daily update
[binutils.git] / bfd / elflink.c
blob7f9ec609b53276217550d2bddf98f8f00c77e707
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 bfd_boolean failed;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
155 return TRUE;
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
174 return TRUE;
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
260 if (info->emit_hash)
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
295 return TRUE;
298 /* Create dynamic sections when linking against a dynamic object. */
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
353 if (bed->want_dynbss)
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
389 return TRUE;
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
427 default:
428 break;
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457 if (p != NULL)
458 *p = ELF_VER_CHR;
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
465 return TRUE;
468 /* Mark a symbol dynamic. */
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
570 h->def_regular = 1;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
607 return TRUE;
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
629 return 0;
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
646 return 0;
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
652 asection *s;
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
696 return 1;
699 /* Return the dynindex of a local dynamic symbol. */
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
722 size_t *count = (size_t *) data;
724 if (h->forced_local)
725 return TRUE;
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
730 return TRUE;
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
741 size_t *count = (size_t *) data;
743 if (!h->forced_local)
744 return TRUE;
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
749 return TRUE;
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
759 struct elf_link_hash_table *htab;
761 switch (elf_section_data (p)->this_hdr.sh_type)
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
779 asection *ip;
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
787 return FALSE;
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
807 unsigned long dynsymcount = 0;
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
821 *section_sym_count = dynsymcount;
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
827 if (elf_hash_table (info)->dynlocal)
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
848 /* Merge st_other field. */
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 unsigned char hvis, symvis, other, nvis;
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
892 h->other = other | nvis;
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
931 *skip = FALSE;
932 *override = FALSE;
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
942 *skip = TRUE;
943 return TRUE;
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
955 bed = get_elf_backend_data (abfd);
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
962 /* For merging, we only care about real symbols. */
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
977 if (h->root.type == bfd_link_hash_new)
979 h->non_elf = 0;
980 return TRUE;
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
986 switch (h->root.type)
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1078 *skip = TRUE;
1079 return TRUE;
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1096 if (h->type == STT_TLS)
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1105 else
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1191 struct elf_link_hash_entry *vh = *sym_hash;
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1204 else
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213 h = vh;
1215 else
1216 h = *sym_hash;
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1231 else
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1237 if (h->def_dynamic)
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1367 *size_change_ok = TRUE;
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec))
1482 if (oldfunc)
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1490 *type_change_ok = TRUE;
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1545 if (flip != NULL)
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1562 return TRUE;
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1602 if (override)
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1643 if (skip)
1644 goto nondefault;
1646 if (! override)
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1655 else
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1706 if (hi->root.type == bfd_link_hash_indirect)
1708 struct elf_link_hash_entry *ht;
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1717 if (! dynamic)
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1723 else
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1751 if (skip)
1752 return TRUE;
1754 if (override)
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1765 else
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1778 if (hi->root.type == bfd_link_hash_indirect)
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1786 if (! dynamic)
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1792 else
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1801 return TRUE;
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1827 eif->failed = TRUE;
1828 return FALSE;
1832 return TRUE;
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1869 break;
1872 /* This is a new version. Add it to tree we are building. */
1874 if (t == NULL)
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1880 rinfo->failed = TRUE;
1881 return FALSE;
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1893 rinfo->failed = TRUE;
1894 return FALSE;
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1911 t->vn_auxptr = a;
1913 return TRUE;
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1956 hidden = TRUE;
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1963 hidden = FALSE;
1964 ++p;
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1978 if (strcmp (t->name, p) == 0)
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1988 sinfo->failed = TRUE;
1989 return FALSE;
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2014 free (alc);
2015 break;
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2035 sinfo->failed = TRUE;
2036 return FALSE;
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2054 *pp = t;
2056 h->verinfo.vertree = t;
2058 else if (t == NULL)
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2070 if (hidden)
2071 h->hidden = 1;
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2078 bfd_boolean hide;
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2087 return TRUE;
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2097 Returns FALSE if something goes wrong. */
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2125 bed = get_elf_backend_data (abfd);
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2143 bfd_vma r_symndx;
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2151 if ((size_t) r_symndx >= nsyms)
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2162 else if (r_symndx != STN_UNDEF)
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2176 return TRUE;
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2205 if (o->reloc_count == 0)
2206 return NULL;
2208 if (internal_relocs == NULL)
2210 bfd_size_type size;
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2222 if (external_relocs == NULL)
2224 bfd_size_type size = 0;
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2260 if (alloc1 != NULL)
2261 free (alloc1);
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2266 return internal_relocs;
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2278 return NULL;
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2301 if (reldata->hashes == NULL && reldata->count)
2303 struct elf_link_hash_entry **p;
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2310 reldata->hashes = p;
2313 return TRUE;
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2337 output_section = input_section->output_section;
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2352 else
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2377 return TRUE;
2380 /* Make weak undefined symbols in PIE dynamic. */
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2391 return TRUE;
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2404 const struct elf_backend_data *bed;
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2421 else
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2430 else
2431 h->def_regular = 1;
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2440 eif->failed = TRUE;
2441 return FALSE;
2445 else
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2495 bfd_boolean force_local;
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2518 else
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2534 return TRUE;
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2539 recursively. */
2541 static bfd_boolean
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2545 bfd *dynobj;
2546 const struct elf_backend_data *bed;
2548 if (! is_elf_hash_table (eif->info->hash))
2549 return FALSE;
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2553 return TRUE;
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2557 return FALSE;
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2566 if (!h->needs_plt
2567 && h->type != STT_GNU_IFUNC
2568 && (h->def_regular
2569 || !h->def_dynamic
2570 || (!h->ref_regular
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2574 return TRUE;
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2580 return TRUE;
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2600 library model.
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2606 int _timezone = 5;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2616 if (h->u.weakdef != NULL)
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2625 return FALSE;
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2633 if (h->size == 0
2634 && h->type == STT_NOTYPE
2635 && !h->needs_plt)
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2645 eif->failed = TRUE;
2646 return FALSE;
2649 return TRUE;
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2653 DYNBSS. */
2655 bfd_boolean
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2657 asection *dynbss)
2659 unsigned int power_of_two;
2660 bfd_vma mask;
2661 asection *sec = h->root.u.def.section;
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2672 mask >>= 1;
2673 --power_of_two;
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2677 dynbss))
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2681 power_of_two))
2682 return FALSE;
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2695 return TRUE;
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2701 static bfd_boolean
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2704 asection *sec;
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2711 bfd *output_bfd = (bfd *) data;
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2720 return TRUE;
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2727 bfd_boolean
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2736 if (h == NULL)
2737 return FALSE;
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2745 return FALSE;
2746 if (h->forced_local)
2747 return FALSE;
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2753 switch (ELF_ST_VISIBILITY (h->other))
2755 case STV_INTERNAL:
2756 case STV_HIDDEN:
2757 return FALSE;
2759 case STV_PROTECTED:
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2762 return FALSE;
2764 bed = get_elf_backend_data (hash_table->dynobj);
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2771 break;
2773 default:
2774 break;
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2779 return TRUE;
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2799 bfd_boolean
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2807 /* If it's a local sym, of course we resolve locally. */
2808 if (h == NULL)
2809 return TRUE;
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2814 return TRUE;
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2819 /* Do nothing. */;
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2823 return FALSE;
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2827 return TRUE;
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2831 return TRUE;
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2837 return TRUE;
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2842 return FALSE;
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2846 return TRUE;
2848 bed = get_elf_backend_data (hash_table->dynobj);
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2852 return TRUE;
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2873 break;
2874 tls = sec;
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2880 elf_hash_table (info)->tls_sec = tls;
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2884 if (tls != NULL)
2885 tls->alignment_power = align;
2887 return tls;
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2891 static bfd_boolean
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2895 const struct elf_backend_data *bed;
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2900 return FALSE;
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2905 return FALSE;
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2909 return FALSE;
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2914 return FALSE;
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2926 return FALSE;
2928 return TRUE;
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2934 static bfd_boolean
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2944 bfd_boolean result;
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2947 if (abfd == NULL)
2948 return FALSE;
2950 if (! bfd_check_format (abfd, bfd_object))
2951 return FALSE;
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2958 return FALSE;
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2963 else
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2972 extsymcount = symcount;
2973 extsymoff = 0;
2975 else
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2981 if (extsymcount == 0)
2982 return FALSE;
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2986 NULL, NULL, NULL);
2987 if (isymbuf == NULL)
2988 return FALSE;
2990 /* Scan the symbol table looking for SYMDEF. */
2991 result = FALSE;
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2994 const char *name;
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2997 isym->st_name);
2998 if (name == NULL)
2999 break;
3001 if (strcmp (name, symdef->name) == 0)
3003 result = is_global_data_symbol_definition (abfd, isym);
3004 break;
3008 free (isymbuf);
3010 return result;
3013 /* Add an entry to the .dynamic table. */
3015 bfd_boolean
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3017 bfd_vma tag,
3018 bfd_vma val)
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3022 asection *s;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3029 return FALSE;
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3038 return FALSE;
3040 dyn.d_tag = tag;
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3044 s->size = newsize;
3045 s->contents = newcontents;
3047 return TRUE;
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3054 static int
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3057 const char *soname,
3058 bfd_boolean do_it)
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type oldsize;
3062 bfd_size_type strindex;
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3065 return -1;
3067 hash_table = elf_hash_table (info);
3068 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3071 return -1;
3073 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3075 asection *sdyn;
3076 const struct elf_backend_data *bed;
3077 bfd_byte *extdyn;
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3081 if (sdyn != NULL)
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3086 Elf_Internal_Dyn dyn;
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093 return 1;
3098 if (do_it)
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3101 return -1;
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3104 return -1;
3106 else
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3110 return 0;
3113 static bfd_boolean
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3118 return TRUE;
3120 return FALSE;
3123 /* Sort symbol by value and section. */
3124 static int
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3134 if (vdiff != 0)
3135 return vdiff > 0 ? 1 : -1;
3136 else
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3139 if (sdiff != 0)
3140 return sdiff > 0 ? 1 : -1;
3142 return 0;
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3148 static bfd_boolean
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3155 return TRUE;
3158 /* Assign string offsets in .dynstr, update all structures referencing
3159 them. */
3161 static bfd_boolean
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3168 asection *sdyn;
3169 bfd_size_type size;
3170 const struct elf_backend_data *bed;
3171 bfd_byte *extdyn;
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3185 Elf_Internal_Dyn dyn;
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3188 switch (dyn.d_tag)
3190 case DT_STRSZ:
3191 dyn.d_un.d_val = size;
3192 break;
3193 case DT_NEEDED:
3194 case DT_SONAME:
3195 case DT_RPATH:
3196 case DT_RUNPATH:
3197 case DT_FILTER:
3198 case DT_AUXILIARY:
3199 case DT_AUDIT:
3200 case DT_DEPAUDIT:
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3202 break;
3203 default:
3204 continue;
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3220 asection *s;
3221 bfd_byte *p;
3222 bfd_size_type i;
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3226 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3227 p = s->contents;
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3231 &def);
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3234 continue;
3235 for (i = 0; i < def.vd_cnt; ++i)
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3240 defaux.vda_name);
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3246 while (def.vd_next);
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3258 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3259 p = s->contents;
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3263 &need);
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3273 needaux.vna_name);
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3275 &needaux,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3280 while (need.vn_next);
3283 return TRUE;
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3288 the same target. */
3290 bfd_boolean
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3294 return input == output;
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3301 bfd_boolean
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3305 const struct elf_backend_data *obed, *ibed;
3307 if (input == output)
3308 return TRUE;
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3313 if (ibed->arch != obed->arch)
3314 return FALSE;
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3320 /* Add symbols from an ELF object file to the linker hash table. */
3322 static bfd_boolean
3323 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3325 Elf_Internal_Ehdr *ehdr;
3326 Elf_Internal_Shdr *hdr;
3327 bfd_size_type symcount;
3328 bfd_size_type extsymcount;
3329 bfd_size_type extsymoff;
3330 struct elf_link_hash_entry **sym_hash;
3331 bfd_boolean dynamic;
3332 Elf_External_Versym *extversym = NULL;
3333 Elf_External_Versym *ever;
3334 struct elf_link_hash_entry *weaks;
3335 struct elf_link_hash_entry **nondeflt_vers = NULL;
3336 bfd_size_type nondeflt_vers_cnt = 0;
3337 Elf_Internal_Sym *isymbuf = NULL;
3338 Elf_Internal_Sym *isym;
3339 Elf_Internal_Sym *isymend;
3340 const struct elf_backend_data *bed;
3341 bfd_boolean add_needed;
3342 struct elf_link_hash_table *htab;
3343 bfd_size_type amt;
3344 void *alloc_mark = NULL;
3345 struct bfd_hash_entry **old_table = NULL;
3346 unsigned int old_size = 0;
3347 unsigned int old_count = 0;
3348 void *old_tab = NULL;
3349 void *old_hash;
3350 void *old_ent;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3354 size_t tabsize = 0;
3355 size_t hashsize = 0;
3357 htab = elf_hash_table (info);
3358 bed = get_elf_backend_data (abfd);
3360 if ((abfd->flags & DYNAMIC) == 0)
3361 dynamic = FALSE;
3362 else
3364 dynamic = TRUE;
3366 /* You can't use -r against a dynamic object. Also, there's no
3367 hope of using a dynamic object which does not exactly match
3368 the format of the output file. */
3369 if (info->relocatable
3370 || !is_elf_hash_table (htab)
3371 || info->output_bfd->xvec != abfd->xvec)
3373 if (info->relocatable)
3374 bfd_set_error (bfd_error_invalid_operation);
3375 else
3376 bfd_set_error (bfd_error_wrong_format);
3377 goto error_return;
3381 ehdr = elf_elfheader (abfd);
3382 if (info->warn_alternate_em
3383 && bed->elf_machine_code != ehdr->e_machine
3384 && ((bed->elf_machine_alt1 != 0
3385 && ehdr->e_machine == bed->elf_machine_alt1)
3386 || (bed->elf_machine_alt2 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt2)))
3388 info->callbacks->einfo
3389 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3390 ehdr->e_machine, abfd, bed->elf_machine_code);
3392 /* As a GNU extension, any input sections which are named
3393 .gnu.warning.SYMBOL are treated as warning symbols for the given
3394 symbol. This differs from .gnu.warning sections, which generate
3395 warnings when they are included in an output file. */
3396 /* PR 12761: Also generate this warning when building shared libraries. */
3397 if (info->executable || info->shared)
3399 asection *s;
3401 for (s = abfd->sections; s != NULL; s = s->next)
3403 const char *name;
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3408 char *msg;
3409 bfd_size_type sz;
3411 name += sizeof ".gnu.warning." - 1;
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3424 struct elf_link_hash_entry *h;
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3433 /* We don't want to issue this warning. Clobber
3434 the section size so that the warning does not
3435 get copied into the output file. */
3436 s->size = 0;
3437 continue;
3441 sz = s->size;
3442 msg = (char *) bfd_alloc (abfd, sz + 1);
3443 if (msg == NULL)
3444 goto error_return;
3446 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3447 goto error_return;
3449 msg[sz] = '\0';
3451 if (! (_bfd_generic_link_add_one_symbol
3452 (info, abfd, name, BSF_WARNING, s, 0, msg,
3453 FALSE, bed->collect, NULL)))
3454 goto error_return;
3456 if (! info->relocatable)
3458 /* Clobber the section size so that the warning does
3459 not get copied into the output file. */
3460 s->size = 0;
3462 /* Also set SEC_EXCLUDE, so that symbols defined in
3463 the warning section don't get copied to the output. */
3464 s->flags |= SEC_EXCLUDE;
3470 add_needed = TRUE;
3471 if (! dynamic)
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3478 if (info->shared
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3484 goto error_return;
3487 else if (!is_elf_hash_table (htab))
3488 goto error_return;
3489 else
3491 asection *s;
3492 const char *soname = NULL;
3493 char *audit = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3495 int ret;
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3501 abort ();
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3509 all. */
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3515 if (s != NULL)
3517 bfd_byte *dynbuf;
3518 bfd_byte *extdyn;
3519 unsigned int elfsec;
3520 unsigned long shlink;
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3524 error_free_dyn:
3525 free (dynbuf);
3526 goto error_return;
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3538 Elf_Internal_Dyn dyn;
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (soname == NULL)
3546 goto error_free_dyn;
3548 if (dyn.d_tag == DT_NEEDED)
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3564 n->name = anm;
3565 n->by = abfd;
3566 n->next = NULL;
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3569 *pn = n;
3571 if (dyn.d_tag == DT_RUNPATH)
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & runpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3594 *pn = n;
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & rpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3620 *pn = n;
3622 if (dyn.d_tag == DT_AUDIT)
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3629 free (dynbuf);
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3634 if (runpath)
3635 rpath = runpath;
3637 if (rpath)
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3642 *pn = rpath;
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3651 file. */
3652 bfd_section_list_clear (abfd);
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3658 name. */
3659 if (soname == NULL || *soname == '\0')
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3671 if (ret < 0)
3672 goto error_return;
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3677 if (ret > 0)
3678 return TRUE;
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3691 else
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3698 this point. */
3699 if (elf_bad_symtab (abfd))
3701 extsymcount = symcount;
3702 extsymoff = 0;
3704 else
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3710 sym_hash = NULL;
3711 if (extsymcount != 0)
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3714 NULL, NULL, NULL);
3715 if (isymbuf == NULL)
3716 goto error_return;
3718 /* We store a pointer to the hash table entry for each external
3719 symbol. */
3720 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3721 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3722 if (sym_hash == NULL)
3723 goto error_free_sym;
3724 elf_sym_hashes (abfd) = sym_hash;
3727 if (dynamic)
3729 /* Read in any version definitions. */
3730 if (!_bfd_elf_slurp_version_tables (abfd,
3731 info->default_imported_symver))
3732 goto error_free_sym;
3734 /* Read in the symbol versions, but don't bother to convert them
3735 to internal format. */
3736 if (elf_dynversym (abfd) != 0)
3738 Elf_Internal_Shdr *versymhdr;
3740 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3741 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3742 if (extversym == NULL)
3743 goto error_free_sym;
3744 amt = versymhdr->sh_size;
3745 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3746 || bfd_bread (extversym, amt, abfd) != amt)
3747 goto error_free_vers;
3751 /* If we are loading an as-needed shared lib, save the symbol table
3752 state before we start adding symbols. If the lib turns out
3753 to be unneeded, restore the state. */
3754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3756 unsigned int i;
3757 size_t entsize;
3759 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3761 struct bfd_hash_entry *p;
3762 struct elf_link_hash_entry *h;
3764 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3766 h = (struct elf_link_hash_entry *) p;
3767 entsize += htab->root.table.entsize;
3768 if (h->root.type == bfd_link_hash_warning)
3769 entsize += htab->root.table.entsize;
3773 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3774 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3775 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3776 if (old_tab == NULL)
3777 goto error_free_vers;
3779 /* Remember the current objalloc pointer, so that all mem for
3780 symbols added can later be reclaimed. */
3781 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3782 if (alloc_mark == NULL)
3783 goto error_free_vers;
3785 /* Make a special call to the linker "notice" function to
3786 tell it that we are about to handle an as-needed lib. */
3787 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3788 notice_as_needed, 0, NULL))
3789 goto error_free_vers;
3791 /* Clone the symbol table and sym hashes. Remember some
3792 pointers into the symbol table, and dynamic symbol count. */
3793 old_hash = (char *) old_tab + tabsize;
3794 old_ent = (char *) old_hash + hashsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 memcpy (old_hash, sym_hash, hashsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3804 for (i = 0; i < htab->root.table.size; i++)
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3823 weaks = NULL;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3826 isym < isymend;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3829 int bind;
3830 bfd_vma value;
3831 asection *sec, *new_sec;
3832 flagword flags;
3833 const char *name;
3834 struct elf_link_hash_entry *h;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean override;
3840 bfd_boolean common;
3841 unsigned int old_alignment;
3842 bfd *old_bfd;
3843 bfd * undef_bfd = NULL;
3845 override = FALSE;
3847 flags = BSF_NO_FLAGS;
3848 sec = NULL;
3849 value = isym->st_value;
3850 *sym_hash = NULL;
3851 common = bed->common_definition (isym);
3853 bind = ELF_ST_BIND (isym->st_info);
3854 switch (bind)
3856 case STB_LOCAL:
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3860 screws this up. */
3861 continue;
3863 case STB_GLOBAL:
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3865 flags = BSF_GLOBAL;
3866 break;
3868 case STB_WEAK:
3869 flags = BSF_WEAK;
3870 break;
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3874 break;
3876 default:
3877 /* Leave it up to the processor backend. */
3878 break;
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3892 else
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3895 if (sec == NULL)
3896 sec = bfd_abs_section_ptr;
3897 else if (elf_discarded_section (sec))
3899 /* Symbols from discarded section are undefined. We keep
3900 its visibility. */
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3905 value -= sec->vma;
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3909 isym->st_name);
3910 if (name == NULL)
3911 goto error_free_vers;
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3918 if (xc == NULL)
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3921 | SEC_EXCLUDE);
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3923 if (xc == NULL)
3924 goto error_free_vers;
3926 sec = xc;
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3934 if (tcomm == NULL)
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3942 sec = tcomm;
3944 else if (bed->elf_add_symbol_hook)
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3975 if (is_elf_hash_table (htab))
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3981 /* If this is a definition of a symbol which was previously
3982 referenced in a non-weak manner then make a note of the bfd
3983 that contained the reference. This is used if we need to
3984 refer to the source of the reference later on. */
3985 if (! bfd_is_und_section (sec))
3987 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3989 if (h != NULL
3990 && h->root.type == bfd_link_hash_undefined
3991 && h->root.u.undef.abfd)
3992 undef_bfd = h->root.u.undef.abfd;
3995 if (ever == NULL)
3997 if (info->default_imported_symver)
3998 /* Use the default symbol version created earlier. */
3999 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4000 else
4001 iver.vs_vers = 0;
4003 else
4004 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4006 vernum = iver.vs_vers & VERSYM_VERSION;
4008 /* If this is a hidden symbol, or if it is not version
4009 1, we append the version name to the symbol name.
4010 However, we do not modify a non-hidden absolute symbol
4011 if it is not a function, because it might be the version
4012 symbol itself. FIXME: What if it isn't? */
4013 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4014 || (vernum > 1
4015 && (!bfd_is_abs_section (sec)
4016 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4018 const char *verstr;
4019 size_t namelen, verlen, newlen;
4020 char *newname, *p;
4022 if (isym->st_shndx != SHN_UNDEF)
4024 if (vernum > elf_tdata (abfd)->cverdefs)
4025 verstr = NULL;
4026 else if (vernum > 1)
4027 verstr =
4028 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4029 else
4030 verstr = "";
4032 if (verstr == NULL)
4034 (*_bfd_error_handler)
4035 (_("%B: %s: invalid version %u (max %d)"),
4036 abfd, name, vernum,
4037 elf_tdata (abfd)->cverdefs);
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4042 else
4044 /* We cannot simply test for the number of
4045 entries in the VERNEED section since the
4046 numbers for the needed versions do not start
4047 at 0. */
4048 Elf_Internal_Verneed *t;
4050 verstr = NULL;
4051 for (t = elf_tdata (abfd)->verref;
4052 t != NULL;
4053 t = t->vn_nextref)
4055 Elf_Internal_Vernaux *a;
4057 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4059 if (a->vna_other == vernum)
4061 verstr = a->vna_nodename;
4062 break;
4065 if (a != NULL)
4066 break;
4068 if (verstr == NULL)
4070 (*_bfd_error_handler)
4071 (_("%B: %s: invalid needed version %d"),
4072 abfd, name, vernum);
4073 bfd_set_error (bfd_error_bad_value);
4074 goto error_free_vers;
4078 namelen = strlen (name);
4079 verlen = strlen (verstr);
4080 newlen = namelen + verlen + 2;
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 ++newlen;
4085 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4086 if (newname == NULL)
4087 goto error_free_vers;
4088 memcpy (newname, name, namelen);
4089 p = newname + namelen;
4090 *p++ = ELF_VER_CHR;
4091 /* If this is a defined non-hidden version symbol,
4092 we add another @ to the name. This indicates the
4093 default version of the symbol. */
4094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4095 && isym->st_shndx != SHN_UNDEF)
4096 *p++ = ELF_VER_CHR;
4097 memcpy (p, verstr, verlen + 1);
4099 name = newname;
4102 /* If necessary, make a second attempt to locate the bfd
4103 containing an unresolved, non-weak reference to the
4104 current symbol. */
4105 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4107 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4109 if (h != NULL
4110 && h->root.type == bfd_link_hash_undefined
4111 && h->root.u.undef.abfd)
4112 undef_bfd = h->root.u.undef.abfd;
4115 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4116 &value, &old_alignment,
4117 sym_hash, &skip, &override,
4118 &type_change_ok, &size_change_ok))
4119 goto error_free_vers;
4121 if (skip)
4122 continue;
4124 if (override)
4125 definition = FALSE;
4127 h = *sym_hash;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132 /* Remember the old alignment if this is a common symbol, so
4133 that we don't reduce the alignment later on. We can't
4134 check later, because _bfd_generic_link_add_one_symbol
4135 will set a default for the alignment which we want to
4136 override. We also remember the old bfd where the existing
4137 definition comes from. */
4138 switch (h->root.type)
4140 default:
4141 break;
4143 case bfd_link_hash_defined:
4144 case bfd_link_hash_defweak:
4145 old_bfd = h->root.u.def.section->owner;
4146 break;
4148 case bfd_link_hash_common:
4149 old_bfd = h->root.u.c.p->section->owner;
4150 old_alignment = h->root.u.c.p->alignment_power;
4151 break;
4154 if (elf_tdata (abfd)->verdef != NULL
4155 && ! override
4156 && vernum > 1
4157 && definition)
4158 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4161 if (! (_bfd_generic_link_add_one_symbol
4162 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4163 (struct bfd_link_hash_entry **) sym_hash)))
4164 goto error_free_vers;
4166 h = *sym_hash;
4167 while (h->root.type == bfd_link_hash_indirect
4168 || h->root.type == bfd_link_hash_warning)
4169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4171 *sym_hash = h;
4172 if (is_elf_hash_table (htab))
4173 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4175 new_weakdef = FALSE;
4176 if (dynamic
4177 && definition
4178 && (flags & BSF_WEAK) != 0
4179 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4180 && is_elf_hash_table (htab)
4181 && h->u.weakdef == NULL)
4183 /* Keep a list of all weak defined non function symbols from
4184 a dynamic object, using the weakdef field. Later in this
4185 function we will set the weakdef field to the correct
4186 value. We only put non-function symbols from dynamic
4187 objects on this list, because that happens to be the only
4188 time we need to know the normal symbol corresponding to a
4189 weak symbol, and the information is time consuming to
4190 figure out. If the weakdef field is not already NULL,
4191 then this symbol was already defined by some previous
4192 dynamic object, and we will be using that previous
4193 definition anyhow. */
4195 h->u.weakdef = weaks;
4196 weaks = h;
4197 new_weakdef = TRUE;
4200 /* Set the alignment of a common symbol. */
4201 if ((common || bfd_is_com_section (sec))
4202 && h->root.type == bfd_link_hash_common)
4204 unsigned int align;
4206 if (common)
4207 align = bfd_log2 (isym->st_value);
4208 else
4210 /* The new symbol is a common symbol in a shared object.
4211 We need to get the alignment from the section. */
4212 align = new_sec->alignment_power;
4214 if (align > old_alignment)
4215 h->root.u.c.p->alignment_power = align;
4216 else
4217 h->root.u.c.p->alignment_power = old_alignment;
4220 if (is_elf_hash_table (htab))
4222 bfd_boolean dynsym;
4224 /* Check the alignment when a common symbol is involved. This
4225 can change when a common symbol is overridden by a normal
4226 definition or a common symbol is ignored due to the old
4227 normal definition. We need to make sure the maximum
4228 alignment is maintained. */
4229 if ((old_alignment || common)
4230 && h->root.type != bfd_link_hash_common)
4232 unsigned int common_align;
4233 unsigned int normal_align;
4234 unsigned int symbol_align;
4235 bfd *normal_bfd;
4236 bfd *common_bfd;
4238 symbol_align = ffs (h->root.u.def.value) - 1;
4239 if (h->root.u.def.section->owner != NULL
4240 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4242 normal_align = h->root.u.def.section->alignment_power;
4243 if (normal_align > symbol_align)
4244 normal_align = symbol_align;
4246 else
4247 normal_align = symbol_align;
4249 if (old_alignment)
4251 common_align = old_alignment;
4252 common_bfd = old_bfd;
4253 normal_bfd = abfd;
4255 else
4257 common_align = bfd_log2 (isym->st_value);
4258 common_bfd = abfd;
4259 normal_bfd = old_bfd;
4262 if (normal_align < common_align)
4264 /* PR binutils/2735 */
4265 if (normal_bfd == NULL)
4266 (*_bfd_error_handler)
4267 (_("Warning: alignment %u of common symbol `%s' in %B"
4268 " is greater than the alignment (%u) of its section %A"),
4269 common_bfd, h->root.u.def.section,
4270 1 << common_align, name, 1 << normal_align);
4271 else
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of symbol `%s' in %B"
4274 " is smaller than %u in %B"),
4275 normal_bfd, common_bfd,
4276 1 << normal_align, name, 1 << common_align);
4280 /* Remember the symbol size if it isn't undefined. */
4281 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4282 && (definition || h->size == 0))
4284 if (h->size != 0
4285 && h->size != isym->st_size
4286 && ! size_change_ok)
4287 (*_bfd_error_handler)
4288 (_("Warning: size of symbol `%s' changed"
4289 " from %lu in %B to %lu in %B"),
4290 old_bfd, abfd,
4291 name, (unsigned long) h->size,
4292 (unsigned long) isym->st_size);
4294 h->size = isym->st_size;
4297 /* If this is a common symbol, then we always want H->SIZE
4298 to be the size of the common symbol. The code just above
4299 won't fix the size if a common symbol becomes larger. We
4300 don't warn about a size change here, because that is
4301 covered by --warn-common. Allow changed between different
4302 function types. */
4303 if (h->root.type == bfd_link_hash_common)
4304 h->size = h->root.u.c.size;
4306 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4307 && (definition || h->type == STT_NOTYPE))
4309 unsigned int type = ELF_ST_TYPE (isym->st_info);
4311 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4312 symbol. */
4313 if (type == STT_GNU_IFUNC
4314 && (abfd->flags & DYNAMIC) != 0)
4315 type = STT_FUNC;
4317 if (h->type != type)
4319 if (h->type != STT_NOTYPE && ! type_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: type of symbol `%s' changed"
4322 " from %d to %d in %B"),
4323 abfd, name, h->type, type);
4325 h->type = type;
4329 /* Merge st_other field. */
4330 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4332 /* Set a flag in the hash table entry indicating the type of
4333 reference or definition we just found. Keep a count of
4334 the number of dynamic symbols we find. A dynamic symbol
4335 is one which is referenced or defined by both a regular
4336 object and a shared object. */
4337 dynsym = FALSE;
4338 if (! dynamic)
4340 if (! definition)
4342 h->ref_regular = 1;
4343 if (bind != STB_WEAK)
4344 h->ref_regular_nonweak = 1;
4346 else
4348 h->def_regular = 1;
4349 if (h->def_dynamic)
4351 h->def_dynamic = 0;
4352 h->ref_dynamic = 1;
4355 if (! info->executable
4356 || h->def_dynamic
4357 || h->ref_dynamic)
4358 dynsym = TRUE;
4360 else
4362 if (! definition)
4363 h->ref_dynamic = 1;
4364 else
4366 h->def_dynamic = 1;
4367 h->dynamic_def = 1;
4369 if (h->def_regular
4370 || h->ref_regular
4371 || (h->u.weakdef != NULL
4372 && ! new_weakdef
4373 && h->u.weakdef->dynindx != -1))
4374 dynsym = TRUE;
4377 /* We don't want to make debug symbol dynamic. */
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4379 dynsym = FALSE;
4381 /* Nor should we make plugin symbols dynamic. */
4382 if ((abfd->flags & BFD_PLUGIN) != 0)
4383 dynsym = FALSE;
4385 if (definition)
4386 h->target_internal = isym->st_target_internal;
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4393 override))
4394 goto error_free_vers;
4396 if (definition && !dynamic)
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4403 if (!nondeflt_vers)
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4407 nondeflt_vers =
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 if (!nondeflt_vers)
4410 goto error_free_vers;
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4416 if (dynsym && h->dynindx == -1)
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4421 && ! new_weakdef
4422 && h->u.weakdef->dynindx == -1)
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4431 a local symbol. */
4432 switch (ELF_ST_VISIBILITY (h->other))
4434 case STV_INTERNAL:
4435 case STV_HIDDEN:
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4437 dynsym = FALSE;
4438 break;
4441 if (!add_needed
4442 && definition
4443 && ((dynsym
4444 && h->ref_regular)
4445 || (h->ref_dynamic
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 undef_bfd, name);
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 abfd, name);
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4473 add_needed = TRUE;
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 if (ret < 0)
4476 goto error_free_vers;
4478 BFD_ASSERT (ret == 0);
4483 if (extversym != NULL)
4485 free (extversym);
4486 extversym = NULL;
4489 if (isymbuf != NULL)
4491 free (isymbuf);
4492 isymbuf = NULL;
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4497 unsigned int i;
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4516 bfd_size_type size;
4517 unsigned int alignment_power;
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4527 /* Preserve the maximum alignment and size for common
4528 symbols even if this dynamic lib isn't on DT_NEEDED
4529 since it can still be loaded at the run-time by another
4530 dynamic lib. */
4531 if (h->root.type == bfd_link_hash_common)
4533 size = h->root.u.c.size;
4534 alignment_power = h->root.u.c.p->alignment_power;
4536 else
4538 size = 0;
4539 alignment_power = 0;
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4549 else if (h->root.type == bfd_link_hash_common)
4551 if (size > h->root.u.c.size)
4552 h->root.u.c.size = size;
4553 if (alignment_power > h->root.u.c.p->alignment_power)
4554 h->root.u.c.p->alignment_power = alignment_power;
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed, 0, NULL))
4563 goto error_free_vers;
4565 free (old_tab);
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4567 alloc_mark);
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4570 return TRUE;
4573 if (old_tab != NULL)
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed, 0, NULL))
4577 goto error_free_vers;
4578 free (old_tab);
4579 old_tab = NULL;
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4586 bfd_size_type cnt, symidx;
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4594 if (p == NULL
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4597 continue;
4599 amt = p - h->root.root.string;
4600 shortname = (char *) bfd_malloc (amt + 1);
4601 if (!shortname)
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4609 if (hi != NULL
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4619 if (sym_hash)
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4623 sym_hash[symidx] = h;
4624 break;
4627 free (shortname);
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4645 either. */
4646 if (weaks != NULL)
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4652 size_t sym_count;
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4660 goto error_return;
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4664 sym_count = 0;
4665 for (; hpp < hppend; hpp++)
4667 h = *hpp;
4668 if (h != NULL
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4672 *sym_hash = h;
4673 sym_hash++;
4674 sym_count++;
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4680 elf_sort_symbol);
4682 while (weaks != NULL)
4684 struct elf_link_hash_entry *hlook;
4685 asection *slook;
4686 bfd_vma vlook;
4687 long ilook;
4688 size_t i, j, idx;
4690 hlook = weaks;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4701 ilook = -1;
4702 i = 0;
4703 j = sym_count;
4704 while (i < j)
4706 bfd_signed_vma vdiff;
4707 idx = (i + j) / 2;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4710 if (vdiff < 0)
4711 j = idx;
4712 else if (vdiff > 0)
4713 i = idx + 1;
4714 else
4716 long sdiff = slook->id - h->root.u.def.section->id;
4717 if (sdiff < 0)
4718 j = idx;
4719 else if (sdiff > 0)
4720 i = idx + 1;
4721 else
4723 ilook = idx;
4724 break;
4729 /* We didn't find a value/section match. */
4730 if (ilook == -1)
4731 continue;
4733 for (i = ilook; i < sym_count; i++)
4735 h = sorted_sym_hash [i];
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4740 break;
4741 else if (h != hlook)
4743 hlook->u.weakdef = h;
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4747 there as well. */
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4752 err_free_sym_hash:
4753 free (sorted_sym_hash);
4754 goto error_return;
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4768 break;
4773 free (sorted_sym_hash);
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4778 return FALSE;
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4782 relocs.
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4797 if (! dynamic
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && elf_object_id (abfd) == elf_hash_table_id (htab)
4801 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4803 asection *o;
4805 for (o = abfd->sections; o != NULL; o = o->next)
4807 Elf_Internal_Rela *internal_relocs;
4808 bfd_boolean ok;
4810 if ((o->flags & SEC_RELOC) == 0
4811 || o->reloc_count == 0
4812 || ((info->strip == strip_all || info->strip == strip_debugger)
4813 && (o->flags & SEC_DEBUGGING) != 0)
4814 || bfd_is_abs_section (o->output_section))
4815 continue;
4817 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4818 info->keep_memory);
4819 if (internal_relocs == NULL)
4820 goto error_return;
4822 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4824 if (elf_section_data (o)->relocs != internal_relocs)
4825 free (internal_relocs);
4827 if (! ok)
4828 goto error_return;
4832 /* If this is a non-traditional link, try to optimize the handling
4833 of the .stab/.stabstr sections. */
4834 if (! dynamic
4835 && ! info->traditional_format
4836 && is_elf_hash_table (htab)
4837 && (info->strip != strip_all && info->strip != strip_debugger))
4839 asection *stabstr;
4841 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4842 if (stabstr != NULL)
4844 bfd_size_type string_offset = 0;
4845 asection *stab;
4847 for (stab = abfd->sections; stab; stab = stab->next)
4848 if (CONST_STRNEQ (stab->name, ".stab")
4849 && (!stab->name[5] ||
4850 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4851 && (stab->flags & SEC_MERGE) == 0
4852 && !bfd_is_abs_section (stab->output_section))
4854 struct bfd_elf_section_data *secdata;
4856 secdata = elf_section_data (stab);
4857 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4858 stabstr, &secdata->sec_info,
4859 &string_offset))
4860 goto error_return;
4861 if (secdata->sec_info)
4862 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4867 if (is_elf_hash_table (htab) && add_needed)
4869 /* Add this bfd to the loaded list. */
4870 struct elf_link_loaded_list *n;
4872 n = (struct elf_link_loaded_list *)
4873 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4874 if (n == NULL)
4875 goto error_return;
4876 n->abfd = abfd;
4877 n->next = htab->loaded;
4878 htab->loaded = n;
4881 return TRUE;
4883 error_free_vers:
4884 if (old_tab != NULL)
4885 free (old_tab);
4886 if (nondeflt_vers != NULL)
4887 free (nondeflt_vers);
4888 if (extversym != NULL)
4889 free (extversym);
4890 error_free_sym:
4891 if (isymbuf != NULL)
4892 free (isymbuf);
4893 error_return:
4894 return FALSE;
4897 /* Return the linker hash table entry of a symbol that might be
4898 satisfied by an archive symbol. Return -1 on error. */
4900 struct elf_link_hash_entry *
4901 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4902 struct bfd_link_info *info,
4903 const char *name)
4905 struct elf_link_hash_entry *h;
4906 char *p, *copy;
4907 size_t len, first;
4909 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4910 if (h != NULL)
4911 return h;
4913 /* If this is a default version (the name contains @@), look up the
4914 symbol again with only one `@' as well as without the version.
4915 The effect is that references to the symbol with and without the
4916 version will be matched by the default symbol in the archive. */
4918 p = strchr (name, ELF_VER_CHR);
4919 if (p == NULL || p[1] != ELF_VER_CHR)
4920 return h;
4922 /* First check with only one `@'. */
4923 len = strlen (name);
4924 copy = (char *) bfd_alloc (abfd, len);
4925 if (copy == NULL)
4926 return (struct elf_link_hash_entry *) 0 - 1;
4928 first = p - name + 1;
4929 memcpy (copy, name, first);
4930 memcpy (copy + first, name + first + 1, len - first);
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4933 if (h == NULL)
4935 /* We also need to check references to the symbol without the
4936 version. */
4937 copy[first - 1] = '\0';
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4939 FALSE, FALSE, TRUE);
4942 bfd_release (abfd, copy);
4943 return h;
4946 /* Add symbols from an ELF archive file to the linker hash table. We
4947 don't use _bfd_generic_link_add_archive_symbols because of a
4948 problem which arises on UnixWare. The UnixWare libc.so is an
4949 archive which includes an entry libc.so.1 which defines a bunch of
4950 symbols. The libc.so archive also includes a number of other
4951 object files, which also define symbols, some of which are the same
4952 as those defined in libc.so.1. Correct linking requires that we
4953 consider each object file in turn, and include it if it defines any
4954 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4955 this; it looks through the list of undefined symbols, and includes
4956 any object file which defines them. When this algorithm is used on
4957 UnixWare, it winds up pulling in libc.so.1 early and defining a
4958 bunch of symbols. This means that some of the other objects in the
4959 archive are not included in the link, which is incorrect since they
4960 precede libc.so.1 in the archive.
4962 Fortunately, ELF archive handling is simpler than that done by
4963 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4964 oddities. In ELF, if we find a symbol in the archive map, and the
4965 symbol is currently undefined, we know that we must pull in that
4966 object file.
4968 Unfortunately, we do have to make multiple passes over the symbol
4969 table until nothing further is resolved. */
4971 static bfd_boolean
4972 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4974 symindex c;
4975 bfd_boolean *defined = NULL;
4976 bfd_boolean *included = NULL;
4977 carsym *symdefs;
4978 bfd_boolean loop;
4979 bfd_size_type amt;
4980 const struct elf_backend_data *bed;
4981 struct elf_link_hash_entry * (*archive_symbol_lookup)
4982 (bfd *, struct bfd_link_info *, const char *);
4984 if (! bfd_has_map (abfd))
4986 /* An empty archive is a special case. */
4987 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4988 return TRUE;
4989 bfd_set_error (bfd_error_no_armap);
4990 return FALSE;
4993 /* Keep track of all symbols we know to be already defined, and all
4994 files we know to be already included. This is to speed up the
4995 second and subsequent passes. */
4996 c = bfd_ardata (abfd)->symdef_count;
4997 if (c == 0)
4998 return TRUE;
4999 amt = c;
5000 amt *= sizeof (bfd_boolean);
5001 defined = (bfd_boolean *) bfd_zmalloc (amt);
5002 included = (bfd_boolean *) bfd_zmalloc (amt);
5003 if (defined == NULL || included == NULL)
5004 goto error_return;
5006 symdefs = bfd_ardata (abfd)->symdefs;
5007 bed = get_elf_backend_data (abfd);
5008 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5012 file_ptr last;
5013 symindex i;
5014 carsym *symdef;
5015 carsym *symdefend;
5017 loop = FALSE;
5018 last = -1;
5020 symdef = symdefs;
5021 symdefend = symdef + c;
5022 for (i = 0; symdef < symdefend; symdef++, i++)
5024 struct elf_link_hash_entry *h;
5025 bfd *element;
5026 struct bfd_link_hash_entry *undefs_tail;
5027 symindex mark;
5029 if (defined[i] || included[i])
5030 continue;
5031 if (symdef->file_offset == last)
5033 included[i] = TRUE;
5034 continue;
5037 h = archive_symbol_lookup (abfd, info, symdef->name);
5038 if (h == (struct elf_link_hash_entry *) 0 - 1)
5039 goto error_return;
5041 if (h == NULL)
5042 continue;
5044 if (h->root.type == bfd_link_hash_common)
5046 /* We currently have a common symbol. The archive map contains
5047 a reference to this symbol, so we may want to include it. We
5048 only want to include it however, if this archive element
5049 contains a definition of the symbol, not just another common
5050 declaration of it.
5052 Unfortunately some archivers (including GNU ar) will put
5053 declarations of common symbols into their archive maps, as
5054 well as real definitions, so we cannot just go by the archive
5055 map alone. Instead we must read in the element's symbol
5056 table and check that to see what kind of symbol definition
5057 this is. */
5058 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5059 continue;
5061 else if (h->root.type != bfd_link_hash_undefined)
5063 if (h->root.type != bfd_link_hash_undefweak)
5064 defined[i] = TRUE;
5065 continue;
5068 /* We need to include this archive member. */
5069 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5070 if (element == NULL)
5071 goto error_return;
5073 if (! bfd_check_format (element, bfd_object))
5074 goto error_return;
5076 /* Doublecheck that we have not included this object
5077 already--it should be impossible, but there may be
5078 something wrong with the archive. */
5079 if (element->archive_pass != 0)
5081 bfd_set_error (bfd_error_bad_value);
5082 goto error_return;
5084 element->archive_pass = 1;
5086 undefs_tail = info->hash->undefs_tail;
5088 if (!(*info->callbacks
5089 ->add_archive_element) (info, element, symdef->name, &element))
5090 goto error_return;
5091 if (!bfd_link_add_symbols (element, info))
5092 goto error_return;
5094 /* If there are any new undefined symbols, we need to make
5095 another pass through the archive in order to see whether
5096 they can be defined. FIXME: This isn't perfect, because
5097 common symbols wind up on undefs_tail and because an
5098 undefined symbol which is defined later on in this pass
5099 does not require another pass. This isn't a bug, but it
5100 does make the code less efficient than it could be. */
5101 if (undefs_tail != info->hash->undefs_tail)
5102 loop = TRUE;
5104 /* Look backward to mark all symbols from this object file
5105 which we have already seen in this pass. */
5106 mark = i;
5109 included[mark] = TRUE;
5110 if (mark == 0)
5111 break;
5112 --mark;
5114 while (symdefs[mark].file_offset == symdef->file_offset);
5116 /* We mark subsequent symbols from this object file as we go
5117 on through the loop. */
5118 last = symdef->file_offset;
5121 while (loop);
5123 free (defined);
5124 free (included);
5126 return TRUE;
5128 error_return:
5129 if (defined != NULL)
5130 free (defined);
5131 if (included != NULL)
5132 free (included);
5133 return FALSE;
5136 /* Given an ELF BFD, add symbols to the global hash table as
5137 appropriate. */
5139 bfd_boolean
5140 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5142 switch (bfd_get_format (abfd))
5144 case bfd_object:
5145 return elf_link_add_object_symbols (abfd, info);
5146 case bfd_archive:
5147 return elf_link_add_archive_symbols (abfd, info);
5148 default:
5149 bfd_set_error (bfd_error_wrong_format);
5150 return FALSE;
5154 struct hash_codes_info
5156 unsigned long *hashcodes;
5157 bfd_boolean error;
5160 /* This function will be called though elf_link_hash_traverse to store
5161 all hash value of the exported symbols in an array. */
5163 static bfd_boolean
5164 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5166 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5167 const char *name;
5168 char *p;
5169 unsigned long ha;
5170 char *alc = NULL;
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5174 return TRUE;
5176 name = h->root.root.string;
5177 p = strchr (name, ELF_VER_CHR);
5178 if (p != NULL)
5180 alc = (char *) bfd_malloc (p - name + 1);
5181 if (alc == NULL)
5183 inf->error = TRUE;
5184 return FALSE;
5186 memcpy (alc, name, p - name);
5187 alc[p - name] = '\0';
5188 name = alc;
5191 /* Compute the hash value. */
5192 ha = bfd_elf_hash (name);
5194 /* Store the found hash value in the array given as the argument. */
5195 *(inf->hashcodes)++ = ha;
5197 /* And store it in the struct so that we can put it in the hash table
5198 later. */
5199 h->u.elf_hash_value = ha;
5201 if (alc != NULL)
5202 free (alc);
5204 return TRUE;
5207 struct collect_gnu_hash_codes
5209 bfd *output_bfd;
5210 const struct elf_backend_data *bed;
5211 unsigned long int nsyms;
5212 unsigned long int maskbits;
5213 unsigned long int *hashcodes;
5214 unsigned long int *hashval;
5215 unsigned long int *indx;
5216 unsigned long int *counts;
5217 bfd_vma *bitmask;
5218 bfd_byte *contents;
5219 long int min_dynindx;
5220 unsigned long int bucketcount;
5221 unsigned long int symindx;
5222 long int local_indx;
5223 long int shift1, shift2;
5224 unsigned long int mask;
5225 bfd_boolean error;
5228 /* This function will be called though elf_link_hash_traverse to store
5229 all hash value of the exported symbols in an array. */
5231 static bfd_boolean
5232 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5234 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5235 const char *name;
5236 char *p;
5237 unsigned long ha;
5238 char *alc = NULL;
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 return TRUE;
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5255 s->error = TRUE;
5256 return FALSE;
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5270 ++s->nsyms;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5274 if (alc != NULL)
5275 free (alc);
5277 return TRUE;
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5283 static bfd_boolean
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5338 static const size_t elf_buckets[] =
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5358 size_t best_size = 0;
5359 unsigned long int i;
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5468 free (counts);
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5486 return best_size;
5489 /* Size any SHT_GROUP section for ld -r. */
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5494 bfd *ibfd;
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr)
5519 bfd_size_type soname_indx;
5520 bfd *dynobj;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5524 *sinterpptr = NULL;
5526 soname_indx = (bfd_size_type) -1;
5528 if (!is_elf_hash_table (info->hash))
5529 return TRUE;
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5536 else
5538 bfd *inputobj;
5539 asection *notesec = NULL;
5540 int exec = 0;
5542 for (inputobj = info->input_bfds;
5543 inputobj;
5544 inputobj = inputobj->link_next)
5546 asection *s;
5548 if (inputobj->flags
5549 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5561 if (notesec)
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5588 return FALSE;
5590 dynobj = elf_hash_table (info)->dynobj;
5592 /* If there were no dynamic objects in the link, there is nothing to
5593 do here. */
5594 if (dynobj == NULL)
5595 return TRUE;
5597 if (elf_hash_table (info)->dynamic_sections_created)
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5601 asection *dynstr;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5604 asection *s;
5605 bfd_boolean all_defined;
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5610 if (soname != NULL)
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5613 soname, TRUE);
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5616 return FALSE;
5619 if (info->symbolic)
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5622 return FALSE;
5623 info->flags |= DF_SYMBOLIC;
5626 if (rpath != NULL)
5628 bfd_size_type indx;
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5631 TRUE);
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5634 return FALSE;
5636 if (info->new_dtags)
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5640 return FALSE;
5644 if (filter_shlib != NULL)
5646 bfd_size_type indx;
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5655 if (auxiliary_filters != NULL)
5657 const char * const *p;
5659 for (p = auxiliary_filters; *p != NULL; p++)
5661 bfd_size_type indx;
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5671 if (audit != NULL)
5673 bfd_size_type indx;
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5682 if (depaudit != NULL)
5684 bfd_size_type indx;
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5693 eif.info = info;
5694 eif.failed = FALSE;
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5708 /* Make all global versions with definition. */
5709 for (t = info->version_info; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p, leading_char;
5716 struct elf_link_hash_entry *newh;
5718 leading_char = bfd_get_symbol_leading_char (output_bfd);
5719 name = d->pattern;
5720 namelen = strlen (name) + (leading_char != '\0');
5721 verstr = t->name;
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5727 return FALSE;
5728 newname[0] = leading_char;
5729 memcpy (newname + (leading_char != '\0'), name, namelen);
5731 /* Check the hidden versioned definition. */
5732 p = newname + namelen;
5733 *p++ = ELF_VER_CHR;
5734 memcpy (p, verstr, verlen + 1);
5735 newh = elf_link_hash_lookup (elf_hash_table (info),
5736 newname, FALSE, FALSE,
5737 FALSE);
5738 if (newh == NULL
5739 || (newh->root.type != bfd_link_hash_defined
5740 && newh->root.type != bfd_link_hash_defweak))
5742 /* Check the default versioned definition. */
5743 *p++ = ELF_VER_CHR;
5744 memcpy (p, verstr, verlen + 1);
5745 newh = elf_link_hash_lookup (elf_hash_table (info),
5746 newname, FALSE, FALSE,
5747 FALSE);
5749 free (newname);
5751 /* Mark this version if there is a definition and it is
5752 not defined in a shared object. */
5753 if (newh != NULL
5754 && !newh->def_dynamic
5755 && (newh->root.type == bfd_link_hash_defined
5756 || newh->root.type == bfd_link_hash_defweak))
5757 d->symver = 1;
5760 /* Attach all the symbols to their version information. */
5761 asvinfo.info = info;
5762 asvinfo.failed = FALSE;
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5766 &asvinfo);
5767 if (asvinfo.failed)
5768 return FALSE;
5770 if (!info->allow_undefined_version)
5772 /* Check if all global versions have a definition. */
5773 all_defined = TRUE;
5774 for (t = info->version_info; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5784 if (!all_defined)
5786 bfd_set_error (bfd_error_bad_value);
5787 return FALSE;
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5795 &eif);
5796 if (eif.failed)
5797 return FALSE;
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5808 FALSE, FALSE)
5809 : NULL);
5810 if (h != NULL
5811 && (h->ref_regular
5812 || h->def_regular))
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5815 return FALSE;
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5827 return FALSE;
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5836 bfd *sub;
5837 asection *o;
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link_next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5848 sub);
5849 break;
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5853 return FALSE;
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5858 return FALSE;
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5865 return FALSE;
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5872 return FALSE;
5875 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5882 bfd_size_type strsize;
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5894 return FALSE;
5898 /* The backend must work out the sizes of all the other dynamic
5899 sections. */
5900 if (bed->elf_backend_size_dynamic_sections
5901 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5902 return FALSE;
5904 if (elf_hash_table (info)->dynamic_sections_created)
5906 unsigned long section_sym_count;
5907 struct bfd_elf_version_tree *verdefs;
5908 asection *s;
5910 /* Set up the version definition section. */
5911 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5912 BFD_ASSERT (s != NULL);
5914 /* We may have created additional version definitions if we are
5915 just linking a regular application. */
5916 verdefs = info->version_info;
5918 /* Skip anonymous version tag. */
5919 if (verdefs != NULL && verdefs->vernum == 0)
5920 verdefs = verdefs->next;
5922 if (verdefs == NULL && !info->create_default_symver)
5923 s->flags |= SEC_EXCLUDE;
5924 else
5926 unsigned int cdefs;
5927 bfd_size_type size;
5928 struct bfd_elf_version_tree *t;
5929 bfd_byte *p;
5930 Elf_Internal_Verdef def;
5931 Elf_Internal_Verdaux defaux;
5932 struct bfd_link_hash_entry *bh;
5933 struct elf_link_hash_entry *h;
5934 const char *name;
5936 cdefs = 0;
5937 size = 0;
5939 /* Make space for the base version. */
5940 size += sizeof (Elf_External_Verdef);
5941 size += sizeof (Elf_External_Verdaux);
5942 ++cdefs;
5944 /* Make space for the default version. */
5945 if (info->create_default_symver)
5947 size += sizeof (Elf_External_Verdef);
5948 ++cdefs;
5951 for (t = verdefs; t != NULL; t = t->next)
5953 struct bfd_elf_version_deps *n;
5955 /* Don't emit base version twice. */
5956 if (t->vernum == 0)
5957 continue;
5959 size += sizeof (Elf_External_Verdef);
5960 size += sizeof (Elf_External_Verdaux);
5961 ++cdefs;
5963 for (n = t->deps; n != NULL; n = n->next)
5964 size += sizeof (Elf_External_Verdaux);
5967 s->size = size;
5968 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5969 if (s->contents == NULL && s->size != 0)
5970 return FALSE;
5972 /* Fill in the version definition section. */
5974 p = s->contents;
5976 def.vd_version = VER_DEF_CURRENT;
5977 def.vd_flags = VER_FLG_BASE;
5978 def.vd_ndx = 1;
5979 def.vd_cnt = 1;
5980 if (info->create_default_symver)
5982 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5983 def.vd_next = sizeof (Elf_External_Verdef);
5985 else
5987 def.vd_aux = sizeof (Elf_External_Verdef);
5988 def.vd_next = (sizeof (Elf_External_Verdef)
5989 + sizeof (Elf_External_Verdaux));
5992 if (soname_indx != (bfd_size_type) -1)
5994 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5995 soname_indx);
5996 def.vd_hash = bfd_elf_hash (soname);
5997 defaux.vda_name = soname_indx;
5998 name = soname;
6000 else
6002 bfd_size_type indx;
6004 name = lbasename (output_bfd->filename);
6005 def.vd_hash = bfd_elf_hash (name);
6006 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6007 name, FALSE);
6008 if (indx == (bfd_size_type) -1)
6009 return FALSE;
6010 defaux.vda_name = indx;
6012 defaux.vda_next = 0;
6014 _bfd_elf_swap_verdef_out (output_bfd, &def,
6015 (Elf_External_Verdef *) p);
6016 p += sizeof (Elf_External_Verdef);
6017 if (info->create_default_symver)
6019 /* Add a symbol representing this version. */
6020 bh = NULL;
6021 if (! (_bfd_generic_link_add_one_symbol
6022 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6023 0, NULL, FALSE,
6024 get_elf_backend_data (dynobj)->collect, &bh)))
6025 return FALSE;
6026 h = (struct elf_link_hash_entry *) bh;
6027 h->non_elf = 0;
6028 h->def_regular = 1;
6029 h->type = STT_OBJECT;
6030 h->verinfo.vertree = NULL;
6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6033 return FALSE;
6035 /* Create a duplicate of the base version with the same
6036 aux block, but different flags. */
6037 def.vd_flags = 0;
6038 def.vd_ndx = 2;
6039 def.vd_aux = sizeof (Elf_External_Verdef);
6040 if (verdefs)
6041 def.vd_next = (sizeof (Elf_External_Verdef)
6042 + sizeof (Elf_External_Verdaux));
6043 else
6044 def.vd_next = 0;
6045 _bfd_elf_swap_verdef_out (output_bfd, &def,
6046 (Elf_External_Verdef *) p);
6047 p += sizeof (Elf_External_Verdef);
6049 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6050 (Elf_External_Verdaux *) p);
6051 p += sizeof (Elf_External_Verdaux);
6053 for (t = verdefs; t != NULL; t = t->next)
6055 unsigned int cdeps;
6056 struct bfd_elf_version_deps *n;
6058 /* Don't emit the base version twice. */
6059 if (t->vernum == 0)
6060 continue;
6062 cdeps = 0;
6063 for (n = t->deps; n != NULL; n = n->next)
6064 ++cdeps;
6066 /* Add a symbol representing this version. */
6067 bh = NULL;
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6070 0, NULL, FALSE,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6072 return FALSE;
6073 h = (struct elf_link_hash_entry *) bh;
6074 h->non_elf = 0;
6075 h->def_regular = 1;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = t;
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6080 return FALSE;
6082 def.vd_version = VER_DEF_CURRENT;
6083 def.vd_flags = 0;
6084 if (t->globals.list == NULL
6085 && t->locals.list == NULL
6086 && ! t->used)
6087 def.vd_flags |= VER_FLG_WEAK;
6088 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6089 def.vd_cnt = cdeps + 1;
6090 def.vd_hash = bfd_elf_hash (t->name);
6091 def.vd_aux = sizeof (Elf_External_Verdef);
6092 def.vd_next = 0;
6094 /* If a basever node is next, it *must* be the last node in
6095 the chain, otherwise Verdef construction breaks. */
6096 if (t->next != NULL && t->next->vernum == 0)
6097 BFD_ASSERT (t->next->next == NULL);
6099 if (t->next != NULL && t->next->vernum != 0)
6100 def.vd_next = (sizeof (Elf_External_Verdef)
6101 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6103 _bfd_elf_swap_verdef_out (output_bfd, &def,
6104 (Elf_External_Verdef *) p);
6105 p += sizeof (Elf_External_Verdef);
6107 defaux.vda_name = h->dynstr_index;
6108 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6109 h->dynstr_index);
6110 defaux.vda_next = 0;
6111 if (t->deps != NULL)
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6113 t->name_indx = defaux.vda_name;
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6119 for (n = t->deps; n != NULL; n = n->next)
6121 if (n->version_needed == NULL)
6123 /* This can happen if there was an error in the
6124 version script. */
6125 defaux.vda_name = 0;
6127 else
6129 defaux.vda_name = n->version_needed->name_indx;
6130 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6131 defaux.vda_name);
6133 if (n->next == NULL)
6134 defaux.vda_next = 0;
6135 else
6136 defaux.vda_next = sizeof (Elf_External_Verdaux);
6138 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6139 (Elf_External_Verdaux *) p);
6140 p += sizeof (Elf_External_Verdaux);
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6145 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6146 return FALSE;
6148 elf_tdata (output_bfd)->cverdefs = cdefs;
6151 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6154 return FALSE;
6156 else if (info->flags & DF_BIND_NOW)
6158 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6159 return FALSE;
6162 if (info->flags_1)
6164 if (info->executable)
6165 info->flags_1 &= ~ (DF_1_INITFIRST
6166 | DF_1_NODELETE
6167 | DF_1_NOOPEN);
6168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6169 return FALSE;
6172 /* Work out the size of the version reference section. */
6174 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6175 BFD_ASSERT (s != NULL);
6177 struct elf_find_verdep_info sinfo;
6179 sinfo.info = info;
6180 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6181 if (sinfo.vers == 0)
6182 sinfo.vers = 1;
6183 sinfo.failed = FALSE;
6185 elf_link_hash_traverse (elf_hash_table (info),
6186 _bfd_elf_link_find_version_dependencies,
6187 &sinfo);
6188 if (sinfo.failed)
6189 return FALSE;
6191 if (elf_tdata (output_bfd)->verref == NULL)
6192 s->flags |= SEC_EXCLUDE;
6193 else
6195 Elf_Internal_Verneed *t;
6196 unsigned int size;
6197 unsigned int crefs;
6198 bfd_byte *p;
6200 /* Build the version dependency section. */
6201 size = 0;
6202 crefs = 0;
6203 for (t = elf_tdata (output_bfd)->verref;
6204 t != NULL;
6205 t = t->vn_nextref)
6207 Elf_Internal_Vernaux *a;
6209 size += sizeof (Elf_External_Verneed);
6210 ++crefs;
6211 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6212 size += sizeof (Elf_External_Vernaux);
6215 s->size = size;
6216 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6217 if (s->contents == NULL)
6218 return FALSE;
6220 p = s->contents;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6225 unsigned int caux;
6226 Elf_Internal_Vernaux *a;
6227 bfd_size_type indx;
6229 caux = 0;
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6231 ++caux;
6233 t->vn_version = VER_NEED_CURRENT;
6234 t->vn_cnt = caux;
6235 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6236 elf_dt_name (t->vn_bfd) != NULL
6237 ? elf_dt_name (t->vn_bfd)
6238 : lbasename (t->vn_bfd->filename),
6239 FALSE);
6240 if (indx == (bfd_size_type) -1)
6241 return FALSE;
6242 t->vn_file = indx;
6243 t->vn_aux = sizeof (Elf_External_Verneed);
6244 if (t->vn_nextref == NULL)
6245 t->vn_next = 0;
6246 else
6247 t->vn_next = (sizeof (Elf_External_Verneed)
6248 + caux * sizeof (Elf_External_Vernaux));
6250 _bfd_elf_swap_verneed_out (output_bfd, t,
6251 (Elf_External_Verneed *) p);
6252 p += sizeof (Elf_External_Verneed);
6254 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6257 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6258 a->vna_nodename, FALSE);
6259 if (indx == (bfd_size_type) -1)
6260 return FALSE;
6261 a->vna_name = indx;
6262 if (a->vna_nextptr == NULL)
6263 a->vna_next = 0;
6264 else
6265 a->vna_next = sizeof (Elf_External_Vernaux);
6267 _bfd_elf_swap_vernaux_out (output_bfd, a,
6268 (Elf_External_Vernaux *) p);
6269 p += sizeof (Elf_External_Vernaux);
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6274 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6275 return FALSE;
6277 elf_tdata (output_bfd)->cverrefs = crefs;
6281 if ((elf_tdata (output_bfd)->cverrefs == 0
6282 && elf_tdata (output_bfd)->cverdefs == 0)
6283 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6284 &section_sym_count) == 0)
6286 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6287 s->flags |= SEC_EXCLUDE;
6290 return TRUE;
6293 /* Find the first non-excluded output section. We'll use its
6294 section symbol for some emitted relocs. */
6295 void
6296 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6298 asection *s;
6300 for (s = output_bfd->sections; s != NULL; s = s->next)
6301 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6302 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6304 elf_hash_table (info)->text_index_section = s;
6305 break;
6309 /* Find two non-excluded output sections, one for code, one for data.
6310 We'll use their section symbols for some emitted relocs. */
6311 void
6312 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6314 asection *s;
6316 /* Data first, since setting text_index_section changes
6317 _bfd_elf_link_omit_section_dynsym. */
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6322 elf_hash_table (info)->data_index_section = s;
6323 break;
6326 for (s = output_bfd->sections; s != NULL; s = s->next)
6327 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6328 == (SEC_ALLOC | SEC_READONLY))
6329 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6331 elf_hash_table (info)->text_index_section = s;
6332 break;
6335 if (elf_hash_table (info)->text_index_section == NULL)
6336 elf_hash_table (info)->text_index_section
6337 = elf_hash_table (info)->data_index_section;
6340 bfd_boolean
6341 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6343 const struct elf_backend_data *bed;
6345 if (!is_elf_hash_table (info->hash))
6346 return TRUE;
6348 bed = get_elf_backend_data (output_bfd);
6349 (*bed->elf_backend_init_index_section) (output_bfd, info);
6351 if (elf_hash_table (info)->dynamic_sections_created)
6353 bfd *dynobj;
6354 asection *s;
6355 bfd_size_type dynsymcount;
6356 unsigned long section_sym_count;
6357 unsigned int dtagcount;
6359 dynobj = elf_hash_table (info)->dynobj;
6361 /* Assign dynsym indicies. In a shared library we generate a
6362 section symbol for each output section, which come first.
6363 Next come all of the back-end allocated local dynamic syms,
6364 followed by the rest of the global symbols. */
6366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6367 &section_sym_count);
6369 /* Work out the size of the symbol version section. */
6370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6371 BFD_ASSERT (s != NULL);
6372 if (dynsymcount != 0
6373 && (s->flags & SEC_EXCLUDE) == 0)
6375 s->size = dynsymcount * sizeof (Elf_External_Versym);
6376 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6378 return FALSE;
6380 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6381 return FALSE;
6384 /* Set the size of the .dynsym and .hash sections. We counted
6385 the number of dynamic symbols in elf_link_add_object_symbols.
6386 We will build the contents of .dynsym and .hash when we build
6387 the final symbol table, because until then we do not know the
6388 correct value to give the symbols. We built the .dynstr
6389 section as we went along in elf_link_add_object_symbols. */
6390 s = bfd_get_section_by_name (dynobj, ".dynsym");
6391 BFD_ASSERT (s != NULL);
6392 s->size = dynsymcount * bed->s->sizeof_sym;
6394 if (dynsymcount != 0)
6396 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6398 return FALSE;
6400 /* The first entry in .dynsym is a dummy symbol.
6401 Clear all the section syms, in case we don't output them all. */
6402 ++section_sym_count;
6403 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6406 elf_hash_table (info)->bucketcount = 0;
6408 /* Compute the size of the hashing table. As a side effect this
6409 computes the hash values for all the names we export. */
6410 if (info->emit_hash)
6412 unsigned long int *hashcodes;
6413 struct hash_codes_info hashinf;
6414 bfd_size_type amt;
6415 unsigned long int nsyms;
6416 size_t bucketcount;
6417 size_t hash_entry_size;
6419 /* Compute the hash values for all exported symbols. At the same
6420 time store the values in an array so that we could use them for
6421 optimizations. */
6422 amt = dynsymcount * sizeof (unsigned long int);
6423 hashcodes = (unsigned long int *) bfd_malloc (amt);
6424 if (hashcodes == NULL)
6425 return FALSE;
6426 hashinf.hashcodes = hashcodes;
6427 hashinf.error = FALSE;
6429 /* Put all hash values in HASHCODES. */
6430 elf_link_hash_traverse (elf_hash_table (info),
6431 elf_collect_hash_codes, &hashinf);
6432 if (hashinf.error)
6434 free (hashcodes);
6435 return FALSE;
6438 nsyms = hashinf.hashcodes - hashcodes;
6439 bucketcount
6440 = compute_bucket_count (info, hashcodes, nsyms, 0);
6441 free (hashcodes);
6443 if (bucketcount == 0)
6444 return FALSE;
6446 elf_hash_table (info)->bucketcount = bucketcount;
6448 s = bfd_get_section_by_name (dynobj, ".hash");
6449 BFD_ASSERT (s != NULL);
6450 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6451 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6452 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6453 if (s->contents == NULL)
6454 return FALSE;
6456 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6457 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6458 s->contents + hash_entry_size);
6461 if (info->emit_gnu_hash)
6463 size_t i, cnt;
6464 unsigned char *contents;
6465 struct collect_gnu_hash_codes cinfo;
6466 bfd_size_type amt;
6467 size_t bucketcount;
6469 memset (&cinfo, 0, sizeof (cinfo));
6471 /* Compute the hash values for all exported symbols. At the same
6472 time store the values in an array so that we could use them for
6473 optimizations. */
6474 amt = dynsymcount * 2 * sizeof (unsigned long int);
6475 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6476 if (cinfo.hashcodes == NULL)
6477 return FALSE;
6479 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6480 cinfo.min_dynindx = -1;
6481 cinfo.output_bfd = output_bfd;
6482 cinfo.bed = bed;
6484 /* Put all hash values in HASHCODES. */
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 elf_collect_gnu_hash_codes, &cinfo);
6487 if (cinfo.error)
6489 free (cinfo.hashcodes);
6490 return FALSE;
6493 bucketcount
6494 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6496 if (bucketcount == 0)
6498 free (cinfo.hashcodes);
6499 return FALSE;
6502 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6503 BFD_ASSERT (s != NULL);
6505 if (cinfo.nsyms == 0)
6507 /* Empty .gnu.hash section is special. */
6508 BFD_ASSERT (cinfo.min_dynindx == -1);
6509 free (cinfo.hashcodes);
6510 s->size = 5 * 4 + bed->s->arch_size / 8;
6511 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6512 if (contents == NULL)
6513 return FALSE;
6514 s->contents = contents;
6515 /* 1 empty bucket. */
6516 bfd_put_32 (output_bfd, 1, contents);
6517 /* SYMIDX above the special symbol 0. */
6518 bfd_put_32 (output_bfd, 1, contents + 4);
6519 /* Just one word for bitmask. */
6520 bfd_put_32 (output_bfd, 1, contents + 8);
6521 /* Only hash fn bloom filter. */
6522 bfd_put_32 (output_bfd, 0, contents + 12);
6523 /* No hashes are valid - empty bitmask. */
6524 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6525 /* No hashes in the only bucket. */
6526 bfd_put_32 (output_bfd, 0,
6527 contents + 16 + bed->s->arch_size / 8);
6529 else
6531 unsigned long int maskwords, maskbitslog2, x;
6532 BFD_ASSERT (cinfo.min_dynindx != -1);
6534 x = cinfo.nsyms;
6535 maskbitslog2 = 1;
6536 while ((x >>= 1) != 0)
6537 ++maskbitslog2;
6538 if (maskbitslog2 < 3)
6539 maskbitslog2 = 5;
6540 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6541 maskbitslog2 = maskbitslog2 + 3;
6542 else
6543 maskbitslog2 = maskbitslog2 + 2;
6544 if (bed->s->arch_size == 64)
6546 if (maskbitslog2 == 5)
6547 maskbitslog2 = 6;
6548 cinfo.shift1 = 6;
6550 else
6551 cinfo.shift1 = 5;
6552 cinfo.mask = (1 << cinfo.shift1) - 1;
6553 cinfo.shift2 = maskbitslog2;
6554 cinfo.maskbits = 1 << maskbitslog2;
6555 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6556 amt = bucketcount * sizeof (unsigned long int) * 2;
6557 amt += maskwords * sizeof (bfd_vma);
6558 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6559 if (cinfo.bitmask == NULL)
6561 free (cinfo.hashcodes);
6562 return FALSE;
6565 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6566 cinfo.indx = cinfo.counts + bucketcount;
6567 cinfo.symindx = dynsymcount - cinfo.nsyms;
6568 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6570 /* Determine how often each hash bucket is used. */
6571 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6572 for (i = 0; i < cinfo.nsyms; ++i)
6573 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6575 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6576 if (cinfo.counts[i] != 0)
6578 cinfo.indx[i] = cnt;
6579 cnt += cinfo.counts[i];
6581 BFD_ASSERT (cnt == dynsymcount);
6582 cinfo.bucketcount = bucketcount;
6583 cinfo.local_indx = cinfo.min_dynindx;
6585 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6586 s->size += cinfo.maskbits / 8;
6587 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6588 if (contents == NULL)
6590 free (cinfo.bitmask);
6591 free (cinfo.hashcodes);
6592 return FALSE;
6595 s->contents = contents;
6596 bfd_put_32 (output_bfd, bucketcount, contents);
6597 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6598 bfd_put_32 (output_bfd, maskwords, contents + 8);
6599 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6600 contents += 16 + cinfo.maskbits / 8;
6602 for (i = 0; i < bucketcount; ++i)
6604 if (cinfo.counts[i] == 0)
6605 bfd_put_32 (output_bfd, 0, contents);
6606 else
6607 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6608 contents += 4;
6611 cinfo.contents = contents;
6613 /* Renumber dynamic symbols, populate .gnu.hash section. */
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 elf_renumber_gnu_hash_syms, &cinfo);
6617 contents = s->contents + 16;
6618 for (i = 0; i < maskwords; ++i)
6620 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6621 contents);
6622 contents += bed->s->arch_size / 8;
6625 free (cinfo.bitmask);
6626 free (cinfo.hashcodes);
6630 s = bfd_get_section_by_name (dynobj, ".dynstr");
6631 BFD_ASSERT (s != NULL);
6633 elf_finalize_dynstr (output_bfd, info);
6635 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6639 return FALSE;
6642 return TRUE;
6645 /* Indicate that we are only retrieving symbol values from this
6646 section. */
6648 void
6649 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6651 if (is_elf_hash_table (info->hash))
6652 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6653 _bfd_generic_link_just_syms (sec, info);
6656 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6658 static void
6659 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6660 asection *sec)
6662 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6663 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6666 /* Finish SHF_MERGE section merging. */
6668 bfd_boolean
6669 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6671 bfd *ibfd;
6672 asection *sec;
6674 if (!is_elf_hash_table (info->hash))
6675 return FALSE;
6677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6678 if ((ibfd->flags & DYNAMIC) == 0)
6679 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6680 if ((sec->flags & SEC_MERGE) != 0
6681 && !bfd_is_abs_section (sec->output_section))
6683 struct bfd_elf_section_data *secdata;
6685 secdata = elf_section_data (sec);
6686 if (! _bfd_add_merge_section (abfd,
6687 &elf_hash_table (info)->merge_info,
6688 sec, &secdata->sec_info))
6689 return FALSE;
6690 else if (secdata->sec_info)
6691 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6694 if (elf_hash_table (info)->merge_info != NULL)
6695 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6696 merge_sections_remove_hook);
6697 return TRUE;
6700 /* Create an entry in an ELF linker hash table. */
6702 struct bfd_hash_entry *
6703 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6704 struct bfd_hash_table *table,
6705 const char *string)
6707 /* Allocate the structure if it has not already been allocated by a
6708 subclass. */
6709 if (entry == NULL)
6711 entry = (struct bfd_hash_entry *)
6712 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6713 if (entry == NULL)
6714 return entry;
6717 /* Call the allocation method of the superclass. */
6718 entry = _bfd_link_hash_newfunc (entry, table, string);
6719 if (entry != NULL)
6721 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6722 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6724 /* Set local fields. */
6725 ret->indx = -1;
6726 ret->dynindx = -1;
6727 ret->got = htab->init_got_refcount;
6728 ret->plt = htab->init_plt_refcount;
6729 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6730 - offsetof (struct elf_link_hash_entry, size)));
6731 /* Assume that we have been called by a non-ELF symbol reader.
6732 This flag is then reset by the code which reads an ELF input
6733 file. This ensures that a symbol created by a non-ELF symbol
6734 reader will have the flag set correctly. */
6735 ret->non_elf = 1;
6738 return entry;
6741 /* Copy data from an indirect symbol to its direct symbol, hiding the
6742 old indirect symbol. Also used for copying flags to a weakdef. */
6744 void
6745 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6746 struct elf_link_hash_entry *dir,
6747 struct elf_link_hash_entry *ind)
6749 struct elf_link_hash_table *htab;
6751 /* Copy down any references that we may have already seen to the
6752 symbol which just became indirect. */
6754 dir->ref_dynamic |= ind->ref_dynamic;
6755 dir->ref_regular |= ind->ref_regular;
6756 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6757 dir->non_got_ref |= ind->non_got_ref;
6758 dir->needs_plt |= ind->needs_plt;
6759 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6761 if (ind->root.type != bfd_link_hash_indirect)
6762 return;
6764 /* Copy over the global and procedure linkage table refcount entries.
6765 These may have been already set up by a check_relocs routine. */
6766 htab = elf_hash_table (info);
6767 if (ind->got.refcount > htab->init_got_refcount.refcount)
6769 if (dir->got.refcount < 0)
6770 dir->got.refcount = 0;
6771 dir->got.refcount += ind->got.refcount;
6772 ind->got.refcount = htab->init_got_refcount.refcount;
6775 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6777 if (dir->plt.refcount < 0)
6778 dir->plt.refcount = 0;
6779 dir->plt.refcount += ind->plt.refcount;
6780 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 if (ind->dynindx != -1)
6785 if (dir->dynindx != -1)
6786 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6787 dir->dynindx = ind->dynindx;
6788 dir->dynstr_index = ind->dynstr_index;
6789 ind->dynindx = -1;
6790 ind->dynstr_index = 0;
6794 void
6795 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6796 struct elf_link_hash_entry *h,
6797 bfd_boolean force_local)
6799 /* STT_GNU_IFUNC symbol must go through PLT. */
6800 if (h->type != STT_GNU_IFUNC)
6802 h->plt = elf_hash_table (info)->init_plt_offset;
6803 h->needs_plt = 0;
6805 if (force_local)
6807 h->forced_local = 1;
6808 if (h->dynindx != -1)
6810 h->dynindx = -1;
6811 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6812 h->dynstr_index);
6817 /* Initialize an ELF linker hash table. */
6819 bfd_boolean
6820 _bfd_elf_link_hash_table_init
6821 (struct elf_link_hash_table *table,
6822 bfd *abfd,
6823 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 struct bfd_hash_table *,
6825 const char *),
6826 unsigned int entsize,
6827 enum elf_target_id target_id)
6829 bfd_boolean ret;
6830 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6832 memset (table, 0, sizeof * table);
6833 table->init_got_refcount.refcount = can_refcount - 1;
6834 table->init_plt_refcount.refcount = can_refcount - 1;
6835 table->init_got_offset.offset = -(bfd_vma) 1;
6836 table->init_plt_offset.offset = -(bfd_vma) 1;
6837 /* The first dynamic symbol is a dummy. */
6838 table->dynsymcount = 1;
6840 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6842 table->root.type = bfd_link_elf_hash_table;
6843 table->hash_table_id = target_id;
6845 return ret;
6848 /* Create an ELF linker hash table. */
6850 struct bfd_link_hash_table *
6851 _bfd_elf_link_hash_table_create (bfd *abfd)
6853 struct elf_link_hash_table *ret;
6854 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6856 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6857 if (ret == NULL)
6858 return NULL;
6860 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6861 sizeof (struct elf_link_hash_entry),
6862 GENERIC_ELF_DATA))
6864 free (ret);
6865 return NULL;
6868 return &ret->root;
6871 /* This is a hook for the ELF emulation code in the generic linker to
6872 tell the backend linker what file name to use for the DT_NEEDED
6873 entry for a dynamic object. */
6875 void
6876 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 elf_dt_name (abfd) = name;
6884 bfd_elf_get_dyn_lib_class (bfd *abfd)
6886 int lib_class;
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 lib_class = elf_dyn_lib_class (abfd);
6890 else
6891 lib_class = 0;
6892 return lib_class;
6895 void
6896 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dyn_lib_class (abfd) = lib_class;
6903 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6904 the linker ELF emulation code. */
6906 struct bfd_link_needed_list *
6907 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6908 struct bfd_link_info *info)
6910 if (! is_elf_hash_table (info->hash))
6911 return NULL;
6912 return elf_hash_table (info)->needed;
6915 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6916 hook for the linker ELF emulation code. */
6918 struct bfd_link_needed_list *
6919 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6920 struct bfd_link_info *info)
6922 if (! is_elf_hash_table (info->hash))
6923 return NULL;
6924 return elf_hash_table (info)->runpath;
6927 /* Get the name actually used for a dynamic object for a link. This
6928 is the SONAME entry if there is one. Otherwise, it is the string
6929 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6931 const char *
6932 bfd_elf_get_dt_soname (bfd *abfd)
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 return elf_dt_name (abfd);
6937 return NULL;
6940 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6941 the ELF linker emulation code. */
6943 bfd_boolean
6944 bfd_elf_get_bfd_needed_list (bfd *abfd,
6945 struct bfd_link_needed_list **pneeded)
6947 asection *s;
6948 bfd_byte *dynbuf = NULL;
6949 unsigned int elfsec;
6950 unsigned long shlink;
6951 bfd_byte *extdyn, *extdynend;
6952 size_t extdynsize;
6953 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6955 *pneeded = NULL;
6957 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6958 || bfd_get_format (abfd) != bfd_object)
6959 return TRUE;
6961 s = bfd_get_section_by_name (abfd, ".dynamic");
6962 if (s == NULL || s->size == 0)
6963 return TRUE;
6965 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6966 goto error_return;
6968 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6969 if (elfsec == SHN_BAD)
6970 goto error_return;
6972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6974 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6975 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6977 extdyn = dynbuf;
6978 extdynend = extdyn + s->size;
6979 for (; extdyn < extdynend; extdyn += extdynsize)
6981 Elf_Internal_Dyn dyn;
6983 (*swap_dyn_in) (abfd, extdyn, &dyn);
6985 if (dyn.d_tag == DT_NULL)
6986 break;
6988 if (dyn.d_tag == DT_NEEDED)
6990 const char *string;
6991 struct bfd_link_needed_list *l;
6992 unsigned int tagv = dyn.d_un.d_val;
6993 bfd_size_type amt;
6995 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6996 if (string == NULL)
6997 goto error_return;
6999 amt = sizeof *l;
7000 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7001 if (l == NULL)
7002 goto error_return;
7004 l->by = abfd;
7005 l->name = string;
7006 l->next = *pneeded;
7007 *pneeded = l;
7011 free (dynbuf);
7013 return TRUE;
7015 error_return:
7016 if (dynbuf != NULL)
7017 free (dynbuf);
7018 return FALSE;
7021 struct elf_symbuf_symbol
7023 unsigned long st_name; /* Symbol name, index in string tbl */
7024 unsigned char st_info; /* Type and binding attributes */
7025 unsigned char st_other; /* Visibilty, and target specific */
7028 struct elf_symbuf_head
7030 struct elf_symbuf_symbol *ssym;
7031 bfd_size_type count;
7032 unsigned int st_shndx;
7035 struct elf_symbol
7037 union
7039 Elf_Internal_Sym *isym;
7040 struct elf_symbuf_symbol *ssym;
7041 } u;
7042 const char *name;
7045 /* Sort references to symbols by ascending section number. */
7047 static int
7048 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7050 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7051 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7053 return s1->st_shndx - s2->st_shndx;
7056 static int
7057 elf_sym_name_compare (const void *arg1, const void *arg2)
7059 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7060 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7061 return strcmp (s1->name, s2->name);
7064 static struct elf_symbuf_head *
7065 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7067 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7068 struct elf_symbuf_symbol *ssym;
7069 struct elf_symbuf_head *ssymbuf, *ssymhead;
7070 bfd_size_type i, shndx_count, total_size;
7072 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7073 if (indbuf == NULL)
7074 return NULL;
7076 for (ind = indbuf, i = 0; i < symcount; i++)
7077 if (isymbuf[i].st_shndx != SHN_UNDEF)
7078 *ind++ = &isymbuf[i];
7079 indbufend = ind;
7081 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7082 elf_sort_elf_symbol);
7084 shndx_count = 0;
7085 if (indbufend > indbuf)
7086 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7087 if (ind[0]->st_shndx != ind[1]->st_shndx)
7088 shndx_count++;
7090 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7091 + (indbufend - indbuf) * sizeof (*ssym));
7092 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7093 if (ssymbuf == NULL)
7095 free (indbuf);
7096 return NULL;
7099 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7100 ssymbuf->ssym = NULL;
7101 ssymbuf->count = shndx_count;
7102 ssymbuf->st_shndx = 0;
7103 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7105 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7107 ssymhead++;
7108 ssymhead->ssym = ssym;
7109 ssymhead->count = 0;
7110 ssymhead->st_shndx = (*ind)->st_shndx;
7112 ssym->st_name = (*ind)->st_name;
7113 ssym->st_info = (*ind)->st_info;
7114 ssym->st_other = (*ind)->st_other;
7115 ssymhead->count++;
7117 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7118 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7119 == total_size));
7121 free (indbuf);
7122 return ssymbuf;
7125 /* Check if 2 sections define the same set of local and global
7126 symbols. */
7128 static bfd_boolean
7129 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7130 struct bfd_link_info *info)
7132 bfd *bfd1, *bfd2;
7133 const struct elf_backend_data *bed1, *bed2;
7134 Elf_Internal_Shdr *hdr1, *hdr2;
7135 bfd_size_type symcount1, symcount2;
7136 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7137 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7138 Elf_Internal_Sym *isym, *isymend;
7139 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7140 bfd_size_type count1, count2, i;
7141 unsigned int shndx1, shndx2;
7142 bfd_boolean result;
7144 bfd1 = sec1->owner;
7145 bfd2 = sec2->owner;
7147 /* Both sections have to be in ELF. */
7148 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7149 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7150 return FALSE;
7152 if (elf_section_type (sec1) != elf_section_type (sec2))
7153 return FALSE;
7155 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7156 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7157 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7158 return FALSE;
7160 bed1 = get_elf_backend_data (bfd1);
7161 bed2 = get_elf_backend_data (bfd2);
7162 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7163 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7164 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7165 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7167 if (symcount1 == 0 || symcount2 == 0)
7168 return FALSE;
7170 result = FALSE;
7171 isymbuf1 = NULL;
7172 isymbuf2 = NULL;
7173 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7174 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7176 if (ssymbuf1 == NULL)
7178 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7179 NULL, NULL, NULL);
7180 if (isymbuf1 == NULL)
7181 goto done;
7183 if (!info->reduce_memory_overheads)
7184 elf_tdata (bfd1)->symbuf = ssymbuf1
7185 = elf_create_symbuf (symcount1, isymbuf1);
7188 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7190 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7191 NULL, NULL, NULL);
7192 if (isymbuf2 == NULL)
7193 goto done;
7195 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7196 elf_tdata (bfd2)->symbuf = ssymbuf2
7197 = elf_create_symbuf (symcount2, isymbuf2);
7200 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7202 /* Optimized faster version. */
7203 bfd_size_type lo, hi, mid;
7204 struct elf_symbol *symp;
7205 struct elf_symbuf_symbol *ssym, *ssymend;
7207 lo = 0;
7208 hi = ssymbuf1->count;
7209 ssymbuf1++;
7210 count1 = 0;
7211 while (lo < hi)
7213 mid = (lo + hi) / 2;
7214 if (shndx1 < ssymbuf1[mid].st_shndx)
7215 hi = mid;
7216 else if (shndx1 > ssymbuf1[mid].st_shndx)
7217 lo = mid + 1;
7218 else
7220 count1 = ssymbuf1[mid].count;
7221 ssymbuf1 += mid;
7222 break;
7226 lo = 0;
7227 hi = ssymbuf2->count;
7228 ssymbuf2++;
7229 count2 = 0;
7230 while (lo < hi)
7232 mid = (lo + hi) / 2;
7233 if (shndx2 < ssymbuf2[mid].st_shndx)
7234 hi = mid;
7235 else if (shndx2 > ssymbuf2[mid].st_shndx)
7236 lo = mid + 1;
7237 else
7239 count2 = ssymbuf2[mid].count;
7240 ssymbuf2 += mid;
7241 break;
7245 if (count1 == 0 || count2 == 0 || count1 != count2)
7246 goto done;
7248 symtable1 = (struct elf_symbol *)
7249 bfd_malloc (count1 * sizeof (struct elf_symbol));
7250 symtable2 = (struct elf_symbol *)
7251 bfd_malloc (count2 * sizeof (struct elf_symbol));
7252 if (symtable1 == NULL || symtable2 == NULL)
7253 goto done;
7255 symp = symtable1;
7256 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7257 ssym < ssymend; ssym++, symp++)
7259 symp->u.ssym = ssym;
7260 symp->name = bfd_elf_string_from_elf_section (bfd1,
7261 hdr1->sh_link,
7262 ssym->st_name);
7265 symp = symtable2;
7266 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7267 ssym < ssymend; ssym++, symp++)
7269 symp->u.ssym = ssym;
7270 symp->name = bfd_elf_string_from_elf_section (bfd2,
7271 hdr2->sh_link,
7272 ssym->st_name);
7275 /* Sort symbol by name. */
7276 qsort (symtable1, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7278 qsort (symtable2, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7281 for (i = 0; i < count1; i++)
7282 /* Two symbols must have the same binding, type and name. */
7283 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7284 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7285 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7286 goto done;
7288 result = TRUE;
7289 goto done;
7292 symtable1 = (struct elf_symbol *)
7293 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7294 symtable2 = (struct elf_symbol *)
7295 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7296 if (symtable1 == NULL || symtable2 == NULL)
7297 goto done;
7299 /* Count definitions in the section. */
7300 count1 = 0;
7301 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx1)
7303 symtable1[count1++].u.isym = isym;
7305 count2 = 0;
7306 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7307 if (isym->st_shndx == shndx2)
7308 symtable2[count2++].u.isym = isym;
7310 if (count1 == 0 || count2 == 0 || count1 != count2)
7311 goto done;
7313 for (i = 0; i < count1; i++)
7314 symtable1[i].name
7315 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7316 symtable1[i].u.isym->st_name);
7318 for (i = 0; i < count2; i++)
7319 symtable2[i].name
7320 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7321 symtable2[i].u.isym->st_name);
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7332 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7334 goto done;
7336 result = TRUE;
7338 done:
7339 if (symtable1)
7340 free (symtable1);
7341 if (symtable2)
7342 free (symtable2);
7343 if (isymbuf1)
7344 free (isymbuf1);
7345 if (isymbuf2)
7346 free (isymbuf2);
7348 return result;
7351 /* Return TRUE if 2 section types are compatible. */
7353 bfd_boolean
7354 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7355 bfd *bbfd, const asection *bsec)
7357 if (asec == NULL
7358 || bsec == NULL
7359 || abfd->xvec->flavour != bfd_target_elf_flavour
7360 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7361 return TRUE;
7363 return elf_section_type (asec) == elf_section_type (bsec);
7366 /* Final phase of ELF linker. */
7368 /* A structure we use to avoid passing large numbers of arguments. */
7370 struct elf_final_link_info
7372 /* General link information. */
7373 struct bfd_link_info *info;
7374 /* Output BFD. */
7375 bfd *output_bfd;
7376 /* Symbol string table. */
7377 struct bfd_strtab_hash *symstrtab;
7378 /* .dynsym section. */
7379 asection *dynsym_sec;
7380 /* .hash section. */
7381 asection *hash_sec;
7382 /* symbol version section (.gnu.version). */
7383 asection *symver_sec;
7384 /* Buffer large enough to hold contents of any section. */
7385 bfd_byte *contents;
7386 /* Buffer large enough to hold external relocs of any section. */
7387 void *external_relocs;
7388 /* Buffer large enough to hold internal relocs of any section. */
7389 Elf_Internal_Rela *internal_relocs;
7390 /* Buffer large enough to hold external local symbols of any input
7391 BFD. */
7392 bfd_byte *external_syms;
7393 /* And a buffer for symbol section indices. */
7394 Elf_External_Sym_Shndx *locsym_shndx;
7395 /* Buffer large enough to hold internal local symbols of any input
7396 BFD. */
7397 Elf_Internal_Sym *internal_syms;
7398 /* Array large enough to hold a symbol index for each local symbol
7399 of any input BFD. */
7400 long *indices;
7401 /* Array large enough to hold a section pointer for each local
7402 symbol of any input BFD. */
7403 asection **sections;
7404 /* Buffer to hold swapped out symbols. */
7405 bfd_byte *symbuf;
7406 /* And one for symbol section indices. */
7407 Elf_External_Sym_Shndx *symshndxbuf;
7408 /* Number of swapped out symbols in buffer. */
7409 size_t symbuf_count;
7410 /* Number of symbols which fit in symbuf. */
7411 size_t symbuf_size;
7412 /* And same for symshndxbuf. */
7413 size_t shndxbuf_size;
7416 /* This struct is used to pass information to elf_link_output_extsym. */
7418 struct elf_outext_info
7420 bfd_boolean failed;
7421 bfd_boolean localsyms;
7422 struct elf_final_link_info *finfo;
7426 /* Support for evaluating a complex relocation.
7428 Complex relocations are generalized, self-describing relocations. The
7429 implementation of them consists of two parts: complex symbols, and the
7430 relocations themselves.
7432 The relocations are use a reserved elf-wide relocation type code (R_RELC
7433 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7434 information (start bit, end bit, word width, etc) into the addend. This
7435 information is extracted from CGEN-generated operand tables within gas.
7437 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7438 internal) representing prefix-notation expressions, including but not
7439 limited to those sorts of expressions normally encoded as addends in the
7440 addend field. The symbol mangling format is:
7442 <node> := <literal>
7443 | <unary-operator> ':' <node>
7444 | <binary-operator> ':' <node> ':' <node>
7447 <literal> := 's' <digits=N> ':' <N character symbol name>
7448 | 'S' <digits=N> ':' <N character section name>
7449 | '#' <hexdigits>
7452 <binary-operator> := as in C
7453 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7455 static void
7456 set_symbol_value (bfd *bfd_with_globals,
7457 Elf_Internal_Sym *isymbuf,
7458 size_t locsymcount,
7459 size_t symidx,
7460 bfd_vma val)
7462 struct elf_link_hash_entry **sym_hashes;
7463 struct elf_link_hash_entry *h;
7464 size_t extsymoff = locsymcount;
7466 if (symidx < locsymcount)
7468 Elf_Internal_Sym *sym;
7470 sym = isymbuf + symidx;
7471 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7473 /* It is a local symbol: move it to the
7474 "absolute" section and give it a value. */
7475 sym->st_shndx = SHN_ABS;
7476 sym->st_value = val;
7477 return;
7479 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7480 extsymoff = 0;
7483 /* It is a global symbol: set its link type
7484 to "defined" and give it a value. */
7486 sym_hashes = elf_sym_hashes (bfd_with_globals);
7487 h = sym_hashes [symidx - extsymoff];
7488 while (h->root.type == bfd_link_hash_indirect
7489 || h->root.type == bfd_link_hash_warning)
7490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7491 h->root.type = bfd_link_hash_defined;
7492 h->root.u.def.value = val;
7493 h->root.u.def.section = bfd_abs_section_ptr;
7496 static bfd_boolean
7497 resolve_symbol (const char *name,
7498 bfd *input_bfd,
7499 struct elf_final_link_info *finfo,
7500 bfd_vma *result,
7501 Elf_Internal_Sym *isymbuf,
7502 size_t locsymcount)
7504 Elf_Internal_Sym *sym;
7505 struct bfd_link_hash_entry *global_entry;
7506 const char *candidate = NULL;
7507 Elf_Internal_Shdr *symtab_hdr;
7508 size_t i;
7510 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7512 for (i = 0; i < locsymcount; ++ i)
7514 sym = isymbuf + i;
7516 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7517 continue;
7519 candidate = bfd_elf_string_from_elf_section (input_bfd,
7520 symtab_hdr->sh_link,
7521 sym->st_name);
7522 #ifdef DEBUG
7523 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7524 name, candidate, (unsigned long) sym->st_value);
7525 #endif
7526 if (candidate && strcmp (candidate, name) == 0)
7528 asection *sec = finfo->sections [i];
7530 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7531 *result += sec->output_offset + sec->output_section->vma;
7532 #ifdef DEBUG
7533 printf ("Found symbol with value %8.8lx\n",
7534 (unsigned long) *result);
7535 #endif
7536 return TRUE;
7540 /* Hmm, haven't found it yet. perhaps it is a global. */
7541 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7542 FALSE, FALSE, TRUE);
7543 if (!global_entry)
7544 return FALSE;
7546 if (global_entry->type == bfd_link_hash_defined
7547 || global_entry->type == bfd_link_hash_defweak)
7549 *result = (global_entry->u.def.value
7550 + global_entry->u.def.section->output_section->vma
7551 + global_entry->u.def.section->output_offset);
7552 #ifdef DEBUG
7553 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7554 global_entry->root.string, (unsigned long) *result);
7555 #endif
7556 return TRUE;
7559 return FALSE;
7562 static bfd_boolean
7563 resolve_section (const char *name,
7564 asection *sections,
7565 bfd_vma *result)
7567 asection *curr;
7568 unsigned int len;
7570 for (curr = sections; curr; curr = curr->next)
7571 if (strcmp (curr->name, name) == 0)
7573 *result = curr->vma;
7574 return TRUE;
7577 /* Hmm. still haven't found it. try pseudo-section names. */
7578 for (curr = sections; curr; curr = curr->next)
7580 len = strlen (curr->name);
7581 if (len > strlen (name))
7582 continue;
7584 if (strncmp (curr->name, name, len) == 0)
7586 if (strncmp (".end", name + len, 4) == 0)
7588 *result = curr->vma + curr->size;
7589 return TRUE;
7592 /* Insert more pseudo-section names here, if you like. */
7596 return FALSE;
7599 static void
7600 undefined_reference (const char *reftype, const char *name)
7602 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7603 reftype, name);
7606 static bfd_boolean
7607 eval_symbol (bfd_vma *result,
7608 const char **symp,
7609 bfd *input_bfd,
7610 struct elf_final_link_info *finfo,
7611 bfd_vma dot,
7612 Elf_Internal_Sym *isymbuf,
7613 size_t locsymcount,
7614 int signed_p)
7616 size_t len;
7617 size_t symlen;
7618 bfd_vma a;
7619 bfd_vma b;
7620 char symbuf[4096];
7621 const char *sym = *symp;
7622 const char *symend;
7623 bfd_boolean symbol_is_section = FALSE;
7625 len = strlen (sym);
7626 symend = sym + len;
7628 if (len < 1 || len > sizeof (symbuf))
7630 bfd_set_error (bfd_error_invalid_operation);
7631 return FALSE;
7634 switch (* sym)
7636 case '.':
7637 *result = dot;
7638 *symp = sym + 1;
7639 return TRUE;
7641 case '#':
7642 ++sym;
7643 *result = strtoul (sym, (char **) symp, 16);
7644 return TRUE;
7646 case 'S':
7647 symbol_is_section = TRUE;
7648 case 's':
7649 ++sym;
7650 symlen = strtol (sym, (char **) symp, 10);
7651 sym = *symp + 1; /* Skip the trailing ':'. */
7653 if (symend < sym || symlen + 1 > sizeof (symbuf))
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7659 memcpy (symbuf, sym, symlen);
7660 symbuf[symlen] = '\0';
7661 *symp = sym + symlen;
7663 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7664 the symbol as a section, or vice-versa. so we're pretty liberal in our
7665 interpretation here; section means "try section first", not "must be a
7666 section", and likewise with symbol. */
7668 if (symbol_is_section)
7670 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7671 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7672 isymbuf, locsymcount))
7674 undefined_reference ("section", symbuf);
7675 return FALSE;
7678 else
7680 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7681 isymbuf, locsymcount)
7682 && !resolve_section (symbuf, finfo->output_bfd->sections,
7683 result))
7685 undefined_reference ("symbol", symbuf);
7686 return FALSE;
7690 return TRUE;
7692 /* All that remains are operators. */
7694 #define UNARY_OP(op) \
7695 if (strncmp (sym, #op, strlen (#op)) == 0) \
7697 sym += strlen (#op); \
7698 if (*sym == ':') \
7699 ++sym; \
7700 *symp = sym; \
7701 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7702 isymbuf, locsymcount, signed_p)) \
7703 return FALSE; \
7704 if (signed_p) \
7705 *result = op ((bfd_signed_vma) a); \
7706 else \
7707 *result = op a; \
7708 return TRUE; \
7711 #define BINARY_OP(op) \
7712 if (strncmp (sym, #op, strlen (#op)) == 0) \
7714 sym += strlen (#op); \
7715 if (*sym == ':') \
7716 ++sym; \
7717 *symp = sym; \
7718 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7719 isymbuf, locsymcount, signed_p)) \
7720 return FALSE; \
7721 ++*symp; \
7722 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7723 isymbuf, locsymcount, signed_p)) \
7724 return FALSE; \
7725 if (signed_p) \
7726 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7727 else \
7728 *result = a op b; \
7729 return TRUE; \
7732 default:
7733 UNARY_OP (0-);
7734 BINARY_OP (<<);
7735 BINARY_OP (>>);
7736 BINARY_OP (==);
7737 BINARY_OP (!=);
7738 BINARY_OP (<=);
7739 BINARY_OP (>=);
7740 BINARY_OP (&&);
7741 BINARY_OP (||);
7742 UNARY_OP (~);
7743 UNARY_OP (!);
7744 BINARY_OP (*);
7745 BINARY_OP (/);
7746 BINARY_OP (%);
7747 BINARY_OP (^);
7748 BINARY_OP (|);
7749 BINARY_OP (&);
7750 BINARY_OP (+);
7751 BINARY_OP (-);
7752 BINARY_OP (<);
7753 BINARY_OP (>);
7754 #undef UNARY_OP
7755 #undef BINARY_OP
7756 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7757 bfd_set_error (bfd_error_invalid_operation);
7758 return FALSE;
7762 static void
7763 put_value (bfd_vma size,
7764 unsigned long chunksz,
7765 bfd *input_bfd,
7766 bfd_vma x,
7767 bfd_byte *location)
7769 location += (size - chunksz);
7771 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7773 switch (chunksz)
7775 default:
7776 case 0:
7777 abort ();
7778 case 1:
7779 bfd_put_8 (input_bfd, x, location);
7780 break;
7781 case 2:
7782 bfd_put_16 (input_bfd, x, location);
7783 break;
7784 case 4:
7785 bfd_put_32 (input_bfd, x, location);
7786 break;
7787 case 8:
7788 #ifdef BFD64
7789 bfd_put_64 (input_bfd, x, location);
7790 #else
7791 abort ();
7792 #endif
7793 break;
7798 static bfd_vma
7799 get_value (bfd_vma size,
7800 unsigned long chunksz,
7801 bfd *input_bfd,
7802 bfd_byte *location)
7804 bfd_vma x = 0;
7806 for (; size; size -= chunksz, location += chunksz)
7808 switch (chunksz)
7810 default:
7811 case 0:
7812 abort ();
7813 case 1:
7814 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7815 break;
7816 case 2:
7817 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7818 break;
7819 case 4:
7820 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7821 break;
7822 case 8:
7823 #ifdef BFD64
7824 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7825 #else
7826 abort ();
7827 #endif
7828 break;
7831 return x;
7834 static void
7835 decode_complex_addend (unsigned long *start, /* in bits */
7836 unsigned long *oplen, /* in bits */
7837 unsigned long *len, /* in bits */
7838 unsigned long *wordsz, /* in bytes */
7839 unsigned long *chunksz, /* in bytes */
7840 unsigned long *lsb0_p,
7841 unsigned long *signed_p,
7842 unsigned long *trunc_p,
7843 unsigned long encoded)
7845 * start = encoded & 0x3F;
7846 * len = (encoded >> 6) & 0x3F;
7847 * oplen = (encoded >> 12) & 0x3F;
7848 * wordsz = (encoded >> 18) & 0xF;
7849 * chunksz = (encoded >> 22) & 0xF;
7850 * lsb0_p = (encoded >> 27) & 1;
7851 * signed_p = (encoded >> 28) & 1;
7852 * trunc_p = (encoded >> 29) & 1;
7855 bfd_reloc_status_type
7856 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7857 asection *input_section ATTRIBUTE_UNUSED,
7858 bfd_byte *contents,
7859 Elf_Internal_Rela *rel,
7860 bfd_vma relocation)
7862 bfd_vma shift, x, mask;
7863 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7864 bfd_reloc_status_type r;
7866 /* Perform this reloc, since it is complex.
7867 (this is not to say that it necessarily refers to a complex
7868 symbol; merely that it is a self-describing CGEN based reloc.
7869 i.e. the addend has the complete reloc information (bit start, end,
7870 word size, etc) encoded within it.). */
7872 decode_complex_addend (&start, &oplen, &len, &wordsz,
7873 &chunksz, &lsb0_p, &signed_p,
7874 &trunc_p, rel->r_addend);
7876 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7878 if (lsb0_p)
7879 shift = (start + 1) - len;
7880 else
7881 shift = (8 * wordsz) - (start + len);
7883 /* FIXME: octets_per_byte. */
7884 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7886 #ifdef DEBUG
7887 printf ("Doing complex reloc: "
7888 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7889 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7890 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7891 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7892 oplen, (unsigned long) x, (unsigned long) mask,
7893 (unsigned long) relocation);
7894 #endif
7896 r = bfd_reloc_ok;
7897 if (! trunc_p)
7898 /* Now do an overflow check. */
7899 r = bfd_check_overflow ((signed_p
7900 ? complain_overflow_signed
7901 : complain_overflow_unsigned),
7902 len, 0, (8 * wordsz),
7903 relocation);
7905 /* Do the deed. */
7906 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7908 #ifdef DEBUG
7909 printf (" relocation: %8.8lx\n"
7910 " shifted mask: %8.8lx\n"
7911 " shifted/masked reloc: %8.8lx\n"
7912 " result: %8.8lx\n",
7913 (unsigned long) relocation, (unsigned long) (mask << shift),
7914 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7915 #endif
7916 /* FIXME: octets_per_byte. */
7917 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7918 return r;
7921 /* When performing a relocatable link, the input relocations are
7922 preserved. But, if they reference global symbols, the indices
7923 referenced must be updated. Update all the relocations found in
7924 RELDATA. */
7926 static void
7927 elf_link_adjust_relocs (bfd *abfd,
7928 struct bfd_elf_section_reloc_data *reldata)
7930 unsigned int i;
7931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7932 bfd_byte *erela;
7933 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7934 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7935 bfd_vma r_type_mask;
7936 int r_sym_shift;
7937 unsigned int count = reldata->count;
7938 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7940 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7942 swap_in = bed->s->swap_reloc_in;
7943 swap_out = bed->s->swap_reloc_out;
7945 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7947 swap_in = bed->s->swap_reloca_in;
7948 swap_out = bed->s->swap_reloca_out;
7950 else
7951 abort ();
7953 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7954 abort ();
7956 if (bed->s->arch_size == 32)
7958 r_type_mask = 0xff;
7959 r_sym_shift = 8;
7961 else
7963 r_type_mask = 0xffffffff;
7964 r_sym_shift = 32;
7967 erela = reldata->hdr->contents;
7968 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7970 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7971 unsigned int j;
7973 if (*rel_hash == NULL)
7974 continue;
7976 BFD_ASSERT ((*rel_hash)->indx >= 0);
7978 (*swap_in) (abfd, erela, irela);
7979 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7980 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7981 | (irela[j].r_info & r_type_mask));
7982 (*swap_out) (abfd, irela, erela);
7986 struct elf_link_sort_rela
7988 union {
7989 bfd_vma offset;
7990 bfd_vma sym_mask;
7991 } u;
7992 enum elf_reloc_type_class type;
7993 /* We use this as an array of size int_rels_per_ext_rel. */
7994 Elf_Internal_Rela rela[1];
7997 static int
7998 elf_link_sort_cmp1 (const void *A, const void *B)
8000 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8001 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8002 int relativea, relativeb;
8004 relativea = a->type == reloc_class_relative;
8005 relativeb = b->type == reloc_class_relative;
8007 if (relativea < relativeb)
8008 return 1;
8009 if (relativea > relativeb)
8010 return -1;
8011 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8012 return -1;
8013 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8014 return 1;
8015 if (a->rela->r_offset < b->rela->r_offset)
8016 return -1;
8017 if (a->rela->r_offset > b->rela->r_offset)
8018 return 1;
8019 return 0;
8022 static int
8023 elf_link_sort_cmp2 (const void *A, const void *B)
8025 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8026 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8027 int copya, copyb;
8029 if (a->u.offset < b->u.offset)
8030 return -1;
8031 if (a->u.offset > b->u.offset)
8032 return 1;
8033 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8034 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8035 if (copya < copyb)
8036 return -1;
8037 if (copya > copyb)
8038 return 1;
8039 if (a->rela->r_offset < b->rela->r_offset)
8040 return -1;
8041 if (a->rela->r_offset > b->rela->r_offset)
8042 return 1;
8043 return 0;
8046 static size_t
8047 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8049 asection *dynamic_relocs;
8050 asection *rela_dyn;
8051 asection *rel_dyn;
8052 bfd_size_type count, size;
8053 size_t i, ret, sort_elt, ext_size;
8054 bfd_byte *sort, *s_non_relative, *p;
8055 struct elf_link_sort_rela *sq;
8056 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8057 int i2e = bed->s->int_rels_per_ext_rel;
8058 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8059 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8060 struct bfd_link_order *lo;
8061 bfd_vma r_sym_mask;
8062 bfd_boolean use_rela;
8064 /* Find a dynamic reloc section. */
8065 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8066 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8067 if (rela_dyn != NULL && rela_dyn->size > 0
8068 && rel_dyn != NULL && rel_dyn->size > 0)
8070 bfd_boolean use_rela_initialised = FALSE;
8072 /* This is just here to stop gcc from complaining.
8073 It's initialization checking code is not perfect. */
8074 use_rela = TRUE;
8076 /* Both sections are present. Examine the sizes
8077 of the indirect sections to help us choose. */
8078 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8079 if (lo->type == bfd_indirect_link_order)
8081 asection *o = lo->u.indirect.section;
8083 if ((o->size % bed->s->sizeof_rela) == 0)
8085 if ((o->size % bed->s->sizeof_rel) == 0)
8086 /* Section size is divisible by both rel and rela sizes.
8087 It is of no help to us. */
8089 else
8091 /* Section size is only divisible by rela. */
8092 if (use_rela_initialised && (use_rela == FALSE))
8094 _bfd_error_handler
8095 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8096 bfd_set_error (bfd_error_invalid_operation);
8097 return 0;
8099 else
8101 use_rela = TRUE;
8102 use_rela_initialised = TRUE;
8106 else if ((o->size % bed->s->sizeof_rel) == 0)
8108 /* Section size is only divisible by rel. */
8109 if (use_rela_initialised && (use_rela == TRUE))
8111 _bfd_error_handler
8112 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8113 bfd_set_error (bfd_error_invalid_operation);
8114 return 0;
8116 else
8118 use_rela = FALSE;
8119 use_rela_initialised = TRUE;
8122 else
8124 /* The section size is not divisible by either - something is wrong. */
8125 _bfd_error_handler
8126 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8127 bfd_set_error (bfd_error_invalid_operation);
8128 return 0;
8132 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8133 if (lo->type == bfd_indirect_link_order)
8135 asection *o = lo->u.indirect.section;
8137 if ((o->size % bed->s->sizeof_rela) == 0)
8139 if ((o->size % bed->s->sizeof_rel) == 0)
8140 /* Section size is divisible by both rel and rela sizes.
8141 It is of no help to us. */
8143 else
8145 /* Section size is only divisible by rela. */
8146 if (use_rela_initialised && (use_rela == FALSE))
8148 _bfd_error_handler
8149 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8150 bfd_set_error (bfd_error_invalid_operation);
8151 return 0;
8153 else
8155 use_rela = TRUE;
8156 use_rela_initialised = TRUE;
8160 else if ((o->size % bed->s->sizeof_rel) == 0)
8162 /* Section size is only divisible by rel. */
8163 if (use_rela_initialised && (use_rela == TRUE))
8165 _bfd_error_handler
8166 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8167 bfd_set_error (bfd_error_invalid_operation);
8168 return 0;
8170 else
8172 use_rela = FALSE;
8173 use_rela_initialised = TRUE;
8176 else
8178 /* The section size is not divisible by either - something is wrong. */
8179 _bfd_error_handler
8180 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8181 bfd_set_error (bfd_error_invalid_operation);
8182 return 0;
8186 if (! use_rela_initialised)
8187 /* Make a guess. */
8188 use_rela = TRUE;
8190 else if (rela_dyn != NULL && rela_dyn->size > 0)
8191 use_rela = TRUE;
8192 else if (rel_dyn != NULL && rel_dyn->size > 0)
8193 use_rela = FALSE;
8194 else
8195 return 0;
8197 if (use_rela)
8199 dynamic_relocs = rela_dyn;
8200 ext_size = bed->s->sizeof_rela;
8201 swap_in = bed->s->swap_reloca_in;
8202 swap_out = bed->s->swap_reloca_out;
8204 else
8206 dynamic_relocs = rel_dyn;
8207 ext_size = bed->s->sizeof_rel;
8208 swap_in = bed->s->swap_reloc_in;
8209 swap_out = bed->s->swap_reloc_out;
8212 size = 0;
8213 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8214 if (lo->type == bfd_indirect_link_order)
8215 size += lo->u.indirect.section->size;
8217 if (size != dynamic_relocs->size)
8218 return 0;
8220 sort_elt = (sizeof (struct elf_link_sort_rela)
8221 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8223 count = dynamic_relocs->size / ext_size;
8224 if (count == 0)
8225 return 0;
8226 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8228 if (sort == NULL)
8230 (*info->callbacks->warning)
8231 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8232 return 0;
8235 if (bed->s->arch_size == 32)
8236 r_sym_mask = ~(bfd_vma) 0xff;
8237 else
8238 r_sym_mask = ~(bfd_vma) 0xffffffff;
8240 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8241 if (lo->type == bfd_indirect_link_order)
8243 bfd_byte *erel, *erelend;
8244 asection *o = lo->u.indirect.section;
8246 if (o->contents == NULL && o->size != 0)
8248 /* This is a reloc section that is being handled as a normal
8249 section. See bfd_section_from_shdr. We can't combine
8250 relocs in this case. */
8251 free (sort);
8252 return 0;
8254 erel = o->contents;
8255 erelend = o->contents + o->size;
8256 /* FIXME: octets_per_byte. */
8257 p = sort + o->output_offset / ext_size * sort_elt;
8259 while (erel < erelend)
8261 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8263 (*swap_in) (abfd, erel, s->rela);
8264 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8265 s->u.sym_mask = r_sym_mask;
8266 p += sort_elt;
8267 erel += ext_size;
8271 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8273 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8275 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8276 if (s->type != reloc_class_relative)
8277 break;
8279 ret = i;
8280 s_non_relative = p;
8282 sq = (struct elf_link_sort_rela *) s_non_relative;
8283 for (; i < count; i++, p += sort_elt)
8285 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8286 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8287 sq = sp;
8288 sp->u.offset = sq->rela->r_offset;
8291 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8293 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8294 if (lo->type == bfd_indirect_link_order)
8296 bfd_byte *erel, *erelend;
8297 asection *o = lo->u.indirect.section;
8299 erel = o->contents;
8300 erelend = o->contents + o->size;
8301 /* FIXME: octets_per_byte. */
8302 p = sort + o->output_offset / ext_size * sort_elt;
8303 while (erel < erelend)
8305 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8306 (*swap_out) (abfd, s->rela, erel);
8307 p += sort_elt;
8308 erel += ext_size;
8312 free (sort);
8313 *psec = dynamic_relocs;
8314 return ret;
8317 /* Flush the output symbols to the file. */
8319 static bfd_boolean
8320 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8321 const struct elf_backend_data *bed)
8323 if (finfo->symbuf_count > 0)
8325 Elf_Internal_Shdr *hdr;
8326 file_ptr pos;
8327 bfd_size_type amt;
8329 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8330 pos = hdr->sh_offset + hdr->sh_size;
8331 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8332 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8333 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8334 return FALSE;
8336 hdr->sh_size += amt;
8337 finfo->symbuf_count = 0;
8340 return TRUE;
8343 /* Add a symbol to the output symbol table. */
8345 static int
8346 elf_link_output_sym (struct elf_final_link_info *finfo,
8347 const char *name,
8348 Elf_Internal_Sym *elfsym,
8349 asection *input_sec,
8350 struct elf_link_hash_entry *h)
8352 bfd_byte *dest;
8353 Elf_External_Sym_Shndx *destshndx;
8354 int (*output_symbol_hook)
8355 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8356 struct elf_link_hash_entry *);
8357 const struct elf_backend_data *bed;
8359 bed = get_elf_backend_data (finfo->output_bfd);
8360 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8361 if (output_symbol_hook != NULL)
8363 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8364 if (ret != 1)
8365 return ret;
8368 if (name == NULL || *name == '\0')
8369 elfsym->st_name = 0;
8370 else if (input_sec->flags & SEC_EXCLUDE)
8371 elfsym->st_name = 0;
8372 else
8374 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8375 name, TRUE, FALSE);
8376 if (elfsym->st_name == (unsigned long) -1)
8377 return 0;
8380 if (finfo->symbuf_count >= finfo->symbuf_size)
8382 if (! elf_link_flush_output_syms (finfo, bed))
8383 return 0;
8386 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8387 destshndx = finfo->symshndxbuf;
8388 if (destshndx != NULL)
8390 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8392 bfd_size_type amt;
8394 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8395 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8396 amt * 2);
8397 if (destshndx == NULL)
8398 return 0;
8399 finfo->symshndxbuf = destshndx;
8400 memset ((char *) destshndx + amt, 0, amt);
8401 finfo->shndxbuf_size *= 2;
8403 destshndx += bfd_get_symcount (finfo->output_bfd);
8406 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8407 finfo->symbuf_count += 1;
8408 bfd_get_symcount (finfo->output_bfd) += 1;
8410 return 1;
8413 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8415 static bfd_boolean
8416 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8418 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8419 && sym->st_shndx < SHN_LORESERVE)
8421 /* The gABI doesn't support dynamic symbols in output sections
8422 beyond 64k. */
8423 (*_bfd_error_handler)
8424 (_("%B: Too many sections: %d (>= %d)"),
8425 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8426 bfd_set_error (bfd_error_nonrepresentable_section);
8427 return FALSE;
8429 return TRUE;
8432 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8433 allowing an unsatisfied unversioned symbol in the DSO to match a
8434 versioned symbol that would normally require an explicit version.
8435 We also handle the case that a DSO references a hidden symbol
8436 which may be satisfied by a versioned symbol in another DSO. */
8438 static bfd_boolean
8439 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8440 const struct elf_backend_data *bed,
8441 struct elf_link_hash_entry *h)
8443 bfd *abfd;
8444 struct elf_link_loaded_list *loaded;
8446 if (!is_elf_hash_table (info->hash))
8447 return FALSE;
8449 switch (h->root.type)
8451 default:
8452 abfd = NULL;
8453 break;
8455 case bfd_link_hash_undefined:
8456 case bfd_link_hash_undefweak:
8457 abfd = h->root.u.undef.abfd;
8458 if ((abfd->flags & DYNAMIC) == 0
8459 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8460 return FALSE;
8461 break;
8463 case bfd_link_hash_defined:
8464 case bfd_link_hash_defweak:
8465 abfd = h->root.u.def.section->owner;
8466 break;
8468 case bfd_link_hash_common:
8469 abfd = h->root.u.c.p->section->owner;
8470 break;
8472 BFD_ASSERT (abfd != NULL);
8474 for (loaded = elf_hash_table (info)->loaded;
8475 loaded != NULL;
8476 loaded = loaded->next)
8478 bfd *input;
8479 Elf_Internal_Shdr *hdr;
8480 bfd_size_type symcount;
8481 bfd_size_type extsymcount;
8482 bfd_size_type extsymoff;
8483 Elf_Internal_Shdr *versymhdr;
8484 Elf_Internal_Sym *isym;
8485 Elf_Internal_Sym *isymend;
8486 Elf_Internal_Sym *isymbuf;
8487 Elf_External_Versym *ever;
8488 Elf_External_Versym *extversym;
8490 input = loaded->abfd;
8492 /* We check each DSO for a possible hidden versioned definition. */
8493 if (input == abfd
8494 || (input->flags & DYNAMIC) == 0
8495 || elf_dynversym (input) == 0)
8496 continue;
8498 hdr = &elf_tdata (input)->dynsymtab_hdr;
8500 symcount = hdr->sh_size / bed->s->sizeof_sym;
8501 if (elf_bad_symtab (input))
8503 extsymcount = symcount;
8504 extsymoff = 0;
8506 else
8508 extsymcount = symcount - hdr->sh_info;
8509 extsymoff = hdr->sh_info;
8512 if (extsymcount == 0)
8513 continue;
8515 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8516 NULL, NULL, NULL);
8517 if (isymbuf == NULL)
8518 return FALSE;
8520 /* Read in any version definitions. */
8521 versymhdr = &elf_tdata (input)->dynversym_hdr;
8522 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8523 if (extversym == NULL)
8524 goto error_ret;
8526 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8527 || (bfd_bread (extversym, versymhdr->sh_size, input)
8528 != versymhdr->sh_size))
8530 free (extversym);
8531 error_ret:
8532 free (isymbuf);
8533 return FALSE;
8536 ever = extversym + extsymoff;
8537 isymend = isymbuf + extsymcount;
8538 for (isym = isymbuf; isym < isymend; isym++, ever++)
8540 const char *name;
8541 Elf_Internal_Versym iver;
8542 unsigned short version_index;
8544 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8545 || isym->st_shndx == SHN_UNDEF)
8546 continue;
8548 name = bfd_elf_string_from_elf_section (input,
8549 hdr->sh_link,
8550 isym->st_name);
8551 if (strcmp (name, h->root.root.string) != 0)
8552 continue;
8554 _bfd_elf_swap_versym_in (input, ever, &iver);
8556 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8557 && !(h->def_regular
8558 && h->forced_local))
8560 /* If we have a non-hidden versioned sym, then it should
8561 have provided a definition for the undefined sym unless
8562 it is defined in a non-shared object and forced local.
8564 abort ();
8567 version_index = iver.vs_vers & VERSYM_VERSION;
8568 if (version_index == 1 || version_index == 2)
8570 /* This is the base or first version. We can use it. */
8571 free (extversym);
8572 free (isymbuf);
8573 return TRUE;
8577 free (extversym);
8578 free (isymbuf);
8581 return FALSE;
8584 /* Add an external symbol to the symbol table. This is called from
8585 the hash table traversal routine. When generating a shared object,
8586 we go through the symbol table twice. The first time we output
8587 anything that might have been forced to local scope in a version
8588 script. The second time we output the symbols that are still
8589 global symbols. */
8591 static bfd_boolean
8592 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8594 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8595 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8596 struct elf_final_link_info *finfo = eoinfo->finfo;
8597 bfd_boolean strip;
8598 Elf_Internal_Sym sym;
8599 asection *input_sec;
8600 const struct elf_backend_data *bed;
8601 long indx;
8602 int ret;
8604 if (h->root.type == bfd_link_hash_warning)
8606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8607 if (h->root.type == bfd_link_hash_new)
8608 return TRUE;
8611 /* Decide whether to output this symbol in this pass. */
8612 if (eoinfo->localsyms)
8614 if (!h->forced_local)
8615 return TRUE;
8617 else
8619 if (h->forced_local)
8620 return TRUE;
8623 bed = get_elf_backend_data (finfo->output_bfd);
8625 if (h->root.type == bfd_link_hash_undefined)
8627 /* If we have an undefined symbol reference here then it must have
8628 come from a shared library that is being linked in. (Undefined
8629 references in regular files have already been handled unless
8630 they are in unreferenced sections which are removed by garbage
8631 collection). */
8632 bfd_boolean ignore_undef = FALSE;
8634 /* Some symbols may be special in that the fact that they're
8635 undefined can be safely ignored - let backend determine that. */
8636 if (bed->elf_backend_ignore_undef_symbol)
8637 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8639 /* If we are reporting errors for this situation then do so now. */
8640 if (!ignore_undef
8641 && h->ref_dynamic
8642 && (!h->ref_regular || finfo->info->gc_sections)
8643 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8644 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8646 if (! (finfo->info->callbacks->undefined_symbol
8647 (finfo->info, h->root.root.string,
8648 h->ref_regular ? NULL : h->root.u.undef.abfd,
8649 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8651 bfd_set_error (bfd_error_bad_value);
8652 eoinfo->failed = TRUE;
8653 return FALSE;
8658 /* We should also warn if a forced local symbol is referenced from
8659 shared libraries. */
8660 if (!finfo->info->relocatable
8661 && finfo->info->executable
8662 && h->forced_local
8663 && h->ref_dynamic
8664 && h->def_regular
8665 && !h->dynamic_def
8666 && !h->dynamic_weak
8667 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8669 bfd *def_bfd;
8670 const char *msg;
8672 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8673 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8674 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8675 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8676 else
8677 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8678 def_bfd = finfo->output_bfd;
8679 if (h->root.u.def.section != bfd_abs_section_ptr)
8680 def_bfd = h->root.u.def.section->owner;
8681 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8682 h->root.root.string);
8683 bfd_set_error (bfd_error_bad_value);
8684 eoinfo->failed = TRUE;
8685 return FALSE;
8688 /* We don't want to output symbols that have never been mentioned by
8689 a regular file, or that we have been told to strip. However, if
8690 h->indx is set to -2, the symbol is used by a reloc and we must
8691 output it. */
8692 if (h->indx == -2)
8693 strip = FALSE;
8694 else if ((h->def_dynamic
8695 || h->ref_dynamic
8696 || h->root.type == bfd_link_hash_new)
8697 && !h->def_regular
8698 && !h->ref_regular)
8699 strip = TRUE;
8700 else if (finfo->info->strip == strip_all)
8701 strip = TRUE;
8702 else if (finfo->info->strip == strip_some
8703 && bfd_hash_lookup (finfo->info->keep_hash,
8704 h->root.root.string, FALSE, FALSE) == NULL)
8705 strip = TRUE;
8706 else if ((h->root.type == bfd_link_hash_defined
8707 || h->root.type == bfd_link_hash_defweak)
8708 && ((finfo->info->strip_discarded
8709 && elf_discarded_section (h->root.u.def.section))
8710 || (h->root.u.def.section->owner != NULL
8711 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8712 strip = TRUE;
8713 else if ((h->root.type == bfd_link_hash_undefined
8714 || h->root.type == bfd_link_hash_undefweak)
8715 && h->root.u.undef.abfd != NULL
8716 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8717 strip = TRUE;
8718 else
8719 strip = FALSE;
8721 /* If we're stripping it, and it's not a dynamic symbol, there's
8722 nothing else to do unless it is a forced local symbol or a
8723 STT_GNU_IFUNC symbol. */
8724 if (strip
8725 && h->dynindx == -1
8726 && h->type != STT_GNU_IFUNC
8727 && !h->forced_local)
8728 return TRUE;
8730 sym.st_value = 0;
8731 sym.st_size = h->size;
8732 sym.st_other = h->other;
8733 if (h->forced_local)
8735 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8736 /* Turn off visibility on local symbol. */
8737 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8739 else if (h->unique_global)
8740 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8741 else if (h->root.type == bfd_link_hash_undefweak
8742 || h->root.type == bfd_link_hash_defweak)
8743 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8744 else
8745 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8746 sym.st_target_internal = h->target_internal;
8748 switch (h->root.type)
8750 default:
8751 case bfd_link_hash_new:
8752 case bfd_link_hash_warning:
8753 abort ();
8754 return FALSE;
8756 case bfd_link_hash_undefined:
8757 case bfd_link_hash_undefweak:
8758 input_sec = bfd_und_section_ptr;
8759 sym.st_shndx = SHN_UNDEF;
8760 break;
8762 case bfd_link_hash_defined:
8763 case bfd_link_hash_defweak:
8765 input_sec = h->root.u.def.section;
8766 if (input_sec->output_section != NULL)
8768 sym.st_shndx =
8769 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8770 input_sec->output_section);
8771 if (sym.st_shndx == SHN_BAD)
8773 (*_bfd_error_handler)
8774 (_("%B: could not find output section %A for input section %A"),
8775 finfo->output_bfd, input_sec->output_section, input_sec);
8776 bfd_set_error (bfd_error_nonrepresentable_section);
8777 eoinfo->failed = TRUE;
8778 return FALSE;
8781 /* ELF symbols in relocatable files are section relative,
8782 but in nonrelocatable files they are virtual
8783 addresses. */
8784 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8785 if (! finfo->info->relocatable)
8787 sym.st_value += input_sec->output_section->vma;
8788 if (h->type == STT_TLS)
8790 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8791 if (tls_sec != NULL)
8792 sym.st_value -= tls_sec->vma;
8793 else
8795 /* The TLS section may have been garbage collected. */
8796 BFD_ASSERT (finfo->info->gc_sections
8797 && !input_sec->gc_mark);
8802 else
8804 BFD_ASSERT (input_sec->owner == NULL
8805 || (input_sec->owner->flags & DYNAMIC) != 0);
8806 sym.st_shndx = SHN_UNDEF;
8807 input_sec = bfd_und_section_ptr;
8810 break;
8812 case bfd_link_hash_common:
8813 input_sec = h->root.u.c.p->section;
8814 sym.st_shndx = bed->common_section_index (input_sec);
8815 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8816 break;
8818 case bfd_link_hash_indirect:
8819 /* These symbols are created by symbol versioning. They point
8820 to the decorated version of the name. For example, if the
8821 symbol foo@@GNU_1.2 is the default, which should be used when
8822 foo is used with no version, then we add an indirect symbol
8823 foo which points to foo@@GNU_1.2. We ignore these symbols,
8824 since the indirected symbol is already in the hash table. */
8825 return TRUE;
8828 /* Give the processor backend a chance to tweak the symbol value,
8829 and also to finish up anything that needs to be done for this
8830 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8831 forced local syms when non-shared is due to a historical quirk.
8832 STT_GNU_IFUNC symbol must go through PLT. */
8833 if ((h->type == STT_GNU_IFUNC
8834 && h->def_regular
8835 && !finfo->info->relocatable)
8836 || ((h->dynindx != -1
8837 || h->forced_local)
8838 && ((finfo->info->shared
8839 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8840 || h->root.type != bfd_link_hash_undefweak))
8841 || !h->forced_local)
8842 && elf_hash_table (finfo->info)->dynamic_sections_created))
8844 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8845 (finfo->output_bfd, finfo->info, h, &sym)))
8847 eoinfo->failed = TRUE;
8848 return FALSE;
8852 /* If we are marking the symbol as undefined, and there are no
8853 non-weak references to this symbol from a regular object, then
8854 mark the symbol as weak undefined; if there are non-weak
8855 references, mark the symbol as strong. We can't do this earlier,
8856 because it might not be marked as undefined until the
8857 finish_dynamic_symbol routine gets through with it. */
8858 if (sym.st_shndx == SHN_UNDEF
8859 && h->ref_regular
8860 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8861 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8863 int bindtype;
8864 unsigned int type = ELF_ST_TYPE (sym.st_info);
8866 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8867 if (type == STT_GNU_IFUNC)
8868 type = STT_FUNC;
8870 if (h->ref_regular_nonweak)
8871 bindtype = STB_GLOBAL;
8872 else
8873 bindtype = STB_WEAK;
8874 sym.st_info = ELF_ST_INFO (bindtype, type);
8877 /* If this is a symbol defined in a dynamic library, don't use the
8878 symbol size from the dynamic library. Relinking an executable
8879 against a new library may introduce gratuitous changes in the
8880 executable's symbols if we keep the size. */
8881 if (sym.st_shndx == SHN_UNDEF
8882 && !h->def_regular
8883 && h->def_dynamic)
8884 sym.st_size = 0;
8886 /* If a non-weak symbol with non-default visibility is not defined
8887 locally, it is a fatal error. */
8888 if (! finfo->info->relocatable
8889 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8890 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8891 && h->root.type == bfd_link_hash_undefined
8892 && !h->def_regular)
8894 const char *msg;
8896 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8897 msg = _("%B: protected symbol `%s' isn't defined");
8898 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8899 msg = _("%B: internal symbol `%s' isn't defined");
8900 else
8901 msg = _("%B: hidden symbol `%s' isn't defined");
8902 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8903 bfd_set_error (bfd_error_bad_value);
8904 eoinfo->failed = TRUE;
8905 return FALSE;
8908 /* If this symbol should be put in the .dynsym section, then put it
8909 there now. We already know the symbol index. We also fill in
8910 the entry in the .hash section. */
8911 if (h->dynindx != -1
8912 && elf_hash_table (finfo->info)->dynamic_sections_created)
8914 bfd_byte *esym;
8916 sym.st_name = h->dynstr_index;
8917 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8918 if (! check_dynsym (finfo->output_bfd, &sym))
8920 eoinfo->failed = TRUE;
8921 return FALSE;
8923 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8925 if (finfo->hash_sec != NULL)
8927 size_t hash_entry_size;
8928 bfd_byte *bucketpos;
8929 bfd_vma chain;
8930 size_t bucketcount;
8931 size_t bucket;
8933 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8934 bucket = h->u.elf_hash_value % bucketcount;
8936 hash_entry_size
8937 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8938 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8939 + (bucket + 2) * hash_entry_size);
8940 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8941 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8942 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8943 ((bfd_byte *) finfo->hash_sec->contents
8944 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8947 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8949 Elf_Internal_Versym iversym;
8950 Elf_External_Versym *eversym;
8952 if (!h->def_regular)
8954 if (h->verinfo.verdef == NULL)
8955 iversym.vs_vers = 0;
8956 else
8957 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8959 else
8961 if (h->verinfo.vertree == NULL)
8962 iversym.vs_vers = 1;
8963 else
8964 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8965 if (finfo->info->create_default_symver)
8966 iversym.vs_vers++;
8969 if (h->hidden)
8970 iversym.vs_vers |= VERSYM_HIDDEN;
8972 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8973 eversym += h->dynindx;
8974 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8978 /* If we're stripping it, then it was just a dynamic symbol, and
8979 there's nothing else to do. */
8980 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8981 return TRUE;
8983 indx = bfd_get_symcount (finfo->output_bfd);
8984 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8985 if (ret == 0)
8987 eoinfo->failed = TRUE;
8988 return FALSE;
8990 else if (ret == 1)
8991 h->indx = indx;
8992 else if (h->indx == -2)
8993 abort();
8995 return TRUE;
8998 /* Return TRUE if special handling is done for relocs in SEC against
8999 symbols defined in discarded sections. */
9001 static bfd_boolean
9002 elf_section_ignore_discarded_relocs (asection *sec)
9004 const struct elf_backend_data *bed;
9006 switch (sec->sec_info_type)
9008 case ELF_INFO_TYPE_STABS:
9009 case ELF_INFO_TYPE_EH_FRAME:
9010 return TRUE;
9011 default:
9012 break;
9015 bed = get_elf_backend_data (sec->owner);
9016 if (bed->elf_backend_ignore_discarded_relocs != NULL
9017 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9018 return TRUE;
9020 return FALSE;
9023 /* Return a mask saying how ld should treat relocations in SEC against
9024 symbols defined in discarded sections. If this function returns
9025 COMPLAIN set, ld will issue a warning message. If this function
9026 returns PRETEND set, and the discarded section was link-once and the
9027 same size as the kept link-once section, ld will pretend that the
9028 symbol was actually defined in the kept section. Otherwise ld will
9029 zero the reloc (at least that is the intent, but some cooperation by
9030 the target dependent code is needed, particularly for REL targets). */
9032 unsigned int
9033 _bfd_elf_default_action_discarded (asection *sec)
9035 if (sec->flags & SEC_DEBUGGING)
9036 return PRETEND;
9038 if (strcmp (".eh_frame", sec->name) == 0)
9039 return 0;
9041 if (strcmp (".gcc_except_table", sec->name) == 0)
9042 return 0;
9044 return COMPLAIN | PRETEND;
9047 /* Find a match between a section and a member of a section group. */
9049 static asection *
9050 match_group_member (asection *sec, asection *group,
9051 struct bfd_link_info *info)
9053 asection *first = elf_next_in_group (group);
9054 asection *s = first;
9056 while (s != NULL)
9058 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9059 return s;
9061 s = elf_next_in_group (s);
9062 if (s == first)
9063 break;
9066 return NULL;
9069 /* Check if the kept section of a discarded section SEC can be used
9070 to replace it. Return the replacement if it is OK. Otherwise return
9071 NULL. */
9073 asection *
9074 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9076 asection *kept;
9078 kept = sec->kept_section;
9079 if (kept != NULL)
9081 if ((kept->flags & SEC_GROUP) != 0)
9082 kept = match_group_member (sec, kept, info);
9083 if (kept != NULL
9084 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9085 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9086 kept = NULL;
9087 sec->kept_section = kept;
9089 return kept;
9092 /* Link an input file into the linker output file. This function
9093 handles all the sections and relocations of the input file at once.
9094 This is so that we only have to read the local symbols once, and
9095 don't have to keep them in memory. */
9097 static bfd_boolean
9098 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9100 int (*relocate_section)
9101 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9102 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9103 bfd *output_bfd;
9104 Elf_Internal_Shdr *symtab_hdr;
9105 size_t locsymcount;
9106 size_t extsymoff;
9107 Elf_Internal_Sym *isymbuf;
9108 Elf_Internal_Sym *isym;
9109 Elf_Internal_Sym *isymend;
9110 long *pindex;
9111 asection **ppsection;
9112 asection *o;
9113 const struct elf_backend_data *bed;
9114 struct elf_link_hash_entry **sym_hashes;
9115 bfd_size_type address_size;
9116 bfd_vma r_type_mask;
9117 int r_sym_shift;
9119 output_bfd = finfo->output_bfd;
9120 bed = get_elf_backend_data (output_bfd);
9121 relocate_section = bed->elf_backend_relocate_section;
9123 /* If this is a dynamic object, we don't want to do anything here:
9124 we don't want the local symbols, and we don't want the section
9125 contents. */
9126 if ((input_bfd->flags & DYNAMIC) != 0)
9127 return TRUE;
9129 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9130 if (elf_bad_symtab (input_bfd))
9132 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9133 extsymoff = 0;
9135 else
9137 locsymcount = symtab_hdr->sh_info;
9138 extsymoff = symtab_hdr->sh_info;
9141 /* Read the local symbols. */
9142 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9143 if (isymbuf == NULL && locsymcount != 0)
9145 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9146 finfo->internal_syms,
9147 finfo->external_syms,
9148 finfo->locsym_shndx);
9149 if (isymbuf == NULL)
9150 return FALSE;
9153 /* Find local symbol sections and adjust values of symbols in
9154 SEC_MERGE sections. Write out those local symbols we know are
9155 going into the output file. */
9156 isymend = isymbuf + locsymcount;
9157 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9158 isym < isymend;
9159 isym++, pindex++, ppsection++)
9161 asection *isec;
9162 const char *name;
9163 Elf_Internal_Sym osym;
9164 long indx;
9165 int ret;
9167 *pindex = -1;
9169 if (elf_bad_symtab (input_bfd))
9171 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9173 *ppsection = NULL;
9174 continue;
9178 if (isym->st_shndx == SHN_UNDEF)
9179 isec = bfd_und_section_ptr;
9180 else if (isym->st_shndx == SHN_ABS)
9181 isec = bfd_abs_section_ptr;
9182 else if (isym->st_shndx == SHN_COMMON)
9183 isec = bfd_com_section_ptr;
9184 else
9186 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9187 if (isec == NULL)
9189 /* Don't attempt to output symbols with st_shnx in the
9190 reserved range other than SHN_ABS and SHN_COMMON. */
9191 *ppsection = NULL;
9192 continue;
9194 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9195 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9196 isym->st_value =
9197 _bfd_merged_section_offset (output_bfd, &isec,
9198 elf_section_data (isec)->sec_info,
9199 isym->st_value);
9202 *ppsection = isec;
9204 /* Don't output the first, undefined, symbol. */
9205 if (ppsection == finfo->sections)
9206 continue;
9208 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9210 /* We never output section symbols. Instead, we use the
9211 section symbol of the corresponding section in the output
9212 file. */
9213 continue;
9216 /* If we are stripping all symbols, we don't want to output this
9217 one. */
9218 if (finfo->info->strip == strip_all)
9219 continue;
9221 /* If we are discarding all local symbols, we don't want to
9222 output this one. If we are generating a relocatable output
9223 file, then some of the local symbols may be required by
9224 relocs; we output them below as we discover that they are
9225 needed. */
9226 if (finfo->info->discard == discard_all)
9227 continue;
9229 /* If this symbol is defined in a section which we are
9230 discarding, we don't need to keep it. */
9231 if (isym->st_shndx != SHN_UNDEF
9232 && isym->st_shndx < SHN_LORESERVE
9233 && bfd_section_removed_from_list (output_bfd,
9234 isec->output_section))
9235 continue;
9237 /* Get the name of the symbol. */
9238 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9239 isym->st_name);
9240 if (name == NULL)
9241 return FALSE;
9243 /* See if we are discarding symbols with this name. */
9244 if ((finfo->info->strip == strip_some
9245 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9246 == NULL))
9247 || (((finfo->info->discard == discard_sec_merge
9248 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9249 || finfo->info->discard == discard_l)
9250 && bfd_is_local_label_name (input_bfd, name)))
9251 continue;
9253 osym = *isym;
9255 /* Adjust the section index for the output file. */
9256 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9257 isec->output_section);
9258 if (osym.st_shndx == SHN_BAD)
9259 return FALSE;
9261 /* ELF symbols in relocatable files are section relative, but
9262 in executable files they are virtual addresses. Note that
9263 this code assumes that all ELF sections have an associated
9264 BFD section with a reasonable value for output_offset; below
9265 we assume that they also have a reasonable value for
9266 output_section. Any special sections must be set up to meet
9267 these requirements. */
9268 osym.st_value += isec->output_offset;
9269 if (! finfo->info->relocatable)
9271 osym.st_value += isec->output_section->vma;
9272 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9274 /* STT_TLS symbols are relative to PT_TLS segment base. */
9275 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9276 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9280 indx = bfd_get_symcount (output_bfd);
9281 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9282 if (ret == 0)
9283 return FALSE;
9284 else if (ret == 1)
9285 *pindex = indx;
9288 if (bed->s->arch_size == 32)
9290 r_type_mask = 0xff;
9291 r_sym_shift = 8;
9292 address_size = 4;
9294 else
9296 r_type_mask = 0xffffffff;
9297 r_sym_shift = 32;
9298 address_size = 8;
9301 /* Relocate the contents of each section. */
9302 sym_hashes = elf_sym_hashes (input_bfd);
9303 for (o = input_bfd->sections; o != NULL; o = o->next)
9305 bfd_byte *contents;
9307 if (! o->linker_mark)
9309 /* This section was omitted from the link. */
9310 continue;
9313 if (finfo->info->relocatable
9314 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9316 /* Deal with the group signature symbol. */
9317 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9318 unsigned long symndx = sec_data->this_hdr.sh_info;
9319 asection *osec = o->output_section;
9321 if (symndx >= locsymcount
9322 || (elf_bad_symtab (input_bfd)
9323 && finfo->sections[symndx] == NULL))
9325 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9326 while (h->root.type == bfd_link_hash_indirect
9327 || h->root.type == bfd_link_hash_warning)
9328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9329 /* Arrange for symbol to be output. */
9330 h->indx = -2;
9331 elf_section_data (osec)->this_hdr.sh_info = -2;
9333 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9335 /* We'll use the output section target_index. */
9336 asection *sec = finfo->sections[symndx]->output_section;
9337 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9339 else
9341 if (finfo->indices[symndx] == -1)
9343 /* Otherwise output the local symbol now. */
9344 Elf_Internal_Sym sym = isymbuf[symndx];
9345 asection *sec = finfo->sections[symndx]->output_section;
9346 const char *name;
9347 long indx;
9348 int ret;
9350 name = bfd_elf_string_from_elf_section (input_bfd,
9351 symtab_hdr->sh_link,
9352 sym.st_name);
9353 if (name == NULL)
9354 return FALSE;
9356 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9357 sec);
9358 if (sym.st_shndx == SHN_BAD)
9359 return FALSE;
9361 sym.st_value += o->output_offset;
9363 indx = bfd_get_symcount (output_bfd);
9364 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9365 if (ret == 0)
9366 return FALSE;
9367 else if (ret == 1)
9368 finfo->indices[symndx] = indx;
9369 else
9370 abort ();
9372 elf_section_data (osec)->this_hdr.sh_info
9373 = finfo->indices[symndx];
9377 if ((o->flags & SEC_HAS_CONTENTS) == 0
9378 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9379 continue;
9381 if ((o->flags & SEC_LINKER_CREATED) != 0)
9383 /* Section was created by _bfd_elf_link_create_dynamic_sections
9384 or somesuch. */
9385 continue;
9388 /* Get the contents of the section. They have been cached by a
9389 relaxation routine. Note that o is a section in an input
9390 file, so the contents field will not have been set by any of
9391 the routines which work on output files. */
9392 if (elf_section_data (o)->this_hdr.contents != NULL)
9393 contents = elf_section_data (o)->this_hdr.contents;
9394 else
9396 contents = finfo->contents;
9397 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9398 return FALSE;
9401 if ((o->flags & SEC_RELOC) != 0)
9403 Elf_Internal_Rela *internal_relocs;
9404 Elf_Internal_Rela *rel, *relend;
9405 int action_discarded;
9406 int ret;
9408 /* Get the swapped relocs. */
9409 internal_relocs
9410 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9411 finfo->internal_relocs, FALSE);
9412 if (internal_relocs == NULL
9413 && o->reloc_count > 0)
9414 return FALSE;
9416 /* We need to reverse-copy input .ctors/.dtors sections if
9417 they are placed in .init_array/.finit_array for output. */
9418 if (o->size > address_size
9419 && ((strncmp (o->name, ".ctors", 6) == 0
9420 && strcmp (o->output_section->name,
9421 ".init_array") == 0)
9422 || (strncmp (o->name, ".dtors", 6) == 0
9423 && strcmp (o->output_section->name,
9424 ".fini_array") == 0))
9425 && (o->name[6] == 0 || o->name[6] == '.'))
9427 if (o->size != o->reloc_count * address_size)
9429 (*_bfd_error_handler)
9430 (_("error: %B: size of section %A is not "
9431 "multiple of address size"),
9432 input_bfd, o);
9433 bfd_set_error (bfd_error_on_input);
9434 return FALSE;
9436 o->flags |= SEC_ELF_REVERSE_COPY;
9439 action_discarded = -1;
9440 if (!elf_section_ignore_discarded_relocs (o))
9441 action_discarded = (*bed->action_discarded) (o);
9443 /* Run through the relocs evaluating complex reloc symbols and
9444 looking for relocs against symbols from discarded sections
9445 or section symbols from removed link-once sections.
9446 Complain about relocs against discarded sections. Zero
9447 relocs against removed link-once sections. */
9449 rel = internal_relocs;
9450 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9451 for ( ; rel < relend; rel++)
9453 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9454 unsigned int s_type;
9455 asection **ps, *sec;
9456 struct elf_link_hash_entry *h = NULL;
9457 const char *sym_name;
9459 if (r_symndx == STN_UNDEF)
9460 continue;
9462 if (r_symndx >= locsymcount
9463 || (elf_bad_symtab (input_bfd)
9464 && finfo->sections[r_symndx] == NULL))
9466 h = sym_hashes[r_symndx - extsymoff];
9468 /* Badly formatted input files can contain relocs that
9469 reference non-existant symbols. Check here so that
9470 we do not seg fault. */
9471 if (h == NULL)
9473 char buffer [32];
9475 sprintf_vma (buffer, rel->r_info);
9476 (*_bfd_error_handler)
9477 (_("error: %B contains a reloc (0x%s) for section %A "
9478 "that references a non-existent global symbol"),
9479 input_bfd, o, buffer);
9480 bfd_set_error (bfd_error_bad_value);
9481 return FALSE;
9484 while (h->root.type == bfd_link_hash_indirect
9485 || h->root.type == bfd_link_hash_warning)
9486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488 s_type = h->type;
9490 ps = NULL;
9491 if (h->root.type == bfd_link_hash_defined
9492 || h->root.type == bfd_link_hash_defweak)
9493 ps = &h->root.u.def.section;
9495 sym_name = h->root.root.string;
9497 else
9499 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9501 s_type = ELF_ST_TYPE (sym->st_info);
9502 ps = &finfo->sections[r_symndx];
9503 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9504 sym, *ps);
9507 if ((s_type == STT_RELC || s_type == STT_SRELC)
9508 && !finfo->info->relocatable)
9510 bfd_vma val;
9511 bfd_vma dot = (rel->r_offset
9512 + o->output_offset + o->output_section->vma);
9513 #ifdef DEBUG
9514 printf ("Encountered a complex symbol!");
9515 printf (" (input_bfd %s, section %s, reloc %ld\n",
9516 input_bfd->filename, o->name,
9517 (long) (rel - internal_relocs));
9518 printf (" symbol: idx %8.8lx, name %s\n",
9519 r_symndx, sym_name);
9520 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9521 (unsigned long) rel->r_info,
9522 (unsigned long) rel->r_offset);
9523 #endif
9524 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9525 isymbuf, locsymcount, s_type == STT_SRELC))
9526 return FALSE;
9528 /* Symbol evaluated OK. Update to absolute value. */
9529 set_symbol_value (input_bfd, isymbuf, locsymcount,
9530 r_symndx, val);
9531 continue;
9534 if (action_discarded != -1 && ps != NULL)
9536 /* Complain if the definition comes from a
9537 discarded section. */
9538 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9540 BFD_ASSERT (r_symndx != STN_UNDEF);
9541 if (action_discarded & COMPLAIN)
9542 (*finfo->info->callbacks->einfo)
9543 (_("%X`%s' referenced in section `%A' of %B: "
9544 "defined in discarded section `%A' of %B\n"),
9545 sym_name, o, input_bfd, sec, sec->owner);
9547 /* Try to do the best we can to support buggy old
9548 versions of gcc. Pretend that the symbol is
9549 really defined in the kept linkonce section.
9550 FIXME: This is quite broken. Modifying the
9551 symbol here means we will be changing all later
9552 uses of the symbol, not just in this section. */
9553 if (action_discarded & PRETEND)
9555 asection *kept;
9557 kept = _bfd_elf_check_kept_section (sec,
9558 finfo->info);
9559 if (kept != NULL)
9561 *ps = kept;
9562 continue;
9569 /* Relocate the section by invoking a back end routine.
9571 The back end routine is responsible for adjusting the
9572 section contents as necessary, and (if using Rela relocs
9573 and generating a relocatable output file) adjusting the
9574 reloc addend as necessary.
9576 The back end routine does not have to worry about setting
9577 the reloc address or the reloc symbol index.
9579 The back end routine is given a pointer to the swapped in
9580 internal symbols, and can access the hash table entries
9581 for the external symbols via elf_sym_hashes (input_bfd).
9583 When generating relocatable output, the back end routine
9584 must handle STB_LOCAL/STT_SECTION symbols specially. The
9585 output symbol is going to be a section symbol
9586 corresponding to the output section, which will require
9587 the addend to be adjusted. */
9589 ret = (*relocate_section) (output_bfd, finfo->info,
9590 input_bfd, o, contents,
9591 internal_relocs,
9592 isymbuf,
9593 finfo->sections);
9594 if (!ret)
9595 return FALSE;
9597 if (ret == 2
9598 || finfo->info->relocatable
9599 || finfo->info->emitrelocations)
9601 Elf_Internal_Rela *irela;
9602 Elf_Internal_Rela *irelaend, *irelamid;
9603 bfd_vma last_offset;
9604 struct elf_link_hash_entry **rel_hash;
9605 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9606 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9607 unsigned int next_erel;
9608 bfd_boolean rela_normal;
9609 struct bfd_elf_section_data *esdi, *esdo;
9611 esdi = elf_section_data (o);
9612 esdo = elf_section_data (o->output_section);
9613 rela_normal = FALSE;
9615 /* Adjust the reloc addresses and symbol indices. */
9617 irela = internal_relocs;
9618 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9619 rel_hash = esdo->rel.hashes + esdo->rel.count;
9620 /* We start processing the REL relocs, if any. When we reach
9621 IRELAMID in the loop, we switch to the RELA relocs. */
9622 irelamid = irela;
9623 if (esdi->rel.hdr != NULL)
9624 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9625 * bed->s->int_rels_per_ext_rel);
9626 rel_hash_list = rel_hash;
9627 rela_hash_list = NULL;
9628 last_offset = o->output_offset;
9629 if (!finfo->info->relocatable)
9630 last_offset += o->output_section->vma;
9631 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9633 unsigned long r_symndx;
9634 asection *sec;
9635 Elf_Internal_Sym sym;
9637 if (next_erel == bed->s->int_rels_per_ext_rel)
9639 rel_hash++;
9640 next_erel = 0;
9643 if (irela == irelamid)
9645 rel_hash = esdo->rela.hashes + esdo->rela.count;
9646 rela_hash_list = rel_hash;
9647 rela_normal = bed->rela_normal;
9650 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9651 finfo->info, o,
9652 irela->r_offset);
9653 if (irela->r_offset >= (bfd_vma) -2)
9655 /* This is a reloc for a deleted entry or somesuch.
9656 Turn it into an R_*_NONE reloc, at the same
9657 offset as the last reloc. elf_eh_frame.c and
9658 bfd_elf_discard_info rely on reloc offsets
9659 being ordered. */
9660 irela->r_offset = last_offset;
9661 irela->r_info = 0;
9662 irela->r_addend = 0;
9663 continue;
9666 irela->r_offset += o->output_offset;
9668 /* Relocs in an executable have to be virtual addresses. */
9669 if (!finfo->info->relocatable)
9670 irela->r_offset += o->output_section->vma;
9672 last_offset = irela->r_offset;
9674 r_symndx = irela->r_info >> r_sym_shift;
9675 if (r_symndx == STN_UNDEF)
9676 continue;
9678 if (r_symndx >= locsymcount
9679 || (elf_bad_symtab (input_bfd)
9680 && finfo->sections[r_symndx] == NULL))
9682 struct elf_link_hash_entry *rh;
9683 unsigned long indx;
9685 /* This is a reloc against a global symbol. We
9686 have not yet output all the local symbols, so
9687 we do not know the symbol index of any global
9688 symbol. We set the rel_hash entry for this
9689 reloc to point to the global hash table entry
9690 for this symbol. The symbol index is then
9691 set at the end of bfd_elf_final_link. */
9692 indx = r_symndx - extsymoff;
9693 rh = elf_sym_hashes (input_bfd)[indx];
9694 while (rh->root.type == bfd_link_hash_indirect
9695 || rh->root.type == bfd_link_hash_warning)
9696 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9698 /* Setting the index to -2 tells
9699 elf_link_output_extsym that this symbol is
9700 used by a reloc. */
9701 BFD_ASSERT (rh->indx < 0);
9702 rh->indx = -2;
9704 *rel_hash = rh;
9706 continue;
9709 /* This is a reloc against a local symbol. */
9711 *rel_hash = NULL;
9712 sym = isymbuf[r_symndx];
9713 sec = finfo->sections[r_symndx];
9714 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9716 /* I suppose the backend ought to fill in the
9717 section of any STT_SECTION symbol against a
9718 processor specific section. */
9719 r_symndx = STN_UNDEF;
9720 if (bfd_is_abs_section (sec))
9722 else if (sec == NULL || sec->owner == NULL)
9724 bfd_set_error (bfd_error_bad_value);
9725 return FALSE;
9727 else
9729 asection *osec = sec->output_section;
9731 /* If we have discarded a section, the output
9732 section will be the absolute section. In
9733 case of discarded SEC_MERGE sections, use
9734 the kept section. relocate_section should
9735 have already handled discarded linkonce
9736 sections. */
9737 if (bfd_is_abs_section (osec)
9738 && sec->kept_section != NULL
9739 && sec->kept_section->output_section != NULL)
9741 osec = sec->kept_section->output_section;
9742 irela->r_addend -= osec->vma;
9745 if (!bfd_is_abs_section (osec))
9747 r_symndx = osec->target_index;
9748 if (r_symndx == STN_UNDEF)
9750 struct elf_link_hash_table *htab;
9751 asection *oi;
9753 htab = elf_hash_table (finfo->info);
9754 oi = htab->text_index_section;
9755 if ((osec->flags & SEC_READONLY) == 0
9756 && htab->data_index_section != NULL)
9757 oi = htab->data_index_section;
9759 if (oi != NULL)
9761 irela->r_addend += osec->vma - oi->vma;
9762 r_symndx = oi->target_index;
9766 BFD_ASSERT (r_symndx != STN_UNDEF);
9770 /* Adjust the addend according to where the
9771 section winds up in the output section. */
9772 if (rela_normal)
9773 irela->r_addend += sec->output_offset;
9775 else
9777 if (finfo->indices[r_symndx] == -1)
9779 unsigned long shlink;
9780 const char *name;
9781 asection *osec;
9782 long indx;
9784 if (finfo->info->strip == strip_all)
9786 /* You can't do ld -r -s. */
9787 bfd_set_error (bfd_error_invalid_operation);
9788 return FALSE;
9791 /* This symbol was skipped earlier, but
9792 since it is needed by a reloc, we
9793 must output it now. */
9794 shlink = symtab_hdr->sh_link;
9795 name = (bfd_elf_string_from_elf_section
9796 (input_bfd, shlink, sym.st_name));
9797 if (name == NULL)
9798 return FALSE;
9800 osec = sec->output_section;
9801 sym.st_shndx =
9802 _bfd_elf_section_from_bfd_section (output_bfd,
9803 osec);
9804 if (sym.st_shndx == SHN_BAD)
9805 return FALSE;
9807 sym.st_value += sec->output_offset;
9808 if (! finfo->info->relocatable)
9810 sym.st_value += osec->vma;
9811 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9813 /* STT_TLS symbols are relative to PT_TLS
9814 segment base. */
9815 BFD_ASSERT (elf_hash_table (finfo->info)
9816 ->tls_sec != NULL);
9817 sym.st_value -= (elf_hash_table (finfo->info)
9818 ->tls_sec->vma);
9822 indx = bfd_get_symcount (output_bfd);
9823 ret = elf_link_output_sym (finfo, name, &sym, sec,
9824 NULL);
9825 if (ret == 0)
9826 return FALSE;
9827 else if (ret == 1)
9828 finfo->indices[r_symndx] = indx;
9829 else
9830 abort ();
9833 r_symndx = finfo->indices[r_symndx];
9836 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9837 | (irela->r_info & r_type_mask));
9840 /* Swap out the relocs. */
9841 input_rel_hdr = esdi->rel.hdr;
9842 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9844 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9845 input_rel_hdr,
9846 internal_relocs,
9847 rel_hash_list))
9848 return FALSE;
9849 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9850 * bed->s->int_rels_per_ext_rel);
9851 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9854 input_rela_hdr = esdi->rela.hdr;
9855 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9857 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9858 input_rela_hdr,
9859 internal_relocs,
9860 rela_hash_list))
9861 return FALSE;
9866 /* Write out the modified section contents. */
9867 if (bed->elf_backend_write_section
9868 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9869 contents))
9871 /* Section written out. */
9873 else switch (o->sec_info_type)
9875 case ELF_INFO_TYPE_STABS:
9876 if (! (_bfd_write_section_stabs
9877 (output_bfd,
9878 &elf_hash_table (finfo->info)->stab_info,
9879 o, &elf_section_data (o)->sec_info, contents)))
9880 return FALSE;
9881 break;
9882 case ELF_INFO_TYPE_MERGE:
9883 if (! _bfd_write_merged_section (output_bfd, o,
9884 elf_section_data (o)->sec_info))
9885 return FALSE;
9886 break;
9887 case ELF_INFO_TYPE_EH_FRAME:
9889 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9890 o, contents))
9891 return FALSE;
9893 break;
9894 default:
9896 /* FIXME: octets_per_byte. */
9897 if (! (o->flags & SEC_EXCLUDE))
9899 file_ptr offset = (file_ptr) o->output_offset;
9900 bfd_size_type todo = o->size;
9901 if ((o->flags & SEC_ELF_REVERSE_COPY))
9903 /* Reverse-copy input section to output. */
9906 todo -= address_size;
9907 if (! bfd_set_section_contents (output_bfd,
9908 o->output_section,
9909 contents + todo,
9910 offset,
9911 address_size))
9912 return FALSE;
9913 if (todo == 0)
9914 break;
9915 offset += address_size;
9917 while (1);
9919 else if (! bfd_set_section_contents (output_bfd,
9920 o->output_section,
9921 contents,
9922 offset, todo))
9923 return FALSE;
9926 break;
9930 return TRUE;
9933 /* Generate a reloc when linking an ELF file. This is a reloc
9934 requested by the linker, and does not come from any input file. This
9935 is used to build constructor and destructor tables when linking
9936 with -Ur. */
9938 static bfd_boolean
9939 elf_reloc_link_order (bfd *output_bfd,
9940 struct bfd_link_info *info,
9941 asection *output_section,
9942 struct bfd_link_order *link_order)
9944 reloc_howto_type *howto;
9945 long indx;
9946 bfd_vma offset;
9947 bfd_vma addend;
9948 struct bfd_elf_section_reloc_data *reldata;
9949 struct elf_link_hash_entry **rel_hash_ptr;
9950 Elf_Internal_Shdr *rel_hdr;
9951 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9952 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9953 bfd_byte *erel;
9954 unsigned int i;
9955 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9957 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9958 if (howto == NULL)
9960 bfd_set_error (bfd_error_bad_value);
9961 return FALSE;
9964 addend = link_order->u.reloc.p->addend;
9966 if (esdo->rel.hdr)
9967 reldata = &esdo->rel;
9968 else if (esdo->rela.hdr)
9969 reldata = &esdo->rela;
9970 else
9972 reldata = NULL;
9973 BFD_ASSERT (0);
9976 /* Figure out the symbol index. */
9977 rel_hash_ptr = reldata->hashes + reldata->count;
9978 if (link_order->type == bfd_section_reloc_link_order)
9980 indx = link_order->u.reloc.p->u.section->target_index;
9981 BFD_ASSERT (indx != 0);
9982 *rel_hash_ptr = NULL;
9984 else
9986 struct elf_link_hash_entry *h;
9988 /* Treat a reloc against a defined symbol as though it were
9989 actually against the section. */
9990 h = ((struct elf_link_hash_entry *)
9991 bfd_wrapped_link_hash_lookup (output_bfd, info,
9992 link_order->u.reloc.p->u.name,
9993 FALSE, FALSE, TRUE));
9994 if (h != NULL
9995 && (h->root.type == bfd_link_hash_defined
9996 || h->root.type == bfd_link_hash_defweak))
9998 asection *section;
10000 section = h->root.u.def.section;
10001 indx = section->output_section->target_index;
10002 *rel_hash_ptr = NULL;
10003 /* It seems that we ought to add the symbol value to the
10004 addend here, but in practice it has already been added
10005 because it was passed to constructor_callback. */
10006 addend += section->output_section->vma + section->output_offset;
10008 else if (h != NULL)
10010 /* Setting the index to -2 tells elf_link_output_extsym that
10011 this symbol is used by a reloc. */
10012 h->indx = -2;
10013 *rel_hash_ptr = h;
10014 indx = 0;
10016 else
10018 if (! ((*info->callbacks->unattached_reloc)
10019 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10020 return FALSE;
10021 indx = 0;
10025 /* If this is an inplace reloc, we must write the addend into the
10026 object file. */
10027 if (howto->partial_inplace && addend != 0)
10029 bfd_size_type size;
10030 bfd_reloc_status_type rstat;
10031 bfd_byte *buf;
10032 bfd_boolean ok;
10033 const char *sym_name;
10035 size = (bfd_size_type) bfd_get_reloc_size (howto);
10036 buf = (bfd_byte *) bfd_zmalloc (size);
10037 if (buf == NULL)
10038 return FALSE;
10039 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10040 switch (rstat)
10042 case bfd_reloc_ok:
10043 break;
10045 default:
10046 case bfd_reloc_outofrange:
10047 abort ();
10049 case bfd_reloc_overflow:
10050 if (link_order->type == bfd_section_reloc_link_order)
10051 sym_name = bfd_section_name (output_bfd,
10052 link_order->u.reloc.p->u.section);
10053 else
10054 sym_name = link_order->u.reloc.p->u.name;
10055 if (! ((*info->callbacks->reloc_overflow)
10056 (info, NULL, sym_name, howto->name, addend, NULL,
10057 NULL, (bfd_vma) 0)))
10059 free (buf);
10060 return FALSE;
10062 break;
10064 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10065 link_order->offset, size);
10066 free (buf);
10067 if (! ok)
10068 return FALSE;
10071 /* The address of a reloc is relative to the section in a
10072 relocatable file, and is a virtual address in an executable
10073 file. */
10074 offset = link_order->offset;
10075 if (! info->relocatable)
10076 offset += output_section->vma;
10078 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10080 irel[i].r_offset = offset;
10081 irel[i].r_info = 0;
10082 irel[i].r_addend = 0;
10084 if (bed->s->arch_size == 32)
10085 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10086 else
10087 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10089 rel_hdr = reldata->hdr;
10090 erel = rel_hdr->contents;
10091 if (rel_hdr->sh_type == SHT_REL)
10093 erel += reldata->count * bed->s->sizeof_rel;
10094 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10096 else
10098 irel[0].r_addend = addend;
10099 erel += reldata->count * bed->s->sizeof_rela;
10100 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10103 ++reldata->count;
10105 return TRUE;
10109 /* Get the output vma of the section pointed to by the sh_link field. */
10111 static bfd_vma
10112 elf_get_linked_section_vma (struct bfd_link_order *p)
10114 Elf_Internal_Shdr **elf_shdrp;
10115 asection *s;
10116 int elfsec;
10118 s = p->u.indirect.section;
10119 elf_shdrp = elf_elfsections (s->owner);
10120 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10121 elfsec = elf_shdrp[elfsec]->sh_link;
10122 /* PR 290:
10123 The Intel C compiler generates SHT_IA_64_UNWIND with
10124 SHF_LINK_ORDER. But it doesn't set the sh_link or
10125 sh_info fields. Hence we could get the situation
10126 where elfsec is 0. */
10127 if (elfsec == 0)
10129 const struct elf_backend_data *bed
10130 = get_elf_backend_data (s->owner);
10131 if (bed->link_order_error_handler)
10132 bed->link_order_error_handler
10133 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10134 return 0;
10136 else
10138 s = elf_shdrp[elfsec]->bfd_section;
10139 return s->output_section->vma + s->output_offset;
10144 /* Compare two sections based on the locations of the sections they are
10145 linked to. Used by elf_fixup_link_order. */
10147 static int
10148 compare_link_order (const void * a, const void * b)
10150 bfd_vma apos;
10151 bfd_vma bpos;
10153 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10154 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10155 if (apos < bpos)
10156 return -1;
10157 return apos > bpos;
10161 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10162 order as their linked sections. Returns false if this could not be done
10163 because an output section includes both ordered and unordered
10164 sections. Ideally we'd do this in the linker proper. */
10166 static bfd_boolean
10167 elf_fixup_link_order (bfd *abfd, asection *o)
10169 int seen_linkorder;
10170 int seen_other;
10171 int n;
10172 struct bfd_link_order *p;
10173 bfd *sub;
10174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10175 unsigned elfsec;
10176 struct bfd_link_order **sections;
10177 asection *s, *other_sec, *linkorder_sec;
10178 bfd_vma offset;
10180 other_sec = NULL;
10181 linkorder_sec = NULL;
10182 seen_other = 0;
10183 seen_linkorder = 0;
10184 for (p = o->map_head.link_order; p != NULL; p = p->next)
10186 if (p->type == bfd_indirect_link_order)
10188 s = p->u.indirect.section;
10189 sub = s->owner;
10190 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10191 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10192 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10193 && elfsec < elf_numsections (sub)
10194 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10195 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10197 seen_linkorder++;
10198 linkorder_sec = s;
10200 else
10202 seen_other++;
10203 other_sec = s;
10206 else
10207 seen_other++;
10209 if (seen_other && seen_linkorder)
10211 if (other_sec && linkorder_sec)
10212 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10213 o, linkorder_sec,
10214 linkorder_sec->owner, other_sec,
10215 other_sec->owner);
10216 else
10217 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10219 bfd_set_error (bfd_error_bad_value);
10220 return FALSE;
10224 if (!seen_linkorder)
10225 return TRUE;
10227 sections = (struct bfd_link_order **)
10228 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10229 if (sections == NULL)
10230 return FALSE;
10231 seen_linkorder = 0;
10233 for (p = o->map_head.link_order; p != NULL; p = p->next)
10235 sections[seen_linkorder++] = p;
10237 /* Sort the input sections in the order of their linked section. */
10238 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10239 compare_link_order);
10241 /* Change the offsets of the sections. */
10242 offset = 0;
10243 for (n = 0; n < seen_linkorder; n++)
10245 s = sections[n]->u.indirect.section;
10246 offset &= ~(bfd_vma) 0 << s->alignment_power;
10247 s->output_offset = offset;
10248 sections[n]->offset = offset;
10249 /* FIXME: octets_per_byte. */
10250 offset += sections[n]->size;
10253 free (sections);
10254 return TRUE;
10258 /* Do the final step of an ELF link. */
10260 bfd_boolean
10261 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10263 bfd_boolean dynamic;
10264 bfd_boolean emit_relocs;
10265 bfd *dynobj;
10266 struct elf_final_link_info finfo;
10267 asection *o;
10268 struct bfd_link_order *p;
10269 bfd *sub;
10270 bfd_size_type max_contents_size;
10271 bfd_size_type max_external_reloc_size;
10272 bfd_size_type max_internal_reloc_count;
10273 bfd_size_type max_sym_count;
10274 bfd_size_type max_sym_shndx_count;
10275 file_ptr off;
10276 Elf_Internal_Sym elfsym;
10277 unsigned int i;
10278 Elf_Internal_Shdr *symtab_hdr;
10279 Elf_Internal_Shdr *symtab_shndx_hdr;
10280 Elf_Internal_Shdr *symstrtab_hdr;
10281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10282 struct elf_outext_info eoinfo;
10283 bfd_boolean merged;
10284 size_t relativecount = 0;
10285 asection *reldyn = 0;
10286 bfd_size_type amt;
10287 asection *attr_section = NULL;
10288 bfd_vma attr_size = 0;
10289 const char *std_attrs_section;
10291 if (! is_elf_hash_table (info->hash))
10292 return FALSE;
10294 if (info->shared)
10295 abfd->flags |= DYNAMIC;
10297 dynamic = elf_hash_table (info)->dynamic_sections_created;
10298 dynobj = elf_hash_table (info)->dynobj;
10300 emit_relocs = (info->relocatable
10301 || info->emitrelocations);
10303 finfo.info = info;
10304 finfo.output_bfd = abfd;
10305 finfo.symstrtab = _bfd_elf_stringtab_init ();
10306 if (finfo.symstrtab == NULL)
10307 return FALSE;
10309 if (! dynamic)
10311 finfo.dynsym_sec = NULL;
10312 finfo.hash_sec = NULL;
10313 finfo.symver_sec = NULL;
10315 else
10317 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10318 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10319 BFD_ASSERT (finfo.dynsym_sec != NULL);
10320 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10321 /* Note that it is OK if symver_sec is NULL. */
10324 finfo.contents = NULL;
10325 finfo.external_relocs = NULL;
10326 finfo.internal_relocs = NULL;
10327 finfo.external_syms = NULL;
10328 finfo.locsym_shndx = NULL;
10329 finfo.internal_syms = NULL;
10330 finfo.indices = NULL;
10331 finfo.sections = NULL;
10332 finfo.symbuf = NULL;
10333 finfo.symshndxbuf = NULL;
10334 finfo.symbuf_count = 0;
10335 finfo.shndxbuf_size = 0;
10337 /* The object attributes have been merged. Remove the input
10338 sections from the link, and set the contents of the output
10339 secton. */
10340 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10341 for (o = abfd->sections; o != NULL; o = o->next)
10343 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10344 || strcmp (o->name, ".gnu.attributes") == 0)
10346 for (p = o->map_head.link_order; p != NULL; p = p->next)
10348 asection *input_section;
10350 if (p->type != bfd_indirect_link_order)
10351 continue;
10352 input_section = p->u.indirect.section;
10353 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10354 elf_link_input_bfd ignores this section. */
10355 input_section->flags &= ~SEC_HAS_CONTENTS;
10358 attr_size = bfd_elf_obj_attr_size (abfd);
10359 if (attr_size)
10361 bfd_set_section_size (abfd, o, attr_size);
10362 attr_section = o;
10363 /* Skip this section later on. */
10364 o->map_head.link_order = NULL;
10366 else
10367 o->flags |= SEC_EXCLUDE;
10371 /* Count up the number of relocations we will output for each output
10372 section, so that we know the sizes of the reloc sections. We
10373 also figure out some maximum sizes. */
10374 max_contents_size = 0;
10375 max_external_reloc_size = 0;
10376 max_internal_reloc_count = 0;
10377 max_sym_count = 0;
10378 max_sym_shndx_count = 0;
10379 merged = FALSE;
10380 for (o = abfd->sections; o != NULL; o = o->next)
10382 struct bfd_elf_section_data *esdo = elf_section_data (o);
10383 o->reloc_count = 0;
10385 for (p = o->map_head.link_order; p != NULL; p = p->next)
10387 unsigned int reloc_count = 0;
10388 struct bfd_elf_section_data *esdi = NULL;
10390 if (p->type == bfd_section_reloc_link_order
10391 || p->type == bfd_symbol_reloc_link_order)
10392 reloc_count = 1;
10393 else if (p->type == bfd_indirect_link_order)
10395 asection *sec;
10397 sec = p->u.indirect.section;
10398 esdi = elf_section_data (sec);
10400 /* Mark all sections which are to be included in the
10401 link. This will normally be every section. We need
10402 to do this so that we can identify any sections which
10403 the linker has decided to not include. */
10404 sec->linker_mark = TRUE;
10406 if (sec->flags & SEC_MERGE)
10407 merged = TRUE;
10409 if (info->relocatable || info->emitrelocations)
10410 reloc_count = sec->reloc_count;
10411 else if (bed->elf_backend_count_relocs)
10412 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10414 if (sec->rawsize > max_contents_size)
10415 max_contents_size = sec->rawsize;
10416 if (sec->size > max_contents_size)
10417 max_contents_size = sec->size;
10419 /* We are interested in just local symbols, not all
10420 symbols. */
10421 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10422 && (sec->owner->flags & DYNAMIC) == 0)
10424 size_t sym_count;
10426 if (elf_bad_symtab (sec->owner))
10427 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10428 / bed->s->sizeof_sym);
10429 else
10430 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10432 if (sym_count > max_sym_count)
10433 max_sym_count = sym_count;
10435 if (sym_count > max_sym_shndx_count
10436 && elf_symtab_shndx (sec->owner) != 0)
10437 max_sym_shndx_count = sym_count;
10439 if ((sec->flags & SEC_RELOC) != 0)
10441 size_t ext_size = 0;
10443 if (esdi->rel.hdr != NULL)
10444 ext_size = esdi->rel.hdr->sh_size;
10445 if (esdi->rela.hdr != NULL)
10446 ext_size += esdi->rela.hdr->sh_size;
10448 if (ext_size > max_external_reloc_size)
10449 max_external_reloc_size = ext_size;
10450 if (sec->reloc_count > max_internal_reloc_count)
10451 max_internal_reloc_count = sec->reloc_count;
10456 if (reloc_count == 0)
10457 continue;
10459 o->reloc_count += reloc_count;
10461 if (p->type == bfd_indirect_link_order
10462 && (info->relocatable || info->emitrelocations))
10464 if (esdi->rel.hdr)
10465 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10466 if (esdi->rela.hdr)
10467 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10469 else
10471 if (o->use_rela_p)
10472 esdo->rela.count += reloc_count;
10473 else
10474 esdo->rel.count += reloc_count;
10478 if (o->reloc_count > 0)
10479 o->flags |= SEC_RELOC;
10480 else
10482 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10483 set it (this is probably a bug) and if it is set
10484 assign_section_numbers will create a reloc section. */
10485 o->flags &=~ SEC_RELOC;
10488 /* If the SEC_ALLOC flag is not set, force the section VMA to
10489 zero. This is done in elf_fake_sections as well, but forcing
10490 the VMA to 0 here will ensure that relocs against these
10491 sections are handled correctly. */
10492 if ((o->flags & SEC_ALLOC) == 0
10493 && ! o->user_set_vma)
10494 o->vma = 0;
10497 if (! info->relocatable && merged)
10498 elf_link_hash_traverse (elf_hash_table (info),
10499 _bfd_elf_link_sec_merge_syms, abfd);
10501 /* Figure out the file positions for everything but the symbol table
10502 and the relocs. We set symcount to force assign_section_numbers
10503 to create a symbol table. */
10504 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10505 BFD_ASSERT (! abfd->output_has_begun);
10506 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10507 goto error_return;
10509 /* Set sizes, and assign file positions for reloc sections. */
10510 for (o = abfd->sections; o != NULL; o = o->next)
10512 struct bfd_elf_section_data *esdo = elf_section_data (o);
10513 if ((o->flags & SEC_RELOC) != 0)
10515 if (esdo->rel.hdr
10516 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10517 goto error_return;
10519 if (esdo->rela.hdr
10520 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10521 goto error_return;
10524 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10525 to count upwards while actually outputting the relocations. */
10526 esdo->rel.count = 0;
10527 esdo->rela.count = 0;
10530 _bfd_elf_assign_file_positions_for_relocs (abfd);
10532 /* We have now assigned file positions for all the sections except
10533 .symtab and .strtab. We start the .symtab section at the current
10534 file position, and write directly to it. We build the .strtab
10535 section in memory. */
10536 bfd_get_symcount (abfd) = 0;
10537 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10538 /* sh_name is set in prep_headers. */
10539 symtab_hdr->sh_type = SHT_SYMTAB;
10540 /* sh_flags, sh_addr and sh_size all start off zero. */
10541 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10542 /* sh_link is set in assign_section_numbers. */
10543 /* sh_info is set below. */
10544 /* sh_offset is set just below. */
10545 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10547 off = elf_tdata (abfd)->next_file_pos;
10548 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10550 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10551 incorrect. We do not yet know the size of the .symtab section.
10552 We correct next_file_pos below, after we do know the size. */
10554 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10555 continuously seeking to the right position in the file. */
10556 if (! info->keep_memory || max_sym_count < 20)
10557 finfo.symbuf_size = 20;
10558 else
10559 finfo.symbuf_size = max_sym_count;
10560 amt = finfo.symbuf_size;
10561 amt *= bed->s->sizeof_sym;
10562 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10563 if (finfo.symbuf == NULL)
10564 goto error_return;
10565 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10567 /* Wild guess at number of output symbols. realloc'd as needed. */
10568 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10569 finfo.shndxbuf_size = amt;
10570 amt *= sizeof (Elf_External_Sym_Shndx);
10571 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10572 if (finfo.symshndxbuf == NULL)
10573 goto error_return;
10576 /* Start writing out the symbol table. The first symbol is always a
10577 dummy symbol. */
10578 if (info->strip != strip_all
10579 || emit_relocs)
10581 elfsym.st_value = 0;
10582 elfsym.st_size = 0;
10583 elfsym.st_info = 0;
10584 elfsym.st_other = 0;
10585 elfsym.st_shndx = SHN_UNDEF;
10586 elfsym.st_target_internal = 0;
10587 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10588 NULL) != 1)
10589 goto error_return;
10592 /* Output a symbol for each section. We output these even if we are
10593 discarding local symbols, since they are used for relocs. These
10594 symbols have no names. We store the index of each one in the
10595 index field of the section, so that we can find it again when
10596 outputting relocs. */
10597 if (info->strip != strip_all
10598 || emit_relocs)
10600 elfsym.st_size = 0;
10601 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10602 elfsym.st_other = 0;
10603 elfsym.st_value = 0;
10604 elfsym.st_target_internal = 0;
10605 for (i = 1; i < elf_numsections (abfd); i++)
10607 o = bfd_section_from_elf_index (abfd, i);
10608 if (o != NULL)
10610 o->target_index = bfd_get_symcount (abfd);
10611 elfsym.st_shndx = i;
10612 if (!info->relocatable)
10613 elfsym.st_value = o->vma;
10614 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10615 goto error_return;
10620 /* Allocate some memory to hold information read in from the input
10621 files. */
10622 if (max_contents_size != 0)
10624 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10625 if (finfo.contents == NULL)
10626 goto error_return;
10629 if (max_external_reloc_size != 0)
10631 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10632 if (finfo.external_relocs == NULL)
10633 goto error_return;
10636 if (max_internal_reloc_count != 0)
10638 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10639 amt *= sizeof (Elf_Internal_Rela);
10640 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10641 if (finfo.internal_relocs == NULL)
10642 goto error_return;
10645 if (max_sym_count != 0)
10647 amt = max_sym_count * bed->s->sizeof_sym;
10648 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10649 if (finfo.external_syms == NULL)
10650 goto error_return;
10652 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10653 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10654 if (finfo.internal_syms == NULL)
10655 goto error_return;
10657 amt = max_sym_count * sizeof (long);
10658 finfo.indices = (long int *) bfd_malloc (amt);
10659 if (finfo.indices == NULL)
10660 goto error_return;
10662 amt = max_sym_count * sizeof (asection *);
10663 finfo.sections = (asection **) bfd_malloc (amt);
10664 if (finfo.sections == NULL)
10665 goto error_return;
10668 if (max_sym_shndx_count != 0)
10670 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10671 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10672 if (finfo.locsym_shndx == NULL)
10673 goto error_return;
10676 if (elf_hash_table (info)->tls_sec)
10678 bfd_vma base, end = 0;
10679 asection *sec;
10681 for (sec = elf_hash_table (info)->tls_sec;
10682 sec && (sec->flags & SEC_THREAD_LOCAL);
10683 sec = sec->next)
10685 bfd_size_type size = sec->size;
10687 if (size == 0
10688 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10690 struct bfd_link_order *ord = sec->map_tail.link_order;
10692 if (ord != NULL)
10693 size = ord->offset + ord->size;
10695 end = sec->vma + size;
10697 base = elf_hash_table (info)->tls_sec->vma;
10698 /* Only align end of TLS section if static TLS doesn't have special
10699 alignment requirements. */
10700 if (bed->static_tls_alignment == 1)
10701 end = align_power (end,
10702 elf_hash_table (info)->tls_sec->alignment_power);
10703 elf_hash_table (info)->tls_size = end - base;
10706 /* Reorder SHF_LINK_ORDER sections. */
10707 for (o = abfd->sections; o != NULL; o = o->next)
10709 if (!elf_fixup_link_order (abfd, o))
10710 return FALSE;
10713 /* Since ELF permits relocations to be against local symbols, we
10714 must have the local symbols available when we do the relocations.
10715 Since we would rather only read the local symbols once, and we
10716 would rather not keep them in memory, we handle all the
10717 relocations for a single input file at the same time.
10719 Unfortunately, there is no way to know the total number of local
10720 symbols until we have seen all of them, and the local symbol
10721 indices precede the global symbol indices. This means that when
10722 we are generating relocatable output, and we see a reloc against
10723 a global symbol, we can not know the symbol index until we have
10724 finished examining all the local symbols to see which ones we are
10725 going to output. To deal with this, we keep the relocations in
10726 memory, and don't output them until the end of the link. This is
10727 an unfortunate waste of memory, but I don't see a good way around
10728 it. Fortunately, it only happens when performing a relocatable
10729 link, which is not the common case. FIXME: If keep_memory is set
10730 we could write the relocs out and then read them again; I don't
10731 know how bad the memory loss will be. */
10733 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10734 sub->output_has_begun = FALSE;
10735 for (o = abfd->sections; o != NULL; o = o->next)
10737 for (p = o->map_head.link_order; p != NULL; p = p->next)
10739 if (p->type == bfd_indirect_link_order
10740 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10741 == bfd_target_elf_flavour)
10742 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10744 if (! sub->output_has_begun)
10746 if (! elf_link_input_bfd (&finfo, sub))
10747 goto error_return;
10748 sub->output_has_begun = TRUE;
10751 else if (p->type == bfd_section_reloc_link_order
10752 || p->type == bfd_symbol_reloc_link_order)
10754 if (! elf_reloc_link_order (abfd, info, o, p))
10755 goto error_return;
10757 else
10759 if (! _bfd_default_link_order (abfd, info, o, p))
10761 if (p->type == bfd_indirect_link_order
10762 && (bfd_get_flavour (sub)
10763 == bfd_target_elf_flavour)
10764 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10765 != bed->s->elfclass))
10767 const char *iclass, *oclass;
10769 if (bed->s->elfclass == ELFCLASS64)
10771 iclass = "ELFCLASS32";
10772 oclass = "ELFCLASS64";
10774 else
10776 iclass = "ELFCLASS64";
10777 oclass = "ELFCLASS32";
10780 bfd_set_error (bfd_error_wrong_format);
10781 (*_bfd_error_handler)
10782 (_("%B: file class %s incompatible with %s"),
10783 sub, iclass, oclass);
10786 goto error_return;
10792 /* Free symbol buffer if needed. */
10793 if (!info->reduce_memory_overheads)
10795 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10796 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10797 && elf_tdata (sub)->symbuf)
10799 free (elf_tdata (sub)->symbuf);
10800 elf_tdata (sub)->symbuf = NULL;
10804 /* Output any global symbols that got converted to local in a
10805 version script or due to symbol visibility. We do this in a
10806 separate step since ELF requires all local symbols to appear
10807 prior to any global symbols. FIXME: We should only do this if
10808 some global symbols were, in fact, converted to become local.
10809 FIXME: Will this work correctly with the Irix 5 linker? */
10810 eoinfo.failed = FALSE;
10811 eoinfo.finfo = &finfo;
10812 eoinfo.localsyms = TRUE;
10813 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10814 if (eoinfo.failed)
10815 return FALSE;
10817 /* If backend needs to output some local symbols not present in the hash
10818 table, do it now. */
10819 if (bed->elf_backend_output_arch_local_syms)
10821 typedef int (*out_sym_func)
10822 (void *, const char *, Elf_Internal_Sym *, asection *,
10823 struct elf_link_hash_entry *);
10825 if (! ((*bed->elf_backend_output_arch_local_syms)
10826 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10827 return FALSE;
10830 /* That wrote out all the local symbols. Finish up the symbol table
10831 with the global symbols. Even if we want to strip everything we
10832 can, we still need to deal with those global symbols that got
10833 converted to local in a version script. */
10835 /* The sh_info field records the index of the first non local symbol. */
10836 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10838 if (dynamic
10839 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10841 Elf_Internal_Sym sym;
10842 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10843 long last_local = 0;
10845 /* Write out the section symbols for the output sections. */
10846 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10848 asection *s;
10850 sym.st_size = 0;
10851 sym.st_name = 0;
10852 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10853 sym.st_other = 0;
10854 sym.st_target_internal = 0;
10856 for (s = abfd->sections; s != NULL; s = s->next)
10858 int indx;
10859 bfd_byte *dest;
10860 long dynindx;
10862 dynindx = elf_section_data (s)->dynindx;
10863 if (dynindx <= 0)
10864 continue;
10865 indx = elf_section_data (s)->this_idx;
10866 BFD_ASSERT (indx > 0);
10867 sym.st_shndx = indx;
10868 if (! check_dynsym (abfd, &sym))
10869 return FALSE;
10870 sym.st_value = s->vma;
10871 dest = dynsym + dynindx * bed->s->sizeof_sym;
10872 if (last_local < dynindx)
10873 last_local = dynindx;
10874 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10878 /* Write out the local dynsyms. */
10879 if (elf_hash_table (info)->dynlocal)
10881 struct elf_link_local_dynamic_entry *e;
10882 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10884 asection *s;
10885 bfd_byte *dest;
10887 /* Copy the internal symbol and turn off visibility.
10888 Note that we saved a word of storage and overwrote
10889 the original st_name with the dynstr_index. */
10890 sym = e->isym;
10891 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10893 s = bfd_section_from_elf_index (e->input_bfd,
10894 e->isym.st_shndx);
10895 if (s != NULL)
10897 sym.st_shndx =
10898 elf_section_data (s->output_section)->this_idx;
10899 if (! check_dynsym (abfd, &sym))
10900 return FALSE;
10901 sym.st_value = (s->output_section->vma
10902 + s->output_offset
10903 + e->isym.st_value);
10906 if (last_local < e->dynindx)
10907 last_local = e->dynindx;
10909 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10910 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10914 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10915 last_local + 1;
10918 /* We get the global symbols from the hash table. */
10919 eoinfo.failed = FALSE;
10920 eoinfo.localsyms = FALSE;
10921 eoinfo.finfo = &finfo;
10922 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10923 if (eoinfo.failed)
10924 return FALSE;
10926 /* If backend needs to output some symbols not present in the hash
10927 table, do it now. */
10928 if (bed->elf_backend_output_arch_syms)
10930 typedef int (*out_sym_func)
10931 (void *, const char *, Elf_Internal_Sym *, asection *,
10932 struct elf_link_hash_entry *);
10934 if (! ((*bed->elf_backend_output_arch_syms)
10935 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10936 return FALSE;
10939 /* Flush all symbols to the file. */
10940 if (! elf_link_flush_output_syms (&finfo, bed))
10941 return FALSE;
10943 /* Now we know the size of the symtab section. */
10944 off += symtab_hdr->sh_size;
10946 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10947 if (symtab_shndx_hdr->sh_name != 0)
10949 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10950 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10951 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10952 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10953 symtab_shndx_hdr->sh_size = amt;
10955 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10956 off, TRUE);
10958 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10959 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10960 return FALSE;
10964 /* Finish up and write out the symbol string table (.strtab)
10965 section. */
10966 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10967 /* sh_name was set in prep_headers. */
10968 symstrtab_hdr->sh_type = SHT_STRTAB;
10969 symstrtab_hdr->sh_flags = 0;
10970 symstrtab_hdr->sh_addr = 0;
10971 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10972 symstrtab_hdr->sh_entsize = 0;
10973 symstrtab_hdr->sh_link = 0;
10974 symstrtab_hdr->sh_info = 0;
10975 /* sh_offset is set just below. */
10976 symstrtab_hdr->sh_addralign = 1;
10978 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10979 elf_tdata (abfd)->next_file_pos = off;
10981 if (bfd_get_symcount (abfd) > 0)
10983 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10984 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10985 return FALSE;
10988 /* Adjust the relocs to have the correct symbol indices. */
10989 for (o = abfd->sections; o != NULL; o = o->next)
10991 struct bfd_elf_section_data *esdo = elf_section_data (o);
10992 if ((o->flags & SEC_RELOC) == 0)
10993 continue;
10995 if (esdo->rel.hdr != NULL)
10996 elf_link_adjust_relocs (abfd, &esdo->rel);
10997 if (esdo->rela.hdr != NULL)
10998 elf_link_adjust_relocs (abfd, &esdo->rela);
11000 /* Set the reloc_count field to 0 to prevent write_relocs from
11001 trying to swap the relocs out itself. */
11002 o->reloc_count = 0;
11005 if (dynamic && info->combreloc && dynobj != NULL)
11006 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11008 /* If we are linking against a dynamic object, or generating a
11009 shared library, finish up the dynamic linking information. */
11010 if (dynamic)
11012 bfd_byte *dyncon, *dynconend;
11014 /* Fix up .dynamic entries. */
11015 o = bfd_get_section_by_name (dynobj, ".dynamic");
11016 BFD_ASSERT (o != NULL);
11018 dyncon = o->contents;
11019 dynconend = o->contents + o->size;
11020 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11022 Elf_Internal_Dyn dyn;
11023 const char *name;
11024 unsigned int type;
11026 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11028 switch (dyn.d_tag)
11030 default:
11031 continue;
11032 case DT_NULL:
11033 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11035 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11037 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11038 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11039 default: continue;
11041 dyn.d_un.d_val = relativecount;
11042 relativecount = 0;
11043 break;
11045 continue;
11047 case DT_INIT:
11048 name = info->init_function;
11049 goto get_sym;
11050 case DT_FINI:
11051 name = info->fini_function;
11052 get_sym:
11054 struct elf_link_hash_entry *h;
11056 h = elf_link_hash_lookup (elf_hash_table (info), name,
11057 FALSE, FALSE, TRUE);
11058 if (h != NULL
11059 && (h->root.type == bfd_link_hash_defined
11060 || h->root.type == bfd_link_hash_defweak))
11062 dyn.d_un.d_ptr = h->root.u.def.value;
11063 o = h->root.u.def.section;
11064 if (o->output_section != NULL)
11065 dyn.d_un.d_ptr += (o->output_section->vma
11066 + o->output_offset);
11067 else
11069 /* The symbol is imported from another shared
11070 library and does not apply to this one. */
11071 dyn.d_un.d_ptr = 0;
11073 break;
11076 continue;
11078 case DT_PREINIT_ARRAYSZ:
11079 name = ".preinit_array";
11080 goto get_size;
11081 case DT_INIT_ARRAYSZ:
11082 name = ".init_array";
11083 goto get_size;
11084 case DT_FINI_ARRAYSZ:
11085 name = ".fini_array";
11086 get_size:
11087 o = bfd_get_section_by_name (abfd, name);
11088 if (o == NULL)
11090 (*_bfd_error_handler)
11091 (_("%B: could not find output section %s"), abfd, name);
11092 goto error_return;
11094 if (o->size == 0)
11095 (*_bfd_error_handler)
11096 (_("warning: %s section has zero size"), name);
11097 dyn.d_un.d_val = o->size;
11098 break;
11100 case DT_PREINIT_ARRAY:
11101 name = ".preinit_array";
11102 goto get_vma;
11103 case DT_INIT_ARRAY:
11104 name = ".init_array";
11105 goto get_vma;
11106 case DT_FINI_ARRAY:
11107 name = ".fini_array";
11108 goto get_vma;
11110 case DT_HASH:
11111 name = ".hash";
11112 goto get_vma;
11113 case DT_GNU_HASH:
11114 name = ".gnu.hash";
11115 goto get_vma;
11116 case DT_STRTAB:
11117 name = ".dynstr";
11118 goto get_vma;
11119 case DT_SYMTAB:
11120 name = ".dynsym";
11121 goto get_vma;
11122 case DT_VERDEF:
11123 name = ".gnu.version_d";
11124 goto get_vma;
11125 case DT_VERNEED:
11126 name = ".gnu.version_r";
11127 goto get_vma;
11128 case DT_VERSYM:
11129 name = ".gnu.version";
11130 get_vma:
11131 o = bfd_get_section_by_name (abfd, name);
11132 if (o == NULL)
11134 (*_bfd_error_handler)
11135 (_("%B: could not find output section %s"), abfd, name);
11136 goto error_return;
11138 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11140 (*_bfd_error_handler)
11141 (_("warning: section '%s' is being made into a note"), name);
11142 bfd_set_error (bfd_error_nonrepresentable_section);
11143 goto error_return;
11145 dyn.d_un.d_ptr = o->vma;
11146 break;
11148 case DT_REL:
11149 case DT_RELA:
11150 case DT_RELSZ:
11151 case DT_RELASZ:
11152 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11153 type = SHT_REL;
11154 else
11155 type = SHT_RELA;
11156 dyn.d_un.d_val = 0;
11157 dyn.d_un.d_ptr = 0;
11158 for (i = 1; i < elf_numsections (abfd); i++)
11160 Elf_Internal_Shdr *hdr;
11162 hdr = elf_elfsections (abfd)[i];
11163 if (hdr->sh_type == type
11164 && (hdr->sh_flags & SHF_ALLOC) != 0)
11166 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11167 dyn.d_un.d_val += hdr->sh_size;
11168 else
11170 if (dyn.d_un.d_ptr == 0
11171 || hdr->sh_addr < dyn.d_un.d_ptr)
11172 dyn.d_un.d_ptr = hdr->sh_addr;
11176 break;
11178 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11182 /* If we have created any dynamic sections, then output them. */
11183 if (dynobj != NULL)
11185 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11186 goto error_return;
11188 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11189 if (((info->warn_shared_textrel && info->shared)
11190 || info->error_textrel)
11191 && (o = bfd_get_section_by_name (dynobj, ".dynamic")) != NULL)
11193 bfd_byte *dyncon, *dynconend;
11195 dyncon = o->contents;
11196 dynconend = o->contents + o->size;
11197 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11199 Elf_Internal_Dyn dyn;
11201 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11203 if (dyn.d_tag == DT_TEXTREL)
11205 if (info->error_textrel)
11206 info->callbacks->einfo
11207 (_("%P%X: read-only segment has dynamic relocations.\n"));
11208 else
11209 info->callbacks->einfo
11210 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11211 break;
11216 for (o = dynobj->sections; o != NULL; o = o->next)
11218 if ((o->flags & SEC_HAS_CONTENTS) == 0
11219 || o->size == 0
11220 || o->output_section == bfd_abs_section_ptr)
11221 continue;
11222 if ((o->flags & SEC_LINKER_CREATED) == 0)
11224 /* At this point, we are only interested in sections
11225 created by _bfd_elf_link_create_dynamic_sections. */
11226 continue;
11228 if (elf_hash_table (info)->stab_info.stabstr == o)
11229 continue;
11230 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11231 continue;
11232 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11233 != SHT_STRTAB)
11234 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11236 /* FIXME: octets_per_byte. */
11237 if (! bfd_set_section_contents (abfd, o->output_section,
11238 o->contents,
11239 (file_ptr) o->output_offset,
11240 o->size))
11241 goto error_return;
11243 else
11245 /* The contents of the .dynstr section are actually in a
11246 stringtab. */
11247 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11248 if (bfd_seek (abfd, off, SEEK_SET) != 0
11249 || ! _bfd_elf_strtab_emit (abfd,
11250 elf_hash_table (info)->dynstr))
11251 goto error_return;
11256 if (info->relocatable)
11258 bfd_boolean failed = FALSE;
11260 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11261 if (failed)
11262 goto error_return;
11265 /* If we have optimized stabs strings, output them. */
11266 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11268 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11269 goto error_return;
11272 if (info->eh_frame_hdr)
11274 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11275 goto error_return;
11278 if (finfo.symstrtab != NULL)
11279 _bfd_stringtab_free (finfo.symstrtab);
11280 if (finfo.contents != NULL)
11281 free (finfo.contents);
11282 if (finfo.external_relocs != NULL)
11283 free (finfo.external_relocs);
11284 if (finfo.internal_relocs != NULL)
11285 free (finfo.internal_relocs);
11286 if (finfo.external_syms != NULL)
11287 free (finfo.external_syms);
11288 if (finfo.locsym_shndx != NULL)
11289 free (finfo.locsym_shndx);
11290 if (finfo.internal_syms != NULL)
11291 free (finfo.internal_syms);
11292 if (finfo.indices != NULL)
11293 free (finfo.indices);
11294 if (finfo.sections != NULL)
11295 free (finfo.sections);
11296 if (finfo.symbuf != NULL)
11297 free (finfo.symbuf);
11298 if (finfo.symshndxbuf != NULL)
11299 free (finfo.symshndxbuf);
11300 for (o = abfd->sections; o != NULL; o = o->next)
11302 struct bfd_elf_section_data *esdo = elf_section_data (o);
11303 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11304 free (esdo->rel.hashes);
11305 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11306 free (esdo->rela.hashes);
11309 elf_tdata (abfd)->linker = TRUE;
11311 if (attr_section)
11313 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11314 if (contents == NULL)
11315 return FALSE; /* Bail out and fail. */
11316 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11317 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11318 free (contents);
11321 return TRUE;
11323 error_return:
11324 if (finfo.symstrtab != NULL)
11325 _bfd_stringtab_free (finfo.symstrtab);
11326 if (finfo.contents != NULL)
11327 free (finfo.contents);
11328 if (finfo.external_relocs != NULL)
11329 free (finfo.external_relocs);
11330 if (finfo.internal_relocs != NULL)
11331 free (finfo.internal_relocs);
11332 if (finfo.external_syms != NULL)
11333 free (finfo.external_syms);
11334 if (finfo.locsym_shndx != NULL)
11335 free (finfo.locsym_shndx);
11336 if (finfo.internal_syms != NULL)
11337 free (finfo.internal_syms);
11338 if (finfo.indices != NULL)
11339 free (finfo.indices);
11340 if (finfo.sections != NULL)
11341 free (finfo.sections);
11342 if (finfo.symbuf != NULL)
11343 free (finfo.symbuf);
11344 if (finfo.symshndxbuf != NULL)
11345 free (finfo.symshndxbuf);
11346 for (o = abfd->sections; o != NULL; o = o->next)
11348 struct bfd_elf_section_data *esdo = elf_section_data (o);
11349 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11350 free (esdo->rel.hashes);
11351 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11352 free (esdo->rela.hashes);
11355 return FALSE;
11358 /* Initialize COOKIE for input bfd ABFD. */
11360 static bfd_boolean
11361 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11362 struct bfd_link_info *info, bfd *abfd)
11364 Elf_Internal_Shdr *symtab_hdr;
11365 const struct elf_backend_data *bed;
11367 bed = get_elf_backend_data (abfd);
11368 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11370 cookie->abfd = abfd;
11371 cookie->sym_hashes = elf_sym_hashes (abfd);
11372 cookie->bad_symtab = elf_bad_symtab (abfd);
11373 if (cookie->bad_symtab)
11375 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11376 cookie->extsymoff = 0;
11378 else
11380 cookie->locsymcount = symtab_hdr->sh_info;
11381 cookie->extsymoff = symtab_hdr->sh_info;
11384 if (bed->s->arch_size == 32)
11385 cookie->r_sym_shift = 8;
11386 else
11387 cookie->r_sym_shift = 32;
11389 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11390 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11392 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11393 cookie->locsymcount, 0,
11394 NULL, NULL, NULL);
11395 if (cookie->locsyms == NULL)
11397 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11398 return FALSE;
11400 if (info->keep_memory)
11401 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11403 return TRUE;
11406 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11408 static void
11409 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11411 Elf_Internal_Shdr *symtab_hdr;
11413 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11414 if (cookie->locsyms != NULL
11415 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11416 free (cookie->locsyms);
11419 /* Initialize the relocation information in COOKIE for input section SEC
11420 of input bfd ABFD. */
11422 static bfd_boolean
11423 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11424 struct bfd_link_info *info, bfd *abfd,
11425 asection *sec)
11427 const struct elf_backend_data *bed;
11429 if (sec->reloc_count == 0)
11431 cookie->rels = NULL;
11432 cookie->relend = NULL;
11434 else
11436 bed = get_elf_backend_data (abfd);
11438 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11439 info->keep_memory);
11440 if (cookie->rels == NULL)
11441 return FALSE;
11442 cookie->rel = cookie->rels;
11443 cookie->relend = (cookie->rels
11444 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11446 cookie->rel = cookie->rels;
11447 return TRUE;
11450 /* Free the memory allocated by init_reloc_cookie_rels,
11451 if appropriate. */
11453 static void
11454 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11455 asection *sec)
11457 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11458 free (cookie->rels);
11461 /* Initialize the whole of COOKIE for input section SEC. */
11463 static bfd_boolean
11464 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11465 struct bfd_link_info *info,
11466 asection *sec)
11468 if (!init_reloc_cookie (cookie, info, sec->owner))
11469 goto error1;
11470 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11471 goto error2;
11472 return TRUE;
11474 error2:
11475 fini_reloc_cookie (cookie, sec->owner);
11476 error1:
11477 return FALSE;
11480 /* Free the memory allocated by init_reloc_cookie_for_section,
11481 if appropriate. */
11483 static void
11484 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11485 asection *sec)
11487 fini_reloc_cookie_rels (cookie, sec);
11488 fini_reloc_cookie (cookie, sec->owner);
11491 /* Garbage collect unused sections. */
11493 /* Default gc_mark_hook. */
11495 asection *
11496 _bfd_elf_gc_mark_hook (asection *sec,
11497 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11498 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11499 struct elf_link_hash_entry *h,
11500 Elf_Internal_Sym *sym)
11502 const char *sec_name;
11504 if (h != NULL)
11506 switch (h->root.type)
11508 case bfd_link_hash_defined:
11509 case bfd_link_hash_defweak:
11510 return h->root.u.def.section;
11512 case bfd_link_hash_common:
11513 return h->root.u.c.p->section;
11515 case bfd_link_hash_undefined:
11516 case bfd_link_hash_undefweak:
11517 /* To work around a glibc bug, keep all XXX input sections
11518 when there is an as yet undefined reference to __start_XXX
11519 or __stop_XXX symbols. The linker will later define such
11520 symbols for orphan input sections that have a name
11521 representable as a C identifier. */
11522 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11523 sec_name = h->root.root.string + 8;
11524 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11525 sec_name = h->root.root.string + 7;
11526 else
11527 sec_name = NULL;
11529 if (sec_name && *sec_name != '\0')
11531 bfd *i;
11533 for (i = info->input_bfds; i; i = i->link_next)
11535 sec = bfd_get_section_by_name (i, sec_name);
11536 if (sec)
11537 sec->flags |= SEC_KEEP;
11540 break;
11542 default:
11543 break;
11546 else
11547 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11549 return NULL;
11552 /* COOKIE->rel describes a relocation against section SEC, which is
11553 a section we've decided to keep. Return the section that contains
11554 the relocation symbol, or NULL if no section contains it. */
11556 asection *
11557 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11558 elf_gc_mark_hook_fn gc_mark_hook,
11559 struct elf_reloc_cookie *cookie)
11561 unsigned long r_symndx;
11562 struct elf_link_hash_entry *h;
11564 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11565 if (r_symndx == STN_UNDEF)
11566 return NULL;
11568 if (r_symndx >= cookie->locsymcount
11569 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11571 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11572 while (h->root.type == bfd_link_hash_indirect
11573 || h->root.type == bfd_link_hash_warning)
11574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11575 h->mark = 1;
11576 /* If this symbol is weak and there is a non-weak definition, we
11577 keep the non-weak definition because many backends put
11578 dynamic reloc info on the non-weak definition for code
11579 handling copy relocs. */
11580 if (h->u.weakdef != NULL)
11581 h->u.weakdef->mark = 1;
11582 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11585 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11586 &cookie->locsyms[r_symndx]);
11589 /* COOKIE->rel describes a relocation against section SEC, which is
11590 a section we've decided to keep. Mark the section that contains
11591 the relocation symbol. */
11593 bfd_boolean
11594 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11595 asection *sec,
11596 elf_gc_mark_hook_fn gc_mark_hook,
11597 struct elf_reloc_cookie *cookie)
11599 asection *rsec;
11601 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11602 if (rsec && !rsec->gc_mark)
11604 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11605 rsec->gc_mark = 1;
11606 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11607 return FALSE;
11609 return TRUE;
11612 /* The mark phase of garbage collection. For a given section, mark
11613 it and any sections in this section's group, and all the sections
11614 which define symbols to which it refers. */
11616 bfd_boolean
11617 _bfd_elf_gc_mark (struct bfd_link_info *info,
11618 asection *sec,
11619 elf_gc_mark_hook_fn gc_mark_hook)
11621 bfd_boolean ret;
11622 asection *group_sec, *eh_frame;
11624 sec->gc_mark = 1;
11626 /* Mark all the sections in the group. */
11627 group_sec = elf_section_data (sec)->next_in_group;
11628 if (group_sec && !group_sec->gc_mark)
11629 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11630 return FALSE;
11632 /* Look through the section relocs. */
11633 ret = TRUE;
11634 eh_frame = elf_eh_frame_section (sec->owner);
11635 if ((sec->flags & SEC_RELOC) != 0
11636 && sec->reloc_count > 0
11637 && sec != eh_frame)
11639 struct elf_reloc_cookie cookie;
11641 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11642 ret = FALSE;
11643 else
11645 for (; cookie.rel < cookie.relend; cookie.rel++)
11646 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11648 ret = FALSE;
11649 break;
11651 fini_reloc_cookie_for_section (&cookie, sec);
11655 if (ret && eh_frame && elf_fde_list (sec))
11657 struct elf_reloc_cookie cookie;
11659 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11660 ret = FALSE;
11661 else
11663 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11664 gc_mark_hook, &cookie))
11665 ret = FALSE;
11666 fini_reloc_cookie_for_section (&cookie, eh_frame);
11670 return ret;
11673 /* Keep debug and special sections. */
11675 bfd_boolean
11676 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11677 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11679 bfd *ibfd;
11681 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11683 asection *isec;
11684 bfd_boolean some_kept;
11686 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11687 continue;
11689 /* Ensure all linker created sections are kept, and see whether
11690 any other section is already marked. */
11691 some_kept = FALSE;
11692 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11694 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11695 isec->gc_mark = 1;
11696 else if (isec->gc_mark)
11697 some_kept = TRUE;
11700 /* If no section in this file will be kept, then we can
11701 toss out debug sections. */
11702 if (!some_kept)
11703 continue;
11705 /* Keep debug and special sections like .comment when they are
11706 not part of a group, or when we have single-member groups. */
11707 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11708 if ((elf_next_in_group (isec) == NULL
11709 || elf_next_in_group (isec) == isec)
11710 && ((isec->flags & SEC_DEBUGGING) != 0
11711 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11712 isec->gc_mark = 1;
11714 return TRUE;
11717 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11719 struct elf_gc_sweep_symbol_info
11721 struct bfd_link_info *info;
11722 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11723 bfd_boolean);
11726 static bfd_boolean
11727 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11729 if (!h->mark
11730 && (((h->root.type == bfd_link_hash_defined
11731 || h->root.type == bfd_link_hash_defweak)
11732 && !(h->def_regular
11733 && h->root.u.def.section->gc_mark))
11734 || h->root.type == bfd_link_hash_undefined
11735 || h->root.type == bfd_link_hash_undefweak))
11737 struct elf_gc_sweep_symbol_info *inf;
11739 inf = (struct elf_gc_sweep_symbol_info *) data;
11740 (*inf->hide_symbol) (inf->info, h, TRUE);
11741 h->def_regular = 0;
11742 h->ref_regular = 0;
11743 h->ref_regular_nonweak = 0;
11746 return TRUE;
11749 /* The sweep phase of garbage collection. Remove all garbage sections. */
11751 typedef bfd_boolean (*gc_sweep_hook_fn)
11752 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11754 static bfd_boolean
11755 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11757 bfd *sub;
11758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11759 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11760 unsigned long section_sym_count;
11761 struct elf_gc_sweep_symbol_info sweep_info;
11763 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11765 asection *o;
11767 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11768 continue;
11770 for (o = sub->sections; o != NULL; o = o->next)
11772 /* When any section in a section group is kept, we keep all
11773 sections in the section group. If the first member of
11774 the section group is excluded, we will also exclude the
11775 group section. */
11776 if (o->flags & SEC_GROUP)
11778 asection *first = elf_next_in_group (o);
11779 o->gc_mark = first->gc_mark;
11782 if (o->gc_mark)
11783 continue;
11785 /* Skip sweeping sections already excluded. */
11786 if (o->flags & SEC_EXCLUDE)
11787 continue;
11789 /* Since this is early in the link process, it is simple
11790 to remove a section from the output. */
11791 o->flags |= SEC_EXCLUDE;
11793 if (info->print_gc_sections && o->size != 0)
11794 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11796 /* But we also have to update some of the relocation
11797 info we collected before. */
11798 if (gc_sweep_hook
11799 && (o->flags & SEC_RELOC) != 0
11800 && o->reloc_count > 0
11801 && !bfd_is_abs_section (o->output_section))
11803 Elf_Internal_Rela *internal_relocs;
11804 bfd_boolean r;
11806 internal_relocs
11807 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11808 info->keep_memory);
11809 if (internal_relocs == NULL)
11810 return FALSE;
11812 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11814 if (elf_section_data (o)->relocs != internal_relocs)
11815 free (internal_relocs);
11817 if (!r)
11818 return FALSE;
11823 /* Remove the symbols that were in the swept sections from the dynamic
11824 symbol table. GCFIXME: Anyone know how to get them out of the
11825 static symbol table as well? */
11826 sweep_info.info = info;
11827 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11828 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11829 &sweep_info);
11831 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11832 return TRUE;
11835 /* Propagate collected vtable information. This is called through
11836 elf_link_hash_traverse. */
11838 static bfd_boolean
11839 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11841 /* Those that are not vtables. */
11842 if (h->vtable == NULL || h->vtable->parent == NULL)
11843 return TRUE;
11845 /* Those vtables that do not have parents, we cannot merge. */
11846 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11847 return TRUE;
11849 /* If we've already been done, exit. */
11850 if (h->vtable->used && h->vtable->used[-1])
11851 return TRUE;
11853 /* Make sure the parent's table is up to date. */
11854 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11856 if (h->vtable->used == NULL)
11858 /* None of this table's entries were referenced. Re-use the
11859 parent's table. */
11860 h->vtable->used = h->vtable->parent->vtable->used;
11861 h->vtable->size = h->vtable->parent->vtable->size;
11863 else
11865 size_t n;
11866 bfd_boolean *cu, *pu;
11868 /* Or the parent's entries into ours. */
11869 cu = h->vtable->used;
11870 cu[-1] = TRUE;
11871 pu = h->vtable->parent->vtable->used;
11872 if (pu != NULL)
11874 const struct elf_backend_data *bed;
11875 unsigned int log_file_align;
11877 bed = get_elf_backend_data (h->root.u.def.section->owner);
11878 log_file_align = bed->s->log_file_align;
11879 n = h->vtable->parent->vtable->size >> log_file_align;
11880 while (n--)
11882 if (*pu)
11883 *cu = TRUE;
11884 pu++;
11885 cu++;
11890 return TRUE;
11893 static bfd_boolean
11894 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11896 asection *sec;
11897 bfd_vma hstart, hend;
11898 Elf_Internal_Rela *relstart, *relend, *rel;
11899 const struct elf_backend_data *bed;
11900 unsigned int log_file_align;
11902 /* Take care of both those symbols that do not describe vtables as
11903 well as those that are not loaded. */
11904 if (h->vtable == NULL || h->vtable->parent == NULL)
11905 return TRUE;
11907 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11908 || h->root.type == bfd_link_hash_defweak);
11910 sec = h->root.u.def.section;
11911 hstart = h->root.u.def.value;
11912 hend = hstart + h->size;
11914 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11915 if (!relstart)
11916 return *(bfd_boolean *) okp = FALSE;
11917 bed = get_elf_backend_data (sec->owner);
11918 log_file_align = bed->s->log_file_align;
11920 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11922 for (rel = relstart; rel < relend; ++rel)
11923 if (rel->r_offset >= hstart && rel->r_offset < hend)
11925 /* If the entry is in use, do nothing. */
11926 if (h->vtable->used
11927 && (rel->r_offset - hstart) < h->vtable->size)
11929 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11930 if (h->vtable->used[entry])
11931 continue;
11933 /* Otherwise, kill it. */
11934 rel->r_offset = rel->r_info = rel->r_addend = 0;
11937 return TRUE;
11940 /* Mark sections containing dynamically referenced symbols. When
11941 building shared libraries, we must assume that any visible symbol is
11942 referenced. */
11944 bfd_boolean
11945 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11947 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11949 if ((h->root.type == bfd_link_hash_defined
11950 || h->root.type == bfd_link_hash_defweak)
11951 && (h->ref_dynamic
11952 || ((!info->executable || info->export_dynamic)
11953 && h->def_regular
11954 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11955 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11956 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11957 || !bfd_hide_sym_by_version (info->version_info,
11958 h->root.root.string)))))
11959 h->root.u.def.section->flags |= SEC_KEEP;
11961 return TRUE;
11964 /* Keep all sections containing symbols undefined on the command-line,
11965 and the section containing the entry symbol. */
11967 void
11968 _bfd_elf_gc_keep (struct bfd_link_info *info)
11970 struct bfd_sym_chain *sym;
11972 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11974 struct elf_link_hash_entry *h;
11976 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11977 FALSE, FALSE, FALSE);
11979 if (h != NULL
11980 && (h->root.type == bfd_link_hash_defined
11981 || h->root.type == bfd_link_hash_defweak)
11982 && !bfd_is_abs_section (h->root.u.def.section))
11983 h->root.u.def.section->flags |= SEC_KEEP;
11987 /* Do mark and sweep of unused sections. */
11989 bfd_boolean
11990 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11992 bfd_boolean ok = TRUE;
11993 bfd *sub;
11994 elf_gc_mark_hook_fn gc_mark_hook;
11995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11997 if (!bed->can_gc_sections
11998 || !is_elf_hash_table (info->hash))
12000 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12001 return TRUE;
12004 bed->gc_keep (info);
12006 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12007 at the .eh_frame section if we can mark the FDEs individually. */
12008 _bfd_elf_begin_eh_frame_parsing (info);
12009 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12011 asection *sec;
12012 struct elf_reloc_cookie cookie;
12014 sec = bfd_get_section_by_name (sub, ".eh_frame");
12015 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12017 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12018 if (elf_section_data (sec)->sec_info)
12019 elf_eh_frame_section (sub) = sec;
12020 fini_reloc_cookie_for_section (&cookie, sec);
12023 _bfd_elf_end_eh_frame_parsing (info);
12025 /* Apply transitive closure to the vtable entry usage info. */
12026 elf_link_hash_traverse (elf_hash_table (info),
12027 elf_gc_propagate_vtable_entries_used,
12028 &ok);
12029 if (!ok)
12030 return FALSE;
12032 /* Kill the vtable relocations that were not used. */
12033 elf_link_hash_traverse (elf_hash_table (info),
12034 elf_gc_smash_unused_vtentry_relocs,
12035 &ok);
12036 if (!ok)
12037 return FALSE;
12039 /* Mark dynamically referenced symbols. */
12040 if (elf_hash_table (info)->dynamic_sections_created)
12041 elf_link_hash_traverse (elf_hash_table (info),
12042 bed->gc_mark_dynamic_ref,
12043 info);
12045 /* Grovel through relocs to find out who stays ... */
12046 gc_mark_hook = bed->gc_mark_hook;
12047 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12049 asection *o;
12051 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12052 continue;
12054 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12055 Also treat note sections as a root, if the section is not part
12056 of a group. */
12057 for (o = sub->sections; o != NULL; o = o->next)
12058 if (!o->gc_mark
12059 && (o->flags & SEC_EXCLUDE) == 0
12060 && ((o->flags & SEC_KEEP) != 0
12061 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12062 && elf_next_in_group (o) == NULL )))
12064 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12065 return FALSE;
12069 /* Allow the backend to mark additional target specific sections. */
12070 bed->gc_mark_extra_sections (info, gc_mark_hook);
12072 /* ... and mark SEC_EXCLUDE for those that go. */
12073 return elf_gc_sweep (abfd, info);
12076 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12078 bfd_boolean
12079 bfd_elf_gc_record_vtinherit (bfd *abfd,
12080 asection *sec,
12081 struct elf_link_hash_entry *h,
12082 bfd_vma offset)
12084 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12085 struct elf_link_hash_entry **search, *child;
12086 bfd_size_type extsymcount;
12087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12089 /* The sh_info field of the symtab header tells us where the
12090 external symbols start. We don't care about the local symbols at
12091 this point. */
12092 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12093 if (!elf_bad_symtab (abfd))
12094 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12096 sym_hashes = elf_sym_hashes (abfd);
12097 sym_hashes_end = sym_hashes + extsymcount;
12099 /* Hunt down the child symbol, which is in this section at the same
12100 offset as the relocation. */
12101 for (search = sym_hashes; search != sym_hashes_end; ++search)
12103 if ((child = *search) != NULL
12104 && (child->root.type == bfd_link_hash_defined
12105 || child->root.type == bfd_link_hash_defweak)
12106 && child->root.u.def.section == sec
12107 && child->root.u.def.value == offset)
12108 goto win;
12111 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12112 abfd, sec, (unsigned long) offset);
12113 bfd_set_error (bfd_error_invalid_operation);
12114 return FALSE;
12116 win:
12117 if (!child->vtable)
12119 child->vtable = (struct elf_link_virtual_table_entry *)
12120 bfd_zalloc (abfd, sizeof (*child->vtable));
12121 if (!child->vtable)
12122 return FALSE;
12124 if (!h)
12126 /* This *should* only be the absolute section. It could potentially
12127 be that someone has defined a non-global vtable though, which
12128 would be bad. It isn't worth paging in the local symbols to be
12129 sure though; that case should simply be handled by the assembler. */
12131 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12133 else
12134 child->vtable->parent = h;
12136 return TRUE;
12139 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12141 bfd_boolean
12142 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12143 asection *sec ATTRIBUTE_UNUSED,
12144 struct elf_link_hash_entry *h,
12145 bfd_vma addend)
12147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12148 unsigned int log_file_align = bed->s->log_file_align;
12150 if (!h->vtable)
12152 h->vtable = (struct elf_link_virtual_table_entry *)
12153 bfd_zalloc (abfd, sizeof (*h->vtable));
12154 if (!h->vtable)
12155 return FALSE;
12158 if (addend >= h->vtable->size)
12160 size_t size, bytes, file_align;
12161 bfd_boolean *ptr = h->vtable->used;
12163 /* While the symbol is undefined, we have to be prepared to handle
12164 a zero size. */
12165 file_align = 1 << log_file_align;
12166 if (h->root.type == bfd_link_hash_undefined)
12167 size = addend + file_align;
12168 else
12170 size = h->size;
12171 if (addend >= size)
12173 /* Oops! We've got a reference past the defined end of
12174 the table. This is probably a bug -- shall we warn? */
12175 size = addend + file_align;
12178 size = (size + file_align - 1) & -file_align;
12180 /* Allocate one extra entry for use as a "done" flag for the
12181 consolidation pass. */
12182 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12184 if (ptr)
12186 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12188 if (ptr != NULL)
12190 size_t oldbytes;
12192 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12193 * sizeof (bfd_boolean));
12194 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12197 else
12198 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12200 if (ptr == NULL)
12201 return FALSE;
12203 /* And arrange for that done flag to be at index -1. */
12204 h->vtable->used = ptr + 1;
12205 h->vtable->size = size;
12208 h->vtable->used[addend >> log_file_align] = TRUE;
12210 return TRUE;
12213 /* Map an ELF section header flag to its corresponding string. */
12214 typedef struct
12216 char *flag_name;
12217 flagword flag_value;
12218 } elf_flags_to_name_table;
12220 static elf_flags_to_name_table elf_flags_to_names [] =
12222 { "SHF_WRITE", SHF_WRITE },
12223 { "SHF_ALLOC", SHF_ALLOC },
12224 { "SHF_EXECINSTR", SHF_EXECINSTR },
12225 { "SHF_MERGE", SHF_MERGE },
12226 { "SHF_STRINGS", SHF_STRINGS },
12227 { "SHF_INFO_LINK", SHF_INFO_LINK},
12228 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12229 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12230 { "SHF_GROUP", SHF_GROUP },
12231 { "SHF_TLS", SHF_TLS },
12232 { "SHF_MASKOS", SHF_MASKOS },
12233 { "SHF_EXCLUDE", SHF_EXCLUDE },
12236 void
12237 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12238 struct flag_info *finfo)
12240 bfd *output_bfd = info->output_bfd;
12241 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12242 struct flag_info_list *tf = finfo->flag_list;
12243 int with_hex = 0;
12244 int without_hex = 0;
12246 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12248 int i;
12249 if (bed->elf_backend_lookup_section_flags_hook)
12251 flagword hexval =
12252 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12254 if (hexval != 0)
12256 if (tf->with == with_flags)
12257 with_hex |= hexval;
12258 else if (tf->with == without_flags)
12259 without_hex |= hexval;
12260 tf->valid = TRUE;
12261 continue;
12264 for (i = 0; i < 12; i++)
12266 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12268 if (tf->with == with_flags)
12269 with_hex |= elf_flags_to_names[i].flag_value;
12270 else if (tf->with == without_flags)
12271 without_hex |= elf_flags_to_names[i].flag_value;
12272 tf->valid = TRUE;
12273 continue;
12276 if (tf->valid == FALSE)
12278 info->callbacks->einfo
12279 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12280 return;
12283 finfo->flags_initialized = TRUE;
12284 finfo->only_with_flags |= with_hex;
12285 finfo->not_with_flags |= without_hex;
12287 return;
12290 struct alloc_got_off_arg {
12291 bfd_vma gotoff;
12292 struct bfd_link_info *info;
12295 /* We need a special top-level link routine to convert got reference counts
12296 to real got offsets. */
12298 static bfd_boolean
12299 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12301 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12302 bfd *obfd = gofarg->info->output_bfd;
12303 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12305 if (h->got.refcount > 0)
12307 h->got.offset = gofarg->gotoff;
12308 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12310 else
12311 h->got.offset = (bfd_vma) -1;
12313 return TRUE;
12316 /* And an accompanying bit to work out final got entry offsets once
12317 we're done. Should be called from final_link. */
12319 bfd_boolean
12320 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12321 struct bfd_link_info *info)
12323 bfd *i;
12324 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12325 bfd_vma gotoff;
12326 struct alloc_got_off_arg gofarg;
12328 BFD_ASSERT (abfd == info->output_bfd);
12330 if (! is_elf_hash_table (info->hash))
12331 return FALSE;
12333 /* The GOT offset is relative to the .got section, but the GOT header is
12334 put into the .got.plt section, if the backend uses it. */
12335 if (bed->want_got_plt)
12336 gotoff = 0;
12337 else
12338 gotoff = bed->got_header_size;
12340 /* Do the local .got entries first. */
12341 for (i = info->input_bfds; i; i = i->link_next)
12343 bfd_signed_vma *local_got;
12344 bfd_size_type j, locsymcount;
12345 Elf_Internal_Shdr *symtab_hdr;
12347 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12348 continue;
12350 local_got = elf_local_got_refcounts (i);
12351 if (!local_got)
12352 continue;
12354 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12355 if (elf_bad_symtab (i))
12356 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12357 else
12358 locsymcount = symtab_hdr->sh_info;
12360 for (j = 0; j < locsymcount; ++j)
12362 if (local_got[j] > 0)
12364 local_got[j] = gotoff;
12365 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12367 else
12368 local_got[j] = (bfd_vma) -1;
12372 /* Then the global .got entries. .plt refcounts are handled by
12373 adjust_dynamic_symbol */
12374 gofarg.gotoff = gotoff;
12375 gofarg.info = info;
12376 elf_link_hash_traverse (elf_hash_table (info),
12377 elf_gc_allocate_got_offsets,
12378 &gofarg);
12379 return TRUE;
12382 /* Many folk need no more in the way of final link than this, once
12383 got entry reference counting is enabled. */
12385 bfd_boolean
12386 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12388 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12389 return FALSE;
12391 /* Invoke the regular ELF backend linker to do all the work. */
12392 return bfd_elf_final_link (abfd, info);
12395 bfd_boolean
12396 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12398 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12400 if (rcookie->bad_symtab)
12401 rcookie->rel = rcookie->rels;
12403 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12405 unsigned long r_symndx;
12407 if (! rcookie->bad_symtab)
12408 if (rcookie->rel->r_offset > offset)
12409 return FALSE;
12410 if (rcookie->rel->r_offset != offset)
12411 continue;
12413 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12414 if (r_symndx == STN_UNDEF)
12415 return TRUE;
12417 if (r_symndx >= rcookie->locsymcount
12418 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12420 struct elf_link_hash_entry *h;
12422 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12424 while (h->root.type == bfd_link_hash_indirect
12425 || h->root.type == bfd_link_hash_warning)
12426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12428 if ((h->root.type == bfd_link_hash_defined
12429 || h->root.type == bfd_link_hash_defweak)
12430 && elf_discarded_section (h->root.u.def.section))
12431 return TRUE;
12432 else
12433 return FALSE;
12435 else
12437 /* It's not a relocation against a global symbol,
12438 but it could be a relocation against a local
12439 symbol for a discarded section. */
12440 asection *isec;
12441 Elf_Internal_Sym *isym;
12443 /* Need to: get the symbol; get the section. */
12444 isym = &rcookie->locsyms[r_symndx];
12445 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12446 if (isec != NULL && elf_discarded_section (isec))
12447 return TRUE;
12449 return FALSE;
12451 return FALSE;
12454 /* Discard unneeded references to discarded sections.
12455 Returns TRUE if any section's size was changed. */
12456 /* This function assumes that the relocations are in sorted order,
12457 which is true for all known assemblers. */
12459 bfd_boolean
12460 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12462 struct elf_reloc_cookie cookie;
12463 asection *stab, *eh;
12464 const struct elf_backend_data *bed;
12465 bfd *abfd;
12466 bfd_boolean ret = FALSE;
12468 if (info->traditional_format
12469 || !is_elf_hash_table (info->hash))
12470 return FALSE;
12472 _bfd_elf_begin_eh_frame_parsing (info);
12473 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12475 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12476 continue;
12478 bed = get_elf_backend_data (abfd);
12480 if ((abfd->flags & DYNAMIC) != 0)
12481 continue;
12483 eh = NULL;
12484 if (!info->relocatable)
12486 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12487 if (eh != NULL
12488 && (eh->size == 0
12489 || bfd_is_abs_section (eh->output_section)))
12490 eh = NULL;
12493 stab = bfd_get_section_by_name (abfd, ".stab");
12494 if (stab != NULL
12495 && (stab->size == 0
12496 || bfd_is_abs_section (stab->output_section)
12497 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12498 stab = NULL;
12500 if (stab == NULL
12501 && eh == NULL
12502 && bed->elf_backend_discard_info == NULL)
12503 continue;
12505 if (!init_reloc_cookie (&cookie, info, abfd))
12506 return FALSE;
12508 if (stab != NULL
12509 && stab->reloc_count > 0
12510 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12512 if (_bfd_discard_section_stabs (abfd, stab,
12513 elf_section_data (stab)->sec_info,
12514 bfd_elf_reloc_symbol_deleted_p,
12515 &cookie))
12516 ret = TRUE;
12517 fini_reloc_cookie_rels (&cookie, stab);
12520 if (eh != NULL
12521 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12523 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12524 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12525 bfd_elf_reloc_symbol_deleted_p,
12526 &cookie))
12527 ret = TRUE;
12528 fini_reloc_cookie_rels (&cookie, eh);
12531 if (bed->elf_backend_discard_info != NULL
12532 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12533 ret = TRUE;
12535 fini_reloc_cookie (&cookie, abfd);
12537 _bfd_elf_end_eh_frame_parsing (info);
12539 if (info->eh_frame_hdr
12540 && !info->relocatable
12541 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12542 ret = TRUE;
12544 return ret;
12547 bfd_boolean
12548 _bfd_elf_section_already_linked (bfd *abfd,
12549 asection *sec,
12550 struct bfd_link_info *info)
12552 flagword flags;
12553 const char *name, *key;
12554 struct bfd_section_already_linked *l;
12555 struct bfd_section_already_linked_hash_entry *already_linked_list;
12557 if (sec->output_section == bfd_abs_section_ptr)
12558 return FALSE;
12560 flags = sec->flags;
12562 /* Return if it isn't a linkonce section. A comdat group section
12563 also has SEC_LINK_ONCE set. */
12564 if ((flags & SEC_LINK_ONCE) == 0)
12565 return FALSE;
12567 /* Don't put group member sections on our list of already linked
12568 sections. They are handled as a group via their group section. */
12569 if (elf_sec_group (sec) != NULL)
12570 return FALSE;
12572 /* For a SHT_GROUP section, use the group signature as the key. */
12573 name = sec->name;
12574 if ((flags & SEC_GROUP) != 0
12575 && elf_next_in_group (sec) != NULL
12576 && elf_group_name (elf_next_in_group (sec)) != NULL)
12577 key = elf_group_name (elf_next_in_group (sec));
12578 else
12580 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12581 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12582 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12583 key++;
12584 else
12585 /* Must be a user linkonce section that doesn't follow gcc's
12586 naming convention. In this case we won't be matching
12587 single member groups. */
12588 key = name;
12591 already_linked_list = bfd_section_already_linked_table_lookup (key);
12593 for (l = already_linked_list->entry; l != NULL; l = l->next)
12595 /* We may have 2 different types of sections on the list: group
12596 sections with a signature of <key> (<key> is some string),
12597 and linkonce sections named .gnu.linkonce.<type>.<key>.
12598 Match like sections. LTO plugin sections are an exception.
12599 They are always named .gnu.linkonce.t.<key> and match either
12600 type of section. */
12601 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12602 && ((flags & SEC_GROUP) != 0
12603 || strcmp (name, l->sec->name) == 0))
12604 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12606 /* The section has already been linked. See if we should
12607 issue a warning. */
12608 if (!_bfd_handle_already_linked (sec, l, info))
12609 return FALSE;
12611 if (flags & SEC_GROUP)
12613 asection *first = elf_next_in_group (sec);
12614 asection *s = first;
12616 while (s != NULL)
12618 s->output_section = bfd_abs_section_ptr;
12619 /* Record which group discards it. */
12620 s->kept_section = l->sec;
12621 s = elf_next_in_group (s);
12622 /* These lists are circular. */
12623 if (s == first)
12624 break;
12628 return TRUE;
12632 /* A single member comdat group section may be discarded by a
12633 linkonce section and vice versa. */
12634 if ((flags & SEC_GROUP) != 0)
12636 asection *first = elf_next_in_group (sec);
12638 if (first != NULL && elf_next_in_group (first) == first)
12639 /* Check this single member group against linkonce sections. */
12640 for (l = already_linked_list->entry; l != NULL; l = l->next)
12641 if ((l->sec->flags & SEC_GROUP) == 0
12642 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12644 first->output_section = bfd_abs_section_ptr;
12645 first->kept_section = l->sec;
12646 sec->output_section = bfd_abs_section_ptr;
12647 break;
12650 else
12651 /* Check this linkonce section against single member groups. */
12652 for (l = already_linked_list->entry; l != NULL; l = l->next)
12653 if (l->sec->flags & SEC_GROUP)
12655 asection *first = elf_next_in_group (l->sec);
12657 if (first != NULL
12658 && elf_next_in_group (first) == first
12659 && bfd_elf_match_symbols_in_sections (first, sec, info))
12661 sec->output_section = bfd_abs_section_ptr;
12662 sec->kept_section = first;
12663 break;
12667 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12668 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12669 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12670 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12671 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12672 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12673 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12674 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12675 The reverse order cannot happen as there is never a bfd with only the
12676 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12677 matter as here were are looking only for cross-bfd sections. */
12679 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12680 for (l = already_linked_list->entry; l != NULL; l = l->next)
12681 if ((l->sec->flags & SEC_GROUP) == 0
12682 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12684 if (abfd != l->sec->owner)
12685 sec->output_section = bfd_abs_section_ptr;
12686 break;
12689 /* This is the first section with this name. Record it. */
12690 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12691 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12692 return sec->output_section == bfd_abs_section_ptr;
12695 bfd_boolean
12696 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12698 return sym->st_shndx == SHN_COMMON;
12701 unsigned int
12702 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12704 return SHN_COMMON;
12707 asection *
12708 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12710 return bfd_com_section_ptr;
12713 bfd_vma
12714 _bfd_elf_default_got_elt_size (bfd *abfd,
12715 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12716 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12717 bfd *ibfd ATTRIBUTE_UNUSED,
12718 unsigned long symndx ATTRIBUTE_UNUSED)
12720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12721 return bed->s->arch_size / 8;
12724 /* Routines to support the creation of dynamic relocs. */
12726 /* Returns the name of the dynamic reloc section associated with SEC. */
12728 static const char *
12729 get_dynamic_reloc_section_name (bfd * abfd,
12730 asection * sec,
12731 bfd_boolean is_rela)
12733 char *name;
12734 const char *old_name = bfd_get_section_name (NULL, sec);
12735 const char *prefix = is_rela ? ".rela" : ".rel";
12737 if (old_name == NULL)
12738 return NULL;
12740 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12741 sprintf (name, "%s%s", prefix, old_name);
12743 return name;
12746 /* Returns the dynamic reloc section associated with SEC.
12747 If necessary compute the name of the dynamic reloc section based
12748 on SEC's name (looked up in ABFD's string table) and the setting
12749 of IS_RELA. */
12751 asection *
12752 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12753 asection * sec,
12754 bfd_boolean is_rela)
12756 asection * reloc_sec = elf_section_data (sec)->sreloc;
12758 if (reloc_sec == NULL)
12760 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12762 if (name != NULL)
12764 reloc_sec = bfd_get_section_by_name (abfd, name);
12766 if (reloc_sec != NULL)
12767 elf_section_data (sec)->sreloc = reloc_sec;
12771 return reloc_sec;
12774 /* Returns the dynamic reloc section associated with SEC. If the
12775 section does not exist it is created and attached to the DYNOBJ
12776 bfd and stored in the SRELOC field of SEC's elf_section_data
12777 structure.
12779 ALIGNMENT is the alignment for the newly created section and
12780 IS_RELA defines whether the name should be .rela.<SEC's name>
12781 or .rel.<SEC's name>. The section name is looked up in the
12782 string table associated with ABFD. */
12784 asection *
12785 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12786 bfd * dynobj,
12787 unsigned int alignment,
12788 bfd * abfd,
12789 bfd_boolean is_rela)
12791 asection * reloc_sec = elf_section_data (sec)->sreloc;
12793 if (reloc_sec == NULL)
12795 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12797 if (name == NULL)
12798 return NULL;
12800 reloc_sec = bfd_get_section_by_name (dynobj, name);
12802 if (reloc_sec == NULL)
12804 flagword flags;
12806 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12807 if ((sec->flags & SEC_ALLOC) != 0)
12808 flags |= SEC_ALLOC | SEC_LOAD;
12810 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12811 if (reloc_sec != NULL)
12813 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12814 reloc_sec = NULL;
12818 elf_section_data (sec)->sreloc = reloc_sec;
12821 return reloc_sec;
12824 /* Copy the ELF symbol type associated with a linker hash entry. */
12825 void
12826 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12827 struct bfd_link_hash_entry * hdest,
12828 struct bfd_link_hash_entry * hsrc)
12830 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12831 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12833 ehdest->type = ehsrc->type;
12834 ehdest->target_internal = ehsrc->target_internal;
12837 /* Append a RELA relocation REL to section S in BFD. */
12839 void
12840 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12842 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12843 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12844 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12845 bed->s->swap_reloca_out (abfd, rel, loc);
12848 /* Append a REL relocation REL to section S in BFD. */
12850 void
12851 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12853 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12854 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12855 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12856 bed->s->swap_reloca_out (abfd, rel, loc);