10188 inst.relax = opcode;
10190 else
10192 inst.instruction = THUMB_OP32 (inst.instruction);
10193 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10194 inst.instruction |= Rn << r0off;
10195 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10198 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10199 && (inst.instruction == T_MNEM_mov
10200 || inst.instruction == T_MNEM_movs))
10202 /* Register shifts are encoded as separate shift instructions. */
10203 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10205 if (in_it_block ())
10206 narrow = !flags;
10207 else
10208 narrow = flags;
10210 if (inst.size_req == 4)
10211 narrow = FALSE;
10213 if (!low_regs || inst.operands[1].imm > 7)
10214 narrow = FALSE;
10216 if (Rn != Rm)
10217 narrow = FALSE;
10219 switch (inst.operands[1].shift_kind)
10221 case SHIFT_LSL:
10222 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10223 break;
10224 case SHIFT_ASR:
10225 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10226 break;
10227 case SHIFT_LSR:
10228 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10229 break;
10230 case SHIFT_ROR:
10231 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10232 break;
10233 default:
10234 abort ();
10237 inst.instruction = opcode;
10238 if (narrow)
10240 inst.instruction |= Rn;
10241 inst.instruction |= inst.operands[1].imm << 3;
10243 else
10245 if (flags)
10246 inst.instruction |= CONDS_BIT;
10248 inst.instruction |= Rn << 8;
10249 inst.instruction |= Rm << 16;
10250 inst.instruction |= inst.operands[1].imm;
10253 else if (!narrow)
10255 /* Some mov with immediate shift have narrow variants.
10256 Register shifts are handled above. */
10257 if (low_regs && inst.operands[1].shifted
10258 && (inst.instruction == T_MNEM_mov
10259 || inst.instruction == T_MNEM_movs))
10261 if (in_it_block ())
10262 narrow = (inst.instruction == T_MNEM_mov);
10263 else
10264 narrow = (inst.instruction == T_MNEM_movs);
10267 if (narrow)
10269 switch (inst.operands[1].shift_kind)
10271 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10272 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10273 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10274 default: narrow = FALSE; break;
10278 if (narrow)
10280 inst.instruction |= Rn;
10281 inst.instruction |= Rm << 3;
10282 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10284 else
10286 inst.instruction = THUMB_OP32 (inst.instruction);
10287 inst.instruction |= Rn << r0off;
10288 encode_thumb32_shifted_operand (1);
10291 else
10292 switch (inst.instruction)
10294 case T_MNEM_mov:
10295 inst.instruction = T_OPCODE_MOV_HR;
10296 inst.instruction |= (Rn & 0x8) << 4;
10297 inst.instruction |= (Rn & 0x7);
10298 inst.instruction |= Rm << 3;
10299 break;
10301 case T_MNEM_movs:
10302 /* We know we have low registers at this point.
10303 Generate ADD Rd, Rs, #0. */
10304 inst.instruction = T_OPCODE_ADD_I3;
10305 inst.instruction |= Rn;
10306 inst.instruction |= Rm << 3;
10307 break;
10309 case T_MNEM_cmp:
10310 if (low_regs)
10312 inst.instruction = T_OPCODE_CMP_LR;
10313 inst.instruction |= Rn;
10314 inst.instruction |= Rm << 3;
10316 else
10318 inst.instruction = T_OPCODE_CMP_HR;
10319 inst.instruction |= (Rn & 0x8) << 4;
10320 inst.instruction |= (Rn & 0x7);
10321 inst.instruction |= Rm << 3;
10323 break;
10325 return;
10328 inst.instruction = THUMB_OP16 (inst.instruction);
10330 /* PR 10443: Do not silently ignore shifted operands. */
10331 constraint (inst.operands[1].shifted,
10332 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10334 if (inst.operands[1].isreg)
10336 if (Rn < 8 && Rm < 8)
10338 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10339 since a MOV instruction produces unpredictable results. */
10340 if (inst.instruction == T_OPCODE_MOV_I8)
10341 inst.instruction = T_OPCODE_ADD_I3;
10342 else
10343 inst.instruction = T_OPCODE_CMP_LR;
10345 inst.instruction |= Rn;
10346 inst.instruction |= Rm << 3;
10348 else
10350 if (inst.instruction == T_OPCODE_MOV_I8)
10351 inst.instruction = T_OPCODE_MOV_HR;
10352 else
10353 inst.instruction = T_OPCODE_CMP_HR;
10354 do_t_cpy ();
10357 else
10359 constraint (Rn > 7,
10360 _("only lo regs allowed with immediate"));
10361 inst.instruction |= Rn << 8;
10362 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10366 static void
10367 do_t_mov16 (void)
10369 unsigned Rd;
10370 bfd_vma imm;
10371 bfd_boolean top;
10373 top = (inst.instruction & 0x00800000) != 0;
10374 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10376 constraint (top, _(":lower16: not allowed this instruction"));
10377 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10379 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10381 constraint (!top, _(":upper16: not allowed this instruction"));
10382 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10385 Rd = inst.operands[0].reg;
10386 reject_bad_reg (Rd);
10388 inst.instruction |= Rd << 8;
10389 if (inst.reloc.type == BFD_RELOC_UNUSED)
10391 imm = inst.reloc.exp.X_add_number;
10392 inst.instruction |= (imm & 0xf000) << 4;
10393 inst.instruction |= (imm & 0x0800) << 15;
10394 inst.instruction |= (imm & 0x0700) << 4;
10395 inst.instruction |= (imm & 0x00ff);
10399 static void
10400 do_t_mvn_tst (void)
10402 unsigned Rn, Rm;
10404 Rn = inst.operands[0].reg;
10405 Rm = inst.operands[1].reg;
10407 if (inst.instruction == T_MNEM_cmp
10408 || inst.instruction == T_MNEM_cmn)
10409 constraint (Rn == REG_PC, BAD_PC);
10410 else
10411 reject_bad_reg (Rn);
10412 reject_bad_reg (Rm);
10414 if (unified_syntax)
10416 int r0off = (inst.instruction == T_MNEM_mvn
10417 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10418 bfd_boolean narrow;
10420 if (inst.size_req == 4
10421 || inst.instruction > 0xffff
10422 || inst.operands[1].shifted
10423 || Rn > 7 || Rm > 7)
10424 narrow = FALSE;
10425 else if (inst.instruction == T_MNEM_cmn)
10426 narrow = TRUE;
10427 else if (THUMB_SETS_FLAGS (inst.instruction))
10428 narrow = !in_it_block ();
10429 else
10430 narrow = in_it_block ();
10432 if (!inst.operands[1].isreg)
10434 /* For an immediate, we always generate a 32-bit opcode;
10435 section relaxation will shrink it later if possible. */
10436 if (inst.instruction < 0xffff)
10437 inst.instruction = THUMB_OP32 (inst.instruction);
10438 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10439 inst.instruction |= Rn << r0off;
10440 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10442 else
10444 /* See if we can do this with a 16-bit instruction. */
10445 if (narrow)
10447 inst.instruction = THUMB_OP16 (inst.instruction);
10448 inst.instruction |= Rn;
10449 inst.instruction |= Rm << 3;
10451 else
10453 constraint (inst.operands[1].shifted
10454 && inst.operands[1].immisreg,
10455 _("shift must be constant"));
10456 if (inst.instruction < 0xffff)
10457 inst.instruction = THUMB_OP32 (inst.instruction);
10458 inst.instruction |= Rn << r0off;
10459 encode_thumb32_shifted_operand (1);
10463 else
10465 constraint (inst.instruction > 0xffff
10466 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10467 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10468 _("unshifted register required"));
10469 constraint (Rn > 7 || Rm > 7,
10470 BAD_HIREG);
10472 inst.instruction = THUMB_OP16 (inst.instruction);
10473 inst.instruction |= Rn;
10474 inst.instruction |= Rm << 3;
10478 static void
10479 do_t_mrs (void)
10481 unsigned Rd;
10482 int flags;
10484 if (do_vfp_nsyn_mrs () == SUCCESS)
10485 return;
10487 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10488 if (flags == 0)
10490 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10491 _("selected processor does not support "
10492 "requested special purpose register"));
10494 else
10496 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10497 _("selected processor does not support "
10498 "requested special purpose register"));
10499 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10500 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10501 _("'CPSR' or 'SPSR' expected"));
10504 Rd = inst.operands[0].reg;
10505 reject_bad_reg (Rd);
10507 inst.instruction |= Rd << 8;
10508 inst.instruction |= (flags & SPSR_BIT) >> 2;
10509 inst.instruction |= inst.operands[1].imm & 0xff;
10512 static void
10513 do_t_msr (void)
10515 int flags;
10516 unsigned Rn;
10518 if (do_vfp_nsyn_msr () == SUCCESS)
10519 return;
10521 constraint (!inst.operands[1].isreg,
10522 _("Thumb encoding does not support an immediate here"));
10523 flags = inst.operands[0].imm;
10524 if (flags & ~0xff)
10526 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10527 _("selected processor does not support "
10528 "requested special purpose register"));
10530 else
10532 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10533 _("selected processor does not support "
10534 "requested special purpose register"));
10535 flags |= PSR_f;
10538 Rn = inst.operands[1].reg;
10539 reject_bad_reg (Rn);
10541 inst.instruction |= (flags & SPSR_BIT) >> 2;
10542 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10543 inst.instruction |= (flags & 0xff);
10544 inst.instruction |= Rn << 16;
10547 static void
10548 do_t_mul (void)
10550 bfd_boolean narrow;
10551 unsigned Rd, Rn, Rm;
10553 if (!inst.operands[2].present)
10554 inst.operands[2].reg = inst.operands[0].reg;
10556 Rd = inst.operands[0].reg;
10557 Rn = inst.operands[1].reg;
10558 Rm = inst.operands[2].reg;
10560 if (unified_syntax)
10562 if (inst.size_req == 4
10563 || (Rd != Rn
10564 && Rd != Rm)
10565 || Rn > 7
10566 || Rm > 7)
10567 narrow = FALSE;
10568 else if (inst.instruction == T_MNEM_muls)
10569 narrow = !in_it_block ();
10570 else
10571 narrow = in_it_block ();
10573 else
10575 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10576 constraint (Rn > 7 || Rm > 7,
10577 BAD_HIREG);
10578 narrow = TRUE;
10581 if (narrow)
10583 /* 16-bit MULS/Conditional MUL. */
10584 inst.instruction = THUMB_OP16 (inst.instruction);
10585 inst.instruction |= Rd;
10587 if (Rd == Rn)
10588 inst.instruction |= Rm << 3;
10589 else if (Rd == Rm)
10590 inst.instruction |= Rn << 3;
10591 else
10592 constraint (1, _("dest must overlap one source register"));
10594 else
10596 constraint (inst.instruction != T_MNEM_mul,
10597 _("Thumb-2 MUL must not set flags"));
10598 /* 32-bit MUL. */
10599 inst.instruction = THUMB_OP32 (inst.instruction);
10600 inst.instruction |= Rd << 8;
10601 inst.instruction |= Rn << 16;
10602 inst.instruction |= Rm << 0;
10604 reject_bad_reg (Rd);
10605 reject_bad_reg (Rn);
10606 reject_bad_reg (Rm);
10610 static void
10611 do_t_mull (void)
10613 unsigned RdLo, RdHi, Rn, Rm;
10615 RdLo = inst.operands[0].reg;
10616 RdHi = inst.operands[1].reg;
10617 Rn = inst.operands[2].reg;
10618 Rm = inst.operands[3].reg;
10620 reject_bad_reg (RdLo);
10621 reject_bad_reg (RdHi);
10622 reject_bad_reg (Rn);
10623 reject_bad_reg (Rm);
10625 inst.instruction |= RdLo << 12;
10626 inst.instruction |= RdHi << 8;
10627 inst.instruction |= Rn << 16;
10628 inst.instruction |= Rm;
10630 if (RdLo == RdHi)
10631 as_tsktsk (_("rdhi and rdlo must be different"));
10634 static void
10635 do_t_nop (void)
10637 set_it_insn_type (NEUTRAL_IT_INSN);
10639 if (unified_syntax)
10641 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10643 inst.instruction = THUMB_OP32 (inst.instruction);
10644 inst.instruction |= inst.operands[0].imm;
10646 else
10648 /* PR9722: Check for Thumb2 availability before
10649 generating a thumb2 nop instruction. */
10650 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10652 inst.instruction = THUMB_OP16 (inst.instruction);
10653 inst.instruction |= inst.operands[0].imm << 4;
10655 else
10656 inst.instruction = 0x46c0;
10659 else
10661 constraint (inst.operands[0].present,
10662 _("Thumb does not support NOP with hints"));
10663 inst.instruction = 0x46c0;
10667 static void
10668 do_t_neg (void)
10670 if (unified_syntax)
10672 bfd_boolean narrow;
10674 if (THUMB_SETS_FLAGS (inst.instruction))
10675 narrow = !in_it_block ();
10676 else
10677 narrow = in_it_block ();
10678 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10679 narrow = FALSE;
10680 if (inst.size_req == 4)
10681 narrow = FALSE;
10683 if (!narrow)
10685 inst.instruction = THUMB_OP32 (inst.instruction);
10686 inst.instruction |= inst.operands[0].reg << 8;
10687 inst.instruction |= inst.operands[1].reg << 16;
10689 else
10691 inst.instruction = THUMB_OP16 (inst.instruction);
10692 inst.instruction |= inst.operands[0].reg;
10693 inst.instruction |= inst.operands[1].reg << 3;
10696 else
10698 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10699 BAD_HIREG);
10700 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10702 inst.instruction = THUMB_OP16 (inst.instruction);
10703 inst.instruction |= inst.operands[0].reg;
10704 inst.instruction |= inst.operands[1].reg << 3;
10708 static void
10709 do_t_orn (void)
10711 unsigned Rd, Rn;
10713 Rd = inst.operands[0].reg;
10714 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10716 reject_bad_reg (Rd);
10717 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10718 reject_bad_reg (Rn);
10720 inst.instruction |= Rd << 8;
10721 inst.instruction |= Rn << 16;
10723 if (!inst.operands[2].isreg)
10725 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10726 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10728 else
10730 unsigned Rm;
10732 Rm = inst.operands[2].reg;
10733 reject_bad_reg (Rm);
10735 constraint (inst.operands[2].shifted
10736 && inst.operands[2].immisreg,
10737 _("shift must be constant"));
10738 encode_thumb32_shifted_operand (2);
10742 static void
10743 do_t_pkhbt (void)
10745 unsigned Rd, Rn, Rm;
10747 Rd = inst.operands[0].reg;
10748 Rn = inst.operands[1].reg;
10749 Rm = inst.operands[2].reg;
10751 reject_bad_reg (Rd);
10752 reject_bad_reg (Rn);
10753 reject_bad_reg (Rm);
10755 inst.instruction |= Rd << 8;
10756 inst.instruction |= Rn << 16;
10757 inst.instruction |= Rm;
10758 if (inst.operands[3].present)
10760 unsigned int val = inst.reloc.exp.X_add_number;
10761 constraint (inst.reloc.exp.X_op != O_constant,
10762 _("expression too complex"));
10763 inst.instruction |= (val & 0x1c) << 10;
10764 inst.instruction |= (val & 0x03) << 6;
10768 static void
10769 do_t_pkhtb (void)
10771 if (!inst.operands[3].present)
10773 unsigned Rtmp;
10775 inst.instruction &= ~0x00000020;
10777 /* PR 10168. Swap the Rm and Rn registers. */
10778 Rtmp = inst.operands[1].reg;
10779 inst.operands[1].reg = inst.operands[2].reg;
10780 inst.operands[2].reg = Rtmp;
10782 do_t_pkhbt ();
10785 static void
10786 do_t_pld (void)
10788 if (inst.operands[0].immisreg)
10789 reject_bad_reg (inst.operands[0].imm);
10791 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 static void
10795 do_t_push_pop (void)
10797 unsigned mask;
10799 constraint (inst.operands[0].writeback,
10800 _("push/pop do not support {reglist}^"));
10801 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10802 _("expression too complex"));
10804 mask = inst.operands[0].imm;
10805 if ((mask & ~0xff) == 0)
10806 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10807 else if ((inst.instruction == T_MNEM_push
10808 && (mask & ~0xff) == 1 << REG_LR)
10809 || (inst.instruction == T_MNEM_pop
10810 && (mask & ~0xff) == 1 << REG_PC))
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 inst.instruction |= THUMB_PP_PC_LR;
10814 inst.instruction |= mask & 0xff;
10816 else if (unified_syntax)
10818 inst.instruction = THUMB_OP32 (inst.instruction);
10819 encode_thumb2_ldmstm (13, mask, TRUE);
10821 else
10823 inst.error = _("invalid register list to push/pop instruction");
10824 return;
10828 static void
10829 do_t_rbit (void)
10831 unsigned Rd, Rm;
10833 Rd = inst.operands[0].reg;
10834 Rm = inst.operands[1].reg;
10836 reject_bad_reg (Rd);
10837 reject_bad_reg (Rm);
10839 inst.instruction |= Rd << 8;
10840 inst.instruction |= Rm << 16;
10841 inst.instruction |= Rm;
10844 static void
10845 do_t_rev (void)
10847 unsigned Rd, Rm;
10849 Rd = inst.operands[0].reg;
10850 Rm = inst.operands[1].reg;
10852 reject_bad_reg (Rd);
10853 reject_bad_reg (Rm);
10855 if (Rd <= 7 && Rm <= 7
10856 && inst.size_req != 4)
10858 inst.instruction = THUMB_OP16 (inst.instruction);
10859 inst.instruction |= Rd;
10860 inst.instruction |= Rm << 3;
10862 else if (unified_syntax)
10864 inst.instruction = THUMB_OP32 (inst.instruction);
10865 inst.instruction |= Rd << 8;
10866 inst.instruction |= Rm << 16;
10867 inst.instruction |= Rm;
10869 else
10870 inst.error = BAD_HIREG;
10873 static void
10874 do_t_rrx (void)
10876 unsigned Rd, Rm;
10878 Rd = inst.operands[0].reg;
10879 Rm = inst.operands[1].reg;
10881 reject_bad_reg (Rd);
10882 reject_bad_reg (Rm);
10884 inst.instruction |= Rd << 8;
10885 inst.instruction |= Rm;
10888 static void
10889 do_t_rsb (void)
10891 unsigned Rd, Rs;
10893 Rd = inst.operands[0].reg;
10894 Rs = (inst.operands[1].present
10895 ? inst.operands[1].reg /* Rd, Rs, foo */
10896 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10898 reject_bad_reg (Rd);
10899 reject_bad_reg (Rs);
10900 if (inst.operands[2].isreg)
10901 reject_bad_reg (inst.operands[2].reg);
10903 inst.instruction |= Rd << 8;
10904 inst.instruction |= Rs << 16;
10905 if (!inst.operands[2].isreg)
10907 bfd_boolean narrow;
10909 if ((inst.instruction & 0x00100000) != 0)
10910 narrow = !in_it_block ();
10911 else
10912 narrow = in_it_block ();
10914 if (Rd > 7 || Rs > 7)
10915 narrow = FALSE;
10917 if (inst.size_req == 4 || !unified_syntax)
10918 narrow = FALSE;
10920 if (inst.reloc.exp.X_op != O_constant
10921 || inst.reloc.exp.X_add_number != 0)
10922 narrow = FALSE;
10924 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10925 relaxation, but it doesn't seem worth the hassle. */
10926 if (narrow)
10928 inst.reloc.type = BFD_RELOC_UNUSED;
10929 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10930 inst.instruction |= Rs << 3;
10931 inst.instruction |= Rd;
10933 else
10935 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10936 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10939 else
10940 encode_thumb32_shifted_operand (2);
10943 static void
10944 do_t_setend (void)
10946 set_it_insn_type (OUTSIDE_IT_INSN);
10947 if (inst.operands[0].imm)
10948 inst.instruction |= 0x8;
10951 static void
10952 do_t_shift (void)
10954 if (!inst.operands[1].present)
10955 inst.operands[1].reg = inst.operands[0].reg;
10957 if (unified_syntax)
10959 bfd_boolean narrow;
10960 int shift_kind;
10962 switch (inst.instruction)
10964 case T_MNEM_asr:
10965 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10966 case T_MNEM_lsl:
10967 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10968 case T_MNEM_lsr:
10969 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10970 case T_MNEM_ror:
10971 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10972 default: abort ();
10975 if (THUMB_SETS_FLAGS (inst.instruction))
10976 narrow = !in_it_block ();
10977 else
10978 narrow = in_it_block ();
10979 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10980 narrow = FALSE;
10981 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10982 narrow = FALSE;
10983 if (inst.operands[2].isreg
10984 && (inst.operands[1].reg != inst.operands[0].reg
10985 || inst.operands[2].reg > 7))
10986 narrow = FALSE;
10987 if (inst.size_req == 4)
10988 narrow = FALSE;
10990 reject_bad_reg (inst.operands[0].reg);
10991 reject_bad_reg (inst.operands[1].reg);
10993 if (!narrow)
10995 if (inst.operands[2].isreg)
10997 reject_bad_reg (inst.operands[2].reg);
10998 inst.instruction = THUMB_OP32 (inst.instruction);
10999 inst.instruction |= inst.operands[0].reg << 8;
11000 inst.instruction |= inst.operands[1].reg << 16;
11001 inst.instruction |= inst.operands[2].reg;
11003 else
11005 inst.operands[1].shifted = 1;
11006 inst.operands[1].shift_kind = shift_kind;
11007 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11008 ? T_MNEM_movs : T_MNEM_mov);
11009 inst.instruction |= inst.operands[0].reg << 8;
11010 encode_thumb32_shifted_operand (1);
11011 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11012 inst.reloc.type = BFD_RELOC_UNUSED;
11015 else
11017 if (inst.operands[2].isreg)
11019 switch (shift_kind)
11021 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11022 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11023 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11024 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11025 default: abort ();
11028 inst.instruction |= inst.operands[0].reg;
11029 inst.instruction |= inst.operands[2].reg << 3;
11031 else
11033 switch (shift_kind)
11035 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11036 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11037 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11038 default: abort ();
11040 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11041 inst.instruction |= inst.operands[0].reg;
11042 inst.instruction |= inst.operands[1].reg << 3;
11046 else
11048 constraint (inst.operands[0].reg > 7
11049 || inst.operands[1].reg > 7, BAD_HIREG);
11050 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11052 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11054 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11055 constraint (inst.operands[0].reg != inst.operands[1].reg,
11056 _("source1 and dest must be same register"));
11058 switch (inst.instruction)
11060 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11061 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11062 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11063 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11064 default: abort ();
11067 inst.instruction |= inst.operands[0].reg;
11068 inst.instruction |= inst.operands[2].reg << 3;
11070 else
11072 switch (inst.instruction)
11074 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11075 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11076 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11077 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11078 default: abort ();
11080 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11081 inst.instruction |= inst.operands[0].reg;
11082 inst.instruction |= inst.operands[1].reg << 3;
11087 static void
11088 do_t_simd (void)
11090 unsigned Rd, Rn, Rm;
11092 Rd = inst.operands[0].reg;
11093 Rn = inst.operands[1].reg;
11094 Rm = inst.operands[2].reg;
11096 reject_bad_reg (Rd);
11097 reject_bad_reg (Rn);
11098 reject_bad_reg (Rm);
11100 inst.instruction |= Rd << 8;
11101 inst.instruction |= Rn << 16;
11102 inst.instruction |= Rm;
11105 static void
11106 do_t_simd2 (void)
11108 unsigned Rd, Rn, Rm;
11110 Rd = inst.operands[0].reg;
11111 Rm = inst.operands[1].reg;
11112 Rn = inst.operands[2].reg;
11114 reject_bad_reg (Rd);
11115 reject_bad_reg (Rn);
11116 reject_bad_reg (Rm);
11118 inst.instruction |= Rd << 8;
11119 inst.instruction |= Rn << 16;
11120 inst.instruction |= Rm;
11123 static void
11124 do_t_smc (void)
11126 unsigned int value = inst.reloc.exp.X_add_number;
11127 constraint (inst.reloc.exp.X_op != O_constant,
11128 _("expression too complex"));
11129 inst.reloc.type = BFD_RELOC_UNUSED;
11130 inst.instruction |= (value & 0xf000) >> 12;
11131 inst.instruction |= (value & 0x0ff0);
11132 inst.instruction |= (value & 0x000f) << 16;
11135 static void
11136 do_t_ssat_usat (int bias)
11138 unsigned Rd, Rn;
11140 Rd = inst.operands[0].reg;
11141 Rn = inst.operands[2].reg;
11143 reject_bad_reg (Rd);
11144 reject_bad_reg (Rn);
11146 inst.instruction |= Rd << 8;
11147 inst.instruction |= inst.operands[1].imm - bias;
11148 inst.instruction |= Rn << 16;
11150 if (inst.operands[3].present)
11152 offsetT shift_amount = inst.reloc.exp.X_add_number;
11154 inst.reloc.type = BFD_RELOC_UNUSED;
11156 constraint (inst.reloc.exp.X_op != O_constant,
11157 _("expression too complex"));
11159 if (shift_amount != 0)
11161 constraint (shift_amount > 31,
11162 _("shift expression is too large"));
11164 if (inst.operands[3].shift_kind == SHIFT_ASR)
11165 inst.instruction |= 0x00200000; /* sh bit. */
11167 inst.instruction |= (shift_amount & 0x1c) << 10;
11168 inst.instruction |= (shift_amount & 0x03) << 6;
11173 static void
11174 do_t_ssat (void)
11176 do_t_ssat_usat (1);
11179 static void
11180 do_t_ssat16 (void)
11182 unsigned Rd, Rn;
11184 Rd = inst.operands[0].reg;
11185 Rn = inst.operands[2].reg;
11187 reject_bad_reg (Rd);
11188 reject_bad_reg (Rn);
11190 inst.instruction |= Rd << 8;
11191 inst.instruction |= inst.operands[1].imm - 1;
11192 inst.instruction |= Rn << 16;
11195 static void
11196 do_t_strex (void)
11198 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11199 || inst.operands[2].postind || inst.operands[2].writeback
11200 || inst.operands[2].immisreg || inst.operands[2].shifted
11201 || inst.operands[2].negative,
11202 BAD_ADDR_MODE);
11204 inst.instruction |= inst.operands[0].reg << 8;
11205 inst.instruction |= inst.operands[1].reg << 12;
11206 inst.instruction |= inst.operands[2].reg << 16;
11207 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11210 static void
11211 do_t_strexd (void)
11213 if (!inst.operands[2].present)
11214 inst.operands[2].reg = inst.operands[1].reg + 1;
11216 constraint (inst.operands[0].reg == inst.operands[1].reg
11217 || inst.operands[0].reg == inst.operands[2].reg
11218 || inst.operands[0].reg == inst.operands[3].reg
11219 || inst.operands[1].reg == inst.operands[2].reg,
11220 BAD_OVERLAP);
11222 inst.instruction |= inst.operands[0].reg;
11223 inst.instruction |= inst.operands[1].reg << 12;
11224 inst.instruction |= inst.operands[2].reg << 8;
11225 inst.instruction |= inst.operands[3].reg << 16;
11228 static void
11229 do_t_sxtah (void)
11231 unsigned Rd, Rn, Rm;
11233 Rd = inst.operands[0].reg;
11234 Rn = inst.operands[1].reg;
11235 Rm = inst.operands[2].reg;
11237 reject_bad_reg (Rd);
11238 reject_bad_reg (Rn);
11239 reject_bad_reg (Rm);
11241 inst.instruction |= Rd << 8;
11242 inst.instruction |= Rn << 16;
11243 inst.instruction |= Rm;
11244 inst.instruction |= inst.operands[3].imm << 4;
11247 static void
11248 do_t_sxth (void)
11250 unsigned Rd, Rm;
11252 Rd = inst.operands[0].reg;
11253 Rm = inst.operands[1].reg;
11255 reject_bad_reg (Rd);
11256 reject_bad_reg (Rm);
11258 if (inst.instruction <= 0xffff
11259 && inst.size_req != 4
11260 && Rd <= 7 && Rm <= 7
11261 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11263 inst.instruction = THUMB_OP16 (inst.instruction);
11264 inst.instruction |= Rd;
11265 inst.instruction |= Rm << 3;
11267 else if (unified_syntax)
11269 if (inst.instruction <= 0xffff)
11270 inst.instruction = THUMB_OP32 (inst.instruction);
11271 inst.instruction |= Rd << 8;
11272 inst.instruction |= Rm;
11273 inst.instruction |= inst.operands[2].imm << 4;
11275 else
11277 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11278 _("Thumb encoding does not support rotation"));
11279 constraint (1, BAD_HIREG);
11283 static void
11284 do_t_swi (void)
11286 inst.reloc.type = BFD_RELOC_ARM_SWI;
11289 static void
11290 do_t_tb (void)
11292 unsigned Rn, Rm;
11293 int half;
11295 half = (inst.instruction & 0x10) != 0;
11296 set_it_insn_type_last ();
11297 constraint (inst.operands[0].immisreg,
11298 _("instruction requires register index"));
11300 Rn = inst.operands[0].reg;
11301 Rm = inst.operands[0].imm;
11303 constraint (Rn == REG_SP, BAD_SP);
11304 reject_bad_reg (Rm);
11306 constraint (!half && inst.operands[0].shifted,
11307 _("instruction does not allow shifted index"));
11308 inst.instruction |= (Rn << 16) | Rm;
11311 static void
11312 do_t_usat (void)
11314 do_t_ssat_usat (0);
11317 static void
11318 do_t_usat16 (void)
11320 unsigned Rd, Rn;
11322 Rd = inst.operands[0].reg;
11323 Rn = inst.operands[2].reg;
11325 reject_bad_reg (Rd);
11326 reject_bad_reg (Rn);
11328 inst.instruction |= Rd << 8;
11329 inst.instruction |= inst.operands[1].imm;
11330 inst.instruction |= Rn << 16;
11333 /* Neon instruction encoder helpers. */
11335 /* Encodings for the different types for various Neon opcodes. */
11337 /* An "invalid" code for the following tables. */
11338 #define N_INV -1u
11340 struct neon_tab_entry
11342 unsigned integer;
11343 unsigned float_or_poly;
11344 unsigned scalar_or_imm;
11347 /* Map overloaded Neon opcodes to their respective encodings. */
11348 #define NEON_ENC_TAB \
11349 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11350 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11351 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11352 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11353 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11354 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11355 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11356 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11357 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11358 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11359 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11360 /* Register variants of the following two instructions are encoded as
11361 vcge / vcgt with the operands reversed. */ \
11362 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11363 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11364 X(vfma, N_INV, 0x0000c10, N_INV), \
11365 X(vfms, N_INV, 0x0200c10, N_INV), \
11366 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11367 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11368 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11369 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11370 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11371 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11372 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11373 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11374 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11375 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11376 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11377 X(vshl, 0x0000400, N_INV, 0x0800510), \
11378 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11379 X(vand, 0x0000110, N_INV, 0x0800030), \
11380 X(vbic, 0x0100110, N_INV, 0x0800030), \
11381 X(veor, 0x1000110, N_INV, N_INV), \
11382 X(vorn, 0x0300110, N_INV, 0x0800010), \
11383 X(vorr, 0x0200110, N_INV, 0x0800010), \
11384 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11385 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11386 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11387 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11388 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11389 X(vst1, 0x0000000, 0x0800000, N_INV), \
11390 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11391 X(vst2, 0x0000100, 0x0800100, N_INV), \
11392 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11393 X(vst3, 0x0000200, 0x0800200, N_INV), \
11394 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11395 X(vst4, 0x0000300, 0x0800300, N_INV), \
11396 X(vmovn, 0x1b20200, N_INV, N_INV), \
11397 X(vtrn, 0x1b20080, N_INV, N_INV), \
11398 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11399 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11400 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11401 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11402 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11403 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11404 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11405 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11406 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11407 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11408 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11410 enum neon_opc
11412 #define X(OPC,I,F,S) N_MNEM_##OPC
11413 NEON_ENC_TAB
11414 #undef X
11417 static const struct neon_tab_entry neon_enc_tab[] =
11419 #define X(OPC,I,F,S) { (I), (F), (S) }
11420 NEON_ENC_TAB
11421 #undef X
11424 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11425 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11426 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11427 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11428 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11429 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11430 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11431 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11432 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11433 #define NEON_ENC_SINGLE(X) \
11434 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11435 #define NEON_ENC_DOUBLE(X) \
11436 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11438 /* Define shapes for instruction operands. The following mnemonic characters
11439 are used in this table:
11441 F - VFP S<n> register
11442 D - Neon D<n> register
11443 Q - Neon Q<n> register
11444 I - Immediate
11445 S - Scalar
11446 R - ARM register
11447 L - D<n> register list
11449 This table is used to generate various data:
11450 - enumerations of the form NS_DDR to be used as arguments to
11451 neon_select_shape.
11452 - a table classifying shapes into single, double, quad, mixed.
11453 - a table used to drive neon_select_shape. */
11455 #define NEON_SHAPE_DEF \
11456 X(3, (D, D, D), DOUBLE), \
11457 X(3, (Q, Q, Q), QUAD), \
11458 X(3, (D, D, I), DOUBLE), \
11459 X(3, (Q, Q, I), QUAD), \
11460 X(3, (D, D, S), DOUBLE), \
11461 X(3, (Q, Q, S), QUAD), \
11462 X(2, (D, D), DOUBLE), \
11463 X(2, (Q, Q), QUAD), \
11464 X(2, (D, S), DOUBLE), \
11465 X(2, (Q, S), QUAD), \
11466 X(2, (D, R), DOUBLE), \
11467 X(2, (Q, R), QUAD), \
11468 X(2, (D, I), DOUBLE), \
11469 X(2, (Q, I), QUAD), \
11470 X(3, (D, L, D), DOUBLE), \
11471 X(2, (D, Q), MIXED), \
11472 X(2, (Q, D), MIXED), \
11473 X(3, (D, Q, I), MIXED), \
11474 X(3, (Q, D, I), MIXED), \
11475 X(3, (Q, D, D), MIXED), \
11476 X(3, (D, Q, Q), MIXED), \
11477 X(3, (Q, Q, D), MIXED), \
11478 X(3, (Q, D, S), MIXED), \
11479 X(3, (D, Q, S), MIXED), \
11480 X(4, (D, D, D, I), DOUBLE), \
11481 X(4, (Q, Q, Q, I), QUAD), \
11482 X(2, (F, F), SINGLE), \
11483 X(3, (F, F, F), SINGLE), \
11484 X(2, (F, I), SINGLE), \
11485 X(2, (F, D), MIXED), \
11486 X(2, (D, F), MIXED), \
11487 X(3, (F, F, I), MIXED), \
11488 X(4, (R, R, F, F), SINGLE), \
11489 X(4, (F, F, R, R), SINGLE), \
11490 X(3, (D, R, R), DOUBLE), \
11491 X(3, (R, R, D), DOUBLE), \
11492 X(2, (S, R), SINGLE), \
11493 X(2, (R, S), SINGLE), \
11494 X(2, (F, R), SINGLE), \
11495 X(2, (R, F), SINGLE)
11497 #define S2(A,B) NS_##A##B
11498 #define S3(A,B,C) NS_##A##B##C
11499 #define S4(A,B,C,D) NS_##A##B##C##D
11501 #define X(N, L, C) S##N L
11503 enum neon_shape
11505 NEON_SHAPE_DEF,
11506 NS_NULL
11509 #undef X
11510 #undef S2
11511 #undef S3
11512 #undef S4
11514 enum neon_shape_class
11516 SC_SINGLE,
11517 SC_DOUBLE,
11518 SC_QUAD,
11519 SC_MIXED
11522 #define X(N, L, C) SC_##C
11524 static enum neon_shape_class neon_shape_class[] =
11526 NEON_SHAPE_DEF
11529 #undef X
11531 enum neon_shape_el
11533 SE_F,
11534 SE_D,
11535 SE_Q,
11536 SE_I,
11537 SE_S,
11538 SE_R,
11539 SE_L
11542 /* Register widths of above. */
11543 static unsigned neon_shape_el_size[] =
11547 128,
11554 struct neon_shape_info
11556 unsigned els;
11557 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11560 #define S2(A,B) { SE_##A, SE_##B }
11561 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11562 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11564 #define X(N, L, C) { N, S##N L }
11566 static struct neon_shape_info neon_shape_tab[] =
11568 NEON_SHAPE_DEF
11571 #undef X
11572 #undef S2
11573 #undef S3
11574 #undef S4
11576 /* Bit masks used in type checking given instructions.
11577 'N_EQK' means the type must be the same as (or based on in some way) the key
11578 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11579 set, various other bits can be set as well in order to modify the meaning of
11580 the type constraint. */
11582 enum neon_type_mask
11584 N_S8 = 0x0000001,
11585 N_S16 = 0x0000002,
11586 N_S32 = 0x0000004,
11587 N_S64 = 0x0000008,
11588 N_U8 = 0x0000010,
11589 N_U16 = 0x0000020,
11590 N_U32 = 0x0000040,
11591 N_U64 = 0x0000080,
11592 N_I8 = 0x0000100,
11593 N_I16 = 0x0000200,
11594 N_I32 = 0x0000400,
11595 N_I64 = 0x0000800,
11596 N_8 = 0x0001000,
11597 N_16 = 0x0002000,
11598 N_32 = 0x0004000,
11599 N_64 = 0x0008000,
11600 N_P8 = 0x0010000,
11601 N_P16 = 0x0020000,
11602 N_F16 = 0x0040000,
11603 N_F32 = 0x0080000,
11604 N_F64 = 0x0100000,
11605 N_KEY = 0x1000000, /* Key element (main type specifier). */
11606 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11607 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11608 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11609 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11610 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11611 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11612 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11613 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11614 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11615 N_UTYP = 0,
11616 N_MAX_NONSPECIAL = N_F64
11619 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11621 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11622 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11623 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11624 #define N_SUF_32 (N_SU_32 | N_F32)
11625 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11626 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11628 /* Pass this as the first type argument to neon_check_type to ignore types
11629 altogether. */
11630 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11632 /* Select a "shape" for the current instruction (describing register types or
11633 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11634 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11635 function of operand parsing, so this function doesn't need to be called.
11636 Shapes should be listed in order of decreasing length. */
11638 static enum neon_shape
11639 neon_select_shape (enum neon_shape shape, ...)
11641 va_list ap;
11642 enum neon_shape first_shape = shape;
11644 /* Fix missing optional operands. FIXME: we don't know at this point how
11645 many arguments we should have, so this makes the assumption that we have
11646 > 1. This is true of all current Neon opcodes, I think, but may not be
11647 true in the future. */
11648 if (!inst.operands[1].present)
11649 inst.operands[1] = inst.operands[0];
11651 va_start (ap, shape);
11653 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11655 unsigned j;
11656 int matches = 1;
11658 for (j = 0; j < neon_shape_tab[shape].els; j++)
11660 if (!inst.operands[j].present)
11662 matches = 0;
11663 break;
11666 switch (neon_shape_tab[shape].el[j])
11668 case SE_F:
11669 if (!(inst.operands[j].isreg
11670 && inst.operands[j].isvec
11671 && inst.operands[j].issingle
11672 && !inst.operands[j].isquad))
11673 matches = 0;
11674 break;
11676 case SE_D:
11677 if (!(inst.operands[j].isreg
11678 && inst.operands[j].isvec
11679 && !inst.operands[j].isquad
11680 && !inst.operands[j].issingle))
11681 matches = 0;
11682 break;
11684 case SE_R:
11685 if (!(inst.operands[j].isreg
11686 && !inst.operands[j].isvec))
11687 matches = 0;
11688 break;
11690 case SE_Q:
11691 if (!(inst.operands[j].isreg
11692 && inst.operands[j].isvec
11693 && inst.operands[j].isquad
11694 && !inst.operands[j].issingle))
11695 matches = 0;
11696 break;
11698 case SE_I:
11699 if (!(!inst.operands[j].isreg
11700 && !inst.operands[j].isscalar))
11701 matches = 0;
11702 break;
11704 case SE_S:
11705 if (!(!inst.operands[j].isreg
11706 && inst.operands[j].isscalar))
11707 matches = 0;
11708 break;
11710 case SE_L:
11711 break;
11714 if (matches)
11715 break;
11718 va_end (ap);
11720 if (shape == NS_NULL && first_shape != NS_NULL)
11721 first_error (_("invalid instruction shape"));
11723 return shape;
11726 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11727 means the Q bit should be set). */
11729 static int
11730 neon_quad (enum neon_shape shape)
11732 return neon_shape_class[shape] == SC_QUAD;
11735 static void
11736 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11737 unsigned *g_size)
11739 /* Allow modification to be made to types which are constrained to be
11740 based on the key element, based on bits set alongside N_EQK. */
11741 if ((typebits & N_EQK) != 0)
11743 if ((typebits & N_HLF) != 0)
11744 *g_size /= 2;
11745 else if ((typebits & N_DBL) != 0)
11746 *g_size *= 2;
11747 if ((typebits & N_SGN) != 0)
11748 *g_type = NT_signed;
11749 else if ((typebits & N_UNS) != 0)
11750 *g_type = NT_unsigned;
11751 else if ((typebits & N_INT) != 0)
11752 *g_type = NT_integer;
11753 else if ((typebits & N_FLT) != 0)
11754 *g_type = NT_float;
11755 else if ((typebits & N_SIZ) != 0)
11756 *g_type = NT_untyped;
11760 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11761 operand type, i.e. the single type specified in a Neon instruction when it
11762 is the only one given. */
11764 static struct neon_type_el
11765 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11767 struct neon_type_el dest = *key;
11769 gas_assert ((thisarg & N_EQK) != 0);
11771 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11773 return dest;
11776 /* Convert Neon type and size into compact bitmask representation. */
11778 static enum neon_type_mask
11779 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11781 switch (type)
11783 case NT_untyped:
11784 switch (size)
11786 case 8: return N_8;
11787 case 16: return N_16;
11788 case 32: return N_32;
11789 case 64: return N_64;
11790 default: ;
11792 break;
11794 case NT_integer:
11795 switch (size)
11797 case 8: return N_I8;
11798 case 16: return N_I16;
11799 case 32: return N_I32;
11800 case 64: return N_I64;
11801 default: ;
11803 break;
11805 case NT_float:
11806 switch (size)
11808 case 16: return N_F16;
11809 case 32: return N_F32;
11810 case 64: return N_F64;
11811 default: ;
11813 break;
11815 case NT_poly:
11816 switch (size)
11818 case 8: return N_P8;
11819 case 16: return N_P16;
11820 default: ;
11822 break;
11824 case NT_signed:
11825 switch (size)
11827 case 8: return N_S8;
11828 case 16: return N_S16;
11829 case 32: return N_S32;
11830 case 64: return N_S64;
11831 default: ;
11833 break;
11835 case NT_unsigned:
11836 switch (size)
11838 case 8: return N_U8;
11839 case 16: return N_U16;
11840 case 32: return N_U32;
11841 case 64: return N_U64;
11842 default: ;
11844 break;
11846 default: ;
11849 return N_UTYP;
11852 /* Convert compact Neon bitmask type representation to a type and size. Only
11853 handles the case where a single bit is set in the mask. */
11855 static int
11856 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11857 enum neon_type_mask mask)
11859 if ((mask & N_EQK) != 0)
11860 return FAIL;
11862 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11863 *size = 8;
11864 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11865 *size = 16;
11866 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11867 *size = 32;
11868 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11869 *size = 64;
11870 else
11871 return FAIL;
11873 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11874 *type = NT_signed;
11875 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11876 *type = NT_unsigned;
11877 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11878 *type = NT_integer;
11879 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11880 *type = NT_untyped;
11881 else if ((mask & (N_P8 | N_P16)) != 0)
11882 *type = NT_poly;
11883 else if ((mask & (N_F32 | N_F64)) != 0)
11884 *type = NT_float;
11885 else
11886 return FAIL;
11888 return SUCCESS;
11891 /* Modify a bitmask of allowed types. This is only needed for type
11892 relaxation. */
11894 static unsigned
11895 modify_types_allowed (unsigned allowed, unsigned mods)
11897 unsigned size;
11898 enum neon_el_type type;
11899 unsigned destmask;
11900 int i;
11902 destmask = 0;
11904 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11906 if (el_type_of_type_chk (&type, &size,
11907 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11909 neon_modify_type_size (mods, &type, &size);
11910 destmask |= type_chk_of_el_type (type, size);
11914 return destmask;
11917 /* Check type and return type classification.
11918 The manual states (paraphrase): If one datatype is given, it indicates the
11919 type given in:
11920 - the second operand, if there is one
11921 - the operand, if there is no second operand
11922 - the result, if there are no operands.
11923 This isn't quite good enough though, so we use a concept of a "key" datatype
11924 which is set on a per-instruction basis, which is the one which matters when
11925 only one data type is written.
11926 Note: this function has side-effects (e.g. filling in missing operands). All
11927 Neon instructions should call it before performing bit encoding. */
11929 static struct neon_type_el
11930 neon_check_type (unsigned els, enum neon_shape ns, ...)
11932 va_list ap;
11933 unsigned i, pass, key_el = 0;
11934 unsigned types[NEON_MAX_TYPE_ELS];
11935 enum neon_el_type k_type = NT_invtype;
11936 unsigned k_size = -1u;
11937 struct neon_type_el badtype = {NT_invtype, -1};
11938 unsigned key_allowed = 0;
11940 /* Optional registers in Neon instructions are always (not) in operand 1.
11941 Fill in the missing operand here, if it was omitted. */
11942 if (els > 1 && !inst.operands[1].present)
11943 inst.operands[1] = inst.operands[0];
11945 /* Suck up all the varargs. */
11946 va_start (ap, ns);
11947 for (i = 0; i < els; i++)
11949 unsigned thisarg = va_arg (ap, unsigned);
11950 if (thisarg == N_IGNORE_TYPE)
11952 va_end (ap);
11953 return badtype;
11955 types[i] = thisarg;
11956 if ((thisarg & N_KEY) != 0)
11957 key_el = i;
11959 va_end (ap);
11961 if (inst.vectype.elems > 0)
11962 for (i = 0; i < els; i++)
11963 if (inst.operands[i].vectype.type != NT_invtype)
11965 first_error (_("types specified in both the mnemonic and operands"));
11966 return badtype;
11969 /* Duplicate inst.vectype elements here as necessary.
11970 FIXME: No idea if this is exactly the same as the ARM assembler,
11971 particularly when an insn takes one register and one non-register
11972 operand. */
11973 if (inst.vectype.elems == 1 && els > 1)
11975 unsigned j;
11976 inst.vectype.elems = els;
11977 inst.vectype.el[key_el] = inst.vectype.el[0];
11978 for (j = 0; j < els; j++)
11979 if (j != key_el)
11980 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11981 types[j]);
11983 else if (inst.vectype.elems == 0 && els > 0)
11985 unsigned j;
11986 /* No types were given after the mnemonic, so look for types specified
11987 after each operand. We allow some flexibility here; as long as the
11988 "key" operand has a type, we can infer the others. */
11989 for (j = 0; j < els; j++)
11990 if (inst.operands[j].vectype.type != NT_invtype)
11991 inst.vectype.el[j] = inst.operands[j].vectype;
11993 if (inst.operands[key_el].vectype.type != NT_invtype)
11995 for (j = 0; j < els; j++)
11996 if (inst.operands[j].vectype.type == NT_invtype)
11997 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11998 types[j]);
12000 else
12002 first_error (_("operand types can't be inferred"));
12003 return badtype;
12006 else if (inst.vectype.elems != els)
12008 first_error (_("type specifier has the wrong number of parts"));
12009 return badtype;
12012 for (pass = 0; pass < 2; pass++)
12014 for (i = 0; i < els; i++)
12016 unsigned thisarg = types[i];
12017 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12018 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12019 enum neon_el_type g_type = inst.vectype.el[i].type;
12020 unsigned g_size = inst.vectype.el[i].size;
12022 /* Decay more-specific signed & unsigned types to sign-insensitive
12023 integer types if sign-specific variants are unavailable. */
12024 if ((g_type == NT_signed || g_type == NT_unsigned)
12025 && (types_allowed & N_SU_ALL) == 0)
12026 g_type = NT_integer;
12028 /* If only untyped args are allowed, decay any more specific types to
12029 them. Some instructions only care about signs for some element
12030 sizes, so handle that properly. */
12031 if ((g_size == 8 && (types_allowed & N_8) != 0)
12032 || (g_size == 16 && (types_allowed & N_16) != 0)
12033 || (g_size == 32 && (types_allowed & N_32) != 0)
12034 || (g_size == 64 && (types_allowed & N_64) != 0))
12035 g_type = NT_untyped;
12037 if (pass == 0)
12039 if ((thisarg & N_KEY) != 0)
12041 k_type = g_type;
12042 k_size = g_size;
12043 key_allowed = thisarg & ~N_KEY;
12046 else
12048 if ((thisarg & N_VFP) != 0)
12050 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
12051 unsigned regwidth = neon_shape_el_size[regshape], match;
12053 /* In VFP mode, operands must match register widths. If we
12054 have a key operand, use its width, else use the width of
12055 the current operand. */
12056 if (k_size != -1u)
12057 match = k_size;
12058 else
12059 match = g_size;
12061 if (regwidth != match)
12063 first_error (_("operand size must match register width"));
12064 return badtype;
12068 if ((thisarg & N_EQK) == 0)
12070 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12072 if ((given_type & types_allowed) == 0)
12074 first_error (_("bad type in Neon instruction"));
12075 return badtype;
12078 else
12080 enum neon_el_type mod_k_type = k_type;
12081 unsigned mod_k_size = k_size;
12082 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12083 if (g_type != mod_k_type || g_size != mod_k_size)
12085 first_error (_("inconsistent types in Neon instruction"));
12086 return badtype;
12093 return inst.vectype.el[key_el];
12096 /* Neon-style VFP instruction forwarding. */
12098 /* Thumb VFP instructions have 0xE in the condition field. */
12100 static void
12101 do_vfp_cond_or_thumb (void)
12103 if (thumb_mode)
12104 inst.instruction |= 0xe0000000;
12105 else
12106 inst.instruction |= inst.cond << 28;
12109 /* Look up and encode a simple mnemonic, for use as a helper function for the
12110 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12111 etc. It is assumed that operand parsing has already been done, and that the
12112 operands are in the form expected by the given opcode (this isn't necessarily
12113 the same as the form in which they were parsed, hence some massaging must
12114 take place before this function is called).
12115 Checks current arch version against that in the looked-up opcode. */
12117 static void
12118 do_vfp_nsyn_opcode (const char *opname)
12120 const struct asm_opcode *opcode;
12122 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12124 if (!opcode)
12125 abort ();
12127 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12128 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12129 _(BAD_FPU));
12131 if (thumb_mode)
12133 inst.instruction = opcode->tvalue;
12134 opcode->tencode ();
12136 else
12138 inst.instruction = (inst.cond << 28) | opcode->avalue;
12139 opcode->aencode ();
12143 static void
12144 do_vfp_nsyn_add_sub (enum neon_shape rs)
12146 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12148 if (rs == NS_FFF)
12150 if (is_add)
12151 do_vfp_nsyn_opcode ("fadds");
12152 else
12153 do_vfp_nsyn_opcode ("fsubs");
12155 else
12157 if (is_add)
12158 do_vfp_nsyn_opcode ("faddd");
12159 else
12160 do_vfp_nsyn_opcode ("fsubd");
12164 /* Check operand types to see if this is a VFP instruction, and if so call
12165 PFN (). */
12167 static int
12168 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12170 enum neon_shape rs;
12171 struct neon_type_el et;
12173 switch (args)
12175 case 2:
12176 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12177 et = neon_check_type (2, rs,
12178 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12179 break;
12181 case 3:
12182 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12183 et = neon_check_type (3, rs,
12184 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12185 break;
12187 default:
12188 abort ();
12191 if (et.type != NT_invtype)
12193 pfn (rs);
12194 return SUCCESS;
12196 else
12197 inst.error = NULL;
12199 return FAIL;
12202 static void
12203 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12205 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12207 if (rs == NS_FFF)
12209 if (is_mla)
12210 do_vfp_nsyn_opcode ("fmacs");
12211 else
12212 do_vfp_nsyn_opcode ("fnmacs");
12214 else
12216 if (is_mla)
12217 do_vfp_nsyn_opcode ("fmacd");
12218 else
12219 do_vfp_nsyn_opcode ("fnmacd");
12223 static void
12224 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12226 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12228 if (rs == NS_FFF)
12230 if (is_fma)
12231 do_vfp_nsyn_opcode ("ffmas");
12232 else
12233 do_vfp_nsyn_opcode ("ffnmas");
12235 else
12237 if (is_fma)
12238 do_vfp_nsyn_opcode ("ffmad");
12239 else
12240 do_vfp_nsyn_opcode ("ffnmad");
12244 static void
12245 do_vfp_nsyn_mul (enum neon_shape rs)
12247 if (rs == NS_FFF)
12248 do_vfp_nsyn_opcode ("fmuls");
12249 else
12250 do_vfp_nsyn_opcode ("fmuld");
12253 static void
12254 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12256 int is_neg = (inst.instruction & 0x80) != 0;
12257 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12259 if (rs == NS_FF)
12261 if (is_neg)
12262 do_vfp_nsyn_opcode ("fnegs");
12263 else
12264 do_vfp_nsyn_opcode ("fabss");
12266 else
12268 if (is_neg)
12269 do_vfp_nsyn_opcode ("fnegd");
12270 else
12271 do_vfp_nsyn_opcode ("fabsd");
12275 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12276 insns belong to Neon, and are handled elsewhere. */
12278 static void
12279 do_vfp_nsyn_ldm_stm (int is_dbmode)
12281 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12282 if (is_ldm)
12284 if (is_dbmode)
12285 do_vfp_nsyn_opcode ("fldmdbs");
12286 else
12287 do_vfp_nsyn_opcode ("fldmias");
12289 else
12291 if (is_dbmode)
12292 do_vfp_nsyn_opcode ("fstmdbs");
12293 else
12294 do_vfp_nsyn_opcode ("fstmias");
12298 static void
12299 do_vfp_nsyn_sqrt (void)
12301 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12302 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12304 if (rs == NS_FF)
12305 do_vfp_nsyn_opcode ("fsqrts");
12306 else
12307 do_vfp_nsyn_opcode ("fsqrtd");
12310 static void
12311 do_vfp_nsyn_div (void)
12313 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12314 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12315 N_F32 | N_F64 | N_KEY | N_VFP);
12317 if (rs == NS_FFF)
12318 do_vfp_nsyn_opcode ("fdivs");
12319 else
12320 do_vfp_nsyn_opcode ("fdivd");
12323 static void
12324 do_vfp_nsyn_nmul (void)
12326 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12327 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12328 N_F32 | N_F64 | N_KEY | N_VFP);
12330 if (rs == NS_FFF)
12332 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12333 do_vfp_sp_dyadic ();
12335 else
12337 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12338 do_vfp_dp_rd_rn_rm ();
12340 do_vfp_cond_or_thumb ();
12343 static void
12344 do_vfp_nsyn_cmp (void)
12346 if (inst.operands[1].isreg)
12348 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12349 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12351 if (rs == NS_FF)
12353 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12354 do_vfp_sp_monadic ();
12356 else
12358 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12359 do_vfp_dp_rd_rm ();
12362 else
12364 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12365 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12367 switch (inst.instruction & 0x0fffffff)
12369 case N_MNEM_vcmp:
12370 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12371 break;
12372 case N_MNEM_vcmpe:
12373 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12374 break;
12375 default:
12376 abort ();
12379 if (rs == NS_FI)
12381 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12382 do_vfp_sp_compare_z ();
12384 else
12386 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12387 do_vfp_dp_rd ();
12390 do_vfp_cond_or_thumb ();
12393 static void
12394 nsyn_insert_sp (void)
12396 inst.operands[1] = inst.operands[0];
12397 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12398 inst.operands[0].reg = REG_SP;
12399 inst.operands[0].isreg = 1;
12400 inst.operands[0].writeback = 1;
12401 inst.operands[0].present = 1;
12404 static void
12405 do_vfp_nsyn_push (void)
12407 nsyn_insert_sp ();
12408 if (inst.operands[1].issingle)
12409 do_vfp_nsyn_opcode ("fstmdbs");
12410 else
12411 do_vfp_nsyn_opcode ("fstmdbd");
12414 static void
12415 do_vfp_nsyn_pop (void)
12417 nsyn_insert_sp ();
12418 if (inst.operands[1].issingle)
12419 do_vfp_nsyn_opcode ("fldmias");
12420 else
12421 do_vfp_nsyn_opcode ("fldmiad");
12424 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12425 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12427 static unsigned
12428 neon_dp_fixup (unsigned i)
12430 if (thumb_mode)
12432 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12433 if (i & (1 << 24))
12434 i |= 1 << 28;
12436 i &= ~(1 << 24);
12438 i |= 0xef000000;
12440 else
12441 i |= 0xf2000000;
12443 return i;
12446 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12447 (0, 1, 2, 3). */
12449 static unsigned
12450 neon_logbits (unsigned x)
12452 return ffs (x) - 4;
12455 #define LOW4(R) ((R) & 0xf)
12456 #define HI1(R) (((R) >> 4) & 1)
12458 /* Encode insns with bit pattern:
12460 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12461 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12463 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12464 different meaning for some instruction. */
12466 static void
12467 neon_three_same (int isquad, int ubit, int size)
12469 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12470 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12471 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12472 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12473 inst.instruction |= LOW4 (inst.operands[2].reg);
12474 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12475 inst.instruction |= (isquad != 0) << 6;
12476 inst.instruction |= (ubit != 0) << 24;
12477 if (size != -1)
12478 inst.instruction |= neon_logbits (size) << 20;
12480 inst.instruction = neon_dp_fixup (inst.instruction);
12483 /* Encode instructions of the form:
12485 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12486 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12488 Don't write size if SIZE == -1. */
12490 static void
12491 neon_two_same (int qbit, int ubit, int size)
12493 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12494 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12495 inst.instruction |= LOW4 (inst.operands[1].reg);
12496 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12497 inst.instruction |= (qbit != 0) << 6;
12498 inst.instruction |= (ubit != 0) << 24;
12500 if (size != -1)
12501 inst.instruction |= neon_logbits (size) << 18;
12503 inst.instruction = neon_dp_fixup (inst.instruction);
12506 /* Neon instruction encoders, in approximate order of appearance. */
12508 static void
12509 do_neon_dyadic_i_su (void)
12511 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12512 struct neon_type_el et = neon_check_type (3, rs,
12513 N_EQK, N_EQK, N_SU_32 | N_KEY);
12514 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12517 static void
12518 do_neon_dyadic_i64_su (void)
12520 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12521 struct neon_type_el et = neon_check_type (3, rs,
12522 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12523 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12526 static void
12527 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12528 unsigned immbits)
12530 unsigned size = et.size >> 3;
12531 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12532 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12533 inst.instruction |= LOW4 (inst.operands[1].reg);
12534 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12535 inst.instruction |= (isquad != 0) << 6;
12536 inst.instruction |= immbits << 16;
12537 inst.instruction |= (size >> 3) << 7;
12538 inst.instruction |= (size & 0x7) << 19;
12539 if (write_ubit)
12540 inst.instruction |= (uval != 0) << 24;
12542 inst.instruction = neon_dp_fixup (inst.instruction);
12545 static void
12546 do_neon_shl_imm (void)
12548 if (!inst.operands[2].isreg)
12550 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12551 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12552 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12553 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12555 else
12557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12558 struct neon_type_el et = neon_check_type (3, rs,
12559 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12560 unsigned int tmp;
12562 /* VSHL/VQSHL 3-register variants have syntax such as:
12563 vshl.xx Dd, Dm, Dn
12564 whereas other 3-register operations encoded by neon_three_same have
12565 syntax like:
12566 vadd.xx Dd, Dn, Dm
12567 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12568 here. */
12569 tmp = inst.operands[2].reg;
12570 inst.operands[2].reg = inst.operands[1].reg;
12571 inst.operands[1].reg = tmp;
12572 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12573 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12577 static void
12578 do_neon_qshl_imm (void)
12580 if (!inst.operands[2].isreg)
12582 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12583 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12585 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12586 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12587 inst.operands[2].imm);
12589 else
12591 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12592 struct neon_type_el et = neon_check_type (3, rs,
12593 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12594 unsigned int tmp;
12596 /* See note in do_neon_shl_imm. */
12597 tmp = inst.operands[2].reg;
12598 inst.operands[2].reg = inst.operands[1].reg;
12599 inst.operands[1].reg = tmp;
12600 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12601 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12605 static void
12606 do_neon_rshl (void)
12608 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12609 struct neon_type_el et = neon_check_type (3, rs,
12610 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12611 unsigned int tmp;
12613 tmp = inst.operands[2].reg;
12614 inst.operands[2].reg = inst.operands[1].reg;
12615 inst.operands[1].reg = tmp;
12616 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12619 static int
12620 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12622 /* Handle .I8 pseudo-instructions. */
12623 if (size == 8)
12625 /* Unfortunately, this will make everything apart from zero out-of-range.
12626 FIXME is this the intended semantics? There doesn't seem much point in
12627 accepting .I8 if so. */
12628 immediate |= immediate << 8;
12629 size = 16;
12632 if (size >= 32)
12634 if (immediate == (immediate & 0x000000ff))
12636 *immbits = immediate;
12637 return 0x1;
12639 else if (immediate == (immediate & 0x0000ff00))
12641 *immbits = immediate >> 8;
12642 return 0x3;
12644 else if (immediate == (immediate & 0x00ff0000))
12646 *immbits = immediate >> 16;
12647 return 0x5;
12649 else if (immediate == (immediate & 0xff000000))
12651 *immbits = immediate >> 24;
12652 return 0x7;
12654 if ((immediate & 0xffff) != (immediate >> 16))
12655 goto bad_immediate;
12656 immediate &= 0xffff;
12659 if (immediate == (immediate & 0x000000ff))
12661 *immbits = immediate;
12662 return 0x9;
12664 else if (immediate == (immediate & 0x0000ff00))
12666 *immbits = immediate >> 8;
12667 return 0xb;
12670 bad_immediate:
12671 first_error (_("immediate value out of range"));
12672 return FAIL;
12675 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12676 A, B, C, D. */
12678 static int
12679 neon_bits_same_in_bytes (unsigned imm)
12681 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12682 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12683 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12684 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12687 /* For immediate of above form, return 0bABCD. */
12689 static unsigned
12690 neon_squash_bits (unsigned imm)
12692 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12693 | ((imm & 0x01000000) >> 21);
12696 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12698 static unsigned
12699 neon_qfloat_bits (unsigned imm)
12701 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12704 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12705 the instruction. *OP is passed as the initial value of the op field, and
12706 may be set to a different value depending on the constant (i.e.
12707 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12708 MVN). If the immediate looks like a repeated pattern then also
12709 try smaller element sizes. */
12711 static int
12712 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12713 unsigned *immbits, int *op, int size,
12714 enum neon_el_type type)
12716 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12717 float. */
12718 if (type == NT_float && !float_p)
12719 return FAIL;
12721 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12723 if (size != 32 || *op == 1)
12724 return FAIL;
12725 *immbits = neon_qfloat_bits (immlo);
12726 return 0xf;
12729 if (size == 64)
12731 if (neon_bits_same_in_bytes (immhi)
12732 && neon_bits_same_in_bytes (immlo))
12734 if (*op == 1)
12735 return FAIL;
12736 *immbits = (neon_squash_bits (immhi) << 4)
12737 | neon_squash_bits (immlo);
12738 *op = 1;
12739 return 0xe;
12742 if (immhi != immlo)
12743 return FAIL;
12746 if (size >= 32)
12748 if (immlo == (immlo & 0x000000ff))
12750 *immbits = immlo;
12751 return 0x0;
12753 else if (immlo == (immlo & 0x0000ff00))
12755 *immbits = immlo >> 8;
12756 return 0x2;
12758 else if (immlo == (immlo & 0x00ff0000))
12760 *immbits = immlo >> 16;
12761 return 0x4;
12763 else if (immlo == (immlo & 0xff000000))
12765 *immbits = immlo >> 24;
12766 return 0x6;
12768 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12770 *immbits = (immlo >> 8) & 0xff;
12771 return 0xc;
12773 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12775 *immbits = (immlo >> 16) & 0xff;
12776 return 0xd;
12779 if ((immlo & 0xffff) != (immlo >> 16))
12780 return FAIL;
12781 immlo &= 0xffff;
12784 if (size >= 16)
12786 if (immlo == (immlo & 0x000000ff))
12788 *immbits = immlo;
12789 return 0x8;
12791 else if (immlo == (immlo & 0x0000ff00))
12793 *immbits = immlo >> 8;
12794 return 0xa;
12797 if ((immlo & 0xff) != (immlo >> 8))
12798 return FAIL;
12799 immlo &= 0xff;
12802 if (immlo == (immlo & 0x000000ff))
12804 /* Don't allow MVN with 8-bit immediate. */
12805 if (*op == 1)
12806 return FAIL;
12807 *immbits = immlo;
12808 return 0xe;
12811 return FAIL;
12814 /* Write immediate bits [7:0] to the following locations:
12816 |28/24|23 19|18 16|15 4|3 0|
12817 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12819 This function is used by VMOV/VMVN/VORR/VBIC. */
12821 static void
12822 neon_write_immbits (unsigned immbits)
12824 inst.instruction |= immbits & 0xf;
12825 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12826 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12829 /* Invert low-order SIZE bits of XHI:XLO. */
12831 static void
12832 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12834 unsigned immlo = xlo ? *xlo : 0;
12835 unsigned immhi = xhi ? *xhi : 0;
12837 switch (size)
12839 case 8:
12840 immlo = (~immlo) & 0xff;
12841 break;
12843 case 16:
12844 immlo = (~immlo) & 0xffff;
12845 break;
12847 case 64:
12848 immhi = (~immhi) & 0xffffffff;
12849 /* fall through. */
12851 case 32:
12852 immlo = (~immlo) & 0xffffffff;
12853 break;
12855 default:
12856 abort ();
12859 if (xlo)
12860 *xlo = immlo;
12862 if (xhi)
12863 *xhi = immhi;
12866 static void
12867 do_neon_logic (void)
12869 if (inst.operands[2].present && inst.operands[2].isreg)
12871 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12872 neon_check_type (3, rs, N_IGNORE_TYPE);
12873 /* U bit and size field were set as part of the bitmask. */
12874 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12875 neon_three_same (neon_quad (rs), 0, -1);
12877 else
12879 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12880 struct neon_type_el et = neon_check_type (2, rs,
12881 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12882 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12883 unsigned immbits;
12884 int cmode;
12886 if (et.type == NT_invtype)
12887 return;
12889 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12891 immbits = inst.operands[1].imm;
12892 if (et.size == 64)
12894 /* .i64 is a pseudo-op, so the immediate must be a repeating
12895 pattern. */
12896 if (immbits != (inst.operands[1].regisimm ?
12897 inst.operands[1].reg : 0))
12899 /* Set immbits to an invalid constant. */
12900 immbits = 0xdeadbeef;
12904 switch (opcode)
12906 case N_MNEM_vbic:
12907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12908 break;
12910 case N_MNEM_vorr:
12911 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12912 break;
12914 case N_MNEM_vand:
12915 /* Pseudo-instruction for VBIC. */
12916 neon_invert_size (&immbits, 0, et.size);
12917 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12918 break;
12920 case N_MNEM_vorn:
12921 /* Pseudo-instruction for VORR. */
12922 neon_invert_size (&immbits, 0, et.size);
12923 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12924 break;
12926 default:
12927 abort ();
12930 if (cmode == FAIL)
12931 return;
12933 inst.instruction |= neon_quad (rs) << 6;
12934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12936 inst.instruction |= cmode << 8;
12937 neon_write_immbits (immbits);
12939 inst.instruction = neon_dp_fixup (inst.instruction);
12943 static void
12944 do_neon_bitfield (void)
12946 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12947 neon_check_type (3, rs, N_IGNORE_TYPE);
12948 neon_three_same (neon_quad (rs), 0, -1);
12951 static void
12952 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12953 unsigned destbits)
12955 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12956 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12957 types | N_KEY);
12958 if (et.type == NT_float)
12960 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12961 neon_three_same (neon_quad (rs), 0, -1);
12963 else
12965 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12966 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12970 static void
12971 do_neon_dyadic_if_su (void)
12973 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12976 static void
12977 do_neon_dyadic_if_su_d (void)
12979 /* This version only allow D registers, but that constraint is enforced during
12980 operand parsing so we don't need to do anything extra here. */
12981 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12984 static void
12985 do_neon_dyadic_if_i_d (void)
12987 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12988 affected if we specify unsigned args. */
12989 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12992 enum vfp_or_neon_is_neon_bits
12994 NEON_CHECK_CC = 1,
12995 NEON_CHECK_ARCH = 2
12998 /* Call this function if an instruction which may have belonged to the VFP or
12999 Neon instruction sets, but turned out to be a Neon instruction (due to the
13000 operand types involved, etc.). We have to check and/or fix-up a couple of
13001 things:
13003 - Make sure the user hasn't attempted to make a Neon instruction
13004 conditional.
13005 - Alter the value in the condition code field if necessary.
13006 - Make sure that the arch supports Neon instructions.
13008 Which of these operations take place depends on bits from enum
13009 vfp_or_neon_is_neon_bits.
13011 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13012 current instruction's condition is COND_ALWAYS, the condition field is
13013 changed to inst.uncond_value. This is necessary because instructions shared
13014 between VFP and Neon may be conditional for the VFP variants only, and the
13015 unconditional Neon version must have, e.g., 0xF in the condition field. */
13017 static int
13018 vfp_or_neon_is_neon (unsigned check)
13020 /* Conditions are always legal in Thumb mode (IT blocks). */
13021 if (!thumb_mode && (check & NEON_CHECK_CC))
13023 if (inst.cond != COND_ALWAYS)
13025 first_error (_(BAD_COND));
13026 return FAIL;
13028 if (inst.uncond_value != -1)
13029 inst.instruction |= inst.uncond_value << 28;
13032 if ((check & NEON_CHECK_ARCH)
13033 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13035 first_error (_(BAD_FPU));
13036 return FAIL;
13039 return SUCCESS;
13042 static void
13043 do_neon_addsub_if_i (void)
13045 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13046 return;
13048 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13049 return;
13051 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13052 affected if we specify unsigned args. */
13053 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13056 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13057 result to be:
13058 V<op> A,B (A is operand 0, B is operand 2)
13059 to mean:
13060 V<op> A,B,A
13061 not:
13062 V<op> A,B,B
13063 so handle that case specially. */
13065 static void
13066 neon_exchange_operands (void)
13068 void *scratch = alloca (sizeof (inst.operands[0]));
13069 if (inst.operands[1].present)
13071 /* Swap operands[1] and operands[2]. */
13072 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13073 inst.operands[1] = inst.operands[2];
13074 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13076 else
13078 inst.operands[1] = inst.operands[2];
13079 inst.operands[2] = inst.operands[0];
13083 static void
13084 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13086 if (inst.operands[2].isreg)
13088 if (invert)
13089 neon_exchange_operands ();
13090 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13092 else
13094 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13095 struct neon_type_el et = neon_check_type (2, rs,
13096 N_EQK | N_SIZ, immtypes | N_KEY);
13098 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13099 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13101 inst.instruction |= LOW4 (inst.operands[1].reg);
13102 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13103 inst.instruction |= neon_quad (rs) << 6;
13104 inst.instruction |= (et.type == NT_float) << 10;
13105 inst.instruction |= neon_logbits (et.size) << 18;
13107 inst.instruction = neon_dp_fixup (inst.instruction);
13111 static void
13112 do_neon_cmp (void)
13114 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13117 static void
13118 do_neon_cmp_inv (void)
13120 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13123 static void
13124 do_neon_ceq (void)
13126 neon_compare (N_IF_32, N_IF_32, FALSE);
13129 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13130 scalars, which are encoded in 5 bits, M : Rm.
13131 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13132 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13133 index in M. */
13135 static unsigned
13136 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13138 unsigned regno = NEON_SCALAR_REG (scalar);
13139 unsigned elno = NEON_SCALAR_INDEX (scalar);
13141 switch (elsize)
13143 case 16:
13144 if (regno > 7 || elno > 3)
13145 goto bad_scalar;
13146 return regno | (elno << 3);
13148 case 32:
13149 if (regno > 15 || elno > 1)
13150 goto bad_scalar;
13151 return regno | (elno << 4);
13153 default:
13154 bad_scalar:
13155 first_error (_("scalar out of range for multiply instruction"));
13158 return 0;
13161 /* Encode multiply / multiply-accumulate scalar instructions. */
13163 static void
13164 neon_mul_mac (struct neon_type_el et, int ubit)
13166 unsigned scalar;
13168 /* Give a more helpful error message if we have an invalid type. */
13169 if (et.type == NT_invtype)
13170 return;
13172 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13175 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13176 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13177 inst.instruction |= LOW4 (scalar);
13178 inst.instruction |= HI1 (scalar) << 5;
13179 inst.instruction |= (et.type == NT_float) << 8;
13180 inst.instruction |= neon_logbits (et.size) << 20;
13181 inst.instruction |= (ubit != 0) << 24;
13183 inst.instruction = neon_dp_fixup (inst.instruction);
13186 static void
13187 do_neon_mac_maybe_scalar (void)
13189 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13190 return;
13192 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13193 return;
13195 if (inst.operands[2].isscalar)
13197 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13198 struct neon_type_el et = neon_check_type (3, rs,
13199 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13200 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13201 neon_mul_mac (et, neon_quad (rs));
13203 else
13205 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13206 affected if we specify unsigned args. */
13207 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13211 static void
13212 do_neon_fmac (void)
13214 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13215 return;
13217 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13218 return;
13220 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13223 static void
13224 do_neon_tst (void)
13226 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13227 struct neon_type_el et = neon_check_type (3, rs,
13228 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13229 neon_three_same (neon_quad (rs), 0, et.size);
13232 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13233 same types as the MAC equivalents. The polynomial type for this instruction
13234 is encoded the same as the integer type. */
13236 static void
13237 do_neon_mul (void)
13239 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13240 return;
13242 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13243 return;
13245 if (inst.operands[2].isscalar)
13246 do_neon_mac_maybe_scalar ();
13247 else
13248 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13251 static void
13252 do_neon_qdmulh (void)
13254 if (inst.operands[2].isscalar)
13256 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13257 struct neon_type_el et = neon_check_type (3, rs,
13258 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13259 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13260 neon_mul_mac (et, neon_quad (rs));
13262 else
13264 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13265 struct neon_type_el et = neon_check_type (3, rs,
13266 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13267 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13268 /* The U bit (rounding) comes from bit mask. */
13269 neon_three_same (neon_quad (rs), 0, et.size);
13273 static void
13274 do_neon_fcmp_absolute (void)
13276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13277 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13278 /* Size field comes from bit mask. */
13279 neon_three_same (neon_quad (rs), 1, -1);
13282 static void
13283 do_neon_fcmp_absolute_inv (void)
13285 neon_exchange_operands ();
13286 do_neon_fcmp_absolute ();
13289 static void
13290 do_neon_step (void)
13292 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13293 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13294 neon_three_same (neon_quad (rs), 0, -1);
13297 static void
13298 do_neon_abs_neg (void)
13300 enum neon_shape rs;
13301 struct neon_type_el et;
13303 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13304 return;
13306 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13307 return;
13309 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13310 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13312 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13313 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13314 inst.instruction |= LOW4 (inst.operands[1].reg);
13315 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13316 inst.instruction |= neon_quad (rs) << 6;
13317 inst.instruction |= (et.type == NT_float) << 10;
13318 inst.instruction |= neon_logbits (et.size) << 18;
13320 inst.instruction = neon_dp_fixup (inst.instruction);
13323 static void
13324 do_neon_sli (void)
13326 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13327 struct neon_type_el et = neon_check_type (2, rs,
13328 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13329 int imm = inst.operands[2].imm;
13330 constraint (imm < 0 || (unsigned)imm >= et.size,
13331 _("immediate out of range for insert"));
13332 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13335 static void
13336 do_neon_sri (void)
13338 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13339 struct neon_type_el et = neon_check_type (2, rs,
13340 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13341 int imm = inst.operands[2].imm;
13342 constraint (imm < 1 || (unsigned)imm > et.size,
13343 _("immediate out of range for insert"));
13344 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13347 static void
13348 do_neon_qshlu_imm (void)
13350 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13351 struct neon_type_el et = neon_check_type (2, rs,
13352 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13353 int imm = inst.operands[2].imm;
13354 constraint (imm < 0 || (unsigned)imm >= et.size,
13355 _("immediate out of range for shift"));
13356 /* Only encodes the 'U present' variant of the instruction.
13357 In this case, signed types have OP (bit 8) set to 0.
13358 Unsigned types have OP set to 1. */
13359 inst.instruction |= (et.type == NT_unsigned) << 8;
13360 /* The rest of the bits are the same as other immediate shifts. */
13361 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13364 static void
13365 do_neon_qmovn (void)
13367 struct neon_type_el et = neon_check_type (2, NS_DQ,
13368 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13369 /* Saturating move where operands can be signed or unsigned, and the
13370 destination has the same signedness. */
13371 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13372 if (et.type == NT_unsigned)
13373 inst.instruction |= 0xc0;
13374 else
13375 inst.instruction |= 0x80;
13376 neon_two_same (0, 1, et.size / 2);
13379 static void
13380 do_neon_qmovun (void)
13382 struct neon_type_el et = neon_check_type (2, NS_DQ,
13383 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13384 /* Saturating move with unsigned results. Operands must be signed. */
13385 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13386 neon_two_same (0, 1, et.size / 2);
13389 static void
13390 do_neon_rshift_sat_narrow (void)
13392 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13393 or unsigned. If operands are unsigned, results must also be unsigned. */
13394 struct neon_type_el et = neon_check_type (2, NS_DQI,
13395 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13396 int imm = inst.operands[2].imm;
13397 /* This gets the bounds check, size encoding and immediate bits calculation
13398 right. */
13399 et.size /= 2;
13401 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13402 VQMOVN.I<size> <Dd>, <Qm>. */
13403 if (imm == 0)
13405 inst.operands[2].present = 0;
13406 inst.instruction = N_MNEM_vqmovn;
13407 do_neon_qmovn ();
13408 return;
13411 constraint (imm < 1 || (unsigned)imm > et.size,
13412 _("immediate out of range"));
13413 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13416 static void
13417 do_neon_rshift_sat_narrow_u (void)
13419 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13420 or unsigned. If operands are unsigned, results must also be unsigned. */
13421 struct neon_type_el et = neon_check_type (2, NS_DQI,
13422 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13423 int imm = inst.operands[2].imm;
13424 /* This gets the bounds check, size encoding and immediate bits calculation
13425 right. */
13426 et.size /= 2;
13428 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13429 VQMOVUN.I<size> <Dd>, <Qm>. */
13430 if (imm == 0)
13432 inst.operands[2].present = 0;
13433 inst.instruction = N_MNEM_vqmovun;
13434 do_neon_qmovun ();
13435 return;
13438 constraint (imm < 1 || (unsigned)imm > et.size,
13439 _("immediate out of range"));
13440 /* FIXME: The manual is kind of unclear about what value U should have in
13441 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13442 must be 1. */
13443 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13446 static void
13447 do_neon_movn (void)
13449 struct neon_type_el et = neon_check_type (2, NS_DQ,
13450 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13451 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13452 neon_two_same (0, 1, et.size / 2);
13455 static void
13456 do_neon_rshift_narrow (void)
13458 struct neon_type_el et = neon_check_type (2, NS_DQI,
13459 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13460 int imm = inst.operands[2].imm;
13461 /* This gets the bounds check, size encoding and immediate bits calculation
13462 right. */
13463 et.size /= 2;
13465 /* If immediate is zero then we are a pseudo-instruction for
13466 VMOVN.I<size> <Dd>, <Qm> */
13467 if (imm == 0)
13469 inst.operands[2].present = 0;
13470 inst.instruction = N_MNEM_vmovn;
13471 do_neon_movn ();
13472 return;
13475 constraint (imm < 1 || (unsigned)imm > et.size,
13476 _("immediate out of range for narrowing operation"));
13477 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13480 static void
13481 do_neon_shll (void)
13483 /* FIXME: Type checking when lengthening. */
13484 struct neon_type_el et = neon_check_type (2, NS_QDI,
13485 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13486 unsigned imm = inst.operands[2].imm;
13488 if (imm == et.size)
13490 /* Maximum shift variant. */
13491 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13492 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13493 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13494 inst.instruction |= LOW4 (inst.operands[1].reg);
13495 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13496 inst.instruction |= neon_logbits (et.size) << 18;
13498 inst.instruction = neon_dp_fixup (inst.instruction);
13500 else
13502 /* A more-specific type check for non-max versions. */
13503 et = neon_check_type (2, NS_QDI,
13504 N_EQK | N_DBL, N_SU_32 | N_KEY);
13505 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13506 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13510 /* Check the various types for the VCVT instruction, and return which version
13511 the current instruction is. */
13513 static int
13514 neon_cvt_flavour (enum neon_shape rs)
13516 #define CVT_VAR(C,X,Y) \
13517 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13518 if (et.type != NT_invtype) \
13520 inst.error = NULL; \
13521 return (C); \
13523 struct neon_type_el et;
13524 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13525 || rs == NS_FF) ? N_VFP : 0;
13526 /* The instruction versions which take an immediate take one register
13527 argument, which is extended to the width of the full register. Thus the
13528 "source" and "destination" registers must have the same width. Hack that
13529 here by making the size equal to the key (wider, in this case) operand. */
13530 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13532 CVT_VAR (0, N_S32, N_F32);
13533 CVT_VAR (1, N_U32, N_F32);
13534 CVT_VAR (2, N_F32, N_S32);
13535 CVT_VAR (3, N_F32, N_U32);
13536 /* Half-precision conversions. */
13537 CVT_VAR (4, N_F32, N_F16);
13538 CVT_VAR (5, N_F16, N_F32);
13540 whole_reg = N_VFP;
13542 /* VFP instructions. */
13543 CVT_VAR (6, N_F32, N_F64);
13544 CVT_VAR (7, N_F64, N_F32);
13545 CVT_VAR (8, N_S32, N_F64 | key);
13546 CVT_VAR (9, N_U32, N_F64 | key);
13547 CVT_VAR (10, N_F64 | key, N_S32);
13548 CVT_VAR (11, N_F64 | key, N_U32);
13549 /* VFP instructions with bitshift. */
13550 CVT_VAR (12, N_F32 | key, N_S16);
13551 CVT_VAR (13, N_F32 | key, N_U16);
13552 CVT_VAR (14, N_F64 | key, N_S16);
13553 CVT_VAR (15, N_F64 | key, N_U16);
13554 CVT_VAR (16, N_S16, N_F32 | key);
13555 CVT_VAR (17, N_U16, N_F32 | key);
13556 CVT_VAR (18, N_S16, N_F64 | key);
13557 CVT_VAR (19, N_U16, N_F64 | key);
13559 return -1;
13560 #undef CVT_VAR
13563 /* Neon-syntax VFP conversions. */
13565 static void
13566 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13568 const char *opname = 0;
13570 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13572 /* Conversions with immediate bitshift. */
13573 const char *enc[] =
13575 "ftosls",
13576 "ftouls",
13577 "fsltos",
13578 "fultos",
13579 NULL,
13580 NULL,
13581 NULL,
13582 NULL,
13583 "ftosld",
13584 "ftould",
13585 "fsltod",
13586 "fultod",
13587 "fshtos",
13588 "fuhtos",
13589 "fshtod",
13590 "fuhtod",
13591 "ftoshs",
13592 "ftouhs",
13593 "ftoshd",
13594 "ftouhd"
13597 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13599 opname = enc[flavour];
13600 constraint (inst.operands[0].reg != inst.operands[1].reg,
13601 _("operands 0 and 1 must be the same register"));
13602 inst.operands[1] = inst.operands[2];
13603 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13606 else
13608 /* Conversions without bitshift. */
13609 const char *enc[] =
13611 "ftosis",
13612 "ftouis",
13613 "fsitos",
13614 "fuitos",
13615 "NULL",
13616 "NULL",
13617 "fcvtsd",
13618 "fcvtds",
13619 "ftosid",
13620 "ftouid",
13621 "fsitod",
13622 "fuitod"
13625 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13626 opname = enc[flavour];
13629 if (opname)
13630 do_vfp_nsyn_opcode (opname);
13633 static void
13634 do_vfp_nsyn_cvtz (void)
13636 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13637 int flavour = neon_cvt_flavour (rs);
13638 const char *enc[] =
13640 "ftosizs",
13641 "ftouizs",
13642 NULL,
13643 NULL,
13644 NULL,
13645 NULL,
13646 NULL,
13647 NULL,
13648 "ftosizd",
13649 "ftouizd"
13652 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13653 do_vfp_nsyn_opcode (enc[flavour]);
13656 static void
13657 do_neon_cvt (void)
13659 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13660 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13661 int flavour = neon_cvt_flavour (rs);
13663 /* VFP rather than Neon conversions. */
13664 if (flavour >= 6)
13666 do_vfp_nsyn_cvt (rs, flavour);
13667 return;
13670 switch (rs)
13672 case NS_DDI:
13673 case NS_QQI:
13675 unsigned immbits;
13676 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13678 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13679 return;
13681 /* Fixed-point conversion with #0 immediate is encoded as an
13682 integer conversion. */
13683 if (inst.operands[2].present && inst.operands[2].imm == 0)
13684 goto int_encode;
13685 immbits = 32 - inst.operands[2].imm;
13686 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13687 if (flavour != -1)
13688 inst.instruction |= enctab[flavour];
13689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13691 inst.instruction |= LOW4 (inst.operands[1].reg);
13692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13693 inst.instruction |= neon_quad (rs) << 6;
13694 inst.instruction |= 1 << 21;
13695 inst.instruction |= immbits << 16;
13697 inst.instruction = neon_dp_fixup (inst.instruction);
13699 break;
13701 case NS_DD:
13702 case NS_QQ:
13703 int_encode:
13705 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13707 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13709 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13710 return;
13712 if (flavour != -1)
13713 inst.instruction |= enctab[flavour];
13715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13717 inst.instruction |= LOW4 (inst.operands[1].reg);
13718 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13719 inst.instruction |= neon_quad (rs) << 6;
13720 inst.instruction |= 2 << 18;
13722 inst.instruction = neon_dp_fixup (inst.instruction);
13724 break;
13726 /* Half-precision conversions for Advanced SIMD -- neon. */
13727 case NS_QD:
13728 case NS_DQ:
13730 if ((rs == NS_DQ)
13731 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13733 as_bad (_("operand size must match register width"));
13734 break;
13737 if ((rs == NS_QD)
13738 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13740 as_bad (_("operand size must match register width"));
13741 break;
13744 if (rs == NS_DQ)
13745 inst.instruction = 0x3b60600;
13746 else
13747 inst.instruction = 0x3b60700;
13749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13751 inst.instruction |= LOW4 (inst.operands[1].reg);
13752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13753 inst.instruction = neon_dp_fixup (inst.instruction);
13754 break;
13756 default:
13757 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13758 do_vfp_nsyn_cvt (rs, flavour);
13762 static void
13763 do_neon_cvtb (void)
13765 inst.instruction = 0xeb20a40;
13767 /* The sizes are attached to the mnemonic. */
13768 if (inst.vectype.el[0].type != NT_invtype
13769 && inst.vectype.el[0].size == 16)
13770 inst.instruction |= 0x00010000;
13772 /* Programmer's syntax: the sizes are attached to the operands. */
13773 else if (inst.operands[0].vectype.type != NT_invtype
13774 && inst.operands[0].vectype.size == 16)
13775 inst.instruction |= 0x00010000;
13777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13778 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13779 do_vfp_cond_or_thumb ();
13783 static void
13784 do_neon_cvtt (void)
13786 do_neon_cvtb ();
13787 inst.instruction |= 0x80;
13790 static void
13791 neon_move_immediate (void)
13793 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13794 struct neon_type_el et = neon_check_type (2, rs,
13795 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13796 unsigned immlo, immhi = 0, immbits;
13797 int op, cmode, float_p;
13799 constraint (et.type == NT_invtype,
13800 _("operand size must be specified for immediate VMOV"));
13802 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13803 op = (inst.instruction & (1 << 5)) != 0;
13805 immlo = inst.operands[1].imm;
13806 if (inst.operands[1].regisimm)
13807 immhi = inst.operands[1].reg;
13809 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13810 _("immediate has bits set outside the operand size"));
13812 float_p = inst.operands[1].immisfloat;
13814 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13815 et.size, et.type)) == FAIL)
13817 /* Invert relevant bits only. */
13818 neon_invert_size (&immlo, &immhi, et.size);
13819 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13820 with one or the other; those cases are caught by
13821 neon_cmode_for_move_imm. */
13822 op = !op;
13823 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13824 &op, et.size, et.type)) == FAIL)
13826 first_error (_("immediate out of range"));
13827 return;
13831 inst.instruction &= ~(1 << 5);
13832 inst.instruction |= op << 5;
13834 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13835 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13836 inst.instruction |= neon_quad (rs) << 6;
13837 inst.instruction |= cmode << 8;
13839 neon_write_immbits (immbits);
13842 static void
13843 do_neon_mvn (void)
13845 if (inst.operands[1].isreg)
13847 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13849 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13850 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13851 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13852 inst.instruction |= LOW4 (inst.operands[1].reg);
13853 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13854 inst.instruction |= neon_quad (rs) << 6;
13856 else
13858 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13859 neon_move_immediate ();
13862 inst.instruction = neon_dp_fixup (inst.instruction);
13865 /* Encode instructions of form:
13867 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13868 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13870 static void
13871 neon_mixed_length (struct neon_type_el et, unsigned size)
13873 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13874 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13875 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13876 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13877 inst.instruction |= LOW4 (inst.operands[2].reg);
13878 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13879 inst.instruction |= (et.type == NT_unsigned) << 24;
13880 inst.instruction |= neon_logbits (size) << 20;
13882 inst.instruction = neon_dp_fixup (inst.instruction);
13885 static void
13886 do_neon_dyadic_long (void)
13888 /* FIXME: Type checking for lengthening op. */
13889 struct neon_type_el et = neon_check_type (3, NS_QDD,
13890 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13891 neon_mixed_length (et, et.size);
13894 static void
13895 do_neon_abal (void)
13897 struct neon_type_el et = neon_check_type (3, NS_QDD,
13898 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13899 neon_mixed_length (et, et.size);
13902 static void
13903 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13905 if (inst.operands[2].isscalar)
13907 struct neon_type_el et = neon_check_type (3, NS_QDS,
13908 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13909 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13910 neon_mul_mac (et, et.type == NT_unsigned);
13912 else
13914 struct neon_type_el et = neon_check_type (3, NS_QDD,
13915 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13916 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13917 neon_mixed_length (et, et.size);
13921 static void
13922 do_neon_mac_maybe_scalar_long (void)
13924 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13927 static void
13928 do_neon_dyadic_wide (void)
13930 struct neon_type_el et = neon_check_type (3, NS_QQD,
13931 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13932 neon_mixed_length (et, et.size);
13935 static void
13936 do_neon_dyadic_narrow (void)
13938 struct neon_type_el et = neon_check_type (3, NS_QDD,
13939 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13940 /* Operand sign is unimportant, and the U bit is part of the opcode,
13941 so force the operand type to integer. */
13942 et.type = NT_integer;
13943 neon_mixed_length (et, et.size / 2);
13946 static void
13947 do_neon_mul_sat_scalar_long (void)
13949 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13952 static void
13953 do_neon_vmull (void)
13955 if (inst.operands[2].isscalar)
13956 do_neon_mac_maybe_scalar_long ();
13957 else
13959 struct neon_type_el et = neon_check_type (3, NS_QDD,
13960 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13961 if (et.type == NT_poly)
13962 inst.instruction = NEON_ENC_POLY (inst.instruction);
13963 else
13964 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13965 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13966 zero. Should be OK as-is. */
13967 neon_mixed_length (et, et.size);
13971 static void
13972 do_neon_ext (void)
13974 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13975 struct neon_type_el et = neon_check_type (3, rs,
13976 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13977 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13979 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13980 _("shift out of range"));
13981 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13982 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13983 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13984 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13985 inst.instruction |= LOW4 (inst.operands[2].reg);
13986 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13987 inst.instruction |= neon_quad (rs) << 6;
13988 inst.instruction |= imm << 8;
13990 inst.instruction = neon_dp_fixup (inst.instruction);
13993 static void
13994 do_neon_rev (void)
13996 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13997 struct neon_type_el et = neon_check_type (2, rs,
13998 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13999 unsigned op = (inst.instruction >> 7) & 3;
14000 /* N (width of reversed regions) is encoded as part of the bitmask. We
14001 extract it here to check the elements to be reversed are smaller.
14002 Otherwise we'd get a reserved instruction. */
14003 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14004 gas_assert (elsize != 0);
14005 constraint (et.size >= elsize,
14006 _("elements must be smaller than reversal region"));
14007 neon_two_same (neon_quad (rs), 1, et.size);
14010 static void
14011 do_neon_dup (void)
14013 if (inst.operands[1].isscalar)
14015 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14016 struct neon_type_el et = neon_check_type (2, rs,
14017 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14018 unsigned sizebits = et.size >> 3;
14019 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14020 int logsize = neon_logbits (et.size);
14021 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14023 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14024 return;
14026 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
14027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14029 inst.instruction |= LOW4 (dm);
14030 inst.instruction |= HI1 (dm) << 5;
14031 inst.instruction |= neon_quad (rs) << 6;
14032 inst.instruction |= x << 17;
14033 inst.instruction |= sizebits << 16;
14035 inst.instruction = neon_dp_fixup (inst.instruction);
14037 else
14039 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14040 struct neon_type_el et = neon_check_type (2, rs,
14041 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14042 /* Duplicate ARM register to lanes of vector. */
14043 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
14044 switch (et.size)
14046 case 8: inst.instruction |= 0x400000; break;
14047 case 16: inst.instruction |= 0x000020; break;
14048 case 32: inst.instruction |= 0x000000; break;
14049 default: break;
14051 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14052 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14053 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14054 inst.instruction |= neon_quad (rs) << 21;
14055 /* The encoding for this instruction is identical for the ARM and Thumb
14056 variants, except for the condition field. */
14057 do_vfp_cond_or_thumb ();
14061 /* VMOV has particularly many variations. It can be one of:
14062 0. VMOV<c><q> <Qd>, <Qm>
14063 1. VMOV<c><q> <Dd>, <Dm>
14064 (Register operations, which are VORR with Rm = Rn.)
14065 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14066 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14067 (Immediate loads.)
14068 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14069 (ARM register to scalar.)
14070 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14071 (Two ARM registers to vector.)
14072 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14073 (Scalar to ARM register.)
14074 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14075 (Vector to two ARM registers.)
14076 8. VMOV.F32 <Sd>, <Sm>
14077 9. VMOV.F64 <Dd>, <Dm>
14078 (VFP register moves.)
14079 10. VMOV.F32 <Sd>, #imm
14080 11. VMOV.F64 <Dd>, #imm
14081 (VFP float immediate load.)
14082 12. VMOV <Rd>, <Sm>
14083 (VFP single to ARM reg.)
14084 13. VMOV <Sd>, <Rm>
14085 (ARM reg to VFP single.)
14086 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14087 (Two ARM regs to two VFP singles.)
14088 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14089 (Two VFP singles to two ARM regs.)
14091 These cases can be disambiguated using neon_select_shape, except cases 1/9
14092 and 3/11 which depend on the operand type too.
14094 All the encoded bits are hardcoded by this function.
14096 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14097 Cases 5, 7 may be used with VFPv2 and above.
14099 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14100 can specify a type where it doesn't make sense to, and is ignored). */
14102 static void
14103 do_neon_mov (void)
14105 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14106 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14107 NS_NULL);
14108 struct neon_type_el et;
14109 const char *ldconst = 0;
14111 switch (rs)
14113 case NS_DD: /* case 1/9. */
14114 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14115 /* It is not an error here if no type is given. */
14116 inst.error = NULL;
14117 if (et.type == NT_float && et.size == 64)
14119 do_vfp_nsyn_opcode ("fcpyd");
14120 break;
14122 /* fall through. */
14124 case NS_QQ: /* case 0/1. */
14126 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14127 return;
14128 /* The architecture manual I have doesn't explicitly state which
14129 value the U bit should have for register->register moves, but
14130 the equivalent VORR instruction has U = 0, so do that. */
14131 inst.instruction = 0x0200110;
14132 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14133 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14134 inst.instruction |= LOW4 (inst.operands[1].reg);
14135 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14136 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14137 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14138 inst.instruction |= neon_quad (rs) << 6;
14140 inst.instruction = neon_dp_fixup (inst.instruction);
14142 break;
14144 case NS_DI: /* case 3/11. */
14145 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14146 inst.error = NULL;
14147 if (et.type == NT_float && et.size == 64)
14149 /* case 11 (fconstd). */
14150 ldconst = "fconstd";
14151 goto encode_fconstd;
14153 /* fall through. */
14155 case NS_QI: /* case 2/3. */
14156 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14157 return;
14158 inst.instruction = 0x0800010;
14159 neon_move_immediate ();
14160 inst.instruction = neon_dp_fixup (inst.instruction);
14161 break;
14163 case NS_SR: /* case 4. */
14165 unsigned bcdebits = 0;
14166 int logsize;
14167 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14168 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14170 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14171 logsize = neon_logbits (et.size);
14173 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14174 _(BAD_FPU));
14175 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14176 && et.size != 32, _(BAD_FPU));
14177 constraint (et.type == NT_invtype, _("bad type for scalar"));
14178 constraint (x >= 64 / et.size, _("scalar index out of range"));
14180 switch (et.size)
14182 case 8: bcdebits = 0x8; break;
14183 case 16: bcdebits = 0x1; break;
14184 case 32: bcdebits = 0x0; break;
14185 default: ;
14188 bcdebits |= x << logsize;
14190 inst.instruction = 0xe000b10;
14191 do_vfp_cond_or_thumb ();
14192 inst.instruction |= LOW4 (dn) << 16;
14193 inst.instruction |= HI1 (dn) << 7;
14194 inst.instruction |= inst.operands[1].reg << 12;
14195 inst.instruction |= (bcdebits & 3) << 5;
14196 inst.instruction |= (bcdebits >> 2) << 21;
14198 break;
14200 case NS_DRR: /* case 5 (fmdrr). */
14201 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14202 _(BAD_FPU));
14204 inst.instruction = 0xc400b10;
14205 do_vfp_cond_or_thumb ();
14206 inst.instruction |= LOW4 (inst.operands[0].reg);
14207 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14208 inst.instruction |= inst.operands[1].reg << 12;
14209 inst.instruction |= inst.operands[2].reg << 16;
14210 break;
14212 case NS_RS: /* case 6. */
14214 unsigned logsize;
14215 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14216 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14217 unsigned abcdebits = 0;
14219 et = neon_check_type (2, NS_NULL,
14220 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14221 logsize = neon_logbits (et.size);
14223 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14224 _(BAD_FPU));
14225 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14226 && et.size != 32, _(BAD_FPU));
14227 constraint (et.type == NT_invtype, _("bad type for scalar"));
14228 constraint (x >= 64 / et.size, _("scalar index out of range"));
14230 switch (et.size)
14232 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14233 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14234 case 32: abcdebits = 0x00; break;
14235 default: ;
14238 abcdebits |= x << logsize;
14239 inst.instruction = 0xe100b10;
14240 do_vfp_cond_or_thumb ();
14241 inst.instruction |= LOW4 (dn) << 16;
14242 inst.instruction |= HI1 (dn) << 7;
14243 inst.instruction |= inst.operands[0].reg << 12;
14244 inst.instruction |= (abcdebits & 3) << 5;
14245 inst.instruction |= (abcdebits >> 2) << 21;
14247 break;
14249 case NS_RRD: /* case 7 (fmrrd). */
14250 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14251 _(BAD_FPU));
14253 inst.instruction = 0xc500b10;
14254 do_vfp_cond_or_thumb ();
14255 inst.instruction |= inst.operands[0].reg << 12;
14256 inst.instruction |= inst.operands[1].reg << 16;
14257 inst.instruction |= LOW4 (inst.operands[2].reg);
14258 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14259 break;
14261 case NS_FF: /* case 8 (fcpys). */
14262 do_vfp_nsyn_opcode ("fcpys");
14263 break;
14265 case NS_FI: /* case 10 (fconsts). */
14266 ldconst = "fconsts";
14267 encode_fconstd:
14268 if (is_quarter_float (inst.operands[1].imm))
14270 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14271 do_vfp_nsyn_opcode (ldconst);
14273 else
14274 first_error (_("immediate out of range"));
14275 break;
14277 case NS_RF: /* case 12 (fmrs). */
14278 do_vfp_nsyn_opcode ("fmrs");
14279 break;
14281 case NS_FR: /* case 13 (fmsr). */
14282 do_vfp_nsyn_opcode ("fmsr");
14283 break;
14285 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14286 (one of which is a list), but we have parsed four. Do some fiddling to
14287 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14288 expect. */
14289 case NS_RRFF: /* case 14 (fmrrs). */
14290 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14291 _("VFP registers must be adjacent"));
14292 inst.operands[2].imm = 2;
14293 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14294 do_vfp_nsyn_opcode ("fmrrs");
14295 break;
14297 case NS_FFRR: /* case 15 (fmsrr). */
14298 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14299 _("VFP registers must be adjacent"));
14300 inst.operands[1] = inst.operands[2];
14301 inst.operands[2] = inst.operands[3];
14302 inst.operands[0].imm = 2;
14303 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14304 do_vfp_nsyn_opcode ("fmsrr");
14305 break;
14307 default:
14308 abort ();
14312 static void
14313 do_neon_rshift_round_imm (void)
14315 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14316 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14317 int imm = inst.operands[2].imm;
14319 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14320 if (imm == 0)
14322 inst.operands[2].present = 0;
14323 do_neon_mov ();
14324 return;
14327 constraint (imm < 1 || (unsigned)imm > et.size,
14328 _("immediate out of range for shift"));
14329 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14330 et.size - imm);
14333 static void
14334 do_neon_movl (void)
14336 struct neon_type_el et = neon_check_type (2, NS_QD,
14337 N_EQK | N_DBL, N_SU_32 | N_KEY);
14338 unsigned sizebits = et.size >> 3;
14339 inst.instruction |= sizebits << 19;
14340 neon_two_same (0, et.type == NT_unsigned, -1);
14343 static void
14344 do_neon_trn (void)
14346 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14347 struct neon_type_el et = neon_check_type (2, rs,
14348 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14349 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
14350 neon_two_same (neon_quad (rs), 1, et.size);
14353 static void
14354 do_neon_zip_uzp (void)
14356 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14357 struct neon_type_el et = neon_check_type (2, rs,
14358 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14359 if (rs == NS_DD && et.size == 32)
14361 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14362 inst.instruction = N_MNEM_vtrn;
14363 do_neon_trn ();
14364 return;
14366 neon_two_same (neon_quad (rs), 1, et.size);
14369 static void
14370 do_neon_sat_abs_neg (void)
14372 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14373 struct neon_type_el et = neon_check_type (2, rs,
14374 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14375 neon_two_same (neon_quad (rs), 1, et.size);
14378 static void
14379 do_neon_pair_long (void)
14381 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14382 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14383 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14384 inst.instruction |= (et.type == NT_unsigned) << 7;
14385 neon_two_same (neon_quad (rs), 1, et.size);
14388 static void
14389 do_neon_recip_est (void)
14391 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14392 struct neon_type_el et = neon_check_type (2, rs,
14393 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14394 inst.instruction |= (et.type == NT_float) << 8;
14395 neon_two_same (neon_quad (rs), 1, et.size);
14398 static void
14399 do_neon_cls (void)
14401 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14402 struct neon_type_el et = neon_check_type (2, rs,
14403 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14404 neon_two_same (neon_quad (rs), 1, et.size);
14407 static void
14408 do_neon_clz (void)
14410 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14411 struct neon_type_el et = neon_check_type (2, rs,
14412 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14413 neon_two_same (neon_quad (rs), 1, et.size);
14416 static void
14417 do_neon_cnt (void)
14419 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14420 struct neon_type_el et = neon_check_type (2, rs,
14421 N_EQK | N_INT, N_8 | N_KEY);
14422 neon_two_same (neon_quad (rs), 1, et.size);
14425 static void
14426 do_neon_swp (void)
14428 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14429 neon_two_same (neon_quad (rs), 1, -1);
14432 static void
14433 do_neon_tbl_tbx (void)
14435 unsigned listlenbits;
14436 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14438 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14440 first_error (_("bad list length for table lookup"));
14441 return;
14444 listlenbits = inst.operands[1].imm - 1;
14445 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14446 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14447 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14448 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14449 inst.instruction |= LOW4 (inst.operands[2].reg);
14450 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14451 inst.instruction |= listlenbits << 8;
14453 inst.instruction = neon_dp_fixup (inst.instruction);
14456 static void
14457 do_neon_ldm_stm (void)
14459 /* P, U and L bits are part of bitmask. */
14460 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14461 unsigned offsetbits = inst.operands[1].imm * 2;
14463 if (inst.operands[1].issingle)
14465 do_vfp_nsyn_ldm_stm (is_dbmode);
14466 return;
14469 constraint (is_dbmode && !inst.operands[0].writeback,
14470 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14472 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14473 _("register list must contain at least 1 and at most 16 "
14474 "registers"));
14476 inst.instruction |= inst.operands[0].reg << 16;
14477 inst.instruction |= inst.operands[0].writeback << 21;
14478 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14479 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14481 inst.instruction |= offsetbits;
14483 do_vfp_cond_or_thumb ();
14486 static void
14487 do_neon_ldr_str (void)
14489 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14491 if (inst.operands[0].issingle)
14493 if (is_ldr)
14494 do_vfp_nsyn_opcode ("flds");
14495 else
14496 do_vfp_nsyn_opcode ("fsts");
14498 else
14500 if (is_ldr)
14501 do_vfp_nsyn_opcode ("fldd");
14502 else
14503 do_vfp_nsyn_opcode ("fstd");
14507 /* "interleave" version also handles non-interleaving register VLD1/VST1
14508 instructions. */
14510 static void
14511 do_neon_ld_st_interleave (void)
14513 struct neon_type_el et = neon_check_type (1, NS_NULL,
14514 N_8 | N_16 | N_32 | N_64);
14515 unsigned alignbits = 0;
14516 unsigned idx;
14517 /* The bits in this table go:
14518 0: register stride of one (0) or two (1)
14519 1,2: register list length, minus one (1, 2, 3, 4).
14520 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14521 We use -1 for invalid entries. */
14522 const int typetable[] =
14524 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14525 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14526 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14527 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14529 int typebits;
14531 if (et.type == NT_invtype)
14532 return;
14534 if (inst.operands[1].immisalign)
14535 switch (inst.operands[1].imm >> 8)
14537 case 64: alignbits = 1; break;
14538 case 128:
14539 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14540 goto bad_alignment;
14541 alignbits = 2;
14542 break;
14543 case 256:
14544 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14545 goto bad_alignment;
14546 alignbits = 3;
14547 break;
14548 default:
14549 bad_alignment:
14550 first_error (_("bad alignment"));
14551 return;
14554 inst.instruction |= alignbits << 4;
14555 inst.instruction |= neon_logbits (et.size) << 6;
14557 /* Bits [4:6] of the immediate in a list specifier encode register stride
14558 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14559 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14560 up the right value for "type" in a table based on this value and the given
14561 list style, then stick it back. */
14562 idx = ((inst.operands[0].imm >> 4) & 7)
14563 | (((inst.instruction >> 8) & 3) << 3);
14565 typebits = typetable[idx];
14567 constraint (typebits == -1, _("bad list type for instruction"));
14569 inst.instruction &= ~0xf00;
14570 inst.instruction |= typebits << 8;
14573 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14574 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14575 otherwise. The variable arguments are a list of pairs of legal (size, align)
14576 values, terminated with -1. */
14578 static int
14579 neon_alignment_bit (int size, int align, int *do_align, ...)
14581 va_list ap;
14582 int result = FAIL, thissize, thisalign;
14584 if (!inst.operands[1].immisalign)
14586 *do_align = 0;
14587 return SUCCESS;
14590 va_start (ap, do_align);
14594 thissize = va_arg (ap, int);
14595 if (thissize == -1)
14596 break;
14597 thisalign = va_arg (ap, int);
14599 if (size == thissize && align == thisalign)
14600 result = SUCCESS;
14602 while (result != SUCCESS);
14604 va_end (ap);
14606 if (result == SUCCESS)
14607 *do_align = 1;
14608 else
14609 first_error (_("unsupported alignment for instruction"));
14611 return result;
14614 static void
14615 do_neon_ld_st_lane (void)
14617 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14618 int align_good, do_align = 0;
14619 int logsize = neon_logbits (et.size);
14620 int align = inst.operands[1].imm >> 8;
14621 int n = (inst.instruction >> 8) & 3;
14622 int max_el = 64 / et.size;
14624 if (et.type == NT_invtype)
14625 return;
14627 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14628 _("bad list length"));
14629 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14630 _("scalar index out of range"));
14631 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14632 && et.size == 8,
14633 _("stride of 2 unavailable when element size is 8"));
14635 switch (n)
14637 case 0: /* VLD1 / VST1. */
14638 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14639 32, 32, -1);
14640 if (align_good == FAIL)
14641 return;
14642 if (do_align)
14644 unsigned alignbits = 0;
14645 switch (et.size)
14647 case 16: alignbits = 0x1; break;
14648 case 32: alignbits = 0x3; break;
14649 default: ;
14651 inst.instruction |= alignbits << 4;
14653 break;
14655 case 1: /* VLD2 / VST2. */
14656 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14657 32, 64, -1);
14658 if (align_good == FAIL)
14659 return;
14660 if (do_align)
14661 inst.instruction |= 1 << 4;
14662 break;
14664 case 2: /* VLD3 / VST3. */
14665 constraint (inst.operands[1].immisalign,
14666 _("can't use alignment with this instruction"));
14667 break;
14669 case 3: /* VLD4 / VST4. */
14670 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14671 16, 64, 32, 64, 32, 128, -1);
14672 if (align_good == FAIL)
14673 return;
14674 if (do_align)
14676 unsigned alignbits = 0;
14677 switch (et.size)
14679 case 8: alignbits = 0x1; break;
14680 case 16: alignbits = 0x1; break;
14681 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14682 default: ;
14684 inst.instruction |= alignbits << 4;
14686 break;
14688 default: ;
14691 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14692 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14693 inst.instruction |= 1 << (4 + logsize);
14695 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14696 inst.instruction |= logsize << 10;
14699 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14701 static void
14702 do_neon_ld_dup (void)
14704 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14705 int align_good, do_align = 0;
14707 if (et.type == NT_invtype)
14708 return;
14710 switch ((inst.instruction >> 8) & 3)
14712 case 0: /* VLD1. */
14713 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14714 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14715 &do_align, 16, 16, 32, 32, -1);
14716 if (align_good == FAIL)
14717 return;
14718 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14720 case 1: break;
14721 case 2: inst.instruction |= 1 << 5; break;
14722 default: first_error (_("bad list length")); return;
14724 inst.instruction |= neon_logbits (et.size) << 6;
14725 break;
14727 case 1: /* VLD2. */
14728 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14729 &do_align, 8, 16, 16, 32, 32, 64, -1);
14730 if (align_good == FAIL)
14731 return;
14732 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14733 _("bad list length"));
14734 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14735 inst.instruction |= 1 << 5;
14736 inst.instruction |= neon_logbits (et.size) << 6;
14737 break;
14739 case 2: /* VLD3. */
14740 constraint (inst.operands[1].immisalign,
14741 _("can't use alignment with this instruction"));
14742 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14743 _("bad list length"));
14744 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14745 inst.instruction |= 1 << 5;
14746 inst.instruction |= neon_logbits (et.size) << 6;
14747 break;
14749 case 3: /* VLD4. */
14751 int align = inst.operands[1].imm >> 8;
14752 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14753 16, 64, 32, 64, 32, 128, -1);
14754 if (align_good == FAIL)
14755 return;
14756 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14757 _("bad list length"));
14758 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14759 inst.instruction |= 1 << 5;
14760 if (et.size == 32 && align == 128)
14761 inst.instruction |= 0x3 << 6;
14762 else
14763 inst.instruction |= neon_logbits (et.size) << 6;
14765 break;
14767 default: ;
14770 inst.instruction |= do_align << 4;
14773 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14774 apart from bits [11:4]. */
14776 static void
14777 do_neon_ldx_stx (void)
14779 switch (NEON_LANE (inst.operands[0].imm))
14781 case NEON_INTERLEAVE_LANES:
14782 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14783 do_neon_ld_st_interleave ();
14784 break;
14786 case NEON_ALL_LANES:
14787 inst.instruction = NEON_ENC_DUP (inst.instruction);
14788 do_neon_ld_dup ();
14789 break;
14791 default:
14792 inst.instruction = NEON_ENC_LANE (inst.instruction);
14793 do_neon_ld_st_lane ();
14796 /* L bit comes from bit mask. */
14797 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14799 inst.instruction |= inst.operands[1].reg << 16;
14801 if (inst.operands[1].postind)
14803 int postreg = inst.operands[1].imm & 0xf;
14804 constraint (!inst.operands[1].immisreg,
14805 _("post-index must be a register"));
14806 constraint (postreg == 0xd || postreg == 0xf,
14807 _("bad register for post-index"));
14808 inst.instruction |= postreg;
14810 else if (inst.operands[1].writeback)
14812 inst.instruction |= 0xd;
14814 else
14815 inst.instruction |= 0xf;
14817 if (thumb_mode)
14818 inst.instruction |= 0xf9000000;
14819 else
14820 inst.instruction |= 0xf4000000;
14823 /* Overall per-instruction processing. */
14825 /* We need to be able to fix up arbitrary expressions in some statements.
14826 This is so that we can handle symbols that are an arbitrary distance from
14827 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14828 which returns part of an address in a form which will be valid for
14829 a data instruction. We do this by pushing the expression into a symbol
14830 in the expr_section, and creating a fix for that. */
14832 static void
14833 fix_new_arm (fragS * frag,
14834 int where,
14835 short int size,
14836 expressionS * exp,
14837 int pc_rel,
14838 int reloc)
14840 fixS * new_fix;
14842 switch (exp->X_op)
14844 case O_constant:
14845 case O_symbol:
14846 case O_add:
14847 case O_subtract:
14848 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14849 (enum bfd_reloc_code_real) reloc);
14850 break;
14852 default:
14853 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14854 pc_rel, (enum bfd_reloc_code_real) reloc);
14855 break;
14858 /* Mark whether the fix is to a THUMB instruction, or an ARM
14859 instruction. */
14860 new_fix->tc_fix_data = thumb_mode;
14863 /* Create a frg for an instruction requiring relaxation. */
14864 static void
14865 output_relax_insn (void)
14867 char * to;
14868 symbolS *sym;
14869 int offset;
14871 /* The size of the instruction is unknown, so tie the debug info to the
14872 start of the instruction. */
14873 dwarf2_emit_insn (0);
14875 switch (inst.reloc.exp.X_op)
14877 case O_symbol:
14878 sym = inst.reloc.exp.X_add_symbol;
14879 offset = inst.reloc.exp.X_add_number;
14880 break;
14881 case O_constant:
14882 sym = NULL;
14883 offset = inst.reloc.exp.X_add_number;
14884 break;
14885 default:
14886 sym = make_expr_symbol (&inst.reloc.exp);
14887 offset = 0;
14888 break;
14890 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14891 inst.relax, sym, offset, NULL/*offset, opcode*/);
14892 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14895 /* Write a 32-bit thumb instruction to buf. */
14896 static void
14897 put_thumb32_insn (char * buf, unsigned long insn)
14899 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14900 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14903 static void
14904 output_inst (const char * str)
14906 char * to = NULL;
14908 if (inst.error)
14910 as_bad ("%s -- `%s'", inst.error, str);
14911 return;
14913 if (inst.relax)
14915 output_relax_insn ();
14916 return;
14918 if (inst.size == 0)
14919 return;
14921 to = frag_more (inst.size);
14922 /* PR 9814: Record the thumb mode into the current frag so that we know
14923 what type of NOP padding to use, if necessary. We override any previous
14924 setting so that if the mode has changed then the NOPS that we use will
14925 match the encoding of the last instruction in the frag. */
14926 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
14928 if (thumb_mode && (inst.size > THUMB_SIZE))
14930 gas_assert (inst.size == (2 * THUMB_SIZE));
14931 put_thumb32_insn (to, inst.instruction);
14933 else if (inst.size > INSN_SIZE)
14935 gas_assert (inst.size == (2 * INSN_SIZE));
14936 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14937 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14939 else
14940 md_number_to_chars (to, inst.instruction, inst.size);
14942 if (inst.reloc.type != BFD_RELOC_UNUSED)
14943 fix_new_arm (frag_now, to - frag_now->fr_literal,
14944 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14945 inst.reloc.type);
14947 dwarf2_emit_insn (inst.size);
14950 static char *
14951 output_it_inst (int cond, int mask, char * to)
14953 unsigned long instruction = 0xbf00;
14955 mask &= 0xf;
14956 instruction |= mask;
14957 instruction |= cond << 4;
14959 if (to == NULL)
14961 to = frag_more (2);
14962 #ifdef OBJ_ELF
14963 dwarf2_emit_insn (2);
14964 #endif
14967 md_number_to_chars (to, instruction, 2);
14969 return to;
14972 /* Tag values used in struct asm_opcode's tag field. */
14973 enum opcode_tag
14975 OT_unconditional, /* Instruction cannot be conditionalized.
14976 The ARM condition field is still 0xE. */
14977 OT_unconditionalF, /* Instruction cannot be conditionalized
14978 and carries 0xF in its ARM condition field. */
14979 OT_csuffix, /* Instruction takes a conditional suffix. */
14980 OT_csuffixF, /* Some forms of the instruction take a conditional
14981 suffix, others place 0xF where the condition field
14982 would be. */
14983 OT_cinfix3, /* Instruction takes a conditional infix,
14984 beginning at character index 3. (In
14985 unified mode, it becomes a suffix.) */
14986 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14987 tsts, cmps, cmns, and teqs. */
14988 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14989 character index 3, even in unified mode. Used for
14990 legacy instructions where suffix and infix forms
14991 may be ambiguous. */
14992 OT_csuf_or_in3, /* Instruction takes either a conditional
14993 suffix or an infix at character index 3. */
14994 OT_odd_infix_unc, /* This is the unconditional variant of an
14995 instruction that takes a conditional infix
14996 at an unusual position. In unified mode,
14997 this variant will accept a suffix. */
14998 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14999 are the conditional variants of instructions that
15000 take conditional infixes in unusual positions.
15001 The infix appears at character index
15002 (tag - OT_odd_infix_0). These are not accepted
15003 in unified mode. */
15006 /* Subroutine of md_assemble, responsible for looking up the primary
15007 opcode from the mnemonic the user wrote. STR points to the
15008 beginning of the mnemonic.
15010 This is not simply a hash table lookup, because of conditional
15011 variants. Most instructions have conditional variants, which are
15012 expressed with a _conditional affix_ to the mnemonic. If we were
15013 to encode each conditional variant as a literal string in the opcode
15014 table, it would have approximately 20,000 entries.
15016 Most mnemonics take this affix as a suffix, and in unified syntax,
15017 'most' is upgraded to 'all'. However, in the divided syntax, some
15018 instructions take the affix as an infix, notably the s-variants of
15019 the arithmetic instructions. Of those instructions, all but six
15020 have the infix appear after the third character of the mnemonic.
15022 Accordingly, the algorithm for looking up primary opcodes given
15023 an identifier is:
15025 1. Look up the identifier in the opcode table.
15026 If we find a match, go to step U.
15028 2. Look up the last two characters of the identifier in the
15029 conditions table. If we find a match, look up the first N-2
15030 characters of the identifier in the opcode table. If we
15031 find a match, go to step CE.
15033 3. Look up the fourth and fifth characters of the identifier in
15034 the conditions table. If we find a match, extract those
15035 characters from the identifier, and look up the remaining
15036 characters in the opcode table. If we find a match, go
15037 to step CM.
15039 4. Fail.
15041 U. Examine the tag field of the opcode structure, in case this is
15042 one of the six instructions with its conditional infix in an
15043 unusual place. If it is, the tag tells us where to find the
15044 infix; look it up in the conditions table and set inst.cond
15045 accordingly. Otherwise, this is an unconditional instruction.
15046 Again set inst.cond accordingly. Return the opcode structure.
15048 CE. Examine the tag field to make sure this is an instruction that
15049 should receive a conditional suffix. If it is not, fail.
15050 Otherwise, set inst.cond from the suffix we already looked up,
15051 and return the opcode structure.
15053 CM. Examine the tag field to make sure this is an instruction that
15054 should receive a conditional infix after the third character.
15055 If it is not, fail. Otherwise, undo the edits to the current
15056 line of input and proceed as for case CE. */
15058 static const struct asm_opcode *
15059 opcode_lookup (char **str)
15061 char *end, *base;
15062 char *affix;
15063 const struct asm_opcode *opcode;
15064 const struct asm_cond *cond;
15065 char save[2];
15067 /* Scan up to the end of the mnemonic, which must end in white space,
15068 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15069 for (base = end = *str; *end != '\0'; end++)
15070 if (*end == ' ' || *end == '.')
15071 break;
15073 if (end == base)
15074 return NULL;
15076 /* Handle a possible width suffix and/or Neon type suffix. */
15077 if (end[0] == '.')
15079 int offset = 2;
15081 /* The .w and .n suffixes are only valid if the unified syntax is in
15082 use. */
15083 if (unified_syntax && end[1] == 'w')
15084 inst.size_req = 4;
15085 else if (unified_syntax && end[1] == 'n')
15086 inst.size_req = 2;
15087 else
15088 offset = 0;
15090 inst.vectype.elems = 0;
15092 *str = end + offset;
15094 if (end[offset] == '.')
15096 /* See if we have a Neon type suffix (possible in either unified or
15097 non-unified ARM syntax mode). */
15098 if (parse_neon_type (&inst.vectype, str) == FAIL)
15099 return NULL;
15101 else if (end[offset] != '\0' && end[offset] != ' ')
15102 return NULL;
15104 else
15105 *str = end;
15107 /* Look for unaffixed or special-case affixed mnemonic. */
15108 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15109 end - base);
15110 if (opcode)
15112 /* step U */
15113 if (opcode->tag < OT_odd_infix_0)
15115 inst.cond = COND_ALWAYS;
15116 return opcode;
15119 if (warn_on_deprecated && unified_syntax)
15120 as_warn (_("conditional infixes are deprecated in unified syntax"));
15121 affix = base + (opcode->tag - OT_odd_infix_0);
15122 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15123 gas_assert (cond);
15125 inst.cond = cond->value;
15126 return opcode;
15129 /* Cannot have a conditional suffix on a mnemonic of less than two
15130 characters. */
15131 if (end - base < 3)
15132 return NULL;
15134 /* Look for suffixed mnemonic. */
15135 affix = end - 2;
15136 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15137 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15138 affix - base);
15139 if (opcode && cond)
15141 /* step CE */
15142 switch (opcode->tag)
15144 case OT_cinfix3_legacy:
15145 /* Ignore conditional suffixes matched on infix only mnemonics. */
15146 break;
15148 case OT_cinfix3:
15149 case OT_cinfix3_deprecated:
15150 case OT_odd_infix_unc:
15151 if (!unified_syntax)
15152 return 0;
15153 /* else fall through */
15155 case OT_csuffix:
15156 case OT_csuffixF:
15157 case OT_csuf_or_in3:
15158 inst.cond = cond->value;
15159 return opcode;
15161 case OT_unconditional:
15162 case OT_unconditionalF:
15163 if (thumb_mode)
15164 inst.cond = cond->value;
15165 else
15167 /* Delayed diagnostic. */
15168 inst.error = BAD_COND;
15169 inst.cond = COND_ALWAYS;
15171 return opcode;
15173 default:
15174 return NULL;
15178 /* Cannot have a usual-position infix on a mnemonic of less than
15179 six characters (five would be a suffix). */
15180 if (end - base < 6)
15181 return NULL;
15183 /* Look for infixed mnemonic in the usual position. */
15184 affix = base + 3;
15185 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15186 if (!cond)
15187 return NULL;
15189 memcpy (save, affix, 2);
15190 memmove (affix, affix + 2, (end - affix) - 2);
15191 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15192 (end - base) - 2);
15193 memmove (affix + 2, affix, (end - affix) - 2);
15194 memcpy (affix, save, 2);
15196 if (opcode
15197 && (opcode->tag == OT_cinfix3
15198 || opcode->tag == OT_cinfix3_deprecated
15199 || opcode->tag == OT_csuf_or_in3
15200 || opcode->tag == OT_cinfix3_legacy))
15202 /* Step CM. */
15203 if (warn_on_deprecated && unified_syntax
15204 && (opcode->tag == OT_cinfix3
15205 || opcode->tag == OT_cinfix3_deprecated))
15206 as_warn (_("conditional infixes are deprecated in unified syntax"));
15208 inst.cond = cond->value;
15209 return opcode;
15212 return NULL;
15215 /* This function generates an initial IT instruction, leaving its block
15216 virtually open for the new instructions. Eventually,
15217 the mask will be updated by now_it_add_mask () each time
15218 a new instruction needs to be included in the IT block.
15219 Finally, the block is closed with close_automatic_it_block ().
15220 The block closure can be requested either from md_assemble (),
15221 a tencode (), or due to a label hook. */
15223 static void
15224 new_automatic_it_block (int cond)
15226 now_it.state = AUTOMATIC_IT_BLOCK;
15227 now_it.mask = 0x18;
15228 now_it.cc = cond;
15229 now_it.block_length = 1;
15230 mapping_state (MAP_THUMB);
15231 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15234 /* Close an automatic IT block.
15235 See comments in new_automatic_it_block (). */
15237 static void
15238 close_automatic_it_block (void)
15240 now_it.mask = 0x10;
15241 now_it.block_length = 0;
15244 /* Update the mask of the current automatically-generated IT
15245 instruction. See comments in new_automatic_it_block (). */
15247 static void
15248 now_it_add_mask (int cond)
15250 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15251 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15252 | ((bitvalue) << (nbit)))
15253 const int resulting_bit = (cond & 1);
15255 now_it.mask &= 0xf;
15256 now_it.mask = SET_BIT_VALUE (now_it.mask,
15257 resulting_bit,
15258 (5 - now_it.block_length));
15259 now_it.mask = SET_BIT_VALUE (now_it.mask,
15261 ((5 - now_it.block_length) - 1) );
15262 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15264 #undef CLEAR_BIT
15265 #undef SET_BIT_VALUE
15268 /* The IT blocks handling machinery is accessed through the these functions:
15269 it_fsm_pre_encode () from md_assemble ()
15270 set_it_insn_type () optional, from the tencode functions
15271 set_it_insn_type_last () ditto
15272 in_it_block () ditto
15273 it_fsm_post_encode () from md_assemble ()
15274 force_automatic_it_block_close () from label habdling functions
15276 Rationale:
15277 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15278 initializing the IT insn type with a generic initial value depending
15279 on the inst.condition.
15280 2) During the tencode function, two things may happen:
15281 a) The tencode function overrides the IT insn type by
15282 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15283 b) The tencode function queries the IT block state by
15284 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15286 Both set_it_insn_type and in_it_block run the internal FSM state
15287 handling function (handle_it_state), because: a) setting the IT insn
15288 type may incur in an invalid state (exiting the function),
15289 and b) querying the state requires the FSM to be updated.
15290 Specifically we want to avoid creating an IT block for conditional
15291 branches, so it_fsm_pre_encode is actually a guess and we can't
15292 determine whether an IT block is required until the tencode () routine
15293 has decided what type of instruction this actually it.
15294 Because of this, if set_it_insn_type and in_it_block have to be used,
15295 set_it_insn_type has to be called first.
15297 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15298 determines the insn IT type depending on the inst.cond code.
15299 When a tencode () routine encodes an instruction that can be
15300 either outside an IT block, or, in the case of being inside, has to be
15301 the last one, set_it_insn_type_last () will determine the proper
15302 IT instruction type based on the inst.cond code. Otherwise,
15303 set_it_insn_type can be called for overriding that logic or
15304 for covering other cases.
15306 Calling handle_it_state () may not transition the IT block state to
15307 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15308 still queried. Instead, if the FSM determines that the state should
15309 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15310 after the tencode () function: that's what it_fsm_post_encode () does.
15312 Since in_it_block () calls the state handling function to get an
15313 updated state, an error may occur (due to invalid insns combination).
15314 In that case, inst.error is set.
15315 Therefore, inst.error has to be checked after the execution of
15316 the tencode () routine.
15318 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15319 any pending state change (if any) that didn't take place in
15320 handle_it_state () as explained above. */
15322 static void
15323 it_fsm_pre_encode (void)
15325 if (inst.cond != COND_ALWAYS)
15326 inst.it_insn_type = INSIDE_IT_INSN;
15327 else
15328 inst.it_insn_type = OUTSIDE_IT_INSN;
15330 now_it.state_handled = 0;
15333 /* IT state FSM handling function. */
15335 static int
15336 handle_it_state (void)
15338 now_it.state_handled = 1;
15340 switch (now_it.state)
15342 case OUTSIDE_IT_BLOCK:
15343 switch (inst.it_insn_type)
15345 case OUTSIDE_IT_INSN:
15346 break;
15348 case INSIDE_IT_INSN:
15349 case INSIDE_IT_LAST_INSN:
15350 if (thumb_mode == 0)
15352 if (unified_syntax
15353 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15354 as_tsktsk (_("Warning: conditional outside an IT block"\
15355 " for Thumb."));
15357 else
15359 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15360 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15362 /* Automatically generate the IT instruction. */
15363 new_automatic_it_block (inst.cond);
15364 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15365 close_automatic_it_block ();
15367 else
15369 inst.error = BAD_OUT_IT;
15370 return FAIL;
15373 break;
15375 case IF_INSIDE_IT_LAST_INSN:
15376 case NEUTRAL_IT_INSN:
15377 break;
15379 case IT_INSN:
15380 now_it.state = MANUAL_IT_BLOCK;
15381 now_it.block_length = 0;
15382 break;
15384 break;
15386 case AUTOMATIC_IT_BLOCK:
15387 /* Three things may happen now:
15388 a) We should increment current it block size;
15389 b) We should close current it block (closing insn or 4 insns);
15390 c) We should close current it block and start a new one (due
15391 to incompatible conditions or
15392 4 insns-length block reached). */
15394 switch (inst.it_insn_type)
15396 case OUTSIDE_IT_INSN:
15397 /* The closure of the block shall happen immediatelly,
15398 so any in_it_block () call reports the block as closed. */
15399 force_automatic_it_block_close ();
15400 break;
15402 case INSIDE_IT_INSN:
15403 case INSIDE_IT_LAST_INSN:
15404 case IF_INSIDE_IT_LAST_INSN:
15405 now_it.block_length++;
15407 if (now_it.block_length > 4
15408 || !now_it_compatible (inst.cond))
15410 force_automatic_it_block_close ();
15411 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15412 new_automatic_it_block (inst.cond);
15414 else
15416 now_it_add_mask (inst.cond);
15419 if (now_it.state == AUTOMATIC_IT_BLOCK
15420 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15421 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15422 close_automatic_it_block ();
15423 break;
15425 case NEUTRAL_IT_INSN:
15426 now_it.block_length++;
15428 if (now_it.block_length > 4)
15429 force_automatic_it_block_close ();
15430 else
15431 now_it_add_mask (now_it.cc & 1);
15432 break;
15434 case IT_INSN:
15435 close_automatic_it_block ();
15436 now_it.state = MANUAL_IT_BLOCK;
15437 break;
15439 break;
15441 case MANUAL_IT_BLOCK:
15443 /* Check conditional suffixes. */
15444 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15445 int is_last;
15446 now_it.mask <<= 1;
15447 now_it.mask &= 0x1f;
15448 is_last = (now_it.mask == 0x10);
15450 switch (inst.it_insn_type)
15452 case OUTSIDE_IT_INSN:
15453 inst.error = BAD_NOT_IT;
15454 return FAIL;
15456 case INSIDE_IT_INSN:
15457 if (cond != inst.cond)
15459 inst.error = BAD_IT_COND;
15460 return FAIL;
15462 break;
15464 case INSIDE_IT_LAST_INSN:
15465 case IF_INSIDE_IT_LAST_INSN:
15466 if (cond != inst.cond)
15468 inst.error = BAD_IT_COND;
15469 return FAIL;
15471 if (!is_last)
15473 inst.error = BAD_BRANCH;
15474 return FAIL;
15476 break;
15478 case NEUTRAL_IT_INSN:
15479 /* The BKPT instruction is unconditional even in an IT block. */
15480 break;
15482 case IT_INSN:
15483 inst.error = BAD_IT_IT;
15484 return FAIL;
15487 break;
15490 return SUCCESS;
15493 static void
15494 it_fsm_post_encode (void)
15496 int is_last;
15498 if (!now_it.state_handled)
15499 handle_it_state ();
15501 is_last = (now_it.mask == 0x10);
15502 if (is_last)
15504 now_it.state = OUTSIDE_IT_BLOCK;
15505 now_it.mask = 0;
15509 static void
15510 force_automatic_it_block_close (void)
15512 if (now_it.state == AUTOMATIC_IT_BLOCK)
15514 close_automatic_it_block ();
15515 now_it.state = OUTSIDE_IT_BLOCK;
15516 now_it.mask = 0;
15520 static int
15521 in_it_block (void)
15523 if (!now_it.state_handled)
15524 handle_it_state ();
15526 return now_it.state != OUTSIDE_IT_BLOCK;
15529 void
15530 md_assemble (char *str)
15532 char *p = str;
15533 const struct asm_opcode * opcode;
15535 /* Align the previous label if needed. */
15536 if (last_label_seen != NULL)
15538 symbol_set_frag (last_label_seen, frag_now);
15539 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15540 S_SET_SEGMENT (last_label_seen, now_seg);
15543 memset (&inst, '\0', sizeof (inst));
15544 inst.reloc.type = BFD_RELOC_UNUSED;
15546 opcode = opcode_lookup (&p);
15547 if (!opcode)
15549 /* It wasn't an instruction, but it might be a register alias of
15550 the form alias .req reg, or a Neon .dn/.qn directive. */
15551 if (! create_register_alias (str, p)
15552 && ! create_neon_reg_alias (str, p))
15553 as_bad (_("bad instruction `%s'"), str);
15555 return;
15558 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15559 as_warn (_("s suffix on comparison instruction is deprecated"));
15561 /* The value which unconditional instructions should have in place of the
15562 condition field. */
15563 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15565 if (thumb_mode)
15567 arm_feature_set variant;
15569 variant = cpu_variant;
15570 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15571 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15572 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15573 /* Check that this instruction is supported for this CPU. */
15574 if (!opcode->tvariant
15575 || (thumb_mode == 1
15576 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15578 as_bad (_("selected processor does not support `%s'"), str);
15579 return;
15581 if (inst.cond != COND_ALWAYS && !unified_syntax
15582 && opcode->tencode != do_t_branch)
15584 as_bad (_("Thumb does not support conditional execution"));
15585 return;
15588 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15590 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15591 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15592 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15594 /* Two things are addressed here.
15595 1) Implicit require narrow instructions on Thumb-1.
15596 This avoids relaxation accidentally introducing Thumb-2
15597 instructions.
15598 2) Reject wide instructions in non Thumb-2 cores. */
15599 if (inst.size_req == 0)
15600 inst.size_req = 2;
15601 else if (inst.size_req == 4)
15603 as_bad (_("selected processor does not support `%s'"), str);
15604 return;
15609 inst.instruction = opcode->tvalue;
15611 if (!parse_operands (p, opcode->operands))
15613 /* Prepare the it_insn_type for those encodings that don't set
15614 it. */
15615 it_fsm_pre_encode ();
15617 opcode->tencode ();
15619 it_fsm_post_encode ();
15622 if (!(inst.error || inst.relax))
15624 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15625 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15626 if (inst.size_req && inst.size_req != inst.size)
15628 as_bad (_("cannot honor width suffix -- `%s'"), str);
15629 return;
15633 /* Something has gone badly wrong if we try to relax a fixed size
15634 instruction. */
15635 gas_assert (inst.size_req == 0 || !inst.relax);
15637 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15638 *opcode->tvariant);
15639 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15640 set those bits when Thumb-2 32-bit instructions are seen. ie.
15641 anything other than bl/blx and v6-M instructions.
15642 This is overly pessimistic for relaxable instructions. */
15643 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15644 || inst.relax)
15645 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15646 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15647 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15648 arm_ext_v6t2);
15650 if (!inst.error)
15652 mapping_state (MAP_THUMB);
15655 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15657 bfd_boolean is_bx;
15659 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15660 is_bx = (opcode->aencode == do_bx);
15662 /* Check that this instruction is supported for this CPU. */
15663 if (!(is_bx && fix_v4bx)
15664 && !(opcode->avariant &&
15665 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15667 as_bad (_("selected processor does not support `%s'"), str);
15668 return;
15670 if (inst.size_req)
15672 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15673 return;
15676 inst.instruction = opcode->avalue;
15677 if (opcode->tag == OT_unconditionalF)
15678 inst.instruction |= 0xF << 28;
15679 else
15680 inst.instruction |= inst.cond << 28;
15681 inst.size = INSN_SIZE;
15682 if (!parse_operands (p, opcode->operands))
15684 it_fsm_pre_encode ();
15685 opcode->aencode ();
15686 it_fsm_post_encode ();
15688 /* Arm mode bx is marked as both v4T and v5 because it's still required
15689 on a hypothetical non-thumb v5 core. */
15690 if (is_bx)
15691 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15692 else
15693 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15694 *opcode->avariant);
15695 if (!inst.error)
15697 mapping_state (MAP_ARM);
15700 else
15702 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15703 "-- `%s'"), str);
15704 return;
15706 output_inst (str);
15709 static void
15710 check_it_blocks_finished (void)
15712 #ifdef OBJ_ELF
15713 asection *sect;
15715 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15716 if (seg_info (sect)->tc_segment_info_data.current_it.state
15717 == MANUAL_IT_BLOCK)
15719 as_warn (_("section '%s' finished with an open IT block."),
15720 sect->name);
15722 #else
15723 if (now_it.state == MANUAL_IT_BLOCK)
15724 as_warn (_("file finished with an open IT block."));
15725 #endif
15728 /* Various frobbings of labels and their addresses. */
15730 void
15731 arm_start_line_hook (void)
15733 last_label_seen = NULL;
15736 void
15737 arm_frob_label (symbolS * sym)
15739 last_label_seen = sym;
15741 ARM_SET_THUMB (sym, thumb_mode);
15743 #if defined OBJ_COFF || defined OBJ_ELF
15744 ARM_SET_INTERWORK (sym, support_interwork);
15745 #endif
15747 force_automatic_it_block_close ();
15749 /* Note - do not allow local symbols (.Lxxx) to be labelled
15750 as Thumb functions. This is because these labels, whilst
15751 they exist inside Thumb code, are not the entry points for
15752 possible ARM->Thumb calls. Also, these labels can be used
15753 as part of a computed goto or switch statement. eg gcc
15754 can generate code that looks like this:
15756 ldr r2, [pc, .Laaa]
15757 lsl r3, r3, #2
15758 ldr r2, [r3, r2]
15759 mov pc, r2
15761 .Lbbb: .word .Lxxx
15762 .Lccc: .word .Lyyy
15763 ..etc...
15764 .Laaa: .word Lbbb
15766 The first instruction loads the address of the jump table.
15767 The second instruction converts a table index into a byte offset.
15768 The third instruction gets the jump address out of the table.
15769 The fourth instruction performs the jump.
15771 If the address stored at .Laaa is that of a symbol which has the
15772 Thumb_Func bit set, then the linker will arrange for this address
15773 to have the bottom bit set, which in turn would mean that the
15774 address computation performed by the third instruction would end
15775 up with the bottom bit set. Since the ARM is capable of unaligned
15776 word loads, the instruction would then load the incorrect address
15777 out of the jump table, and chaos would ensue. */
15778 if (label_is_thumb_function_name
15779 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15780 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15782 /* When the address of a Thumb function is taken the bottom
15783 bit of that address should be set. This will allow
15784 interworking between Arm and Thumb functions to work
15785 correctly. */
15787 THUMB_SET_FUNC (sym, 1);
15789 label_is_thumb_function_name = FALSE;
15792 dwarf2_emit_label (sym);
15795 bfd_boolean
15796 arm_data_in_code (void)
15798 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15800 *input_line_pointer = '/';
15801 input_line_pointer += 5;
15802 *input_line_pointer = 0;
15803 return TRUE;
15806 return FALSE;
15809 char *
15810 arm_canonicalize_symbol_name (char * name)
15812 int len;
15814 if (thumb_mode && (len = strlen (name)) > 5
15815 && streq (name + len - 5, "/data"))
15816 *(name + len - 5) = 0;
15818 return name;
15821 /* Table of all register names defined by default. The user can
15822 define additional names with .req. Note that all register names
15823 should appear in both upper and lowercase variants. Some registers
15824 also have mixed-case names. */
15826 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15827 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15828 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15829 #define REGSET(p,t) \
15830 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15831 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15832 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15833 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15834 #define REGSETH(p,t) \
15835 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15836 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15837 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15838 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15839 #define REGSET2(p,t) \
15840 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15841 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15842 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15843 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15845 static const struct reg_entry reg_names[] =
15847 /* ARM integer registers. */
15848 REGSET(r, RN), REGSET(R, RN),
15850 /* ATPCS synonyms. */
15851 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15852 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15853 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15855 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15856 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15857 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15859 /* Well-known aliases. */
15860 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15861 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15863 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15864 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15866 /* Coprocessor numbers. */
15867 REGSET(p, CP), REGSET(P, CP),
15869 /* Coprocessor register numbers. The "cr" variants are for backward
15870 compatibility. */
15871 REGSET(c, CN), REGSET(C, CN),
15872 REGSET(cr, CN), REGSET(CR, CN),
15874 /* FPA registers. */
15875 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15876 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15878 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15879 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15881 /* VFP SP registers. */
15882 REGSET(s,VFS), REGSET(S,VFS),
15883 REGSETH(s,VFS), REGSETH(S,VFS),
15885 /* VFP DP Registers. */
15886 REGSET(d,VFD), REGSET(D,VFD),
15887 /* Extra Neon DP registers. */
15888 REGSETH(d,VFD), REGSETH(D,VFD),
15890 /* Neon QP registers. */
15891 REGSET2(q,NQ), REGSET2(Q,NQ),
15893 /* VFP control registers. */
15894 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15895 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15896 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15897 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15898 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15899 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15901 /* Maverick DSP coprocessor registers. */
15902 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15903 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15905 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15906 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15907 REGDEF(dspsc,0,DSPSC),
15909 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15910 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15911 REGDEF(DSPSC,0,DSPSC),
15913 /* iWMMXt data registers - p0, c0-15. */
15914 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15916 /* iWMMXt control registers - p1, c0-3. */
15917 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15918 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15919 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15920 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15922 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15923 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15924 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15925 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15926 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15928 /* XScale accumulator registers. */
15929 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15931 #undef REGDEF
15932 #undef REGNUM
15933 #undef REGSET
15935 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15936 within psr_required_here. */
15937 static const struct asm_psr psrs[] =
15939 /* Backward compatibility notation. Note that "all" is no longer
15940 truly all possible PSR bits. */
15941 {"all", PSR_c | PSR_f},
15942 {"flg", PSR_f},
15943 {"ctl", PSR_c},
15945 /* Individual flags. */
15946 {"f", PSR_f},
15947 {"c", PSR_c},
15948 {"x", PSR_x},
15949 {"s", PSR_s},
15950 /* Combinations of flags. */
15951 {"fs", PSR_f | PSR_s},
15952 {"fx", PSR_f | PSR_x},
15953 {"fc", PSR_f | PSR_c},
15954 {"sf", PSR_s | PSR_f},
15955 {"sx", PSR_s | PSR_x},
15956 {"sc", PSR_s | PSR_c},
15957 {"xf", PSR_x | PSR_f},
15958 {"xs", PSR_x | PSR_s},
15959 {"xc", PSR_x | PSR_c},
15960 {"cf", PSR_c | PSR_f},
15961 {"cs", PSR_c | PSR_s},
15962 {"cx", PSR_c | PSR_x},
15963 {"fsx", PSR_f | PSR_s | PSR_x},
15964 {"fsc", PSR_f | PSR_s | PSR_c},
15965 {"fxs", PSR_f | PSR_x | PSR_s},
15966 {"fxc", PSR_f | PSR_x | PSR_c},
15967 {"fcs", PSR_f | PSR_c | PSR_s},
15968 {"fcx", PSR_f | PSR_c | PSR_x},
15969 {"sfx", PSR_s | PSR_f | PSR_x},
15970 {"sfc", PSR_s | PSR_f | PSR_c},
15971 {"sxf", PSR_s | PSR_x | PSR_f},
15972 {"sxc", PSR_s | PSR_x | PSR_c},
15973 {"scf", PSR_s | PSR_c | PSR_f},
15974 {"scx", PSR_s | PSR_c | PSR_x},
15975 {"xfs", PSR_x | PSR_f | PSR_s},
15976 {"xfc", PSR_x | PSR_f | PSR_c},
15977 {"xsf", PSR_x | PSR_s | PSR_f},
15978 {"xsc", PSR_x | PSR_s | PSR_c},
15979 {"xcf", PSR_x | PSR_c | PSR_f},
15980 {"xcs", PSR_x | PSR_c | PSR_s},
15981 {"cfs", PSR_c | PSR_f | PSR_s},
15982 {"cfx", PSR_c | PSR_f | PSR_x},
15983 {"csf", PSR_c | PSR_s | PSR_f},
15984 {"csx", PSR_c | PSR_s | PSR_x},
15985 {"cxf", PSR_c | PSR_x | PSR_f},
15986 {"cxs", PSR_c | PSR_x | PSR_s},
15987 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15988 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15989 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15990 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15991 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15992 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15993 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15994 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15995 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15996 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15997 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15998 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15999 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16000 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16001 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16002 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16003 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16004 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16005 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16006 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16007 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16008 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16009 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16010 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16013 /* Table of V7M psr names. */
16014 static const struct asm_psr v7m_psrs[] =
16016 {"apsr", 0 }, {"APSR", 0 },
16017 {"iapsr", 1 }, {"IAPSR", 1 },
16018 {"eapsr", 2 }, {"EAPSR", 2 },
16019 {"psr", 3 }, {"PSR", 3 },
16020 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16021 {"ipsr", 5 }, {"IPSR", 5 },
16022 {"epsr", 6 }, {"EPSR", 6 },
16023 {"iepsr", 7 }, {"IEPSR", 7 },
16024 {"msp", 8 }, {"MSP", 8 },
16025 {"psp", 9 }, {"PSP", 9 },
16026 {"primask", 16}, {"PRIMASK", 16},
16027 {"basepri", 17}, {"BASEPRI", 17},
16028 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16029 {"faultmask", 19}, {"FAULTMASK", 19},
16030 {"control", 20}, {"CONTROL", 20}
16033 /* Table of all shift-in-operand names. */
16034 static const struct asm_shift_name shift_names [] =
16036 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16037 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16038 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16039 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16040 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16041 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16044 /* Table of all explicit relocation names. */
16045 #ifdef OBJ_ELF
16046 static struct reloc_entry reloc_names[] =
16048 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16049 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16050 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16051 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16052 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16053 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16054 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16055 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16056 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16057 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16058 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16060 #endif
16062 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16063 static const struct asm_cond conds[] =
16065 {"eq", 0x0},
16066 {"ne", 0x1},
16067 {"cs", 0x2}, {"hs", 0x2},
16068 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16069 {"mi", 0x4},
16070 {"pl", 0x5},
16071 {"vs", 0x6},
16072 {"vc", 0x7},
16073 {"hi", 0x8},
16074 {"ls", 0x9},
16075 {"ge", 0xa},
16076 {"lt", 0xb},
16077 {"gt", 0xc},
16078 {"le", 0xd},
16079 {"al", 0xe}
16082 static struct asm_barrier_opt barrier_opt_names[] =
16084 { "sy", 0xf },
16085 { "un", 0x7 },
16086 { "st", 0xe },
16087 { "unst", 0x6 }
16090 /* Table of ARM-format instructions. */
16092 /* Macros for gluing together operand strings. N.B. In all cases
16093 other than OPS0, the trailing OP_stop comes from default
16094 zero-initialization of the unspecified elements of the array. */
16095 #define OPS0() { OP_stop, }
16096 #define OPS1(a) { OP_##a, }
16097 #define OPS2(a,b) { OP_##a,OP_##b, }
16098 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16099 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16100 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16101 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16103 /* These macros abstract out the exact format of the mnemonic table and
16104 save some repeated characters. */
16106 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16107 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16108 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16109 THUMB_VARIANT, do_##ae, do_##te }
16111 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16112 a T_MNEM_xyz enumerator. */
16113 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16114 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16115 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16116 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16118 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16119 infix after the third character. */
16120 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16121 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16122 THUMB_VARIANT, do_##ae, do_##te }
16123 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16124 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16125 THUMB_VARIANT, do_##ae, do_##te }
16126 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16127 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16128 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16129 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16130 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16131 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16132 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16133 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16135 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16136 appear in the condition table. */
16137 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16138 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16139 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16141 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16142 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16143 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16144 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16145 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16146 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16147 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16148 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16149 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16150 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16151 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16152 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16153 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16154 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16155 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16156 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16157 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16158 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16159 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16160 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16162 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16163 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16164 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16165 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16167 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16168 field is still 0xE. Many of the Thumb variants can be executed
16169 conditionally, so this is checked separately. */
16170 #define TUE(mnem, op, top, nops, ops, ae, te) \
16171 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16172 THUMB_VARIANT, do_##ae, do_##te }
16174 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16175 condition code field. */
16176 #define TUF(mnem, op, top, nops, ops, ae, te) \
16177 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16178 THUMB_VARIANT, do_##ae, do_##te }
16180 /* ARM-only variants of all the above. */
16181 #define CE(mnem, op, nops, ops, ae) \
16182 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16184 #define C3(mnem, op, nops, ops, ae) \
16185 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16187 /* Legacy mnemonics that always have conditional infix after the third
16188 character. */
16189 #define CL(mnem, op, nops, ops, ae) \
16190 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16191 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16193 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16194 #define cCE(mnem, op, nops, ops, ae) \
16195 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16197 /* Legacy coprocessor instructions where conditional infix and conditional
16198 suffix are ambiguous. For consistency this includes all FPA instructions,
16199 not just the potentially ambiguous ones. */
16200 #define cCL(mnem, op, nops, ops, ae) \
16201 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16202 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16204 /* Coprocessor, takes either a suffix or a position-3 infix
16205 (for an FPA corner case). */
16206 #define C3E(mnem, op, nops, ops, ae) \
16207 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16208 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16210 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16211 { m1 #m2 m3, OPS##nops ops, \
16212 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16213 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16215 #define CM(m1, m2, op, nops, ops, ae) \
16216 xCM_ (m1, , m2, op, nops, ops, ae), \
16217 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16218 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16219 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16220 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16221 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16222 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16223 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16224 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16225 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16226 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16227 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16228 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16229 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16230 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16231 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16232 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16233 xCM_ (m1, le, m2, op, nops, ops, ae), \
16234 xCM_ (m1, al, m2, op, nops, ops, ae)
16236 #define UE(mnem, op, nops, ops, ae) \
16237 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16239 #define UF(mnem, op, nops, ops, ae) \
16240 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16242 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16243 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16244 use the same encoding function for each. */
16245 #define NUF(mnem, op, nops, ops, enc) \
16246 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16247 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16249 /* Neon data processing, version which indirects through neon_enc_tab for
16250 the various overloaded versions of opcodes. */
16251 #define nUF(mnem, op, nops, ops, enc) \
16252 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16253 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16255 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16256 version. */
16257 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16258 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16259 THUMB_VARIANT, do_##enc, do_##enc }
16261 #define NCE(mnem, op, nops, ops, enc) \
16262 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16264 #define NCEF(mnem, op, nops, ops, enc) \
16265 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16267 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16268 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16269 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16270 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16272 #define nCE(mnem, op, nops, ops, enc) \
16273 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16275 #define nCEF(mnem, op, nops, ops, enc) \
16276 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16278 #define do_0 0
16280 /* Thumb-only, unconditional. */
16281 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16283 static const struct asm_opcode insns[] =
16285 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16286 #define THUMB_VARIANT &arm_ext_v4t
16287 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16288 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16289 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16290 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16291 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16292 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16293 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16294 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16295 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16296 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16297 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16298 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16299 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16300 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16301 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16302 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16304 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16305 for setting PSR flag bits. They are obsolete in V6 and do not
16306 have Thumb equivalents. */
16307 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16308 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16309 CL("tstp", 110f000, 2, (RR, SH), cmp),
16310 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16311 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16312 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16313 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16314 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16315 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16317 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16318 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16319 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16320 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16322 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16323 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16324 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16325 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16327 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16328 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16329 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16330 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16331 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16332 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16334 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16335 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16336 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16337 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16339 /* Pseudo ops. */
16340 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16341 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16342 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16344 /* Thumb-compatibility pseudo ops. */
16345 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16346 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16347 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16348 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16349 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16350 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16351 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16352 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16353 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16354 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16355 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16356 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16358 /* These may simplify to neg. */
16359 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16360 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16362 #undef THUMB_VARIANT
16363 #define THUMB_VARIANT & arm_ext_v6
16365 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16367 /* V1 instructions with no Thumb analogue prior to V6T2. */
16368 #undef THUMB_VARIANT
16369 #define THUMB_VARIANT & arm_ext_v6t2
16371 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16372 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16373 CL("teqp", 130f000, 2, (RR, SH), cmp),
16375 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16376 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16377 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16378 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
16380 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16381 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16383 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16384 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16386 /* V1 instructions with no Thumb analogue at all. */
16387 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16388 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16390 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16391 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16392 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16393 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16394 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16395 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16396 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16397 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16399 #undef ARM_VARIANT
16400 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16401 #undef THUMB_VARIANT
16402 #define THUMB_VARIANT & arm_ext_v4t
16404 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16405 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16407 #undef THUMB_VARIANT
16408 #define THUMB_VARIANT & arm_ext_v6t2
16410 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16411 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16413 /* Generic coprocessor instructions. */
16414 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16415 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16416 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16417 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16418 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16419 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16420 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16422 #undef ARM_VARIANT
16423 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16425 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16426 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16428 #undef ARM_VARIANT
16429 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16430 #undef THUMB_VARIANT
16431 #define THUMB_VARIANT & arm_ext_msr
16433 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16434 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16436 #undef ARM_VARIANT
16437 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16438 #undef THUMB_VARIANT
16439 #define THUMB_VARIANT & arm_ext_v6t2
16441 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16442 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16443 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16444 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16445 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16446 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16447 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16448 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16450 #undef ARM_VARIANT
16451 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16452 #undef THUMB_VARIANT
16453 #define THUMB_VARIANT & arm_ext_v4t
16455 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16456 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16457 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16458 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16459 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16460 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16462 #undef ARM_VARIANT
16463 #define ARM_VARIANT & arm_ext_v4t_5
16465 /* ARM Architecture 4T. */
16466 /* Note: bx (and blx) are required on V5, even if the processor does
16467 not support Thumb. */
16468 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16470 #undef ARM_VARIANT
16471 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16472 #undef THUMB_VARIANT
16473 #define THUMB_VARIANT & arm_ext_v5t
16475 /* Note: blx has 2 variants; the .value coded here is for
16476 BLX(2). Only this variant has conditional execution. */
16477 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16478 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16480 #undef THUMB_VARIANT
16481 #define THUMB_VARIANT & arm_ext_v6t2
16483 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16484 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16485 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16486 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16487 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16488 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16489 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16490 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16492 #undef ARM_VARIANT
16493 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16494 #undef THUMB_VARIANT
16495 #define THUMB_VARIANT &arm_ext_v5exp
16497 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16498 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16499 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16500 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16502 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16503 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16505 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16506 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16507 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16508 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16510 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16511 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16512 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16513 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16515 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16516 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16518 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16519 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16520 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16521 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16523 #undef ARM_VARIANT
16524 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16525 #undef THUMB_VARIANT
16526 #define THUMB_VARIANT &arm_ext_v6t2
16528 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16529 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16530 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16532 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16533 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16535 #undef ARM_VARIANT
16536 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16538 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16540 #undef ARM_VARIANT
16541 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16542 #undef THUMB_VARIANT
16543 #define THUMB_VARIANT & arm_ext_v6
16545 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16546 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16547 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16548 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16549 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16550 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16551 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16552 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16553 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16554 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16556 #undef THUMB_VARIANT
16557 #define THUMB_VARIANT & arm_ext_v6t2
16559 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16560 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16561 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16562 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16564 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16565 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16567 /* ARM V6 not included in V7M. */
16568 #undef THUMB_VARIANT
16569 #define THUMB_VARIANT & arm_ext_v6_notm
16570 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16571 UF(rfeib, 9900a00, 1, (RRw), rfe),
16572 UF(rfeda, 8100a00, 1, (RRw), rfe),
16573 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16574 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16575 UF(rfefa, 9900a00, 1, (RRw), rfe),
16576 UF(rfeea, 8100a00, 1, (RRw), rfe),
16577 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16578 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16579 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16580 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16581 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16583 /* ARM V6 not included in V7M (eg. integer SIMD). */
16584 #undef THUMB_VARIANT
16585 #define THUMB_VARIANT & arm_ext_v6_dsp
16586 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16587 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16588 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16589 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16590 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16591 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16592 /* Old name for QASX. */
16593 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16594 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16595 /* Old name for QSAX. */
16596 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16597 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16598 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16599 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16600 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16601 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16602 /* Old name for SASX. */
16603 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16604 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16605 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16606 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16607 /* Old name for SHASX. */
16608 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16609 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16610 /* Old name for SHSAX. */
16611 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16612 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16613 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16614 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16615 /* Old name for SSAX. */
16616 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16617 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16618 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16619 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16620 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16621 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16622 /* Old name for UASX. */
16623 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16624 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16625 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16626 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16627 /* Old name for UHASX. */
16628 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16629 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16630 /* Old name for UHSAX. */
16631 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16632 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16633 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16634 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16635 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16636 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16637 /* Old name for UQASX. */
16638 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16639 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16640 /* Old name for UQSAX. */
16641 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16642 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16643 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16644 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16645 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16646 /* Old name for USAX. */
16647 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16648 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16649 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16650 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16651 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16652 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16653 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16654 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16655 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16656 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16657 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16658 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16659 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16660 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16661 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16662 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16663 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16664 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16665 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16666 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16667 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16668 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16669 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16670 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16671 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16672 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16673 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16674 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16675 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16676 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16677 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16678 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16679 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16680 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16682 #undef ARM_VARIANT
16683 #define ARM_VARIANT & arm_ext_v6k
16684 #undef THUMB_VARIANT
16685 #define THUMB_VARIANT & arm_ext_v6k
16687 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16688 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16689 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16690 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16692 #undef THUMB_VARIANT
16693 #define THUMB_VARIANT & arm_ext_v6_notm
16695 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16696 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
16698 #undef THUMB_VARIANT
16699 #define THUMB_VARIANT & arm_ext_v6t2
16701 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16702 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16703 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16704 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16705 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16707 #undef ARM_VARIANT
16708 #define ARM_VARIANT & arm_ext_v6z
16710 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16712 #undef ARM_VARIANT
16713 #define ARM_VARIANT & arm_ext_v6t2
16715 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16716 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16717 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16718 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16720 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16721 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16722 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16723 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16725 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16726 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16727 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16728 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16730 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16731 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16733 /* ARM does not really have an IT instruction, so always allow it.
16734 The opcode is copied from Thumb in order to allow warnings in
16735 -mimplicit-it=[never | arm] modes. */
16736 #undef ARM_VARIANT
16737 #define ARM_VARIANT & arm_ext_v1
16739 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16740 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16741 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16742 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16743 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16744 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16745 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16746 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16747 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16748 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16749 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16750 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16751 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16752 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16753 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16754 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16755 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16756 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16758 /* Thumb2 only instructions. */
16759 #undef ARM_VARIANT
16760 #define ARM_VARIANT NULL
16762 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16763 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16764 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16765 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16766 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16767 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16769 /* Thumb-2 hardware division instructions (R and M profiles only). */
16770 #undef THUMB_VARIANT
16771 #define THUMB_VARIANT & arm_ext_div
16773 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16774 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16776 /* ARM V6M/V7 instructions. */
16777 #undef ARM_VARIANT
16778 #define ARM_VARIANT & arm_ext_barrier
16779 #undef THUMB_VARIANT
16780 #define THUMB_VARIANT & arm_ext_barrier
16782 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16783 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16784 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16786 /* ARM V7 instructions. */
16787 #undef ARM_VARIANT
16788 #define ARM_VARIANT & arm_ext_v7
16789 #undef THUMB_VARIANT
16790 #define THUMB_VARIANT & arm_ext_v7
16792 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16793 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16795 #undef ARM_VARIANT
16796 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16798 cCE("wfs", e200110, 1, (RR), rd),
16799 cCE("rfs", e300110, 1, (RR), rd),
16800 cCE("wfc", e400110, 1, (RR), rd),
16801 cCE("rfc", e500110, 1, (RR), rd),
16803 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16804 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16805 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16806 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16808 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16809 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16810 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16811 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16813 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16814 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16815 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16816 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16817 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16818 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16819 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16820 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16821 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16822 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16823 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16824 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16826 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16827 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16828 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16829 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16830 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16831 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16832 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16833 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16834 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16835 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16836 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16837 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16839 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16840 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16841 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16842 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16843 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16844 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16845 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16846 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16847 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16848 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16849 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16850 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16852 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16853 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16854 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16855 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16856 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16857 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16858 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16859 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16860 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16861 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16862 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16863 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16865 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16866 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16867 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16868 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16869 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16870 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16871 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16872 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16873 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16874 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16875 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16876 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16878 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16879 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16880 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16881 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16882 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16883 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16884 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16885 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16886 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16887 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16888 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16889 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16891 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16892 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16893 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16894 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16895 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16896 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16897 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16898 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16899 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16900 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16901 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16902 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16904 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16905 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16906 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16907 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16908 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16909 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16910 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16911 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16912 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16913 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16914 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16915 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16917 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16918 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16919 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16920 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16921 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16922 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16923 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16924 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16925 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16926 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16927 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16928 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16930 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16931 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16932 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16933 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16934 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16935 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16936 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16937 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16938 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16939 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16940 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16941 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16943 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16944 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16945 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16946 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16947 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16948 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16949 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16950 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16951 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16952 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16953 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16954 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16956 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16957 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
16958 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
16959 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
16960 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
16961 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
16962 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
16963 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
16964 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
16965 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
16966 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
16967 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
16969 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
16970 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
16971 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
16972 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
16973 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
16974 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
16975 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
16976 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
16977 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
16978 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
16979 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
16980 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
16982 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
16983 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
16984 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
16985 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
16986 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
16987 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
16988 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
16989 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
16990 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
16991 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
16992 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
16993 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
16995 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
16996 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
16997 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
16998 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
16999 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17000 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17001 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17002 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17003 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17004 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17005 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17006 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17008 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17009 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17010 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17011 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17012 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17013 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17014 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17015 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17016 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17017 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17018 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17019 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17021 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17022 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17023 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17024 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17025 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17026 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17027 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17028 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17029 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17030 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17031 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17032 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17034 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17035 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17036 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17037 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17038 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17039 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17040 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17041 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17042 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17043 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17044 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17045 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17047 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17048 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17049 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17050 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17051 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17052 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17053 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17054 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17055 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17056 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17057 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17058 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17060 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17061 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17062 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17063 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17064 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17065 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17068 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17069 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17075 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17076 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17077 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17078 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17079 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17080 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17081 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17082 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17083 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17084 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17086 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17087 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17088 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17089 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17090 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17091 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17092 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17093 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17094 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17095 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17096 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17097 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17099 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17100 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17101 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17102 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17103 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17104 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17105 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17106 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17107 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17108 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17109 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17110 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17112 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17113 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17114 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17115 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17116 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17117 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17118 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17119 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17120 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17121 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17122 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17123 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17125 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17126 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17127 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17128 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17129 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17130 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17131 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17132 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17133 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17134 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17135 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17136 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17138 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17139 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17140 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17141 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17142 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17143 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17144 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17145 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17146 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17147 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17148 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17149 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17151 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17152 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17153 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17154 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17155 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17156 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17157 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17158 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17159 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17160 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17161 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17162 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17164 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17165 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17166 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17167 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17168 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17169 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17170 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17171 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17172 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17173 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17174 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17175 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17177 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17178 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17179 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17180 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17181 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17190 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17191 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17192 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17193 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17195 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17196 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17197 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17198 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17199 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17200 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17201 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17202 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17203 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17204 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17205 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17206 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17208 /* The implementation of the FIX instruction is broken on some
17209 assemblers, in that it accepts a precision specifier as well as a
17210 rounding specifier, despite the fact that this is meaningless.
17211 To be more compatible, we accept it as well, though of course it
17212 does not set any bits. */
17213 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17214 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17215 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17216 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17217 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17218 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17219 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17220 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17221 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17222 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17223 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17224 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17225 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17227 /* Instructions that were new with the real FPA, call them V2. */
17228 #undef ARM_VARIANT
17229 #define ARM_VARIANT & fpu_fpa_ext_v2
17231 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17232 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17233 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17234 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17235 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17236 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17238 #undef ARM_VARIANT
17239 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17241 /* Moves and type conversions. */
17242 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17243 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17244 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17245 cCE("fmstat", ef1fa10, 0, (), noargs),
17246 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17247 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17248 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17249 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17250 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17251 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17252 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17253 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17254 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17255 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17257 /* Memory operations. */
17258 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17259 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17260 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17261 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17262 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17263 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17264 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17265 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17266 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17267 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17268 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17269 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17270 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17271 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17272 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17273 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17274 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17275 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17277 /* Monadic operations. */
17278 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17279 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17280 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17282 /* Dyadic operations. */
17283 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17284 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17285 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17286 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17287 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17288 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17289 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17290 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17291 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17293 /* Comparisons. */
17294 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17295 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17296 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17297 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17299 /* Double precision load/store are still present on single precision
17300 implementations. */
17301 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17302 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17303 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17304 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17305 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17306 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17307 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17308 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17309 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17310 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17312 #undef ARM_VARIANT
17313 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17315 /* Moves and type conversions. */
17316 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17317 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17318 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17319 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17320 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17321 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17322 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17323 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17324 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17325 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17326 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17327 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17328 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17330 /* Monadic operations. */
17331 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17332 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17333 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17335 /* Dyadic operations. */
17336 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17337 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17338 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17339 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17340 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17341 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17342 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17343 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17344 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17346 /* Comparisons. */
17347 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17348 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17349 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17350 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17352 #undef ARM_VARIANT
17353 #define ARM_VARIANT & fpu_vfp_ext_v2
17355 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17356 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17357 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17358 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17360 /* Instructions which may belong to either the Neon or VFP instruction sets.
17361 Individual encoder functions perform additional architecture checks. */
17362 #undef ARM_VARIANT
17363 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17364 #undef THUMB_VARIANT
17365 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17367 /* These mnemonics are unique to VFP. */
17368 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17369 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17370 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17371 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17372 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17373 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17374 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17375 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17376 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17377 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17379 /* Mnemonics shared by Neon and VFP. */
17380 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17381 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17382 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17384 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17385 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17387 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17388 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17390 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17391 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17392 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17393 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17394 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17395 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17396 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17397 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17399 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17400 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17401 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17404 /* NOTE: All VMOV encoding is special-cased! */
17405 NCE(vmov, 0, 1, (VMOV), neon_mov),
17406 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17408 #undef THUMB_VARIANT
17409 #define THUMB_VARIANT & fpu_neon_ext_v1
17410 #undef ARM_VARIANT
17411 #define ARM_VARIANT & fpu_neon_ext_v1
17413 /* Data processing with three registers of the same length. */
17414 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17415 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17416 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17417 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17418 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17419 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17420 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17421 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17422 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17423 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17424 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17425 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17426 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17427 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17428 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17429 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17430 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17431 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17432 /* If not immediate, fall back to neon_dyadic_i64_su.
17433 shl_imm should accept I8 I16 I32 I64,
17434 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17435 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17436 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17437 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17438 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17439 /* Logic ops, types optional & ignored. */
17440 nUF(vand, _vand, 2, (RNDQ, NILO), neon_logic),
17441 nUF(vandq, _vand, 2, (RNQ, NILO), neon_logic),
17442 nUF(vbic, _vbic, 2, (RNDQ, NILO), neon_logic),
17443 nUF(vbicq, _vbic, 2, (RNQ, NILO), neon_logic),
17444 nUF(vorr, _vorr, 2, (RNDQ, NILO), neon_logic),
17445 nUF(vorrq, _vorr, 2, (RNQ, NILO), neon_logic),
17446 nUF(vorn, _vorn, 2, (RNDQ, NILO), neon_logic),
17447 nUF(vornq, _vorn, 2, (RNQ, NILO), neon_logic),
17448 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17449 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17450 /* Bitfield ops, untyped. */
17451 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17452 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17453 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17454 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17455 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17456 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17457 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17458 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17459 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17460 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17461 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17462 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17463 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17464 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17465 back to neon_dyadic_if_su. */
17466 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17467 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17468 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17469 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17470 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17471 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17472 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17473 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17474 /* Comparison. Type I8 I16 I32 F32. */
17475 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17476 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17477 /* As above, D registers only. */
17478 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17479 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17480 /* Int and float variants, signedness unimportant. */
17481 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17482 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17483 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17484 /* Add/sub take types I8 I16 I32 I64 F32. */
17485 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17486 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17487 /* vtst takes sizes 8, 16, 32. */
17488 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17489 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17490 /* VMUL takes I8 I16 I32 F32 P8. */
17491 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17492 /* VQD{R}MULH takes S16 S32. */
17493 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17494 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17495 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17496 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17497 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17498 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17499 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17500 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17501 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17502 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17503 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17504 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17505 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17506 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17507 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17508 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17510 /* Two address, int/float. Types S8 S16 S32 F32. */
17511 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17512 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17514 /* Data processing with two registers and a shift amount. */
17515 /* Right shifts, and variants with rounding.
17516 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17517 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17518 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17519 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17520 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17521 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17522 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17523 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17524 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17525 /* Shift and insert. Sizes accepted 8 16 32 64. */
17526 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17527 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17528 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17529 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17530 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17531 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17532 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17533 /* Right shift immediate, saturating & narrowing, with rounding variants.
17534 Types accepted S16 S32 S64 U16 U32 U64. */
17535 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17536 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17537 /* As above, unsigned. Types accepted S16 S32 S64. */
17538 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17539 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17540 /* Right shift narrowing. Types accepted I16 I32 I64. */
17541 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17542 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17543 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17544 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17545 /* CVT with optional immediate for fixed-point variant. */
17546 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17548 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17549 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
17551 /* Data processing, three registers of different lengths. */
17552 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17553 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17554 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17555 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17556 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17557 /* If not scalar, fall back to neon_dyadic_long.
17558 Vector types as above, scalar types S16 S32 U16 U32. */
17559 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17560 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17561 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17562 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17563 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17564 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17565 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17566 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17567 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17568 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17569 /* Saturating doubling multiplies. Types S16 S32. */
17570 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17571 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17572 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17573 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17574 S16 S32 U16 U32. */
17575 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17577 /* Extract. Size 8. */
17578 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17579 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17581 /* Two registers, miscellaneous. */
17582 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17583 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17584 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17585 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17586 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17587 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17588 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17589 /* Vector replicate. Sizes 8 16 32. */
17590 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17591 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17592 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17593 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17594 /* VMOVN. Types I16 I32 I64. */
17595 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17596 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17597 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17598 /* VQMOVUN. Types S16 S32 S64. */
17599 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17600 /* VZIP / VUZP. Sizes 8 16 32. */
17601 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17602 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17603 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17604 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17605 /* VQABS / VQNEG. Types S8 S16 S32. */
17606 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17607 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17608 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17609 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17610 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17611 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17612 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17613 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17614 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17615 /* Reciprocal estimates. Types U32 F32. */
17616 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17617 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17618 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17619 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17620 /* VCLS. Types S8 S16 S32. */
17621 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17622 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17623 /* VCLZ. Types I8 I16 I32. */
17624 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17625 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17626 /* VCNT. Size 8. */
17627 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17628 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17629 /* Two address, untyped. */
17630 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17631 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17632 /* VTRN. Sizes 8 16 32. */
17633 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17634 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17636 /* Table lookup. Size 8. */
17637 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17638 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17640 #undef THUMB_VARIANT
17641 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17642 #undef ARM_VARIANT
17643 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17645 /* Neon element/structure load/store. */
17646 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17647 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17648 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17649 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17650 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17651 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17652 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17653 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17655 #undef THUMB_VARIANT
17656 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17657 #undef ARM_VARIANT
17658 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17659 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17660 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17661 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17662 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17663 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17664 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17665 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17666 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17667 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17669 #undef THUMB_VARIANT
17670 #define THUMB_VARIANT & fpu_vfp_ext_v3
17671 #undef ARM_VARIANT
17672 #define ARM_VARIANT & fpu_vfp_ext_v3
17674 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17675 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17676 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17677 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17678 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17679 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17680 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17681 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17682 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17684 #undef ARM_VARIANT
17685 #define ARM_VARIANT &fpu_vfp_ext_fma
17686 #undef THUMB_VARIANT
17687 #define THUMB_VARIANT &fpu_vfp_ext_fma
17688 /* Mnemonics shared by Neon and VFP. These are included in the
17689 VFP FMA variant; NEON and VFP FMA always includes the NEON
17690 FMA instructions. */
17691 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17692 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17693 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17694 the v form should always be used. */
17695 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17696 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17697 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17698 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17699 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17700 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17702 #undef THUMB_VARIANT
17703 #undef ARM_VARIANT
17704 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17706 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17707 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17708 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17709 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17710 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17711 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17712 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17713 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17715 #undef ARM_VARIANT
17716 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17718 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17719 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17720 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17721 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17722 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17723 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17724 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17725 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17726 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17727 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17728 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17729 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17730 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17731 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17732 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17733 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17734 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17735 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17736 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17737 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17738 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17739 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17740 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17741 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17742 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17743 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17744 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17745 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17746 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17747 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17748 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17749 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17750 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17751 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17752 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17753 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17754 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17755 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17756 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17757 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17758 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17759 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17760 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17761 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17762 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17763 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17764 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17765 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17766 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17767 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17768 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17769 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17770 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17771 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17772 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17773 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17774 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17775 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17776 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17777 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17778 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17779 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17780 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17781 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17782 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17783 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17784 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17785 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17786 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17787 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17788 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17789 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17790 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17791 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17792 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17793 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17794 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17795 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17796 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17797 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17798 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17799 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17800 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17801 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17802 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17803 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17804 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17805 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17806 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17807 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17808 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17809 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17810 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17811 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17812 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17813 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17814 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17815 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17816 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17817 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17818 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17819 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17820 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17821 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17822 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17823 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17824 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17825 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17826 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17827 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17828 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17829 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17830 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17831 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17832 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17833 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17834 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17835 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17836 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17837 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17838 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17839 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17840 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17841 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17842 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17843 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17844 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17845 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17846 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17847 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17848 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17849 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17850 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17851 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17852 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17853 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17854 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17855 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17856 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17857 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17858 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17859 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17860 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17861 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17862 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17863 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17864 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17865 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17866 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17867 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17868 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17869 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17870 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17871 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17872 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17873 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17874 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17875 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17876 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17877 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17878 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17879 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
17881 #undef ARM_VARIANT
17882 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17884 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17885 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17886 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17887 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17888 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17889 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17890 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17891 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17892 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17893 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17894 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17895 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17896 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17897 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17898 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17899 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17900 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17901 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17902 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17903 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17904 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17905 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17906 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17907 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17908 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17909 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17910 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17911 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17912 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17913 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17914 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17915 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17916 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17917 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17918 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17922 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17923 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17924 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17925 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17926 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17927 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 #undef ARM_VARIANT
17943 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17945 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17946 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17947 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17948 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17949 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17950 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17951 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17952 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17953 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17954 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17955 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17956 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
17957 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
17958 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
17959 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
17960 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
17961 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
17962 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
17963 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
17964 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
17965 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
17966 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
17967 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
17968 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
17969 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
17970 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
17971 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
17972 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
17973 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17974 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
17975 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
17976 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
17977 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
17978 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
17979 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
17980 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
17981 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
17982 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
17983 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
17984 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
17985 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
17986 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
17987 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
17988 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
17989 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17990 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17991 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17992 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17993 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17994 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17995 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
17996 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
17997 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
17998 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
17999 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18000 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18001 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18002 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18003 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18004 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18005 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18006 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18007 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18008 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18009 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18010 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18011 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18012 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18013 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18014 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18015 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18016 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18017 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18018 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18019 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18020 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18022 #undef ARM_VARIANT
18023 #undef THUMB_VARIANT
18024 #undef TCE
18025 #undef TCM
18026 #undef TUE
18027 #undef TUF
18028 #undef TCC
18029 #undef cCE
18030 #undef cCL
18031 #undef C3E
18032 #undef CE
18033 #undef CM
18034 #undef UE
18035 #undef UF
18036 #undef UT
18037 #undef NUF
18038 #undef nUF
18039 #undef NCE
18040 #undef nCE
18041 #undef OPS0
18042 #undef OPS1
18043 #undef OPS2
18044 #undef OPS3
18045 #undef OPS4
18046 #undef OPS5
18047 #undef OPS6
18048 #undef do_0
18050 /* MD interface: bits in the object file. */
18052 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18053 for use in the a.out file, and stores them in the array pointed to by buf.
18054 This knows about the endian-ness of the target machine and does
18055 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18056 2 (short) and 4 (long) Floating numbers are put out as a series of
18057 LITTLENUMS (shorts, here at least). */
18059 void
18060 md_number_to_chars (char * buf, valueT val, int n)
18062 if (target_big_endian)
18063 number_to_chars_bigendian (buf, val, n);
18064 else
18065 number_to_chars_littleendian (buf, val, n);
18068 static valueT
18069 md_chars_to_number (char * buf, int n)
18071 valueT result = 0;
18072 unsigned char * where = (unsigned char *) buf;
18074 if (target_big_endian)
18076 while (n--)
18078 result <<= 8;
18079 result |= (*where++ & 255);
18082 else
18084 while (n--)
18086 result <<= 8;
18087 result |= (where[n] & 255);
18091 return result;
18094 /* MD interface: Sections. */
18096 /* Estimate the size of a frag before relaxing. Assume everything fits in
18097 2 bytes. */
18100 md_estimate_size_before_relax (fragS * fragp,
18101 segT segtype ATTRIBUTE_UNUSED)
18103 fragp->fr_var = 2;
18104 return 2;
18107 /* Convert a machine dependent frag. */
18109 void
18110 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18112 unsigned long insn;
18113 unsigned long old_op;
18114 char *buf;
18115 expressionS exp;
18116 fixS *fixp;
18117 int reloc_type;
18118 int pc_rel;
18119 int opcode;
18121 buf = fragp->fr_literal + fragp->fr_fix;
18123 old_op = bfd_get_16(abfd, buf);
18124 if (fragp->fr_symbol)
18126 exp.X_op = O_symbol;
18127 exp.X_add_symbol = fragp->fr_symbol;
18129 else
18131 exp.X_op = O_constant;
18133 exp.X_add_number = fragp->fr_offset;
18134 opcode = fragp->fr_subtype;
18135 switch (opcode)
18137 case T_MNEM_ldr_pc:
18138 case T_MNEM_ldr_pc2:
18139 case T_MNEM_ldr_sp:
18140 case T_MNEM_str_sp:
18141 case T_MNEM_ldr:
18142 case T_MNEM_ldrb:
18143 case T_MNEM_ldrh:
18144 case T_MNEM_str:
18145 case T_MNEM_strb:
18146 case T_MNEM_strh:
18147 if (fragp->fr_var == 4)
18149 insn = THUMB_OP32 (opcode);
18150 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18152 insn |= (old_op & 0x700) << 4;
18154 else
18156 insn |= (old_op & 7) << 12;
18157 insn |= (old_op & 0x38) << 13;
18159 insn |= 0x00000c00;
18160 put_thumb32_insn (buf, insn);
18161 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18163 else
18165 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18167 pc_rel = (opcode == T_MNEM_ldr_pc2);
18168 break;
18169 case T_MNEM_adr:
18170 if (fragp->fr_var == 4)
18172 insn = THUMB_OP32 (opcode);
18173 insn |= (old_op & 0xf0) << 4;
18174 put_thumb32_insn (buf, insn);
18175 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18177 else
18179 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18180 exp.X_add_number -= 4;
18182 pc_rel = 1;
18183 break;
18184 case T_MNEM_mov:
18185 case T_MNEM_movs:
18186 case T_MNEM_cmp:
18187 case T_MNEM_cmn:
18188 if (fragp->fr_var == 4)
18190 int r0off = (opcode == T_MNEM_mov
18191 || opcode == T_MNEM_movs) ? 0 : 8;
18192 insn = THUMB_OP32 (opcode);
18193 insn = (insn & 0xe1ffffff) | 0x10000000;
18194 insn |= (old_op & 0x700) << r0off;
18195 put_thumb32_insn (buf, insn);
18196 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18198 else
18200 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18202 pc_rel = 0;
18203 break;
18204 case T_MNEM_b:
18205 if (fragp->fr_var == 4)
18207 insn = THUMB_OP32(opcode);
18208 put_thumb32_insn (buf, insn);
18209 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18211 else
18212 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18213 pc_rel = 1;
18214 break;
18215 case T_MNEM_bcond:
18216 if (fragp->fr_var == 4)
18218 insn = THUMB_OP32(opcode);
18219 insn |= (old_op & 0xf00) << 14;
18220 put_thumb32_insn (buf, insn);
18221 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18223 else
18224 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18225 pc_rel = 1;
18226 break;
18227 case T_MNEM_add_sp:
18228 case T_MNEM_add_pc:
18229 case T_MNEM_inc_sp:
18230 case T_MNEM_dec_sp:
18231 if (fragp->fr_var == 4)
18233 /* ??? Choose between add and addw. */
18234 insn = THUMB_OP32 (opcode);
18235 insn |= (old_op & 0xf0) << 4;
18236 put_thumb32_insn (buf, insn);
18237 if (opcode == T_MNEM_add_pc)
18238 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18239 else
18240 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18242 else
18243 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18244 pc_rel = 0;
18245 break;
18247 case T_MNEM_addi:
18248 case T_MNEM_addis:
18249 case T_MNEM_subi:
18250 case T_MNEM_subis:
18251 if (fragp->fr_var == 4)
18253 insn = THUMB_OP32 (opcode);
18254 insn |= (old_op & 0xf0) << 4;
18255 insn |= (old_op & 0xf) << 16;
18256 put_thumb32_insn (buf, insn);
18257 if (insn & (1 << 20))
18258 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18259 else
18260 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18262 else
18263 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18264 pc_rel = 0;
18265 break;
18266 default:
18267 abort ();
18269 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18270 (enum bfd_reloc_code_real) reloc_type);
18271 fixp->fx_file = fragp->fr_file;
18272 fixp->fx_line = fragp->fr_line;
18273 fragp->fr_fix += fragp->fr_var;
18276 /* Return the size of a relaxable immediate operand instruction.
18277 SHIFT and SIZE specify the form of the allowable immediate. */
18278 static int
18279 relax_immediate (fragS *fragp, int size, int shift)
18281 offsetT offset;
18282 offsetT mask;
18283 offsetT low;
18285 /* ??? Should be able to do better than this. */
18286 if (fragp->fr_symbol)
18287 return 4;
18289 low = (1 << shift) - 1;
18290 mask = (1 << (shift + size)) - (1 << shift);
18291 offset = fragp->fr_offset;
18292 /* Force misaligned offsets to 32-bit variant. */
18293 if (offset & low)
18294 return 4;
18295 if (offset & ~mask)
18296 return 4;
18297 return 2;
18300 /* Get the address of a symbol during relaxation. */
18301 static addressT
18302 relaxed_symbol_addr (fragS *fragp, long stretch)
18304 fragS *sym_frag;
18305 addressT addr;
18306 symbolS *sym;
18308 sym = fragp->fr_symbol;
18309 sym_frag = symbol_get_frag (sym);
18310 know (S_GET_SEGMENT (sym) != absolute_section
18311 || sym_frag == &zero_address_frag);
18312 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18314 /* If frag has yet to be reached on this pass, assume it will
18315 move by STRETCH just as we did. If this is not so, it will
18316 be because some frag between grows, and that will force
18317 another pass. */
18319 if (stretch != 0
18320 && sym_frag->relax_marker != fragp->relax_marker)
18322 fragS *f;
18324 /* Adjust stretch for any alignment frag. Note that if have
18325 been expanding the earlier code, the symbol may be
18326 defined in what appears to be an earlier frag. FIXME:
18327 This doesn't handle the fr_subtype field, which specifies
18328 a maximum number of bytes to skip when doing an
18329 alignment. */
18330 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18332 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18334 if (stretch < 0)
18335 stretch = - ((- stretch)
18336 & ~ ((1 << (int) f->fr_offset) - 1));
18337 else
18338 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18339 if (stretch == 0)
18340 break;
18343 if (f != NULL)
18344 addr += stretch;
18347 return addr;
18350 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18351 load. */
18352 static int
18353 relax_adr (fragS *fragp, asection *sec, long stretch)
18355 addressT addr;
18356 offsetT val;
18358 /* Assume worst case for symbols not known to be in the same section. */
18359 if (fragp->fr_symbol == NULL
18360 || !S_IS_DEFINED (fragp->fr_symbol)
18361 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18362 return 4;
18364 val = relaxed_symbol_addr (fragp, stretch);
18365 addr = fragp->fr_address + fragp->fr_fix;
18366 addr = (addr + 4) & ~3;
18367 /* Force misaligned targets to 32-bit variant. */
18368 if (val & 3)
18369 return 4;
18370 val -= addr;
18371 if (val < 0 || val > 1020)
18372 return 4;
18373 return 2;
18376 /* Return the size of a relaxable add/sub immediate instruction. */
18377 static int
18378 relax_addsub (fragS *fragp, asection *sec)
18380 char *buf;
18381 int op;
18383 buf = fragp->fr_literal + fragp->fr_fix;
18384 op = bfd_get_16(sec->owner, buf);
18385 if ((op & 0xf) == ((op >> 4) & 0xf))
18386 return relax_immediate (fragp, 8, 0);
18387 else
18388 return relax_immediate (fragp, 3, 0);
18392 /* Return the size of a relaxable branch instruction. BITS is the
18393 size of the offset field in the narrow instruction. */
18395 static int
18396 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18398 addressT addr;
18399 offsetT val;
18400 offsetT limit;
18402 /* Assume worst case for symbols not known to be in the same section. */
18403 if (!S_IS_DEFINED (fragp->fr_symbol)
18404 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18405 return 4;
18407 #ifdef OBJ_ELF
18408 if (S_IS_DEFINED (fragp->fr_symbol)
18409 && ARM_IS_FUNC (fragp->fr_symbol))
18410 return 4;
18411 #endif
18413 val = relaxed_symbol_addr (fragp, stretch);
18414 addr = fragp->fr_address + fragp->fr_fix + 4;
18415 val -= addr;
18417 /* Offset is a signed value *2 */
18418 limit = 1 << bits;
18419 if (val >= limit || val < -limit)
18420 return 4;
18421 return 2;
18425 /* Relax a machine dependent frag. This returns the amount by which
18426 the current size of the frag should change. */
18429 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18431 int oldsize;
18432 int newsize;
18434 oldsize = fragp->fr_var;
18435 switch (fragp->fr_subtype)
18437 case T_MNEM_ldr_pc2:
18438 newsize = relax_adr (fragp, sec, stretch);
18439 break;
18440 case T_MNEM_ldr_pc:
18441 case T_MNEM_ldr_sp:
18442 case T_MNEM_str_sp:
18443 newsize = relax_immediate (fragp, 8, 2);
18444 break;
18445 case T_MNEM_ldr:
18446 case T_MNEM_str:
18447 newsize = relax_immediate (fragp, 5, 2);
18448 break;
18449 case T_MNEM_ldrh:
18450 case T_MNEM_strh:
18451 newsize = relax_immediate (fragp, 5, 1);
18452 break;
18453 case T_MNEM_ldrb:
18454 case T_MNEM_strb:
18455 newsize = relax_immediate (fragp, 5, 0);
18456 break;
18457 case T_MNEM_adr:
18458 newsize = relax_adr (fragp, sec, stretch);
18459 break;
18460 case T_MNEM_mov:
18461 case T_MNEM_movs:
18462 case T_MNEM_cmp:
18463 case T_MNEM_cmn:
18464 newsize = relax_immediate (fragp, 8, 0);
18465 break;
18466 case T_MNEM_b:
18467 newsize = relax_branch (fragp, sec, 11, stretch);
18468 break;
18469 case T_MNEM_bcond:
18470 newsize = relax_branch (fragp, sec, 8, stretch);
18471 break;
18472 case T_MNEM_add_sp:
18473 case T_MNEM_add_pc:
18474 newsize = relax_immediate (fragp, 8, 2);
18475 break;
18476 case T_MNEM_inc_sp:
18477 case T_MNEM_dec_sp:
18478 newsize = relax_immediate (fragp, 7, 2);
18479 break;
18480 case T_MNEM_addi:
18481 case T_MNEM_addis:
18482 case T_MNEM_subi:
18483 case T_MNEM_subis:
18484 newsize = relax_addsub (fragp, sec);
18485 break;
18486 default:
18487 abort ();
18490 fragp->fr_var = newsize;
18491 /* Freeze wide instructions that are at or before the same location as
18492 in the previous pass. This avoids infinite loops.
18493 Don't freeze them unconditionally because targets may be artificially
18494 misaligned by the expansion of preceding frags. */
18495 if (stretch <= 0 && newsize > 2)
18497 md_convert_frag (sec->owner, sec, fragp);
18498 frag_wane (fragp);
18501 return newsize - oldsize;
18504 /* Round up a section size to the appropriate boundary. */
18506 valueT
18507 md_section_align (segT segment ATTRIBUTE_UNUSED,
18508 valueT size)
18510 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18511 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18513 /* For a.out, force the section size to be aligned. If we don't do
18514 this, BFD will align it for us, but it will not write out the
18515 final bytes of the section. This may be a bug in BFD, but it is
18516 easier to fix it here since that is how the other a.out targets
18517 work. */
18518 int align;
18520 align = bfd_get_section_alignment (stdoutput, segment);
18521 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18523 #endif
18525 return size;
18528 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18529 of an rs_align_code fragment. */
18531 void
18532 arm_handle_align (fragS * fragP)
18534 static char const arm_noop[2][2][4] =
18536 { /* ARMv1 */
18537 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18538 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18540 { /* ARMv6k */
18541 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18542 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18545 static char const thumb_noop[2][2][2] =
18547 { /* Thumb-1 */
18548 {0xc0, 0x46}, /* LE */
18549 {0x46, 0xc0}, /* BE */
18551 { /* Thumb-2 */
18552 {0x00, 0xbf}, /* LE */
18553 {0xbf, 0x00} /* BE */
18556 static char const wide_thumb_noop[2][4] =
18557 { /* Wide Thumb-2 */
18558 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18559 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18562 unsigned bytes, fix, noop_size;
18563 char * p;
18564 const char * noop;
18565 const char *narrow_noop = NULL;
18566 #ifdef OBJ_ELF
18567 enum mstate state;
18568 #endif
18570 if (fragP->fr_type != rs_align_code)
18571 return;
18573 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18574 p = fragP->fr_literal + fragP->fr_fix;
18575 fix = 0;
18577 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18578 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18580 #ifdef OBJ_ELF
18581 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18582 #endif
18584 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18586 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18588 narrow_noop = thumb_noop[1][target_big_endian];
18589 noop = wide_thumb_noop[target_big_endian];
18591 else
18592 noop = thumb_noop[0][target_big_endian];
18593 noop_size = 2;
18594 #ifdef OBJ_ELF
18595 state = MAP_THUMB;
18596 #endif
18598 else
18600 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18601 [target_big_endian];
18602 noop_size = 4;
18603 #ifdef OBJ_ELF
18604 state = MAP_ARM;
18605 #endif
18608 fragP->fr_var = noop_size;
18610 if (bytes & (noop_size - 1))
18612 fix = bytes & (noop_size - 1);
18613 #ifdef OBJ_ELF
18614 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18615 #endif
18616 memset (p, 0, fix);
18617 p += fix;
18618 bytes -= fix;
18621 if (narrow_noop)
18623 if (bytes & noop_size)
18625 /* Insert a narrow noop. */
18626 memcpy (p, narrow_noop, noop_size);
18627 p += noop_size;
18628 bytes -= noop_size;
18629 fix += noop_size;
18632 /* Use wide noops for the remainder */
18633 noop_size = 4;
18636 while (bytes >= noop_size)
18638 memcpy (p, noop, noop_size);
18639 p += noop_size;
18640 bytes -= noop_size;
18641 fix += noop_size;
18644 fragP->fr_fix += fix;
18647 /* Called from md_do_align. Used to create an alignment
18648 frag in a code section. */
18650 void
18651 arm_frag_align_code (int n, int max)
18653 char * p;
18655 /* We assume that there will never be a requirement
18656 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18657 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18659 char err_msg[128];
18661 sprintf (err_msg,
18662 _("alignments greater than %d bytes not supported in .text sections."),
18663 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18664 as_fatal ("%s", err_msg);
18667 p = frag_var (rs_align_code,
18668 MAX_MEM_FOR_RS_ALIGN_CODE,
18670 (relax_substateT) max,
18671 (symbolS *) NULL,
18672 (offsetT) n,
18673 (char *) NULL);
18674 *p = 0;
18677 /* Perform target specific initialisation of a frag.
18678 Note - despite the name this initialisation is not done when the frag
18679 is created, but only when its type is assigned. A frag can be created
18680 and used a long time before its type is set, so beware of assuming that
18681 this initialisationis performed first. */
18683 #ifndef OBJ_ELF
18684 void
18685 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18687 /* Record whether this frag is in an ARM or a THUMB area. */
18688 fragP->tc_frag_data.thumb_mode = thumb_mode;
18691 #else /* OBJ_ELF is defined. */
18692 void
18693 arm_init_frag (fragS * fragP, int max_chars)
18695 /* If the current ARM vs THUMB mode has not already
18696 been recorded into this frag then do so now. */
18697 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18699 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18701 /* Record a mapping symbol for alignment frags. We will delete this
18702 later if the alignment ends up empty. */
18703 switch (fragP->fr_type)
18705 case rs_align:
18706 case rs_align_test:
18707 case rs_fill:
18708 mapping_state_2 (MAP_DATA, max_chars);
18709 break;
18710 case rs_align_code:
18711 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18712 break;
18713 default:
18714 break;
18719 /* When we change sections we need to issue a new mapping symbol. */
18721 void
18722 arm_elf_change_section (void)
18724 /* Link an unlinked unwind index table section to the .text section. */
18725 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18726 && elf_linked_to_section (now_seg) == NULL)
18727 elf_linked_to_section (now_seg) = text_section;
18731 arm_elf_section_type (const char * str, size_t len)
18733 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18734 return SHT_ARM_EXIDX;
18736 return -1;
18739 /* Code to deal with unwinding tables. */
18741 static void add_unwind_adjustsp (offsetT);
18743 /* Generate any deferred unwind frame offset. */
18745 static void
18746 flush_pending_unwind (void)
18748 offsetT offset;
18750 offset = unwind.pending_offset;
18751 unwind.pending_offset = 0;
18752 if (offset != 0)
18753 add_unwind_adjustsp (offset);
18756 /* Add an opcode to this list for this function. Two-byte opcodes should
18757 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18758 order. */
18760 static void
18761 add_unwind_opcode (valueT op, int length)
18763 /* Add any deferred stack adjustment. */
18764 if (unwind.pending_offset)
18765 flush_pending_unwind ();
18767 unwind.sp_restored = 0;
18769 if (unwind.opcode_count + length > unwind.opcode_alloc)
18771 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18772 if (unwind.opcodes)
18773 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18774 unwind.opcode_alloc);
18775 else
18776 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18778 while (length > 0)
18780 length--;
18781 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18782 op >>= 8;
18783 unwind.opcode_count++;
18787 /* Add unwind opcodes to adjust the stack pointer. */
18789 static void
18790 add_unwind_adjustsp (offsetT offset)
18792 valueT op;
18794 if (offset > 0x200)
18796 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18797 char bytes[5];
18798 int n;
18799 valueT o;
18801 /* Long form: 0xb2, uleb128. */
18802 /* This might not fit in a word so add the individual bytes,
18803 remembering the list is built in reverse order. */
18804 o = (valueT) ((offset - 0x204) >> 2);
18805 if (o == 0)
18806 add_unwind_opcode (0, 1);
18808 /* Calculate the uleb128 encoding of the offset. */
18809 n = 0;
18810 while (o)
18812 bytes[n] = o & 0x7f;
18813 o >>= 7;
18814 if (o)
18815 bytes[n] |= 0x80;
18816 n++;
18818 /* Add the insn. */
18819 for (; n; n--)
18820 add_unwind_opcode (bytes[n - 1], 1);
18821 add_unwind_opcode (0xb2, 1);
18823 else if (offset > 0x100)
18825 /* Two short opcodes. */
18826 add_unwind_opcode (0x3f, 1);
18827 op = (offset - 0x104) >> 2;
18828 add_unwind_opcode (op, 1);
18830 else if (offset > 0)
18832 /* Short opcode. */
18833 op = (offset - 4) >> 2;
18834 add_unwind_opcode (op, 1);
18836 else if (offset < 0)
18838 offset = -offset;
18839 while (offset > 0x100)
18841 add_unwind_opcode (0x7f, 1);
18842 offset -= 0x100;
18844 op = ((offset - 4) >> 2) | 0x40;
18845 add_unwind_opcode (op, 1);
18849 /* Finish the list of unwind opcodes for this function. */
18850 static void
18851 finish_unwind_opcodes (void)
18853 valueT op;
18855 if (unwind.fp_used)
18857 /* Adjust sp as necessary. */
18858 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18859 flush_pending_unwind ();
18861 /* After restoring sp from the frame pointer. */
18862 op = 0x90 | unwind.fp_reg;
18863 add_unwind_opcode (op, 1);
18865 else
18866 flush_pending_unwind ();
18870 /* Start an exception table entry. If idx is nonzero this is an index table
18871 entry. */
18873 static void
18874 start_unwind_section (const segT text_seg, int idx)
18876 const char * text_name;
18877 const char * prefix;
18878 const char * prefix_once;
18879 const char * group_name;
18880 size_t prefix_len;
18881 size_t text_len;
18882 char * sec_name;
18883 size_t sec_name_len;
18884 int type;
18885 int flags;
18886 int linkonce;
18888 if (idx)
18890 prefix = ELF_STRING_ARM_unwind;
18891 prefix_once = ELF_STRING_ARM_unwind_once;
18892 type = SHT_ARM_EXIDX;
18894 else
18896 prefix = ELF_STRING_ARM_unwind_info;
18897 prefix_once = ELF_STRING_ARM_unwind_info_once;
18898 type = SHT_PROGBITS;
18901 text_name = segment_name (text_seg);
18902 if (streq (text_name, ".text"))
18903 text_name = "";
18905 if (strncmp (text_name, ".gnu.linkonce.t.",
18906 strlen (".gnu.linkonce.t.")) == 0)
18908 prefix = prefix_once;
18909 text_name += strlen (".gnu.linkonce.t.");
18912 prefix_len = strlen (prefix);
18913 text_len = strlen (text_name);
18914 sec_name_len = prefix_len + text_len;
18915 sec_name = (char *) xmalloc (sec_name_len + 1);
18916 memcpy (sec_name, prefix, prefix_len);
18917 memcpy (sec_name + prefix_len, text_name, text_len);
18918 sec_name[prefix_len + text_len] = '\0';
18920 flags = SHF_ALLOC;
18921 linkonce = 0;
18922 group_name = 0;
18924 /* Handle COMDAT group. */
18925 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
18927 group_name = elf_group_name (text_seg);
18928 if (group_name == NULL)
18930 as_bad (_("Group section `%s' has no group signature"),
18931 segment_name (text_seg));
18932 ignore_rest_of_line ();
18933 return;
18935 flags |= SHF_GROUP;
18936 linkonce = 1;
18939 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
18941 /* Set the section link for index tables. */
18942 if (idx)
18943 elf_linked_to_section (now_seg) = text_seg;
18947 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18948 personality routine data. Returns zero, or the index table value for
18949 and inline entry. */
18951 static valueT
18952 create_unwind_entry (int have_data)
18954 int size;
18955 addressT where;
18956 char *ptr;
18957 /* The current word of data. */
18958 valueT data;
18959 /* The number of bytes left in this word. */
18960 int n;
18962 finish_unwind_opcodes ();
18964 /* Remember the current text section. */
18965 unwind.saved_seg = now_seg;
18966 unwind.saved_subseg = now_subseg;
18968 start_unwind_section (now_seg, 0);
18970 if (unwind.personality_routine == NULL)
18972 if (unwind.personality_index == -2)
18974 if (have_data)
18975 as_bad (_("handlerdata in cantunwind frame"));
18976 return 1; /* EXIDX_CANTUNWIND. */
18979 /* Use a default personality routine if none is specified. */
18980 if (unwind.personality_index == -1)
18982 if (unwind.opcode_count > 3)
18983 unwind.personality_index = 1;
18984 else
18985 unwind.personality_index = 0;
18988 /* Space for the personality routine entry. */
18989 if (unwind.personality_index == 0)
18991 if (unwind.opcode_count > 3)
18992 as_bad (_("too many unwind opcodes for personality routine 0"));
18994 if (!have_data)
18996 /* All the data is inline in the index table. */
18997 data = 0x80;
18998 n = 3;
18999 while (unwind.opcode_count > 0)
19001 unwind.opcode_count--;
19002 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19003 n--;
19006 /* Pad with "finish" opcodes. */
19007 while (n--)
19008 data = (data << 8) | 0xb0;
19010 return data;
19012 size = 0;
19014 else
19015 /* We get two opcodes "free" in the first word. */
19016 size = unwind.opcode_count - 2;
19018 else
19019 /* An extra byte is required for the opcode count. */
19020 size = unwind.opcode_count + 1;
19022 size = (size + 3) >> 2;
19023 if (size > 0xff)
19024 as_bad (_("too many unwind opcodes"));
19026 frag_align (2, 0, 0);
19027 record_alignment (now_seg, 2);
19028 unwind.table_entry = expr_build_dot ();
19030 /* Allocate the table entry. */
19031 ptr = frag_more ((size << 2) + 4);
19032 where = frag_now_fix () - ((size << 2) + 4);
19034 switch (unwind.personality_index)
19036 case -1:
19037 /* ??? Should this be a PLT generating relocation? */
19038 /* Custom personality routine. */
19039 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19040 BFD_RELOC_ARM_PREL31);
19042 where += 4;
19043 ptr += 4;
19045 /* Set the first byte to the number of additional words. */
19046 data = size - 1;
19047 n = 3;
19048 break;
19050 /* ABI defined personality routines. */
19051 case 0:
19052 /* Three opcodes bytes are packed into the first word. */
19053 data = 0x80;
19054 n = 3;
19055 break;
19057 case 1:
19058 case 2:
19059 /* The size and first two opcode bytes go in the first word. */
19060 data = ((0x80 + unwind.personality_index) << 8) | size;
19061 n = 2;
19062 break;
19064 default:
19065 /* Should never happen. */
19066 abort ();
19069 /* Pack the opcodes into words (MSB first), reversing the list at the same
19070 time. */
19071 while (unwind.opcode_count > 0)
19073 if (n == 0)
19075 md_number_to_chars (ptr, data, 4);
19076 ptr += 4;
19077 n = 4;
19078 data = 0;
19080 unwind.opcode_count--;
19081 n--;
19082 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19085 /* Finish off the last word. */
19086 if (n < 4)
19088 /* Pad with "finish" opcodes. */
19089 while (n--)
19090 data = (data << 8) | 0xb0;
19092 md_number_to_chars (ptr, data, 4);
19095 if (!have_data)
19097 /* Add an empty descriptor if there is no user-specified data. */
19098 ptr = frag_more (4);
19099 md_number_to_chars (ptr, 0, 4);
19102 return 0;
19106 /* Initialize the DWARF-2 unwind information for this procedure. */
19108 void
19109 tc_arm_frame_initial_instructions (void)
19111 cfi_add_CFA_def_cfa (REG_SP, 0);
19113 #endif /* OBJ_ELF */
19115 /* Convert REGNAME to a DWARF-2 register number. */
19118 tc_arm_regname_to_dw2regnum (char *regname)
19120 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19122 if (reg == FAIL)
19123 return -1;
19125 return reg;
19128 #ifdef TE_PE
19129 void
19130 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19132 expressionS exp;
19134 exp.X_op = O_secrel;
19135 exp.X_add_symbol = symbol;
19136 exp.X_add_number = 0;
19137 emit_expr (&exp, size);
19139 #endif
19141 /* MD interface: Symbol and relocation handling. */
19143 /* Return the address within the segment that a PC-relative fixup is
19144 relative to. For ARM, PC-relative fixups applied to instructions
19145 are generally relative to the location of the fixup plus 8 bytes.
19146 Thumb branches are offset by 4, and Thumb loads relative to PC
19147 require special handling. */
19149 long
19150 md_pcrel_from_section (fixS * fixP, segT seg)
19152 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19154 /* If this is pc-relative and we are going to emit a relocation
19155 then we just want to put out any pipeline compensation that the linker
19156 will need. Otherwise we want to use the calculated base.
19157 For WinCE we skip the bias for externals as well, since this
19158 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19159 if (fixP->fx_pcrel
19160 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19161 || (arm_force_relocation (fixP)
19162 #ifdef TE_WINCE
19163 && !S_IS_EXTERNAL (fixP->fx_addsy)
19164 #endif
19166 base = 0;
19169 switch (fixP->fx_r_type)
19171 /* PC relative addressing on the Thumb is slightly odd as the
19172 bottom two bits of the PC are forced to zero for the
19173 calculation. This happens *after* application of the
19174 pipeline offset. However, Thumb adrl already adjusts for
19175 this, so we need not do it again. */
19176 case BFD_RELOC_ARM_THUMB_ADD:
19177 return base & ~3;
19179 case BFD_RELOC_ARM_THUMB_OFFSET:
19180 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19181 case BFD_RELOC_ARM_T32_ADD_PC12:
19182 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19183 return (base + 4) & ~3;
19185 /* Thumb branches are simply offset by +4. */
19186 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19187 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19188 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19189 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19190 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19191 return base + 4;
19193 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19194 if (fixP->fx_addsy
19195 && ARM_IS_FUNC (fixP->fx_addsy)
19196 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19197 base = fixP->fx_where + fixP->fx_frag->fr_address;
19198 return base + 4;
19200 /* BLX is like branches above, but forces the low two bits of PC to
19201 zero. */
19202 case BFD_RELOC_THUMB_PCREL_BLX:
19203 if (fixP->fx_addsy
19204 && THUMB_IS_FUNC (fixP->fx_addsy)
19205 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19206 base = fixP->fx_where + fixP->fx_frag->fr_address;
19207 return (base + 4) & ~3;
19209 /* ARM mode branches are offset by +8. However, the Windows CE
19210 loader expects the relocation not to take this into account. */
19211 case BFD_RELOC_ARM_PCREL_BLX:
19212 if (fixP->fx_addsy
19213 && ARM_IS_FUNC (fixP->fx_addsy)
19214 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19215 base = fixP->fx_where + fixP->fx_frag->fr_address;
19216 return base + 8;
19218 case BFD_RELOC_ARM_PCREL_CALL:
19219 if (fixP->fx_addsy
19220 && THUMB_IS_FUNC (fixP->fx_addsy)
19221 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19222 base = fixP->fx_where + fixP->fx_frag->fr_address;
19223 return base + 8;
19225 case BFD_RELOC_ARM_PCREL_BRANCH:
19226 case BFD_RELOC_ARM_PCREL_JUMP:
19227 case BFD_RELOC_ARM_PLT32:
19228 #ifdef TE_WINCE
19229 /* When handling fixups immediately, because we have already
19230 discovered the value of a symbol, or the address of the frag involved
19231 we must account for the offset by +8, as the OS loader will never see the reloc.
19232 see fixup_segment() in write.c
19233 The S_IS_EXTERNAL test handles the case of global symbols.
19234 Those need the calculated base, not just the pipe compensation the linker will need. */
19235 if (fixP->fx_pcrel
19236 && fixP->fx_addsy != NULL
19237 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19238 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19239 return base + 8;
19240 return base;
19241 #else
19242 return base + 8;
19243 #endif
19246 /* ARM mode loads relative to PC are also offset by +8. Unlike
19247 branches, the Windows CE loader *does* expect the relocation
19248 to take this into account. */
19249 case BFD_RELOC_ARM_OFFSET_IMM:
19250 case BFD_RELOC_ARM_OFFSET_IMM8:
19251 case BFD_RELOC_ARM_HWLITERAL:
19252 case BFD_RELOC_ARM_LITERAL:
19253 case BFD_RELOC_ARM_CP_OFF_IMM:
19254 return base + 8;
19257 /* Other PC-relative relocations are un-offset. */
19258 default:
19259 return base;
19263 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19264 Otherwise we have no need to default values of symbols. */
19266 symbolS *
19267 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19269 #ifdef OBJ_ELF
19270 if (name[0] == '_' && name[1] == 'G'
19271 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19273 if (!GOT_symbol)
19275 if (symbol_find (name))
19276 as_bad (_("GOT already in the symbol table"));
19278 GOT_symbol = symbol_new (name, undefined_section,
19279 (valueT) 0, & zero_address_frag);
19282 return GOT_symbol;
19284 #endif
19286 return NULL;
19289 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19290 computed as two separate immediate values, added together. We
19291 already know that this value cannot be computed by just one ARM
19292 instruction. */
19294 static unsigned int
19295 validate_immediate_twopart (unsigned int val,
19296 unsigned int * highpart)
19298 unsigned int a;
19299 unsigned int i;
19301 for (i = 0; i < 32; i += 2)
19302 if (((a = rotate_left (val, i)) & 0xff) != 0)
19304 if (a & 0xff00)
19306 if (a & ~ 0xffff)
19307 continue;
19308 * highpart = (a >> 8) | ((i + 24) << 7);
19310 else if (a & 0xff0000)
19312 if (a & 0xff000000)
19313 continue;
19314 * highpart = (a >> 16) | ((i + 16) << 7);
19316 else
19318 gas_assert (a & 0xff000000);
19319 * highpart = (a >> 24) | ((i + 8) << 7);
19322 return (a & 0xff) | (i << 7);
19325 return FAIL;
19328 static int
19329 validate_offset_imm (unsigned int val, int hwse)
19331 if ((hwse && val > 255) || val > 4095)
19332 return FAIL;
19333 return val;
19336 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19337 negative immediate constant by altering the instruction. A bit of
19338 a hack really.
19339 MOV <-> MVN
19340 AND <-> BIC
19341 ADC <-> SBC
19342 by inverting the second operand, and
19343 ADD <-> SUB
19344 CMP <-> CMN
19345 by negating the second operand. */
19347 static int
19348 negate_data_op (unsigned long * instruction,
19349 unsigned long value)
19351 int op, new_inst;
19352 unsigned long negated, inverted;
19354 negated = encode_arm_immediate (-value);
19355 inverted = encode_arm_immediate (~value);
19357 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19358 switch (op)
19360 /* First negates. */
19361 case OPCODE_SUB: /* ADD <-> SUB */
19362 new_inst = OPCODE_ADD;
19363 value = negated;
19364 break;
19366 case OPCODE_ADD:
19367 new_inst = OPCODE_SUB;
19368 value = negated;
19369 break;
19371 case OPCODE_CMP: /* CMP <-> CMN */
19372 new_inst = OPCODE_CMN;
19373 value = negated;
19374 break;
19376 case OPCODE_CMN:
19377 new_inst = OPCODE_CMP;
19378 value = negated;
19379 break;
19381 /* Now Inverted ops. */
19382 case OPCODE_MOV: /* MOV <-> MVN */
19383 new_inst = OPCODE_MVN;
19384 value = inverted;
19385 break;
19387 case OPCODE_MVN:
19388 new_inst = OPCODE_MOV;
19389 value = inverted;
19390 break;
19392 case OPCODE_AND: /* AND <-> BIC */
19393 new_inst = OPCODE_BIC;
19394 value = inverted;
19395 break;
19397 case OPCODE_BIC:
19398 new_inst = OPCODE_AND;
19399 value = inverted;
19400 break;
19402 case OPCODE_ADC: /* ADC <-> SBC */
19403 new_inst = OPCODE_SBC;
19404 value = inverted;
19405 break;
19407 case OPCODE_SBC:
19408 new_inst = OPCODE_ADC;
19409 value = inverted;
19410 break;
19412 /* We cannot do anything. */
19413 default:
19414 return FAIL;
19417 if (value == (unsigned) FAIL)
19418 return FAIL;
19420 *instruction &= OPCODE_MASK;
19421 *instruction |= new_inst << DATA_OP_SHIFT;
19422 return value;
19425 /* Like negate_data_op, but for Thumb-2. */
19427 static unsigned int
19428 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19430 int op, new_inst;
19431 int rd;
19432 unsigned int negated, inverted;
19434 negated = encode_thumb32_immediate (-value);
19435 inverted = encode_thumb32_immediate (~value);
19437 rd = (*instruction >> 8) & 0xf;
19438 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19439 switch (op)
19441 /* ADD <-> SUB. Includes CMP <-> CMN. */
19442 case T2_OPCODE_SUB:
19443 new_inst = T2_OPCODE_ADD;
19444 value = negated;
19445 break;
19447 case T2_OPCODE_ADD:
19448 new_inst = T2_OPCODE_SUB;
19449 value = negated;
19450 break;
19452 /* ORR <-> ORN. Includes MOV <-> MVN. */
19453 case T2_OPCODE_ORR:
19454 new_inst = T2_OPCODE_ORN;
19455 value = inverted;
19456 break;
19458 case T2_OPCODE_ORN:
19459 new_inst = T2_OPCODE_ORR;
19460 value = inverted;
19461 break;
19463 /* AND <-> BIC. TST has no inverted equivalent. */
19464 case T2_OPCODE_AND:
19465 new_inst = T2_OPCODE_BIC;
19466 if (rd == 15)
19467 value = FAIL;
19468 else
19469 value = inverted;
19470 break;
19472 case T2_OPCODE_BIC:
19473 new_inst = T2_OPCODE_AND;
19474 value = inverted;
19475 break;
19477 /* ADC <-> SBC */
19478 case T2_OPCODE_ADC:
19479 new_inst = T2_OPCODE_SBC;
19480 value = inverted;
19481 break;
19483 case T2_OPCODE_SBC:
19484 new_inst = T2_OPCODE_ADC;
19485 value = inverted;
19486 break;
19488 /* We cannot do anything. */
19489 default:
19490 return FAIL;
19493 if (value == (unsigned int)FAIL)
19494 return FAIL;
19496 *instruction &= T2_OPCODE_MASK;
19497 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19498 return value;
19501 /* Read a 32-bit thumb instruction from buf. */
19502 static unsigned long
19503 get_thumb32_insn (char * buf)
19505 unsigned long insn;
19506 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19507 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19509 return insn;
19513 /* We usually want to set the low bit on the address of thumb function
19514 symbols. In particular .word foo - . should have the low bit set.
19515 Generic code tries to fold the difference of two symbols to
19516 a constant. Prevent this and force a relocation when the first symbols
19517 is a thumb function. */
19519 bfd_boolean
19520 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19522 if (op == O_subtract
19523 && l->X_op == O_symbol
19524 && r->X_op == O_symbol
19525 && THUMB_IS_FUNC (l->X_add_symbol))
19527 l->X_op = O_subtract;
19528 l->X_op_symbol = r->X_add_symbol;
19529 l->X_add_number -= r->X_add_number;
19530 return TRUE;
19533 /* Process as normal. */
19534 return FALSE;
19537 void
19538 md_apply_fix (fixS * fixP,
19539 valueT * valP,
19540 segT seg)
19542 offsetT value = * valP;
19543 offsetT newval;
19544 unsigned int newimm;
19545 unsigned long temp;
19546 int sign;
19547 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19549 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19551 /* Note whether this will delete the relocation. */
19553 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19554 fixP->fx_done = 1;
19556 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19557 consistency with the behaviour on 32-bit hosts. Remember value
19558 for emit_reloc. */
19559 value &= 0xffffffff;
19560 value ^= 0x80000000;
19561 value -= 0x80000000;
19563 *valP = value;
19564 fixP->fx_addnumber = value;
19566 /* Same treatment for fixP->fx_offset. */
19567 fixP->fx_offset &= 0xffffffff;
19568 fixP->fx_offset ^= 0x80000000;
19569 fixP->fx_offset -= 0x80000000;
19571 switch (fixP->fx_r_type)
19573 case BFD_RELOC_NONE:
19574 /* This will need to go in the object file. */
19575 fixP->fx_done = 0;
19576 break;
19578 case BFD_RELOC_ARM_IMMEDIATE:
19579 /* We claim that this fixup has been processed here,
19580 even if in fact we generate an error because we do
19581 not have a reloc for it, so tc_gen_reloc will reject it. */
19582 fixP->fx_done = 1;
19584 if (fixP->fx_addsy
19585 && ! S_IS_DEFINED (fixP->fx_addsy))
19587 as_bad_where (fixP->fx_file, fixP->fx_line,
19588 _("undefined symbol %s used as an immediate value"),
19589 S_GET_NAME (fixP->fx_addsy));
19590 break;
19593 if (fixP->fx_addsy
19594 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19596 as_bad_where (fixP->fx_file, fixP->fx_line,
19597 _("symbol %s is in a different section"),
19598 S_GET_NAME (fixP->fx_addsy));
19599 break;
19602 newimm = encode_arm_immediate (value);
19603 temp = md_chars_to_number (buf, INSN_SIZE);
19605 /* If the instruction will fail, see if we can fix things up by
19606 changing the opcode. */
19607 if (newimm == (unsigned int) FAIL
19608 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19610 as_bad_where (fixP->fx_file, fixP->fx_line,
19611 _("invalid constant (%lx) after fixup"),
19612 (unsigned long) value);
19613 break;
19616 newimm |= (temp & 0xfffff000);
19617 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19618 break;
19620 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19622 unsigned int highpart = 0;
19623 unsigned int newinsn = 0xe1a00000; /* nop. */
19625 if (fixP->fx_addsy
19626 && ! S_IS_DEFINED (fixP->fx_addsy))
19628 as_bad_where (fixP->fx_file, fixP->fx_line,
19629 _("undefined symbol %s used as an immediate value"),
19630 S_GET_NAME (fixP->fx_addsy));
19631 break;
19634 if (fixP->fx_addsy
19635 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19637 as_bad_where (fixP->fx_file, fixP->fx_line,
19638 _("symbol %s is in a different section"),
19639 S_GET_NAME (fixP->fx_addsy));
19640 break;
19643 newimm = encode_arm_immediate (value);
19644 temp = md_chars_to_number (buf, INSN_SIZE);
19646 /* If the instruction will fail, see if we can fix things up by
19647 changing the opcode. */
19648 if (newimm == (unsigned int) FAIL
19649 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19651 /* No ? OK - try using two ADD instructions to generate
19652 the value. */
19653 newimm = validate_immediate_twopart (value, & highpart);
19655 /* Yes - then make sure that the second instruction is
19656 also an add. */
19657 if (newimm != (unsigned int) FAIL)
19658 newinsn = temp;
19659 /* Still No ? Try using a negated value. */
19660 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19661 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19662 /* Otherwise - give up. */
19663 else
19665 as_bad_where (fixP->fx_file, fixP->fx_line,
19666 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19667 (long) value);
19668 break;
19671 /* Replace the first operand in the 2nd instruction (which
19672 is the PC) with the destination register. We have
19673 already added in the PC in the first instruction and we
19674 do not want to do it again. */
19675 newinsn &= ~ 0xf0000;
19676 newinsn |= ((newinsn & 0x0f000) << 4);
19679 newimm |= (temp & 0xfffff000);
19680 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19682 highpart |= (newinsn & 0xfffff000);
19683 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19685 break;
19687 case BFD_RELOC_ARM_OFFSET_IMM:
19688 if (!fixP->fx_done && seg->use_rela_p)
19689 value = 0;
19691 case BFD_RELOC_ARM_LITERAL:
19692 sign = value >= 0;
19694 if (value < 0)
19695 value = - value;
19697 if (validate_offset_imm (value, 0) == FAIL)
19699 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19700 as_bad_where (fixP->fx_file, fixP->fx_line,
19701 _("invalid literal constant: pool needs to be closer"));
19702 else
19703 as_bad_where (fixP->fx_file, fixP->fx_line,
19704 _("bad immediate value for offset (%ld)"),
19705 (long) value);
19706 break;
19709 newval = md_chars_to_number (buf, INSN_SIZE);
19710 newval &= 0xff7ff000;
19711 newval |= value | (sign ? INDEX_UP : 0);
19712 md_number_to_chars (buf, newval, INSN_SIZE);
19713 break;
19715 case BFD_RELOC_ARM_OFFSET_IMM8:
19716 case BFD_RELOC_ARM_HWLITERAL:
19717 sign = value >= 0;
19719 if (value < 0)
19720 value = - value;
19722 if (validate_offset_imm (value, 1) == FAIL)
19724 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19725 as_bad_where (fixP->fx_file, fixP->fx_line,
19726 _("invalid literal constant: pool needs to be closer"));
19727 else
19728 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19729 (long) value);
19730 break;
19733 newval = md_chars_to_number (buf, INSN_SIZE);
19734 newval &= 0xff7ff0f0;
19735 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19736 md_number_to_chars (buf, newval, INSN_SIZE);
19737 break;
19739 case BFD_RELOC_ARM_T32_OFFSET_U8:
19740 if (value < 0 || value > 1020 || value % 4 != 0)
19741 as_bad_where (fixP->fx_file, fixP->fx_line,
19742 _("bad immediate value for offset (%ld)"), (long) value);
19743 value /= 4;
19745 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19746 newval |= value;
19747 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19748 break;
19750 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19751 /* This is a complicated relocation used for all varieties of Thumb32
19752 load/store instruction with immediate offset:
19754 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19755 *4, optional writeback(W)
19756 (doubleword load/store)
19758 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19759 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19760 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19761 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19762 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19764 Uppercase letters indicate bits that are already encoded at
19765 this point. Lowercase letters are our problem. For the
19766 second block of instructions, the secondary opcode nybble
19767 (bits 8..11) is present, and bit 23 is zero, even if this is
19768 a PC-relative operation. */
19769 newval = md_chars_to_number (buf, THUMB_SIZE);
19770 newval <<= 16;
19771 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19773 if ((newval & 0xf0000000) == 0xe0000000)
19775 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19776 if (value >= 0)
19777 newval |= (1 << 23);
19778 else
19779 value = -value;
19780 if (value % 4 != 0)
19782 as_bad_where (fixP->fx_file, fixP->fx_line,
19783 _("offset not a multiple of 4"));
19784 break;
19786 value /= 4;
19787 if (value > 0xff)
19789 as_bad_where (fixP->fx_file, fixP->fx_line,
19790 _("offset out of range"));
19791 break;
19793 newval &= ~0xff;
19795 else if ((newval & 0x000f0000) == 0x000f0000)
19797 /* PC-relative, 12-bit offset. */
19798 if (value >= 0)
19799 newval |= (1 << 23);
19800 else
19801 value = -value;
19802 if (value > 0xfff)
19804 as_bad_where (fixP->fx_file, fixP->fx_line,
19805 _("offset out of range"));
19806 break;
19808 newval &= ~0xfff;
19810 else if ((newval & 0x00000100) == 0x00000100)
19812 /* Writeback: 8-bit, +/- offset. */
19813 if (value >= 0)
19814 newval |= (1 << 9);
19815 else
19816 value = -value;
19817 if (value > 0xff)
19819 as_bad_where (fixP->fx_file, fixP->fx_line,
19820 _("offset out of range"));
19821 break;
19823 newval &= ~0xff;
19825 else if ((newval & 0x00000f00) == 0x00000e00)
19827 /* T-instruction: positive 8-bit offset. */
19828 if (value < 0 || value > 0xff)
19830 as_bad_where (fixP->fx_file, fixP->fx_line,
19831 _("offset out of range"));
19832 break;
19834 newval &= ~0xff;
19835 newval |= value;
19837 else
19839 /* Positive 12-bit or negative 8-bit offset. */
19840 int limit;
19841 if (value >= 0)
19843 newval |= (1 << 23);
19844 limit = 0xfff;
19846 else
19848 value = -value;
19849 limit = 0xff;
19851 if (value > limit)
19853 as_bad_where (fixP->fx_file, fixP->fx_line,
19854 _("offset out of range"));
19855 break;
19857 newval &= ~limit;
19860 newval |= value;
19861 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19862 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19863 break;
19865 case BFD_RELOC_ARM_SHIFT_IMM:
19866 newval = md_chars_to_number (buf, INSN_SIZE);
19867 if (((unsigned long) value) > 32
19868 || (value == 32
19869 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19871 as_bad_where (fixP->fx_file, fixP->fx_line,
19872 _("shift expression is too large"));
19873 break;
19876 if (value == 0)
19877 /* Shifts of zero must be done as lsl. */
19878 newval &= ~0x60;
19879 else if (value == 32)
19880 value = 0;
19881 newval &= 0xfffff07f;
19882 newval |= (value & 0x1f) << 7;
19883 md_number_to_chars (buf, newval, INSN_SIZE);
19884 break;
19886 case BFD_RELOC_ARM_T32_IMMEDIATE:
19887 case BFD_RELOC_ARM_T32_ADD_IMM:
19888 case BFD_RELOC_ARM_T32_IMM12:
19889 case BFD_RELOC_ARM_T32_ADD_PC12:
19890 /* We claim that this fixup has been processed here,
19891 even if in fact we generate an error because we do
19892 not have a reloc for it, so tc_gen_reloc will reject it. */
19893 fixP->fx_done = 1;
19895 if (fixP->fx_addsy
19896 && ! S_IS_DEFINED (fixP->fx_addsy))
19898 as_bad_where (fixP->fx_file, fixP->fx_line,
19899 _("undefined symbol %s used as an immediate value"),
19900 S_GET_NAME (fixP->fx_addsy));
19901 break;
19904 newval = md_chars_to_number (buf, THUMB_SIZE);
19905 newval <<= 16;
19906 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
19908 newimm = FAIL;
19909 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19910 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19912 newimm = encode_thumb32_immediate (value);
19913 if (newimm == (unsigned int) FAIL)
19914 newimm = thumb32_negate_data_op (&newval, value);
19916 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19917 && newimm == (unsigned int) FAIL)
19919 /* Turn add/sum into addw/subw. */
19920 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19921 newval = (newval & 0xfeffffff) | 0x02000000;
19923 /* 12 bit immediate for addw/subw. */
19924 if (value < 0)
19926 value = -value;
19927 newval ^= 0x00a00000;
19929 if (value > 0xfff)
19930 newimm = (unsigned int) FAIL;
19931 else
19932 newimm = value;
19935 if (newimm == (unsigned int)FAIL)
19937 as_bad_where (fixP->fx_file, fixP->fx_line,
19938 _("invalid constant (%lx) after fixup"),
19939 (unsigned long) value);
19940 break;
19943 newval |= (newimm & 0x800) << 15;
19944 newval |= (newimm & 0x700) << 4;
19945 newval |= (newimm & 0x0ff);
19947 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19948 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19949 break;
19951 case BFD_RELOC_ARM_SMC:
19952 if (((unsigned long) value) > 0xffff)
19953 as_bad_where (fixP->fx_file, fixP->fx_line,
19954 _("invalid smc expression"));
19955 newval = md_chars_to_number (buf, INSN_SIZE);
19956 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19957 md_number_to_chars (buf, newval, INSN_SIZE);
19958 break;
19960 case BFD_RELOC_ARM_SWI:
19961 if (fixP->tc_fix_data != 0)
19963 if (((unsigned long) value) > 0xff)
19964 as_bad_where (fixP->fx_file, fixP->fx_line,
19965 _("invalid swi expression"));
19966 newval = md_chars_to_number (buf, THUMB_SIZE);
19967 newval |= value;
19968 md_number_to_chars (buf, newval, THUMB_SIZE);
19970 else
19972 if (((unsigned long) value) > 0x00ffffff)
19973 as_bad_where (fixP->fx_file, fixP->fx_line,
19974 _("invalid swi expression"));
19975 newval = md_chars_to_number (buf, INSN_SIZE);
19976 newval |= value;
19977 md_number_to_chars (buf, newval, INSN_SIZE);
19979 break;
19981 case BFD_RELOC_ARM_MULTI:
19982 if (((unsigned long) value) > 0xffff)
19983 as_bad_where (fixP->fx_file, fixP->fx_line,
19984 _("invalid expression in load/store multiple"));
19985 newval = value | md_chars_to_number (buf, INSN_SIZE);
19986 md_number_to_chars (buf, newval, INSN_SIZE);
19987 break;
19989 #ifdef OBJ_ELF
19990 case BFD_RELOC_ARM_PCREL_CALL:
19992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19993 && fixP->fx_addsy
19994 && !S_IS_EXTERNAL (fixP->fx_addsy)
19995 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19996 && THUMB_IS_FUNC (fixP->fx_addsy))
19997 /* Flip the bl to blx. This is a simple flip
19998 bit here because we generate PCREL_CALL for
19999 unconditional bls. */
20001 newval = md_chars_to_number (buf, INSN_SIZE);
20002 newval = newval | 0x10000000;
20003 md_number_to_chars (buf, newval, INSN_SIZE);
20004 temp = 1;
20005 fixP->fx_done = 1;
20007 else
20008 temp = 3;
20009 goto arm_branch_common;
20011 case BFD_RELOC_ARM_PCREL_JUMP:
20012 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20013 && fixP->fx_addsy
20014 && !S_IS_EXTERNAL (fixP->fx_addsy)
20015 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20016 && THUMB_IS_FUNC (fixP->fx_addsy))
20018 /* This would map to a bl<cond>, b<cond>,
20019 b<always> to a Thumb function. We
20020 need to force a relocation for this particular
20021 case. */
20022 newval = md_chars_to_number (buf, INSN_SIZE);
20023 fixP->fx_done = 0;
20026 case BFD_RELOC_ARM_PLT32:
20027 #endif
20028 case BFD_RELOC_ARM_PCREL_BRANCH:
20029 temp = 3;
20030 goto arm_branch_common;
20032 case BFD_RELOC_ARM_PCREL_BLX:
20034 temp = 1;
20035 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20036 && fixP->fx_addsy
20037 && !S_IS_EXTERNAL (fixP->fx_addsy)
20038 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20039 && ARM_IS_FUNC (fixP->fx_addsy))
20041 /* Flip the blx to a bl and warn. */
20042 const char *name = S_GET_NAME (fixP->fx_addsy);
20043 newval = 0xeb000000;
20044 as_warn_where (fixP->fx_file, fixP->fx_line,
20045 _("blx to '%s' an ARM ISA state function changed to bl"),
20046 name);
20047 md_number_to_chars (buf, newval, INSN_SIZE);
20048 temp = 3;
20049 fixP->fx_done = 1;
20052 #ifdef OBJ_ELF
20053 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20054 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20055 #endif
20057 arm_branch_common:
20058 /* We are going to store value (shifted right by two) in the
20059 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20060 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20061 also be be clear. */
20062 if (value & temp)
20063 as_bad_where (fixP->fx_file, fixP->fx_line,
20064 _("misaligned branch destination"));
20065 if ((value & (offsetT)0xfe000000) != (offsetT)0
20066 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20067 as_bad_where (fixP->fx_file, fixP->fx_line,
20068 _("branch out of range"));
20070 if (fixP->fx_done || !seg->use_rela_p)
20072 newval = md_chars_to_number (buf, INSN_SIZE);
20073 newval |= (value >> 2) & 0x00ffffff;
20074 /* Set the H bit on BLX instructions. */
20075 if (temp == 1)
20077 if (value & 2)
20078 newval |= 0x01000000;
20079 else
20080 newval &= ~0x01000000;
20082 md_number_to_chars (buf, newval, INSN_SIZE);
20084 break;
20086 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20087 /* CBZ can only branch forward. */
20089 /* Attempts to use CBZ to branch to the next instruction
20090 (which, strictly speaking, are prohibited) will be turned into
20091 no-ops.
20093 FIXME: It may be better to remove the instruction completely and
20094 perform relaxation. */
20095 if (value == -2)
20097 newval = md_chars_to_number (buf, THUMB_SIZE);
20098 newval = 0xbf00; /* NOP encoding T1 */
20099 md_number_to_chars (buf, newval, THUMB_SIZE);
20101 else
20103 if (value & ~0x7e)
20104 as_bad_where (fixP->fx_file, fixP->fx_line,
20105 _("branch out of range"));
20107 if (fixP->fx_done || !seg->use_rela_p)
20109 newval = md_chars_to_number (buf, THUMB_SIZE);
20110 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20111 md_number_to_chars (buf, newval, THUMB_SIZE);
20114 break;
20116 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20117 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20118 as_bad_where (fixP->fx_file, fixP->fx_line,
20119 _("branch out of range"));
20121 if (fixP->fx_done || !seg->use_rela_p)
20123 newval = md_chars_to_number (buf, THUMB_SIZE);
20124 newval |= (value & 0x1ff) >> 1;
20125 md_number_to_chars (buf, newval, THUMB_SIZE);
20127 break;
20129 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20130 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20131 as_bad_where (fixP->fx_file, fixP->fx_line,
20132 _("branch out of range"));
20134 if (fixP->fx_done || !seg->use_rela_p)
20136 newval = md_chars_to_number (buf, THUMB_SIZE);
20137 newval |= (value & 0xfff) >> 1;
20138 md_number_to_chars (buf, newval, THUMB_SIZE);
20140 break;
20142 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20143 if (fixP->fx_addsy
20144 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20145 && !S_IS_EXTERNAL (fixP->fx_addsy)
20146 && S_IS_DEFINED (fixP->fx_addsy)
20147 && ARM_IS_FUNC (fixP->fx_addsy)
20148 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20150 /* Force a relocation for a branch 20 bits wide. */
20151 fixP->fx_done = 0;
20153 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20154 as_bad_where (fixP->fx_file, fixP->fx_line,
20155 _("conditional branch out of range"));
20157 if (fixP->fx_done || !seg->use_rela_p)
20159 offsetT newval2;
20160 addressT S, J1, J2, lo, hi;
20162 S = (value & 0x00100000) >> 20;
20163 J2 = (value & 0x00080000) >> 19;
20164 J1 = (value & 0x00040000) >> 18;
20165 hi = (value & 0x0003f000) >> 12;
20166 lo = (value & 0x00000ffe) >> 1;
20168 newval = md_chars_to_number (buf, THUMB_SIZE);
20169 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20170 newval |= (S << 10) | hi;
20171 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20172 md_number_to_chars (buf, newval, THUMB_SIZE);
20173 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20175 break;
20177 case BFD_RELOC_THUMB_PCREL_BLX:
20179 /* If there is a blx from a thumb state function to
20180 another thumb function flip this to a bl and warn
20181 about it. */
20183 if (fixP->fx_addsy
20184 && S_IS_DEFINED (fixP->fx_addsy)
20185 && !S_IS_EXTERNAL (fixP->fx_addsy)
20186 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20187 && THUMB_IS_FUNC (fixP->fx_addsy))
20189 const char *name = S_GET_NAME (fixP->fx_addsy);
20190 as_warn_where (fixP->fx_file, fixP->fx_line,
20191 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20192 name);
20193 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20194 newval = newval | 0x1000;
20195 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20196 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20197 fixP->fx_done = 1;
20201 goto thumb_bl_common;
20203 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20205 /* A bl from Thumb state ISA to an internal ARM state function
20206 is converted to a blx. */
20207 if (fixP->fx_addsy
20208 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20209 && !S_IS_EXTERNAL (fixP->fx_addsy)
20210 && S_IS_DEFINED (fixP->fx_addsy)
20211 && ARM_IS_FUNC (fixP->fx_addsy)
20212 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20214 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20215 newval = newval & ~0x1000;
20216 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20217 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20218 fixP->fx_done = 1;
20221 thumb_bl_common:
20223 #ifdef OBJ_ELF
20224 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20225 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20226 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20227 #endif
20229 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20230 as_bad_where (fixP->fx_file, fixP->fx_line,
20231 _("branch out of range"));
20233 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20234 /* For a BLX instruction, make sure that the relocation is rounded up
20235 to a word boundary. This follows the semantics of the instruction
20236 which specifies that bit 1 of the target address will come from bit
20237 1 of the base address. */
20238 value = (value + 1) & ~ 1;
20240 if (fixP->fx_done || !seg->use_rela_p)
20242 offsetT newval2;
20244 newval = md_chars_to_number (buf, THUMB_SIZE);
20245 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20246 newval |= (value & 0x7fffff) >> 12;
20247 newval2 |= (value & 0xfff) >> 1;
20248 md_number_to_chars (buf, newval, THUMB_SIZE);
20249 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20251 break;
20253 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20254 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20255 as_bad_where (fixP->fx_file, fixP->fx_line,
20256 _("branch out of range"));
20258 if (fixP->fx_done || !seg->use_rela_p)
20260 offsetT newval2;
20261 addressT S, I1, I2, lo, hi;
20263 S = (value & 0x01000000) >> 24;
20264 I1 = (value & 0x00800000) >> 23;
20265 I2 = (value & 0x00400000) >> 22;
20266 hi = (value & 0x003ff000) >> 12;
20267 lo = (value & 0x00000ffe) >> 1;
20269 I1 = !(I1 ^ S);
20270 I2 = !(I2 ^ S);
20272 newval = md_chars_to_number (buf, THUMB_SIZE);
20273 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20274 newval |= (S << 10) | hi;
20275 newval2 |= (I1 << 13) | (I2 << 11) | lo;
20276 md_number_to_chars (buf, newval, THUMB_SIZE);
20277 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20279 break;
20281 case BFD_RELOC_8:
20282 if (fixP->fx_done || !seg->use_rela_p)
20283 md_number_to_chars (buf, value, 1);
20284 break;
20286 case BFD_RELOC_16:
20287 if (fixP->fx_done || !seg->use_rela_p)
20288 md_number_to_chars (buf, value, 2);
20289 break;
20291 #ifdef OBJ_ELF
20292 case BFD_RELOC_ARM_TLS_GD32:
20293 case BFD_RELOC_ARM_TLS_LE32:
20294 case BFD_RELOC_ARM_TLS_IE32:
20295 case BFD_RELOC_ARM_TLS_LDM32:
20296 case BFD_RELOC_ARM_TLS_LDO32:
20297 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20298 /* fall through */
20300 case BFD_RELOC_ARM_GOT32:
20301 case BFD_RELOC_ARM_GOTOFF:
20302 if (fixP->fx_done || !seg->use_rela_p)
20303 md_number_to_chars (buf, 0, 4);
20304 break;
20306 case BFD_RELOC_ARM_TARGET2:
20307 /* TARGET2 is not partial-inplace, so we need to write the
20308 addend here for REL targets, because it won't be written out
20309 during reloc processing later. */
20310 if (fixP->fx_done || !seg->use_rela_p)
20311 md_number_to_chars (buf, fixP->fx_offset, 4);
20312 break;
20313 #endif
20315 case BFD_RELOC_RVA:
20316 case BFD_RELOC_32:
20317 case BFD_RELOC_ARM_TARGET1:
20318 case BFD_RELOC_ARM_ROSEGREL32:
20319 case BFD_RELOC_ARM_SBREL32:
20320 case BFD_RELOC_32_PCREL:
20321 #ifdef TE_PE
20322 case BFD_RELOC_32_SECREL:
20323 #endif
20324 if (fixP->fx_done || !seg->use_rela_p)
20325 #ifdef TE_WINCE
20326 /* For WinCE we only do this for pcrel fixups. */
20327 if (fixP->fx_done || fixP->fx_pcrel)
20328 #endif
20329 md_number_to_chars (buf, value, 4);
20330 break;
20332 #ifdef OBJ_ELF
20333 case BFD_RELOC_ARM_PREL31:
20334 if (fixP->fx_done || !seg->use_rela_p)
20336 newval = md_chars_to_number (buf, 4) & 0x80000000;
20337 if ((value ^ (value >> 1)) & 0x40000000)
20339 as_bad_where (fixP->fx_file, fixP->fx_line,
20340 _("rel31 relocation overflow"));
20342 newval |= value & 0x7fffffff;
20343 md_number_to_chars (buf, newval, 4);
20345 break;
20346 #endif
20348 case BFD_RELOC_ARM_CP_OFF_IMM:
20349 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20350 if (value < -1023 || value > 1023 || (value & 3))
20351 as_bad_where (fixP->fx_file, fixP->fx_line,
20352 _("co-processor offset out of range"));
20353 cp_off_common:
20354 sign = value >= 0;
20355 if (value < 0)
20356 value = -value;
20357 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20358 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20359 newval = md_chars_to_number (buf, INSN_SIZE);
20360 else
20361 newval = get_thumb32_insn (buf);
20362 newval &= 0xff7fff00;
20363 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20364 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20365 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20366 md_number_to_chars (buf, newval, INSN_SIZE);
20367 else
20368 put_thumb32_insn (buf, newval);
20369 break;
20371 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20372 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20373 if (value < -255 || value > 255)
20374 as_bad_where (fixP->fx_file, fixP->fx_line,
20375 _("co-processor offset out of range"));
20376 value *= 4;
20377 goto cp_off_common;
20379 case BFD_RELOC_ARM_THUMB_OFFSET:
20380 newval = md_chars_to_number (buf, THUMB_SIZE);
20381 /* Exactly what ranges, and where the offset is inserted depends
20382 on the type of instruction, we can establish this from the
20383 top 4 bits. */
20384 switch (newval >> 12)
20386 case 4: /* PC load. */
20387 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20388 forced to zero for these loads; md_pcrel_from has already
20389 compensated for this. */
20390 if (value & 3)
20391 as_bad_where (fixP->fx_file, fixP->fx_line,
20392 _("invalid offset, target not word aligned (0x%08lX)"),
20393 (((unsigned long) fixP->fx_frag->fr_address
20394 + (unsigned long) fixP->fx_where) & ~3)
20395 + (unsigned long) value);
20397 if (value & ~0x3fc)
20398 as_bad_where (fixP->fx_file, fixP->fx_line,
20399 _("invalid offset, value too big (0x%08lX)"),
20400 (long) value);
20402 newval |= value >> 2;
20403 break;
20405 case 9: /* SP load/store. */
20406 if (value & ~0x3fc)
20407 as_bad_where (fixP->fx_file, fixP->fx_line,
20408 _("invalid offset, value too big (0x%08lX)"),
20409 (long) value);
20410 newval |= value >> 2;
20411 break;
20413 case 6: /* Word load/store. */
20414 if (value & ~0x7c)
20415 as_bad_where (fixP->fx_file, fixP->fx_line,
20416 _("invalid offset, value too big (0x%08lX)"),
20417 (long) value);
20418 newval |= value << 4; /* 6 - 2. */
20419 break;
20421 case 7: /* Byte load/store. */
20422 if (value & ~0x1f)
20423 as_bad_where (fixP->fx_file, fixP->fx_line,
20424 _("invalid offset, value too big (0x%08lX)"),
20425 (long) value);
20426 newval |= value << 6;
20427 break;
20429 case 8: /* Halfword load/store. */
20430 if (value & ~0x3e)
20431 as_bad_where (fixP->fx_file, fixP->fx_line,
20432 _("invalid offset, value too big (0x%08lX)"),
20433 (long) value);
20434 newval |= value << 5; /* 6 - 1. */
20435 break;
20437 default:
20438 as_bad_where (fixP->fx_file, fixP->fx_line,
20439 "Unable to process relocation for thumb opcode: %lx",
20440 (unsigned long) newval);
20441 break;
20443 md_number_to_chars (buf, newval, THUMB_SIZE);
20444 break;
20446 case BFD_RELOC_ARM_THUMB_ADD:
20447 /* This is a complicated relocation, since we use it for all of
20448 the following immediate relocations:
20450 3bit ADD/SUB
20451 8bit ADD/SUB
20452 9bit ADD/SUB SP word-aligned
20453 10bit ADD PC/SP word-aligned
20455 The type of instruction being processed is encoded in the
20456 instruction field:
20458 0x8000 SUB
20459 0x00F0 Rd
20460 0x000F Rs
20462 newval = md_chars_to_number (buf, THUMB_SIZE);
20464 int rd = (newval >> 4) & 0xf;
20465 int rs = newval & 0xf;
20466 int subtract = !!(newval & 0x8000);
20468 /* Check for HI regs, only very restricted cases allowed:
20469 Adjusting SP, and using PC or SP to get an address. */
20470 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20471 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20472 as_bad_where (fixP->fx_file, fixP->fx_line,
20473 _("invalid Hi register with immediate"));
20475 /* If value is negative, choose the opposite instruction. */
20476 if (value < 0)
20478 value = -value;
20479 subtract = !subtract;
20480 if (value < 0)
20481 as_bad_where (fixP->fx_file, fixP->fx_line,
20482 _("immediate value out of range"));
20485 if (rd == REG_SP)
20487 if (value & ~0x1fc)
20488 as_bad_where (fixP->fx_file, fixP->fx_line,
20489 _("invalid immediate for stack address calculation"));
20490 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20491 newval |= value >> 2;
20493 else if (rs == REG_PC || rs == REG_SP)
20495 if (subtract || value & ~0x3fc)
20496 as_bad_where (fixP->fx_file, fixP->fx_line,
20497 _("invalid immediate for address calculation (value = 0x%08lX)"),
20498 (unsigned long) value);
20499 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20500 newval |= rd << 8;
20501 newval |= value >> 2;
20503 else if (rs == rd)
20505 if (value & ~0xff)
20506 as_bad_where (fixP->fx_file, fixP->fx_line,
20507 _("immediate value out of range"));
20508 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20509 newval |= (rd << 8) | value;
20511 else
20513 if (value & ~0x7)
20514 as_bad_where (fixP->fx_file, fixP->fx_line,
20515 _("immediate value out of range"));
20516 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20517 newval |= rd | (rs << 3) | (value << 6);
20520 md_number_to_chars (buf, newval, THUMB_SIZE);
20521 break;
20523 case BFD_RELOC_ARM_THUMB_IMM:
20524 newval = md_chars_to_number (buf, THUMB_SIZE);
20525 if (value < 0 || value > 255)
20526 as_bad_where (fixP->fx_file, fixP->fx_line,
20527 _("invalid immediate: %ld is out of range"),
20528 (long) value);
20529 newval |= value;
20530 md_number_to_chars (buf, newval, THUMB_SIZE);
20531 break;
20533 case BFD_RELOC_ARM_THUMB_SHIFT:
20534 /* 5bit shift value (0..32). LSL cannot take 32. */
20535 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20536 temp = newval & 0xf800;
20537 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20538 as_bad_where (fixP->fx_file, fixP->fx_line,
20539 _("invalid shift value: %ld"), (long) value);
20540 /* Shifts of zero must be encoded as LSL. */
20541 if (value == 0)
20542 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20543 /* Shifts of 32 are encoded as zero. */
20544 else if (value == 32)
20545 value = 0;
20546 newval |= value << 6;
20547 md_number_to_chars (buf, newval, THUMB_SIZE);
20548 break;
20550 case BFD_RELOC_VTABLE_INHERIT:
20551 case BFD_RELOC_VTABLE_ENTRY:
20552 fixP->fx_done = 0;
20553 return;
20555 case BFD_RELOC_ARM_MOVW:
20556 case BFD_RELOC_ARM_MOVT:
20557 case BFD_RELOC_ARM_THUMB_MOVW:
20558 case BFD_RELOC_ARM_THUMB_MOVT:
20559 if (fixP->fx_done || !seg->use_rela_p)
20561 /* REL format relocations are limited to a 16-bit addend. */
20562 if (!fixP->fx_done)
20564 if (value < -0x8000 || value > 0x7fff)
20565 as_bad_where (fixP->fx_file, fixP->fx_line,
20566 _("offset out of range"));
20568 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20569 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20571 value >>= 16;
20574 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20575 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20577 newval = get_thumb32_insn (buf);
20578 newval &= 0xfbf08f00;
20579 newval |= (value & 0xf000) << 4;
20580 newval |= (value & 0x0800) << 15;
20581 newval |= (value & 0x0700) << 4;
20582 newval |= (value & 0x00ff);
20583 put_thumb32_insn (buf, newval);
20585 else
20587 newval = md_chars_to_number (buf, 4);
20588 newval &= 0xfff0f000;
20589 newval |= value & 0x0fff;
20590 newval |= (value & 0xf000) << 4;
20591 md_number_to_chars (buf, newval, 4);
20594 return;
20596 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20597 case BFD_RELOC_ARM_ALU_PC_G0:
20598 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20599 case BFD_RELOC_ARM_ALU_PC_G1:
20600 case BFD_RELOC_ARM_ALU_PC_G2:
20601 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20602 case BFD_RELOC_ARM_ALU_SB_G0:
20603 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20604 case BFD_RELOC_ARM_ALU_SB_G1:
20605 case BFD_RELOC_ARM_ALU_SB_G2:
20606 gas_assert (!fixP->fx_done);
20607 if (!seg->use_rela_p)
20609 bfd_vma insn;
20610 bfd_vma encoded_addend;
20611 bfd_vma addend_abs = abs (value);
20613 /* Check that the absolute value of the addend can be
20614 expressed as an 8-bit constant plus a rotation. */
20615 encoded_addend = encode_arm_immediate (addend_abs);
20616 if (encoded_addend == (unsigned int) FAIL)
20617 as_bad_where (fixP->fx_file, fixP->fx_line,
20618 _("the offset 0x%08lX is not representable"),
20619 (unsigned long) addend_abs);
20621 /* Extract the instruction. */
20622 insn = md_chars_to_number (buf, INSN_SIZE);
20624 /* If the addend is positive, use an ADD instruction.
20625 Otherwise use a SUB. Take care not to destroy the S bit. */
20626 insn &= 0xff1fffff;
20627 if (value < 0)
20628 insn |= 1 << 22;
20629 else
20630 insn |= 1 << 23;
20632 /* Place the encoded addend into the first 12 bits of the
20633 instruction. */
20634 insn &= 0xfffff000;
20635 insn |= encoded_addend;
20637 /* Update the instruction. */
20638 md_number_to_chars (buf, insn, INSN_SIZE);
20640 break;
20642 case BFD_RELOC_ARM_LDR_PC_G0:
20643 case BFD_RELOC_ARM_LDR_PC_G1:
20644 case BFD_RELOC_ARM_LDR_PC_G2:
20645 case BFD_RELOC_ARM_LDR_SB_G0:
20646 case BFD_RELOC_ARM_LDR_SB_G1:
20647 case BFD_RELOC_ARM_LDR_SB_G2:
20648 gas_assert (!fixP->fx_done);
20649 if (!seg->use_rela_p)
20651 bfd_vma insn;
20652 bfd_vma addend_abs = abs (value);
20654 /* Check that the absolute value of the addend can be
20655 encoded in 12 bits. */
20656 if (addend_abs >= 0x1000)
20657 as_bad_where (fixP->fx_file, fixP->fx_line,
20658 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20659 (unsigned long) addend_abs);
20661 /* Extract the instruction. */
20662 insn = md_chars_to_number (buf, INSN_SIZE);
20664 /* If the addend is negative, clear bit 23 of the instruction.
20665 Otherwise set it. */
20666 if (value < 0)
20667 insn &= ~(1 << 23);
20668 else
20669 insn |= 1 << 23;
20671 /* Place the absolute value of the addend into the first 12 bits
20672 of the instruction. */
20673 insn &= 0xfffff000;
20674 insn |= addend_abs;
20676 /* Update the instruction. */
20677 md_number_to_chars (buf, insn, INSN_SIZE);
20679 break;
20681 case BFD_RELOC_ARM_LDRS_PC_G0:
20682 case BFD_RELOC_ARM_LDRS_PC_G1:
20683 case BFD_RELOC_ARM_LDRS_PC_G2:
20684 case BFD_RELOC_ARM_LDRS_SB_G0:
20685 case BFD_RELOC_ARM_LDRS_SB_G1:
20686 case BFD_RELOC_ARM_LDRS_SB_G2:
20687 gas_assert (!fixP->fx_done);
20688 if (!seg->use_rela_p)
20690 bfd_vma insn;
20691 bfd_vma addend_abs = abs (value);
20693 /* Check that the absolute value of the addend can be
20694 encoded in 8 bits. */
20695 if (addend_abs >= 0x100)
20696 as_bad_where (fixP->fx_file, fixP->fx_line,
20697 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20698 (unsigned long) addend_abs);
20700 /* Extract the instruction. */
20701 insn = md_chars_to_number (buf, INSN_SIZE);
20703 /* If the addend is negative, clear bit 23 of the instruction.
20704 Otherwise set it. */
20705 if (value < 0)
20706 insn &= ~(1 << 23);
20707 else
20708 insn |= 1 << 23;
20710 /* Place the first four bits of the absolute value of the addend
20711 into the first 4 bits of the instruction, and the remaining
20712 four into bits 8 .. 11. */
20713 insn &= 0xfffff0f0;
20714 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20716 /* Update the instruction. */
20717 md_number_to_chars (buf, insn, INSN_SIZE);
20719 break;
20721 case BFD_RELOC_ARM_LDC_PC_G0:
20722 case BFD_RELOC_ARM_LDC_PC_G1:
20723 case BFD_RELOC_ARM_LDC_PC_G2:
20724 case BFD_RELOC_ARM_LDC_SB_G0:
20725 case BFD_RELOC_ARM_LDC_SB_G1:
20726 case BFD_RELOC_ARM_LDC_SB_G2:
20727 gas_assert (!fixP->fx_done);
20728 if (!seg->use_rela_p)
20730 bfd_vma insn;
20731 bfd_vma addend_abs = abs (value);
20733 /* Check that the absolute value of the addend is a multiple of
20734 four and, when divided by four, fits in 8 bits. */
20735 if (addend_abs & 0x3)
20736 as_bad_where (fixP->fx_file, fixP->fx_line,
20737 _("bad offset 0x%08lX (must be word-aligned)"),
20738 (unsigned long) addend_abs);
20740 if ((addend_abs >> 2) > 0xff)
20741 as_bad_where (fixP->fx_file, fixP->fx_line,
20742 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20743 (unsigned long) addend_abs);
20745 /* Extract the instruction. */
20746 insn = md_chars_to_number (buf, INSN_SIZE);
20748 /* If the addend is negative, clear bit 23 of the instruction.
20749 Otherwise set it. */
20750 if (value < 0)
20751 insn &= ~(1 << 23);
20752 else
20753 insn |= 1 << 23;
20755 /* Place the addend (divided by four) into the first eight
20756 bits of the instruction. */
20757 insn &= 0xfffffff0;
20758 insn |= addend_abs >> 2;
20760 /* Update the instruction. */
20761 md_number_to_chars (buf, insn, INSN_SIZE);
20763 break;
20765 case BFD_RELOC_ARM_V4BX:
20766 /* This will need to go in the object file. */
20767 fixP->fx_done = 0;
20768 break;
20770 case BFD_RELOC_UNUSED:
20771 default:
20772 as_bad_where (fixP->fx_file, fixP->fx_line,
20773 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20777 /* Translate internal representation of relocation info to BFD target
20778 format. */
20780 arelent *
20781 tc_gen_reloc (asection *section, fixS *fixp)
20783 arelent * reloc;
20784 bfd_reloc_code_real_type code;
20786 reloc = (arelent *) xmalloc (sizeof (arelent));
20788 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20789 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20790 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20792 if (fixp->fx_pcrel)
20794 if (section->use_rela_p)
20795 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20796 else
20797 fixp->fx_offset = reloc->address;
20799 reloc->addend = fixp->fx_offset;
20801 switch (fixp->fx_r_type)
20803 case BFD_RELOC_8:
20804 if (fixp->fx_pcrel)
20806 code = BFD_RELOC_8_PCREL;
20807 break;
20810 case BFD_RELOC_16:
20811 if (fixp->fx_pcrel)
20813 code = BFD_RELOC_16_PCREL;
20814 break;
20817 case BFD_RELOC_32:
20818 if (fixp->fx_pcrel)
20820 code = BFD_RELOC_32_PCREL;
20821 break;
20824 case BFD_RELOC_ARM_MOVW:
20825 if (fixp->fx_pcrel)
20827 code = BFD_RELOC_ARM_MOVW_PCREL;
20828 break;
20831 case BFD_RELOC_ARM_MOVT:
20832 if (fixp->fx_pcrel)
20834 code = BFD_RELOC_ARM_MOVT_PCREL;
20835 break;
20838 case BFD_RELOC_ARM_THUMB_MOVW:
20839 if (fixp->fx_pcrel)
20841 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20842 break;
20845 case BFD_RELOC_ARM_THUMB_MOVT:
20846 if (fixp->fx_pcrel)
20848 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20849 break;
20852 case BFD_RELOC_NONE:
20853 case BFD_RELOC_ARM_PCREL_BRANCH:
20854 case BFD_RELOC_ARM_PCREL_BLX:
20855 case BFD_RELOC_RVA:
20856 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20857 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20858 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20859 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20860 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20861 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20862 case BFD_RELOC_VTABLE_ENTRY:
20863 case BFD_RELOC_VTABLE_INHERIT:
20864 #ifdef TE_PE
20865 case BFD_RELOC_32_SECREL:
20866 #endif
20867 code = fixp->fx_r_type;
20868 break;
20870 case BFD_RELOC_THUMB_PCREL_BLX:
20871 #ifdef OBJ_ELF
20872 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20873 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20874 else
20875 #endif
20876 code = BFD_RELOC_THUMB_PCREL_BLX;
20877 break;
20879 case BFD_RELOC_ARM_LITERAL:
20880 case BFD_RELOC_ARM_HWLITERAL:
20881 /* If this is called then the a literal has
20882 been referenced across a section boundary. */
20883 as_bad_where (fixp->fx_file, fixp->fx_line,
20884 _("literal referenced across section boundary"));
20885 return NULL;
20887 #ifdef OBJ_ELF
20888 case BFD_RELOC_ARM_GOT32:
20889 case BFD_RELOC_ARM_GOTOFF:
20890 case BFD_RELOC_ARM_PLT32:
20891 case BFD_RELOC_ARM_TARGET1:
20892 case BFD_RELOC_ARM_ROSEGREL32:
20893 case BFD_RELOC_ARM_SBREL32:
20894 case BFD_RELOC_ARM_PREL31:
20895 case BFD_RELOC_ARM_TARGET2:
20896 case BFD_RELOC_ARM_TLS_LE32:
20897 case BFD_RELOC_ARM_TLS_LDO32:
20898 case BFD_RELOC_ARM_PCREL_CALL:
20899 case BFD_RELOC_ARM_PCREL_JUMP:
20900 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20901 case BFD_RELOC_ARM_ALU_PC_G0:
20902 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20903 case BFD_RELOC_ARM_ALU_PC_G1:
20904 case BFD_RELOC_ARM_ALU_PC_G2:
20905 case BFD_RELOC_ARM_LDR_PC_G0:
20906 case BFD_RELOC_ARM_LDR_PC_G1:
20907 case BFD_RELOC_ARM_LDR_PC_G2:
20908 case BFD_RELOC_ARM_LDRS_PC_G0:
20909 case BFD_RELOC_ARM_LDRS_PC_G1:
20910 case BFD_RELOC_ARM_LDRS_PC_G2:
20911 case BFD_RELOC_ARM_LDC_PC_G0:
20912 case BFD_RELOC_ARM_LDC_PC_G1:
20913 case BFD_RELOC_ARM_LDC_PC_G2:
20914 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20915 case BFD_RELOC_ARM_ALU_SB_G0:
20916 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20917 case BFD_RELOC_ARM_ALU_SB_G1:
20918 case BFD_RELOC_ARM_ALU_SB_G2:
20919 case BFD_RELOC_ARM_LDR_SB_G0:
20920 case BFD_RELOC_ARM_LDR_SB_G1:
20921 case BFD_RELOC_ARM_LDR_SB_G2:
20922 case BFD_RELOC_ARM_LDRS_SB_G0:
20923 case BFD_RELOC_ARM_LDRS_SB_G1:
20924 case BFD_RELOC_ARM_LDRS_SB_G2:
20925 case BFD_RELOC_ARM_LDC_SB_G0:
20926 case BFD_RELOC_ARM_LDC_SB_G1:
20927 case BFD_RELOC_ARM_LDC_SB_G2:
20928 case BFD_RELOC_ARM_V4BX:
20929 code = fixp->fx_r_type;
20930 break;
20932 case BFD_RELOC_ARM_TLS_GD32:
20933 case BFD_RELOC_ARM_TLS_IE32:
20934 case BFD_RELOC_ARM_TLS_LDM32:
20935 /* BFD will include the symbol's address in the addend.
20936 But we don't want that, so subtract it out again here. */
20937 if (!S_IS_COMMON (fixp->fx_addsy))
20938 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20939 code = fixp->fx_r_type;
20940 break;
20941 #endif
20943 case BFD_RELOC_ARM_IMMEDIATE:
20944 as_bad_where (fixp->fx_file, fixp->fx_line,
20945 _("internal relocation (type: IMMEDIATE) not fixed up"));
20946 return NULL;
20948 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20949 as_bad_where (fixp->fx_file, fixp->fx_line,
20950 _("ADRL used for a symbol not defined in the same file"));
20951 return NULL;
20953 case BFD_RELOC_ARM_OFFSET_IMM:
20954 if (section->use_rela_p)
20956 code = fixp->fx_r_type;
20957 break;
20960 if (fixp->fx_addsy != NULL
20961 && !S_IS_DEFINED (fixp->fx_addsy)
20962 && S_IS_LOCAL (fixp->fx_addsy))
20964 as_bad_where (fixp->fx_file, fixp->fx_line,
20965 _("undefined local label `%s'"),
20966 S_GET_NAME (fixp->fx_addsy));
20967 return NULL;
20970 as_bad_where (fixp->fx_file, fixp->fx_line,
20971 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20972 return NULL;
20974 default:
20976 char * type;
20978 switch (fixp->fx_r_type)
20980 case BFD_RELOC_NONE: type = "NONE"; break;
20981 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20982 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
20983 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
20984 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20985 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20986 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
20987 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
20988 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
20989 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
20990 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
20991 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
20992 default: type = _("<unknown>"); break;
20994 as_bad_where (fixp->fx_file, fixp->fx_line,
20995 _("cannot represent %s relocation in this object file format"),
20996 type);
20997 return NULL;
21001 #ifdef OBJ_ELF
21002 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21003 && GOT_symbol
21004 && fixp->fx_addsy == GOT_symbol)
21006 code = BFD_RELOC_ARM_GOTPC;
21007 reloc->addend = fixp->fx_offset = reloc->address;
21009 #endif
21011 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21013 if (reloc->howto == NULL)
21015 as_bad_where (fixp->fx_file, fixp->fx_line,
21016 _("cannot represent %s relocation in this object file format"),
21017 bfd_get_reloc_code_name (code));
21018 return NULL;
21021 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21022 vtable entry to be used in the relocation's section offset. */
21023 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21024 reloc->address = fixp->fx_offset;
21026 return reloc;
21029 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21031 void
21032 cons_fix_new_arm (fragS * frag,
21033 int where,
21034 int size,
21035 expressionS * exp)
21037 bfd_reloc_code_real_type type;
21038 int pcrel = 0;
21040 /* Pick a reloc.
21041 FIXME: @@ Should look at CPU word size. */
21042 switch (size)
21044 case 1:
21045 type = BFD_RELOC_8;
21046 break;
21047 case 2:
21048 type = BFD_RELOC_16;
21049 break;
21050 case 4:
21051 default:
21052 type = BFD_RELOC_32;
21053 break;
21054 case 8:
21055 type = BFD_RELOC_64;
21056 break;
21059 #ifdef TE_PE
21060 if (exp->X_op == O_secrel)
21062 exp->X_op = O_symbol;
21063 type = BFD_RELOC_32_SECREL;
21065 #endif
21067 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21070 #if defined (OBJ_COFF)
21071 void
21072 arm_validate_fix (fixS * fixP)
21074 /* If the destination of the branch is a defined symbol which does not have
21075 the THUMB_FUNC attribute, then we must be calling a function which has
21076 the (interfacearm) attribute. We look for the Thumb entry point to that
21077 function and change the branch to refer to that function instead. */
21078 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21079 && fixP->fx_addsy != NULL
21080 && S_IS_DEFINED (fixP->fx_addsy)
21081 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21083 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21086 #endif
21090 arm_force_relocation (struct fix * fixp)
21092 #if defined (OBJ_COFF) && defined (TE_PE)
21093 if (fixp->fx_r_type == BFD_RELOC_RVA)
21094 return 1;
21095 #endif
21097 /* In case we have a call or a branch to a function in ARM ISA mode from
21098 a thumb function or vice-versa force the relocation. These relocations
21099 are cleared off for some cores that might have blx and simple transformations
21100 are possible. */
21102 #ifdef OBJ_ELF
21103 switch (fixp->fx_r_type)
21105 case BFD_RELOC_ARM_PCREL_JUMP:
21106 case BFD_RELOC_ARM_PCREL_CALL:
21107 case BFD_RELOC_THUMB_PCREL_BLX:
21108 if (THUMB_IS_FUNC (fixp->fx_addsy))
21109 return 1;
21110 break;
21112 case BFD_RELOC_ARM_PCREL_BLX:
21113 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21114 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21115 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21116 if (ARM_IS_FUNC (fixp->fx_addsy))
21117 return 1;
21118 break;
21120 default:
21121 break;
21123 #endif
21125 /* Resolve these relocations even if the symbol is extern or weak. */
21126 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21127 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21128 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21129 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21130 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21131 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21132 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21133 return 0;
21135 /* Always leave these relocations for the linker. */
21136 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21137 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21138 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21139 return 1;
21141 /* Always generate relocations against function symbols. */
21142 if (fixp->fx_r_type == BFD_RELOC_32
21143 && fixp->fx_addsy
21144 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21145 return 1;
21147 return generic_force_reloc (fixp);
21150 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21151 /* Relocations against function names must be left unadjusted,
21152 so that the linker can use this information to generate interworking
21153 stubs. The MIPS version of this function
21154 also prevents relocations that are mips-16 specific, but I do not
21155 know why it does this.
21157 FIXME:
21158 There is one other problem that ought to be addressed here, but
21159 which currently is not: Taking the address of a label (rather
21160 than a function) and then later jumping to that address. Such
21161 addresses also ought to have their bottom bit set (assuming that
21162 they reside in Thumb code), but at the moment they will not. */
21164 bfd_boolean
21165 arm_fix_adjustable (fixS * fixP)
21167 if (fixP->fx_addsy == NULL)
21168 return 1;
21170 /* Preserve relocations against symbols with function type. */
21171 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21172 return FALSE;
21174 if (THUMB_IS_FUNC (fixP->fx_addsy)
21175 && fixP->fx_subsy == NULL)
21176 return FALSE;
21178 /* We need the symbol name for the VTABLE entries. */
21179 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21180 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21181 return FALSE;
21183 /* Don't allow symbols to be discarded on GOT related relocs. */
21184 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21185 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21186 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21187 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21188 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21189 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21190 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21191 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21192 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21193 return FALSE;
21195 /* Similarly for group relocations. */
21196 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21197 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21198 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21199 return FALSE;
21201 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21202 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21203 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21204 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21205 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21206 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21207 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21208 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21209 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21210 return FALSE;
21212 return TRUE;
21214 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21216 #ifdef OBJ_ELF
21218 const char *
21219 elf32_arm_target_format (void)
21221 #ifdef TE_SYMBIAN
21222 return (target_big_endian
21223 ? "elf32-bigarm-symbian"
21224 : "elf32-littlearm-symbian");
21225 #elif defined (TE_VXWORKS)
21226 return (target_big_endian
21227 ? "elf32-bigarm-vxworks"
21228 : "elf32-littlearm-vxworks");
21229 #else
21230 if (target_big_endian)
21231 return "elf32-bigarm";
21232 else
21233 return "elf32-littlearm";
21234 #endif
21237 void
21238 armelf_frob_symbol (symbolS * symp,
21239 int * puntp)
21241 elf_frob_symbol (symp, puntp);
21243 #endif
21245 /* MD interface: Finalization. */
21247 void
21248 arm_cleanup (void)
21250 literal_pool * pool;
21252 /* Ensure that all the IT blocks are properly closed. */
21253 check_it_blocks_finished ();
21255 for (pool = list_of_pools; pool; pool = pool->next)
21257 /* Put it at the end of the relevant section. */
21258 subseg_set (pool->section, pool->sub_section);
21259 #ifdef OBJ_ELF
21260 arm_elf_change_section ();
21261 #endif
21262 s_ltorg (0);
21266 #ifdef OBJ_ELF
21267 /* Remove any excess mapping symbols generated for alignment frags in
21268 SEC. We may have created a mapping symbol before a zero byte
21269 alignment; remove it if there's a mapping symbol after the
21270 alignment. */
21271 static void
21272 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21273 void *dummy ATTRIBUTE_UNUSED)
21275 segment_info_type *seginfo = seg_info (sec);
21276 fragS *fragp;
21278 if (seginfo == NULL || seginfo->frchainP == NULL)
21279 return;
21281 for (fragp = seginfo->frchainP->frch_root;
21282 fragp != NULL;
21283 fragp = fragp->fr_next)
21285 symbolS *sym = fragp->tc_frag_data.last_map;
21286 fragS *next = fragp->fr_next;
21288 /* Variable-sized frags have been converted to fixed size by
21289 this point. But if this was variable-sized to start with,
21290 there will be a fixed-size frag after it. So don't handle
21291 next == NULL. */
21292 if (sym == NULL || next == NULL)
21293 continue;
21295 if (S_GET_VALUE (sym) < next->fr_address)
21296 /* Not at the end of this frag. */
21297 continue;
21298 know (S_GET_VALUE (sym) == next->fr_address);
21302 if (next->tc_frag_data.first_map != NULL)
21304 /* Next frag starts with a mapping symbol. Discard this
21305 one. */
21306 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21307 break;
21310 if (next->fr_next == NULL)
21312 /* This mapping symbol is at the end of the section. Discard
21313 it. */
21314 know (next->fr_fix == 0 && next->fr_var == 0);
21315 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21316 break;
21319 /* As long as we have empty frags without any mapping symbols,
21320 keep looking. */
21321 /* If the next frag is non-empty and does not start with a
21322 mapping symbol, then this mapping symbol is required. */
21323 if (next->fr_address != next->fr_next->fr_address)
21324 break;
21326 next = next->fr_next;
21328 while (next != NULL);
21331 #endif
21333 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21334 ARM ones. */
21336 void
21337 arm_adjust_symtab (void)
21339 #ifdef OBJ_COFF
21340 symbolS * sym;
21342 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21344 if (ARM_IS_THUMB (sym))
21346 if (THUMB_IS_FUNC (sym))
21348 /* Mark the symbol as a Thumb function. */
21349 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21350 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21351 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21353 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21354 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21355 else
21356 as_bad (_("%s: unexpected function type: %d"),
21357 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21359 else switch (S_GET_STORAGE_CLASS (sym))
21361 case C_EXT:
21362 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21363 break;
21364 case C_STAT:
21365 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21366 break;
21367 case C_LABEL:
21368 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21369 break;
21370 default:
21371 /* Do nothing. */
21372 break;
21376 if (ARM_IS_INTERWORK (sym))
21377 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21379 #endif
21380 #ifdef OBJ_ELF
21381 symbolS * sym;
21382 char bind;
21384 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21386 if (ARM_IS_THUMB (sym))
21388 elf_symbol_type * elf_sym;
21390 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21391 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21393 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21394 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21396 /* If it's a .thumb_func, declare it as so,
21397 otherwise tag label as .code 16. */
21398 if (THUMB_IS_FUNC (sym))
21399 elf_sym->internal_elf_sym.st_info =
21400 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21401 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21402 elf_sym->internal_elf_sym.st_info =
21403 ELF_ST_INFO (bind, STT_ARM_16BIT);
21408 /* Remove any overlapping mapping symbols generated by alignment frags. */
21409 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21410 #endif
21413 /* MD interface: Initialization. */
21415 static void
21416 set_constant_flonums (void)
21418 int i;
21420 for (i = 0; i < NUM_FLOAT_VALS; i++)
21421 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21422 abort ();
21425 /* Auto-select Thumb mode if it's the only available instruction set for the
21426 given architecture. */
21428 static void
21429 autoselect_thumb_from_cpu_variant (void)
21431 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21432 opcode_select (16);
21435 void
21436 md_begin (void)
21438 unsigned mach;
21439 unsigned int i;
21441 if ( (arm_ops_hsh = hash_new ()) == NULL
21442 || (arm_cond_hsh = hash_new ()) == NULL
21443 || (arm_shift_hsh = hash_new ()) == NULL
21444 || (arm_psr_hsh = hash_new ()) == NULL
21445 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21446 || (arm_reg_hsh = hash_new ()) == NULL
21447 || (arm_reloc_hsh = hash_new ()) == NULL
21448 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21449 as_fatal (_("virtual memory exhausted"));
21451 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21452 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21453 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21454 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21455 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21456 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21457 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21458 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21459 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21460 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21461 (void *) (v7m_psrs + i));
21462 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21463 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21464 for (i = 0;
21465 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21466 i++)
21467 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21468 (void *) (barrier_opt_names + i));
21469 #ifdef OBJ_ELF
21470 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21471 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21472 #endif
21474 set_constant_flonums ();
21476 /* Set the cpu variant based on the command-line options. We prefer
21477 -mcpu= over -march= if both are set (as for GCC); and we prefer
21478 -mfpu= over any other way of setting the floating point unit.
21479 Use of legacy options with new options are faulted. */
21480 if (legacy_cpu)
21482 if (mcpu_cpu_opt || march_cpu_opt)
21483 as_bad (_("use of old and new-style options to set CPU type"));
21485 mcpu_cpu_opt = legacy_cpu;
21487 else if (!mcpu_cpu_opt)
21488 mcpu_cpu_opt = march_cpu_opt;
21490 if (legacy_fpu)
21492 if (mfpu_opt)
21493 as_bad (_("use of old and new-style options to set FPU type"));
21495 mfpu_opt = legacy_fpu;
21497 else if (!mfpu_opt)
21499 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21500 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21501 /* Some environments specify a default FPU. If they don't, infer it
21502 from the processor. */
21503 if (mcpu_fpu_opt)
21504 mfpu_opt = mcpu_fpu_opt;
21505 else
21506 mfpu_opt = march_fpu_opt;
21507 #else
21508 mfpu_opt = &fpu_default;
21509 #endif
21512 if (!mfpu_opt)
21514 if (mcpu_cpu_opt != NULL)
21515 mfpu_opt = &fpu_default;
21516 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21517 mfpu_opt = &fpu_arch_vfp_v2;
21518 else
21519 mfpu_opt = &fpu_arch_fpa;
21522 #ifdef CPU_DEFAULT
21523 if (!mcpu_cpu_opt)
21525 mcpu_cpu_opt = &cpu_default;
21526 selected_cpu = cpu_default;
21528 #else
21529 if (mcpu_cpu_opt)
21530 selected_cpu = *mcpu_cpu_opt;
21531 else
21532 mcpu_cpu_opt = &arm_arch_any;
21533 #endif
21535 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21537 autoselect_thumb_from_cpu_variant ();
21539 arm_arch_used = thumb_arch_used = arm_arch_none;
21541 #if defined OBJ_COFF || defined OBJ_ELF
21543 unsigned int flags = 0;
21545 #if defined OBJ_ELF
21546 flags = meabi_flags;
21548 switch (meabi_flags)
21550 case EF_ARM_EABI_UNKNOWN:
21551 #endif
21552 /* Set the flags in the private structure. */
21553 if (uses_apcs_26) flags |= F_APCS26;
21554 if (support_interwork) flags |= F_INTERWORK;
21555 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21556 if (pic_code) flags |= F_PIC;
21557 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21558 flags |= F_SOFT_FLOAT;
21560 switch (mfloat_abi_opt)
21562 case ARM_FLOAT_ABI_SOFT:
21563 case ARM_FLOAT_ABI_SOFTFP:
21564 flags |= F_SOFT_FLOAT;
21565 break;
21567 case ARM_FLOAT_ABI_HARD:
21568 if (flags & F_SOFT_FLOAT)
21569 as_bad (_("hard-float conflicts with specified fpu"));
21570 break;
21573 /* Using pure-endian doubles (even if soft-float). */
21574 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21575 flags |= F_VFP_FLOAT;
21577 #if defined OBJ_ELF
21578 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21579 flags |= EF_ARM_MAVERICK_FLOAT;
21580 break;
21582 case EF_ARM_EABI_VER4:
21583 case EF_ARM_EABI_VER5:
21584 /* No additional flags to set. */
21585 break;
21587 default:
21588 abort ();
21590 #endif
21591 bfd_set_private_flags (stdoutput, flags);
21593 /* We have run out flags in the COFF header to encode the
21594 status of ATPCS support, so instead we create a dummy,
21595 empty, debug section called .arm.atpcs. */
21596 if (atpcs)
21598 asection * sec;
21600 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21602 if (sec != NULL)
21604 bfd_set_section_flags
21605 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21606 bfd_set_section_size (stdoutput, sec, 0);
21607 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21611 #endif
21613 /* Record the CPU type as well. */
21614 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21615 mach = bfd_mach_arm_iWMMXt2;
21616 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21617 mach = bfd_mach_arm_iWMMXt;
21618 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21619 mach = bfd_mach_arm_XScale;
21620 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21621 mach = bfd_mach_arm_ep9312;
21622 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21623 mach = bfd_mach_arm_5TE;
21624 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21626 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21627 mach = bfd_mach_arm_5T;
21628 else
21629 mach = bfd_mach_arm_5;
21631 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21633 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21634 mach = bfd_mach_arm_4T;
21635 else
21636 mach = bfd_mach_arm_4;
21638 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21639 mach = bfd_mach_arm_3M;
21640 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21641 mach = bfd_mach_arm_3;
21642 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21643 mach = bfd_mach_arm_2a;
21644 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21645 mach = bfd_mach_arm_2;
21646 else
21647 mach = bfd_mach_arm_unknown;
21649 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21652 /* Command line processing. */
21654 /* md_parse_option
21655 Invocation line includes a switch not recognized by the base assembler.
21656 See if it's a processor-specific option.
21658 This routine is somewhat complicated by the need for backwards
21659 compatibility (since older releases of gcc can't be changed).
21660 The new options try to make the interface as compatible as
21661 possible with GCC.
21663 New options (supported) are:
21665 -mcpu=<cpu name> Assemble for selected processor
21666 -march=<architecture name> Assemble for selected architecture
21667 -mfpu=<fpu architecture> Assemble for selected FPU.
21668 -EB/-mbig-endian Big-endian
21669 -EL/-mlittle-endian Little-endian
21670 -k Generate PIC code
21671 -mthumb Start in Thumb mode
21672 -mthumb-interwork Code supports ARM/Thumb interworking
21674 -m[no-]warn-deprecated Warn about deprecated features
21676 For now we will also provide support for:
21678 -mapcs-32 32-bit Program counter
21679 -mapcs-26 26-bit Program counter
21680 -macps-float Floats passed in FP registers
21681 -mapcs-reentrant Reentrant code
21682 -matpcs
21683 (sometime these will probably be replaced with -mapcs=<list of options>
21684 and -matpcs=<list of options>)
21686 The remaining options are only supported for back-wards compatibility.
21687 Cpu variants, the arm part is optional:
21688 -m[arm]1 Currently not supported.
21689 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21690 -m[arm]3 Arm 3 processor
21691 -m[arm]6[xx], Arm 6 processors
21692 -m[arm]7[xx][t][[d]m] Arm 7 processors
21693 -m[arm]8[10] Arm 8 processors
21694 -m[arm]9[20][tdmi] Arm 9 processors
21695 -mstrongarm[110[0]] StrongARM processors
21696 -mxscale XScale processors
21697 -m[arm]v[2345[t[e]]] Arm architectures
21698 -mall All (except the ARM1)
21699 FP variants:
21700 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21701 -mfpe-old (No float load/store multiples)
21702 -mvfpxd VFP Single precision
21703 -mvfp All VFP
21704 -mno-fpu Disable all floating point instructions
21706 The following CPU names are recognized:
21707 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21708 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21709 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21710 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21711 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21712 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21713 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21717 const char * md_shortopts = "m:k";
21719 #ifdef ARM_BI_ENDIAN
21720 #define OPTION_EB (OPTION_MD_BASE + 0)
21721 #define OPTION_EL (OPTION_MD_BASE + 1)
21722 #else
21723 #if TARGET_BYTES_BIG_ENDIAN
21724 #define OPTION_EB (OPTION_MD_BASE + 0)
21725 #else
21726 #define OPTION_EL (OPTION_MD_BASE + 1)
21727 #endif
21728 #endif
21729 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21731 struct option md_longopts[] =
21733 #ifdef OPTION_EB
21734 {"EB", no_argument, NULL, OPTION_EB},
21735 #endif
21736 #ifdef OPTION_EL
21737 {"EL", no_argument, NULL, OPTION_EL},
21738 #endif
21739 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21740 {NULL, no_argument, NULL, 0}
21743 size_t md_longopts_size = sizeof (md_longopts);
21745 struct arm_option_table
21747 char *option; /* Option name to match. */
21748 char *help; /* Help information. */
21749 int *var; /* Variable to change. */
21750 int value; /* What to change it to. */
21751 char *deprecated; /* If non-null, print this message. */
21754 struct arm_option_table arm_opts[] =
21756 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21757 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21758 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21759 &support_interwork, 1, NULL},
21760 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21761 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21762 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21763 1, NULL},
21764 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21765 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21766 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21767 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21768 NULL},
21770 /* These are recognized by the assembler, but have no affect on code. */
21771 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21772 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21774 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21775 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21776 &warn_on_deprecated, 0, NULL},
21777 {NULL, NULL, NULL, 0, NULL}
21780 struct arm_legacy_option_table
21782 char *option; /* Option name to match. */
21783 const arm_feature_set **var; /* Variable to change. */
21784 const arm_feature_set value; /* What to change it to. */
21785 char *deprecated; /* If non-null, print this message. */
21788 const struct arm_legacy_option_table arm_legacy_opts[] =
21790 /* DON'T add any new processors to this list -- we want the whole list
21791 to go away... Add them to the processors table instead. */
21792 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21793 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21794 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21795 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21796 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21797 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21798 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21799 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21800 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21801 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21802 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21803 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21804 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21805 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21806 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21807 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21808 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21809 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21810 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21811 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21812 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21813 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21814 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21815 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21816 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21817 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21818 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21819 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21820 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21821 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21822 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21823 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21824 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21825 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21826 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21827 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21828 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21829 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21830 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21831 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21832 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21833 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21834 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21835 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21836 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21837 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21838 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21839 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21840 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21841 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21842 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21843 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21844 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21845 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21846 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21847 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21848 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21849 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21850 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21851 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21852 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21853 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21854 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21855 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21856 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21857 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21858 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21859 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21860 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21861 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
21862 N_("use -mcpu=strongarm110")},
21863 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
21864 N_("use -mcpu=strongarm1100")},
21865 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
21866 N_("use -mcpu=strongarm1110")},
21867 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21868 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21869 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
21871 /* Architecture variants -- don't add any more to this list either. */
21872 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21873 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21874 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21875 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21876 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21877 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21878 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21879 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21880 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21881 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21882 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21883 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21884 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21885 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21886 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21887 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21888 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21889 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21891 /* Floating point variants -- don't add any more to this list either. */
21892 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21893 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21894 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21895 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
21896 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
21898 {NULL, NULL, ARM_ARCH_NONE, NULL}
21901 struct arm_cpu_option_table
21903 char *name;
21904 const arm_feature_set value;
21905 /* For some CPUs we assume an FPU unless the user explicitly sets
21906 -mfpu=... */
21907 const arm_feature_set default_fpu;
21908 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21909 case. */
21910 const char *canonical_name;
21913 /* This list should, at a minimum, contain all the cpu names
21914 recognized by GCC. */
21915 static const struct arm_cpu_option_table arm_cpus[] =
21917 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21918 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21919 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21920 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21921 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21922 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21923 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21924 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21925 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21926 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21927 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21928 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21929 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21930 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21931 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21932 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21933 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21934 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21935 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21936 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21937 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21938 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21939 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21940 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21941 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21942 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21943 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21944 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21945 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21946 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21947 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21948 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21949 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21950 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21951 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21952 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21953 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21954 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21955 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21956 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21957 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21958 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21959 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21960 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21961 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21962 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21963 /* For V5 or later processors we default to using VFP; but the user
21964 should really set the FPU type explicitly. */
21965 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21966 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21967 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21968 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21969 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21970 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21971 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21972 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21973 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21974 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21975 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21976 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21977 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21978 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21979 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21980 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21981 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21982 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21983 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21984 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21985 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21986 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
21987 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21988 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
21989 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
21990 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
21991 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
21992 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
21993 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
21994 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
21995 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
21996 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
21997 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
21998 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
21999 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22000 | FPU_NEON_EXT_V1),
22001 NULL},
22002 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22003 | FPU_NEON_EXT_V1),
22004 NULL},
22005 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22006 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22007 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22008 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22009 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22010 /* ??? XSCALE is really an architecture. */
22011 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22012 /* ??? iwmmxt is not a processor. */
22013 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22014 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22015 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22016 /* Maverick */
22017 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22018 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22021 struct arm_arch_option_table
22023 char *name;
22024 const arm_feature_set value;
22025 const arm_feature_set default_fpu;
22028 /* This list should, at a minimum, contain all the architecture names
22029 recognized by GCC. */
22030 static const struct arm_arch_option_table arm_archs[] =
22032 {"all", ARM_ANY, FPU_ARCH_FPA},
22033 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22034 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22035 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22036 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22037 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22038 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22039 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22040 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22041 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22042 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22043 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22044 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22045 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22046 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22047 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22048 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22049 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22050 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22051 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22052 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22053 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22054 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22055 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22056 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22057 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22058 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22059 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22060 /* The official spelling of the ARMv7 profile variants is the dashed form.
22061 Accept the non-dashed form for compatibility with old toolchains. */
22062 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22063 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22064 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22065 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22066 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22067 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22068 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22069 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22070 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22071 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22072 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22075 /* ISA extensions in the co-processor space. */
22076 struct arm_option_cpu_value_table
22078 char *name;
22079 const arm_feature_set value;
22082 static const struct arm_option_cpu_value_table arm_extensions[] =
22084 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22085 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22086 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22087 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22088 {NULL, ARM_ARCH_NONE}
22091 /* This list should, at a minimum, contain all the fpu names
22092 recognized by GCC. */
22093 static const struct arm_option_cpu_value_table arm_fpus[] =
22095 {"softfpa", FPU_NONE},
22096 {"fpe", FPU_ARCH_FPE},
22097 {"fpe2", FPU_ARCH_FPE},
22098 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22099 {"fpa", FPU_ARCH_FPA},
22100 {"fpa10", FPU_ARCH_FPA},
22101 {"fpa11", FPU_ARCH_FPA},
22102 {"arm7500fe", FPU_ARCH_FPA},
22103 {"softvfp", FPU_ARCH_VFP},
22104 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22105 {"vfp", FPU_ARCH_VFP_V2},
22106 {"vfp9", FPU_ARCH_VFP_V2},
22107 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22108 {"vfp10", FPU_ARCH_VFP_V2},
22109 {"vfp10-r0", FPU_ARCH_VFP_V1},
22110 {"vfpxd", FPU_ARCH_VFP_V1xD},
22111 {"vfpv2", FPU_ARCH_VFP_V2},
22112 {"vfpv3", FPU_ARCH_VFP_V3},
22113 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22114 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22115 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22116 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22117 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22118 {"arm1020t", FPU_ARCH_VFP_V1},
22119 {"arm1020e", FPU_ARCH_VFP_V2},
22120 {"arm1136jfs", FPU_ARCH_VFP_V2},
22121 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22122 {"maverick", FPU_ARCH_MAVERICK},
22123 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22124 {"neon-fp16", FPU_ARCH_NEON_FP16},
22125 {"vfpv4", FPU_ARCH_VFP_V4},
22126 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22127 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22128 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22129 {NULL, ARM_ARCH_NONE}
22132 struct arm_option_value_table
22134 char *name;
22135 long value;
22138 static const struct arm_option_value_table arm_float_abis[] =
22140 {"hard", ARM_FLOAT_ABI_HARD},
22141 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22142 {"soft", ARM_FLOAT_ABI_SOFT},
22143 {NULL, 0}
22146 #ifdef OBJ_ELF
22147 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22148 static const struct arm_option_value_table arm_eabis[] =
22150 {"gnu", EF_ARM_EABI_UNKNOWN},
22151 {"4", EF_ARM_EABI_VER4},
22152 {"5", EF_ARM_EABI_VER5},
22153 {NULL, 0}
22155 #endif
22157 struct arm_long_option_table
22159 char * option; /* Substring to match. */
22160 char * help; /* Help information. */
22161 int (* func) (char * subopt); /* Function to decode sub-option. */
22162 char * deprecated; /* If non-null, print this message. */
22165 static bfd_boolean
22166 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22168 arm_feature_set *ext_set = (arm_feature_set *)
22169 xmalloc (sizeof (arm_feature_set));
22171 /* Copy the feature set, so that we can modify it. */
22172 *ext_set = **opt_p;
22173 *opt_p = ext_set;
22175 while (str != NULL && *str != 0)
22177 const struct arm_option_cpu_value_table * opt;
22178 char * ext;
22179 int optlen;
22181 if (*str != '+')
22183 as_bad (_("invalid architectural extension"));
22184 return FALSE;
22187 str++;
22188 ext = strchr (str, '+');
22190 if (ext != NULL)
22191 optlen = ext - str;
22192 else
22193 optlen = strlen (str);
22195 if (optlen == 0)
22197 as_bad (_("missing architectural extension"));
22198 return FALSE;
22201 for (opt = arm_extensions; opt->name != NULL; opt++)
22202 if (strncmp (opt->name, str, optlen) == 0)
22204 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22205 break;
22208 if (opt->name == NULL)
22210 as_bad (_("unknown architectural extension `%s'"), str);
22211 return FALSE;
22214 str = ext;
22217 return TRUE;
22220 static bfd_boolean
22221 arm_parse_cpu (char * str)
22223 const struct arm_cpu_option_table * opt;
22224 char * ext = strchr (str, '+');
22225 int optlen;
22227 if (ext != NULL)
22228 optlen = ext - str;
22229 else
22230 optlen = strlen (str);
22232 if (optlen == 0)
22234 as_bad (_("missing cpu name `%s'"), str);
22235 return FALSE;
22238 for (opt = arm_cpus; opt->name != NULL; opt++)
22239 if (strncmp (opt->name, str, optlen) == 0)
22241 mcpu_cpu_opt = &opt->value;
22242 mcpu_fpu_opt = &opt->default_fpu;
22243 if (opt->canonical_name)
22244 strcpy (selected_cpu_name, opt->canonical_name);
22245 else
22247 int i;
22249 for (i = 0; i < optlen; i++)
22250 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22251 selected_cpu_name[i] = 0;
22254 if (ext != NULL)
22255 return arm_parse_extension (ext, &mcpu_cpu_opt);
22257 return TRUE;
22260 as_bad (_("unknown cpu `%s'"), str);
22261 return FALSE;
22264 static bfd_boolean
22265 arm_parse_arch (char * str)
22267 const struct arm_arch_option_table *opt;
22268 char *ext = strchr (str, '+');
22269 int optlen;
22271 if (ext != NULL)
22272 optlen = ext - str;
22273 else
22274 optlen = strlen (str);
22276 if (optlen == 0)
22278 as_bad (_("missing architecture name `%s'"), str);
22279 return FALSE;
22282 for (opt = arm_archs; opt->name != NULL; opt++)
22283 if (streq (opt->name, str))
22285 march_cpu_opt = &opt->value;
22286 march_fpu_opt = &opt->default_fpu;
22287 strcpy (selected_cpu_name, opt->name);
22289 if (ext != NULL)
22290 return arm_parse_extension (ext, &march_cpu_opt);
22292 return TRUE;
22295 as_bad (_("unknown architecture `%s'\n"), str);
22296 return FALSE;
22299 static bfd_boolean
22300 arm_parse_fpu (char * str)
22302 const struct arm_option_cpu_value_table * opt;
22304 for (opt = arm_fpus; opt->name != NULL; opt++)
22305 if (streq (opt->name, str))
22307 mfpu_opt = &opt->value;
22308 return TRUE;
22311 as_bad (_("unknown floating point format `%s'\n"), str);
22312 return FALSE;
22315 static bfd_boolean
22316 arm_parse_float_abi (char * str)
22318 const struct arm_option_value_table * opt;
22320 for (opt = arm_float_abis; opt->name != NULL; opt++)
22321 if (streq (opt->name, str))
22323 mfloat_abi_opt = opt->value;
22324 return TRUE;
22327 as_bad (_("unknown floating point abi `%s'\n"), str);
22328 return FALSE;
22331 #ifdef OBJ_ELF
22332 static bfd_boolean
22333 arm_parse_eabi (char * str)
22335 const struct arm_option_value_table *opt;
22337 for (opt = arm_eabis; opt->name != NULL; opt++)
22338 if (streq (opt->name, str))
22340 meabi_flags = opt->value;
22341 return TRUE;
22343 as_bad (_("unknown EABI `%s'\n"), str);
22344 return FALSE;
22346 #endif
22348 static bfd_boolean
22349 arm_parse_it_mode (char * str)
22351 bfd_boolean ret = TRUE;
22353 if (streq ("arm", str))
22354 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22355 else if (streq ("thumb", str))
22356 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22357 else if (streq ("always", str))
22358 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22359 else if (streq ("never", str))
22360 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22361 else
22363 as_bad (_("unknown implicit IT mode `%s', should be "\
22364 "arm, thumb, always, or never."), str);
22365 ret = FALSE;
22368 return ret;
22371 struct arm_long_option_table arm_long_opts[] =
22373 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22374 arm_parse_cpu, NULL},
22375 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22376 arm_parse_arch, NULL},
22377 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22378 arm_parse_fpu, NULL},
22379 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22380 arm_parse_float_abi, NULL},
22381 #ifdef OBJ_ELF
22382 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22383 arm_parse_eabi, NULL},
22384 #endif
22385 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22386 arm_parse_it_mode, NULL},
22387 {NULL, NULL, 0, NULL}
22391 md_parse_option (int c, char * arg)
22393 struct arm_option_table *opt;
22394 const struct arm_legacy_option_table *fopt;
22395 struct arm_long_option_table *lopt;
22397 switch (c)
22399 #ifdef OPTION_EB
22400 case OPTION_EB:
22401 target_big_endian = 1;
22402 break;
22403 #endif
22405 #ifdef OPTION_EL
22406 case OPTION_EL:
22407 target_big_endian = 0;
22408 break;
22409 #endif
22411 case OPTION_FIX_V4BX:
22412 fix_v4bx = TRUE;
22413 break;
22415 case 'a':
22416 /* Listing option. Just ignore these, we don't support additional
22417 ones. */
22418 return 0;
22420 default:
22421 for (opt = arm_opts; opt->option != NULL; opt++)
22423 if (c == opt->option[0]
22424 && ((arg == NULL && opt->option[1] == 0)
22425 || streq (arg, opt->option + 1)))
22427 /* If the option is deprecated, tell the user. */
22428 if (warn_on_deprecated && opt->deprecated != NULL)
22429 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22430 arg ? arg : "", _(opt->deprecated));
22432 if (opt->var != NULL)
22433 *opt->var = opt->value;
22435 return 1;
22439 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22441 if (c == fopt->option[0]
22442 && ((arg == NULL && fopt->option[1] == 0)
22443 || streq (arg, fopt->option + 1)))
22445 /* If the option is deprecated, tell the user. */
22446 if (warn_on_deprecated && fopt->deprecated != NULL)
22447 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22448 arg ? arg : "", _(fopt->deprecated));
22450 if (fopt->var != NULL)
22451 *fopt->var = &fopt->value;
22453 return 1;
22457 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22459 /* These options are expected to have an argument. */
22460 if (c == lopt->option[0]
22461 && arg != NULL
22462 && strncmp (arg, lopt->option + 1,
22463 strlen (lopt->option + 1)) == 0)
22465 /* If the option is deprecated, tell the user. */
22466 if (warn_on_deprecated && lopt->deprecated != NULL)
22467 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22468 _(lopt->deprecated));
22470 /* Call the sup-option parser. */
22471 return lopt->func (arg + strlen (lopt->option) - 1);
22475 return 0;
22478 return 1;
22481 void
22482 md_show_usage (FILE * fp)
22484 struct arm_option_table *opt;
22485 struct arm_long_option_table *lopt;
22487 fprintf (fp, _(" ARM-specific assembler options:\n"));
22489 for (opt = arm_opts; opt->option != NULL; opt++)
22490 if (opt->help != NULL)
22491 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22493 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22494 if (lopt->help != NULL)
22495 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22497 #ifdef OPTION_EB
22498 fprintf (fp, _("\
22499 -EB assemble code for a big-endian cpu\n"));
22500 #endif
22502 #ifdef OPTION_EL
22503 fprintf (fp, _("\
22504 -EL assemble code for a little-endian cpu\n"));
22505 #endif
22507 fprintf (fp, _("\
22508 --fix-v4bx Allow BX in ARMv4 code\n"));
22512 #ifdef OBJ_ELF
22513 typedef struct
22515 int val;
22516 arm_feature_set flags;
22517 } cpu_arch_ver_table;
22519 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22520 least features first. */
22521 static const cpu_arch_ver_table cpu_arch_ver[] =
22523 {1, ARM_ARCH_V4},
22524 {2, ARM_ARCH_V4T},
22525 {3, ARM_ARCH_V5},
22526 {3, ARM_ARCH_V5T},
22527 {4, ARM_ARCH_V5TE},
22528 {5, ARM_ARCH_V5TEJ},
22529 {6, ARM_ARCH_V6},
22530 {7, ARM_ARCH_V6Z},
22531 {9, ARM_ARCH_V6K},
22532 {11, ARM_ARCH_V6M},
22533 {8, ARM_ARCH_V6T2},
22534 {10, ARM_ARCH_V7A},
22535 {10, ARM_ARCH_V7R},
22536 {10, ARM_ARCH_V7M},
22537 {0, ARM_ARCH_NONE}
22540 /* Set an attribute if it has not already been set by the user. */
22541 static void
22542 aeabi_set_attribute_int (int tag, int value)
22544 if (tag < 1
22545 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22546 || !attributes_set_explicitly[tag])
22547 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22550 static void
22551 aeabi_set_attribute_string (int tag, const char *value)
22553 if (tag < 1
22554 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22555 || !attributes_set_explicitly[tag])
22556 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22559 /* Set the public EABI object attributes. */
22560 static void
22561 aeabi_set_public_attributes (void)
22563 int arch;
22564 arm_feature_set flags;
22565 arm_feature_set tmp;
22566 const cpu_arch_ver_table *p;
22568 /* Choose the architecture based on the capabilities of the requested cpu
22569 (if any) and/or the instructions actually used. */
22570 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22571 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22572 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22573 /*Allow the user to override the reported architecture. */
22574 if (object_arch)
22576 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22577 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22580 tmp = flags;
22581 arch = 0;
22582 for (p = cpu_arch_ver; p->val; p++)
22584 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22586 arch = p->val;
22587 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22591 /* The table lookup above finds the last architecture to contribute
22592 a new feature. Unfortunately, Tag13 is a subset of the union of
22593 v6T2 and v7-M, so it is never seen as contributing a new feature.
22594 We can not search for the last entry which is entirely used,
22595 because if no CPU is specified we build up only those flags
22596 actually used. Perhaps we should separate out the specified
22597 and implicit cases. Avoid taking this path for -march=all by
22598 checking for contradictory v7-A / v7-M features. */
22599 if (arch == 10
22600 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22601 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22602 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22603 arch = 13;
22605 /* Tag_CPU_name. */
22606 if (selected_cpu_name[0])
22608 char *q;
22610 q = selected_cpu_name;
22611 if (strncmp (q, "armv", 4) == 0)
22613 int i;
22615 q += 4;
22616 for (i = 0; q[i]; i++)
22617 q[i] = TOUPPER (q[i]);
22619 aeabi_set_attribute_string (Tag_CPU_name, q);
22622 /* Tag_CPU_arch. */
22623 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22625 /* Tag_CPU_arch_profile. */
22626 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22627 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22628 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22629 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22630 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22631 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22633 /* Tag_ARM_ISA_use. */
22634 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22635 || arch == 0)
22636 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22638 /* Tag_THUMB_ISA_use. */
22639 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22640 || arch == 0)
22641 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22642 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22644 /* Tag_VFP_arch. */
22645 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22646 aeabi_set_attribute_int (Tag_VFP_arch,
22647 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22648 ? 5 : 6);
22649 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22650 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22651 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22652 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22653 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22654 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22655 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22656 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22657 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22659 /* Tag_WMMX_arch. */
22660 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22661 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22662 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22663 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22665 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22666 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22667 aeabi_set_attribute_int
22668 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22669 ? 2 : 1));
22671 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22672 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22673 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22676 /* Add the default contents for the .ARM.attributes section. */
22677 void
22678 arm_md_end (void)
22680 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22681 return;
22683 aeabi_set_public_attributes ();
22685 #endif /* OBJ_ELF */
22688 /* Parse a .cpu directive. */
22690 static void
22691 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22693 const struct arm_cpu_option_table *opt;
22694 char *name;
22695 char saved_char;
22697 name = input_line_pointer;
22698 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22699 input_line_pointer++;
22700 saved_char = *input_line_pointer;
22701 *input_line_pointer = 0;
22703 /* Skip the first "all" entry. */
22704 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22705 if (streq (opt->name, name))
22707 mcpu_cpu_opt = &opt->value;
22708 selected_cpu = opt->value;
22709 if (opt->canonical_name)
22710 strcpy (selected_cpu_name, opt->canonical_name);
22711 else
22713 int i;
22714 for (i = 0; opt->name[i]; i++)
22715 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22716 selected_cpu_name[i] = 0;
22718 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22719 *input_line_pointer = saved_char;
22720 demand_empty_rest_of_line ();
22721 return;
22723 as_bad (_("unknown cpu `%s'"), name);
22724 *input_line_pointer = saved_char;
22725 ignore_rest_of_line ();
22729 /* Parse a .arch directive. */
22731 static void
22732 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22734 const struct arm_arch_option_table *opt;
22735 char saved_char;
22736 char *name;
22738 name = input_line_pointer;
22739 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22740 input_line_pointer++;
22741 saved_char = *input_line_pointer;
22742 *input_line_pointer = 0;
22744 /* Skip the first "all" entry. */
22745 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22746 if (streq (opt->name, name))
22748 mcpu_cpu_opt = &opt->value;
22749 selected_cpu = opt->value;
22750 strcpy (selected_cpu_name, opt->name);
22751 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22752 *input_line_pointer = saved_char;
22753 demand_empty_rest_of_line ();
22754 return;
22757 as_bad (_("unknown architecture `%s'\n"), name);
22758 *input_line_pointer = saved_char;
22759 ignore_rest_of_line ();
22763 /* Parse a .object_arch directive. */
22765 static void
22766 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22768 const struct arm_arch_option_table *opt;
22769 char saved_char;
22770 char *name;
22772 name = input_line_pointer;
22773 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22774 input_line_pointer++;
22775 saved_char = *input_line_pointer;
22776 *input_line_pointer = 0;
22778 /* Skip the first "all" entry. */
22779 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22780 if (streq (opt->name, name))
22782 object_arch = &opt->value;
22783 *input_line_pointer = saved_char;
22784 demand_empty_rest_of_line ();
22785 return;
22788 as_bad (_("unknown architecture `%s'\n"), name);
22789 *input_line_pointer = saved_char;
22790 ignore_rest_of_line ();
22793 /* Parse a .fpu directive. */
22795 static void
22796 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22798 const struct arm_option_cpu_value_table *opt;
22799 char saved_char;
22800 char *name;
22802 name = input_line_pointer;
22803 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22804 input_line_pointer++;
22805 saved_char = *input_line_pointer;
22806 *input_line_pointer = 0;
22808 for (opt = arm_fpus; opt->name != NULL; opt++)
22809 if (streq (opt->name, name))
22811 mfpu_opt = &opt->value;
22812 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22813 *input_line_pointer = saved_char;
22814 demand_empty_rest_of_line ();
22815 return;
22818 as_bad (_("unknown floating point format `%s'\n"), name);
22819 *input_line_pointer = saved_char;
22820 ignore_rest_of_line ();
22823 /* Copy symbol information. */
22825 void
22826 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22828 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22831 #ifdef OBJ_ELF
22832 /* Given a symbolic attribute NAME, return the proper integer value.
22833 Returns -1 if the attribute is not known. */
22836 arm_convert_symbolic_attribute (const char *name)
22838 static const struct
22840 const char * name;
22841 const int tag;
22843 attribute_table[] =
22845 /* When you modify this table you should
22846 also modify the list in doc/c-arm.texi. */
22847 #define T(tag) {#tag, tag}
22848 T (Tag_CPU_raw_name),
22849 T (Tag_CPU_name),
22850 T (Tag_CPU_arch),
22851 T (Tag_CPU_arch_profile),
22852 T (Tag_ARM_ISA_use),
22853 T (Tag_THUMB_ISA_use),
22854 T (Tag_VFP_arch),
22855 T (Tag_WMMX_arch),
22856 T (Tag_Advanced_SIMD_arch),
22857 T (Tag_PCS_config),
22858 T (Tag_ABI_PCS_R9_use),
22859 T (Tag_ABI_PCS_RW_data),
22860 T (Tag_ABI_PCS_RO_data),
22861 T (Tag_ABI_PCS_GOT_use),
22862 T (Tag_ABI_PCS_wchar_t),
22863 T (Tag_ABI_FP_rounding),
22864 T (Tag_ABI_FP_denormal),
22865 T (Tag_ABI_FP_exceptions),
22866 T (Tag_ABI_FP_user_exceptions),
22867 T (Tag_ABI_FP_number_model),
22868 T (Tag_ABI_align8_needed),
22869 T (Tag_ABI_align8_preserved),
22870 T (Tag_ABI_enum_size),
22871 T (Tag_ABI_HardFP_use),
22872 T (Tag_ABI_VFP_args),
22873 T (Tag_ABI_WMMX_args),
22874 T (Tag_ABI_optimization_goals),
22875 T (Tag_ABI_FP_optimization_goals),
22876 T (Tag_compatibility),
22877 T (Tag_CPU_unaligned_access),
22878 T (Tag_VFP_HP_extension),
22879 T (Tag_ABI_FP_16bit_format),
22880 T (Tag_nodefaults),
22881 T (Tag_also_compatible_with),
22882 T (Tag_conformance),
22883 T (Tag_T2EE_use),
22884 T (Tag_Virtualization_use),
22885 T (Tag_MPextension_use)
22886 #undef T
22888 unsigned int i;
22890 if (name == NULL)
22891 return -1;
22893 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
22894 if (streq (name, attribute_table[i].name))
22895 return attribute_table[i].tag;
22897 return -1;
22901 /* Apply sym value for relocations only in the case that
22902 they are for local symbols and you have the respective
22903 architectural feature for blx and simple switches. */
22905 arm_apply_sym_value (struct fix * fixP)
22907 if (fixP->fx_addsy
22908 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22909 && !S_IS_EXTERNAL (fixP->fx_addsy))
22911 switch (fixP->fx_r_type)
22913 case BFD_RELOC_ARM_PCREL_BLX:
22914 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22915 if (ARM_IS_FUNC (fixP->fx_addsy))
22916 return 1;
22917 break;
22919 case BFD_RELOC_ARM_PCREL_CALL:
22920 case BFD_RELOC_THUMB_PCREL_BLX:
22921 if (THUMB_IS_FUNC (fixP->fx_addsy))
22922 return 1;
22923 break;
22925 default:
22926 break;
22930 return 0;
22932 #endif /* OBJ_ELF */