2004-04-21 Andrew Cagney <cagney@redhat.com>
[binutils.git] / bfd / elf64-sparc.c
blob4f2832512a1df26414b3db442ae80251f4d7f626
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
108 /* The relocation "howto" table. */
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
119 static reloc_howto_type sparc64_elf_howto_table[] =
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
153 #endif
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
211 static const struct elf_reloc_map sparc_reloc_map[] =
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
293 static reloc_howto_type *
294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
304 return 0;
307 static void
308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
310 arelent *cache_ptr;
311 Elf_Internal_Rela *dst;
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
317 struct sparc64_elf_section_data
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
332 static long
333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
335 asection *sec;
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
340 static long
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
352 static bfd_boolean
353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
358 bfd_boolean dynamic;
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
370 goto error_return;
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374 goto error_return;
376 native_relocs = (bfd_byte *) allocated;
378 relents = asect->relocation + canon_reloc_count (asect);
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
383 count = rel_hdr->sh_size / entsize;
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
388 Elf_Internal_Rela rela;
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
405 asymbol **ps, *s;
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
417 relent->addend = rela.r_addend;
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
433 canon_reloc_count (asect) += relent - relents;
435 if (allocated != NULL)
436 free (allocated);
438 return TRUE;
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
443 return FALSE;
446 /* Read in and swap the external relocs. */
448 static bfd_boolean
449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
453 bfd_boolean dynamic;
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
458 bfd_size_type amt;
460 if (asect->relocation != NULL)
461 return TRUE;
463 if (! dynamic)
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
467 return TRUE;
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
475 else
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->_raw_size == 0)
482 return TRUE;
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486 rel_hdr2 = NULL;
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
493 return FALSE;
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
501 return FALSE;
503 if (rel_hdr2
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
506 return FALSE;
508 return TRUE;
511 /* Canonicalize the relocs. */
513 static long
514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
520 arelent *tblptr;
521 unsigned int i;
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
531 *relptr = NULL;
533 return canon_reloc_count (section);
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
546 static long
547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
552 asection *s;
553 long ret;
555 if (elf_dynsymtab (abfd) == 0)
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
567 arelent *p;
568 long count, i;
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 return -1;
572 count = canon_reloc_count (s);
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
580 *storage = NULL;
582 return ret;
585 /* Write out the relocs. */
587 static void
588 sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
620 bfd_vma addr;
622 ++count;
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
628 arelent *r = sec->orelocation[idx + 1];
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
644 *failedp = TRUE;
645 return;
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
656 for (idx = 0; idx < sec->reloc_count; idx++)
658 Elf_Internal_Rela dst_rela;
659 arelent *ptr;
660 asymbol *sym;
661 int n;
663 ptr = sec->orelocation[idx];
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
684 *failedp = TRUE;
685 return;
687 last_sym_idx = n;
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
694 *failedp = TRUE;
695 return;
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
701 arelent *r = sec->orelocation[idx + 1];
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721 ++src_rela;
725 /* Sparc64 ELF linker hash table. */
727 struct sparc64_elf_app_reg
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
735 struct sparc64_elf_link_hash_table
737 struct elf_link_hash_table root;
739 struct sparc64_elf_app_reg app_regs [4];
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
747 /* Create a Sparc64 ELF linker hash table. */
749 static struct bfd_link_hash_table *
750 sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
763 free (ret);
764 return NULL;
767 return &ret->root.root;
770 /* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
796 bfd_vma relocation;
797 reloc_howto_type *howto = reloc_entry->howto;
799 if (output_bfd != (bfd *) NULL
800 && (symbol->flags & BSF_SECTION_SYM) == 0
801 && (! howto->partial_inplace
802 || reloc_entry->addend == 0))
804 reloc_entry->address += input_section->output_offset;
805 return bfd_reloc_ok;
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd != NULL)
810 return bfd_reloc_continue;
812 if (reloc_entry->address > input_section->_cooked_size)
813 return bfd_reloc_outofrange;
815 relocation = (symbol->value
816 + symbol->section->output_section->vma
817 + symbol->section->output_offset);
818 relocation += reloc_entry->addend;
819 if (howto->pc_relative)
821 relocation -= (input_section->output_section->vma
822 + input_section->output_offset);
823 relocation -= reloc_entry->address;
826 *prelocation = relocation;
827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828 return bfd_reloc_other;
831 /* For unsupported relocs. */
833 static bfd_reloc_status_type
834 sparc_elf_notsup_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd ATTRIBUTE_UNUSED;
842 arelent *reloc_entry ATTRIBUTE_UNUSED;
843 asymbol *symbol ATTRIBUTE_UNUSED;
844 PTR data ATTRIBUTE_UNUSED;
845 asection *input_section ATTRIBUTE_UNUSED;
846 bfd *output_bfd ATTRIBUTE_UNUSED;
847 char **error_message ATTRIBUTE_UNUSED;
849 return bfd_reloc_notsupported;
852 /* Handle the WDISP16 reloc. */
854 static bfd_reloc_status_type
855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 output_bfd, error_message)
857 bfd *abfd;
858 arelent *reloc_entry;
859 asymbol *symbol;
860 PTR data;
861 asection *input_section;
862 bfd *output_bfd;
863 char **error_message ATTRIBUTE_UNUSED;
865 bfd_vma relocation;
866 bfd_vma insn;
867 bfd_reloc_status_type status;
869 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 input_section, output_bfd, &relocation, &insn);
871 if (status != bfd_reloc_other)
872 return status;
874 insn &= ~ (bfd_vma) 0x303fff;
875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
878 if ((bfd_signed_vma) relocation < - 0x40000
879 || (bfd_signed_vma) relocation > 0x3ffff)
880 return bfd_reloc_overflow;
881 else
882 return bfd_reloc_ok;
885 /* Handle the HIX22 reloc. */
887 static bfd_reloc_status_type
888 sparc_elf_hix22_reloc (abfd,
889 reloc_entry,
890 symbol,
891 data,
892 input_section,
893 output_bfd,
894 error_message)
895 bfd *abfd;
896 arelent *reloc_entry;
897 asymbol *symbol;
898 PTR data;
899 asection *input_section;
900 bfd *output_bfd;
901 char **error_message ATTRIBUTE_UNUSED;
903 bfd_vma relocation;
904 bfd_vma insn;
905 bfd_reloc_status_type status;
907 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 input_section, output_bfd, &relocation, &insn);
909 if (status != bfd_reloc_other)
910 return status;
912 relocation ^= MINUS_ONE;
913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917 return bfd_reloc_overflow;
918 else
919 return bfd_reloc_ok;
922 /* Handle the LOX10 reloc. */
924 static bfd_reloc_status_type
925 sparc_elf_lox10_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
938 char **error_message ATTRIBUTE_UNUSED;
940 bfd_vma relocation;
941 bfd_vma insn;
942 bfd_reloc_status_type status;
944 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 input_section, output_bfd, &relocation, &insn);
946 if (status != bfd_reloc_other)
947 return status;
949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
952 return bfd_reloc_ok;
955 /* PLT/GOT stuff */
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
965 /* Fill in the .plt section. */
967 static void
968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969 bfd *output_bfd;
970 unsigned char *contents;
971 int nentries;
973 const unsigned int nop = 0x01000000;
974 int i, j;
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988 unsigned int sethi, ba;
990 /* sethi (. - plt0), %g1 */
991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
993 /* ba,a,pt %xcc, plt1 */
994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1010 for (; i < nentries; i += 160)
1012 int block = (i + 160 <= nentries ? 160 : nentries - i);
1013 for (j = 0; j < block; ++j)
1015 unsigned char *entry, *ptr;
1016 unsigned int ldx;
1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1024 /* mov %o7,%g5
1025 call .+8
1027 ldx [%o7+P],%g1
1028 jmpl %o7+%g1,%g1
1029 mov %g5,%o7 */
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1042 /* Return the offset of a particular plt entry within the .plt section. */
1044 static bfd_vma
1045 sparc64_elf_plt_entry_offset (index)
1046 bfd_vma index;
1048 bfd_vma block, ofs;
1050 if (index < LARGE_PLT_THRESHOLD)
1051 return index * PLT_ENTRY_SIZE;
1053 /* See above for details. */
1055 block = (index - LARGE_PLT_THRESHOLD) / 160;
1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1061 static bfd_vma
1062 sparc64_elf_plt_ptr_offset (index, max)
1063 bfd_vma index;
1064 bfd_vma max;
1066 bfd_vma block, ofs, last;
1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1070 /* See above for details. */
1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073 ofs = index - block;
1074 if (block + 160 > max)
1075 last = (max - LARGE_PLT_THRESHOLD) % 160;
1076 else
1077 last = 160;
1079 return (block * PLT_ENTRY_SIZE
1080 + last * 6*4
1081 + ofs * 8);
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1086 table. */
1088 static bfd_boolean
1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 asection *sec;
1093 const Elf_Internal_Rela *relocs;
1095 bfd *dynobj;
1096 Elf_Internal_Shdr *symtab_hdr;
1097 struct elf_link_hash_entry **sym_hashes;
1098 bfd_vma *local_got_offsets;
1099 const Elf_Internal_Rela *rel;
1100 const Elf_Internal_Rela *rel_end;
1101 asection *sgot;
1102 asection *srelgot;
1103 asection *sreloc;
1105 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106 return TRUE;
1108 dynobj = elf_hash_table (info)->dynobj;
1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110 sym_hashes = elf_sym_hashes (abfd);
1111 local_got_offsets = elf_local_got_offsets (abfd);
1113 sgot = NULL;
1114 srelgot = NULL;
1115 sreloc = NULL;
1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118 for (rel = relocs; rel < rel_end; rel++)
1120 unsigned long r_symndx;
1121 struct elf_link_hash_entry *h;
1123 r_symndx = ELF64_R_SYM (rel->r_info);
1124 if (r_symndx < symtab_hdr->sh_info)
1125 h = NULL;
1126 else
1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1129 switch (ELF64_R_TYPE_ID (rel->r_info))
1131 case R_SPARC_GOT10:
1132 case R_SPARC_GOT13:
1133 case R_SPARC_GOT22:
1134 /* This symbol requires a global offset table entry. */
1136 if (dynobj == NULL)
1138 /* Create the .got section. */
1139 elf_hash_table (info)->dynobj = dynobj = abfd;
1140 if (! _bfd_elf_create_got_section (dynobj, info))
1141 return FALSE;
1144 if (sgot == NULL)
1146 sgot = bfd_get_section_by_name (dynobj, ".got");
1147 BFD_ASSERT (sgot != NULL);
1150 if (srelgot == NULL && (h != NULL || info->shared))
1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 if (srelgot == NULL)
1155 srelgot = bfd_make_section (dynobj, ".rela.got");
1156 if (srelgot == NULL
1157 || ! bfd_set_section_flags (dynobj, srelgot,
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED
1163 | SEC_READONLY))
1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 return FALSE;
1169 if (h != NULL)
1171 if (h->got.offset != (bfd_vma) -1)
1173 /* We have already allocated space in the .got. */
1174 break;
1176 h->got.offset = sgot->_raw_size;
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h->dynindx == -1)
1181 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 return FALSE;
1185 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1187 else
1189 /* This is a global offset table entry for a local
1190 symbol. */
1191 if (local_got_offsets == NULL)
1193 bfd_size_type size;
1194 register unsigned int i;
1196 size = symtab_hdr->sh_info;
1197 size *= sizeof (bfd_vma);
1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 if (local_got_offsets == NULL)
1200 return FALSE;
1201 elf_local_got_offsets (abfd) = local_got_offsets;
1202 for (i = 0; i < symtab_hdr->sh_info; i++)
1203 local_got_offsets[i] = (bfd_vma) -1;
1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1207 /* We have already allocated space in the .got. */
1208 break;
1210 local_got_offsets[r_symndx] = sgot->_raw_size;
1212 if (info->shared)
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1221 sgot->_raw_size += 8;
1223 #if 0
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot->_raw_size >= 0x1000
1233 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1237 break;
1239 case R_SPARC_WPLT30:
1240 case R_SPARC_PLT32:
1241 case R_SPARC_HIPLT22:
1242 case R_SPARC_LOPLT10:
1243 case R_SPARC_PCPLT32:
1244 case R_SPARC_PCPLT22:
1245 case R_SPARC_PCPLT10:
1246 case R_SPARC_PLT64:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1253 if (h == NULL)
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value);
1258 return FALSE;
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h->dynindx == -1)
1264 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 return FALSE;
1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 break;
1272 /* Fall through. */
1273 case R_SPARC_PC10:
1274 case R_SPARC_PC22:
1275 case R_SPARC_PC_HH22:
1276 case R_SPARC_PC_HM10:
1277 case R_SPARC_PC_LM22:
1278 if (h != NULL
1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 break;
1281 /* Fall through. */
1282 case R_SPARC_DISP8:
1283 case R_SPARC_DISP16:
1284 case R_SPARC_DISP32:
1285 case R_SPARC_DISP64:
1286 case R_SPARC_WDISP30:
1287 case R_SPARC_WDISP22:
1288 case R_SPARC_WDISP19:
1289 case R_SPARC_WDISP16:
1290 if (h == NULL)
1291 break;
1292 /* Fall through. */
1293 case R_SPARC_8:
1294 case R_SPARC_16:
1295 case R_SPARC_32:
1296 case R_SPARC_HI22:
1297 case R_SPARC_22:
1298 case R_SPARC_13:
1299 case R_SPARC_LO10:
1300 case R_SPARC_UA32:
1301 case R_SPARC_10:
1302 case R_SPARC_11:
1303 case R_SPARC_64:
1304 case R_SPARC_OLO10:
1305 case R_SPARC_HH22:
1306 case R_SPARC_HM10:
1307 case R_SPARC_LM22:
1308 case R_SPARC_7:
1309 case R_SPARC_5:
1310 case R_SPARC_6:
1311 case R_SPARC_HIX22:
1312 case R_SPARC_LOX10:
1313 case R_SPARC_H44:
1314 case R_SPARC_M44:
1315 case R_SPARC_L44:
1316 case R_SPARC_UA64:
1317 case R_SPARC_UA16:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info->shared && (sec->flags & SEC_ALLOC))
1328 if (sreloc == NULL)
1330 const char *name;
1332 name = (bfd_elf_string_from_elf_section
1333 (abfd,
1334 elf_elfheader (abfd)->e_shstrndx,
1335 elf_section_data (sec)->rel_hdr.sh_name));
1336 if (name == NULL)
1337 return FALSE;
1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd, sec),
1341 name + 5) == 0);
1343 sreloc = bfd_get_section_by_name (dynobj, name);
1344 if (sreloc == NULL)
1346 flagword flags;
1348 sreloc = bfd_make_section (dynobj, name);
1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 if ((sec->flags & SEC_ALLOC) != 0)
1352 flags |= SEC_ALLOC | SEC_LOAD;
1353 if (sreloc == NULL
1354 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 return FALSE;
1358 if (sec->flags & SEC_READONLY)
1359 info->flags |= DF_TEXTREL;
1362 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1364 break;
1366 case R_SPARC_REGISTER:
1367 /* Nothing to do. */
1368 break;
1370 default:
1371 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1372 bfd_archive_filename (abfd),
1373 ELF64_R_TYPE_ID (rel->r_info));
1374 return FALSE;
1378 return TRUE;
1381 /* Hook called by the linker routine which adds symbols from an object
1382 file. We use it for STT_REGISTER symbols. */
1384 static bfd_boolean
1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386 bfd *abfd;
1387 struct bfd_link_info *info;
1388 Elf_Internal_Sym *sym;
1389 const char **namep;
1390 flagword *flagsp ATTRIBUTE_UNUSED;
1391 asection **secp ATTRIBUTE_UNUSED;
1392 bfd_vma *valp ATTRIBUTE_UNUSED;
1394 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1396 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1398 int reg;
1399 struct sparc64_elf_app_reg *p;
1401 reg = (int)sym->st_value;
1402 switch (reg & ~1)
1404 case 2: reg -= 2; break;
1405 case 6: reg -= 4; break;
1406 default:
1407 (*_bfd_error_handler)
1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409 bfd_archive_filename (abfd));
1410 return FALSE;
1413 if (info->hash->creator != abfd->xvec
1414 || (abfd->flags & DYNAMIC) != 0)
1416 /* STT_REGISTER only works when linking an elf64_sparc object.
1417 If STT_REGISTER comes from a dynamic object, don't put it into
1418 the output bfd. The dynamic linker will recheck it. */
1419 *namep = NULL;
1420 return TRUE;
1423 p = sparc64_elf_hash_table(info)->app_regs + reg;
1425 if (p->name != NULL && strcmp (p->name, *namep))
1427 (*_bfd_error_handler)
1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429 (int) sym->st_value,
1430 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1431 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1432 return FALSE;
1435 if (p->name == NULL)
1437 if (**namep)
1439 struct elf_link_hash_entry *h;
1441 h = (struct elf_link_hash_entry *)
1442 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1444 if (h != NULL)
1446 unsigned char type = h->type;
1448 if (type > STT_FUNC)
1449 type = 0;
1450 (*_bfd_error_handler)
1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 *namep, bfd_archive_filename (abfd),
1453 stt_types[type], bfd_archive_filename (p->abfd));
1454 return FALSE;
1457 p->name = bfd_hash_allocate (&info->hash->table,
1458 strlen (*namep) + 1);
1459 if (!p->name)
1460 return FALSE;
1462 strcpy (p->name, *namep);
1464 else
1465 p->name = "";
1466 p->bind = ELF_ST_BIND (sym->st_info);
1467 p->abfd = abfd;
1468 p->shndx = sym->st_shndx;
1470 else
1472 if (p->bind == STB_WEAK
1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1475 p->bind = STB_GLOBAL;
1476 p->abfd = abfd;
1479 *namep = NULL;
1480 return TRUE;
1482 else if (*namep && **namep
1483 && info->hash->creator == abfd->xvec)
1485 int i;
1486 struct sparc64_elf_app_reg *p;
1488 p = sparc64_elf_hash_table(info)->app_regs;
1489 for (i = 0; i < 4; i++, p++)
1490 if (p->name != NULL && ! strcmp (p->name, *namep))
1492 unsigned char type = ELF_ST_TYPE (sym->st_info);
1494 if (type > STT_FUNC)
1495 type = 0;
1496 (*_bfd_error_handler)
1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 *namep, stt_types[type], bfd_archive_filename (abfd),
1499 bfd_archive_filename (p->abfd));
1500 return FALSE;
1503 return TRUE;
1506 /* This function takes care of emitting STT_REGISTER symbols
1507 which we cannot easily keep in the symbol hash table. */
1509 static bfd_boolean
1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1511 bfd *output_bfd ATTRIBUTE_UNUSED;
1512 struct bfd_link_info *info;
1513 PTR finfo;
1514 bfd_boolean (*func)
1515 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 struct elf_link_hash_entry *));
1518 int reg;
1519 struct sparc64_elf_app_reg *app_regs =
1520 sparc64_elf_hash_table(info)->app_regs;
1521 Elf_Internal_Sym sym;
1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524 at the end of the dynlocal list, so they came at the end of the local
1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1526 to back up symtab->sh_info. */
1527 if (elf_hash_table (info)->dynlocal)
1529 bfd * dynobj = elf_hash_table (info)->dynobj;
1530 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1531 struct elf_link_local_dynamic_entry *e;
1533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 if (e->input_indx == -1)
1535 break;
1536 if (e)
1538 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 = e->dynindx;
1543 if (info->strip == strip_all)
1544 return TRUE;
1546 for (reg = 0; reg < 4; reg++)
1547 if (app_regs [reg].name != NULL)
1549 if (info->strip == strip_some
1550 && bfd_hash_lookup (info->keep_hash,
1551 app_regs [reg].name,
1552 FALSE, FALSE) == NULL)
1553 continue;
1555 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 sym.st_size = 0;
1557 sym.st_other = 0;
1558 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 sym.st_shndx = app_regs [reg].shndx;
1560 if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 sym.st_shndx == SHN_ABS
1562 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 NULL))
1564 return FALSE;
1567 return TRUE;
1570 static int
1571 sparc64_elf_get_symbol_type (elf_sym, type)
1572 Elf_Internal_Sym * elf_sym;
1573 int type;
1575 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576 return STT_REGISTER;
1577 else
1578 return type;
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582 even in SHN_UNDEF section. */
1584 static void
1585 sparc64_elf_symbol_processing (abfd, asym)
1586 bfd *abfd ATTRIBUTE_UNUSED;
1587 asymbol *asym;
1589 elf_symbol_type *elfsym;
1591 elfsym = (elf_symbol_type *) asym;
1592 if (elfsym->internal_elf_sym.st_info
1593 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1595 asym->flags |= BSF_GLOBAL;
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600 regular object. The current definition is in some section of the
1601 dynamic object, but we're not including those sections. We have to
1602 change the definition to something the rest of the link can
1603 understand. */
1605 static bfd_boolean
1606 sparc64_elf_adjust_dynamic_symbol (info, h)
1607 struct bfd_link_info *info;
1608 struct elf_link_hash_entry *h;
1610 bfd *dynobj;
1611 asection *s;
1612 unsigned int power_of_two;
1614 dynobj = elf_hash_table (info)->dynobj;
1616 /* Make sure we know what is going on here. */
1617 BFD_ASSERT (dynobj != NULL
1618 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 || h->weakdef != NULL
1620 || ((h->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 && (h->elf_link_hash_flags
1623 & ELF_LINK_HASH_REF_REGULAR) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1627 /* If this is a function, put it in the procedure linkage table. We
1628 will fill in the contents of the procedure linkage table later
1629 (although we could actually do it here). The STT_NOTYPE
1630 condition is a hack specifically for the Oracle libraries
1631 delivered for Solaris; for some inexplicable reason, they define
1632 some of their functions as STT_NOTYPE when they really should be
1633 STT_FUNC. */
1634 if (h->type == STT_FUNC
1635 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636 || (h->type == STT_NOTYPE
1637 && (h->root.type == bfd_link_hash_defined
1638 || h->root.type == bfd_link_hash_defweak)
1639 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1641 if (! elf_hash_table (info)->dynamic_sections_created)
1643 /* This case can occur if we saw a WPLT30 reloc in an input
1644 file, but none of the input files were dynamic objects.
1645 In such a case, we don't actually need to build a
1646 procedure linkage table, and we can just do a WDISP30
1647 reloc instead. */
1648 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1649 return TRUE;
1652 s = bfd_get_section_by_name (dynobj, ".plt");
1653 BFD_ASSERT (s != NULL);
1655 /* The first four bit in .plt is reserved. */
1656 if (s->_raw_size == 0)
1657 s->_raw_size = PLT_HEADER_SIZE;
1659 /* To simplify matters later, just store the plt index here. */
1660 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1662 /* If this symbol is not defined in a regular file, and we are
1663 not generating a shared library, then set the symbol to this
1664 location in the .plt. This is required to make function
1665 pointers compare as equal between the normal executable and
1666 the shared library. */
1667 if (! info->shared
1668 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1670 h->root.u.def.section = s;
1671 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1674 /* Make room for this entry. */
1675 s->_raw_size += PLT_ENTRY_SIZE;
1677 /* We also need to make an entry in the .rela.plt section. */
1679 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1680 BFD_ASSERT (s != NULL);
1682 s->_raw_size += sizeof (Elf64_External_Rela);
1684 /* The procedure linkage table size is bounded by the magnitude
1685 of the offset we can describe in the entry. */
1686 if (s->_raw_size >= (bfd_vma)1 << 32)
1688 bfd_set_error (bfd_error_bad_value);
1689 return FALSE;
1692 return TRUE;
1695 /* If this is a weak symbol, and there is a real definition, the
1696 processor independent code will have arranged for us to see the
1697 real definition first, and we can just use the same value. */
1698 if (h->weakdef != NULL)
1700 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1701 || h->weakdef->root.type == bfd_link_hash_defweak);
1702 h->root.u.def.section = h->weakdef->root.u.def.section;
1703 h->root.u.def.value = h->weakdef->root.u.def.value;
1704 return TRUE;
1707 /* This is a reference to a symbol defined by a dynamic object which
1708 is not a function. */
1710 /* If we are creating a shared library, we must presume that the
1711 only references to the symbol are via the global offset table.
1712 For such cases we need not do anything here; the relocations will
1713 be handled correctly by relocate_section. */
1714 if (info->shared)
1715 return TRUE;
1717 /* We must allocate the symbol in our .dynbss section, which will
1718 become part of the .bss section of the executable. There will be
1719 an entry for this symbol in the .dynsym section. The dynamic
1720 object will contain position independent code, so all references
1721 from the dynamic object to this symbol will go through the global
1722 offset table. The dynamic linker will use the .dynsym entry to
1723 determine the address it must put in the global offset table, so
1724 both the dynamic object and the regular object will refer to the
1725 same memory location for the variable. */
1727 s = bfd_get_section_by_name (dynobj, ".dynbss");
1728 BFD_ASSERT (s != NULL);
1730 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1731 to copy the initial value out of the dynamic object and into the
1732 runtime process image. We need to remember the offset into the
1733 .rel.bss section we are going to use. */
1734 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1736 asection *srel;
1738 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1739 BFD_ASSERT (srel != NULL);
1740 srel->_raw_size += sizeof (Elf64_External_Rela);
1741 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1744 /* We need to figure out the alignment required for this symbol. I
1745 have no idea how ELF linkers handle this. 16-bytes is the size
1746 of the largest type that requires hard alignment -- long double. */
1747 power_of_two = bfd_log2 (h->size);
1748 if (power_of_two > 4)
1749 power_of_two = 4;
1751 /* Apply the required alignment. */
1752 s->_raw_size = BFD_ALIGN (s->_raw_size,
1753 (bfd_size_type) (1 << power_of_two));
1754 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1756 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1757 return FALSE;
1760 /* Define the symbol as being at this point in the section. */
1761 h->root.u.def.section = s;
1762 h->root.u.def.value = s->_raw_size;
1764 /* Increment the section size to make room for the symbol. */
1765 s->_raw_size += h->size;
1767 return TRUE;
1770 /* Set the sizes of the dynamic sections. */
1772 static bfd_boolean
1773 sparc64_elf_size_dynamic_sections (output_bfd, info)
1774 bfd *output_bfd;
1775 struct bfd_link_info *info;
1777 bfd *dynobj;
1778 asection *s;
1779 bfd_boolean relplt;
1781 dynobj = elf_hash_table (info)->dynobj;
1782 BFD_ASSERT (dynobj != NULL);
1784 if (elf_hash_table (info)->dynamic_sections_created)
1786 /* Set the contents of the .interp section to the interpreter. */
1787 if (info->executable)
1789 s = bfd_get_section_by_name (dynobj, ".interp");
1790 BFD_ASSERT (s != NULL);
1791 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1792 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1795 else
1797 /* We may have created entries in the .rela.got section.
1798 However, if we are not creating the dynamic sections, we will
1799 not actually use these entries. Reset the size of .rela.got,
1800 which will cause it to get stripped from the output file
1801 below. */
1802 s = bfd_get_section_by_name (dynobj, ".rela.got");
1803 if (s != NULL)
1804 s->_raw_size = 0;
1807 /* The check_relocs and adjust_dynamic_symbol entry points have
1808 determined the sizes of the various dynamic sections. Allocate
1809 memory for them. */
1810 relplt = FALSE;
1811 for (s = dynobj->sections; s != NULL; s = s->next)
1813 const char *name;
1814 bfd_boolean strip;
1816 if ((s->flags & SEC_LINKER_CREATED) == 0)
1817 continue;
1819 /* It's OK to base decisions on the section name, because none
1820 of the dynobj section names depend upon the input files. */
1821 name = bfd_get_section_name (dynobj, s);
1823 strip = FALSE;
1825 if (strncmp (name, ".rela", 5) == 0)
1827 if (s->_raw_size == 0)
1829 /* If we don't need this section, strip it from the
1830 output file. This is to handle .rela.bss and
1831 .rel.plt. We must create it in
1832 create_dynamic_sections, because it must be created
1833 before the linker maps input sections to output
1834 sections. The linker does that before
1835 adjust_dynamic_symbol is called, and it is that
1836 function which decides whether anything needs to go
1837 into these sections. */
1838 strip = TRUE;
1840 else
1842 if (strcmp (name, ".rela.plt") == 0)
1843 relplt = TRUE;
1845 /* We use the reloc_count field as a counter if we need
1846 to copy relocs into the output file. */
1847 s->reloc_count = 0;
1850 else if (strcmp (name, ".plt") != 0
1851 && strncmp (name, ".got", 4) != 0)
1853 /* It's not one of our sections, so don't allocate space. */
1854 continue;
1857 if (strip)
1859 _bfd_strip_section_from_output (info, s);
1860 continue;
1863 /* Allocate memory for the section contents. Zero the memory
1864 for the benefit of .rela.plt, which has 4 unused entries
1865 at the beginning, and we don't want garbage. */
1866 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1867 if (s->contents == NULL && s->_raw_size != 0)
1868 return FALSE;
1871 if (elf_hash_table (info)->dynamic_sections_created)
1873 /* Add some entries to the .dynamic section. We fill in the
1874 values later, in sparc64_elf_finish_dynamic_sections, but we
1875 must add the entries now so that we get the correct size for
1876 the .dynamic section. The DT_DEBUG entry is filled in by the
1877 dynamic linker and used by the debugger. */
1878 #define add_dynamic_entry(TAG, VAL) \
1879 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1881 int reg;
1882 struct sparc64_elf_app_reg * app_regs;
1883 struct elf_strtab_hash *dynstr;
1884 struct elf_link_hash_table *eht = elf_hash_table (info);
1886 if (info->executable)
1888 if (!add_dynamic_entry (DT_DEBUG, 0))
1889 return FALSE;
1892 if (relplt)
1894 if (!add_dynamic_entry (DT_PLTGOT, 0)
1895 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1896 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1897 || !add_dynamic_entry (DT_JMPREL, 0))
1898 return FALSE;
1901 if (!add_dynamic_entry (DT_RELA, 0)
1902 || !add_dynamic_entry (DT_RELASZ, 0)
1903 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1904 return FALSE;
1906 if (info->flags & DF_TEXTREL)
1908 if (!add_dynamic_entry (DT_TEXTREL, 0))
1909 return FALSE;
1912 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1913 entries if needed. */
1914 app_regs = sparc64_elf_hash_table (info)->app_regs;
1915 dynstr = eht->dynstr;
1917 for (reg = 0; reg < 4; reg++)
1918 if (app_regs [reg].name != NULL)
1920 struct elf_link_local_dynamic_entry *entry, *e;
1922 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1923 return FALSE;
1925 entry = (struct elf_link_local_dynamic_entry *)
1926 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1927 if (entry == NULL)
1928 return FALSE;
1930 /* We cheat here a little bit: the symbol will not be local, so we
1931 put it at the end of the dynlocal linked list. We will fix it
1932 later on, as we have to fix other fields anyway. */
1933 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1934 entry->isym.st_size = 0;
1935 if (*app_regs [reg].name != '\0')
1936 entry->isym.st_name
1937 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1938 else
1939 entry->isym.st_name = 0;
1940 entry->isym.st_other = 0;
1941 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1942 STT_REGISTER);
1943 entry->isym.st_shndx = app_regs [reg].shndx;
1944 entry->next = NULL;
1945 entry->input_bfd = output_bfd;
1946 entry->input_indx = -1;
1948 if (eht->dynlocal == NULL)
1949 eht->dynlocal = entry;
1950 else
1952 for (e = eht->dynlocal; e->next; e = e->next)
1954 e->next = entry;
1956 eht->dynsymcount++;
1959 #undef add_dynamic_entry
1961 return TRUE;
1964 static bfd_boolean
1965 sparc64_elf_new_section_hook (abfd, sec)
1966 bfd *abfd;
1967 asection *sec;
1969 struct sparc64_elf_section_data *sdata;
1970 bfd_size_type amt = sizeof (*sdata);
1972 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1973 if (sdata == NULL)
1974 return FALSE;
1975 sec->used_by_bfd = (PTR) sdata;
1977 return _bfd_elf_new_section_hook (abfd, sec);
1980 static bfd_boolean
1981 sparc64_elf_relax_section (abfd, section, link_info, again)
1982 bfd *abfd ATTRIBUTE_UNUSED;
1983 asection *section ATTRIBUTE_UNUSED;
1984 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1985 bfd_boolean *again;
1987 *again = FALSE;
1988 sec_do_relax (section) = 1;
1989 return TRUE;
1992 /* Relocate a SPARC64 ELF section. */
1994 static bfd_boolean
1995 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1996 contents, relocs, local_syms, local_sections)
1997 bfd *output_bfd;
1998 struct bfd_link_info *info;
1999 bfd *input_bfd;
2000 asection *input_section;
2001 bfd_byte *contents;
2002 Elf_Internal_Rela *relocs;
2003 Elf_Internal_Sym *local_syms;
2004 asection **local_sections;
2006 bfd *dynobj;
2007 Elf_Internal_Shdr *symtab_hdr;
2008 struct elf_link_hash_entry **sym_hashes;
2009 bfd_vma *local_got_offsets;
2010 bfd_vma got_base;
2011 asection *sgot;
2012 asection *splt;
2013 asection *sreloc;
2014 Elf_Internal_Rela *rel;
2015 Elf_Internal_Rela *relend;
2017 if (info->relocatable)
2018 return TRUE;
2020 dynobj = elf_hash_table (info)->dynobj;
2021 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2022 sym_hashes = elf_sym_hashes (input_bfd);
2023 local_got_offsets = elf_local_got_offsets (input_bfd);
2025 if (elf_hash_table(info)->hgot == NULL)
2026 got_base = 0;
2027 else
2028 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2030 sgot = splt = sreloc = NULL;
2031 if (dynobj != NULL)
2032 splt = bfd_get_section_by_name (dynobj, ".plt");
2034 rel = relocs;
2035 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2036 for (; rel < relend; rel++)
2038 int r_type;
2039 reloc_howto_type *howto;
2040 unsigned long r_symndx;
2041 struct elf_link_hash_entry *h;
2042 Elf_Internal_Sym *sym;
2043 asection *sec;
2044 bfd_vma relocation, off;
2045 bfd_reloc_status_type r;
2046 bfd_boolean is_plt = FALSE;
2047 bfd_boolean unresolved_reloc;
2049 r_type = ELF64_R_TYPE_ID (rel->r_info);
2050 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2052 bfd_set_error (bfd_error_bad_value);
2053 return FALSE;
2055 howto = sparc64_elf_howto_table + r_type;
2057 /* This is a final link. */
2058 r_symndx = ELF64_R_SYM (rel->r_info);
2059 h = NULL;
2060 sym = NULL;
2061 sec = NULL;
2062 unresolved_reloc = FALSE;
2063 if (r_symndx < symtab_hdr->sh_info)
2065 sym = local_syms + r_symndx;
2066 sec = local_sections[r_symndx];
2067 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2069 else
2071 bfd_boolean warned;
2073 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2074 r_symndx, symtab_hdr, sym_hashes,
2075 h, sec, relocation,
2076 unresolved_reloc, warned);
2077 if (warned)
2079 /* To avoid generating warning messages about truncated
2080 relocations, set the relocation's address to be the same as
2081 the start of this section. */
2082 if (input_section->output_section != NULL)
2083 relocation = input_section->output_section->vma;
2084 else
2085 relocation = 0;
2089 do_dynreloc:
2090 /* When generating a shared object, these relocations are copied
2091 into the output file to be resolved at run time. */
2092 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2094 switch (r_type)
2096 case R_SPARC_PC10:
2097 case R_SPARC_PC22:
2098 case R_SPARC_PC_HH22:
2099 case R_SPARC_PC_HM10:
2100 case R_SPARC_PC_LM22:
2101 if (h != NULL
2102 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2103 break;
2104 /* Fall through. */
2105 case R_SPARC_DISP8:
2106 case R_SPARC_DISP16:
2107 case R_SPARC_DISP32:
2108 case R_SPARC_DISP64:
2109 case R_SPARC_WDISP30:
2110 case R_SPARC_WDISP22:
2111 case R_SPARC_WDISP19:
2112 case R_SPARC_WDISP16:
2113 if (h == NULL)
2114 break;
2115 /* Fall through. */
2116 case R_SPARC_8:
2117 case R_SPARC_16:
2118 case R_SPARC_32:
2119 case R_SPARC_HI22:
2120 case R_SPARC_22:
2121 case R_SPARC_13:
2122 case R_SPARC_LO10:
2123 case R_SPARC_UA32:
2124 case R_SPARC_10:
2125 case R_SPARC_11:
2126 case R_SPARC_64:
2127 case R_SPARC_OLO10:
2128 case R_SPARC_HH22:
2129 case R_SPARC_HM10:
2130 case R_SPARC_LM22:
2131 case R_SPARC_7:
2132 case R_SPARC_5:
2133 case R_SPARC_6:
2134 case R_SPARC_HIX22:
2135 case R_SPARC_LOX10:
2136 case R_SPARC_H44:
2137 case R_SPARC_M44:
2138 case R_SPARC_L44:
2139 case R_SPARC_UA64:
2140 case R_SPARC_UA16:
2142 Elf_Internal_Rela outrel;
2143 bfd_byte *loc;
2144 bfd_boolean skip, relocate;
2146 if (sreloc == NULL)
2148 const char *name =
2149 (bfd_elf_string_from_elf_section
2150 (input_bfd,
2151 elf_elfheader (input_bfd)->e_shstrndx,
2152 elf_section_data (input_section)->rel_hdr.sh_name));
2154 if (name == NULL)
2155 return FALSE;
2157 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2158 && strcmp (bfd_get_section_name(input_bfd,
2159 input_section),
2160 name + 5) == 0);
2162 sreloc = bfd_get_section_by_name (dynobj, name);
2163 BFD_ASSERT (sreloc != NULL);
2166 skip = FALSE;
2167 relocate = FALSE;
2169 outrel.r_offset =
2170 _bfd_elf_section_offset (output_bfd, info, input_section,
2171 rel->r_offset);
2172 if (outrel.r_offset == (bfd_vma) -1)
2173 skip = TRUE;
2174 else if (outrel.r_offset == (bfd_vma) -2)
2175 skip = TRUE, relocate = TRUE;
2177 outrel.r_offset += (input_section->output_section->vma
2178 + input_section->output_offset);
2180 /* Optimize unaligned reloc usage now that we know where
2181 it finally resides. */
2182 switch (r_type)
2184 case R_SPARC_16:
2185 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2186 break;
2187 case R_SPARC_UA16:
2188 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2189 break;
2190 case R_SPARC_32:
2191 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2192 break;
2193 case R_SPARC_UA32:
2194 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2195 break;
2196 case R_SPARC_64:
2197 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2198 break;
2199 case R_SPARC_UA64:
2200 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2201 break;
2202 case R_SPARC_DISP8:
2203 case R_SPARC_DISP16:
2204 case R_SPARC_DISP32:
2205 case R_SPARC_DISP64:
2206 /* If the symbol is not dynamic, we should not keep
2207 a dynamic relocation. But an .rela.* slot has been
2208 allocated for it, output R_SPARC_NONE.
2209 FIXME: Add code tracking needed dynamic relocs as
2210 e.g. i386 has. */
2211 if (h->dynindx == -1)
2212 skip = TRUE, relocate = TRUE;
2213 break;
2216 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2217 if (!skip
2218 && h != NULL
2219 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2220 && h->root.type == bfd_link_hash_undefweak)
2221 skip = TRUE, relocate = TRUE;
2223 if (skip)
2224 memset (&outrel, 0, sizeof outrel);
2225 /* h->dynindx may be -1 if the symbol was marked to
2226 become local. */
2227 else if (h != NULL && ! is_plt
2228 && ((! info->symbolic && h->dynindx != -1)
2229 || (h->elf_link_hash_flags
2230 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2232 BFD_ASSERT (h->dynindx != -1);
2233 outrel.r_info
2234 = ELF64_R_INFO (h->dynindx,
2235 ELF64_R_TYPE_INFO (
2236 ELF64_R_TYPE_DATA (rel->r_info),
2237 r_type));
2238 outrel.r_addend = rel->r_addend;
2240 else
2242 outrel.r_addend = relocation + rel->r_addend;
2243 if (r_type == R_SPARC_64)
2244 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2245 else
2247 long indx;
2249 if (is_plt)
2250 sec = splt;
2252 if (bfd_is_abs_section (sec))
2253 indx = 0;
2254 else if (sec == NULL || sec->owner == NULL)
2256 bfd_set_error (bfd_error_bad_value);
2257 return FALSE;
2259 else
2261 asection *osec;
2263 osec = sec->output_section;
2264 indx = elf_section_data (osec)->dynindx;
2266 /* We are turning this relocation into one
2267 against a section symbol, so subtract out
2268 the output section's address but not the
2269 offset of the input section in the output
2270 section. */
2271 outrel.r_addend -= osec->vma;
2273 /* FIXME: we really should be able to link non-pic
2274 shared libraries. */
2275 if (indx == 0)
2277 BFD_FAIL ();
2278 (*_bfd_error_handler)
2279 (_("%s: probably compiled without -fPIC?"),
2280 bfd_archive_filename (input_bfd));
2281 bfd_set_error (bfd_error_bad_value);
2282 return FALSE;
2286 outrel.r_info
2287 = ELF64_R_INFO (indx,
2288 ELF64_R_TYPE_INFO (
2289 ELF64_R_TYPE_DATA (rel->r_info),
2290 r_type));
2294 loc = sreloc->contents;
2295 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2296 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2298 /* This reloc will be computed at runtime, so there's no
2299 need to do anything now. */
2300 if (! relocate)
2301 continue;
2303 break;
2307 switch (r_type)
2309 case R_SPARC_GOT10:
2310 case R_SPARC_GOT13:
2311 case R_SPARC_GOT22:
2312 /* Relocation is to the entry for this symbol in the global
2313 offset table. */
2314 if (sgot == NULL)
2316 sgot = bfd_get_section_by_name (dynobj, ".got");
2317 BFD_ASSERT (sgot != NULL);
2320 if (h != NULL)
2322 bfd_boolean dyn;
2324 off = h->got.offset;
2325 BFD_ASSERT (off != (bfd_vma) -1);
2326 dyn = elf_hash_table (info)->dynamic_sections_created;
2328 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2329 || (info->shared
2330 && (info->symbolic
2331 || h->dynindx == -1
2332 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2333 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2335 /* This is actually a static link, or it is a -Bsymbolic
2336 link and the symbol is defined locally, or the symbol
2337 was forced to be local because of a version file. We
2338 must initialize this entry in the global offset table.
2339 Since the offset must always be a multiple of 8, we
2340 use the least significant bit to record whether we
2341 have initialized it already.
2343 When doing a dynamic link, we create a .rela.got
2344 relocation entry to initialize the value. This is
2345 done in the finish_dynamic_symbol routine. */
2347 if ((off & 1) != 0)
2348 off &= ~1;
2349 else
2351 bfd_put_64 (output_bfd, relocation,
2352 sgot->contents + off);
2353 h->got.offset |= 1;
2356 else
2357 unresolved_reloc = FALSE;
2359 else
2361 BFD_ASSERT (local_got_offsets != NULL);
2362 off = local_got_offsets[r_symndx];
2363 BFD_ASSERT (off != (bfd_vma) -1);
2365 /* The offset must always be a multiple of 8. We use
2366 the least significant bit to record whether we have
2367 already processed this entry. */
2368 if ((off & 1) != 0)
2369 off &= ~1;
2370 else
2372 local_got_offsets[r_symndx] |= 1;
2374 if (info->shared)
2376 asection *s;
2377 Elf_Internal_Rela outrel;
2378 bfd_byte *loc;
2380 /* The Solaris 2.7 64-bit linker adds the contents
2381 of the location to the value of the reloc.
2382 Note this is different behaviour to the
2383 32-bit linker, which both adds the contents
2384 and ignores the addend. So clear the location. */
2385 bfd_put_64 (output_bfd, (bfd_vma) 0,
2386 sgot->contents + off);
2388 /* We need to generate a R_SPARC_RELATIVE reloc
2389 for the dynamic linker. */
2390 s = bfd_get_section_by_name(dynobj, ".rela.got");
2391 BFD_ASSERT (s != NULL);
2393 outrel.r_offset = (sgot->output_section->vma
2394 + sgot->output_offset
2395 + off);
2396 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2397 outrel.r_addend = relocation;
2398 loc = s->contents;
2399 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2400 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2402 else
2403 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2406 relocation = sgot->output_offset + off - got_base;
2407 goto do_default;
2409 case R_SPARC_WPLT30:
2410 case R_SPARC_PLT32:
2411 case R_SPARC_HIPLT22:
2412 case R_SPARC_LOPLT10:
2413 case R_SPARC_PCPLT32:
2414 case R_SPARC_PCPLT22:
2415 case R_SPARC_PCPLT10:
2416 case R_SPARC_PLT64:
2417 /* Relocation is to the entry for this symbol in the
2418 procedure linkage table. */
2419 BFD_ASSERT (h != NULL);
2421 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2423 /* We didn't make a PLT entry for this symbol. This
2424 happens when statically linking PIC code, or when
2425 using -Bsymbolic. */
2426 goto do_default;
2429 relocation = (splt->output_section->vma
2430 + splt->output_offset
2431 + sparc64_elf_plt_entry_offset (h->plt.offset));
2432 unresolved_reloc = FALSE;
2433 if (r_type == R_SPARC_WPLT30)
2434 goto do_wplt30;
2435 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2437 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2438 is_plt = TRUE;
2439 goto do_dynreloc;
2441 goto do_default;
2443 case R_SPARC_OLO10:
2445 bfd_vma x;
2447 relocation += rel->r_addend;
2448 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2450 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2451 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2452 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2454 r = bfd_check_overflow (howto->complain_on_overflow,
2455 howto->bitsize, howto->rightshift,
2456 bfd_arch_bits_per_address (input_bfd),
2457 relocation);
2459 break;
2461 case R_SPARC_WDISP16:
2463 bfd_vma x;
2465 relocation += rel->r_addend;
2466 /* Adjust for pc-relative-ness. */
2467 relocation -= (input_section->output_section->vma
2468 + input_section->output_offset);
2469 relocation -= rel->r_offset;
2471 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2472 x &= ~(bfd_vma) 0x303fff;
2473 x |= ((((relocation >> 2) & 0xc000) << 6)
2474 | ((relocation >> 2) & 0x3fff));
2475 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2477 r = bfd_check_overflow (howto->complain_on_overflow,
2478 howto->bitsize, howto->rightshift,
2479 bfd_arch_bits_per_address (input_bfd),
2480 relocation);
2482 break;
2484 case R_SPARC_HIX22:
2486 bfd_vma x;
2488 relocation += rel->r_addend;
2489 relocation = relocation ^ MINUS_ONE;
2491 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2492 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2493 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2495 r = bfd_check_overflow (howto->complain_on_overflow,
2496 howto->bitsize, howto->rightshift,
2497 bfd_arch_bits_per_address (input_bfd),
2498 relocation);
2500 break;
2502 case R_SPARC_LOX10:
2504 bfd_vma x;
2506 relocation += rel->r_addend;
2507 relocation = (relocation & 0x3ff) | 0x1c00;
2509 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2510 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2511 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2513 r = bfd_reloc_ok;
2515 break;
2517 case R_SPARC_WDISP30:
2518 do_wplt30:
2519 if (sec_do_relax (input_section)
2520 && rel->r_offset + 4 < input_section->_raw_size)
2522 #define G0 0
2523 #define O7 15
2524 #define XCC (2 << 20)
2525 #define COND(x) (((x)&0xf)<<25)
2526 #define CONDA COND(0x8)
2527 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2528 #define INSN_BA (F2(0,2) | CONDA)
2529 #define INSN_OR F3(2, 0x2, 0)
2530 #define INSN_NOP F2(0,4)
2532 bfd_vma x, y;
2534 /* If the instruction is a call with either:
2535 restore
2536 arithmetic instruction with rd == %o7
2537 where rs1 != %o7 and rs2 if it is register != %o7
2538 then we can optimize if the call destination is near
2539 by changing the call into a branch always. */
2540 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2541 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2542 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2544 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2545 || ((y & OP3(0x28)) == 0 /* arithmetic */
2546 && (y & RD(~0)) == RD(O7)))
2547 && (y & RS1(~0)) != RS1(O7)
2548 && ((y & F3I(~0))
2549 || (y & RS2(~0)) != RS2(O7)))
2551 bfd_vma reloc;
2553 reloc = relocation + rel->r_addend - rel->r_offset;
2554 reloc -= (input_section->output_section->vma
2555 + input_section->output_offset);
2556 if (reloc & 3)
2557 goto do_default;
2559 /* Ensure the branch fits into simm22. */
2560 if ((reloc & ~(bfd_vma)0x7fffff)
2561 && ((reloc | 0x7fffff) != MINUS_ONE))
2562 goto do_default;
2563 reloc >>= 2;
2565 /* Check whether it fits into simm19. */
2566 if ((reloc & 0x3c0000) == 0
2567 || (reloc & 0x3c0000) == 0x3c0000)
2568 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2569 else
2570 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2571 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2572 r = bfd_reloc_ok;
2573 if (rel->r_offset >= 4
2574 && (y & (0xffffffff ^ RS1(~0)))
2575 == (INSN_OR | RD(O7) | RS2(G0)))
2577 bfd_vma z;
2578 unsigned int reg;
2580 z = bfd_get_32 (input_bfd,
2581 contents + rel->r_offset - 4);
2582 if ((z & (0xffffffff ^ RD(~0)))
2583 != (INSN_OR | RS1(O7) | RS2(G0)))
2584 break;
2586 /* The sequence was
2587 or %o7, %g0, %rN
2588 call foo
2589 or %rN, %g0, %o7
2591 If call foo was replaced with ba, replace
2592 or %rN, %g0, %o7 with nop. */
2594 reg = (y & RS1(~0)) >> 14;
2595 if (reg != ((z & RD(~0)) >> 25)
2596 || reg == G0 || reg == O7)
2597 break;
2599 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2600 contents + rel->r_offset + 4);
2602 break;
2606 /* Fall through. */
2608 default:
2609 do_default:
2610 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2611 contents, rel->r_offset,
2612 relocation, rel->r_addend);
2613 break;
2616 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2617 because such sections are not SEC_ALLOC and thus ld.so will
2618 not process them. */
2619 if (unresolved_reloc
2620 && !((input_section->flags & SEC_DEBUGGING) != 0
2621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2622 (*_bfd_error_handler)
2623 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2624 bfd_archive_filename (input_bfd),
2625 bfd_get_section_name (input_bfd, input_section),
2626 (long) rel->r_offset,
2627 h->root.root.string);
2629 switch (r)
2631 case bfd_reloc_ok:
2632 break;
2634 default:
2635 case bfd_reloc_outofrange:
2636 abort ();
2638 case bfd_reloc_overflow:
2640 const char *name;
2642 /* The Solaris native linker silently disregards
2643 overflows. We don't, but this breaks stabs debugging
2644 info, whose relocations are only 32-bits wide. Ignore
2645 overflows for discarded entries. */
2646 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2647 && _bfd_elf_section_offset (output_bfd, info, input_section,
2648 rel->r_offset) == (bfd_vma) -1)
2649 break;
2651 if (h != NULL)
2653 if (h->root.type == bfd_link_hash_undefweak
2654 && howto->pc_relative)
2656 /* Assume this is a call protected by other code that
2657 detect the symbol is undefined. If this is the case,
2658 we can safely ignore the overflow. If not, the
2659 program is hosed anyway, and a little warning isn't
2660 going to help. */
2661 break;
2664 name = h->root.root.string;
2666 else
2668 name = (bfd_elf_string_from_elf_section
2669 (input_bfd,
2670 symtab_hdr->sh_link,
2671 sym->st_name));
2672 if (name == NULL)
2673 return FALSE;
2674 if (*name == '\0')
2675 name = bfd_section_name (input_bfd, sec);
2677 if (! ((*info->callbacks->reloc_overflow)
2678 (info, name, howto->name, (bfd_vma) 0,
2679 input_bfd, input_section, rel->r_offset)))
2680 return FALSE;
2682 break;
2686 return TRUE;
2689 /* Finish up dynamic symbol handling. We set the contents of various
2690 dynamic sections here. */
2692 static bfd_boolean
2693 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2694 bfd *output_bfd;
2695 struct bfd_link_info *info;
2696 struct elf_link_hash_entry *h;
2697 Elf_Internal_Sym *sym;
2699 bfd *dynobj;
2701 dynobj = elf_hash_table (info)->dynobj;
2703 if (h->plt.offset != (bfd_vma) -1)
2705 asection *splt;
2706 asection *srela;
2707 Elf_Internal_Rela rela;
2708 bfd_byte *loc;
2710 /* This symbol has an entry in the PLT. Set it up. */
2712 BFD_ASSERT (h->dynindx != -1);
2714 splt = bfd_get_section_by_name (dynobj, ".plt");
2715 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2716 BFD_ASSERT (splt != NULL && srela != NULL);
2718 /* Fill in the entry in the .rela.plt section. */
2720 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2722 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2723 rela.r_addend = 0;
2725 else
2727 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2728 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2729 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2730 -(splt->output_section->vma + splt->output_offset);
2732 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2733 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2735 /* Adjust for the first 4 reserved elements in the .plt section
2736 when setting the offset in the .rela.plt section.
2737 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2738 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2740 loc = srela->contents;
2741 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2742 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2744 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2746 /* Mark the symbol as undefined, rather than as defined in
2747 the .plt section. Leave the value alone. */
2748 sym->st_shndx = SHN_UNDEF;
2749 /* If the symbol is weak, we do need to clear the value.
2750 Otherwise, the PLT entry would provide a definition for
2751 the symbol even if the symbol wasn't defined anywhere,
2752 and so the symbol would never be NULL. */
2753 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2754 == 0)
2755 sym->st_value = 0;
2759 if (h->got.offset != (bfd_vma) -1)
2761 asection *sgot;
2762 asection *srela;
2763 Elf_Internal_Rela rela;
2764 bfd_byte *loc;
2766 /* This symbol has an entry in the GOT. Set it up. */
2768 sgot = bfd_get_section_by_name (dynobj, ".got");
2769 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2770 BFD_ASSERT (sgot != NULL && srela != NULL);
2772 rela.r_offset = (sgot->output_section->vma
2773 + sgot->output_offset
2774 + (h->got.offset &~ (bfd_vma) 1));
2776 /* If this is a -Bsymbolic link, and the symbol is defined
2777 locally, we just want to emit a RELATIVE reloc. Likewise if
2778 the symbol was forced to be local because of a version file.
2779 The entry in the global offset table will already have been
2780 initialized in the relocate_section function. */
2781 if (info->shared
2782 && (info->symbolic || h->dynindx == -1)
2783 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2785 asection *sec = h->root.u.def.section;
2786 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2787 rela.r_addend = (h->root.u.def.value
2788 + sec->output_section->vma
2789 + sec->output_offset);
2791 else
2793 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2794 rela.r_addend = 0;
2797 bfd_put_64 (output_bfd, (bfd_vma) 0,
2798 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2799 loc = srela->contents;
2800 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2801 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2804 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2806 asection *s;
2807 Elf_Internal_Rela rela;
2808 bfd_byte *loc;
2810 /* This symbols needs a copy reloc. Set it up. */
2811 BFD_ASSERT (h->dynindx != -1);
2813 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2814 ".rela.bss");
2815 BFD_ASSERT (s != NULL);
2817 rela.r_offset = (h->root.u.def.value
2818 + h->root.u.def.section->output_section->vma
2819 + h->root.u.def.section->output_offset);
2820 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2821 rela.r_addend = 0;
2822 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2823 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2826 /* Mark some specially defined symbols as absolute. */
2827 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2828 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2829 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2830 sym->st_shndx = SHN_ABS;
2832 return TRUE;
2835 /* Finish up the dynamic sections. */
2837 static bfd_boolean
2838 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2839 bfd *output_bfd;
2840 struct bfd_link_info *info;
2842 bfd *dynobj;
2843 int stt_regidx = -1;
2844 asection *sdyn;
2845 asection *sgot;
2847 dynobj = elf_hash_table (info)->dynobj;
2849 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2851 if (elf_hash_table (info)->dynamic_sections_created)
2853 asection *splt;
2854 Elf64_External_Dyn *dyncon, *dynconend;
2856 splt = bfd_get_section_by_name (dynobj, ".plt");
2857 BFD_ASSERT (splt != NULL && sdyn != NULL);
2859 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2860 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2861 for (; dyncon < dynconend; dyncon++)
2863 Elf_Internal_Dyn dyn;
2864 const char *name;
2865 bfd_boolean size;
2867 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2869 switch (dyn.d_tag)
2871 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2872 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2873 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2874 case DT_SPARC_REGISTER:
2875 if (stt_regidx == -1)
2877 stt_regidx =
2878 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2879 if (stt_regidx == -1)
2880 return FALSE;
2882 dyn.d_un.d_val = stt_regidx++;
2883 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2884 /* fallthrough */
2885 default: name = NULL; size = FALSE; break;
2888 if (name != NULL)
2890 asection *s;
2892 s = bfd_get_section_by_name (output_bfd, name);
2893 if (s == NULL)
2894 dyn.d_un.d_val = 0;
2895 else
2897 if (! size)
2898 dyn.d_un.d_ptr = s->vma;
2899 else
2901 if (s->_cooked_size != 0)
2902 dyn.d_un.d_val = s->_cooked_size;
2903 else
2904 dyn.d_un.d_val = s->_raw_size;
2907 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2911 /* Initialize the contents of the .plt section. */
2912 if (splt->_raw_size > 0)
2913 sparc64_elf_build_plt (output_bfd, splt->contents,
2914 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2916 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2917 PLT_ENTRY_SIZE;
2920 /* Set the first entry in the global offset table to the address of
2921 the dynamic section. */
2922 sgot = bfd_get_section_by_name (dynobj, ".got");
2923 BFD_ASSERT (sgot != NULL);
2924 if (sgot->_raw_size > 0)
2926 if (sdyn == NULL)
2927 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2928 else
2929 bfd_put_64 (output_bfd,
2930 sdyn->output_section->vma + sdyn->output_offset,
2931 sgot->contents);
2934 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2936 return TRUE;
2939 static enum elf_reloc_type_class
2940 sparc64_elf_reloc_type_class (rela)
2941 const Elf_Internal_Rela *rela;
2943 switch ((int) ELF64_R_TYPE (rela->r_info))
2945 case R_SPARC_RELATIVE:
2946 return reloc_class_relative;
2947 case R_SPARC_JMP_SLOT:
2948 return reloc_class_plt;
2949 case R_SPARC_COPY:
2950 return reloc_class_copy;
2951 default:
2952 return reloc_class_normal;
2956 /* Functions for dealing with the e_flags field. */
2958 /* Merge backend specific data from an object file to the output
2959 object file when linking. */
2961 static bfd_boolean
2962 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2963 bfd *ibfd;
2964 bfd *obfd;
2966 bfd_boolean error;
2967 flagword new_flags, old_flags;
2968 int new_mm, old_mm;
2970 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2971 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2972 return TRUE;
2974 new_flags = elf_elfheader (ibfd)->e_flags;
2975 old_flags = elf_elfheader (obfd)->e_flags;
2977 if (!elf_flags_init (obfd)) /* First call, no flags set */
2979 elf_flags_init (obfd) = TRUE;
2980 elf_elfheader (obfd)->e_flags = new_flags;
2983 else if (new_flags == old_flags) /* Compatible flags are ok */
2986 else /* Incompatible flags */
2988 error = FALSE;
2990 #define EF_SPARC_ISA_EXTENSIONS \
2991 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2993 if ((ibfd->flags & DYNAMIC) != 0)
2995 /* We don't want dynamic objects memory ordering and
2996 architecture to have any role. That's what dynamic linker
2997 should do. */
2998 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2999 new_flags |= (old_flags
3000 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3002 else
3004 /* Choose the highest architecture requirements. */
3005 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3006 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3007 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3008 && (old_flags & EF_SPARC_HAL_R1))
3010 error = TRUE;
3011 (*_bfd_error_handler)
3012 (_("%s: linking UltraSPARC specific with HAL specific code"),
3013 bfd_archive_filename (ibfd));
3015 /* Choose the most restrictive memory ordering. */
3016 old_mm = (old_flags & EF_SPARCV9_MM);
3017 new_mm = (new_flags & EF_SPARCV9_MM);
3018 old_flags &= ~EF_SPARCV9_MM;
3019 new_flags &= ~EF_SPARCV9_MM;
3020 if (new_mm < old_mm)
3021 old_mm = new_mm;
3022 old_flags |= old_mm;
3023 new_flags |= old_mm;
3026 /* Warn about any other mismatches */
3027 if (new_flags != old_flags)
3029 error = TRUE;
3030 (*_bfd_error_handler)
3031 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3032 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3035 elf_elfheader (obfd)->e_flags = old_flags;
3037 if (error)
3039 bfd_set_error (bfd_error_bad_value);
3040 return FALSE;
3043 return TRUE;
3046 /* MARCO: Set the correct entry size for the .stab section. */
3048 static bfd_boolean
3049 sparc64_elf_fake_sections (abfd, hdr, sec)
3050 bfd *abfd ATTRIBUTE_UNUSED;
3051 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3052 asection *sec;
3054 const char *name;
3056 name = bfd_get_section_name (abfd, sec);
3058 if (strcmp (name, ".stab") == 0)
3060 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3061 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3064 return TRUE;
3067 /* Print a STT_REGISTER symbol to file FILE. */
3069 static const char *
3070 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3071 bfd *abfd ATTRIBUTE_UNUSED;
3072 PTR filep;
3073 asymbol *symbol;
3075 FILE *file = (FILE *) filep;
3076 int reg, type;
3078 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3079 != STT_REGISTER)
3080 return NULL;
3082 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3083 type = symbol->flags;
3084 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3085 ((type & BSF_LOCAL)
3086 ? (type & BSF_GLOBAL) ? '!' : 'l'
3087 : (type & BSF_GLOBAL) ? 'g' : ' '),
3088 (type & BSF_WEAK) ? 'w' : ' ');
3089 if (symbol->name == NULL || symbol->name [0] == '\0')
3090 return "#scratch";
3091 else
3092 return symbol->name;
3095 /* Set the right machine number for a SPARC64 ELF file. */
3097 static bfd_boolean
3098 sparc64_elf_object_p (abfd)
3099 bfd *abfd;
3101 unsigned long mach = bfd_mach_sparc_v9;
3103 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3104 mach = bfd_mach_sparc_v9b;
3105 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3106 mach = bfd_mach_sparc_v9a;
3107 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3110 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3111 standard ELF, because R_SPARC_OLO10 has secondary addend in
3112 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3113 relocation handling routines. */
3115 const struct elf_size_info sparc64_elf_size_info =
3117 sizeof (Elf64_External_Ehdr),
3118 sizeof (Elf64_External_Phdr),
3119 sizeof (Elf64_External_Shdr),
3120 sizeof (Elf64_External_Rel),
3121 sizeof (Elf64_External_Rela),
3122 sizeof (Elf64_External_Sym),
3123 sizeof (Elf64_External_Dyn),
3124 sizeof (Elf_External_Note),
3125 4, /* hash-table entry size. */
3126 /* Internal relocations per external relocations.
3127 For link purposes we use just 1 internal per
3128 1 external, for assembly and slurp symbol table
3129 we use 2. */
3131 64, /* arch_size. */
3132 3, /* log_file_align. */
3133 ELFCLASS64,
3134 EV_CURRENT,
3135 bfd_elf64_write_out_phdrs,
3136 bfd_elf64_write_shdrs_and_ehdr,
3137 sparc64_elf_write_relocs,
3138 bfd_elf64_swap_symbol_in,
3139 bfd_elf64_swap_symbol_out,
3140 sparc64_elf_slurp_reloc_table,
3141 bfd_elf64_slurp_symbol_table,
3142 bfd_elf64_swap_dyn_in,
3143 bfd_elf64_swap_dyn_out,
3144 bfd_elf64_swap_reloc_in,
3145 bfd_elf64_swap_reloc_out,
3146 bfd_elf64_swap_reloca_in,
3147 bfd_elf64_swap_reloca_out
3150 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3151 #define TARGET_BIG_NAME "elf64-sparc"
3152 #define ELF_ARCH bfd_arch_sparc
3153 #define ELF_MAXPAGESIZE 0x100000
3155 /* This is the official ABI value. */
3156 #define ELF_MACHINE_CODE EM_SPARCV9
3158 /* This is the value that we used before the ABI was released. */
3159 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3161 #define bfd_elf64_bfd_link_hash_table_create \
3162 sparc64_elf_bfd_link_hash_table_create
3164 #define elf_info_to_howto \
3165 sparc64_elf_info_to_howto
3166 #define bfd_elf64_get_reloc_upper_bound \
3167 sparc64_elf_get_reloc_upper_bound
3168 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3169 sparc64_elf_get_dynamic_reloc_upper_bound
3170 #define bfd_elf64_canonicalize_reloc \
3171 sparc64_elf_canonicalize_reloc
3172 #define bfd_elf64_canonicalize_dynamic_reloc \
3173 sparc64_elf_canonicalize_dynamic_reloc
3174 #define bfd_elf64_bfd_reloc_type_lookup \
3175 sparc64_elf_reloc_type_lookup
3176 #define bfd_elf64_bfd_relax_section \
3177 sparc64_elf_relax_section
3178 #define bfd_elf64_new_section_hook \
3179 sparc64_elf_new_section_hook
3181 #define elf_backend_create_dynamic_sections \
3182 _bfd_elf_create_dynamic_sections
3183 #define elf_backend_add_symbol_hook \
3184 sparc64_elf_add_symbol_hook
3185 #define elf_backend_get_symbol_type \
3186 sparc64_elf_get_symbol_type
3187 #define elf_backend_symbol_processing \
3188 sparc64_elf_symbol_processing
3189 #define elf_backend_check_relocs \
3190 sparc64_elf_check_relocs
3191 #define elf_backend_adjust_dynamic_symbol \
3192 sparc64_elf_adjust_dynamic_symbol
3193 #define elf_backend_size_dynamic_sections \
3194 sparc64_elf_size_dynamic_sections
3195 #define elf_backend_relocate_section \
3196 sparc64_elf_relocate_section
3197 #define elf_backend_finish_dynamic_symbol \
3198 sparc64_elf_finish_dynamic_symbol
3199 #define elf_backend_finish_dynamic_sections \
3200 sparc64_elf_finish_dynamic_sections
3201 #define elf_backend_print_symbol_all \
3202 sparc64_elf_print_symbol_all
3203 #define elf_backend_output_arch_syms \
3204 sparc64_elf_output_arch_syms
3205 #define bfd_elf64_bfd_merge_private_bfd_data \
3206 sparc64_elf_merge_private_bfd_data
3207 #define elf_backend_fake_sections \
3208 sparc64_elf_fake_sections
3210 #define elf_backend_size_info \
3211 sparc64_elf_size_info
3212 #define elf_backend_object_p \
3213 sparc64_elf_object_p
3214 #define elf_backend_reloc_type_class \
3215 sparc64_elf_reloc_type_class
3217 #define elf_backend_want_got_plt 0
3218 #define elf_backend_plt_readonly 0
3219 #define elf_backend_want_plt_sym 1
3220 #define elf_backend_rela_normal 1
3222 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3223 #define elf_backend_plt_alignment 8
3225 #define elf_backend_got_header_size 8
3227 #include "elf64-target.h"