* config/xtensa-relax.c (widen_spec_list): Use new "WIDE.<opcode>"
[binutils.git] / gas / config / xtensa-relax.c
bloba0848820eb361625c3690999c2580386e99e43f0
1 /* Table of relaxations for Xtensa assembly.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
21 /* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
28 operands from the pattern should be used in the result.
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
35 The patterns match a language like:
37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
42 | 'HI16' | 'LOW16'
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
49 The replacement language
50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
51 INSN_LABEL_LIT ::= INSN_TEMPL
52 | 'LABEL' num
53 | 'LITERAL' num ' ' VARIABLE
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
74 A more complex example of a branch around:
75 {"beqz %as,%label", "bnez %as,%LABEL0;j %label;LABEL0"}
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
79 An Xtensa-specific example that generates a literal:
80 {"movi %at,%imm", "LITERAL0 %imm; l32r %at,%LITERAL0"}
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
90 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l32i %at,%at,0"}
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
98 #include "as.h"
99 #include "xtensa-isa.h"
100 #include "xtensa-relax.h"
101 #include <stddef.h>
102 #include "xtensa-config.h"
104 #ifndef XCHAL_HAVE_WIDE_BRANCHES
105 #define XCHAL_HAVE_WIDE_BRANCHES 0
106 #endif
108 /* Imported from bfd. */
109 extern xtensa_isa xtensa_default_isa;
111 /* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
116 typedef struct opname_list_struct opname_list;
117 typedef opname_list opname_e;
119 struct opname_list_struct
121 char *opname;
122 opname_list *next;
125 static opname_list *local_opnames = NULL;
128 /* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
131 typedef struct opname_map_e_struct opname_map_e;
132 typedef struct opname_map_struct opname_map;
134 struct opname_map_e_struct
136 const char *operand_name; /* If null, then use constant_value. */
137 int operand_num;
138 unsigned constant_value;
139 opname_map_e *next;
142 struct opname_map_struct
144 opname_map_e *head;
145 opname_map_e **tail;
148 /* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
154 typedef struct precond_e_struct precond_e;
155 typedef struct precond_list_struct precond_list;
157 struct precond_e_struct
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
167 struct precond_list_struct
169 precond_e *head;
170 precond_e **tail;
174 /* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
178 typedef struct insn_templ_struct insn_templ;
179 struct insn_templ_struct
181 const char *opcode_name;
182 opname_map operand_map;
186 /* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
190 typedef struct insn_pattern_struct insn_pattern;
191 struct insn_pattern_struct
193 insn_templ t;
194 precond_list preconds;
195 ReqOptionList *options;
199 /* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
204 typedef struct insn_repl_e_struct insn_repl_e;
205 struct insn_repl_e_struct
207 insn_templ t;
208 insn_repl_e *next;
211 typedef struct insn_repl_struct insn_repl;
212 struct insn_repl_struct
214 insn_repl_e *head;
215 insn_repl_e **tail;
219 /* The split_rec is a vector of allocated char * pointers. */
221 typedef struct split_rec_struct split_rec;
222 struct split_rec_struct
224 char **vec;
225 int count;
228 /* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
231 typedef struct string_pattern_pair_struct string_pattern_pair;
232 struct string_pattern_pair_struct
234 const char *pattern;
235 const char *replacement;
239 /* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
242 encodings. A valid transition may require multiple steps of
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10. */
252 static string_pattern_pair widen_spec_list[] =
254 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
255 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
256 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
257 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
258 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
259 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
260 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
261 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
262 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
263 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
264 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
265 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
266 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
267 {"slli %ar,%as,0", "or %ar,%as,%as"},
269 /* Widening with literals or const16. */
270 {"movi %at,%imm ? IsaUseL32R ",
271 "LITERAL0 %imm; l32r %at,%LITERAL0"},
272 {"movi %at,%imm ? IsaUseConst16",
273 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
275 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
276 /* LOW8 is the low 8 bits of the Immed
277 MID8S is the middle 8 bits of the Immed */
278 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
280 /* In the end convert to either an l32r or const16. */
281 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
282 "LITERAL0 %imm; l32r %ar,%LITERAL0; add %ar,%as,%ar"},
283 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
284 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
286 /* Widening the load instructions with too-large immediates */
287 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
288 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l8ui %at,%at,0"},
289 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
290 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l16si %at,%at,0"},
291 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
292 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l16ui %at,%at,0"},
293 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
294 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l32i %at,%at,0"},
296 /* Widening load instructions with const16s. */
297 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
298 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
299 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
300 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
301 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
302 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
303 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
304 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
306 /* This is only PART of the loop instruction. In addition,
307 hardcoded into its use is a modification of the final operand in
308 the instruction in bytes 9 and 12. */
309 {"loop %as,%label | %as!=1 ? IsaUseLoops",
310 "loop %as,%LABEL0;"
311 "rsr.lend %as;" /* LEND */
312 "wsr.lbeg %as;" /* LBEG */
313 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
314 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
315 "wsr.lend %as;"
316 "isync;"
317 "rsr.lcount %as;" /* LCOUNT */
318 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
319 "LABEL0"},
320 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
321 "beqz %as,%label;"
322 "bltz %as,%label;"
323 "loopgtz %as,%LABEL0;"
324 "rsr.lend %as;" /* LEND */
325 "wsr.lbeg %as;" /* LBEG */
326 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
327 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
328 "wsr.lend %as;"
329 "isync;"
330 "rsr.lcount %as;" /* LCOUNT */
331 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
332 "LABEL0"},
333 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
334 "beqz %as,%label;"
335 "loopnez %as,%LABEL0;"
336 "rsr.lend %as;" /* LEND */
337 "wsr.lbeg %as;" /* LBEG */
338 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
339 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
340 "wsr.lend %as;"
341 "isync;"
342 "rsr.lcount %as;" /* LCOUNT */
343 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
344 "LABEL0"},
346 /* Relaxing to wide branches. Order is important here. With wide
347 branches, there is more than one correct relaxation for an
348 out-of-range branch. Put the wide branch relaxations first in the
349 table since they are more efficient than the branch-around
350 relaxations. */
352 {"beqz %as,%label ? IsaUseWideBranches", "WIDE.beqz %as,%label"},
353 {"bnez %as,%label ? IsaUseWideBranches", "WIDE.bnez %as,%label"},
354 {"bgez %as,%label ? IsaUseWideBranches", "WIDE.bgez %as,%label"},
355 {"bltz %as,%label ? IsaUseWideBranches", "WIDE.bltz %as,%label"},
356 {"beqi %as,%imm,%label ? IsaUseWideBranches", "WIDE.beqi %as,%imm,%label"},
357 {"bnei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bnei %as,%imm,%label"},
358 {"bgei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgei %as,%imm,%label"},
359 {"blti %as,%imm,%label ? IsaUseWideBranches", "WIDE.blti %as,%imm,%label"},
360 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgeui %as,%imm,%label"},
361 {"bltui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bltui %as,%imm,%label"},
362 {"bbci %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbci %as,%imm,%label"},
363 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbsi %as,%imm,%label"},
364 {"beq %as,%at,%label ? IsaUseWideBranches", "WIDE.beq %as,%at,%label"},
365 {"bne %as,%at,%label ? IsaUseWideBranches", "WIDE.bne %as,%at,%label"},
366 {"bge %as,%at,%label ? IsaUseWideBranches", "WIDE.bge %as,%at,%label"},
367 {"blt %as,%at,%label ? IsaUseWideBranches", "WIDE.blt %as,%at,%label"},
368 {"bgeu %as,%at,%label ? IsaUseWideBranches", "WIDE.bgeu %as,%at,%label"},
369 {"bltu %as,%at,%label ? IsaUseWideBranches", "WIDE.bltu %as,%at,%label"},
370 {"bany %as,%at,%label ? IsaUseWideBranches", "WIDE.bany %as,%at,%label"},
371 {"bnone %as,%at,%label ? IsaUseWideBranches", "WIDE.bnone %as,%at,%label"},
372 {"ball %as,%at,%label ? IsaUseWideBranches", "WIDE.ball %as,%at,%label"},
373 {"bnall %as,%at,%label ? IsaUseWideBranches", "WIDE.bnall %as,%at,%label"},
374 {"bbc %as,%at,%label ? IsaUseWideBranches", "WIDE.bbc %as,%at,%label"},
375 {"bbs %as,%at,%label ? IsaUseWideBranches", "WIDE.bbs %as,%at,%label"},
377 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
378 branches if the density option is available. */
379 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL0;j %label;LABEL0"},
380 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL0;j %label;LABEL0"},
381 {"beqz %as,%label", "bnez %as,%LABEL0;j %label;LABEL0"},
382 {"bnez %as,%label", "beqz %as,%LABEL0;j %label;LABEL0"},
384 /* Widening expect-taken branches. */
385 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL0;j %label;LABEL0"},
386 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL0;j %label;LABEL0"},
387 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL0;j %label;LABEL0"},
388 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL0;j %label;LABEL0"},
390 /* Widening branches from the Xtensa boolean option. */
391 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL0;j %label;LABEL0"},
392 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL0;j %label;LABEL0"},
394 /* Other branch-around-jump widenings. */
395 {"bgez %as,%label", "bltz %as,%LABEL0;j %label;LABEL0"},
396 {"bltz %as,%label", "bgez %as,%LABEL0;j %label;LABEL0"},
397 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL0;j %label;LABEL0"},
398 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL0;j %label;LABEL0"},
399 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL0;j %label;LABEL0"},
400 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL0;j %label;LABEL0"},
401 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL0;j %label;LABEL0"},
402 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL0;j %label;LABEL0"},
403 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL0;j %label;LABEL0"},
404 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL0;j %label;LABEL0"},
405 {"beq %as,%at,%label", "bne %as,%at,%LABEL0;j %label;LABEL0"},
406 {"bne %as,%at,%label", "beq %as,%at,%LABEL0;j %label;LABEL0"},
407 {"bge %as,%at,%label", "blt %as,%at,%LABEL0;j %label;LABEL0"},
408 {"blt %as,%at,%label", "bge %as,%at,%LABEL0;j %label;LABEL0"},
409 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL0;j %label;LABEL0"},
410 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL0;j %label;LABEL0"},
411 {"bany %as,%at,%label", "bnone %as,%at,%LABEL0;j %label;LABEL0"},
412 {"bnone %as,%at,%label", "bany %as,%at,%LABEL0;j %label;LABEL0"},
413 {"ball %as,%at,%label", "bnall %as,%at,%LABEL0;j %label;LABEL0"},
414 {"bnall %as,%at,%label", "ball %as,%at,%LABEL0;j %label;LABEL0"},
415 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL0;j %label;LABEL0"},
416 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL0;j %label;LABEL0"},
418 /* Expanding calls with literals. */
419 {"call0 %label,%ar0 ? IsaUseL32R",
420 "LITERAL0 %label; l32r a0,%LITERAL0; callx0 a0,%ar0"},
421 {"call4 %label,%ar4 ? IsaUseL32R",
422 "LITERAL0 %label; l32r a4,%LITERAL0; callx4 a4,%ar4"},
423 {"call8 %label,%ar8 ? IsaUseL32R",
424 "LITERAL0 %label; l32r a8,%LITERAL0; callx8 a8,%ar8"},
425 {"call12 %label,%ar12 ? IsaUseL32R",
426 "LITERAL0 %label; l32r a12,%LITERAL0; callx12 a12,%ar12"},
428 /* Expanding calls with const16. */
429 {"call0 %label,%ar0 ? IsaUseConst16",
430 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
431 {"call4 %label,%ar4 ? IsaUseConst16",
432 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
433 {"call8 %label,%ar8 ? IsaUseConst16",
434 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
435 {"call12 %label,%ar12 ? IsaUseConst16",
436 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"}
439 #define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
442 /* The simplify_spec_list specifies simplifying transformations that
443 will reduce the instruction width or otherwise simplify an
444 instruction. These are usually applied before relaxation in the
445 assembler. It is always legal to simplify. Even for "addi as, 0",
446 the "addi.n as, 0" will eventually be widened back to an "addi 0"
447 after the widening table is applied. Note: The usage of this table
448 has changed somewhat so that it is entirely specific to "narrowing"
449 instructions to use the density option. This table is not used at
450 all when the density option is not available. */
452 string_pattern_pair simplify_spec_list[] =
454 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
455 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
456 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
457 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
458 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
459 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
460 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
461 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
462 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
463 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
464 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
465 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
466 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
467 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
468 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
469 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
472 #define SIMPLIFY_COUNT \
473 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
476 /* Externally visible functions. */
478 extern bfd_boolean xg_has_userdef_op_fn (OpType);
479 extern long xg_apply_userdef_op_fn (OpType, long);
482 static void
483 append_transition (TransitionTable *tt,
484 xtensa_opcode opcode,
485 TransitionRule *t,
486 transition_cmp_fn cmp)
488 TransitionList *tl = (TransitionList *) xmalloc (sizeof (TransitionList));
489 TransitionList *prev;
490 TransitionList **t_p;
491 assert (tt != NULL);
492 assert (opcode < tt->num_opcodes);
494 prev = tt->table[opcode];
495 tl->rule = t;
496 tl->next = NULL;
497 if (prev == NULL)
499 tt->table[opcode] = tl;
500 return;
503 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
505 if (cmp && cmp (t, (*t_p)->rule) < 0)
507 /* Insert it here. */
508 tl->next = *t_p;
509 *t_p = tl;
510 return;
513 (*t_p) = tl;
517 static void
518 append_condition (TransitionRule *tr, Precondition *cond)
520 PreconditionList *pl =
521 (PreconditionList *) xmalloc (sizeof (PreconditionList));
522 PreconditionList *prev = tr->conditions;
523 PreconditionList *nxt;
525 pl->precond = cond;
526 pl->next = NULL;
527 if (prev == NULL)
529 tr->conditions = pl;
530 return;
532 nxt = prev->next;
533 while (nxt != NULL)
535 prev = nxt;
536 nxt = nxt->next;
538 prev->next = pl;
542 static void
543 append_value_condition (TransitionRule *tr,
544 CmpOp cmp,
545 unsigned op1,
546 unsigned op2)
548 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
550 cond->cmp = cmp;
551 cond->op_num = op1;
552 cond->typ = OP_OPERAND;
553 cond->op_data = op2;
554 append_condition (tr, cond);
558 static void
559 append_constant_value_condition (TransitionRule *tr,
560 CmpOp cmp,
561 unsigned op1,
562 unsigned cnst)
564 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
566 cond->cmp = cmp;
567 cond->op_num = op1;
568 cond->typ = OP_CONSTANT;
569 cond->op_data = cnst;
570 append_condition (tr, cond);
574 static void
575 append_build_insn (TransitionRule *tr, BuildInstr *bi)
577 BuildInstr *prev = tr->to_instr;
578 BuildInstr *nxt;
580 bi->next = NULL;
581 if (prev == NULL)
583 tr->to_instr = bi;
584 return;
586 nxt = prev->next;
587 while (nxt != 0)
589 prev = nxt;
590 nxt = prev->next;
592 prev->next = bi;
596 static void
597 append_op (BuildInstr *bi, BuildOp *b_op)
599 BuildOp *prev = bi->ops;
600 BuildOp *nxt;
602 if (prev == NULL)
604 bi->ops = b_op;
605 return;
607 nxt = prev->next;
608 while (nxt != NULL)
610 prev = nxt;
611 nxt = nxt->next;
613 prev->next = b_op;
617 static void
618 append_literal_op (BuildInstr *bi, unsigned op1, unsigned litnum)
620 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
622 b_op->op_num = op1;
623 b_op->typ = OP_LITERAL;
624 b_op->op_data = litnum;
625 b_op->next = NULL;
626 append_op (bi, b_op);
630 static void
631 append_label_op (BuildInstr *bi, unsigned op1, unsigned labnum)
633 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
635 b_op->op_num = op1;
636 b_op->typ = OP_LABEL;
637 b_op->op_data = labnum;
638 b_op->next = NULL;
639 append_op (bi, b_op);
643 static void
644 append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
646 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
648 b_op->op_num = op1;
649 b_op->typ = OP_CONSTANT;
650 b_op->op_data = cnst;
651 b_op->next = NULL;
652 append_op (bi, b_op);
656 static void
657 append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
659 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
661 b_op->op_num = op1;
662 b_op->typ = OP_OPERAND;
663 b_op->op_data = src_op;
664 b_op->next = NULL;
665 append_op (bi, b_op);
669 /* These could be generated but are not currently. */
671 static void
672 append_user_fn_field_op (BuildInstr *bi,
673 unsigned op1,
674 OpType typ,
675 unsigned src_op)
677 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
679 b_op->op_num = op1;
680 b_op->typ = typ;
681 b_op->op_data = src_op;
682 b_op->next = NULL;
683 append_op (bi, b_op);
687 /* These operand functions are the semantics of user-defined
688 operand functions. */
690 static long
691 operand_function_HI24S (long a)
693 if (a & 0x80)
694 return (a & (~0xff)) + 0x100;
695 else
696 return (a & (~0xff));
700 static long
701 operand_function_F32MINUS (long a)
703 return (32 - a);
707 static long
708 operand_function_LOW8 (long a)
710 if (a & 0x80)
711 return (a & 0xff) | ~0xff;
712 else
713 return (a & 0xff);
717 static long
718 operand_function_LOW16U (long a)
720 return (a & 0xffff);
724 static long
725 operand_function_HI16U (long a)
727 unsigned long b = a & 0xffff0000;
728 return (long) (b >> 16);
732 bfd_boolean
733 xg_has_userdef_op_fn (OpType op)
735 switch (op)
737 case OP_OPERAND_F32MINUS:
738 case OP_OPERAND_LOW8:
739 case OP_OPERAND_HI24S:
740 case OP_OPERAND_LOW16U:
741 case OP_OPERAND_HI16U:
742 return TRUE;
743 default:
744 break;
746 return FALSE;
750 long
751 xg_apply_userdef_op_fn (OpType op, long a)
753 switch (op)
755 case OP_OPERAND_F32MINUS:
756 return operand_function_F32MINUS (a);
757 case OP_OPERAND_LOW8:
758 return operand_function_LOW8 (a);
759 case OP_OPERAND_HI24S:
760 return operand_function_HI24S (a);
761 case OP_OPERAND_LOW16U:
762 return operand_function_LOW16U (a);
763 case OP_OPERAND_HI16U:
764 return operand_function_HI16U (a);
765 default:
766 break;
768 return FALSE;
772 /* Generate a transition table. */
774 static const char *
775 enter_opname_n (const char *name, int len)
777 opname_e *op;
779 for (op = local_opnames; op != NULL; op = op->next)
781 if (strlen (op->opname) == (unsigned) len
782 && strncmp (op->opname, name, len) == 0)
783 return op->opname;
785 op = (opname_e *) xmalloc (sizeof (opname_e));
786 op->opname = (char *) xmalloc (len + 1);
787 strncpy (op->opname, name, len);
788 op->opname[len] = '\0';
789 return op->opname;
793 static const char *
794 enter_opname (const char *name)
796 opname_e *op;
798 for (op = local_opnames; op != NULL; op = op->next)
800 if (strcmp (op->opname, name) == 0)
801 return op->opname;
803 op = (opname_e *) xmalloc (sizeof (opname_e));
804 op->opname = xstrdup (name);
805 return op->opname;
809 static void
810 init_opname_map (opname_map *m)
812 m->head = NULL;
813 m->tail = &m->head;
817 static void
818 clear_opname_map (opname_map *m)
820 opname_map_e *e;
822 while (m->head != NULL)
824 e = m->head;
825 m->head = e->next;
826 free (e);
828 m->tail = &m->head;
832 static bfd_boolean
833 same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
835 if (m1->operand_name == NULL || m1->operand_name == NULL)
836 return FALSE;
837 return (m1->operand_name == m2->operand_name);
841 static opname_map_e *
842 get_opmatch (opname_map *map, const char *operand_name)
844 opname_map_e *m;
846 for (m = map->head; m != NULL; m = m->next)
848 if (strcmp (m->operand_name, operand_name) == 0)
849 return m;
851 return NULL;
855 static bfd_boolean
856 op_is_constant (const opname_map_e *m1)
858 return (m1->operand_name == NULL);
862 static unsigned
863 op_get_constant (const opname_map_e *m1)
865 assert (m1->operand_name == NULL);
866 return m1->constant_value;
870 static void
871 init_precond_list (precond_list *l)
873 l->head = NULL;
874 l->tail = &l->head;
878 static void
879 clear_precond_list (precond_list *l)
881 precond_e *e;
883 while (l->head != NULL)
885 e = l->head;
886 l->head = e->next;
887 free (e);
889 l->tail = &l->head;
893 static void
894 init_insn_templ (insn_templ *t)
896 t->opcode_name = NULL;
897 init_opname_map (&t->operand_map);
901 static void
902 clear_insn_templ (insn_templ *t)
904 clear_opname_map (&t->operand_map);
908 static void
909 init_insn_pattern (insn_pattern *p)
911 init_insn_templ (&p->t);
912 init_precond_list (&p->preconds);
913 p->options = NULL;
917 static void
918 clear_insn_pattern (insn_pattern *p)
920 clear_insn_templ (&p->t);
921 clear_precond_list (&p->preconds);
925 static void
926 init_insn_repl (insn_repl *r)
928 r->head = NULL;
929 r->tail = &r->head;
933 static void
934 clear_insn_repl (insn_repl *r)
936 insn_repl_e *e;
938 while (r->head != NULL)
940 e = r->head;
941 r->head = e->next;
942 clear_insn_templ (&e->t);
944 r->tail = &r->head;
948 static int
949 insn_templ_operand_count (const insn_templ *t)
951 int i = 0;
952 const opname_map_e *op;
954 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
956 return i;
960 /* Convert a string to a number. E.G.: parse_constant("10", &num) */
962 static bfd_boolean
963 parse_constant (const char *in, unsigned *val_p)
965 unsigned val = 0;
966 const char *p;
968 if (in == NULL)
969 return FALSE;
970 p = in;
972 while (*p != '\0')
974 if (*p >= '0' && *p <= '9')
975 val = val * 10 + (*p - '0');
976 else
977 return FALSE;
978 ++p;
980 *val_p = val;
981 return TRUE;
985 /* Match a pattern like "foo1" with
986 parse_id_constant("foo1", "foo", &num).
987 This may also be used to just match a number. */
989 static bfd_boolean
990 parse_id_constant (const char *in, const char *name, unsigned *val_p)
992 unsigned namelen = 0;
993 const char *p;
995 if (in == NULL)
996 return FALSE;
998 if (name != NULL)
999 namelen = strlen (name);
1001 if (name != NULL && strncmp (in, name, namelen) != 0)
1002 return FALSE;
1004 p = &in[namelen];
1005 return parse_constant (p, val_p);
1009 static bfd_boolean
1010 parse_special_fn (const char *name,
1011 const char **fn_name_p,
1012 const char **arg_name_p)
1014 char *p_start;
1015 const char *p_end;
1017 p_start = strchr (name, '(');
1018 if (p_start == NULL)
1019 return FALSE;
1021 p_end = strchr (p_start, ')');
1023 if (p_end == NULL)
1024 return FALSE;
1026 if (p_end[1] != '\0')
1027 return FALSE;
1029 *fn_name_p = enter_opname_n (name, p_start - name);
1030 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1031 return TRUE;
1035 static const char *
1036 skip_white (const char *p)
1038 if (p == NULL)
1039 return p;
1040 while (*p == ' ')
1041 ++p;
1042 return p;
1046 static void
1047 trim_whitespace (char *in)
1049 char *last_white = NULL;
1050 char *p = in;
1052 while (p && *p != '\0')
1054 while (*p == ' ')
1056 if (last_white == NULL)
1057 last_white = p;
1058 p++;
1060 if (*p != '\0')
1062 last_white = NULL;
1063 p++;
1066 if (last_white)
1067 *last_white = '\0';
1071 /* Split a string into component strings where "c" is the
1072 delimiter. Place the result in the split_rec. */
1074 static void
1075 split_string (split_rec *rec,
1076 const char *in,
1077 char c,
1078 bfd_boolean elide_whitespace)
1080 int cnt = 0;
1081 int i;
1082 const char *p = in;
1084 while (p != NULL && *p != '\0')
1086 cnt++;
1087 p = strchr (p, c);
1088 if (p)
1089 p++;
1091 rec->count = cnt;
1092 rec->vec = NULL;
1094 if (rec->count == 0)
1095 return;
1097 rec->vec = (char **) xmalloc (sizeof (char *) * cnt);
1098 for (i = 0; i < cnt; i++)
1099 rec->vec[i] = 0;
1101 p = in;
1102 for (i = 0; i < cnt; i++)
1104 const char *q;
1105 int len;
1107 q = p;
1108 if (elide_whitespace)
1109 q = skip_white (q);
1111 p = strchr (q, c);
1112 if (p == NULL)
1113 rec->vec[i] = xstrdup (q);
1114 else
1116 len = p - q;
1117 rec->vec[i] = (char *) xmalloc (sizeof (char) * (len + 1));
1118 strncpy (rec->vec[i], q, len);
1119 rec->vec[i][len] = '\0';
1120 p++;
1123 if (elide_whitespace)
1124 trim_whitespace (rec->vec[i]);
1129 static void
1130 clear_split_rec (split_rec *rec)
1132 int i;
1134 for (i = 0; i < rec->count; i++)
1135 free (rec->vec[i]);
1137 if (rec->count > 0)
1138 free (rec->vec);
1142 /* Initialize a split record. The split record must be initialized
1143 before split_string is called. */
1145 static void
1146 init_split_rec (split_rec *rec)
1148 rec->vec = NULL;
1149 rec->count = 0;
1153 /* Parse an instruction template like "insn op1, op2, op3". */
1155 static bfd_boolean
1156 parse_insn_templ (const char *s, insn_templ *t)
1158 const char *p = s;
1159 int insn_name_len;
1160 split_rec oprec;
1161 int i;
1163 /* First find the first whitespace. */
1165 init_split_rec (&oprec);
1167 p = skip_white (p);
1168 insn_name_len = strcspn (s, " ");
1169 if (insn_name_len == 0)
1170 return FALSE;
1172 init_insn_templ (t);
1173 t->opcode_name = enter_opname_n (p, insn_name_len);
1175 p = p + insn_name_len;
1177 /* Split by ',' and skip beginning and trailing whitespace. */
1178 split_string (&oprec, p, ',', TRUE);
1180 for (i = 0; i < oprec.count; i++)
1182 const char *opname = oprec.vec[i];
1183 opname_map_e *e = (opname_map_e *) xmalloc (sizeof (opname_map_e));
1184 e->next = NULL;
1185 e->operand_name = NULL;
1186 e->constant_value = 0;
1187 e->operand_num = i;
1189 /* If it begins with a number, assume that it is a number. */
1190 if (opname && opname[0] >= '0' && opname[0] <= '9')
1192 unsigned val;
1194 if (parse_constant (opname, &val))
1195 e->constant_value = val;
1196 else
1198 free (e);
1199 clear_split_rec (&oprec);
1200 clear_insn_templ (t);
1201 return FALSE;
1204 else
1205 e->operand_name = enter_opname (oprec.vec[i]);
1207 *t->operand_map.tail = e;
1208 t->operand_map.tail = &e->next;
1210 clear_split_rec (&oprec);
1211 return TRUE;
1215 static bfd_boolean
1216 parse_precond (const char *s, precond_e *precond)
1218 /* All preconditions are currently of the form:
1219 a == b or a != b or a == k (where k is a constant).
1220 Later we may use some special functions like DENSITY == 1
1221 to identify when density is available. */
1223 const char *p = s;
1224 int len;
1225 precond->opname1 = NULL;
1226 precond->opval1 = 0;
1227 precond->cmpop = OP_EQUAL;
1228 precond->opname2 = NULL;
1229 precond->opval2 = 0;
1230 precond->next = NULL;
1232 p = skip_white (p);
1234 len = strcspn (p, " !=");
1236 if (len == 0)
1237 return FALSE;
1239 precond->opname1 = enter_opname_n (p, len);
1240 p = p + len;
1241 p = skip_white (p);
1243 /* Check for "==" and "!=". */
1244 if (strncmp (p, "==", 2) == 0)
1245 precond->cmpop = OP_EQUAL;
1246 else if (strncmp (p, "!=", 2) == 0)
1247 precond->cmpop = OP_NOTEQUAL;
1248 else
1249 return FALSE;
1251 p = p + 2;
1252 p = skip_white (p);
1254 /* No trailing whitespace from earlier parsing. */
1255 if (p[0] >= '0' && p[0] <= '9')
1257 unsigned val;
1258 if (parse_constant (p, &val))
1259 precond->opval2 = val;
1260 else
1261 return FALSE;
1263 else
1264 precond->opname2 = enter_opname (p);
1265 return TRUE;
1269 static void
1270 clear_req_or_option_list (ReqOrOption **r_p)
1272 if (*r_p == NULL)
1273 return;
1275 free ((*r_p)->option_name);
1276 clear_req_or_option_list (&(*r_p)->next);
1277 *r_p = NULL;
1281 static void
1282 clear_req_option_list (ReqOption **r_p)
1284 if (*r_p == NULL)
1285 return;
1287 clear_req_or_option_list (&(*r_p)->or_option_terms);
1288 clear_req_option_list (&(*r_p)->next);
1289 *r_p = NULL;
1293 static ReqOrOption *
1294 clone_req_or_option_list (ReqOrOption *req_or_option)
1296 ReqOrOption *new_req_or_option;
1298 if (req_or_option == NULL)
1299 return NULL;
1301 new_req_or_option = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1302 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1303 new_req_or_option->is_true = req_or_option->is_true;
1304 new_req_or_option->next = NULL;
1305 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1306 return new_req_or_option;
1310 static ReqOption *
1311 clone_req_option_list (ReqOption *req_option)
1313 ReqOption *new_req_option;
1315 if (req_option == NULL)
1316 return NULL;
1318 new_req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1319 new_req_option->or_option_terms = NULL;
1320 new_req_option->next = NULL;
1321 new_req_option->or_option_terms =
1322 clone_req_or_option_list (req_option->or_option_terms);
1323 new_req_option->next = clone_req_option_list (req_option->next);
1324 return new_req_option;
1328 static bfd_boolean
1329 parse_option_cond (const char *s, ReqOption *option)
1331 int i;
1332 split_rec option_term_rec;
1334 /* All option or conditions are of the form:
1335 optionA + no-optionB + ...
1336 "Ands" are divided by "?". */
1338 init_split_rec (&option_term_rec);
1339 split_string (&option_term_rec, s, '+', TRUE);
1341 if (option_term_rec.count == 0)
1343 clear_split_rec (&option_term_rec);
1344 return FALSE;
1347 for (i = 0; i < option_term_rec.count; i++)
1349 char *option_name = option_term_rec.vec[i];
1350 bfd_boolean is_true = TRUE;
1351 ReqOrOption *req;
1352 ReqOrOption **r_p;
1354 if (strncmp (option_name, "no-", 3) == 0)
1356 option_name = xstrdup (&option_name[3]);
1357 is_true = FALSE;
1359 else
1360 option_name = xstrdup (option_name);
1362 req = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1363 req->option_name = option_name;
1364 req->is_true = is_true;
1365 req->next = NULL;
1367 /* Append to list. */
1368 for (r_p = &option->or_option_terms; (*r_p) != NULL;
1369 r_p = &(*r_p)->next)
1371 (*r_p) = req;
1373 return TRUE;
1377 /* Parse a string like:
1378 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1379 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
1380 the same and operand 2 and 3 are the same and operand 4 is 1.
1384 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1385 i.e. instruction "insn" with 1 operands where operand 1 is 1
1386 when "density" or "boolean" options are available and
1387 "useroption" is not available.
1389 Because the current implementation of this parsing scheme uses
1390 split_string, it requires that '|' and '?' are only used as
1391 delimiters for predicates and required options. */
1393 static bfd_boolean
1394 parse_insn_pattern (const char *in, insn_pattern *insn)
1396 split_rec rec;
1397 split_rec optionrec;
1398 int i;
1400 init_insn_pattern (insn);
1402 init_split_rec (&optionrec);
1403 split_string (&optionrec, in, '?', TRUE);
1404 if (optionrec.count == 0)
1406 clear_split_rec (&optionrec);
1407 return FALSE;
1410 init_split_rec (&rec);
1412 split_string (&rec, optionrec.vec[0], '|', TRUE);
1414 if (rec.count == 0)
1416 clear_split_rec (&rec);
1417 clear_split_rec (&optionrec);
1418 return FALSE;
1421 if (!parse_insn_templ (rec.vec[0], &insn->t))
1423 clear_split_rec (&rec);
1424 clear_split_rec (&optionrec);
1425 return FALSE;
1428 for (i = 1; i < rec.count; i++)
1430 precond_e *cond = (precond_e *) xmalloc (sizeof (precond_e));
1432 if (!parse_precond (rec.vec[i], cond))
1434 clear_split_rec (&rec);
1435 clear_split_rec (&optionrec);
1436 clear_insn_pattern (insn);
1437 return FALSE;
1440 /* Append the condition. */
1441 *insn->preconds.tail = cond;
1442 insn->preconds.tail = &cond->next;
1445 for (i = 1; i < optionrec.count; i++)
1447 /* Handle the option conditions. */
1448 ReqOption **r_p;
1449 ReqOption *req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1450 req_option->or_option_terms = NULL;
1451 req_option->next = NULL;
1453 if (!parse_option_cond (optionrec.vec[i], req_option))
1455 clear_split_rec (&rec);
1456 clear_split_rec (&optionrec);
1457 clear_insn_pattern (insn);
1458 clear_req_option_list (&req_option);
1459 return FALSE;
1462 /* Append the condition. */
1463 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1466 (*r_p) = req_option;
1469 clear_split_rec (&rec);
1470 clear_split_rec (&optionrec);
1471 return TRUE;
1475 static bfd_boolean
1476 parse_insn_repl (const char *in, insn_repl *r_p)
1478 /* This is a list of instruction templates separated by ';'. */
1479 split_rec rec;
1480 int i;
1482 split_string (&rec, in, ';', TRUE);
1484 for (i = 0; i < rec.count; i++)
1486 insn_repl_e *e = (insn_repl_e *) xmalloc (sizeof (insn_repl_e));
1488 e->next = NULL;
1490 if (!parse_insn_templ (rec.vec[i], &e->t))
1492 free (e);
1493 clear_insn_repl (r_p);
1494 return FALSE;
1496 *r_p->tail = e;
1497 r_p->tail = &e->next;
1499 return TRUE;
1503 static bfd_boolean
1504 transition_applies (insn_pattern *initial_insn,
1505 const char *from_string ATTRIBUTE_UNUSED,
1506 const char *to_string ATTRIBUTE_UNUSED)
1508 ReqOption *req_option;
1510 for (req_option = initial_insn->options;
1511 req_option != NULL;
1512 req_option = req_option->next)
1514 ReqOrOption *req_or_option = req_option->or_option_terms;
1516 if (req_or_option == NULL
1517 || req_or_option->next != NULL)
1518 continue;
1520 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
1522 bfd_boolean option_available = FALSE;
1523 char *option_name = req_or_option->option_name + 6;
1524 if (!strcmp (option_name, "DensityInstruction"))
1525 option_available = (XCHAL_HAVE_DENSITY == 1);
1526 else if (!strcmp (option_name, "L32R"))
1527 option_available = (XCHAL_HAVE_L32R == 1);
1528 else if (!strcmp (option_name, "Const16"))
1529 option_available = (XCHAL_HAVE_CONST16 == 1);
1530 else if (!strcmp (option_name, "Loops"))
1531 option_available = (XCHAL_HAVE_LOOPS == 1);
1532 else if (!strcmp (option_name, "WideBranches"))
1533 option_available = (XCHAL_HAVE_WIDE_BRANCHES == 1);
1534 else if (!strcmp (option_name, "PredictedBranches"))
1535 option_available = (XCHAL_HAVE_PREDICTED_BRANCHES == 1);
1536 else if (!strcmp (option_name, "Booleans"))
1537 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1538 else
1539 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1540 req_or_option->option_name, from_string);
1541 if ((option_available ^ req_or_option->is_true) != 0)
1542 return FALSE;
1544 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1546 bfd_boolean nop_available =
1547 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1548 != XTENSA_UNDEFINED);
1549 if ((nop_available ^ req_or_option->is_true) != 0)
1550 return FALSE;
1553 return TRUE;
1557 static bfd_boolean
1558 wide_branch_opcode (const char *opcode_name,
1559 char *suffix,
1560 xtensa_opcode *popcode)
1562 xtensa_isa isa = xtensa_default_isa;
1563 xtensa_opcode opcode;
1564 static char wbr_name_buf[20];
1566 if (strncmp (opcode_name, "WIDE.", 5) != 0)
1567 return FALSE;
1569 strcpy (wbr_name_buf, opcode_name + 5);
1570 strcat (wbr_name_buf, suffix);
1571 opcode = xtensa_opcode_lookup (isa, wbr_name_buf);
1572 if (opcode != XTENSA_UNDEFINED)
1574 *popcode = opcode;
1575 return TRUE;
1578 return FALSE;
1582 static TransitionRule *
1583 build_transition (insn_pattern *initial_insn,
1584 insn_repl *replace_insns,
1585 const char *from_string,
1586 const char *to_string)
1588 TransitionRule *tr = NULL;
1589 xtensa_opcode opcode;
1590 xtensa_isa isa = xtensa_default_isa;
1592 opname_map_e *op1;
1593 opname_map_e *op2;
1595 precond_e *precond;
1596 insn_repl_e *r;
1597 unsigned label_count = 0;
1598 unsigned max_label_count = 0;
1599 bfd_boolean has_label = FALSE;
1600 unsigned literal_count = 0;
1602 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1603 if (opcode == XTENSA_UNDEFINED)
1605 /* It is OK to not be able to translate some of these opcodes. */
1606 return NULL;
1610 if (xtensa_opcode_num_operands (isa, opcode)
1611 != insn_templ_operand_count (&initial_insn->t))
1613 /* This is also OK because there are opcodes that
1614 have different numbers of operands on different
1615 architecture variations. */
1616 return NULL;
1619 tr = (TransitionRule *) xmalloc (sizeof (TransitionRule));
1620 tr->opcode = opcode;
1621 tr->conditions = NULL;
1622 tr->to_instr = NULL;
1624 /* Build the conditions. First, equivalent operand condition.... */
1625 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1627 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1629 if (same_operand_name (op1, op2))
1631 append_value_condition (tr, OP_EQUAL,
1632 op1->operand_num, op2->operand_num);
1637 /* Now the condition that an operand value must be a constant.... */
1638 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1640 if (op_is_constant (op1))
1642 append_constant_value_condition (tr,
1643 OP_EQUAL,
1644 op1->operand_num,
1645 op_get_constant (op1));
1650 /* Now add the explicit preconditions listed after the "|" in the spec.
1651 These are currently very limited, so we do a special case
1652 parse for them. We expect spaces, opname != opname. */
1653 for (precond = initial_insn->preconds.head;
1654 precond != NULL;
1655 precond = precond->next)
1657 op1 = NULL;
1658 op2 = NULL;
1660 if (precond->opname1)
1662 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1663 if (op1 == NULL)
1665 as_fatal (_("opcode '%s': no bound opname '%s' "
1666 "for precondition in '%s'"),
1667 xtensa_opcode_name (isa, opcode),
1668 precond->opname1, from_string);
1669 return NULL;
1673 if (precond->opname2)
1675 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1676 if (op2 == NULL)
1678 as_fatal (_("opcode '%s': no bound opname '%s' "
1679 "for precondition in %s"),
1680 xtensa_opcode_name (isa, opcode),
1681 precond->opname2, from_string);
1682 return NULL;
1686 if (op1 == NULL && op2 == NULL)
1688 as_fatal (_("opcode '%s': precondition only contains "
1689 "constants in '%s'"),
1690 xtensa_opcode_name (isa, opcode), from_string);
1691 return NULL;
1693 else if (op1 != NULL && op2 != NULL)
1694 append_value_condition (tr, precond->cmpop,
1695 op1->operand_num, op2->operand_num);
1696 else if (op2 == NULL)
1697 append_constant_value_condition (tr, precond->cmpop,
1698 op1->operand_num, precond->opval2);
1699 else
1700 append_constant_value_condition (tr, precond->cmpop,
1701 op2->operand_num, precond->opval1);
1704 tr->options = clone_req_option_list (initial_insn->options);
1706 /* Generate the replacement instructions. Some of these
1707 "instructions" are actually labels and literals. The literals
1708 must be defined in order 0..n and a literal must be defined
1709 (e.g., "LITERAL0 %imm") before use (e.g., "%LITERAL0"). The
1710 labels must be defined in order, but they can be used before they
1711 are defined. Also there are a number of special operands (e.g.,
1712 HI24S). */
1714 for (r = replace_insns->head; r != NULL; r = r->next)
1716 BuildInstr *bi;
1717 const char *opcode_name;
1718 int operand_count;
1719 opname_map_e *op;
1720 unsigned idnum = 0;
1721 const char *fn_name;
1722 const char *operand_arg_name;
1724 bi = (BuildInstr *) xmalloc (sizeof (BuildInstr));
1725 append_build_insn (tr, bi);
1727 bi->id = 0;
1728 bi->opcode = XTENSA_UNDEFINED;
1729 bi->ops = NULL;
1730 bi->next = NULL;
1732 opcode_name = r->t.opcode_name;
1733 operand_count = insn_templ_operand_count (&r->t);
1735 if (parse_id_constant (opcode_name, "LITERAL", &idnum))
1737 bi->typ = INSTR_LITERAL_DEF;
1738 bi->id = idnum;
1739 if (idnum != literal_count)
1740 as_fatal (_("generated literals must be numbered consecutively"));
1741 ++literal_count;
1742 if (operand_count != 1)
1743 as_fatal (_("expected one operand for generated literal"));
1746 else if (parse_id_constant (opcode_name, "LABEL", &idnum))
1748 bi->typ = INSTR_LABEL_DEF;
1749 bi->id = idnum;
1750 if (idnum != label_count)
1751 as_fatal (_("generated labels must be numbered consecutively"));
1752 ++label_count;
1753 if (operand_count != 0)
1754 as_fatal (_("expected 0 operands for generated label"));
1756 else
1758 bi->typ = INSTR_INSTR;
1759 if (wide_branch_opcode (opcode_name, ".w18", &bi->opcode)
1760 || wide_branch_opcode (opcode_name, ".w15", &bi->opcode))
1761 opcode_name = xtensa_opcode_name (isa, bi->opcode);
1762 else
1763 bi->opcode = xtensa_opcode_lookup (isa, opcode_name);
1765 if (bi->opcode == XTENSA_UNDEFINED)
1767 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1768 opcode_name, to_string);
1769 return NULL;
1772 /* Check for the right number of ops. */
1773 if (xtensa_opcode_num_operands (isa, bi->opcode)
1774 != (int) operand_count)
1775 as_fatal (_("opcode '%s': replacement does not have %d ops"),
1776 opcode_name,
1777 xtensa_opcode_num_operands (isa, bi->opcode));
1780 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1782 unsigned idnum;
1784 if (op_is_constant (op))
1785 append_constant_op (bi, op->operand_num, op_get_constant (op));
1786 else if (parse_id_constant (op->operand_name, "%LITERAL", &idnum))
1788 if (idnum >= literal_count)
1789 as_fatal (_("opcode %s: replacement "
1790 "literal %d >= literal_count(%d)"),
1791 opcode_name, idnum, literal_count);
1792 append_literal_op (bi, op->operand_num, idnum);
1794 else if (parse_id_constant (op->operand_name, "%LABEL", &idnum))
1796 has_label = TRUE;
1797 if (idnum > max_label_count)
1798 max_label_count = idnum;
1799 append_label_op (bi, op->operand_num, idnum);
1801 else if (parse_id_constant (op->operand_name, "a", &idnum))
1802 append_constant_op (bi, op->operand_num, idnum);
1803 else if (op->operand_name[0] == '%')
1805 opname_map_e *orig_op;
1806 orig_op = get_opmatch (&initial_insn->t.operand_map,
1807 op->operand_name);
1808 if (orig_op == NULL)
1810 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1811 opcode_name, op->operand_name, to_string);
1813 append_constant_op (bi, op->operand_num, 0);
1815 else
1816 append_field_op (bi, op->operand_num, orig_op->operand_num);
1818 else if (parse_special_fn (op->operand_name,
1819 &fn_name, &operand_arg_name))
1821 opname_map_e *orig_op;
1822 OpType typ = OP_CONSTANT;
1824 if (strcmp (fn_name, "LOW8") == 0)
1825 typ = OP_OPERAND_LOW8;
1826 else if (strcmp (fn_name, "HI24S") == 0)
1827 typ = OP_OPERAND_HI24S;
1828 else if (strcmp (fn_name, "F32MINUS") == 0)
1829 typ = OP_OPERAND_F32MINUS;
1830 else if (strcmp (fn_name, "LOW16U") == 0)
1831 typ = OP_OPERAND_LOW16U;
1832 else if (strcmp (fn_name, "HI16U") == 0)
1833 typ = OP_OPERAND_HI16U;
1834 else
1835 as_fatal (_("unknown user-defined function %s"), fn_name);
1837 orig_op = get_opmatch (&initial_insn->t.operand_map,
1838 operand_arg_name);
1839 if (orig_op == NULL)
1841 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1842 opcode_name, op->operand_name, to_string);
1843 append_constant_op (bi, op->operand_num, 0);
1845 else
1846 append_user_fn_field_op (bi, op->operand_num,
1847 typ, orig_op->operand_num);
1849 else
1851 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1852 opcode_name, op->operand_name, to_string);
1853 append_constant_op (bi, op->operand_num, 0);
1857 if (has_label && max_label_count >= label_count)
1859 as_fatal (_("opcode %s: replacement label %d >= label_count(%d)"),
1860 xtensa_opcode_name (isa, opcode),
1861 max_label_count, label_count);
1862 return NULL;
1865 return tr;
1869 static TransitionTable *
1870 build_transition_table (const string_pattern_pair *transitions,
1871 int transition_count,
1872 transition_cmp_fn cmp)
1874 TransitionTable *table = NULL;
1875 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1876 int i, tnum;
1878 if (table != NULL)
1879 return table;
1881 /* Otherwise, build it now. */
1882 table = (TransitionTable *) xmalloc (sizeof (TransitionTable));
1883 table->num_opcodes = num_opcodes;
1884 table->table =
1885 (TransitionList **) xmalloc (sizeof (TransitionTable *) * num_opcodes);
1887 for (i = 0; i < num_opcodes; i++)
1888 table->table[i] = NULL;
1890 for (tnum = 0; tnum < transition_count; tnum++)
1892 const char *from_string = transitions[tnum].pattern;
1893 const char *to_string = transitions[tnum].replacement;
1895 insn_pattern initial_insn;
1896 insn_repl replace_insns;
1897 TransitionRule *tr;
1899 init_insn_pattern (&initial_insn);
1900 if (!parse_insn_pattern (from_string, &initial_insn))
1902 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
1903 clear_insn_pattern (&initial_insn);
1904 continue;
1907 init_insn_repl (&replace_insns);
1908 if (!parse_insn_repl (to_string, &replace_insns))
1910 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
1911 clear_insn_pattern (&initial_insn);
1912 clear_insn_repl (&replace_insns);
1913 continue;
1916 if (transition_applies (&initial_insn, from_string, to_string))
1918 tr = build_transition (&initial_insn, &replace_insns,
1919 from_string, to_string);
1920 if (tr)
1921 append_transition (table, tr->opcode, tr, cmp);
1922 else
1924 #if TENSILICA_DEBUG
1925 as_warn (_("could not build transition for %s => %s"),
1926 from_string, to_string);
1927 #endif
1931 clear_insn_repl (&replace_insns);
1932 clear_insn_pattern (&initial_insn);
1934 return table;
1938 extern TransitionTable *
1939 xg_build_widen_table (transition_cmp_fn cmp)
1941 static TransitionTable *table = NULL;
1942 if (table == NULL)
1943 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
1944 return table;
1948 extern TransitionTable *
1949 xg_build_simplify_table (transition_cmp_fn cmp)
1951 static TransitionTable *table = NULL;
1952 if (table == NULL)
1953 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
1954 return table;