daily update
[binutils.git] / bfd / elf32-m68hc1x.c
blobe1da8b286cde6af3c76a5670211351b41a24e6ce
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "alloca-conf.h"
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf32-m68hc1x.h"
30 #include "elf/m68hc11.h"
31 #include "opcode/m68hc11.h"
34 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
35 ((struct elf32_m68hc11_stub_hash_entry *) \
36 bfd_hash_lookup ((table), (string), (create), (copy)))
38 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
39 (const char *stub_name,
40 asection *section,
41 struct m68hc11_elf_link_hash_table *htab);
43 static struct bfd_hash_entry *stub_hash_newfunc
44 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
46 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
47 const char* name, bfd_vma value,
48 asection* sec);
50 static bfd_boolean m68hc11_elf_export_one_stub
51 (struct bfd_hash_entry *gen_entry, void *in_arg);
53 static void scan_sections_for_abi (bfd*, asection*, PTR);
55 struct m68hc11_scan_param
57 struct m68hc11_page_info* pinfo;
58 bfd_boolean use_memory_banks;
62 /* Create a 68HC11/68HC12 ELF linker hash table. */
64 struct m68hc11_elf_link_hash_table*
65 m68hc11_elf_hash_table_create (bfd *abfd)
67 struct m68hc11_elf_link_hash_table *ret;
68 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
70 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
71 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
72 return NULL;
74 memset (ret, 0, amt);
75 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
76 _bfd_elf_link_hash_newfunc,
77 sizeof (struct elf_link_hash_entry),
78 M68HC11_ELF_DATA))
80 free (ret);
81 return NULL;
84 /* Init the stub hash table too. */
85 amt = sizeof (struct bfd_hash_table);
86 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
87 if (ret->stub_hash_table == NULL)
89 free (ret);
90 return NULL;
92 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
93 sizeof (struct elf32_m68hc11_stub_hash_entry)))
94 return NULL;
96 ret->stub_bfd = NULL;
97 ret->stub_section = 0;
98 ret->add_stub_section = NULL;
99 ret->sym_cache.abfd = NULL;
101 return ret;
104 /* Free the derived linker hash table. */
106 void
107 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
109 struct m68hc11_elf_link_hash_table *ret
110 = (struct m68hc11_elf_link_hash_table *) hash;
112 bfd_hash_table_free (ret->stub_hash_table);
113 free (ret->stub_hash_table);
114 _bfd_generic_link_hash_table_free (hash);
117 /* Assorted hash table functions. */
119 /* Initialize an entry in the stub hash table. */
121 static struct bfd_hash_entry *
122 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
123 const char *string)
125 /* Allocate the structure if it has not already been allocated by a
126 subclass. */
127 if (entry == NULL)
129 entry = bfd_hash_allocate (table,
130 sizeof (struct elf32_m68hc11_stub_hash_entry));
131 if (entry == NULL)
132 return entry;
135 /* Call the allocation method of the superclass. */
136 entry = bfd_hash_newfunc (entry, table, string);
137 if (entry != NULL)
139 struct elf32_m68hc11_stub_hash_entry *eh;
141 /* Initialize the local fields. */
142 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
143 eh->stub_sec = NULL;
144 eh->stub_offset = 0;
145 eh->target_value = 0;
146 eh->target_section = NULL;
149 return entry;
152 /* Add a new stub entry to the stub hash. Not all fields of the new
153 stub entry are initialised. */
155 static struct elf32_m68hc11_stub_hash_entry *
156 m68hc12_add_stub (const char *stub_name, asection *section,
157 struct m68hc11_elf_link_hash_table *htab)
159 struct elf32_m68hc11_stub_hash_entry *stub_entry;
161 /* Enter this entry into the linker stub hash table. */
162 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
163 TRUE, FALSE);
164 if (stub_entry == NULL)
166 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
167 section->owner, stub_name);
168 return NULL;
171 if (htab->stub_section == 0)
173 htab->stub_section = (*htab->add_stub_section) (".tramp",
174 htab->tramp_section);
177 stub_entry->stub_sec = htab->stub_section;
178 stub_entry->stub_offset = 0;
179 return stub_entry;
182 /* Hook called by the linker routine which adds symbols from an object
183 file. We use it for identify far symbols and force a loading of
184 the trampoline handler. */
186 bfd_boolean
187 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
188 Elf_Internal_Sym *sym,
189 const char **namep ATTRIBUTE_UNUSED,
190 flagword *flagsp ATTRIBUTE_UNUSED,
191 asection **secp ATTRIBUTE_UNUSED,
192 bfd_vma *valp ATTRIBUTE_UNUSED)
194 if (sym->st_other & STO_M68HC12_FAR)
196 struct elf_link_hash_entry *h;
198 h = (struct elf_link_hash_entry *)
199 bfd_link_hash_lookup (info->hash, "__far_trampoline",
200 FALSE, FALSE, FALSE);
201 if (h == NULL)
203 struct bfd_link_hash_entry* entry = NULL;
205 _bfd_generic_link_add_one_symbol (info, abfd,
206 "__far_trampoline",
207 BSF_GLOBAL,
208 bfd_und_section_ptr,
209 (bfd_vma) 0, (const char*) NULL,
210 FALSE, FALSE, &entry);
214 return TRUE;
217 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
218 STO_M68HC12_INTERRUPT. */
220 void
221 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
222 const Elf_Internal_Sym *isym,
223 bfd_boolean definition,
224 bfd_boolean dynamic ATTRIBUTE_UNUSED)
226 if (definition)
227 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
228 | ELF_ST_VISIBILITY (h->other));
231 /* External entry points for sizing and building linker stubs. */
233 /* Set up various things so that we can make a list of input sections
234 for each output section included in the link. Returns -1 on error,
235 0 when no stubs will be needed, and 1 on success. */
238 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
240 bfd *input_bfd;
241 unsigned int bfd_count;
242 int top_id, top_index;
243 asection *section;
244 asection **input_list, **list;
245 bfd_size_type amt;
246 asection *text_section;
247 struct m68hc11_elf_link_hash_table *htab;
249 htab = m68hc11_elf_hash_table (info);
250 if (htab == NULL)
251 return -1;
253 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
254 return 0;
256 /* Count the number of input BFDs and find the top input section id.
257 Also search for an existing ".tramp" section so that we know
258 where generated trampolines must go. Default to ".text" if we
259 can't find it. */
260 htab->tramp_section = 0;
261 text_section = 0;
262 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
263 input_bfd != NULL;
264 input_bfd = input_bfd->link_next)
266 bfd_count += 1;
267 for (section = input_bfd->sections;
268 section != NULL;
269 section = section->next)
271 const char* name = bfd_get_section_name (input_bfd, section);
273 if (!strcmp (name, ".tramp"))
274 htab->tramp_section = section;
276 if (!strcmp (name, ".text"))
277 text_section = section;
279 if (top_id < section->id)
280 top_id = section->id;
283 htab->bfd_count = bfd_count;
284 if (htab->tramp_section == 0)
285 htab->tramp_section = text_section;
287 /* We can't use output_bfd->section_count here to find the top output
288 section index as some sections may have been removed, and
289 strip_excluded_output_sections doesn't renumber the indices. */
290 for (section = output_bfd->sections, top_index = 0;
291 section != NULL;
292 section = section->next)
294 if (top_index < section->index)
295 top_index = section->index;
298 htab->top_index = top_index;
299 amt = sizeof (asection *) * (top_index + 1);
300 input_list = (asection **) bfd_malloc (amt);
301 htab->input_list = input_list;
302 if (input_list == NULL)
303 return -1;
305 /* For sections we aren't interested in, mark their entries with a
306 value we can check later. */
307 list = input_list + top_index;
309 *list = bfd_abs_section_ptr;
310 while (list-- != input_list);
312 for (section = output_bfd->sections;
313 section != NULL;
314 section = section->next)
316 if ((section->flags & SEC_CODE) != 0)
317 input_list[section->index] = NULL;
320 return 1;
323 /* Determine and set the size of the stub section for a final link.
325 The basic idea here is to examine all the relocations looking for
326 PC-relative calls to a target that is unreachable with a "bl"
327 instruction. */
329 bfd_boolean
330 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
331 struct bfd_link_info *info,
332 asection * (*add_stub_section) (const char*, asection*))
334 bfd *input_bfd;
335 asection *section;
336 Elf_Internal_Sym *local_syms, **all_local_syms;
337 unsigned int bfd_indx, bfd_count;
338 bfd_size_type amt;
339 asection *stub_sec;
340 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
342 if (htab == NULL)
343 return FALSE;
345 /* Stash our params away. */
346 htab->stub_bfd = stub_bfd;
347 htab->add_stub_section = add_stub_section;
349 /* Count the number of input BFDs and find the top input section id. */
350 for (input_bfd = info->input_bfds, bfd_count = 0;
351 input_bfd != NULL;
352 input_bfd = input_bfd->link_next)
353 bfd_count += 1;
355 /* We want to read in symbol extension records only once. To do this
356 we need to read in the local symbols in parallel and save them for
357 later use; so hold pointers to the local symbols in an array. */
358 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
359 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
360 if (all_local_syms == NULL)
361 return FALSE;
363 /* Walk over all the input BFDs, swapping in local symbols. */
364 for (input_bfd = info->input_bfds, bfd_indx = 0;
365 input_bfd != NULL;
366 input_bfd = input_bfd->link_next, bfd_indx++)
368 Elf_Internal_Shdr *symtab_hdr;
370 /* We'll need the symbol table in a second. */
371 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
372 if (symtab_hdr->sh_info == 0)
373 continue;
375 /* We need an array of the local symbols attached to the input bfd. */
376 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
377 if (local_syms == NULL)
379 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
380 symtab_hdr->sh_info, 0,
381 NULL, NULL, NULL);
382 /* Cache them for elf_link_input_bfd. */
383 symtab_hdr->contents = (unsigned char *) local_syms;
385 if (local_syms == NULL)
387 free (all_local_syms);
388 return FALSE;
391 all_local_syms[bfd_indx] = local_syms;
394 for (input_bfd = info->input_bfds, bfd_indx = 0;
395 input_bfd != NULL;
396 input_bfd = input_bfd->link_next, bfd_indx++)
398 Elf_Internal_Shdr *symtab_hdr;
399 struct elf_link_hash_entry ** sym_hashes;
401 sym_hashes = elf_sym_hashes (input_bfd);
403 /* We'll need the symbol table in a second. */
404 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
405 if (symtab_hdr->sh_info == 0)
406 continue;
408 local_syms = all_local_syms[bfd_indx];
410 /* Walk over each section attached to the input bfd. */
411 for (section = input_bfd->sections;
412 section != NULL;
413 section = section->next)
415 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
417 /* If there aren't any relocs, then there's nothing more
418 to do. */
419 if ((section->flags & SEC_RELOC) == 0
420 || section->reloc_count == 0)
421 continue;
423 /* If this section is a link-once section that will be
424 discarded, then don't create any stubs. */
425 if (section->output_section == NULL
426 || section->output_section->owner != output_bfd)
427 continue;
429 /* Get the relocs. */
430 internal_relocs
431 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
432 (Elf_Internal_Rela *) NULL,
433 info->keep_memory);
434 if (internal_relocs == NULL)
435 goto error_ret_free_local;
437 /* Now examine each relocation. */
438 irela = internal_relocs;
439 irelaend = irela + section->reloc_count;
440 for (; irela < irelaend; irela++)
442 unsigned int r_type, r_indx;
443 struct elf32_m68hc11_stub_hash_entry *stub_entry;
444 asection *sym_sec;
445 bfd_vma sym_value;
446 struct elf_link_hash_entry *hash;
447 const char *stub_name;
448 Elf_Internal_Sym *sym;
450 r_type = ELF32_R_TYPE (irela->r_info);
452 /* Only look at 16-bit relocs. */
453 if (r_type != (unsigned int) R_M68HC11_16)
454 continue;
456 /* Now determine the call target, its name, value,
457 section. */
458 r_indx = ELF32_R_SYM (irela->r_info);
459 if (r_indx < symtab_hdr->sh_info)
461 /* It's a local symbol. */
462 Elf_Internal_Shdr *hdr;
463 bfd_boolean is_far;
465 sym = local_syms + r_indx;
466 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
467 if (!is_far)
468 continue;
470 if (sym->st_shndx >= elf_numsections (input_bfd))
471 sym_sec = NULL;
472 else
474 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
475 sym_sec = hdr->bfd_section;
477 stub_name = (bfd_elf_string_from_elf_section
478 (input_bfd, symtab_hdr->sh_link,
479 sym->st_name));
480 sym_value = sym->st_value;
481 hash = NULL;
483 else
485 /* It's an external symbol. */
486 int e_indx;
488 e_indx = r_indx - symtab_hdr->sh_info;
489 hash = (struct elf_link_hash_entry *)
490 (sym_hashes[e_indx]);
492 while (hash->root.type == bfd_link_hash_indirect
493 || hash->root.type == bfd_link_hash_warning)
494 hash = ((struct elf_link_hash_entry *)
495 hash->root.u.i.link);
497 if (hash->root.type == bfd_link_hash_defined
498 || hash->root.type == bfd_link_hash_defweak
499 || hash->root.type == bfd_link_hash_new)
501 if (!(hash->other & STO_M68HC12_FAR))
502 continue;
504 else if (hash->root.type == bfd_link_hash_undefweak)
506 continue;
508 else if (hash->root.type == bfd_link_hash_undefined)
510 continue;
512 else
514 bfd_set_error (bfd_error_bad_value);
515 goto error_ret_free_internal;
517 sym_sec = hash->root.u.def.section;
518 sym_value = hash->root.u.def.value;
519 stub_name = hash->root.root.string;
522 if (!stub_name)
523 goto error_ret_free_internal;
525 stub_entry = m68hc12_stub_hash_lookup
526 (htab->stub_hash_table,
527 stub_name,
528 FALSE, FALSE);
529 if (stub_entry == NULL)
531 if (add_stub_section == 0)
532 continue;
534 stub_entry = m68hc12_add_stub (stub_name, section, htab);
535 if (stub_entry == NULL)
537 error_ret_free_internal:
538 if (elf_section_data (section)->relocs == NULL)
539 free (internal_relocs);
540 goto error_ret_free_local;
544 stub_entry->target_value = sym_value;
545 stub_entry->target_section = sym_sec;
548 /* We're done with the internal relocs, free them. */
549 if (elf_section_data (section)->relocs == NULL)
550 free (internal_relocs);
554 if (add_stub_section)
556 /* OK, we've added some stubs. Find out the new size of the
557 stub sections. */
558 for (stub_sec = htab->stub_bfd->sections;
559 stub_sec != NULL;
560 stub_sec = stub_sec->next)
562 stub_sec->size = 0;
565 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
567 free (all_local_syms);
568 return TRUE;
570 error_ret_free_local:
571 free (all_local_syms);
572 return FALSE;
575 /* Export the trampoline addresses in the symbol table. */
576 static bfd_boolean
577 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
579 struct bfd_link_info *info;
580 struct m68hc11_elf_link_hash_table *htab;
581 struct elf32_m68hc11_stub_hash_entry *stub_entry;
582 char* name;
583 bfd_boolean result;
585 info = (struct bfd_link_info *) in_arg;
586 htab = m68hc11_elf_hash_table (info);
587 if (htab == NULL)
588 return FALSE;
590 /* Massage our args to the form they really have. */
591 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
593 /* Generate the trampoline according to HC11 or HC12. */
594 result = (* htab->build_one_stub) (gen_entry, in_arg);
596 /* Make a printable name that does not conflict with the real function. */
597 name = alloca (strlen (stub_entry->root.string) + 16);
598 sprintf (name, "tramp.%s", stub_entry->root.string);
600 /* Export the symbol for debugging/disassembling. */
601 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
602 stub_entry->stub_offset,
603 stub_entry->stub_sec);
604 return result;
607 /* Export a symbol or set its value and section. */
608 static void
609 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
610 const char *name, bfd_vma value, asection *sec)
612 struct elf_link_hash_entry *h;
614 h = (struct elf_link_hash_entry *)
615 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
616 if (h == NULL)
618 _bfd_generic_link_add_one_symbol (info, abfd,
619 name,
620 BSF_GLOBAL,
621 sec,
622 value,
623 (const char*) NULL,
624 TRUE, FALSE, NULL);
626 else
628 h->root.type = bfd_link_hash_defined;
629 h->root.u.def.value = value;
630 h->root.u.def.section = sec;
635 /* Build all the stubs associated with the current output file. The
636 stubs are kept in a hash table attached to the main linker hash
637 table. This function is called via m68hc12elf_finish in the
638 linker. */
640 bfd_boolean
641 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
643 asection *stub_sec;
644 struct bfd_hash_table *table;
645 struct m68hc11_elf_link_hash_table *htab;
646 struct m68hc11_scan_param param;
648 m68hc11_elf_get_bank_parameters (info);
649 htab = m68hc11_elf_hash_table (info);
650 if (htab == NULL)
651 return FALSE;
653 for (stub_sec = htab->stub_bfd->sections;
654 stub_sec != NULL;
655 stub_sec = stub_sec->next)
657 bfd_size_type size;
659 /* Allocate memory to hold the linker stubs. */
660 size = stub_sec->size;
661 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
662 if (stub_sec->contents == NULL && size != 0)
663 return FALSE;
664 stub_sec->size = 0;
667 /* Build the stubs as directed by the stub hash table. */
668 table = htab->stub_hash_table;
669 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
671 /* Scan the output sections to see if we use the memory banks.
672 If so, export the symbols that define how the memory banks
673 are mapped. This is used by gdb and the simulator to obtain
674 the information. It can be used by programs to burn the eprom
675 at the good addresses. */
676 param.use_memory_banks = FALSE;
677 param.pinfo = &htab->pinfo;
678 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
679 if (param.use_memory_banks)
681 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
682 htab->pinfo.bank_physical,
683 bfd_abs_section_ptr);
684 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
685 htab->pinfo.bank_virtual,
686 bfd_abs_section_ptr);
687 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
688 htab->pinfo.bank_size,
689 bfd_abs_section_ptr);
692 return TRUE;
695 void
696 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
698 unsigned i;
699 struct m68hc11_page_info *pinfo;
700 struct bfd_link_hash_entry *h;
701 struct m68hc11_elf_link_hash_table *htab;
703 htab = m68hc11_elf_hash_table (info);
704 if (htab == NULL)
705 return;
707 pinfo = & htab->pinfo;
708 if (pinfo->bank_param_initialized)
709 return;
711 pinfo->bank_virtual = M68HC12_BANK_VIRT;
712 pinfo->bank_mask = M68HC12_BANK_MASK;
713 pinfo->bank_physical = M68HC12_BANK_BASE;
714 pinfo->bank_shift = M68HC12_BANK_SHIFT;
715 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
717 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
718 FALSE, FALSE, TRUE);
719 if (h != (struct bfd_link_hash_entry*) NULL
720 && h->type == bfd_link_hash_defined)
721 pinfo->bank_physical = (h->u.def.value
722 + h->u.def.section->output_section->vma
723 + h->u.def.section->output_offset);
725 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
726 FALSE, FALSE, TRUE);
727 if (h != (struct bfd_link_hash_entry*) NULL
728 && h->type == bfd_link_hash_defined)
729 pinfo->bank_virtual = (h->u.def.value
730 + h->u.def.section->output_section->vma
731 + h->u.def.section->output_offset);
733 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
734 FALSE, FALSE, TRUE);
735 if (h != (struct bfd_link_hash_entry*) NULL
736 && h->type == bfd_link_hash_defined)
737 pinfo->bank_size = (h->u.def.value
738 + h->u.def.section->output_section->vma
739 + h->u.def.section->output_offset);
741 pinfo->bank_shift = 0;
742 for (i = pinfo->bank_size; i != 0; i >>= 1)
743 pinfo->bank_shift++;
744 pinfo->bank_shift--;
745 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
746 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
747 pinfo->bank_param_initialized = 1;
749 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
750 FALSE, TRUE);
751 if (h != (struct bfd_link_hash_entry*) NULL
752 && h->type == bfd_link_hash_defined)
753 pinfo->trampoline_addr = (h->u.def.value
754 + h->u.def.section->output_section->vma
755 + h->u.def.section->output_offset);
758 /* Return 1 if the address is in banked memory.
759 This can be applied to a virtual address and to a physical address. */
761 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
763 if (addr >= pinfo->bank_virtual)
764 return 1;
766 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
767 return 1;
769 return 0;
772 /* Return the physical address seen by the processor, taking
773 into account banked memory. */
774 bfd_vma
775 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
777 if (addr < pinfo->bank_virtual)
778 return addr;
780 /* Map the address to the memory bank. */
781 addr -= pinfo->bank_virtual;
782 addr &= pinfo->bank_mask;
783 addr += pinfo->bank_physical;
784 return addr;
787 /* Return the page number corresponding to an address in banked memory. */
788 bfd_vma
789 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
791 if (addr < pinfo->bank_virtual)
792 return 0;
794 /* Map the address to the memory bank. */
795 addr -= pinfo->bank_virtual;
796 addr >>= pinfo->bank_shift;
797 addr &= 0x0ff;
798 return addr;
801 /* This function is used for relocs which are only used for relaxing,
802 which the linker should otherwise ignore. */
804 bfd_reloc_status_type
805 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
806 arelent *reloc_entry,
807 asymbol *symbol ATTRIBUTE_UNUSED,
808 void *data ATTRIBUTE_UNUSED,
809 asection *input_section,
810 bfd *output_bfd,
811 char **error_message ATTRIBUTE_UNUSED)
813 if (output_bfd != NULL)
814 reloc_entry->address += input_section->output_offset;
815 return bfd_reloc_ok;
818 bfd_reloc_status_type
819 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
820 arelent *reloc_entry,
821 asymbol *symbol,
822 void *data ATTRIBUTE_UNUSED,
823 asection *input_section,
824 bfd *output_bfd,
825 char **error_message ATTRIBUTE_UNUSED)
827 if (output_bfd != (bfd *) NULL
828 && (symbol->flags & BSF_SECTION_SYM) == 0
829 && (! reloc_entry->howto->partial_inplace
830 || reloc_entry->addend == 0))
832 reloc_entry->address += input_section->output_offset;
833 return bfd_reloc_ok;
836 if (output_bfd != NULL)
837 return bfd_reloc_continue;
839 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
840 return bfd_reloc_outofrange;
842 abort();
845 /* Look through the relocs for a section during the first phase.
846 Since we don't do .gots or .plts, we just need to consider the
847 virtual table relocs for gc. */
849 bfd_boolean
850 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
851 asection *sec, const Elf_Internal_Rela *relocs)
853 Elf_Internal_Shdr * symtab_hdr;
854 struct elf_link_hash_entry ** sym_hashes;
855 const Elf_Internal_Rela * rel;
856 const Elf_Internal_Rela * rel_end;
858 if (info->relocatable)
859 return TRUE;
861 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
862 sym_hashes = elf_sym_hashes (abfd);
863 rel_end = relocs + sec->reloc_count;
865 for (rel = relocs; rel < rel_end; rel++)
867 struct elf_link_hash_entry * h;
868 unsigned long r_symndx;
870 r_symndx = ELF32_R_SYM (rel->r_info);
872 if (r_symndx < symtab_hdr->sh_info)
873 h = NULL;
874 else
876 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
877 while (h->root.type == bfd_link_hash_indirect
878 || h->root.type == bfd_link_hash_warning)
879 h = (struct elf_link_hash_entry *) h->root.u.i.link;
882 switch (ELF32_R_TYPE (rel->r_info))
884 /* This relocation describes the C++ object vtable hierarchy.
885 Reconstruct it for later use during GC. */
886 case R_M68HC11_GNU_VTINHERIT:
887 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
888 return FALSE;
889 break;
891 /* This relocation describes which C++ vtable entries are actually
892 used. Record for later use during GC. */
893 case R_M68HC11_GNU_VTENTRY:
894 BFD_ASSERT (h != NULL);
895 if (h != NULL
896 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
897 return FALSE;
898 break;
902 return TRUE;
905 /* Relocate a 68hc11/68hc12 ELF section. */
906 bfd_boolean
907 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
908 struct bfd_link_info *info,
909 bfd *input_bfd, asection *input_section,
910 bfd_byte *contents, Elf_Internal_Rela *relocs,
911 Elf_Internal_Sym *local_syms,
912 asection **local_sections)
914 Elf_Internal_Shdr *symtab_hdr;
915 struct elf_link_hash_entry **sym_hashes;
916 Elf_Internal_Rela *rel, *relend;
917 const char *name = NULL;
918 struct m68hc11_page_info *pinfo;
919 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
920 struct m68hc11_elf_link_hash_table *htab;
922 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
923 sym_hashes = elf_sym_hashes (input_bfd);
925 htab = m68hc11_elf_hash_table (info);
926 if (htab == NULL)
927 return FALSE;
929 /* Get memory bank parameters. */
930 m68hc11_elf_get_bank_parameters (info);
932 pinfo = & htab->pinfo;
933 rel = relocs;
934 relend = relocs + input_section->reloc_count;
936 for (; rel < relend; rel++)
938 int r_type;
939 arelent arel;
940 reloc_howto_type *howto;
941 unsigned long r_symndx;
942 Elf_Internal_Sym *sym;
943 asection *sec;
944 bfd_vma relocation = 0;
945 bfd_reloc_status_type r = bfd_reloc_undefined;
946 bfd_vma phys_page;
947 bfd_vma phys_addr;
948 bfd_vma insn_addr;
949 bfd_vma insn_page;
950 bfd_boolean is_far = FALSE;
951 struct elf_link_hash_entry *h;
953 r_symndx = ELF32_R_SYM (rel->r_info);
954 r_type = ELF32_R_TYPE (rel->r_info);
956 if (r_type == R_M68HC11_GNU_VTENTRY
957 || r_type == R_M68HC11_GNU_VTINHERIT )
958 continue;
960 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
961 howto = arel.howto;
963 h = NULL;
964 sym = NULL;
965 sec = NULL;
966 if (r_symndx < symtab_hdr->sh_info)
968 sym = local_syms + r_symndx;
969 sec = local_sections[r_symndx];
970 relocation = (sec->output_section->vma
971 + sec->output_offset
972 + sym->st_value);
973 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
975 else
977 bfd_boolean unresolved_reloc, warned;
979 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
980 r_symndx, symtab_hdr, sym_hashes,
981 h, sec, relocation, unresolved_reloc,
982 warned);
984 is_far = (h && (h->other & STO_M68HC12_FAR));
987 if (sec != NULL && elf_discarded_section (sec))
988 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
989 rel, relend, howto, contents);
991 if (info->relocatable)
993 /* This is a relocatable link. We don't have to change
994 anything, unless the reloc is against a section symbol,
995 in which case we have to adjust according to where the
996 section symbol winds up in the output section. */
997 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
998 rel->r_addend += sec->output_offset;
999 continue;
1002 if (h != NULL)
1003 name = h->root.root.string;
1004 else
1006 name = (bfd_elf_string_from_elf_section
1007 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1008 if (name == NULL || *name == '\0')
1009 name = bfd_section_name (input_bfd, sec);
1012 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1014 struct elf32_m68hc11_stub_hash_entry* stub;
1016 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1017 name, FALSE, FALSE);
1018 if (stub)
1020 relocation = stub->stub_offset
1021 + stub->stub_sec->output_section->vma
1022 + stub->stub_sec->output_offset;
1023 is_far = FALSE;
1027 /* Do the memory bank mapping. */
1028 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1029 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1030 switch (r_type)
1032 case R_M68HC11_24:
1033 /* Reloc used by 68HC12 call instruction. */
1034 bfd_put_16 (input_bfd, phys_addr,
1035 (bfd_byte*) contents + rel->r_offset);
1036 bfd_put_8 (input_bfd, phys_page,
1037 (bfd_byte*) contents + rel->r_offset + 2);
1038 r = bfd_reloc_ok;
1039 r_type = R_M68HC11_NONE;
1040 break;
1042 case R_M68HC11_NONE:
1043 r = bfd_reloc_ok;
1044 break;
1046 case R_M68HC11_LO16:
1047 /* Reloc generated by %addr(expr) gas to obtain the
1048 address as mapped in the memory bank window. */
1049 relocation = phys_addr;
1050 break;
1052 case R_M68HC11_PAGE:
1053 /* Reloc generated by %page(expr) gas to obtain the
1054 page number associated with the address. */
1055 relocation = phys_page;
1056 break;
1058 case R_M68HC11_16:
1059 /* Get virtual address of instruction having the relocation. */
1060 if (is_far)
1062 const char* msg;
1063 char* buf;
1064 msg = _("Reference to the far symbol `%s' using a wrong "
1065 "relocation may result in incorrect execution");
1066 buf = alloca (strlen (msg) + strlen (name) + 10);
1067 sprintf (buf, msg, name);
1069 (* info->callbacks->warning)
1070 (info, buf, name, input_bfd, NULL, rel->r_offset);
1073 /* Get virtual address of instruction having the relocation. */
1074 insn_addr = input_section->output_section->vma
1075 + input_section->output_offset
1076 + rel->r_offset;
1078 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1080 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1081 && m68hc11_addr_is_banked (pinfo, insn_addr)
1082 && phys_page != insn_page)
1084 const char* msg;
1085 char* buf;
1087 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1088 "as current banked address [%lx:%04lx] (%lx)");
1090 buf = alloca (strlen (msg) + 128);
1091 sprintf (buf, msg, phys_page, phys_addr,
1092 (long) (relocation + rel->r_addend),
1093 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1094 (long) (insn_addr));
1095 if (!((*info->callbacks->warning)
1096 (info, buf, name, input_bfd, input_section,
1097 rel->r_offset)))
1098 return FALSE;
1099 break;
1101 if (phys_page != 0 && insn_page == 0)
1103 const char* msg;
1104 char* buf;
1106 msg = _("reference to a banked address [%lx:%04lx] in the "
1107 "normal address space at %04lx");
1109 buf = alloca (strlen (msg) + 128);
1110 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1111 if (!((*info->callbacks->warning)
1112 (info, buf, name, input_bfd, input_section,
1113 insn_addr)))
1114 return FALSE;
1116 relocation = phys_addr;
1117 break;
1120 /* If this is a banked address use the phys_addr so that
1121 we stay in the banked window. */
1122 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1123 relocation = phys_addr;
1124 break;
1126 if (r_type != R_M68HC11_NONE)
1127 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1128 contents, rel->r_offset,
1129 relocation, rel->r_addend);
1131 if (r != bfd_reloc_ok)
1133 const char * msg = (const char *) 0;
1135 switch (r)
1137 case bfd_reloc_overflow:
1138 if (!((*info->callbacks->reloc_overflow)
1139 (info, NULL, name, howto->name, (bfd_vma) 0,
1140 input_bfd, input_section, rel->r_offset)))
1141 return FALSE;
1142 break;
1144 case bfd_reloc_undefined:
1145 if (!((*info->callbacks->undefined_symbol)
1146 (info, name, input_bfd, input_section,
1147 rel->r_offset, TRUE)))
1148 return FALSE;
1149 break;
1151 case bfd_reloc_outofrange:
1152 msg = _ ("internal error: out of range error");
1153 goto common_error;
1155 case bfd_reloc_notsupported:
1156 msg = _ ("internal error: unsupported relocation error");
1157 goto common_error;
1159 case bfd_reloc_dangerous:
1160 msg = _ ("internal error: dangerous error");
1161 goto common_error;
1163 default:
1164 msg = _ ("internal error: unknown error");
1165 /* fall through */
1167 common_error:
1168 if (!((*info->callbacks->warning)
1169 (info, msg, name, input_bfd, input_section,
1170 rel->r_offset)))
1171 return FALSE;
1172 break;
1177 return TRUE;
1182 /* Set and control ELF flags in ELF header. */
1184 bfd_boolean
1185 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1187 BFD_ASSERT (!elf_flags_init (abfd)
1188 || elf_elfheader (abfd)->e_flags == flags);
1190 elf_elfheader (abfd)->e_flags = flags;
1191 elf_flags_init (abfd) = TRUE;
1192 return TRUE;
1195 /* Merge backend specific data from an object file to the output
1196 object file when linking. */
1198 bfd_boolean
1199 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1201 flagword old_flags;
1202 flagword new_flags;
1203 bfd_boolean ok = TRUE;
1205 /* Check if we have the same endianness */
1206 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1207 return FALSE;
1209 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1210 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1211 return TRUE;
1213 new_flags = elf_elfheader (ibfd)->e_flags;
1214 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1215 old_flags = elf_elfheader (obfd)->e_flags;
1217 if (! elf_flags_init (obfd))
1219 elf_flags_init (obfd) = TRUE;
1220 elf_elfheader (obfd)->e_flags = new_flags;
1221 elf_elfheader (obfd)->e_ident[EI_CLASS]
1222 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1224 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1225 && bfd_get_arch_info (obfd)->the_default)
1227 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1228 bfd_get_mach (ibfd)))
1229 return FALSE;
1232 return TRUE;
1235 /* Check ABI compatibility. */
1236 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1238 (*_bfd_error_handler)
1239 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1240 "and others for 32-bit integers"), ibfd);
1241 ok = FALSE;
1243 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1245 (*_bfd_error_handler)
1246 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1247 "and others for 64-bit double"), ibfd);
1248 ok = FALSE;
1251 /* Processor compatibility. */
1252 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1254 (*_bfd_error_handler)
1255 (_("%B: linking files compiled for HCS12 with "
1256 "others compiled for HC12"), ibfd);
1257 ok = FALSE;
1259 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1260 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1262 elf_elfheader (obfd)->e_flags = new_flags;
1264 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1265 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1267 /* Warn about any other mismatches */
1268 if (new_flags != old_flags)
1270 (*_bfd_error_handler)
1271 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1272 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1273 ok = FALSE;
1276 if (! ok)
1278 bfd_set_error (bfd_error_bad_value);
1279 return FALSE;
1282 return TRUE;
1285 bfd_boolean
1286 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1288 FILE *file = (FILE *) ptr;
1290 BFD_ASSERT (abfd != NULL && ptr != NULL);
1292 /* Print normal ELF private data. */
1293 _bfd_elf_print_private_bfd_data (abfd, ptr);
1295 /* xgettext:c-format */
1296 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1298 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1299 fprintf (file, _("[abi=32-bit int, "));
1300 else
1301 fprintf (file, _("[abi=16-bit int, "));
1303 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1304 fprintf (file, _("64-bit double, "));
1305 else
1306 fprintf (file, _("32-bit double, "));
1308 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1309 fprintf (file, _("cpu=HC11]"));
1310 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1311 fprintf (file, _("cpu=HCS12]"));
1312 else
1313 fprintf (file, _("cpu=HC12]"));
1315 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1316 fprintf (file, _(" [memory=bank-model]"));
1317 else
1318 fprintf (file, _(" [memory=flat]"));
1320 fputc ('\n', file);
1322 return TRUE;
1325 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1326 asection *asect, void *arg)
1328 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1330 if (asect->vma >= p->pinfo->bank_virtual)
1331 p->use_memory_banks = TRUE;
1334 /* Tweak the OSABI field of the elf header. */
1336 void
1337 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1339 struct m68hc11_scan_param param;
1340 struct m68hc11_elf_link_hash_table *htab;
1342 if (link_info == NULL)
1343 return;
1345 htab = m68hc11_elf_hash_table (link_info);
1346 if (htab == NULL)
1347 return;
1349 m68hc11_elf_get_bank_parameters (link_info);
1351 param.use_memory_banks = FALSE;
1352 param.pinfo = & htab->pinfo;
1354 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1356 if (param.use_memory_banks)
1358 Elf_Internal_Ehdr * i_ehdrp;
1360 i_ehdrp = elf_elfheader (abfd);
1361 i_ehdrp->e_flags |= E_M68HC12_BANKS;