bfd/
[binutils.git] / bfd / elflink.c
blob3f70d915fc9f2859b740a697f501beb5c4c3a864
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 int ptralign;
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
111 switch (bed->s->arch_size)
113 case 32:
114 ptralign = 2;
115 break;
117 case 64:
118 ptralign = 3;
119 break;
121 default:
122 bfd_set_error (bfd_error_bad_value);
123 return FALSE;
126 flags = bed->dynamic_sec_flags;
128 s = bfd_make_section_with_flags (abfd, ".got", flags);
129 if (s == NULL
130 || !bfd_set_section_alignment (abfd, s, ptralign))
131 return FALSE;
133 if (bed->want_got_plt)
135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
136 if (s == NULL
137 || !bfd_set_section_alignment (abfd, s, ptralign))
138 return FALSE;
141 if (bed->want_got_sym)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
153 /* The first bit of the global offset table is the header. */
154 s->size += bed->got_header_size;
156 return TRUE;
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
175 return TRUE;
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 flagword flags;
189 register asection *s;
190 const struct elf_backend_data *bed;
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
261 if (info->emit_hash)
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
294 return TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
329 if (bed->want_plt_sym)
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
338 s = bfd_make_section_with_flags (abfd,
339 (bed->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
346 if (! _bfd_elf_create_got_section (abfd, info))
347 return FALSE;
349 if (bed->want_dynbss)
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
361 return FALSE;
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
374 if (! info->shared)
376 s = bfd_make_section_with_flags (abfd,
377 (bed->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
380 if (s == NULL
381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
382 return FALSE;
386 return TRUE;
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
397 bfd_boolean
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
401 if (h->dynindx == -1)
403 struct elf_strtab_hash *dynstr;
404 char *p;
405 const char *name;
406 bfd_size_type indx;
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
414 case STV_INTERNAL:
415 case STV_HIDDEN:
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
419 h->forced_local = 1;
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
424 default:
425 break;
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
436 if (dynstr == NULL)
437 return FALSE;
440 /* We don't put any version information in the dynamic string
441 table. */
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
454 if (p != NULL)
455 *p = ELF_VER_CHR;
457 if (indx == (bfd_size_type) -1)
458 return FALSE;
459 h->dynstr_index = indx;
462 return TRUE;
465 /* Mark a symbol dynamic. */
467 static void
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
476 return;
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
482 || (d != NULL
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
485 h->dynamic = 1;
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
491 bfd_boolean
492 bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
494 const char *name,
495 bfd_boolean provide,
496 bfd_boolean hidden)
498 struct elf_link_hash_entry *h, *hv;
499 struct elf_link_hash_table *htab;
500 const struct elf_backend_data *bed;
502 if (!is_elf_hash_table (info->hash))
503 return TRUE;
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
507 if (h == NULL)
508 return provide;
510 switch (h->root.type)
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h->root.type = bfd_link_hash_new;
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
524 break;
525 case bfd_link_hash_new:
526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
527 h->non_elf = 0;
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
554 && h->def_dynamic
555 && !h->def_regular)
556 h->root.type = bfd_link_hash_undefined;
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
563 && h->def_dynamic
564 && !h->def_regular)
565 h->verinfo.verdef = NULL;
567 h->def_regular = 1;
569 if (provide && hidden)
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
585 if ((h->def_dynamic
586 || h->ref_dynamic
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
589 && h->dynindx == -1)
591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
592 return FALSE;
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
601 return FALSE;
605 return TRUE;
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
626 if (! is_elf_hash_table (info->hash))
627 return 0;
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
634 amt = sizeof (*entry);
635 entry = bfd_alloc (input_bfd, amt);
636 if (entry == NULL)
637 return 0;
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
641 1, input_indx, &entry->isym, esym, &eshndx))
643 bfd_release (input_bfd, entry);
644 return 0;
647 if (entry->isym.st_shndx != SHN_UNDEF
648 && entry->isym.st_shndx < SHN_LORESERVE)
650 asection *s;
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
680 eht = elf_hash_table (info);
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692 /* The dynindx will be set at the end of size_dynamic_sections. */
694 return 1;
697 /* Return the dynindex of a local dynamic symbol. */
699 long
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
704 struct elf_link_local_dynamic_entry *e;
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
716 static bfd_boolean
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
720 size_t *count = data;
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725 if (h->forced_local)
726 return TRUE;
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
731 return TRUE;
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
742 size_t *count = data;
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747 if (!h->forced_local)
748 return TRUE;
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
753 return TRUE;
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
763 struct elf_link_hash_table *htab;
765 switch (elf_section_data (p)->this_hdr.sh_type)
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
783 asection *ip;
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
791 return FALSE;
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
811 unsigned long dynsymcount = 0;
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
825 *section_sym_count = dynsymcount;
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
831 if (elf_hash_table (info)->dynlocal)
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
852 /* Merge st_other field. */
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 unsigned char hvis, symvis, other, nvis;
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
896 h->other = other | nvis;
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
912 bfd_boolean
913 _bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
919 unsigned int *pold_alignment,
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
935 *skip = FALSE;
936 *override = FALSE;
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 *skip = TRUE;
947 return TRUE;
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
959 bed = get_elf_backend_data (abfd);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
966 /* For merging, we only care about real symbols. */
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
981 if (h->root.type == bfd_link_hash_new)
983 h->non_elf = 0;
984 return TRUE;
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
990 switch (h->root.type)
992 default:
993 oldbfd = NULL;
994 oldsec = NULL;
995 break;
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
1000 oldsec = NULL;
1001 break;
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
1006 oldsec = h->root.u.def.section;
1007 break;
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
1011 oldsec = h->root.u.c.p->section;
1012 break;
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
1023 || !h->def_regular))
1024 return TRUE;
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1031 olddyn = FALSE;
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1034 else if (oldsec != NULL)
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1076 *skip = TRUE;
1077 return TRUE;
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1090 if (h->type == STT_TLS)
1092 ntbfd = abfd;
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1099 else
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn && !h->dynamic_def)
1135 if (!bfd_is_und_section (sec))
1136 h->dynamic_def = 1;
1137 else
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h->ref_dynamic)
1144 if (bind == STB_WEAK)
1145 h->dynamic_weak = 1;
1147 else if (bind != STB_WEAK)
1148 h->dynamic_weak = 0;
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1156 && !bfd_is_und_section (sec))
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
1160 h->ref_dynamic = 1;
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1166 return bfd_elf_link_record_dynamic_symbol (info, h);
1167 else
1168 return TRUE;
1170 else if (!newdyn
1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1172 && h->def_dynamic)
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1199 else
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1208 h = vh;
1210 else
1211 h = *sym_hash;
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1226 else
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1232 if (h->def_dynamic)
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1260 if (newdef && !newdyn && olddyn)
1261 newweak = FALSE;
1262 if (olddef && newdyn)
1263 oldweak = FALSE;
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc && oldfunc)
1267 *type_change_ok = TRUE;
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1309 if (newdyn
1310 && newdef
1311 && !newweak
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
1315 && !newfunc)
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
1323 && h->def_dynamic
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
1327 && !oldfunc)
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
1366 *size_change_ok = TRUE;
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1383 if (newdyn
1384 && newdef
1385 && (olddef
1386 || (h->root.type == bfd_link_hash_common
1387 && (newweak || newfunc))))
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
1419 *psec = sec = bed->common_section (oldsec);
1420 *size_change_ok = TRUE;
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef && olddef && newweak)
1426 *skip = TRUE;
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1452 flip = NULL;
1453 if (!newdyn
1454 && (newdef
1455 || (bfd_is_com_section (sec)
1456 && (oldweak || oldfunc)))
1457 && olddyn
1458 && olddef
1459 && h->def_dynamic)
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1475 if (bfd_is_com_section (sec))
1477 if (oldfunc)
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1485 *type_change_ok = TRUE;
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1541 if (flip != NULL)
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1547 flip->root.type = h->root.type;
1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1552 if (h->def_dynamic)
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
1559 return TRUE;
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1567 static bfd_boolean
1568 _bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
1576 bfd_boolean override)
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
1584 const struct elf_backend_data *bed;
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1599 if (override)
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
1638 return FALSE;
1640 if (skip)
1641 goto nondefault;
1643 if (! override)
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1648 0, name, FALSE, collect, &bh)))
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1652 else
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 if (h->def_dynamic)
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1686 return FALSE;
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1703 if (hi->root.type == bfd_link_hash_indirect)
1705 struct elf_link_hash_entry *ht;
1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1714 if (! dynamic)
1716 if (info->shared
1717 || hi->ref_dynamic)
1718 *dynsym = TRUE;
1720 else
1722 if (hi->ref_regular)
1723 *dynsym = TRUE;
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1731 nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
1746 return FALSE;
1748 if (skip)
1749 return TRUE;
1751 if (override)
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
1762 else
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1775 if (hi->root.type == bfd_link_hash_indirect)
1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1783 if (! dynamic)
1785 if (info->shared
1786 || hi->ref_dynamic)
1787 *dynsym = TRUE;
1789 else
1791 if (hi->ref_regular)
1792 *dynsym = TRUE;
1798 return TRUE;
1801 static struct bfd_elf_version_tree *
1802 find_version_for_sym (struct bfd_elf_version_tree *verdefs,
1803 const char *sym_name,
1804 bfd_boolean *hide)
1806 struct bfd_elf_version_tree *t;
1807 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
1809 local_ver = NULL;
1810 global_ver = NULL;
1811 exist_ver = NULL;
1812 for (t = verdefs; t != NULL; t = t->next)
1814 if (t->globals.list != NULL)
1816 struct bfd_elf_version_expr *d = NULL;
1818 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
1820 global_ver = t;
1821 if (d->symver)
1822 exist_ver = t;
1823 d->script = 1;
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1826 if (d->literal)
1827 break;
1830 if (d != NULL)
1831 break;
1834 if (t->locals.list != NULL)
1836 struct bfd_elf_version_expr *d = NULL;
1838 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
1840 local_ver = t;
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1843 if (d->literal)
1845 /* An exact match overrides a global wildcard. */
1846 global_ver = NULL;
1847 break;
1851 if (d != NULL)
1852 break;
1856 if (global_ver != NULL)
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide = exist_ver == global_ver;
1863 return global_ver;
1866 if (local_ver != NULL)
1868 *hide = TRUE;
1869 return local_ver;
1872 return NULL;
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1878 static bfd_boolean
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1881 struct elf_info_failed *eif = data;
1883 /* Ignore this if we won't export it. */
1884 if (!eif->info->export_dynamic && !h->dynamic)
1885 return TRUE;
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h->root.type == bfd_link_hash_indirect)
1889 return TRUE;
1891 if (h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1894 if (h->dynindx == -1
1895 && (h->def_regular
1896 || h->ref_regular))
1898 bfd_boolean hide;
1900 if (eif->verdefs == NULL
1901 || (find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1902 && !hide))
1904 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1906 eif->failed = TRUE;
1907 return FALSE;
1912 return TRUE;
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1920 static bfd_boolean
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1922 void *data)
1924 struct elf_find_verdep_info *rinfo = data;
1925 Elf_Internal_Verneed *t;
1926 Elf_Internal_Vernaux *a;
1927 bfd_size_type amt;
1929 if (h->root.type == bfd_link_hash_warning)
1930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1932 /* We only care about symbols defined in shared objects with version
1933 information. */
1934 if (!h->def_dynamic
1935 || h->def_regular
1936 || h->dynindx == -1
1937 || h->verinfo.verdef == NULL)
1938 return TRUE;
1940 /* See if we already know about this version. */
1941 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1942 t != NULL;
1943 t = t->vn_nextref)
1945 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1946 continue;
1948 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1949 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1950 return TRUE;
1952 break;
1955 /* This is a new version. Add it to tree we are building. */
1957 if (t == NULL)
1959 amt = sizeof *t;
1960 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1961 if (t == NULL)
1963 rinfo->failed = TRUE;
1964 return FALSE;
1967 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1968 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1969 elf_tdata (rinfo->info->output_bfd)->verref = t;
1972 amt = sizeof *a;
1973 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1974 if (a == NULL)
1976 rinfo->failed = TRUE;
1977 return FALSE;
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1983 fixed. */
1984 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1986 a->vna_flags = h->verinfo.verdef->vd_flags;
1987 a->vna_nextptr = t->vn_auxptr;
1989 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1990 ++rinfo->vers;
1992 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1994 t->vn_auxptr = a;
1996 return TRUE;
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2004 static bfd_boolean
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2007 struct elf_info_failed *sinfo;
2008 struct bfd_link_info *info;
2009 const struct elf_backend_data *bed;
2010 struct elf_info_failed eif;
2011 char *p;
2012 bfd_size_type amt;
2014 sinfo = data;
2015 info = sinfo->info;
2017 if (h->root.type == bfd_link_hash_warning)
2018 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2020 /* Fix the symbol flags. */
2021 eif.failed = FALSE;
2022 eif.info = info;
2023 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2025 if (eif.failed)
2026 sinfo->failed = TRUE;
2027 return FALSE;
2030 /* We only need version numbers for symbols defined in regular
2031 objects. */
2032 if (!h->def_regular)
2033 return TRUE;
2035 bed = get_elf_backend_data (info->output_bfd);
2036 p = strchr (h->root.root.string, ELF_VER_CHR);
2037 if (p != NULL && h->verinfo.vertree == NULL)
2039 struct bfd_elf_version_tree *t;
2040 bfd_boolean hidden;
2042 hidden = TRUE;
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2046 ++p;
2047 if (*p == ELF_VER_CHR)
2049 hidden = FALSE;
2050 ++p;
2053 /* If there is no version string, we can just return out. */
2054 if (*p == '\0')
2056 if (hidden)
2057 h->hidden = 1;
2058 return TRUE;
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t = sinfo->verdefs; t != NULL; t = t->next)
2064 if (strcmp (t->name, p) == 0)
2066 size_t len;
2067 char *alc;
2068 struct bfd_elf_version_expr *d;
2070 len = p - h->root.root.string;
2071 alc = bfd_malloc (len);
2072 if (alc == NULL)
2074 sinfo->failed = TRUE;
2075 return FALSE;
2077 memcpy (alc, h->root.root.string, len - 1);
2078 alc[len - 1] = '\0';
2079 if (alc[len - 2] == ELF_VER_CHR)
2080 alc[len - 2] = '\0';
2082 h->verinfo.vertree = t;
2083 t->used = TRUE;
2084 d = NULL;
2086 if (t->globals.list != NULL)
2087 d = (*t->match) (&t->globals, NULL, alc);
2089 /* See if there is anything to force this symbol to
2090 local scope. */
2091 if (d == NULL && t->locals.list != NULL)
2093 d = (*t->match) (&t->locals, NULL, alc);
2094 if (d != NULL
2095 && h->dynindx != -1
2096 && ! info->export_dynamic)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 free (alc);
2101 break;
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t == NULL && info->executable)
2109 struct bfd_elf_version_tree **pp;
2110 int version_index;
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h->dynindx == -1)
2115 return TRUE;
2117 amt = sizeof *t;
2118 t = bfd_zalloc (info->output_bfd, amt);
2119 if (t == NULL)
2121 sinfo->failed = TRUE;
2122 return FALSE;
2125 t->name = p;
2126 t->name_indx = (unsigned int) -1;
2127 t->used = TRUE;
2129 version_index = 1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2132 version_index = 0;
2133 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2134 ++version_index;
2135 t->vernum = version_index;
2137 *pp = t;
2139 h->verinfo.vertree = t;
2141 else if (t == NULL)
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler)
2146 (_("%B: version node not found for symbol %s"),
2147 info->output_bfd, h->root.root.string);
2148 bfd_set_error (bfd_error_bad_value);
2149 sinfo->failed = TRUE;
2150 return FALSE;
2153 if (hidden)
2154 h->hidden = 1;
2157 /* If we don't have a version for this symbol, see if we can find
2158 something. */
2159 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2161 bfd_boolean hide;
2163 h->verinfo.vertree = find_version_for_sym (sinfo->verdefs,
2164 h->root.root.string, &hide);
2165 if (h->verinfo.vertree != NULL && hide)
2166 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2169 return TRUE;
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2179 Returns FALSE if something goes wrong. */
2181 static bfd_boolean
2182 elf_link_read_relocs_from_section (bfd *abfd,
2183 asection *sec,
2184 Elf_Internal_Shdr *shdr,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs)
2188 const struct elf_backend_data *bed;
2189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2190 const bfd_byte *erela;
2191 const bfd_byte *erelaend;
2192 Elf_Internal_Rela *irela;
2193 Elf_Internal_Shdr *symtab_hdr;
2194 size_t nsyms;
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2198 return FALSE;
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2202 return FALSE;
2204 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2205 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2207 bed = get_elf_backend_data (abfd);
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr->sh_entsize == bed->s->sizeof_rel)
2211 swap_in = bed->s->swap_reloc_in;
2212 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2213 swap_in = bed->s->swap_reloca_in;
2214 else
2216 bfd_set_error (bfd_error_wrong_format);
2217 return FALSE;
2220 erela = external_relocs;
2221 erelaend = erela + shdr->sh_size;
2222 irela = internal_relocs;
2223 while (erela < erelaend)
2225 bfd_vma r_symndx;
2227 (*swap_in) (abfd, erela, irela);
2228 r_symndx = ELF32_R_SYM (irela->r_info);
2229 if (bed->s->arch_size == 64)
2230 r_symndx >>= 24;
2231 if (nsyms > 0)
2233 if ((size_t) r_symndx >= nsyms)
2235 (*_bfd_error_handler)
2236 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2237 " for offset 0x%lx in section `%A'"),
2238 abfd, sec,
2239 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2240 bfd_set_error (bfd_error_bad_value);
2241 return FALSE;
2244 else if (r_symndx != 0)
2246 (*_bfd_error_handler)
2247 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2248 " when the object file has no symbol table"),
2249 abfd, sec,
2250 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2251 bfd_set_error (bfd_error_bad_value);
2252 return FALSE;
2254 irela += bed->s->int_rels_per_ext_rel;
2255 erela += shdr->sh_entsize;
2258 return TRUE;
2261 /* Read and swap the relocs for a section O. They may have been
2262 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2263 not NULL, they are used as buffers to read into. They are known to
2264 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2265 the return value is allocated using either malloc or bfd_alloc,
2266 according to the KEEP_MEMORY argument. If O has two relocation
2267 sections (both REL and RELA relocations), then the REL_HDR
2268 relocations will appear first in INTERNAL_RELOCS, followed by the
2269 REL_HDR2 relocations. */
2271 Elf_Internal_Rela *
2272 _bfd_elf_link_read_relocs (bfd *abfd,
2273 asection *o,
2274 void *external_relocs,
2275 Elf_Internal_Rela *internal_relocs,
2276 bfd_boolean keep_memory)
2278 Elf_Internal_Shdr *rel_hdr;
2279 void *alloc1 = NULL;
2280 Elf_Internal_Rela *alloc2 = NULL;
2281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2283 if (elf_section_data (o)->relocs != NULL)
2284 return elf_section_data (o)->relocs;
2286 if (o->reloc_count == 0)
2287 return NULL;
2289 rel_hdr = &elf_section_data (o)->rel_hdr;
2291 if (internal_relocs == NULL)
2293 bfd_size_type size;
2295 size = o->reloc_count;
2296 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2297 if (keep_memory)
2298 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2299 else
2300 internal_relocs = alloc2 = bfd_malloc (size);
2301 if (internal_relocs == NULL)
2302 goto error_return;
2305 if (external_relocs == NULL)
2307 bfd_size_type size = rel_hdr->sh_size;
2309 if (elf_section_data (o)->rel_hdr2)
2310 size += elf_section_data (o)->rel_hdr2->sh_size;
2311 alloc1 = bfd_malloc (size);
2312 if (alloc1 == NULL)
2313 goto error_return;
2314 external_relocs = alloc1;
2317 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2318 external_relocs,
2319 internal_relocs))
2320 goto error_return;
2321 if (elf_section_data (o)->rel_hdr2
2322 && (!elf_link_read_relocs_from_section
2323 (abfd, o,
2324 elf_section_data (o)->rel_hdr2,
2325 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2326 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2327 * bed->s->int_rels_per_ext_rel))))
2328 goto error_return;
2330 /* Cache the results for next time, if we can. */
2331 if (keep_memory)
2332 elf_section_data (o)->relocs = internal_relocs;
2334 if (alloc1 != NULL)
2335 free (alloc1);
2337 /* Don't free alloc2, since if it was allocated we are passing it
2338 back (under the name of internal_relocs). */
2340 return internal_relocs;
2342 error_return:
2343 if (alloc1 != NULL)
2344 free (alloc1);
2345 if (alloc2 != NULL)
2347 if (keep_memory)
2348 bfd_release (abfd, alloc2);
2349 else
2350 free (alloc2);
2352 return NULL;
2355 /* Compute the size of, and allocate space for, REL_HDR which is the
2356 section header for a section containing relocations for O. */
2358 static bfd_boolean
2359 _bfd_elf_link_size_reloc_section (bfd *abfd,
2360 Elf_Internal_Shdr *rel_hdr,
2361 asection *o)
2363 bfd_size_type reloc_count;
2364 bfd_size_type num_rel_hashes;
2366 /* Figure out how many relocations there will be. */
2367 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2368 reloc_count = elf_section_data (o)->rel_count;
2369 else
2370 reloc_count = elf_section_data (o)->rel_count2;
2372 num_rel_hashes = o->reloc_count;
2373 if (num_rel_hashes < reloc_count)
2374 num_rel_hashes = reloc_count;
2376 /* That allows us to calculate the size of the section. */
2377 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2379 /* The contents field must last into write_object_contents, so we
2380 allocate it with bfd_alloc rather than malloc. Also since we
2381 cannot be sure that the contents will actually be filled in,
2382 we zero the allocated space. */
2383 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2384 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2385 return FALSE;
2387 /* We only allocate one set of hash entries, so we only do it the
2388 first time we are called. */
2389 if (elf_section_data (o)->rel_hashes == NULL
2390 && num_rel_hashes)
2392 struct elf_link_hash_entry **p;
2394 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2395 if (p == NULL)
2396 return FALSE;
2398 elf_section_data (o)->rel_hashes = p;
2401 return TRUE;
2404 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2405 originated from the section given by INPUT_REL_HDR) to the
2406 OUTPUT_BFD. */
2408 bfd_boolean
2409 _bfd_elf_link_output_relocs (bfd *output_bfd,
2410 asection *input_section,
2411 Elf_Internal_Shdr *input_rel_hdr,
2412 Elf_Internal_Rela *internal_relocs,
2413 struct elf_link_hash_entry **rel_hash
2414 ATTRIBUTE_UNUSED)
2416 Elf_Internal_Rela *irela;
2417 Elf_Internal_Rela *irelaend;
2418 bfd_byte *erel;
2419 Elf_Internal_Shdr *output_rel_hdr;
2420 asection *output_section;
2421 unsigned int *rel_countp = NULL;
2422 const struct elf_backend_data *bed;
2423 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2425 output_section = input_section->output_section;
2426 output_rel_hdr = NULL;
2428 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2429 == input_rel_hdr->sh_entsize)
2431 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2432 rel_countp = &elf_section_data (output_section)->rel_count;
2434 else if (elf_section_data (output_section)->rel_hdr2
2435 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2436 == input_rel_hdr->sh_entsize))
2438 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2439 rel_countp = &elf_section_data (output_section)->rel_count2;
2441 else
2443 (*_bfd_error_handler)
2444 (_("%B: relocation size mismatch in %B section %A"),
2445 output_bfd, input_section->owner, input_section);
2446 bfd_set_error (bfd_error_wrong_format);
2447 return FALSE;
2450 bed = get_elf_backend_data (output_bfd);
2451 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2452 swap_out = bed->s->swap_reloc_out;
2453 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2454 swap_out = bed->s->swap_reloca_out;
2455 else
2456 abort ();
2458 erel = output_rel_hdr->contents;
2459 erel += *rel_countp * input_rel_hdr->sh_entsize;
2460 irela = internal_relocs;
2461 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2462 * bed->s->int_rels_per_ext_rel);
2463 while (irela < irelaend)
2465 (*swap_out) (output_bfd, irela, erel);
2466 irela += bed->s->int_rels_per_ext_rel;
2467 erel += input_rel_hdr->sh_entsize;
2470 /* Bump the counter, so that we know where to add the next set of
2471 relocations. */
2472 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2474 return TRUE;
2477 /* Make weak undefined symbols in PIE dynamic. */
2479 bfd_boolean
2480 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2481 struct elf_link_hash_entry *h)
2483 if (info->pie
2484 && h->dynindx == -1
2485 && h->root.type == bfd_link_hash_undefweak)
2486 return bfd_elf_link_record_dynamic_symbol (info, h);
2488 return TRUE;
2491 /* Fix up the flags for a symbol. This handles various cases which
2492 can only be fixed after all the input files are seen. This is
2493 currently called by both adjust_dynamic_symbol and
2494 assign_sym_version, which is unnecessary but perhaps more robust in
2495 the face of future changes. */
2497 static bfd_boolean
2498 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2499 struct elf_info_failed *eif)
2501 const struct elf_backend_data *bed;
2503 /* If this symbol was mentioned in a non-ELF file, try to set
2504 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2505 permit a non-ELF file to correctly refer to a symbol defined in
2506 an ELF dynamic object. */
2507 if (h->non_elf)
2509 while (h->root.type == bfd_link_hash_indirect)
2510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2512 if (h->root.type != bfd_link_hash_defined
2513 && h->root.type != bfd_link_hash_defweak)
2515 h->ref_regular = 1;
2516 h->ref_regular_nonweak = 1;
2518 else
2520 if (h->root.u.def.section->owner != NULL
2521 && (bfd_get_flavour (h->root.u.def.section->owner)
2522 == bfd_target_elf_flavour))
2524 h->ref_regular = 1;
2525 h->ref_regular_nonweak = 1;
2527 else
2528 h->def_regular = 1;
2531 if (h->dynindx == -1
2532 && (h->def_dynamic
2533 || h->ref_dynamic))
2535 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2537 eif->failed = TRUE;
2538 return FALSE;
2542 else
2544 /* Unfortunately, NON_ELF is only correct if the symbol
2545 was first seen in a non-ELF file. Fortunately, if the symbol
2546 was first seen in an ELF file, we're probably OK unless the
2547 symbol was defined in a non-ELF file. Catch that case here.
2548 FIXME: We're still in trouble if the symbol was first seen in
2549 a dynamic object, and then later in a non-ELF regular object. */
2550 if ((h->root.type == bfd_link_hash_defined
2551 || h->root.type == bfd_link_hash_defweak)
2552 && !h->def_regular
2553 && (h->root.u.def.section->owner != NULL
2554 ? (bfd_get_flavour (h->root.u.def.section->owner)
2555 != bfd_target_elf_flavour)
2556 : (bfd_is_abs_section (h->root.u.def.section)
2557 && !h->def_dynamic)))
2558 h->def_regular = 1;
2561 /* Backend specific symbol fixup. */
2562 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2563 if (bed->elf_backend_fixup_symbol
2564 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2565 return FALSE;
2567 /* If this is a final link, and the symbol was defined as a common
2568 symbol in a regular object file, and there was no definition in
2569 any dynamic object, then the linker will have allocated space for
2570 the symbol in a common section but the DEF_REGULAR
2571 flag will not have been set. */
2572 if (h->root.type == bfd_link_hash_defined
2573 && !h->def_regular
2574 && h->ref_regular
2575 && !h->def_dynamic
2576 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2577 h->def_regular = 1;
2579 /* If -Bsymbolic was used (which means to bind references to global
2580 symbols to the definition within the shared object), and this
2581 symbol was defined in a regular object, then it actually doesn't
2582 need a PLT entry. Likewise, if the symbol has non-default
2583 visibility. If the symbol has hidden or internal visibility, we
2584 will force it local. */
2585 if (h->needs_plt
2586 && eif->info->shared
2587 && is_elf_hash_table (eif->info->hash)
2588 && (SYMBOLIC_BIND (eif->info, h)
2589 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2590 && h->def_regular)
2592 bfd_boolean force_local;
2594 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2595 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2596 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2599 /* If a weak undefined symbol has non-default visibility, we also
2600 hide it from the dynamic linker. */
2601 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2602 && h->root.type == bfd_link_hash_undefweak)
2603 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2605 /* If this is a weak defined symbol in a dynamic object, and we know
2606 the real definition in the dynamic object, copy interesting flags
2607 over to the real definition. */
2608 if (h->u.weakdef != NULL)
2610 struct elf_link_hash_entry *weakdef;
2612 weakdef = h->u.weakdef;
2613 if (h->root.type == bfd_link_hash_indirect)
2614 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2616 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2617 || h->root.type == bfd_link_hash_defweak);
2618 BFD_ASSERT (weakdef->def_dynamic);
2620 /* If the real definition is defined by a regular object file,
2621 don't do anything special. See the longer description in
2622 _bfd_elf_adjust_dynamic_symbol, below. */
2623 if (weakdef->def_regular)
2624 h->u.weakdef = NULL;
2625 else
2627 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2628 || weakdef->root.type == bfd_link_hash_defweak);
2629 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2633 return TRUE;
2636 /* Make the backend pick a good value for a dynamic symbol. This is
2637 called via elf_link_hash_traverse, and also calls itself
2638 recursively. */
2640 static bfd_boolean
2641 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2643 struct elf_info_failed *eif = data;
2644 bfd *dynobj;
2645 const struct elf_backend_data *bed;
2647 if (! is_elf_hash_table (eif->info->hash))
2648 return FALSE;
2650 if (h->root.type == bfd_link_hash_warning)
2652 h->got = elf_hash_table (eif->info)->init_got_offset;
2653 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2655 /* When warning symbols are created, they **replace** the "real"
2656 entry in the hash table, thus we never get to see the real
2657 symbol in a hash traversal. So look at it now. */
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2661 /* Ignore indirect symbols. These are added by the versioning code. */
2662 if (h->root.type == bfd_link_hash_indirect)
2663 return TRUE;
2665 /* Fix the symbol flags. */
2666 if (! _bfd_elf_fix_symbol_flags (h, eif))
2667 return FALSE;
2669 /* If this symbol does not require a PLT entry, and it is not
2670 defined by a dynamic object, or is not referenced by a regular
2671 object, ignore it. We do have to handle a weak defined symbol,
2672 even if no regular object refers to it, if we decided to add it
2673 to the dynamic symbol table. FIXME: Do we normally need to worry
2674 about symbols which are defined by one dynamic object and
2675 referenced by another one? */
2676 if (!h->needs_plt
2677 && (h->def_regular
2678 || !h->def_dynamic
2679 || (!h->ref_regular
2680 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2682 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2683 return TRUE;
2686 /* If we've already adjusted this symbol, don't do it again. This
2687 can happen via a recursive call. */
2688 if (h->dynamic_adjusted)
2689 return TRUE;
2691 /* Don't look at this symbol again. Note that we must set this
2692 after checking the above conditions, because we may look at a
2693 symbol once, decide not to do anything, and then get called
2694 recursively later after REF_REGULAR is set below. */
2695 h->dynamic_adjusted = 1;
2697 /* If this is a weak definition, and we know a real definition, and
2698 the real symbol is not itself defined by a regular object file,
2699 then get a good value for the real definition. We handle the
2700 real symbol first, for the convenience of the backend routine.
2702 Note that there is a confusing case here. If the real definition
2703 is defined by a regular object file, we don't get the real symbol
2704 from the dynamic object, but we do get the weak symbol. If the
2705 processor backend uses a COPY reloc, then if some routine in the
2706 dynamic object changes the real symbol, we will not see that
2707 change in the corresponding weak symbol. This is the way other
2708 ELF linkers work as well, and seems to be a result of the shared
2709 library model.
2711 I will clarify this issue. Most SVR4 shared libraries define the
2712 variable _timezone and define timezone as a weak synonym. The
2713 tzset call changes _timezone. If you write
2714 extern int timezone;
2715 int _timezone = 5;
2716 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2717 you might expect that, since timezone is a synonym for _timezone,
2718 the same number will print both times. However, if the processor
2719 backend uses a COPY reloc, then actually timezone will be copied
2720 into your process image, and, since you define _timezone
2721 yourself, _timezone will not. Thus timezone and _timezone will
2722 wind up at different memory locations. The tzset call will set
2723 _timezone, leaving timezone unchanged. */
2725 if (h->u.weakdef != NULL)
2727 /* If we get to this point, we know there is an implicit
2728 reference by a regular object file via the weak symbol H.
2729 FIXME: Is this really true? What if the traversal finds
2730 H->U.WEAKDEF before it finds H? */
2731 h->u.weakdef->ref_regular = 1;
2733 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2734 return FALSE;
2737 /* If a symbol has no type and no size and does not require a PLT
2738 entry, then we are probably about to do the wrong thing here: we
2739 are probably going to create a COPY reloc for an empty object.
2740 This case can arise when a shared object is built with assembly
2741 code, and the assembly code fails to set the symbol type. */
2742 if (h->size == 0
2743 && h->type == STT_NOTYPE
2744 && !h->needs_plt)
2745 (*_bfd_error_handler)
2746 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2747 h->root.root.string);
2749 dynobj = elf_hash_table (eif->info)->dynobj;
2750 bed = get_elf_backend_data (dynobj);
2752 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2754 eif->failed = TRUE;
2755 return FALSE;
2758 return TRUE;
2761 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2762 DYNBSS. */
2764 bfd_boolean
2765 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2766 asection *dynbss)
2768 unsigned int power_of_two;
2769 bfd_vma mask;
2770 asection *sec = h->root.u.def.section;
2772 /* The section aligment of definition is the maximum alignment
2773 requirement of symbols defined in the section. Since we don't
2774 know the symbol alignment requirement, we start with the
2775 maximum alignment and check low bits of the symbol address
2776 for the minimum alignment. */
2777 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2778 mask = ((bfd_vma) 1 << power_of_two) - 1;
2779 while ((h->root.u.def.value & mask) != 0)
2781 mask >>= 1;
2782 --power_of_two;
2785 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2786 dynbss))
2788 /* Adjust the section alignment if needed. */
2789 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2790 power_of_two))
2791 return FALSE;
2794 /* We make sure that the symbol will be aligned properly. */
2795 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2797 /* Define the symbol as being at this point in DYNBSS. */
2798 h->root.u.def.section = dynbss;
2799 h->root.u.def.value = dynbss->size;
2801 /* Increment the size of DYNBSS to make room for the symbol. */
2802 dynbss->size += h->size;
2804 return TRUE;
2807 /* Adjust all external symbols pointing into SEC_MERGE sections
2808 to reflect the object merging within the sections. */
2810 static bfd_boolean
2811 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2813 asection *sec;
2815 if (h->root.type == bfd_link_hash_warning)
2816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2818 if ((h->root.type == bfd_link_hash_defined
2819 || h->root.type == bfd_link_hash_defweak)
2820 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2821 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2823 bfd *output_bfd = data;
2825 h->root.u.def.value =
2826 _bfd_merged_section_offset (output_bfd,
2827 &h->root.u.def.section,
2828 elf_section_data (sec)->sec_info,
2829 h->root.u.def.value);
2832 return TRUE;
2835 /* Returns false if the symbol referred to by H should be considered
2836 to resolve local to the current module, and true if it should be
2837 considered to bind dynamically. */
2839 bfd_boolean
2840 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2841 struct bfd_link_info *info,
2842 bfd_boolean ignore_protected)
2844 bfd_boolean binding_stays_local_p;
2845 const struct elf_backend_data *bed;
2846 struct elf_link_hash_table *hash_table;
2848 if (h == NULL)
2849 return FALSE;
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2855 /* If it was forced local, then clearly it's not dynamic. */
2856 if (h->dynindx == -1)
2857 return FALSE;
2858 if (h->forced_local)
2859 return FALSE;
2861 /* Identify the cases where name binding rules say that a
2862 visible symbol resolves locally. */
2863 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2865 switch (ELF_ST_VISIBILITY (h->other))
2867 case STV_INTERNAL:
2868 case STV_HIDDEN:
2869 return FALSE;
2871 case STV_PROTECTED:
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return FALSE;
2876 bed = get_elf_backend_data (hash_table->dynobj);
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!ignore_protected || !bed->is_function_type (h->type))
2882 binding_stays_local_p = TRUE;
2883 break;
2885 default:
2886 break;
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h->def_regular)
2891 return TRUE;
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p;
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols and weak symbols. */
2903 bfd_boolean
2904 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2905 struct bfd_link_info *info,
2906 bfd_boolean local_protected)
2908 const struct elf_backend_data *bed;
2909 struct elf_link_hash_table *hash_table;
2911 /* If it's a local sym, of course we resolve locally. */
2912 if (h == NULL)
2913 return TRUE;
2915 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2916 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2917 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2918 return TRUE;
2920 /* Common symbols that become definitions don't get the DEF_REGULAR
2921 flag set, so test it first, and don't bail out. */
2922 if (ELF_COMMON_DEF_P (h))
2923 /* Do nothing. */;
2924 /* If we don't have a definition in a regular file, then we can't
2925 resolve locally. The sym is either undefined or dynamic. */
2926 else if (!h->def_regular)
2927 return FALSE;
2929 /* Forced local symbols resolve locally. */
2930 if (h->forced_local)
2931 return TRUE;
2933 /* As do non-dynamic symbols. */
2934 if (h->dynindx == -1)
2935 return TRUE;
2937 /* At this point, we know the symbol is defined and dynamic. In an
2938 executable it must resolve locally, likewise when building symbolic
2939 shared libraries. */
2940 if (info->executable || SYMBOLIC_BIND (info, h))
2941 return TRUE;
2943 /* Now deal with defined dynamic symbols in shared libraries. Ones
2944 with default visibility might not resolve locally. */
2945 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2946 return FALSE;
2948 hash_table = elf_hash_table (info);
2949 if (!is_elf_hash_table (hash_table))
2950 return TRUE;
2952 bed = get_elf_backend_data (hash_table->dynobj);
2954 /* STV_PROTECTED non-function symbols are local. */
2955 if (!bed->is_function_type (h->type))
2956 return TRUE;
2958 /* Function pointer equality tests may require that STV_PROTECTED
2959 symbols be treated as dynamic symbols, even when we know that the
2960 dynamic linker will resolve them locally. */
2961 return local_protected;
2964 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2965 aligned. Returns the first TLS output section. */
2967 struct bfd_section *
2968 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2970 struct bfd_section *sec, *tls;
2971 unsigned int align = 0;
2973 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2974 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2975 break;
2976 tls = sec;
2978 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2979 if (sec->alignment_power > align)
2980 align = sec->alignment_power;
2982 elf_hash_table (info)->tls_sec = tls;
2984 /* Ensure the alignment of the first section is the largest alignment,
2985 so that the tls segment starts aligned. */
2986 if (tls != NULL)
2987 tls->alignment_power = align;
2989 return tls;
2992 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2993 static bfd_boolean
2994 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2995 Elf_Internal_Sym *sym)
2997 const struct elf_backend_data *bed;
2999 /* Local symbols do not count, but target specific ones might. */
3000 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3001 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3002 return FALSE;
3004 bed = get_elf_backend_data (abfd);
3005 /* Function symbols do not count. */
3006 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3007 return FALSE;
3009 /* If the section is undefined, then so is the symbol. */
3010 if (sym->st_shndx == SHN_UNDEF)
3011 return FALSE;
3013 /* If the symbol is defined in the common section, then
3014 it is a common definition and so does not count. */
3015 if (bed->common_definition (sym))
3016 return FALSE;
3018 /* If the symbol is in a target specific section then we
3019 must rely upon the backend to tell us what it is. */
3020 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3021 /* FIXME - this function is not coded yet:
3023 return _bfd_is_global_symbol_definition (abfd, sym);
3025 Instead for now assume that the definition is not global,
3026 Even if this is wrong, at least the linker will behave
3027 in the same way that it used to do. */
3028 return FALSE;
3030 return TRUE;
3033 /* Search the symbol table of the archive element of the archive ABFD
3034 whose archive map contains a mention of SYMDEF, and determine if
3035 the symbol is defined in this element. */
3036 static bfd_boolean
3037 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3039 Elf_Internal_Shdr * hdr;
3040 bfd_size_type symcount;
3041 bfd_size_type extsymcount;
3042 bfd_size_type extsymoff;
3043 Elf_Internal_Sym *isymbuf;
3044 Elf_Internal_Sym *isym;
3045 Elf_Internal_Sym *isymend;
3046 bfd_boolean result;
3048 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3049 if (abfd == NULL)
3050 return FALSE;
3052 if (! bfd_check_format (abfd, bfd_object))
3053 return FALSE;
3055 /* If we have already included the element containing this symbol in the
3056 link then we do not need to include it again. Just claim that any symbol
3057 it contains is not a definition, so that our caller will not decide to
3058 (re)include this element. */
3059 if (abfd->archive_pass)
3060 return FALSE;
3062 /* Select the appropriate symbol table. */
3063 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3064 hdr = &elf_tdata (abfd)->symtab_hdr;
3065 else
3066 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3068 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3070 /* The sh_info field of the symtab header tells us where the
3071 external symbols start. We don't care about the local symbols. */
3072 if (elf_bad_symtab (abfd))
3074 extsymcount = symcount;
3075 extsymoff = 0;
3077 else
3079 extsymcount = symcount - hdr->sh_info;
3080 extsymoff = hdr->sh_info;
3083 if (extsymcount == 0)
3084 return FALSE;
3086 /* Read in the symbol table. */
3087 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3088 NULL, NULL, NULL);
3089 if (isymbuf == NULL)
3090 return FALSE;
3092 /* Scan the symbol table looking for SYMDEF. */
3093 result = FALSE;
3094 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3096 const char *name;
3098 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3099 isym->st_name);
3100 if (name == NULL)
3101 break;
3103 if (strcmp (name, symdef->name) == 0)
3105 result = is_global_data_symbol_definition (abfd, isym);
3106 break;
3110 free (isymbuf);
3112 return result;
3115 /* Add an entry to the .dynamic table. */
3117 bfd_boolean
3118 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3119 bfd_vma tag,
3120 bfd_vma val)
3122 struct elf_link_hash_table *hash_table;
3123 const struct elf_backend_data *bed;
3124 asection *s;
3125 bfd_size_type newsize;
3126 bfd_byte *newcontents;
3127 Elf_Internal_Dyn dyn;
3129 hash_table = elf_hash_table (info);
3130 if (! is_elf_hash_table (hash_table))
3131 return FALSE;
3133 bed = get_elf_backend_data (hash_table->dynobj);
3134 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3135 BFD_ASSERT (s != NULL);
3137 newsize = s->size + bed->s->sizeof_dyn;
3138 newcontents = bfd_realloc (s->contents, newsize);
3139 if (newcontents == NULL)
3140 return FALSE;
3142 dyn.d_tag = tag;
3143 dyn.d_un.d_val = val;
3144 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3146 s->size = newsize;
3147 s->contents = newcontents;
3149 return TRUE;
3152 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3153 otherwise just check whether one already exists. Returns -1 on error,
3154 1 if a DT_NEEDED tag already exists, and 0 on success. */
3156 static int
3157 elf_add_dt_needed_tag (bfd *abfd,
3158 struct bfd_link_info *info,
3159 const char *soname,
3160 bfd_boolean do_it)
3162 struct elf_link_hash_table *hash_table;
3163 bfd_size_type oldsize;
3164 bfd_size_type strindex;
3166 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3167 return -1;
3169 hash_table = elf_hash_table (info);
3170 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3171 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3172 if (strindex == (bfd_size_type) -1)
3173 return -1;
3175 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3177 asection *sdyn;
3178 const struct elf_backend_data *bed;
3179 bfd_byte *extdyn;
3181 bed = get_elf_backend_data (hash_table->dynobj);
3182 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3183 if (sdyn != NULL)
3184 for (extdyn = sdyn->contents;
3185 extdyn < sdyn->contents + sdyn->size;
3186 extdyn += bed->s->sizeof_dyn)
3188 Elf_Internal_Dyn dyn;
3190 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3191 if (dyn.d_tag == DT_NEEDED
3192 && dyn.d_un.d_val == strindex)
3194 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3195 return 1;
3200 if (do_it)
3202 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3203 return -1;
3205 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3206 return -1;
3208 else
3209 /* We were just checking for existence of the tag. */
3210 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3212 return 0;
3215 static bfd_boolean
3216 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3218 for (; needed != NULL; needed = needed->next)
3219 if (strcmp (soname, needed->name) == 0)
3220 return TRUE;
3222 return FALSE;
3225 /* Sort symbol by value and section. */
3226 static int
3227 elf_sort_symbol (const void *arg1, const void *arg2)
3229 const struct elf_link_hash_entry *h1;
3230 const struct elf_link_hash_entry *h2;
3231 bfd_signed_vma vdiff;
3233 h1 = *(const struct elf_link_hash_entry **) arg1;
3234 h2 = *(const struct elf_link_hash_entry **) arg2;
3235 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3236 if (vdiff != 0)
3237 return vdiff > 0 ? 1 : -1;
3238 else
3240 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3241 if (sdiff != 0)
3242 return sdiff > 0 ? 1 : -1;
3244 return 0;
3247 /* This function is used to adjust offsets into .dynstr for
3248 dynamic symbols. This is called via elf_link_hash_traverse. */
3250 static bfd_boolean
3251 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3253 struct elf_strtab_hash *dynstr = data;
3255 if (h->root.type == bfd_link_hash_warning)
3256 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3258 if (h->dynindx != -1)
3259 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3260 return TRUE;
3263 /* Assign string offsets in .dynstr, update all structures referencing
3264 them. */
3266 static bfd_boolean
3267 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3269 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3270 struct elf_link_local_dynamic_entry *entry;
3271 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3272 bfd *dynobj = hash_table->dynobj;
3273 asection *sdyn;
3274 bfd_size_type size;
3275 const struct elf_backend_data *bed;
3276 bfd_byte *extdyn;
3278 _bfd_elf_strtab_finalize (dynstr);
3279 size = _bfd_elf_strtab_size (dynstr);
3281 bed = get_elf_backend_data (dynobj);
3282 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3283 BFD_ASSERT (sdyn != NULL);
3285 /* Update all .dynamic entries referencing .dynstr strings. */
3286 for (extdyn = sdyn->contents;
3287 extdyn < sdyn->contents + sdyn->size;
3288 extdyn += bed->s->sizeof_dyn)
3290 Elf_Internal_Dyn dyn;
3292 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3293 switch (dyn.d_tag)
3295 case DT_STRSZ:
3296 dyn.d_un.d_val = size;
3297 break;
3298 case DT_NEEDED:
3299 case DT_SONAME:
3300 case DT_RPATH:
3301 case DT_RUNPATH:
3302 case DT_FILTER:
3303 case DT_AUXILIARY:
3304 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3305 break;
3306 default:
3307 continue;
3309 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3312 /* Now update local dynamic symbols. */
3313 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3314 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3315 entry->isym.st_name);
3317 /* And the rest of dynamic symbols. */
3318 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3320 /* Adjust version definitions. */
3321 if (elf_tdata (output_bfd)->cverdefs)
3323 asection *s;
3324 bfd_byte *p;
3325 bfd_size_type i;
3326 Elf_Internal_Verdef def;
3327 Elf_Internal_Verdaux defaux;
3329 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3330 p = s->contents;
3333 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3334 &def);
3335 p += sizeof (Elf_External_Verdef);
3336 if (def.vd_aux != sizeof (Elf_External_Verdef))
3337 continue;
3338 for (i = 0; i < def.vd_cnt; ++i)
3340 _bfd_elf_swap_verdaux_in (output_bfd,
3341 (Elf_External_Verdaux *) p, &defaux);
3342 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3343 defaux.vda_name);
3344 _bfd_elf_swap_verdaux_out (output_bfd,
3345 &defaux, (Elf_External_Verdaux *) p);
3346 p += sizeof (Elf_External_Verdaux);
3349 while (def.vd_next);
3352 /* Adjust version references. */
3353 if (elf_tdata (output_bfd)->verref)
3355 asection *s;
3356 bfd_byte *p;
3357 bfd_size_type i;
3358 Elf_Internal_Verneed need;
3359 Elf_Internal_Vernaux needaux;
3361 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3362 p = s->contents;
3365 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3366 &need);
3367 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3368 _bfd_elf_swap_verneed_out (output_bfd, &need,
3369 (Elf_External_Verneed *) p);
3370 p += sizeof (Elf_External_Verneed);
3371 for (i = 0; i < need.vn_cnt; ++i)
3373 _bfd_elf_swap_vernaux_in (output_bfd,
3374 (Elf_External_Vernaux *) p, &needaux);
3375 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3376 needaux.vna_name);
3377 _bfd_elf_swap_vernaux_out (output_bfd,
3378 &needaux,
3379 (Elf_External_Vernaux *) p);
3380 p += sizeof (Elf_External_Vernaux);
3383 while (need.vn_next);
3386 return TRUE;
3389 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3390 The default is to only match when the INPUT and OUTPUT are exactly
3391 the same target. */
3393 bfd_boolean
3394 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3395 const bfd_target *output)
3397 return input == output;
3400 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3401 This version is used when different targets for the same architecture
3402 are virtually identical. */
3404 bfd_boolean
3405 _bfd_elf_relocs_compatible (const bfd_target *input,
3406 const bfd_target *output)
3408 const struct elf_backend_data *obed, *ibed;
3410 if (input == output)
3411 return TRUE;
3413 ibed = xvec_get_elf_backend_data (input);
3414 obed = xvec_get_elf_backend_data (output);
3416 if (ibed->arch != obed->arch)
3417 return FALSE;
3419 /* If both backends are using this function, deem them compatible. */
3420 return ibed->relocs_compatible == obed->relocs_compatible;
3423 /* Add symbols from an ELF object file to the linker hash table. */
3425 static bfd_boolean
3426 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3428 Elf_Internal_Ehdr *ehdr;
3429 Elf_Internal_Shdr *hdr;
3430 bfd_size_type symcount;
3431 bfd_size_type extsymcount;
3432 bfd_size_type extsymoff;
3433 struct elf_link_hash_entry **sym_hash;
3434 bfd_boolean dynamic;
3435 Elf_External_Versym *extversym = NULL;
3436 Elf_External_Versym *ever;
3437 struct elf_link_hash_entry *weaks;
3438 struct elf_link_hash_entry **nondeflt_vers = NULL;
3439 bfd_size_type nondeflt_vers_cnt = 0;
3440 Elf_Internal_Sym *isymbuf = NULL;
3441 Elf_Internal_Sym *isym;
3442 Elf_Internal_Sym *isymend;
3443 const struct elf_backend_data *bed;
3444 bfd_boolean add_needed;
3445 struct elf_link_hash_table *htab;
3446 bfd_size_type amt;
3447 void *alloc_mark = NULL;
3448 struct bfd_hash_entry **old_table = NULL;
3449 unsigned int old_size = 0;
3450 unsigned int old_count = 0;
3451 void *old_tab = NULL;
3452 void *old_hash;
3453 void *old_ent;
3454 struct bfd_link_hash_entry *old_undefs = NULL;
3455 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3456 long old_dynsymcount = 0;
3457 size_t tabsize = 0;
3458 size_t hashsize = 0;
3460 htab = elf_hash_table (info);
3461 bed = get_elf_backend_data (abfd);
3463 if ((abfd->flags & DYNAMIC) == 0)
3464 dynamic = FALSE;
3465 else
3467 dynamic = TRUE;
3469 /* You can't use -r against a dynamic object. Also, there's no
3470 hope of using a dynamic object which does not exactly match
3471 the format of the output file. */
3472 if (info->relocatable
3473 || !is_elf_hash_table (htab)
3474 || info->output_bfd->xvec != abfd->xvec)
3476 if (info->relocatable)
3477 bfd_set_error (bfd_error_invalid_operation);
3478 else
3479 bfd_set_error (bfd_error_wrong_format);
3480 goto error_return;
3484 ehdr = elf_elfheader (abfd);
3485 if (info->warn_alternate_em
3486 && bed->elf_machine_code != ehdr->e_machine
3487 && ((bed->elf_machine_alt1 != 0
3488 && ehdr->e_machine == bed->elf_machine_alt1)
3489 || (bed->elf_machine_alt2 != 0
3490 && ehdr->e_machine == bed->elf_machine_alt2)))
3491 info->callbacks->einfo
3492 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3493 ehdr->e_machine, abfd, bed->elf_machine_code);
3495 /* As a GNU extension, any input sections which are named
3496 .gnu.warning.SYMBOL are treated as warning symbols for the given
3497 symbol. This differs from .gnu.warning sections, which generate
3498 warnings when they are included in an output file. */
3499 if (info->executable)
3501 asection *s;
3503 for (s = abfd->sections; s != NULL; s = s->next)
3505 const char *name;
3507 name = bfd_get_section_name (abfd, s);
3508 if (CONST_STRNEQ (name, ".gnu.warning."))
3510 char *msg;
3511 bfd_size_type sz;
3513 name += sizeof ".gnu.warning." - 1;
3515 /* If this is a shared object, then look up the symbol
3516 in the hash table. If it is there, and it is already
3517 been defined, then we will not be using the entry
3518 from this shared object, so we don't need to warn.
3519 FIXME: If we see the definition in a regular object
3520 later on, we will warn, but we shouldn't. The only
3521 fix is to keep track of what warnings we are supposed
3522 to emit, and then handle them all at the end of the
3523 link. */
3524 if (dynamic)
3526 struct elf_link_hash_entry *h;
3528 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3530 /* FIXME: What about bfd_link_hash_common? */
3531 if (h != NULL
3532 && (h->root.type == bfd_link_hash_defined
3533 || h->root.type == bfd_link_hash_defweak))
3535 /* We don't want to issue this warning. Clobber
3536 the section size so that the warning does not
3537 get copied into the output file. */
3538 s->size = 0;
3539 continue;
3543 sz = s->size;
3544 msg = bfd_alloc (abfd, sz + 1);
3545 if (msg == NULL)
3546 goto error_return;
3548 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3549 goto error_return;
3551 msg[sz] = '\0';
3553 if (! (_bfd_generic_link_add_one_symbol
3554 (info, abfd, name, BSF_WARNING, s, 0, msg,
3555 FALSE, bed->collect, NULL)))
3556 goto error_return;
3558 if (! info->relocatable)
3560 /* Clobber the section size so that the warning does
3561 not get copied into the output file. */
3562 s->size = 0;
3564 /* Also set SEC_EXCLUDE, so that symbols defined in
3565 the warning section don't get copied to the output. */
3566 s->flags |= SEC_EXCLUDE;
3572 add_needed = TRUE;
3573 if (! dynamic)
3575 /* If we are creating a shared library, create all the dynamic
3576 sections immediately. We need to attach them to something,
3577 so we attach them to this BFD, provided it is the right
3578 format. FIXME: If there are no input BFD's of the same
3579 format as the output, we can't make a shared library. */
3580 if (info->shared
3581 && is_elf_hash_table (htab)
3582 && info->output_bfd->xvec == abfd->xvec
3583 && !htab->dynamic_sections_created)
3585 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3586 goto error_return;
3589 else if (!is_elf_hash_table (htab))
3590 goto error_return;
3591 else
3593 asection *s;
3594 const char *soname = NULL;
3595 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3596 int ret;
3598 /* ld --just-symbols and dynamic objects don't mix very well.
3599 ld shouldn't allow it. */
3600 if ((s = abfd->sections) != NULL
3601 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3602 abort ();
3604 /* If this dynamic lib was specified on the command line with
3605 --as-needed in effect, then we don't want to add a DT_NEEDED
3606 tag unless the lib is actually used. Similary for libs brought
3607 in by another lib's DT_NEEDED. When --no-add-needed is used
3608 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3609 any dynamic library in DT_NEEDED tags in the dynamic lib at
3610 all. */
3611 add_needed = (elf_dyn_lib_class (abfd)
3612 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3613 | DYN_NO_NEEDED)) == 0;
3615 s = bfd_get_section_by_name (abfd, ".dynamic");
3616 if (s != NULL)
3618 bfd_byte *dynbuf;
3619 bfd_byte *extdyn;
3620 unsigned int elfsec;
3621 unsigned long shlink;
3623 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3624 goto error_free_dyn;
3626 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3627 if (elfsec == SHN_BAD)
3628 goto error_free_dyn;
3629 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3631 for (extdyn = dynbuf;
3632 extdyn < dynbuf + s->size;
3633 extdyn += bed->s->sizeof_dyn)
3635 Elf_Internal_Dyn dyn;
3637 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3638 if (dyn.d_tag == DT_SONAME)
3640 unsigned int tagv = dyn.d_un.d_val;
3641 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3642 if (soname == NULL)
3643 goto error_free_dyn;
3645 if (dyn.d_tag == DT_NEEDED)
3647 struct bfd_link_needed_list *n, **pn;
3648 char *fnm, *anm;
3649 unsigned int tagv = dyn.d_un.d_val;
3651 amt = sizeof (struct bfd_link_needed_list);
3652 n = bfd_alloc (abfd, amt);
3653 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3654 if (n == NULL || fnm == NULL)
3655 goto error_free_dyn;
3656 amt = strlen (fnm) + 1;
3657 anm = bfd_alloc (abfd, amt);
3658 if (anm == NULL)
3659 goto error_free_dyn;
3660 memcpy (anm, fnm, amt);
3661 n->name = anm;
3662 n->by = abfd;
3663 n->next = NULL;
3664 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3666 *pn = n;
3668 if (dyn.d_tag == DT_RUNPATH)
3670 struct bfd_link_needed_list *n, **pn;
3671 char *fnm, *anm;
3672 unsigned int tagv = dyn.d_un.d_val;
3674 amt = sizeof (struct bfd_link_needed_list);
3675 n = bfd_alloc (abfd, amt);
3676 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3677 if (n == NULL || fnm == NULL)
3678 goto error_free_dyn;
3679 amt = strlen (fnm) + 1;
3680 anm = bfd_alloc (abfd, amt);
3681 if (anm == NULL)
3682 goto error_free_dyn;
3683 memcpy (anm, fnm, amt);
3684 n->name = anm;
3685 n->by = abfd;
3686 n->next = NULL;
3687 for (pn = & runpath;
3688 *pn != NULL;
3689 pn = &(*pn)->next)
3691 *pn = n;
3693 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3694 if (!runpath && dyn.d_tag == DT_RPATH)
3696 struct bfd_link_needed_list *n, **pn;
3697 char *fnm, *anm;
3698 unsigned int tagv = dyn.d_un.d_val;
3700 amt = sizeof (struct bfd_link_needed_list);
3701 n = bfd_alloc (abfd, amt);
3702 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3703 if (n == NULL || fnm == NULL)
3704 goto error_free_dyn;
3705 amt = strlen (fnm) + 1;
3706 anm = bfd_alloc (abfd, amt);
3707 if (anm == NULL)
3709 error_free_dyn:
3710 free (dynbuf);
3711 goto error_return;
3713 memcpy (anm, fnm, amt);
3714 n->name = anm;
3715 n->by = abfd;
3716 n->next = NULL;
3717 for (pn = & rpath;
3718 *pn != NULL;
3719 pn = &(*pn)->next)
3721 *pn = n;
3725 free (dynbuf);
3728 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3729 frees all more recently bfd_alloc'd blocks as well. */
3730 if (runpath)
3731 rpath = runpath;
3733 if (rpath)
3735 struct bfd_link_needed_list **pn;
3736 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3738 *pn = rpath;
3741 /* We do not want to include any of the sections in a dynamic
3742 object in the output file. We hack by simply clobbering the
3743 list of sections in the BFD. This could be handled more
3744 cleanly by, say, a new section flag; the existing
3745 SEC_NEVER_LOAD flag is not the one we want, because that one
3746 still implies that the section takes up space in the output
3747 file. */
3748 bfd_section_list_clear (abfd);
3750 /* Find the name to use in a DT_NEEDED entry that refers to this
3751 object. If the object has a DT_SONAME entry, we use it.
3752 Otherwise, if the generic linker stuck something in
3753 elf_dt_name, we use that. Otherwise, we just use the file
3754 name. */
3755 if (soname == NULL || *soname == '\0')
3757 soname = elf_dt_name (abfd);
3758 if (soname == NULL || *soname == '\0')
3759 soname = bfd_get_filename (abfd);
3762 /* Save the SONAME because sometimes the linker emulation code
3763 will need to know it. */
3764 elf_dt_name (abfd) = soname;
3766 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3767 if (ret < 0)
3768 goto error_return;
3770 /* If we have already included this dynamic object in the
3771 link, just ignore it. There is no reason to include a
3772 particular dynamic object more than once. */
3773 if (ret > 0)
3774 return TRUE;
3777 /* If this is a dynamic object, we always link against the .dynsym
3778 symbol table, not the .symtab symbol table. The dynamic linker
3779 will only see the .dynsym symbol table, so there is no reason to
3780 look at .symtab for a dynamic object. */
3782 if (! dynamic || elf_dynsymtab (abfd) == 0)
3783 hdr = &elf_tdata (abfd)->symtab_hdr;
3784 else
3785 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3787 symcount = hdr->sh_size / bed->s->sizeof_sym;
3789 /* The sh_info field of the symtab header tells us where the
3790 external symbols start. We don't care about the local symbols at
3791 this point. */
3792 if (elf_bad_symtab (abfd))
3794 extsymcount = symcount;
3795 extsymoff = 0;
3797 else
3799 extsymcount = symcount - hdr->sh_info;
3800 extsymoff = hdr->sh_info;
3803 sym_hash = NULL;
3804 if (extsymcount != 0)
3806 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3807 NULL, NULL, NULL);
3808 if (isymbuf == NULL)
3809 goto error_return;
3811 /* We store a pointer to the hash table entry for each external
3812 symbol. */
3813 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3814 sym_hash = bfd_alloc (abfd, amt);
3815 if (sym_hash == NULL)
3816 goto error_free_sym;
3817 elf_sym_hashes (abfd) = sym_hash;
3820 if (dynamic)
3822 /* Read in any version definitions. */
3823 if (!_bfd_elf_slurp_version_tables (abfd,
3824 info->default_imported_symver))
3825 goto error_free_sym;
3827 /* Read in the symbol versions, but don't bother to convert them
3828 to internal format. */
3829 if (elf_dynversym (abfd) != 0)
3831 Elf_Internal_Shdr *versymhdr;
3833 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3834 extversym = bfd_malloc (versymhdr->sh_size);
3835 if (extversym == NULL)
3836 goto error_free_sym;
3837 amt = versymhdr->sh_size;
3838 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3839 || bfd_bread (extversym, amt, abfd) != amt)
3840 goto error_free_vers;
3844 /* If we are loading an as-needed shared lib, save the symbol table
3845 state before we start adding symbols. If the lib turns out
3846 to be unneeded, restore the state. */
3847 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3849 unsigned int i;
3850 size_t entsize;
3852 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3854 struct bfd_hash_entry *p;
3855 struct elf_link_hash_entry *h;
3857 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3859 h = (struct elf_link_hash_entry *) p;
3860 entsize += htab->root.table.entsize;
3861 if (h->root.type == bfd_link_hash_warning)
3862 entsize += htab->root.table.entsize;
3866 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3867 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3868 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3869 if (old_tab == NULL)
3870 goto error_free_vers;
3872 /* Remember the current objalloc pointer, so that all mem for
3873 symbols added can later be reclaimed. */
3874 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3875 if (alloc_mark == NULL)
3876 goto error_free_vers;
3878 /* Make a special call to the linker "notice" function to
3879 tell it that we are about to handle an as-needed lib. */
3880 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3881 notice_as_needed))
3882 goto error_free_vers;
3884 /* Clone the symbol table and sym hashes. Remember some
3885 pointers into the symbol table, and dynamic symbol count. */
3886 old_hash = (char *) old_tab + tabsize;
3887 old_ent = (char *) old_hash + hashsize;
3888 memcpy (old_tab, htab->root.table.table, tabsize);
3889 memcpy (old_hash, sym_hash, hashsize);
3890 old_undefs = htab->root.undefs;
3891 old_undefs_tail = htab->root.undefs_tail;
3892 old_table = htab->root.table.table;
3893 old_size = htab->root.table.size;
3894 old_count = htab->root.table.count;
3895 old_dynsymcount = htab->dynsymcount;
3897 for (i = 0; i < htab->root.table.size; i++)
3899 struct bfd_hash_entry *p;
3900 struct elf_link_hash_entry *h;
3902 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3904 memcpy (old_ent, p, htab->root.table.entsize);
3905 old_ent = (char *) old_ent + htab->root.table.entsize;
3906 h = (struct elf_link_hash_entry *) p;
3907 if (h->root.type == bfd_link_hash_warning)
3909 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3910 old_ent = (char *) old_ent + htab->root.table.entsize;
3916 weaks = NULL;
3917 ever = extversym != NULL ? extversym + extsymoff : NULL;
3918 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3919 isym < isymend;
3920 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3922 int bind;
3923 bfd_vma value;
3924 asection *sec, *new_sec;
3925 flagword flags;
3926 const char *name;
3927 struct elf_link_hash_entry *h;
3928 bfd_boolean definition;
3929 bfd_boolean size_change_ok;
3930 bfd_boolean type_change_ok;
3931 bfd_boolean new_weakdef;
3932 bfd_boolean override;
3933 bfd_boolean common;
3934 unsigned int old_alignment;
3935 bfd *old_bfd;
3937 override = FALSE;
3939 flags = BSF_NO_FLAGS;
3940 sec = NULL;
3941 value = isym->st_value;
3942 *sym_hash = NULL;
3943 common = bed->common_definition (isym);
3945 bind = ELF_ST_BIND (isym->st_info);
3946 if (bind == STB_LOCAL)
3948 /* This should be impossible, since ELF requires that all
3949 global symbols follow all local symbols, and that sh_info
3950 point to the first global symbol. Unfortunately, Irix 5
3951 screws this up. */
3952 continue;
3954 else if (bind == STB_GLOBAL)
3956 if (isym->st_shndx != SHN_UNDEF && !common)
3957 flags = BSF_GLOBAL;
3959 else if (bind == STB_WEAK)
3960 flags = BSF_WEAK;
3961 else
3963 /* Leave it up to the processor backend. */
3966 if (isym->st_shndx == SHN_UNDEF)
3967 sec = bfd_und_section_ptr;
3968 else if (isym->st_shndx == SHN_ABS)
3969 sec = bfd_abs_section_ptr;
3970 else if (isym->st_shndx == SHN_COMMON)
3972 sec = bfd_com_section_ptr;
3973 /* What ELF calls the size we call the value. What ELF
3974 calls the value we call the alignment. */
3975 value = isym->st_size;
3977 else
3979 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3980 if (sec == NULL)
3981 sec = bfd_abs_section_ptr;
3982 else if (sec->kept_section)
3984 /* Symbols from discarded section are undefined. We keep
3985 its visibility. */
3986 sec = bfd_und_section_ptr;
3987 isym->st_shndx = SHN_UNDEF;
3989 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3990 value -= sec->vma;
3993 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3994 isym->st_name);
3995 if (name == NULL)
3996 goto error_free_vers;
3998 if (isym->st_shndx == SHN_COMMON
3999 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4000 && !info->relocatable)
4002 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4004 if (tcomm == NULL)
4006 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
4007 (SEC_ALLOC
4008 | SEC_IS_COMMON
4009 | SEC_LINKER_CREATED
4010 | SEC_THREAD_LOCAL));
4011 if (tcomm == NULL)
4012 goto error_free_vers;
4014 sec = tcomm;
4016 else if (bed->elf_add_symbol_hook)
4018 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4019 &sec, &value))
4020 goto error_free_vers;
4022 /* The hook function sets the name to NULL if this symbol
4023 should be skipped for some reason. */
4024 if (name == NULL)
4025 continue;
4028 /* Sanity check that all possibilities were handled. */
4029 if (sec == NULL)
4031 bfd_set_error (bfd_error_bad_value);
4032 goto error_free_vers;
4035 if (bfd_is_und_section (sec)
4036 || bfd_is_com_section (sec))
4037 definition = FALSE;
4038 else
4039 definition = TRUE;
4041 size_change_ok = FALSE;
4042 type_change_ok = bed->type_change_ok;
4043 old_alignment = 0;
4044 old_bfd = NULL;
4045 new_sec = sec;
4047 if (is_elf_hash_table (htab))
4049 Elf_Internal_Versym iver;
4050 unsigned int vernum = 0;
4051 bfd_boolean skip;
4053 if (ever == NULL)
4055 if (info->default_imported_symver)
4056 /* Use the default symbol version created earlier. */
4057 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4058 else
4059 iver.vs_vers = 0;
4061 else
4062 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4064 vernum = iver.vs_vers & VERSYM_VERSION;
4066 /* If this is a hidden symbol, or if it is not version
4067 1, we append the version name to the symbol name.
4068 However, we do not modify a non-hidden absolute symbol
4069 if it is not a function, because it might be the version
4070 symbol itself. FIXME: What if it isn't? */
4071 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4072 || (vernum > 1
4073 && (!bfd_is_abs_section (sec)
4074 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4076 const char *verstr;
4077 size_t namelen, verlen, newlen;
4078 char *newname, *p;
4080 if (isym->st_shndx != SHN_UNDEF)
4082 if (vernum > elf_tdata (abfd)->cverdefs)
4083 verstr = NULL;
4084 else if (vernum > 1)
4085 verstr =
4086 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4087 else
4088 verstr = "";
4090 if (verstr == NULL)
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid version %u (max %d)"),
4094 abfd, name, vernum,
4095 elf_tdata (abfd)->cverdefs);
4096 bfd_set_error (bfd_error_bad_value);
4097 goto error_free_vers;
4100 else
4102 /* We cannot simply test for the number of
4103 entries in the VERNEED section since the
4104 numbers for the needed versions do not start
4105 at 0. */
4106 Elf_Internal_Verneed *t;
4108 verstr = NULL;
4109 for (t = elf_tdata (abfd)->verref;
4110 t != NULL;
4111 t = t->vn_nextref)
4113 Elf_Internal_Vernaux *a;
4115 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4117 if (a->vna_other == vernum)
4119 verstr = a->vna_nodename;
4120 break;
4123 if (a != NULL)
4124 break;
4126 if (verstr == NULL)
4128 (*_bfd_error_handler)
4129 (_("%B: %s: invalid needed version %d"),
4130 abfd, name, vernum);
4131 bfd_set_error (bfd_error_bad_value);
4132 goto error_free_vers;
4136 namelen = strlen (name);
4137 verlen = strlen (verstr);
4138 newlen = namelen + verlen + 2;
4139 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4140 && isym->st_shndx != SHN_UNDEF)
4141 ++newlen;
4143 newname = bfd_hash_allocate (&htab->root.table, newlen);
4144 if (newname == NULL)
4145 goto error_free_vers;
4146 memcpy (newname, name, namelen);
4147 p = newname + namelen;
4148 *p++ = ELF_VER_CHR;
4149 /* If this is a defined non-hidden version symbol,
4150 we add another @ to the name. This indicates the
4151 default version of the symbol. */
4152 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4153 && isym->st_shndx != SHN_UNDEF)
4154 *p++ = ELF_VER_CHR;
4155 memcpy (p, verstr, verlen + 1);
4157 name = newname;
4160 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4161 &value, &old_alignment,
4162 sym_hash, &skip, &override,
4163 &type_change_ok, &size_change_ok))
4164 goto error_free_vers;
4166 if (skip)
4167 continue;
4169 if (override)
4170 definition = FALSE;
4172 h = *sym_hash;
4173 while (h->root.type == bfd_link_hash_indirect
4174 || h->root.type == bfd_link_hash_warning)
4175 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4177 /* Remember the old alignment if this is a common symbol, so
4178 that we don't reduce the alignment later on. We can't
4179 check later, because _bfd_generic_link_add_one_symbol
4180 will set a default for the alignment which we want to
4181 override. We also remember the old bfd where the existing
4182 definition comes from. */
4183 switch (h->root.type)
4185 default:
4186 break;
4188 case bfd_link_hash_defined:
4189 case bfd_link_hash_defweak:
4190 old_bfd = h->root.u.def.section->owner;
4191 break;
4193 case bfd_link_hash_common:
4194 old_bfd = h->root.u.c.p->section->owner;
4195 old_alignment = h->root.u.c.p->alignment_power;
4196 break;
4199 if (elf_tdata (abfd)->verdef != NULL
4200 && ! override
4201 && vernum > 1
4202 && definition)
4203 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4206 if (! (_bfd_generic_link_add_one_symbol
4207 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4208 (struct bfd_link_hash_entry **) sym_hash)))
4209 goto error_free_vers;
4211 h = *sym_hash;
4212 while (h->root.type == bfd_link_hash_indirect
4213 || h->root.type == bfd_link_hash_warning)
4214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4215 *sym_hash = h;
4217 new_weakdef = FALSE;
4218 if (dynamic
4219 && definition
4220 && (flags & BSF_WEAK) != 0
4221 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4222 && is_elf_hash_table (htab)
4223 && h->u.weakdef == NULL)
4225 /* Keep a list of all weak defined non function symbols from
4226 a dynamic object, using the weakdef field. Later in this
4227 function we will set the weakdef field to the correct
4228 value. We only put non-function symbols from dynamic
4229 objects on this list, because that happens to be the only
4230 time we need to know the normal symbol corresponding to a
4231 weak symbol, and the information is time consuming to
4232 figure out. If the weakdef field is not already NULL,
4233 then this symbol was already defined by some previous
4234 dynamic object, and we will be using that previous
4235 definition anyhow. */
4237 h->u.weakdef = weaks;
4238 weaks = h;
4239 new_weakdef = TRUE;
4242 /* Set the alignment of a common symbol. */
4243 if ((common || bfd_is_com_section (sec))
4244 && h->root.type == bfd_link_hash_common)
4246 unsigned int align;
4248 if (common)
4249 align = bfd_log2 (isym->st_value);
4250 else
4252 /* The new symbol is a common symbol in a shared object.
4253 We need to get the alignment from the section. */
4254 align = new_sec->alignment_power;
4256 if (align > old_alignment
4257 /* Permit an alignment power of zero if an alignment of one
4258 is specified and no other alignments have been specified. */
4259 || (isym->st_value == 1 && old_alignment == 0))
4260 h->root.u.c.p->alignment_power = align;
4261 else
4262 h->root.u.c.p->alignment_power = old_alignment;
4265 if (is_elf_hash_table (htab))
4267 bfd_boolean dynsym;
4269 /* Check the alignment when a common symbol is involved. This
4270 can change when a common symbol is overridden by a normal
4271 definition or a common symbol is ignored due to the old
4272 normal definition. We need to make sure the maximum
4273 alignment is maintained. */
4274 if ((old_alignment || common)
4275 && h->root.type != bfd_link_hash_common)
4277 unsigned int common_align;
4278 unsigned int normal_align;
4279 unsigned int symbol_align;
4280 bfd *normal_bfd;
4281 bfd *common_bfd;
4283 symbol_align = ffs (h->root.u.def.value) - 1;
4284 if (h->root.u.def.section->owner != NULL
4285 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4287 normal_align = h->root.u.def.section->alignment_power;
4288 if (normal_align > symbol_align)
4289 normal_align = symbol_align;
4291 else
4292 normal_align = symbol_align;
4294 if (old_alignment)
4296 common_align = old_alignment;
4297 common_bfd = old_bfd;
4298 normal_bfd = abfd;
4300 else
4302 common_align = bfd_log2 (isym->st_value);
4303 common_bfd = abfd;
4304 normal_bfd = old_bfd;
4307 if (normal_align < common_align)
4309 /* PR binutils/2735 */
4310 if (normal_bfd == NULL)
4311 (*_bfd_error_handler)
4312 (_("Warning: alignment %u of common symbol `%s' in %B"
4313 " is greater than the alignment (%u) of its section %A"),
4314 common_bfd, h->root.u.def.section,
4315 1 << common_align, name, 1 << normal_align);
4316 else
4317 (*_bfd_error_handler)
4318 (_("Warning: alignment %u of symbol `%s' in %B"
4319 " is smaller than %u in %B"),
4320 normal_bfd, common_bfd,
4321 1 << normal_align, name, 1 << common_align);
4325 /* Remember the symbol size if it isn't undefined. */
4326 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4327 && (definition || h->size == 0))
4329 if (h->size != 0
4330 && h->size != isym->st_size
4331 && ! size_change_ok)
4332 (*_bfd_error_handler)
4333 (_("Warning: size of symbol `%s' changed"
4334 " from %lu in %B to %lu in %B"),
4335 old_bfd, abfd,
4336 name, (unsigned long) h->size,
4337 (unsigned long) isym->st_size);
4339 h->size = isym->st_size;
4342 /* If this is a common symbol, then we always want H->SIZE
4343 to be the size of the common symbol. The code just above
4344 won't fix the size if a common symbol becomes larger. We
4345 don't warn about a size change here, because that is
4346 covered by --warn-common. Allow changed between different
4347 function types. */
4348 if (h->root.type == bfd_link_hash_common)
4349 h->size = h->root.u.c.size;
4351 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4352 && (definition || h->type == STT_NOTYPE))
4354 if (h->type != STT_NOTYPE
4355 && h->type != ELF_ST_TYPE (isym->st_info)
4356 && ! type_change_ok)
4357 (*_bfd_error_handler)
4358 (_("Warning: type of symbol `%s' changed"
4359 " from %d to %d in %B"),
4360 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4362 h->type = ELF_ST_TYPE (isym->st_info);
4365 /* Merge st_other field. */
4366 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4368 /* Set a flag in the hash table entry indicating the type of
4369 reference or definition we just found. Keep a count of
4370 the number of dynamic symbols we find. A dynamic symbol
4371 is one which is referenced or defined by both a regular
4372 object and a shared object. */
4373 dynsym = FALSE;
4374 if (! dynamic)
4376 if (! definition)
4378 h->ref_regular = 1;
4379 if (bind != STB_WEAK)
4380 h->ref_regular_nonweak = 1;
4382 else
4384 h->def_regular = 1;
4385 if (h->def_dynamic)
4387 h->def_dynamic = 0;
4388 h->ref_dynamic = 1;
4389 h->dynamic_def = 1;
4392 if (! info->executable
4393 || h->def_dynamic
4394 || h->ref_dynamic)
4395 dynsym = TRUE;
4397 else
4399 if (! definition)
4400 h->ref_dynamic = 1;
4401 else
4402 h->def_dynamic = 1;
4403 if (h->def_regular
4404 || h->ref_regular
4405 || (h->u.weakdef != NULL
4406 && ! new_weakdef
4407 && h->u.weakdef->dynindx != -1))
4408 dynsym = TRUE;
4411 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4413 /* We don't want to make debug symbol dynamic. */
4414 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4415 dynsym = FALSE;
4418 /* Check to see if we need to add an indirect symbol for
4419 the default name. */
4420 if (definition || h->root.type == bfd_link_hash_common)
4421 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4422 &sec, &value, &dynsym,
4423 override))
4424 goto error_free_vers;
4426 if (definition && !dynamic)
4428 char *p = strchr (name, ELF_VER_CHR);
4429 if (p != NULL && p[1] != ELF_VER_CHR)
4431 /* Queue non-default versions so that .symver x, x@FOO
4432 aliases can be checked. */
4433 if (!nondeflt_vers)
4435 amt = ((isymend - isym + 1)
4436 * sizeof (struct elf_link_hash_entry *));
4437 nondeflt_vers = bfd_malloc (amt);
4438 if (!nondeflt_vers)
4439 goto error_free_vers;
4441 nondeflt_vers[nondeflt_vers_cnt++] = h;
4445 if (dynsym && h->dynindx == -1)
4447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4448 goto error_free_vers;
4449 if (h->u.weakdef != NULL
4450 && ! new_weakdef
4451 && h->u.weakdef->dynindx == -1)
4453 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4454 goto error_free_vers;
4457 else if (dynsym && h->dynindx != -1)
4458 /* If the symbol already has a dynamic index, but
4459 visibility says it should not be visible, turn it into
4460 a local symbol. */
4461 switch (ELF_ST_VISIBILITY (h->other))
4463 case STV_INTERNAL:
4464 case STV_HIDDEN:
4465 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4466 dynsym = FALSE;
4467 break;
4470 if (!add_needed
4471 && definition
4472 && ((dynsym
4473 && h->ref_regular)
4474 || (h->ref_dynamic
4475 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4476 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4478 int ret;
4479 const char *soname = elf_dt_name (abfd);
4481 /* A symbol from a library loaded via DT_NEEDED of some
4482 other library is referenced by a regular object.
4483 Add a DT_NEEDED entry for it. Issue an error if
4484 --no-add-needed is used. */
4485 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4487 (*_bfd_error_handler)
4488 (_("%s: invalid DSO for symbol `%s' definition"),
4489 abfd, name);
4490 bfd_set_error (bfd_error_bad_value);
4491 goto error_free_vers;
4494 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4496 add_needed = TRUE;
4497 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4498 if (ret < 0)
4499 goto error_free_vers;
4501 BFD_ASSERT (ret == 0);
4506 if (extversym != NULL)
4508 free (extversym);
4509 extversym = NULL;
4512 if (isymbuf != NULL)
4514 free (isymbuf);
4515 isymbuf = NULL;
4518 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4520 unsigned int i;
4522 /* Restore the symbol table. */
4523 if (bed->as_needed_cleanup)
4524 (*bed->as_needed_cleanup) (abfd, info);
4525 old_hash = (char *) old_tab + tabsize;
4526 old_ent = (char *) old_hash + hashsize;
4527 sym_hash = elf_sym_hashes (abfd);
4528 htab->root.table.table = old_table;
4529 htab->root.table.size = old_size;
4530 htab->root.table.count = old_count;
4531 memcpy (htab->root.table.table, old_tab, tabsize);
4532 memcpy (sym_hash, old_hash, hashsize);
4533 htab->root.undefs = old_undefs;
4534 htab->root.undefs_tail = old_undefs_tail;
4535 for (i = 0; i < htab->root.table.size; i++)
4537 struct bfd_hash_entry *p;
4538 struct elf_link_hash_entry *h;
4540 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4542 h = (struct elf_link_hash_entry *) p;
4543 if (h->root.type == bfd_link_hash_warning)
4544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4545 if (h->dynindx >= old_dynsymcount)
4546 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4548 memcpy (p, old_ent, htab->root.table.entsize);
4549 old_ent = (char *) old_ent + htab->root.table.entsize;
4550 h = (struct elf_link_hash_entry *) p;
4551 if (h->root.type == bfd_link_hash_warning)
4553 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4554 old_ent = (char *) old_ent + htab->root.table.entsize;
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed))
4563 goto error_free_vers;
4565 free (old_tab);
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4567 alloc_mark);
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4570 return TRUE;
4573 if (old_tab != NULL)
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed))
4577 goto error_free_vers;
4578 free (old_tab);
4579 old_tab = NULL;
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4586 bfd_size_type cnt, symidx;
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4594 if (p == NULL
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4597 continue;
4599 amt = p - h->root.root.string;
4600 shortname = bfd_malloc (amt + 1);
4601 if (!shortname)
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4609 if (hi != NULL
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4619 if (sym_hash)
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4623 sym_hash[symidx] = h;
4624 break;
4627 free (shortname);
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4645 either. */
4646 if (weaks != NULL)
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4652 size_t sym_count;
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4660 goto error_return;
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4664 sym_count = 0;
4665 for (; hpp < hppend; hpp++)
4667 h = *hpp;
4668 if (h != NULL
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4672 *sym_hash = h;
4673 sym_hash++;
4674 sym_count++;
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4680 elf_sort_symbol);
4682 while (weaks != NULL)
4684 struct elf_link_hash_entry *hlook;
4685 asection *slook;
4686 bfd_vma vlook;
4687 long ilook;
4688 size_t i, j, idx;
4690 hlook = weaks;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4701 ilook = -1;
4702 i = 0;
4703 j = sym_count;
4704 while (i < j)
4706 bfd_signed_vma vdiff;
4707 idx = (i + j) / 2;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4710 if (vdiff < 0)
4711 j = idx;
4712 else if (vdiff > 0)
4713 i = idx + 1;
4714 else
4716 long sdiff = slook->id - h->root.u.def.section->id;
4717 if (sdiff < 0)
4718 j = idx;
4719 else if (sdiff > 0)
4720 i = idx + 1;
4721 else
4723 ilook = idx;
4724 break;
4729 /* We didn't find a value/section match. */
4730 if (ilook == -1)
4731 continue;
4733 for (i = ilook; i < sym_count; i++)
4735 h = sorted_sym_hash [i];
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4740 break;
4741 else if (h != hlook)
4743 hlook->u.weakdef = h;
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4747 there as well. */
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4752 err_free_sym_hash:
4753 free (sorted_sym_hash);
4754 goto error_return;
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4768 break;
4773 free (sorted_sym_hash);
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4778 return FALSE;
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4782 relocs.
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4797 if (! dynamic
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4802 asection *o;
4804 for (o = abfd->sections; o != NULL; o = o->next)
4806 Elf_Internal_Rela *internal_relocs;
4807 bfd_boolean ok;
4809 if ((o->flags & SEC_RELOC) == 0
4810 || o->reloc_count == 0
4811 || ((info->strip == strip_all || info->strip == strip_debugger)
4812 && (o->flags & SEC_DEBUGGING) != 0)
4813 || bfd_is_abs_section (o->output_section))
4814 continue;
4816 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4817 info->keep_memory);
4818 if (internal_relocs == NULL)
4819 goto error_return;
4821 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4823 if (elf_section_data (o)->relocs != internal_relocs)
4824 free (internal_relocs);
4826 if (! ok)
4827 goto error_return;
4831 /* If this is a non-traditional link, try to optimize the handling
4832 of the .stab/.stabstr sections. */
4833 if (! dynamic
4834 && ! info->traditional_format
4835 && is_elf_hash_table (htab)
4836 && (info->strip != strip_all && info->strip != strip_debugger))
4838 asection *stabstr;
4840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4841 if (stabstr != NULL)
4843 bfd_size_type string_offset = 0;
4844 asection *stab;
4846 for (stab = abfd->sections; stab; stab = stab->next)
4847 if (CONST_STRNEQ (stab->name, ".stab")
4848 && (!stab->name[5] ||
4849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4850 && (stab->flags & SEC_MERGE) == 0
4851 && !bfd_is_abs_section (stab->output_section))
4853 struct bfd_elf_section_data *secdata;
4855 secdata = elf_section_data (stab);
4856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4857 stabstr, &secdata->sec_info,
4858 &string_offset))
4859 goto error_return;
4860 if (secdata->sec_info)
4861 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4866 if (is_elf_hash_table (htab) && add_needed)
4868 /* Add this bfd to the loaded list. */
4869 struct elf_link_loaded_list *n;
4871 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4872 if (n == NULL)
4873 goto error_return;
4874 n->abfd = abfd;
4875 n->next = htab->loaded;
4876 htab->loaded = n;
4879 return TRUE;
4881 error_free_vers:
4882 if (old_tab != NULL)
4883 free (old_tab);
4884 if (nondeflt_vers != NULL)
4885 free (nondeflt_vers);
4886 if (extversym != NULL)
4887 free (extversym);
4888 error_free_sym:
4889 if (isymbuf != NULL)
4890 free (isymbuf);
4891 error_return:
4892 return FALSE;
4895 /* Return the linker hash table entry of a symbol that might be
4896 satisfied by an archive symbol. Return -1 on error. */
4898 struct elf_link_hash_entry *
4899 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4900 struct bfd_link_info *info,
4901 const char *name)
4903 struct elf_link_hash_entry *h;
4904 char *p, *copy;
4905 size_t len, first;
4907 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4908 if (h != NULL)
4909 return h;
4911 /* If this is a default version (the name contains @@), look up the
4912 symbol again with only one `@' as well as without the version.
4913 The effect is that references to the symbol with and without the
4914 version will be matched by the default symbol in the archive. */
4916 p = strchr (name, ELF_VER_CHR);
4917 if (p == NULL || p[1] != ELF_VER_CHR)
4918 return h;
4920 /* First check with only one `@'. */
4921 len = strlen (name);
4922 copy = bfd_alloc (abfd, len);
4923 if (copy == NULL)
4924 return (struct elf_link_hash_entry *) 0 - 1;
4926 first = p - name + 1;
4927 memcpy (copy, name, first);
4928 memcpy (copy + first, name + first + 1, len - first);
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4931 if (h == NULL)
4933 /* We also need to check references to the symbol without the
4934 version. */
4935 copy[first - 1] = '\0';
4936 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4937 FALSE, FALSE, FALSE);
4940 bfd_release (abfd, copy);
4941 return h;
4944 /* Add symbols from an ELF archive file to the linker hash table. We
4945 don't use _bfd_generic_link_add_archive_symbols because of a
4946 problem which arises on UnixWare. The UnixWare libc.so is an
4947 archive which includes an entry libc.so.1 which defines a bunch of
4948 symbols. The libc.so archive also includes a number of other
4949 object files, which also define symbols, some of which are the same
4950 as those defined in libc.so.1. Correct linking requires that we
4951 consider each object file in turn, and include it if it defines any
4952 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4953 this; it looks through the list of undefined symbols, and includes
4954 any object file which defines them. When this algorithm is used on
4955 UnixWare, it winds up pulling in libc.so.1 early and defining a
4956 bunch of symbols. This means that some of the other objects in the
4957 archive are not included in the link, which is incorrect since they
4958 precede libc.so.1 in the archive.
4960 Fortunately, ELF archive handling is simpler than that done by
4961 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4962 oddities. In ELF, if we find a symbol in the archive map, and the
4963 symbol is currently undefined, we know that we must pull in that
4964 object file.
4966 Unfortunately, we do have to make multiple passes over the symbol
4967 table until nothing further is resolved. */
4969 static bfd_boolean
4970 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4972 symindex c;
4973 bfd_boolean *defined = NULL;
4974 bfd_boolean *included = NULL;
4975 carsym *symdefs;
4976 bfd_boolean loop;
4977 bfd_size_type amt;
4978 const struct elf_backend_data *bed;
4979 struct elf_link_hash_entry * (*archive_symbol_lookup)
4980 (bfd *, struct bfd_link_info *, const char *);
4982 if (! bfd_has_map (abfd))
4984 /* An empty archive is a special case. */
4985 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4986 return TRUE;
4987 bfd_set_error (bfd_error_no_armap);
4988 return FALSE;
4991 /* Keep track of all symbols we know to be already defined, and all
4992 files we know to be already included. This is to speed up the
4993 second and subsequent passes. */
4994 c = bfd_ardata (abfd)->symdef_count;
4995 if (c == 0)
4996 return TRUE;
4997 amt = c;
4998 amt *= sizeof (bfd_boolean);
4999 defined = bfd_zmalloc (amt);
5000 included = bfd_zmalloc (amt);
5001 if (defined == NULL || included == NULL)
5002 goto error_return;
5004 symdefs = bfd_ardata (abfd)->symdefs;
5005 bed = get_elf_backend_data (abfd);
5006 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5010 file_ptr last;
5011 symindex i;
5012 carsym *symdef;
5013 carsym *symdefend;
5015 loop = FALSE;
5016 last = -1;
5018 symdef = symdefs;
5019 symdefend = symdef + c;
5020 for (i = 0; symdef < symdefend; symdef++, i++)
5022 struct elf_link_hash_entry *h;
5023 bfd *element;
5024 struct bfd_link_hash_entry *undefs_tail;
5025 symindex mark;
5027 if (defined[i] || included[i])
5028 continue;
5029 if (symdef->file_offset == last)
5031 included[i] = TRUE;
5032 continue;
5035 h = archive_symbol_lookup (abfd, info, symdef->name);
5036 if (h == (struct elf_link_hash_entry *) 0 - 1)
5037 goto error_return;
5039 if (h == NULL)
5040 continue;
5042 if (h->root.type == bfd_link_hash_common)
5044 /* We currently have a common symbol. The archive map contains
5045 a reference to this symbol, so we may want to include it. We
5046 only want to include it however, if this archive element
5047 contains a definition of the symbol, not just another common
5048 declaration of it.
5050 Unfortunately some archivers (including GNU ar) will put
5051 declarations of common symbols into their archive maps, as
5052 well as real definitions, so we cannot just go by the archive
5053 map alone. Instead we must read in the element's symbol
5054 table and check that to see what kind of symbol definition
5055 this is. */
5056 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5057 continue;
5059 else if (h->root.type != bfd_link_hash_undefined)
5061 if (h->root.type != bfd_link_hash_undefweak)
5062 defined[i] = TRUE;
5063 continue;
5066 /* We need to include this archive member. */
5067 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5068 if (element == NULL)
5069 goto error_return;
5071 if (! bfd_check_format (element, bfd_object))
5072 goto error_return;
5074 /* Doublecheck that we have not included this object
5075 already--it should be impossible, but there may be
5076 something wrong with the archive. */
5077 if (element->archive_pass != 0)
5079 bfd_set_error (bfd_error_bad_value);
5080 goto error_return;
5082 element->archive_pass = 1;
5084 undefs_tail = info->hash->undefs_tail;
5086 if (! (*info->callbacks->add_archive_element) (info, element,
5087 symdef->name))
5088 goto error_return;
5089 if (! bfd_link_add_symbols (element, info))
5090 goto error_return;
5092 /* If there are any new undefined symbols, we need to make
5093 another pass through the archive in order to see whether
5094 they can be defined. FIXME: This isn't perfect, because
5095 common symbols wind up on undefs_tail and because an
5096 undefined symbol which is defined later on in this pass
5097 does not require another pass. This isn't a bug, but it
5098 does make the code less efficient than it could be. */
5099 if (undefs_tail != info->hash->undefs_tail)
5100 loop = TRUE;
5102 /* Look backward to mark all symbols from this object file
5103 which we have already seen in this pass. */
5104 mark = i;
5107 included[mark] = TRUE;
5108 if (mark == 0)
5109 break;
5110 --mark;
5112 while (symdefs[mark].file_offset == symdef->file_offset);
5114 /* We mark subsequent symbols from this object file as we go
5115 on through the loop. */
5116 last = symdef->file_offset;
5119 while (loop);
5121 free (defined);
5122 free (included);
5124 return TRUE;
5126 error_return:
5127 if (defined != NULL)
5128 free (defined);
5129 if (included != NULL)
5130 free (included);
5131 return FALSE;
5134 /* Given an ELF BFD, add symbols to the global hash table as
5135 appropriate. */
5137 bfd_boolean
5138 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5140 switch (bfd_get_format (abfd))
5142 case bfd_object:
5143 return elf_link_add_object_symbols (abfd, info);
5144 case bfd_archive:
5145 return elf_link_add_archive_symbols (abfd, info);
5146 default:
5147 bfd_set_error (bfd_error_wrong_format);
5148 return FALSE;
5152 struct hash_codes_info
5154 unsigned long *hashcodes;
5155 bfd_boolean error;
5158 /* This function will be called though elf_link_hash_traverse to store
5159 all hash value of the exported symbols in an array. */
5161 static bfd_boolean
5162 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5164 struct hash_codes_info *inf = data;
5165 const char *name;
5166 char *p;
5167 unsigned long ha;
5168 char *alc = NULL;
5170 if (h->root.type == bfd_link_hash_warning)
5171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5173 /* Ignore indirect symbols. These are added by the versioning code. */
5174 if (h->dynindx == -1)
5175 return TRUE;
5177 name = h->root.root.string;
5178 p = strchr (name, ELF_VER_CHR);
5179 if (p != NULL)
5181 alc = bfd_malloc (p - name + 1);
5182 if (alc == NULL)
5184 inf->error = TRUE;
5185 return FALSE;
5187 memcpy (alc, name, p - name);
5188 alc[p - name] = '\0';
5189 name = alc;
5192 /* Compute the hash value. */
5193 ha = bfd_elf_hash (name);
5195 /* Store the found hash value in the array given as the argument. */
5196 *(inf->hashcodes)++ = ha;
5198 /* And store it in the struct so that we can put it in the hash table
5199 later. */
5200 h->u.elf_hash_value = ha;
5202 if (alc != NULL)
5203 free (alc);
5205 return TRUE;
5208 struct collect_gnu_hash_codes
5210 bfd *output_bfd;
5211 const struct elf_backend_data *bed;
5212 unsigned long int nsyms;
5213 unsigned long int maskbits;
5214 unsigned long int *hashcodes;
5215 unsigned long int *hashval;
5216 unsigned long int *indx;
5217 unsigned long int *counts;
5218 bfd_vma *bitmask;
5219 bfd_byte *contents;
5220 long int min_dynindx;
5221 unsigned long int bucketcount;
5222 unsigned long int symindx;
5223 long int local_indx;
5224 long int shift1, shift2;
5225 unsigned long int mask;
5226 bfd_boolean error;
5229 /* This function will be called though elf_link_hash_traverse to store
5230 all hash value of the exported symbols in an array. */
5232 static bfd_boolean
5233 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5235 struct collect_gnu_hash_codes *s = data;
5236 const char *name;
5237 char *p;
5238 unsigned long ha;
5239 char *alc = NULL;
5241 if (h->root.type == bfd_link_hash_warning)
5242 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5244 /* Ignore indirect symbols. These are added by the versioning code. */
5245 if (h->dynindx == -1)
5246 return TRUE;
5248 /* Ignore also local symbols and undefined symbols. */
5249 if (! (*s->bed->elf_hash_symbol) (h))
5250 return TRUE;
5252 name = h->root.root.string;
5253 p = strchr (name, ELF_VER_CHR);
5254 if (p != NULL)
5256 alc = bfd_malloc (p - name + 1);
5257 if (alc == NULL)
5259 s->error = TRUE;
5260 return FALSE;
5262 memcpy (alc, name, p - name);
5263 alc[p - name] = '\0';
5264 name = alc;
5267 /* Compute the hash value. */
5268 ha = bfd_elf_gnu_hash (name);
5270 /* Store the found hash value in the array for compute_bucket_count,
5271 and also for .dynsym reordering purposes. */
5272 s->hashcodes[s->nsyms] = ha;
5273 s->hashval[h->dynindx] = ha;
5274 ++s->nsyms;
5275 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5276 s->min_dynindx = h->dynindx;
5278 if (alc != NULL)
5279 free (alc);
5281 return TRUE;
5284 /* This function will be called though elf_link_hash_traverse to do
5285 final dynaminc symbol renumbering. */
5287 static bfd_boolean
5288 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5290 struct collect_gnu_hash_codes *s = data;
5291 unsigned long int bucket;
5292 unsigned long int val;
5294 if (h->root.type == bfd_link_hash_warning)
5295 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5297 /* Ignore indirect symbols. */
5298 if (h->dynindx == -1)
5299 return TRUE;
5301 /* Ignore also local symbols and undefined symbols. */
5302 if (! (*s->bed->elf_hash_symbol) (h))
5304 if (h->dynindx >= s->min_dynindx)
5305 h->dynindx = s->local_indx++;
5306 return TRUE;
5309 bucket = s->hashval[h->dynindx] % s->bucketcount;
5310 val = (s->hashval[h->dynindx] >> s->shift1)
5311 & ((s->maskbits >> s->shift1) - 1);
5312 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5313 s->bitmask[val]
5314 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5315 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5316 if (s->counts[bucket] == 1)
5317 /* Last element terminates the chain. */
5318 val |= 1;
5319 bfd_put_32 (s->output_bfd, val,
5320 s->contents + (s->indx[bucket] - s->symindx) * 4);
5321 --s->counts[bucket];
5322 h->dynindx = s->indx[bucket]++;
5323 return TRUE;
5326 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5328 bfd_boolean
5329 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5331 return !(h->forced_local
5332 || h->root.type == bfd_link_hash_undefined
5333 || h->root.type == bfd_link_hash_undefweak
5334 || ((h->root.type == bfd_link_hash_defined
5335 || h->root.type == bfd_link_hash_defweak)
5336 && h->root.u.def.section->output_section == NULL));
5339 /* Array used to determine the number of hash table buckets to use
5340 based on the number of symbols there are. If there are fewer than
5341 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5342 fewer than 37 we use 17 buckets, and so forth. We never use more
5343 than 32771 buckets. */
5345 static const size_t elf_buckets[] =
5347 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5348 16411, 32771, 0
5351 /* Compute bucket count for hashing table. We do not use a static set
5352 of possible tables sizes anymore. Instead we determine for all
5353 possible reasonable sizes of the table the outcome (i.e., the
5354 number of collisions etc) and choose the best solution. The
5355 weighting functions are not too simple to allow the table to grow
5356 without bounds. Instead one of the weighting factors is the size.
5357 Therefore the result is always a good payoff between few collisions
5358 (= short chain lengths) and table size. */
5359 static size_t
5360 compute_bucket_count (struct bfd_link_info *info,
5361 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5362 unsigned long int nsyms,
5363 int gnu_hash)
5365 size_t best_size = 0;
5366 unsigned long int i;
5368 /* We have a problem here. The following code to optimize the table
5369 size requires an integer type with more the 32 bits. If
5370 BFD_HOST_U_64_BIT is set we know about such a type. */
5371 #ifdef BFD_HOST_U_64_BIT
5372 if (info->optimize)
5374 size_t minsize;
5375 size_t maxsize;
5376 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5377 bfd *dynobj = elf_hash_table (info)->dynobj;
5378 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5379 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5380 unsigned long int *counts;
5381 bfd_size_type amt;
5383 /* Possible optimization parameters: if we have NSYMS symbols we say
5384 that the hashing table must at least have NSYMS/4 and at most
5385 2*NSYMS buckets. */
5386 minsize = nsyms / 4;
5387 if (minsize == 0)
5388 minsize = 1;
5389 best_size = maxsize = nsyms * 2;
5390 if (gnu_hash)
5392 if (minsize < 2)
5393 minsize = 2;
5394 if ((best_size & 31) == 0)
5395 ++best_size;
5398 /* Create array where we count the collisions in. We must use bfd_malloc
5399 since the size could be large. */
5400 amt = maxsize;
5401 amt *= sizeof (unsigned long int);
5402 counts = bfd_malloc (amt);
5403 if (counts == NULL)
5404 return 0;
5406 /* Compute the "optimal" size for the hash table. The criteria is a
5407 minimal chain length. The minor criteria is (of course) the size
5408 of the table. */
5409 for (i = minsize; i < maxsize; ++i)
5411 /* Walk through the array of hashcodes and count the collisions. */
5412 BFD_HOST_U_64_BIT max;
5413 unsigned long int j;
5414 unsigned long int fact;
5416 if (gnu_hash && (i & 31) == 0)
5417 continue;
5419 memset (counts, '\0', i * sizeof (unsigned long int));
5421 /* Determine how often each hash bucket is used. */
5422 for (j = 0; j < nsyms; ++j)
5423 ++counts[hashcodes[j] % i];
5425 /* For the weight function we need some information about the
5426 pagesize on the target. This is information need not be 100%
5427 accurate. Since this information is not available (so far) we
5428 define it here to a reasonable default value. If it is crucial
5429 to have a better value some day simply define this value. */
5430 # ifndef BFD_TARGET_PAGESIZE
5431 # define BFD_TARGET_PAGESIZE (4096)
5432 # endif
5434 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5435 and the chains. */
5436 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5438 # if 1
5439 /* Variant 1: optimize for short chains. We add the squares
5440 of all the chain lengths (which favors many small chain
5441 over a few long chains). */
5442 for (j = 0; j < i; ++j)
5443 max += counts[j] * counts[j];
5445 /* This adds penalties for the overall size of the table. */
5446 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5447 max *= fact * fact;
5448 # else
5449 /* Variant 2: Optimize a lot more for small table. Here we
5450 also add squares of the size but we also add penalties for
5451 empty slots (the +1 term). */
5452 for (j = 0; j < i; ++j)
5453 max += (1 + counts[j]) * (1 + counts[j]);
5455 /* The overall size of the table is considered, but not as
5456 strong as in variant 1, where it is squared. */
5457 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5458 max *= fact;
5459 # endif
5461 /* Compare with current best results. */
5462 if (max < best_chlen)
5464 best_chlen = max;
5465 best_size = i;
5469 free (counts);
5471 else
5472 #endif /* defined (BFD_HOST_U_64_BIT) */
5474 /* This is the fallback solution if no 64bit type is available or if we
5475 are not supposed to spend much time on optimizations. We select the
5476 bucket count using a fixed set of numbers. */
5477 for (i = 0; elf_buckets[i] != 0; i++)
5479 best_size = elf_buckets[i];
5480 if (nsyms < elf_buckets[i + 1])
5481 break;
5483 if (gnu_hash && best_size < 2)
5484 best_size = 2;
5487 return best_size;
5490 /* Set up the sizes and contents of the ELF dynamic sections. This is
5491 called by the ELF linker emulation before_allocation routine. We
5492 must set the sizes of the sections before the linker sets the
5493 addresses of the various sections. */
5495 bfd_boolean
5496 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5497 const char *soname,
5498 const char *rpath,
5499 const char *filter_shlib,
5500 const char * const *auxiliary_filters,
5501 struct bfd_link_info *info,
5502 asection **sinterpptr,
5503 struct bfd_elf_version_tree *verdefs)
5505 bfd_size_type soname_indx;
5506 bfd *dynobj;
5507 const struct elf_backend_data *bed;
5508 struct elf_info_failed asvinfo;
5510 *sinterpptr = NULL;
5512 soname_indx = (bfd_size_type) -1;
5514 if (!is_elf_hash_table (info->hash))
5515 return TRUE;
5517 bed = get_elf_backend_data (output_bfd);
5518 if (info->execstack)
5519 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5520 else if (info->noexecstack)
5521 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5522 else
5524 bfd *inputobj;
5525 asection *notesec = NULL;
5526 int exec = 0;
5528 for (inputobj = info->input_bfds;
5529 inputobj;
5530 inputobj = inputobj->link_next)
5532 asection *s;
5534 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5535 continue;
5536 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5537 if (s)
5539 if (s->flags & SEC_CODE)
5540 exec = PF_X;
5541 notesec = s;
5543 else if (bed->default_execstack)
5544 exec = PF_X;
5546 if (notesec)
5548 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5549 if (exec && info->relocatable
5550 && notesec->output_section != bfd_abs_section_ptr)
5551 notesec->output_section->flags |= SEC_CODE;
5555 /* Any syms created from now on start with -1 in
5556 got.refcount/offset and plt.refcount/offset. */
5557 elf_hash_table (info)->init_got_refcount
5558 = elf_hash_table (info)->init_got_offset;
5559 elf_hash_table (info)->init_plt_refcount
5560 = elf_hash_table (info)->init_plt_offset;
5562 /* The backend may have to create some sections regardless of whether
5563 we're dynamic or not. */
5564 if (bed->elf_backend_always_size_sections
5565 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5566 return FALSE;
5568 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5569 return FALSE;
5571 dynobj = elf_hash_table (info)->dynobj;
5573 /* If there were no dynamic objects in the link, there is nothing to
5574 do here. */
5575 if (dynobj == NULL)
5576 return TRUE;
5578 if (elf_hash_table (info)->dynamic_sections_created)
5580 struct elf_info_failed eif;
5581 struct elf_link_hash_entry *h;
5582 asection *dynstr;
5583 struct bfd_elf_version_tree *t;
5584 struct bfd_elf_version_expr *d;
5585 asection *s;
5586 bfd_boolean all_defined;
5588 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5589 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5591 if (soname != NULL)
5593 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5594 soname, TRUE);
5595 if (soname_indx == (bfd_size_type) -1
5596 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5597 return FALSE;
5600 if (info->symbolic)
5602 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5603 return FALSE;
5604 info->flags |= DF_SYMBOLIC;
5607 if (rpath != NULL)
5609 bfd_size_type indx;
5611 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5612 TRUE);
5613 if (indx == (bfd_size_type) -1
5614 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5615 return FALSE;
5617 if (info->new_dtags)
5619 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5620 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5621 return FALSE;
5625 if (filter_shlib != NULL)
5627 bfd_size_type indx;
5629 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5630 filter_shlib, TRUE);
5631 if (indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5633 return FALSE;
5636 if (auxiliary_filters != NULL)
5638 const char * const *p;
5640 for (p = auxiliary_filters; *p != NULL; p++)
5642 bfd_size_type indx;
5644 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5645 *p, TRUE);
5646 if (indx == (bfd_size_type) -1
5647 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5648 return FALSE;
5652 eif.info = info;
5653 eif.verdefs = verdefs;
5654 eif.failed = FALSE;
5656 /* If we are supposed to export all symbols into the dynamic symbol
5657 table (this is not the normal case), then do so. */
5658 if (info->export_dynamic
5659 || (info->executable && info->dynamic))
5661 elf_link_hash_traverse (elf_hash_table (info),
5662 _bfd_elf_export_symbol,
5663 &eif);
5664 if (eif.failed)
5665 return FALSE;
5668 /* Make all global versions with definition. */
5669 for (t = verdefs; t != NULL; t = t->next)
5670 for (d = t->globals.list; d != NULL; d = d->next)
5671 if (!d->symver && d->literal)
5673 const char *verstr, *name;
5674 size_t namelen, verlen, newlen;
5675 char *newname, *p;
5676 struct elf_link_hash_entry *newh;
5678 name = d->pattern;
5679 namelen = strlen (name);
5680 verstr = t->name;
5681 verlen = strlen (verstr);
5682 newlen = namelen + verlen + 3;
5684 newname = bfd_malloc (newlen);
5685 if (newname == NULL)
5686 return FALSE;
5687 memcpy (newname, name, namelen);
5689 /* Check the hidden versioned definition. */
5690 p = newname + namelen;
5691 *p++ = ELF_VER_CHR;
5692 memcpy (p, verstr, verlen + 1);
5693 newh = elf_link_hash_lookup (elf_hash_table (info),
5694 newname, FALSE, FALSE,
5695 FALSE);
5696 if (newh == NULL
5697 || (newh->root.type != bfd_link_hash_defined
5698 && newh->root.type != bfd_link_hash_defweak))
5700 /* Check the default versioned definition. */
5701 *p++ = ELF_VER_CHR;
5702 memcpy (p, verstr, verlen + 1);
5703 newh = elf_link_hash_lookup (elf_hash_table (info),
5704 newname, FALSE, FALSE,
5705 FALSE);
5707 free (newname);
5709 /* Mark this version if there is a definition and it is
5710 not defined in a shared object. */
5711 if (newh != NULL
5712 && !newh->def_dynamic
5713 && (newh->root.type == bfd_link_hash_defined
5714 || newh->root.type == bfd_link_hash_defweak))
5715 d->symver = 1;
5718 /* Attach all the symbols to their version information. */
5719 asvinfo.info = info;
5720 asvinfo.verdefs = verdefs;
5721 asvinfo.failed = FALSE;
5723 elf_link_hash_traverse (elf_hash_table (info),
5724 _bfd_elf_link_assign_sym_version,
5725 &asvinfo);
5726 if (asvinfo.failed)
5727 return FALSE;
5729 if (!info->allow_undefined_version)
5731 /* Check if all global versions have a definition. */
5732 all_defined = TRUE;
5733 for (t = verdefs; t != NULL; t = t->next)
5734 for (d = t->globals.list; d != NULL; d = d->next)
5735 if (d->literal && !d->symver && !d->script)
5737 (*_bfd_error_handler)
5738 (_("%s: undefined version: %s"),
5739 d->pattern, t->name);
5740 all_defined = FALSE;
5743 if (!all_defined)
5745 bfd_set_error (bfd_error_bad_value);
5746 return FALSE;
5750 /* Find all symbols which were defined in a dynamic object and make
5751 the backend pick a reasonable value for them. */
5752 elf_link_hash_traverse (elf_hash_table (info),
5753 _bfd_elf_adjust_dynamic_symbol,
5754 &eif);
5755 if (eif.failed)
5756 return FALSE;
5758 /* Add some entries to the .dynamic section. We fill in some of the
5759 values later, in bfd_elf_final_link, but we must add the entries
5760 now so that we know the final size of the .dynamic section. */
5762 /* If there are initialization and/or finalization functions to
5763 call then add the corresponding DT_INIT/DT_FINI entries. */
5764 h = (info->init_function
5765 ? elf_link_hash_lookup (elf_hash_table (info),
5766 info->init_function, FALSE,
5767 FALSE, FALSE)
5768 : NULL);
5769 if (h != NULL
5770 && (h->ref_regular
5771 || h->def_regular))
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5774 return FALSE;
5776 h = (info->fini_function
5777 ? elf_link_hash_lookup (elf_hash_table (info),
5778 info->fini_function, FALSE,
5779 FALSE, FALSE)
5780 : NULL);
5781 if (h != NULL
5782 && (h->ref_regular
5783 || h->def_regular))
5785 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5786 return FALSE;
5789 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5790 if (s != NULL && s->linker_has_input)
5792 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5793 if (! info->executable)
5795 bfd *sub;
5796 asection *o;
5798 for (sub = info->input_bfds; sub != NULL;
5799 sub = sub->link_next)
5800 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5801 for (o = sub->sections; o != NULL; o = o->next)
5802 if (elf_section_data (o)->this_hdr.sh_type
5803 == SHT_PREINIT_ARRAY)
5805 (*_bfd_error_handler)
5806 (_("%B: .preinit_array section is not allowed in DSO"),
5807 sub);
5808 break;
5811 bfd_set_error (bfd_error_nonrepresentable_section);
5812 return FALSE;
5815 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5816 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5817 return FALSE;
5819 s = bfd_get_section_by_name (output_bfd, ".init_array");
5820 if (s != NULL && s->linker_has_input)
5822 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5823 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5824 return FALSE;
5826 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5827 if (s != NULL && s->linker_has_input)
5829 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5830 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5831 return FALSE;
5834 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5835 /* If .dynstr is excluded from the link, we don't want any of
5836 these tags. Strictly, we should be checking each section
5837 individually; This quick check covers for the case where
5838 someone does a /DISCARD/ : { *(*) }. */
5839 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5841 bfd_size_type strsize;
5843 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5844 if ((info->emit_hash
5845 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5846 || (info->emit_gnu_hash
5847 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5848 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5849 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5850 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5851 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5852 bed->s->sizeof_sym))
5853 return FALSE;
5857 /* The backend must work out the sizes of all the other dynamic
5858 sections. */
5859 if (bed->elf_backend_size_dynamic_sections
5860 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5861 return FALSE;
5863 if (elf_hash_table (info)->dynamic_sections_created)
5865 unsigned long section_sym_count;
5866 asection *s;
5868 /* Set up the version definition section. */
5869 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5870 BFD_ASSERT (s != NULL);
5872 /* We may have created additional version definitions if we are
5873 just linking a regular application. */
5874 verdefs = asvinfo.verdefs;
5876 /* Skip anonymous version tag. */
5877 if (verdefs != NULL && verdefs->vernum == 0)
5878 verdefs = verdefs->next;
5880 if (verdefs == NULL && !info->create_default_symver)
5881 s->flags |= SEC_EXCLUDE;
5882 else
5884 unsigned int cdefs;
5885 bfd_size_type size;
5886 struct bfd_elf_version_tree *t;
5887 bfd_byte *p;
5888 Elf_Internal_Verdef def;
5889 Elf_Internal_Verdaux defaux;
5890 struct bfd_link_hash_entry *bh;
5891 struct elf_link_hash_entry *h;
5892 const char *name;
5894 cdefs = 0;
5895 size = 0;
5897 /* Make space for the base version. */
5898 size += sizeof (Elf_External_Verdef);
5899 size += sizeof (Elf_External_Verdaux);
5900 ++cdefs;
5902 /* Make space for the default version. */
5903 if (info->create_default_symver)
5905 size += sizeof (Elf_External_Verdef);
5906 ++cdefs;
5909 for (t = verdefs; t != NULL; t = t->next)
5911 struct bfd_elf_version_deps *n;
5913 size += sizeof (Elf_External_Verdef);
5914 size += sizeof (Elf_External_Verdaux);
5915 ++cdefs;
5917 for (n = t->deps; n != NULL; n = n->next)
5918 size += sizeof (Elf_External_Verdaux);
5921 s->size = size;
5922 s->contents = bfd_alloc (output_bfd, s->size);
5923 if (s->contents == NULL && s->size != 0)
5924 return FALSE;
5926 /* Fill in the version definition section. */
5928 p = s->contents;
5930 def.vd_version = VER_DEF_CURRENT;
5931 def.vd_flags = VER_FLG_BASE;
5932 def.vd_ndx = 1;
5933 def.vd_cnt = 1;
5934 if (info->create_default_symver)
5936 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5937 def.vd_next = sizeof (Elf_External_Verdef);
5939 else
5941 def.vd_aux = sizeof (Elf_External_Verdef);
5942 def.vd_next = (sizeof (Elf_External_Verdef)
5943 + sizeof (Elf_External_Verdaux));
5946 if (soname_indx != (bfd_size_type) -1)
5948 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5949 soname_indx);
5950 def.vd_hash = bfd_elf_hash (soname);
5951 defaux.vda_name = soname_indx;
5952 name = soname;
5954 else
5956 bfd_size_type indx;
5958 name = lbasename (output_bfd->filename);
5959 def.vd_hash = bfd_elf_hash (name);
5960 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5961 name, FALSE);
5962 if (indx == (bfd_size_type) -1)
5963 return FALSE;
5964 defaux.vda_name = indx;
5966 defaux.vda_next = 0;
5968 _bfd_elf_swap_verdef_out (output_bfd, &def,
5969 (Elf_External_Verdef *) p);
5970 p += sizeof (Elf_External_Verdef);
5971 if (info->create_default_symver)
5973 /* Add a symbol representing this version. */
5974 bh = NULL;
5975 if (! (_bfd_generic_link_add_one_symbol
5976 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5977 0, NULL, FALSE,
5978 get_elf_backend_data (dynobj)->collect, &bh)))
5979 return FALSE;
5980 h = (struct elf_link_hash_entry *) bh;
5981 h->non_elf = 0;
5982 h->def_regular = 1;
5983 h->type = STT_OBJECT;
5984 h->verinfo.vertree = NULL;
5986 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5987 return FALSE;
5989 /* Create a duplicate of the base version with the same
5990 aux block, but different flags. */
5991 def.vd_flags = 0;
5992 def.vd_ndx = 2;
5993 def.vd_aux = sizeof (Elf_External_Verdef);
5994 if (verdefs)
5995 def.vd_next = (sizeof (Elf_External_Verdef)
5996 + sizeof (Elf_External_Verdaux));
5997 else
5998 def.vd_next = 0;
5999 _bfd_elf_swap_verdef_out (output_bfd, &def,
6000 (Elf_External_Verdef *) p);
6001 p += sizeof (Elf_External_Verdef);
6003 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6004 (Elf_External_Verdaux *) p);
6005 p += sizeof (Elf_External_Verdaux);
6007 for (t = verdefs; t != NULL; t = t->next)
6009 unsigned int cdeps;
6010 struct bfd_elf_version_deps *n;
6012 cdeps = 0;
6013 for (n = t->deps; n != NULL; n = n->next)
6014 ++cdeps;
6016 /* Add a symbol representing this version. */
6017 bh = NULL;
6018 if (! (_bfd_generic_link_add_one_symbol
6019 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6020 0, NULL, FALSE,
6021 get_elf_backend_data (dynobj)->collect, &bh)))
6022 return FALSE;
6023 h = (struct elf_link_hash_entry *) bh;
6024 h->non_elf = 0;
6025 h->def_regular = 1;
6026 h->type = STT_OBJECT;
6027 h->verinfo.vertree = t;
6029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6030 return FALSE;
6032 def.vd_version = VER_DEF_CURRENT;
6033 def.vd_flags = 0;
6034 if (t->globals.list == NULL
6035 && t->locals.list == NULL
6036 && ! t->used)
6037 def.vd_flags |= VER_FLG_WEAK;
6038 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6039 def.vd_cnt = cdeps + 1;
6040 def.vd_hash = bfd_elf_hash (t->name);
6041 def.vd_aux = sizeof (Elf_External_Verdef);
6042 def.vd_next = 0;
6043 if (t->next != NULL)
6044 def.vd_next = (sizeof (Elf_External_Verdef)
6045 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6047 _bfd_elf_swap_verdef_out (output_bfd, &def,
6048 (Elf_External_Verdef *) p);
6049 p += sizeof (Elf_External_Verdef);
6051 defaux.vda_name = h->dynstr_index;
6052 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6053 h->dynstr_index);
6054 defaux.vda_next = 0;
6055 if (t->deps != NULL)
6056 defaux.vda_next = sizeof (Elf_External_Verdaux);
6057 t->name_indx = defaux.vda_name;
6059 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6060 (Elf_External_Verdaux *) p);
6061 p += sizeof (Elf_External_Verdaux);
6063 for (n = t->deps; n != NULL; n = n->next)
6065 if (n->version_needed == NULL)
6067 /* This can happen if there was an error in the
6068 version script. */
6069 defaux.vda_name = 0;
6071 else
6073 defaux.vda_name = n->version_needed->name_indx;
6074 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6075 defaux.vda_name);
6077 if (n->next == NULL)
6078 defaux.vda_next = 0;
6079 else
6080 defaux.vda_next = sizeof (Elf_External_Verdaux);
6082 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6083 (Elf_External_Verdaux *) p);
6084 p += sizeof (Elf_External_Verdaux);
6088 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6089 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6090 return FALSE;
6092 elf_tdata (output_bfd)->cverdefs = cdefs;
6095 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6097 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6098 return FALSE;
6100 else if (info->flags & DF_BIND_NOW)
6102 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6103 return FALSE;
6106 if (info->flags_1)
6108 if (info->executable)
6109 info->flags_1 &= ~ (DF_1_INITFIRST
6110 | DF_1_NODELETE
6111 | DF_1_NOOPEN);
6112 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6113 return FALSE;
6116 /* Work out the size of the version reference section. */
6118 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6119 BFD_ASSERT (s != NULL);
6121 struct elf_find_verdep_info sinfo;
6123 sinfo.info = info;
6124 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6125 if (sinfo.vers == 0)
6126 sinfo.vers = 1;
6127 sinfo.failed = FALSE;
6129 elf_link_hash_traverse (elf_hash_table (info),
6130 _bfd_elf_link_find_version_dependencies,
6131 &sinfo);
6132 if (sinfo.failed)
6133 return FALSE;
6135 if (elf_tdata (output_bfd)->verref == NULL)
6136 s->flags |= SEC_EXCLUDE;
6137 else
6139 Elf_Internal_Verneed *t;
6140 unsigned int size;
6141 unsigned int crefs;
6142 bfd_byte *p;
6144 /* Build the version definition section. */
6145 size = 0;
6146 crefs = 0;
6147 for (t = elf_tdata (output_bfd)->verref;
6148 t != NULL;
6149 t = t->vn_nextref)
6151 Elf_Internal_Vernaux *a;
6153 size += sizeof (Elf_External_Verneed);
6154 ++crefs;
6155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6156 size += sizeof (Elf_External_Vernaux);
6159 s->size = size;
6160 s->contents = bfd_alloc (output_bfd, s->size);
6161 if (s->contents == NULL)
6162 return FALSE;
6164 p = s->contents;
6165 for (t = elf_tdata (output_bfd)->verref;
6166 t != NULL;
6167 t = t->vn_nextref)
6169 unsigned int caux;
6170 Elf_Internal_Vernaux *a;
6171 bfd_size_type indx;
6173 caux = 0;
6174 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6175 ++caux;
6177 t->vn_version = VER_NEED_CURRENT;
6178 t->vn_cnt = caux;
6179 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6180 elf_dt_name (t->vn_bfd) != NULL
6181 ? elf_dt_name (t->vn_bfd)
6182 : lbasename (t->vn_bfd->filename),
6183 FALSE);
6184 if (indx == (bfd_size_type) -1)
6185 return FALSE;
6186 t->vn_file = indx;
6187 t->vn_aux = sizeof (Elf_External_Verneed);
6188 if (t->vn_nextref == NULL)
6189 t->vn_next = 0;
6190 else
6191 t->vn_next = (sizeof (Elf_External_Verneed)
6192 + caux * sizeof (Elf_External_Vernaux));
6194 _bfd_elf_swap_verneed_out (output_bfd, t,
6195 (Elf_External_Verneed *) p);
6196 p += sizeof (Elf_External_Verneed);
6198 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6200 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6201 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6202 a->vna_nodename, FALSE);
6203 if (indx == (bfd_size_type) -1)
6204 return FALSE;
6205 a->vna_name = indx;
6206 if (a->vna_nextptr == NULL)
6207 a->vna_next = 0;
6208 else
6209 a->vna_next = sizeof (Elf_External_Vernaux);
6211 _bfd_elf_swap_vernaux_out (output_bfd, a,
6212 (Elf_External_Vernaux *) p);
6213 p += sizeof (Elf_External_Vernaux);
6217 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6218 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6219 return FALSE;
6221 elf_tdata (output_bfd)->cverrefs = crefs;
6225 if ((elf_tdata (output_bfd)->cverrefs == 0
6226 && elf_tdata (output_bfd)->cverdefs == 0)
6227 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6228 &section_sym_count) == 0)
6230 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6231 s->flags |= SEC_EXCLUDE;
6234 return TRUE;
6237 /* Find the first non-excluded output section. We'll use its
6238 section symbol for some emitted relocs. */
6239 void
6240 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6242 asection *s;
6244 for (s = output_bfd->sections; s != NULL; s = s->next)
6245 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6246 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6248 elf_hash_table (info)->text_index_section = s;
6249 break;
6253 /* Find two non-excluded output sections, one for code, one for data.
6254 We'll use their section symbols for some emitted relocs. */
6255 void
6256 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6258 asection *s;
6260 /* Data first, since setting text_index_section changes
6261 _bfd_elf_link_omit_section_dynsym. */
6262 for (s = output_bfd->sections; s != NULL; s = s->next)
6263 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6264 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6266 elf_hash_table (info)->data_index_section = s;
6267 break;
6270 for (s = output_bfd->sections; s != NULL; s = s->next)
6271 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6272 == (SEC_ALLOC | SEC_READONLY))
6273 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6275 elf_hash_table (info)->text_index_section = s;
6276 break;
6279 if (elf_hash_table (info)->text_index_section == NULL)
6280 elf_hash_table (info)->text_index_section
6281 = elf_hash_table (info)->data_index_section;
6284 bfd_boolean
6285 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6287 const struct elf_backend_data *bed;
6289 if (!is_elf_hash_table (info->hash))
6290 return TRUE;
6292 bed = get_elf_backend_data (output_bfd);
6293 (*bed->elf_backend_init_index_section) (output_bfd, info);
6295 if (elf_hash_table (info)->dynamic_sections_created)
6297 bfd *dynobj;
6298 asection *s;
6299 bfd_size_type dynsymcount;
6300 unsigned long section_sym_count;
6301 unsigned int dtagcount;
6303 dynobj = elf_hash_table (info)->dynobj;
6305 /* Assign dynsym indicies. In a shared library we generate a
6306 section symbol for each output section, which come first.
6307 Next come all of the back-end allocated local dynamic syms,
6308 followed by the rest of the global symbols. */
6310 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6311 &section_sym_count);
6313 /* Work out the size of the symbol version section. */
6314 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6315 BFD_ASSERT (s != NULL);
6316 if (dynsymcount != 0
6317 && (s->flags & SEC_EXCLUDE) == 0)
6319 s->size = dynsymcount * sizeof (Elf_External_Versym);
6320 s->contents = bfd_zalloc (output_bfd, s->size);
6321 if (s->contents == NULL)
6322 return FALSE;
6324 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6325 return FALSE;
6328 /* Set the size of the .dynsym and .hash sections. We counted
6329 the number of dynamic symbols in elf_link_add_object_symbols.
6330 We will build the contents of .dynsym and .hash when we build
6331 the final symbol table, because until then we do not know the
6332 correct value to give the symbols. We built the .dynstr
6333 section as we went along in elf_link_add_object_symbols. */
6334 s = bfd_get_section_by_name (dynobj, ".dynsym");
6335 BFD_ASSERT (s != NULL);
6336 s->size = dynsymcount * bed->s->sizeof_sym;
6338 if (dynsymcount != 0)
6340 s->contents = bfd_alloc (output_bfd, s->size);
6341 if (s->contents == NULL)
6342 return FALSE;
6344 /* The first entry in .dynsym is a dummy symbol.
6345 Clear all the section syms, in case we don't output them all. */
6346 ++section_sym_count;
6347 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6350 elf_hash_table (info)->bucketcount = 0;
6352 /* Compute the size of the hashing table. As a side effect this
6353 computes the hash values for all the names we export. */
6354 if (info->emit_hash)
6356 unsigned long int *hashcodes;
6357 struct hash_codes_info hashinf;
6358 bfd_size_type amt;
6359 unsigned long int nsyms;
6360 size_t bucketcount;
6361 size_t hash_entry_size;
6363 /* Compute the hash values for all exported symbols. At the same
6364 time store the values in an array so that we could use them for
6365 optimizations. */
6366 amt = dynsymcount * sizeof (unsigned long int);
6367 hashcodes = bfd_malloc (amt);
6368 if (hashcodes == NULL)
6369 return FALSE;
6370 hashinf.hashcodes = hashcodes;
6371 hashinf.error = FALSE;
6373 /* Put all hash values in HASHCODES. */
6374 elf_link_hash_traverse (elf_hash_table (info),
6375 elf_collect_hash_codes, &hashinf);
6376 if (hashinf.error)
6378 free (hashcodes);
6379 return FALSE;
6382 nsyms = hashinf.hashcodes - hashcodes;
6383 bucketcount
6384 = compute_bucket_count (info, hashcodes, nsyms, 0);
6385 free (hashcodes);
6387 if (bucketcount == 0)
6388 return FALSE;
6390 elf_hash_table (info)->bucketcount = bucketcount;
6392 s = bfd_get_section_by_name (dynobj, ".hash");
6393 BFD_ASSERT (s != NULL);
6394 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6395 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6396 s->contents = bfd_zalloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6398 return FALSE;
6400 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6401 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6402 s->contents + hash_entry_size);
6405 if (info->emit_gnu_hash)
6407 size_t i, cnt;
6408 unsigned char *contents;
6409 struct collect_gnu_hash_codes cinfo;
6410 bfd_size_type amt;
6411 size_t bucketcount;
6413 memset (&cinfo, 0, sizeof (cinfo));
6415 /* Compute the hash values for all exported symbols. At the same
6416 time store the values in an array so that we could use them for
6417 optimizations. */
6418 amt = dynsymcount * 2 * sizeof (unsigned long int);
6419 cinfo.hashcodes = bfd_malloc (amt);
6420 if (cinfo.hashcodes == NULL)
6421 return FALSE;
6423 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6424 cinfo.min_dynindx = -1;
6425 cinfo.output_bfd = output_bfd;
6426 cinfo.bed = bed;
6428 /* Put all hash values in HASHCODES. */
6429 elf_link_hash_traverse (elf_hash_table (info),
6430 elf_collect_gnu_hash_codes, &cinfo);
6431 if (cinfo.error)
6433 free (cinfo.hashcodes);
6434 return FALSE;
6437 bucketcount
6438 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6440 if (bucketcount == 0)
6442 free (cinfo.hashcodes);
6443 return FALSE;
6446 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6447 BFD_ASSERT (s != NULL);
6449 if (cinfo.nsyms == 0)
6451 /* Empty .gnu.hash section is special. */
6452 BFD_ASSERT (cinfo.min_dynindx == -1);
6453 free (cinfo.hashcodes);
6454 s->size = 5 * 4 + bed->s->arch_size / 8;
6455 contents = bfd_zalloc (output_bfd, s->size);
6456 if (contents == NULL)
6457 return FALSE;
6458 s->contents = contents;
6459 /* 1 empty bucket. */
6460 bfd_put_32 (output_bfd, 1, contents);
6461 /* SYMIDX above the special symbol 0. */
6462 bfd_put_32 (output_bfd, 1, contents + 4);
6463 /* Just one word for bitmask. */
6464 bfd_put_32 (output_bfd, 1, contents + 8);
6465 /* Only hash fn bloom filter. */
6466 bfd_put_32 (output_bfd, 0, contents + 12);
6467 /* No hashes are valid - empty bitmask. */
6468 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6469 /* No hashes in the only bucket. */
6470 bfd_put_32 (output_bfd, 0,
6471 contents + 16 + bed->s->arch_size / 8);
6473 else
6475 unsigned long int maskwords, maskbitslog2;
6476 BFD_ASSERT (cinfo.min_dynindx != -1);
6478 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6479 if (maskbitslog2 < 3)
6480 maskbitslog2 = 5;
6481 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6482 maskbitslog2 = maskbitslog2 + 3;
6483 else
6484 maskbitslog2 = maskbitslog2 + 2;
6485 if (bed->s->arch_size == 64)
6487 if (maskbitslog2 == 5)
6488 maskbitslog2 = 6;
6489 cinfo.shift1 = 6;
6491 else
6492 cinfo.shift1 = 5;
6493 cinfo.mask = (1 << cinfo.shift1) - 1;
6494 cinfo.shift2 = maskbitslog2;
6495 cinfo.maskbits = 1 << maskbitslog2;
6496 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6497 amt = bucketcount * sizeof (unsigned long int) * 2;
6498 amt += maskwords * sizeof (bfd_vma);
6499 cinfo.bitmask = bfd_malloc (amt);
6500 if (cinfo.bitmask == NULL)
6502 free (cinfo.hashcodes);
6503 return FALSE;
6506 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6507 cinfo.indx = cinfo.counts + bucketcount;
6508 cinfo.symindx = dynsymcount - cinfo.nsyms;
6509 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6511 /* Determine how often each hash bucket is used. */
6512 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6513 for (i = 0; i < cinfo.nsyms; ++i)
6514 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6516 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6517 if (cinfo.counts[i] != 0)
6519 cinfo.indx[i] = cnt;
6520 cnt += cinfo.counts[i];
6522 BFD_ASSERT (cnt == dynsymcount);
6523 cinfo.bucketcount = bucketcount;
6524 cinfo.local_indx = cinfo.min_dynindx;
6526 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6527 s->size += cinfo.maskbits / 8;
6528 contents = bfd_zalloc (output_bfd, s->size);
6529 if (contents == NULL)
6531 free (cinfo.bitmask);
6532 free (cinfo.hashcodes);
6533 return FALSE;
6536 s->contents = contents;
6537 bfd_put_32 (output_bfd, bucketcount, contents);
6538 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6539 bfd_put_32 (output_bfd, maskwords, contents + 8);
6540 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6541 contents += 16 + cinfo.maskbits / 8;
6543 for (i = 0; i < bucketcount; ++i)
6545 if (cinfo.counts[i] == 0)
6546 bfd_put_32 (output_bfd, 0, contents);
6547 else
6548 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6549 contents += 4;
6552 cinfo.contents = contents;
6554 /* Renumber dynamic symbols, populate .gnu.hash section. */
6555 elf_link_hash_traverse (elf_hash_table (info),
6556 elf_renumber_gnu_hash_syms, &cinfo);
6558 contents = s->contents + 16;
6559 for (i = 0; i < maskwords; ++i)
6561 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6562 contents);
6563 contents += bed->s->arch_size / 8;
6566 free (cinfo.bitmask);
6567 free (cinfo.hashcodes);
6571 s = bfd_get_section_by_name (dynobj, ".dynstr");
6572 BFD_ASSERT (s != NULL);
6574 elf_finalize_dynstr (output_bfd, info);
6576 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6578 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6579 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6580 return FALSE;
6583 return TRUE;
6586 /* Indicate that we are only retrieving symbol values from this
6587 section. */
6589 void
6590 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6592 if (is_elf_hash_table (info->hash))
6593 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6594 _bfd_generic_link_just_syms (sec, info);
6597 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6599 static void
6600 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6601 asection *sec)
6603 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6604 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6607 /* Finish SHF_MERGE section merging. */
6609 bfd_boolean
6610 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6612 bfd *ibfd;
6613 asection *sec;
6615 if (!is_elf_hash_table (info->hash))
6616 return FALSE;
6618 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6619 if ((ibfd->flags & DYNAMIC) == 0)
6620 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6621 if ((sec->flags & SEC_MERGE) != 0
6622 && !bfd_is_abs_section (sec->output_section))
6624 struct bfd_elf_section_data *secdata;
6626 secdata = elf_section_data (sec);
6627 if (! _bfd_add_merge_section (abfd,
6628 &elf_hash_table (info)->merge_info,
6629 sec, &secdata->sec_info))
6630 return FALSE;
6631 else if (secdata->sec_info)
6632 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6635 if (elf_hash_table (info)->merge_info != NULL)
6636 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6637 merge_sections_remove_hook);
6638 return TRUE;
6641 /* Create an entry in an ELF linker hash table. */
6643 struct bfd_hash_entry *
6644 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6645 struct bfd_hash_table *table,
6646 const char *string)
6648 /* Allocate the structure if it has not already been allocated by a
6649 subclass. */
6650 if (entry == NULL)
6652 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6653 if (entry == NULL)
6654 return entry;
6657 /* Call the allocation method of the superclass. */
6658 entry = _bfd_link_hash_newfunc (entry, table, string);
6659 if (entry != NULL)
6661 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6662 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6664 /* Set local fields. */
6665 ret->indx = -1;
6666 ret->dynindx = -1;
6667 ret->got = htab->init_got_refcount;
6668 ret->plt = htab->init_plt_refcount;
6669 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6670 - offsetof (struct elf_link_hash_entry, size)));
6671 /* Assume that we have been called by a non-ELF symbol reader.
6672 This flag is then reset by the code which reads an ELF input
6673 file. This ensures that a symbol created by a non-ELF symbol
6674 reader will have the flag set correctly. */
6675 ret->non_elf = 1;
6678 return entry;
6681 /* Copy data from an indirect symbol to its direct symbol, hiding the
6682 old indirect symbol. Also used for copying flags to a weakdef. */
6684 void
6685 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6686 struct elf_link_hash_entry *dir,
6687 struct elf_link_hash_entry *ind)
6689 struct elf_link_hash_table *htab;
6691 /* Copy down any references that we may have already seen to the
6692 symbol which just became indirect. */
6694 dir->ref_dynamic |= ind->ref_dynamic;
6695 dir->ref_regular |= ind->ref_regular;
6696 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6697 dir->non_got_ref |= ind->non_got_ref;
6698 dir->needs_plt |= ind->needs_plt;
6699 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6701 if (ind->root.type != bfd_link_hash_indirect)
6702 return;
6704 /* Copy over the global and procedure linkage table refcount entries.
6705 These may have been already set up by a check_relocs routine. */
6706 htab = elf_hash_table (info);
6707 if (ind->got.refcount > htab->init_got_refcount.refcount)
6709 if (dir->got.refcount < 0)
6710 dir->got.refcount = 0;
6711 dir->got.refcount += ind->got.refcount;
6712 ind->got.refcount = htab->init_got_refcount.refcount;
6715 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6717 if (dir->plt.refcount < 0)
6718 dir->plt.refcount = 0;
6719 dir->plt.refcount += ind->plt.refcount;
6720 ind->plt.refcount = htab->init_plt_refcount.refcount;
6723 if (ind->dynindx != -1)
6725 if (dir->dynindx != -1)
6726 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6727 dir->dynindx = ind->dynindx;
6728 dir->dynstr_index = ind->dynstr_index;
6729 ind->dynindx = -1;
6730 ind->dynstr_index = 0;
6734 void
6735 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6736 struct elf_link_hash_entry *h,
6737 bfd_boolean force_local)
6739 h->plt = elf_hash_table (info)->init_plt_offset;
6740 h->needs_plt = 0;
6741 if (force_local)
6743 h->forced_local = 1;
6744 if (h->dynindx != -1)
6746 h->dynindx = -1;
6747 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6748 h->dynstr_index);
6753 /* Initialize an ELF linker hash table. */
6755 bfd_boolean
6756 _bfd_elf_link_hash_table_init
6757 (struct elf_link_hash_table *table,
6758 bfd *abfd,
6759 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6760 struct bfd_hash_table *,
6761 const char *),
6762 unsigned int entsize)
6764 bfd_boolean ret;
6765 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6767 memset (table, 0, sizeof * table);
6768 table->init_got_refcount.refcount = can_refcount - 1;
6769 table->init_plt_refcount.refcount = can_refcount - 1;
6770 table->init_got_offset.offset = -(bfd_vma) 1;
6771 table->init_plt_offset.offset = -(bfd_vma) 1;
6772 /* The first dynamic symbol is a dummy. */
6773 table->dynsymcount = 1;
6775 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6776 table->root.type = bfd_link_elf_hash_table;
6778 return ret;
6781 /* Create an ELF linker hash table. */
6783 struct bfd_link_hash_table *
6784 _bfd_elf_link_hash_table_create (bfd *abfd)
6786 struct elf_link_hash_table *ret;
6787 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6789 ret = bfd_malloc (amt);
6790 if (ret == NULL)
6791 return NULL;
6793 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6794 sizeof (struct elf_link_hash_entry)))
6796 free (ret);
6797 return NULL;
6800 return &ret->root;
6803 /* This is a hook for the ELF emulation code in the generic linker to
6804 tell the backend linker what file name to use for the DT_NEEDED
6805 entry for a dynamic object. */
6807 void
6808 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6810 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6811 && bfd_get_format (abfd) == bfd_object)
6812 elf_dt_name (abfd) = name;
6816 bfd_elf_get_dyn_lib_class (bfd *abfd)
6818 int lib_class;
6819 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6820 && bfd_get_format (abfd) == bfd_object)
6821 lib_class = elf_dyn_lib_class (abfd);
6822 else
6823 lib_class = 0;
6824 return lib_class;
6827 void
6828 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6830 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6831 && bfd_get_format (abfd) == bfd_object)
6832 elf_dyn_lib_class (abfd) = lib_class;
6835 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6836 the linker ELF emulation code. */
6838 struct bfd_link_needed_list *
6839 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6840 struct bfd_link_info *info)
6842 if (! is_elf_hash_table (info->hash))
6843 return NULL;
6844 return elf_hash_table (info)->needed;
6847 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6848 hook for the linker ELF emulation code. */
6850 struct bfd_link_needed_list *
6851 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6852 struct bfd_link_info *info)
6854 if (! is_elf_hash_table (info->hash))
6855 return NULL;
6856 return elf_hash_table (info)->runpath;
6859 /* Get the name actually used for a dynamic object for a link. This
6860 is the SONAME entry if there is one. Otherwise, it is the string
6861 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6863 const char *
6864 bfd_elf_get_dt_soname (bfd *abfd)
6866 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6867 && bfd_get_format (abfd) == bfd_object)
6868 return elf_dt_name (abfd);
6869 return NULL;
6872 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6873 the ELF linker emulation code. */
6875 bfd_boolean
6876 bfd_elf_get_bfd_needed_list (bfd *abfd,
6877 struct bfd_link_needed_list **pneeded)
6879 asection *s;
6880 bfd_byte *dynbuf = NULL;
6881 unsigned int elfsec;
6882 unsigned long shlink;
6883 bfd_byte *extdyn, *extdynend;
6884 size_t extdynsize;
6885 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6887 *pneeded = NULL;
6889 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6890 || bfd_get_format (abfd) != bfd_object)
6891 return TRUE;
6893 s = bfd_get_section_by_name (abfd, ".dynamic");
6894 if (s == NULL || s->size == 0)
6895 return TRUE;
6897 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6898 goto error_return;
6900 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6901 if (elfsec == SHN_BAD)
6902 goto error_return;
6904 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6906 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6907 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6909 extdyn = dynbuf;
6910 extdynend = extdyn + s->size;
6911 for (; extdyn < extdynend; extdyn += extdynsize)
6913 Elf_Internal_Dyn dyn;
6915 (*swap_dyn_in) (abfd, extdyn, &dyn);
6917 if (dyn.d_tag == DT_NULL)
6918 break;
6920 if (dyn.d_tag == DT_NEEDED)
6922 const char *string;
6923 struct bfd_link_needed_list *l;
6924 unsigned int tagv = dyn.d_un.d_val;
6925 bfd_size_type amt;
6927 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6928 if (string == NULL)
6929 goto error_return;
6931 amt = sizeof *l;
6932 l = bfd_alloc (abfd, amt);
6933 if (l == NULL)
6934 goto error_return;
6936 l->by = abfd;
6937 l->name = string;
6938 l->next = *pneeded;
6939 *pneeded = l;
6943 free (dynbuf);
6945 return TRUE;
6947 error_return:
6948 if (dynbuf != NULL)
6949 free (dynbuf);
6950 return FALSE;
6953 struct elf_symbuf_symbol
6955 unsigned long st_name; /* Symbol name, index in string tbl */
6956 unsigned char st_info; /* Type and binding attributes */
6957 unsigned char st_other; /* Visibilty, and target specific */
6960 struct elf_symbuf_head
6962 struct elf_symbuf_symbol *ssym;
6963 bfd_size_type count;
6964 unsigned int st_shndx;
6967 struct elf_symbol
6969 union
6971 Elf_Internal_Sym *isym;
6972 struct elf_symbuf_symbol *ssym;
6973 } u;
6974 const char *name;
6977 /* Sort references to symbols by ascending section number. */
6979 static int
6980 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6982 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6983 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6985 return s1->st_shndx - s2->st_shndx;
6988 static int
6989 elf_sym_name_compare (const void *arg1, const void *arg2)
6991 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6992 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6993 return strcmp (s1->name, s2->name);
6996 static struct elf_symbuf_head *
6997 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6999 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7000 struct elf_symbuf_symbol *ssym;
7001 struct elf_symbuf_head *ssymbuf, *ssymhead;
7002 bfd_size_type i, shndx_count, total_size;
7004 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
7005 if (indbuf == NULL)
7006 return NULL;
7008 for (ind = indbuf, i = 0; i < symcount; i++)
7009 if (isymbuf[i].st_shndx != SHN_UNDEF)
7010 *ind++ = &isymbuf[i];
7011 indbufend = ind;
7013 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7014 elf_sort_elf_symbol);
7016 shndx_count = 0;
7017 if (indbufend > indbuf)
7018 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7019 if (ind[0]->st_shndx != ind[1]->st_shndx)
7020 shndx_count++;
7022 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7023 + (indbufend - indbuf) * sizeof (*ssym));
7024 ssymbuf = bfd_malloc (total_size);
7025 if (ssymbuf == NULL)
7027 free (indbuf);
7028 return NULL;
7031 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7032 ssymbuf->ssym = NULL;
7033 ssymbuf->count = shndx_count;
7034 ssymbuf->st_shndx = 0;
7035 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7037 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7039 ssymhead++;
7040 ssymhead->ssym = ssym;
7041 ssymhead->count = 0;
7042 ssymhead->st_shndx = (*ind)->st_shndx;
7044 ssym->st_name = (*ind)->st_name;
7045 ssym->st_info = (*ind)->st_info;
7046 ssym->st_other = (*ind)->st_other;
7047 ssymhead->count++;
7049 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7050 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7051 == total_size));
7053 free (indbuf);
7054 return ssymbuf;
7057 /* Check if 2 sections define the same set of local and global
7058 symbols. */
7060 static bfd_boolean
7061 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7062 struct bfd_link_info *info)
7064 bfd *bfd1, *bfd2;
7065 const struct elf_backend_data *bed1, *bed2;
7066 Elf_Internal_Shdr *hdr1, *hdr2;
7067 bfd_size_type symcount1, symcount2;
7068 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7069 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7070 Elf_Internal_Sym *isym, *isymend;
7071 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7072 bfd_size_type count1, count2, i;
7073 unsigned int shndx1, shndx2;
7074 bfd_boolean result;
7076 bfd1 = sec1->owner;
7077 bfd2 = sec2->owner;
7079 /* Both sections have to be in ELF. */
7080 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7081 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7082 return FALSE;
7084 if (elf_section_type (sec1) != elf_section_type (sec2))
7085 return FALSE;
7087 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7088 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7089 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7090 return FALSE;
7092 bed1 = get_elf_backend_data (bfd1);
7093 bed2 = get_elf_backend_data (bfd2);
7094 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7095 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7096 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7097 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7099 if (symcount1 == 0 || symcount2 == 0)
7100 return FALSE;
7102 result = FALSE;
7103 isymbuf1 = NULL;
7104 isymbuf2 = NULL;
7105 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7106 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7108 if (ssymbuf1 == NULL)
7110 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7111 NULL, NULL, NULL);
7112 if (isymbuf1 == NULL)
7113 goto done;
7115 if (!info->reduce_memory_overheads)
7116 elf_tdata (bfd1)->symbuf = ssymbuf1
7117 = elf_create_symbuf (symcount1, isymbuf1);
7120 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7122 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7123 NULL, NULL, NULL);
7124 if (isymbuf2 == NULL)
7125 goto done;
7127 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7128 elf_tdata (bfd2)->symbuf = ssymbuf2
7129 = elf_create_symbuf (symcount2, isymbuf2);
7132 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7134 /* Optimized faster version. */
7135 bfd_size_type lo, hi, mid;
7136 struct elf_symbol *symp;
7137 struct elf_symbuf_symbol *ssym, *ssymend;
7139 lo = 0;
7140 hi = ssymbuf1->count;
7141 ssymbuf1++;
7142 count1 = 0;
7143 while (lo < hi)
7145 mid = (lo + hi) / 2;
7146 if (shndx1 < ssymbuf1[mid].st_shndx)
7147 hi = mid;
7148 else if (shndx1 > ssymbuf1[mid].st_shndx)
7149 lo = mid + 1;
7150 else
7152 count1 = ssymbuf1[mid].count;
7153 ssymbuf1 += mid;
7154 break;
7158 lo = 0;
7159 hi = ssymbuf2->count;
7160 ssymbuf2++;
7161 count2 = 0;
7162 while (lo < hi)
7164 mid = (lo + hi) / 2;
7165 if (shndx2 < ssymbuf2[mid].st_shndx)
7166 hi = mid;
7167 else if (shndx2 > ssymbuf2[mid].st_shndx)
7168 lo = mid + 1;
7169 else
7171 count2 = ssymbuf2[mid].count;
7172 ssymbuf2 += mid;
7173 break;
7177 if (count1 == 0 || count2 == 0 || count1 != count2)
7178 goto done;
7180 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7181 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7182 if (symtable1 == NULL || symtable2 == NULL)
7183 goto done;
7185 symp = symtable1;
7186 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7187 ssym < ssymend; ssym++, symp++)
7189 symp->u.ssym = ssym;
7190 symp->name = bfd_elf_string_from_elf_section (bfd1,
7191 hdr1->sh_link,
7192 ssym->st_name);
7195 symp = symtable2;
7196 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7197 ssym < ssymend; ssym++, symp++)
7199 symp->u.ssym = ssym;
7200 symp->name = bfd_elf_string_from_elf_section (bfd2,
7201 hdr2->sh_link,
7202 ssym->st_name);
7205 /* Sort symbol by name. */
7206 qsort (symtable1, count1, sizeof (struct elf_symbol),
7207 elf_sym_name_compare);
7208 qsort (symtable2, count1, sizeof (struct elf_symbol),
7209 elf_sym_name_compare);
7211 for (i = 0; i < count1; i++)
7212 /* Two symbols must have the same binding, type and name. */
7213 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7214 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7215 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7216 goto done;
7218 result = TRUE;
7219 goto done;
7222 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7223 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7224 if (symtable1 == NULL || symtable2 == NULL)
7225 goto done;
7227 /* Count definitions in the section. */
7228 count1 = 0;
7229 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7230 if (isym->st_shndx == shndx1)
7231 symtable1[count1++].u.isym = isym;
7233 count2 = 0;
7234 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7235 if (isym->st_shndx == shndx2)
7236 symtable2[count2++].u.isym = isym;
7238 if (count1 == 0 || count2 == 0 || count1 != count2)
7239 goto done;
7241 for (i = 0; i < count1; i++)
7242 symtable1[i].name
7243 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7244 symtable1[i].u.isym->st_name);
7246 for (i = 0; i < count2; i++)
7247 symtable2[i].name
7248 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7249 symtable2[i].u.isym->st_name);
7251 /* Sort symbol by name. */
7252 qsort (symtable1, count1, sizeof (struct elf_symbol),
7253 elf_sym_name_compare);
7254 qsort (symtable2, count1, sizeof (struct elf_symbol),
7255 elf_sym_name_compare);
7257 for (i = 0; i < count1; i++)
7258 /* Two symbols must have the same binding, type and name. */
7259 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7260 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7261 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7262 goto done;
7264 result = TRUE;
7266 done:
7267 if (symtable1)
7268 free (symtable1);
7269 if (symtable2)
7270 free (symtable2);
7271 if (isymbuf1)
7272 free (isymbuf1);
7273 if (isymbuf2)
7274 free (isymbuf2);
7276 return result;
7279 /* Return TRUE if 2 section types are compatible. */
7281 bfd_boolean
7282 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7283 bfd *bbfd, const asection *bsec)
7285 if (asec == NULL
7286 || bsec == NULL
7287 || abfd->xvec->flavour != bfd_target_elf_flavour
7288 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7289 return TRUE;
7291 return elf_section_type (asec) == elf_section_type (bsec);
7294 /* Final phase of ELF linker. */
7296 /* A structure we use to avoid passing large numbers of arguments. */
7298 struct elf_final_link_info
7300 /* General link information. */
7301 struct bfd_link_info *info;
7302 /* Output BFD. */
7303 bfd *output_bfd;
7304 /* Symbol string table. */
7305 struct bfd_strtab_hash *symstrtab;
7306 /* .dynsym section. */
7307 asection *dynsym_sec;
7308 /* .hash section. */
7309 asection *hash_sec;
7310 /* symbol version section (.gnu.version). */
7311 asection *symver_sec;
7312 /* Buffer large enough to hold contents of any section. */
7313 bfd_byte *contents;
7314 /* Buffer large enough to hold external relocs of any section. */
7315 void *external_relocs;
7316 /* Buffer large enough to hold internal relocs of any section. */
7317 Elf_Internal_Rela *internal_relocs;
7318 /* Buffer large enough to hold external local symbols of any input
7319 BFD. */
7320 bfd_byte *external_syms;
7321 /* And a buffer for symbol section indices. */
7322 Elf_External_Sym_Shndx *locsym_shndx;
7323 /* Buffer large enough to hold internal local symbols of any input
7324 BFD. */
7325 Elf_Internal_Sym *internal_syms;
7326 /* Array large enough to hold a symbol index for each local symbol
7327 of any input BFD. */
7328 long *indices;
7329 /* Array large enough to hold a section pointer for each local
7330 symbol of any input BFD. */
7331 asection **sections;
7332 /* Buffer to hold swapped out symbols. */
7333 bfd_byte *symbuf;
7334 /* And one for symbol section indices. */
7335 Elf_External_Sym_Shndx *symshndxbuf;
7336 /* Number of swapped out symbols in buffer. */
7337 size_t symbuf_count;
7338 /* Number of symbols which fit in symbuf. */
7339 size_t symbuf_size;
7340 /* And same for symshndxbuf. */
7341 size_t shndxbuf_size;
7344 /* This struct is used to pass information to elf_link_output_extsym. */
7346 struct elf_outext_info
7348 bfd_boolean failed;
7349 bfd_boolean localsyms;
7350 struct elf_final_link_info *finfo;
7354 /* Support for evaluating a complex relocation.
7356 Complex relocations are generalized, self-describing relocations. The
7357 implementation of them consists of two parts: complex symbols, and the
7358 relocations themselves.
7360 The relocations are use a reserved elf-wide relocation type code (R_RELC
7361 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7362 information (start bit, end bit, word width, etc) into the addend. This
7363 information is extracted from CGEN-generated operand tables within gas.
7365 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7366 internal) representing prefix-notation expressions, including but not
7367 limited to those sorts of expressions normally encoded as addends in the
7368 addend field. The symbol mangling format is:
7370 <node> := <literal>
7371 | <unary-operator> ':' <node>
7372 | <binary-operator> ':' <node> ':' <node>
7375 <literal> := 's' <digits=N> ':' <N character symbol name>
7376 | 'S' <digits=N> ':' <N character section name>
7377 | '#' <hexdigits>
7380 <binary-operator> := as in C
7381 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7383 static void
7384 set_symbol_value (bfd *bfd_with_globals,
7385 Elf_Internal_Sym *isymbuf,
7386 size_t locsymcount,
7387 size_t symidx,
7388 bfd_vma val)
7390 struct elf_link_hash_entry **sym_hashes;
7391 struct elf_link_hash_entry *h;
7392 size_t extsymoff = locsymcount;
7394 if (symidx < locsymcount)
7396 Elf_Internal_Sym *sym;
7398 sym = isymbuf + symidx;
7399 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7401 /* It is a local symbol: move it to the
7402 "absolute" section and give it a value. */
7403 sym->st_shndx = SHN_ABS;
7404 sym->st_value = val;
7405 return;
7407 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7408 extsymoff = 0;
7411 /* It is a global symbol: set its link type
7412 to "defined" and give it a value. */
7414 sym_hashes = elf_sym_hashes (bfd_with_globals);
7415 h = sym_hashes [symidx - extsymoff];
7416 while (h->root.type == bfd_link_hash_indirect
7417 || h->root.type == bfd_link_hash_warning)
7418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7419 h->root.type = bfd_link_hash_defined;
7420 h->root.u.def.value = val;
7421 h->root.u.def.section = bfd_abs_section_ptr;
7424 static bfd_boolean
7425 resolve_symbol (const char *name,
7426 bfd *input_bfd,
7427 struct elf_final_link_info *finfo,
7428 bfd_vma *result,
7429 Elf_Internal_Sym *isymbuf,
7430 size_t locsymcount)
7432 Elf_Internal_Sym *sym;
7433 struct bfd_link_hash_entry *global_entry;
7434 const char *candidate = NULL;
7435 Elf_Internal_Shdr *symtab_hdr;
7436 size_t i;
7438 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7440 for (i = 0; i < locsymcount; ++ i)
7442 sym = isymbuf + i;
7444 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7445 continue;
7447 candidate = bfd_elf_string_from_elf_section (input_bfd,
7448 symtab_hdr->sh_link,
7449 sym->st_name);
7450 #ifdef DEBUG
7451 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7452 name, candidate, (unsigned long) sym->st_value);
7453 #endif
7454 if (candidate && strcmp (candidate, name) == 0)
7456 asection *sec = finfo->sections [i];
7458 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7459 *result += sec->output_offset + sec->output_section->vma;
7460 #ifdef DEBUG
7461 printf ("Found symbol with value %8.8lx\n",
7462 (unsigned long) *result);
7463 #endif
7464 return TRUE;
7468 /* Hmm, haven't found it yet. perhaps it is a global. */
7469 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7470 FALSE, FALSE, TRUE);
7471 if (!global_entry)
7472 return FALSE;
7474 if (global_entry->type == bfd_link_hash_defined
7475 || global_entry->type == bfd_link_hash_defweak)
7477 *result = (global_entry->u.def.value
7478 + global_entry->u.def.section->output_section->vma
7479 + global_entry->u.def.section->output_offset);
7480 #ifdef DEBUG
7481 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7482 global_entry->root.string, (unsigned long) *result);
7483 #endif
7484 return TRUE;
7487 return FALSE;
7490 static bfd_boolean
7491 resolve_section (const char *name,
7492 asection *sections,
7493 bfd_vma *result)
7495 asection *curr;
7496 unsigned int len;
7498 for (curr = sections; curr; curr = curr->next)
7499 if (strcmp (curr->name, name) == 0)
7501 *result = curr->vma;
7502 return TRUE;
7505 /* Hmm. still haven't found it. try pseudo-section names. */
7506 for (curr = sections; curr; curr = curr->next)
7508 len = strlen (curr->name);
7509 if (len > strlen (name))
7510 continue;
7512 if (strncmp (curr->name, name, len) == 0)
7514 if (strncmp (".end", name + len, 4) == 0)
7516 *result = curr->vma + curr->size;
7517 return TRUE;
7520 /* Insert more pseudo-section names here, if you like. */
7524 return FALSE;
7527 static void
7528 undefined_reference (const char *reftype, const char *name)
7530 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7531 reftype, name);
7534 static bfd_boolean
7535 eval_symbol (bfd_vma *result,
7536 const char **symp,
7537 bfd *input_bfd,
7538 struct elf_final_link_info *finfo,
7539 bfd_vma dot,
7540 Elf_Internal_Sym *isymbuf,
7541 size_t locsymcount,
7542 int signed_p)
7544 size_t len;
7545 size_t symlen;
7546 bfd_vma a;
7547 bfd_vma b;
7548 char symbuf[4096];
7549 const char *sym = *symp;
7550 const char *symend;
7551 bfd_boolean symbol_is_section = FALSE;
7553 len = strlen (sym);
7554 symend = sym + len;
7556 if (len < 1 || len > sizeof (symbuf))
7558 bfd_set_error (bfd_error_invalid_operation);
7559 return FALSE;
7562 switch (* sym)
7564 case '.':
7565 *result = dot;
7566 *symp = sym + 1;
7567 return TRUE;
7569 case '#':
7570 ++sym;
7571 *result = strtoul (sym, (char **) symp, 16);
7572 return TRUE;
7574 case 'S':
7575 symbol_is_section = TRUE;
7576 case 's':
7577 ++sym;
7578 symlen = strtol (sym, (char **) symp, 10);
7579 sym = *symp + 1; /* Skip the trailing ':'. */
7581 if (symend < sym || symlen + 1 > sizeof (symbuf))
7583 bfd_set_error (bfd_error_invalid_operation);
7584 return FALSE;
7587 memcpy (symbuf, sym, symlen);
7588 symbuf[symlen] = '\0';
7589 *symp = sym + symlen;
7591 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7592 the symbol as a section, or vice-versa. so we're pretty liberal in our
7593 interpretation here; section means "try section first", not "must be a
7594 section", and likewise with symbol. */
7596 if (symbol_is_section)
7598 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7599 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7600 isymbuf, locsymcount))
7602 undefined_reference ("section", symbuf);
7603 return FALSE;
7606 else
7608 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7609 isymbuf, locsymcount)
7610 && !resolve_section (symbuf, finfo->output_bfd->sections,
7611 result))
7613 undefined_reference ("symbol", symbuf);
7614 return FALSE;
7618 return TRUE;
7620 /* All that remains are operators. */
7622 #define UNARY_OP(op) \
7623 if (strncmp (sym, #op, strlen (#op)) == 0) \
7625 sym += strlen (#op); \
7626 if (*sym == ':') \
7627 ++sym; \
7628 *symp = sym; \
7629 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7630 isymbuf, locsymcount, signed_p)) \
7631 return FALSE; \
7632 if (signed_p) \
7633 *result = op ((bfd_signed_vma) a); \
7634 else \
7635 *result = op a; \
7636 return TRUE; \
7639 #define BINARY_OP(op) \
7640 if (strncmp (sym, #op, strlen (#op)) == 0) \
7642 sym += strlen (#op); \
7643 if (*sym == ':') \
7644 ++sym; \
7645 *symp = sym; \
7646 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7647 isymbuf, locsymcount, signed_p)) \
7648 return FALSE; \
7649 ++*symp; \
7650 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7651 isymbuf, locsymcount, signed_p)) \
7652 return FALSE; \
7653 if (signed_p) \
7654 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7655 else \
7656 *result = a op b; \
7657 return TRUE; \
7660 default:
7661 UNARY_OP (0-);
7662 BINARY_OP (<<);
7663 BINARY_OP (>>);
7664 BINARY_OP (==);
7665 BINARY_OP (!=);
7666 BINARY_OP (<=);
7667 BINARY_OP (>=);
7668 BINARY_OP (&&);
7669 BINARY_OP (||);
7670 UNARY_OP (~);
7671 UNARY_OP (!);
7672 BINARY_OP (*);
7673 BINARY_OP (/);
7674 BINARY_OP (%);
7675 BINARY_OP (^);
7676 BINARY_OP (|);
7677 BINARY_OP (&);
7678 BINARY_OP (+);
7679 BINARY_OP (-);
7680 BINARY_OP (<);
7681 BINARY_OP (>);
7682 #undef UNARY_OP
7683 #undef BINARY_OP
7684 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7685 bfd_set_error (bfd_error_invalid_operation);
7686 return FALSE;
7690 static void
7691 put_value (bfd_vma size,
7692 unsigned long chunksz,
7693 bfd *input_bfd,
7694 bfd_vma x,
7695 bfd_byte *location)
7697 location += (size - chunksz);
7699 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7701 switch (chunksz)
7703 default:
7704 case 0:
7705 abort ();
7706 case 1:
7707 bfd_put_8 (input_bfd, x, location);
7708 break;
7709 case 2:
7710 bfd_put_16 (input_bfd, x, location);
7711 break;
7712 case 4:
7713 bfd_put_32 (input_bfd, x, location);
7714 break;
7715 case 8:
7716 #ifdef BFD64
7717 bfd_put_64 (input_bfd, x, location);
7718 #else
7719 abort ();
7720 #endif
7721 break;
7726 static bfd_vma
7727 get_value (bfd_vma size,
7728 unsigned long chunksz,
7729 bfd *input_bfd,
7730 bfd_byte *location)
7732 bfd_vma x = 0;
7734 for (; size; size -= chunksz, location += chunksz)
7736 switch (chunksz)
7738 default:
7739 case 0:
7740 abort ();
7741 case 1:
7742 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7743 break;
7744 case 2:
7745 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7746 break;
7747 case 4:
7748 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7749 break;
7750 case 8:
7751 #ifdef BFD64
7752 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7753 #else
7754 abort ();
7755 #endif
7756 break;
7759 return x;
7762 static void
7763 decode_complex_addend (unsigned long *start, /* in bits */
7764 unsigned long *oplen, /* in bits */
7765 unsigned long *len, /* in bits */
7766 unsigned long *wordsz, /* in bytes */
7767 unsigned long *chunksz, /* in bytes */
7768 unsigned long *lsb0_p,
7769 unsigned long *signed_p,
7770 unsigned long *trunc_p,
7771 unsigned long encoded)
7773 * start = encoded & 0x3F;
7774 * len = (encoded >> 6) & 0x3F;
7775 * oplen = (encoded >> 12) & 0x3F;
7776 * wordsz = (encoded >> 18) & 0xF;
7777 * chunksz = (encoded >> 22) & 0xF;
7778 * lsb0_p = (encoded >> 27) & 1;
7779 * signed_p = (encoded >> 28) & 1;
7780 * trunc_p = (encoded >> 29) & 1;
7783 bfd_reloc_status_type
7784 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7785 asection *input_section ATTRIBUTE_UNUSED,
7786 bfd_byte *contents,
7787 Elf_Internal_Rela *rel,
7788 bfd_vma relocation)
7790 bfd_vma shift, x, mask;
7791 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7792 bfd_reloc_status_type r;
7794 /* Perform this reloc, since it is complex.
7795 (this is not to say that it necessarily refers to a complex
7796 symbol; merely that it is a self-describing CGEN based reloc.
7797 i.e. the addend has the complete reloc information (bit start, end,
7798 word size, etc) encoded within it.). */
7800 decode_complex_addend (&start, &oplen, &len, &wordsz,
7801 &chunksz, &lsb0_p, &signed_p,
7802 &trunc_p, rel->r_addend);
7804 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7806 if (lsb0_p)
7807 shift = (start + 1) - len;
7808 else
7809 shift = (8 * wordsz) - (start + len);
7811 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7813 #ifdef DEBUG
7814 printf ("Doing complex reloc: "
7815 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7816 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7817 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7818 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7819 oplen, x, mask, relocation);
7820 #endif
7822 r = bfd_reloc_ok;
7823 if (! trunc_p)
7824 /* Now do an overflow check. */
7825 r = bfd_check_overflow ((signed_p
7826 ? complain_overflow_signed
7827 : complain_overflow_unsigned),
7828 len, 0, (8 * wordsz),
7829 relocation);
7831 /* Do the deed. */
7832 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7834 #ifdef DEBUG
7835 printf (" relocation: %8.8lx\n"
7836 " shifted mask: %8.8lx\n"
7837 " shifted/masked reloc: %8.8lx\n"
7838 " result: %8.8lx\n",
7839 relocation, (mask << shift),
7840 ((relocation & mask) << shift), x);
7841 #endif
7842 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7843 return r;
7846 /* When performing a relocatable link, the input relocations are
7847 preserved. But, if they reference global symbols, the indices
7848 referenced must be updated. Update all the relocations in
7849 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7851 static void
7852 elf_link_adjust_relocs (bfd *abfd,
7853 Elf_Internal_Shdr *rel_hdr,
7854 unsigned int count,
7855 struct elf_link_hash_entry **rel_hash)
7857 unsigned int i;
7858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7859 bfd_byte *erela;
7860 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7861 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7862 bfd_vma r_type_mask;
7863 int r_sym_shift;
7865 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7867 swap_in = bed->s->swap_reloc_in;
7868 swap_out = bed->s->swap_reloc_out;
7870 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7872 swap_in = bed->s->swap_reloca_in;
7873 swap_out = bed->s->swap_reloca_out;
7875 else
7876 abort ();
7878 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7879 abort ();
7881 if (bed->s->arch_size == 32)
7883 r_type_mask = 0xff;
7884 r_sym_shift = 8;
7886 else
7888 r_type_mask = 0xffffffff;
7889 r_sym_shift = 32;
7892 erela = rel_hdr->contents;
7893 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7895 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7896 unsigned int j;
7898 if (*rel_hash == NULL)
7899 continue;
7901 BFD_ASSERT ((*rel_hash)->indx >= 0);
7903 (*swap_in) (abfd, erela, irela);
7904 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7905 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7906 | (irela[j].r_info & r_type_mask));
7907 (*swap_out) (abfd, irela, erela);
7911 struct elf_link_sort_rela
7913 union {
7914 bfd_vma offset;
7915 bfd_vma sym_mask;
7916 } u;
7917 enum elf_reloc_type_class type;
7918 /* We use this as an array of size int_rels_per_ext_rel. */
7919 Elf_Internal_Rela rela[1];
7922 static int
7923 elf_link_sort_cmp1 (const void *A, const void *B)
7925 const struct elf_link_sort_rela *a = A;
7926 const struct elf_link_sort_rela *b = B;
7927 int relativea, relativeb;
7929 relativea = a->type == reloc_class_relative;
7930 relativeb = b->type == reloc_class_relative;
7932 if (relativea < relativeb)
7933 return 1;
7934 if (relativea > relativeb)
7935 return -1;
7936 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7937 return -1;
7938 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7939 return 1;
7940 if (a->rela->r_offset < b->rela->r_offset)
7941 return -1;
7942 if (a->rela->r_offset > b->rela->r_offset)
7943 return 1;
7944 return 0;
7947 static int
7948 elf_link_sort_cmp2 (const void *A, const void *B)
7950 const struct elf_link_sort_rela *a = A;
7951 const struct elf_link_sort_rela *b = B;
7952 int copya, copyb;
7954 if (a->u.offset < b->u.offset)
7955 return -1;
7956 if (a->u.offset > b->u.offset)
7957 return 1;
7958 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7959 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7960 if (copya < copyb)
7961 return -1;
7962 if (copya > copyb)
7963 return 1;
7964 if (a->rela->r_offset < b->rela->r_offset)
7965 return -1;
7966 if (a->rela->r_offset > b->rela->r_offset)
7967 return 1;
7968 return 0;
7971 static size_t
7972 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7974 asection *dynamic_relocs;
7975 asection *rela_dyn;
7976 asection *rel_dyn;
7977 bfd_size_type count, size;
7978 size_t i, ret, sort_elt, ext_size;
7979 bfd_byte *sort, *s_non_relative, *p;
7980 struct elf_link_sort_rela *sq;
7981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7982 int i2e = bed->s->int_rels_per_ext_rel;
7983 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7984 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7985 struct bfd_link_order *lo;
7986 bfd_vma r_sym_mask;
7987 bfd_boolean use_rela;
7989 /* Find a dynamic reloc section. */
7990 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7991 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7992 if (rela_dyn != NULL && rela_dyn->size > 0
7993 && rel_dyn != NULL && rel_dyn->size > 0)
7995 bfd_boolean use_rela_initialised = FALSE;
7997 /* This is just here to stop gcc from complaining.
7998 It's initialization checking code is not perfect. */
7999 use_rela = TRUE;
8001 /* Both sections are present. Examine the sizes
8002 of the indirect sections to help us choose. */
8003 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8004 if (lo->type == bfd_indirect_link_order)
8006 asection *o = lo->u.indirect.section;
8008 if ((o->size % bed->s->sizeof_rela) == 0)
8010 if ((o->size % bed->s->sizeof_rel) == 0)
8011 /* Section size is divisible by both rel and rela sizes.
8012 It is of no help to us. */
8014 else
8016 /* Section size is only divisible by rela. */
8017 if (use_rela_initialised && (use_rela == FALSE))
8019 _bfd_error_handler
8020 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8021 bfd_set_error (bfd_error_invalid_operation);
8022 return 0;
8024 else
8026 use_rela = TRUE;
8027 use_rela_initialised = TRUE;
8031 else if ((o->size % bed->s->sizeof_rel) == 0)
8033 /* Section size is only divisible by rel. */
8034 if (use_rela_initialised && (use_rela == TRUE))
8036 _bfd_error_handler
8037 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8038 bfd_set_error (bfd_error_invalid_operation);
8039 return 0;
8041 else
8043 use_rela = FALSE;
8044 use_rela_initialised = TRUE;
8047 else
8049 /* The section size is not divisible by either - something is wrong. */
8050 _bfd_error_handler
8051 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8052 bfd_set_error (bfd_error_invalid_operation);
8053 return 0;
8057 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8058 if (lo->type == bfd_indirect_link_order)
8060 asection *o = lo->u.indirect.section;
8062 if ((o->size % bed->s->sizeof_rela) == 0)
8064 if ((o->size % bed->s->sizeof_rel) == 0)
8065 /* Section size is divisible by both rel and rela sizes.
8066 It is of no help to us. */
8068 else
8070 /* Section size is only divisible by rela. */
8071 if (use_rela_initialised && (use_rela == FALSE))
8073 _bfd_error_handler
8074 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8075 bfd_set_error (bfd_error_invalid_operation);
8076 return 0;
8078 else
8080 use_rela = TRUE;
8081 use_rela_initialised = TRUE;
8085 else if ((o->size % bed->s->sizeof_rel) == 0)
8087 /* Section size is only divisible by rel. */
8088 if (use_rela_initialised && (use_rela == TRUE))
8090 _bfd_error_handler
8091 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8092 bfd_set_error (bfd_error_invalid_operation);
8093 return 0;
8095 else
8097 use_rela = FALSE;
8098 use_rela_initialised = TRUE;
8101 else
8103 /* The section size is not divisible by either - something is wrong. */
8104 _bfd_error_handler
8105 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8106 bfd_set_error (bfd_error_invalid_operation);
8107 return 0;
8111 if (! use_rela_initialised)
8112 /* Make a guess. */
8113 use_rela = TRUE;
8115 else if (rela_dyn != NULL && rela_dyn->size > 0)
8116 use_rela = TRUE;
8117 else if (rel_dyn != NULL && rel_dyn->size > 0)
8118 use_rela = FALSE;
8119 else
8120 return 0;
8122 if (use_rela)
8124 dynamic_relocs = rela_dyn;
8125 ext_size = bed->s->sizeof_rela;
8126 swap_in = bed->s->swap_reloca_in;
8127 swap_out = bed->s->swap_reloca_out;
8129 else
8131 dynamic_relocs = rel_dyn;
8132 ext_size = bed->s->sizeof_rel;
8133 swap_in = bed->s->swap_reloc_in;
8134 swap_out = bed->s->swap_reloc_out;
8137 size = 0;
8138 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8139 if (lo->type == bfd_indirect_link_order)
8140 size += lo->u.indirect.section->size;
8142 if (size != dynamic_relocs->size)
8143 return 0;
8145 sort_elt = (sizeof (struct elf_link_sort_rela)
8146 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8148 count = dynamic_relocs->size / ext_size;
8149 sort = bfd_zmalloc (sort_elt * count);
8151 if (sort == NULL)
8153 (*info->callbacks->warning)
8154 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8155 return 0;
8158 if (bed->s->arch_size == 32)
8159 r_sym_mask = ~(bfd_vma) 0xff;
8160 else
8161 r_sym_mask = ~(bfd_vma) 0xffffffff;
8163 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8164 if (lo->type == bfd_indirect_link_order)
8166 bfd_byte *erel, *erelend;
8167 asection *o = lo->u.indirect.section;
8169 if (o->contents == NULL && o->size != 0)
8171 /* This is a reloc section that is being handled as a normal
8172 section. See bfd_section_from_shdr. We can't combine
8173 relocs in this case. */
8174 free (sort);
8175 return 0;
8177 erel = o->contents;
8178 erelend = o->contents + o->size;
8179 p = sort + o->output_offset / ext_size * sort_elt;
8181 while (erel < erelend)
8183 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8185 (*swap_in) (abfd, erel, s->rela);
8186 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8187 s->u.sym_mask = r_sym_mask;
8188 p += sort_elt;
8189 erel += ext_size;
8193 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8195 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8197 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8198 if (s->type != reloc_class_relative)
8199 break;
8201 ret = i;
8202 s_non_relative = p;
8204 sq = (struct elf_link_sort_rela *) s_non_relative;
8205 for (; i < count; i++, p += sort_elt)
8207 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8208 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8209 sq = sp;
8210 sp->u.offset = sq->rela->r_offset;
8213 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8215 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8216 if (lo->type == bfd_indirect_link_order)
8218 bfd_byte *erel, *erelend;
8219 asection *o = lo->u.indirect.section;
8221 erel = o->contents;
8222 erelend = o->contents + o->size;
8223 p = sort + o->output_offset / ext_size * sort_elt;
8224 while (erel < erelend)
8226 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8227 (*swap_out) (abfd, s->rela, erel);
8228 p += sort_elt;
8229 erel += ext_size;
8233 free (sort);
8234 *psec = dynamic_relocs;
8235 return ret;
8238 /* Flush the output symbols to the file. */
8240 static bfd_boolean
8241 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8242 const struct elf_backend_data *bed)
8244 if (finfo->symbuf_count > 0)
8246 Elf_Internal_Shdr *hdr;
8247 file_ptr pos;
8248 bfd_size_type amt;
8250 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8251 pos = hdr->sh_offset + hdr->sh_size;
8252 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8253 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8254 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8255 return FALSE;
8257 hdr->sh_size += amt;
8258 finfo->symbuf_count = 0;
8261 return TRUE;
8264 /* Add a symbol to the output symbol table. */
8266 static bfd_boolean
8267 elf_link_output_sym (struct elf_final_link_info *finfo,
8268 const char *name,
8269 Elf_Internal_Sym *elfsym,
8270 asection *input_sec,
8271 struct elf_link_hash_entry *h)
8273 bfd_byte *dest;
8274 Elf_External_Sym_Shndx *destshndx;
8275 bfd_boolean (*output_symbol_hook)
8276 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8277 struct elf_link_hash_entry *);
8278 const struct elf_backend_data *bed;
8280 bed = get_elf_backend_data (finfo->output_bfd);
8281 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8282 if (output_symbol_hook != NULL)
8284 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8285 return FALSE;
8288 if (name == NULL || *name == '\0')
8289 elfsym->st_name = 0;
8290 else if (input_sec->flags & SEC_EXCLUDE)
8291 elfsym->st_name = 0;
8292 else
8294 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8295 name, TRUE, FALSE);
8296 if (elfsym->st_name == (unsigned long) -1)
8297 return FALSE;
8300 if (finfo->symbuf_count >= finfo->symbuf_size)
8302 if (! elf_link_flush_output_syms (finfo, bed))
8303 return FALSE;
8306 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8307 destshndx = finfo->symshndxbuf;
8308 if (destshndx != NULL)
8310 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8312 bfd_size_type amt;
8314 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8315 destshndx = bfd_realloc (destshndx, amt * 2);
8316 if (destshndx == NULL)
8317 return FALSE;
8318 finfo->symshndxbuf = destshndx;
8319 memset ((char *) destshndx + amt, 0, amt);
8320 finfo->shndxbuf_size *= 2;
8322 destshndx += bfd_get_symcount (finfo->output_bfd);
8325 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8326 finfo->symbuf_count += 1;
8327 bfd_get_symcount (finfo->output_bfd) += 1;
8329 return TRUE;
8332 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8334 static bfd_boolean
8335 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8337 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8338 && sym->st_shndx < SHN_LORESERVE)
8340 /* The gABI doesn't support dynamic symbols in output sections
8341 beyond 64k. */
8342 (*_bfd_error_handler)
8343 (_("%B: Too many sections: %d (>= %d)"),
8344 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8345 bfd_set_error (bfd_error_nonrepresentable_section);
8346 return FALSE;
8348 return TRUE;
8351 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8352 allowing an unsatisfied unversioned symbol in the DSO to match a
8353 versioned symbol that would normally require an explicit version.
8354 We also handle the case that a DSO references a hidden symbol
8355 which may be satisfied by a versioned symbol in another DSO. */
8357 static bfd_boolean
8358 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8359 const struct elf_backend_data *bed,
8360 struct elf_link_hash_entry *h)
8362 bfd *abfd;
8363 struct elf_link_loaded_list *loaded;
8365 if (!is_elf_hash_table (info->hash))
8366 return FALSE;
8368 switch (h->root.type)
8370 default:
8371 abfd = NULL;
8372 break;
8374 case bfd_link_hash_undefined:
8375 case bfd_link_hash_undefweak:
8376 abfd = h->root.u.undef.abfd;
8377 if ((abfd->flags & DYNAMIC) == 0
8378 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8379 return FALSE;
8380 break;
8382 case bfd_link_hash_defined:
8383 case bfd_link_hash_defweak:
8384 abfd = h->root.u.def.section->owner;
8385 break;
8387 case bfd_link_hash_common:
8388 abfd = h->root.u.c.p->section->owner;
8389 break;
8391 BFD_ASSERT (abfd != NULL);
8393 for (loaded = elf_hash_table (info)->loaded;
8394 loaded != NULL;
8395 loaded = loaded->next)
8397 bfd *input;
8398 Elf_Internal_Shdr *hdr;
8399 bfd_size_type symcount;
8400 bfd_size_type extsymcount;
8401 bfd_size_type extsymoff;
8402 Elf_Internal_Shdr *versymhdr;
8403 Elf_Internal_Sym *isym;
8404 Elf_Internal_Sym *isymend;
8405 Elf_Internal_Sym *isymbuf;
8406 Elf_External_Versym *ever;
8407 Elf_External_Versym *extversym;
8409 input = loaded->abfd;
8411 /* We check each DSO for a possible hidden versioned definition. */
8412 if (input == abfd
8413 || (input->flags & DYNAMIC) == 0
8414 || elf_dynversym (input) == 0)
8415 continue;
8417 hdr = &elf_tdata (input)->dynsymtab_hdr;
8419 symcount = hdr->sh_size / bed->s->sizeof_sym;
8420 if (elf_bad_symtab (input))
8422 extsymcount = symcount;
8423 extsymoff = 0;
8425 else
8427 extsymcount = symcount - hdr->sh_info;
8428 extsymoff = hdr->sh_info;
8431 if (extsymcount == 0)
8432 continue;
8434 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8435 NULL, NULL, NULL);
8436 if (isymbuf == NULL)
8437 return FALSE;
8439 /* Read in any version definitions. */
8440 versymhdr = &elf_tdata (input)->dynversym_hdr;
8441 extversym = bfd_malloc (versymhdr->sh_size);
8442 if (extversym == NULL)
8443 goto error_ret;
8445 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8446 || (bfd_bread (extversym, versymhdr->sh_size, input)
8447 != versymhdr->sh_size))
8449 free (extversym);
8450 error_ret:
8451 free (isymbuf);
8452 return FALSE;
8455 ever = extversym + extsymoff;
8456 isymend = isymbuf + extsymcount;
8457 for (isym = isymbuf; isym < isymend; isym++, ever++)
8459 const char *name;
8460 Elf_Internal_Versym iver;
8461 unsigned short version_index;
8463 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8464 || isym->st_shndx == SHN_UNDEF)
8465 continue;
8467 name = bfd_elf_string_from_elf_section (input,
8468 hdr->sh_link,
8469 isym->st_name);
8470 if (strcmp (name, h->root.root.string) != 0)
8471 continue;
8473 _bfd_elf_swap_versym_in (input, ever, &iver);
8475 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8477 /* If we have a non-hidden versioned sym, then it should
8478 have provided a definition for the undefined sym. */
8479 abort ();
8482 version_index = iver.vs_vers & VERSYM_VERSION;
8483 if (version_index == 1 || version_index == 2)
8485 /* This is the base or first version. We can use it. */
8486 free (extversym);
8487 free (isymbuf);
8488 return TRUE;
8492 free (extversym);
8493 free (isymbuf);
8496 return FALSE;
8499 /* Add an external symbol to the symbol table. This is called from
8500 the hash table traversal routine. When generating a shared object,
8501 we go through the symbol table twice. The first time we output
8502 anything that might have been forced to local scope in a version
8503 script. The second time we output the symbols that are still
8504 global symbols. */
8506 static bfd_boolean
8507 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8509 struct elf_outext_info *eoinfo = data;
8510 struct elf_final_link_info *finfo = eoinfo->finfo;
8511 bfd_boolean strip;
8512 Elf_Internal_Sym sym;
8513 asection *input_sec;
8514 const struct elf_backend_data *bed;
8516 if (h->root.type == bfd_link_hash_warning)
8518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8519 if (h->root.type == bfd_link_hash_new)
8520 return TRUE;
8523 /* Decide whether to output this symbol in this pass. */
8524 if (eoinfo->localsyms)
8526 if (!h->forced_local)
8527 return TRUE;
8529 else
8531 if (h->forced_local)
8532 return TRUE;
8535 bed = get_elf_backend_data (finfo->output_bfd);
8537 if (h->root.type == bfd_link_hash_undefined)
8539 /* If we have an undefined symbol reference here then it must have
8540 come from a shared library that is being linked in. (Undefined
8541 references in regular files have already been handled). */
8542 bfd_boolean ignore_undef = FALSE;
8544 /* Some symbols may be special in that the fact that they're
8545 undefined can be safely ignored - let backend determine that. */
8546 if (bed->elf_backend_ignore_undef_symbol)
8547 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8549 /* If we are reporting errors for this situation then do so now. */
8550 if (ignore_undef == FALSE
8551 && h->ref_dynamic
8552 && ! h->ref_regular
8553 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8554 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8556 if (! (finfo->info->callbacks->undefined_symbol
8557 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8558 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8560 eoinfo->failed = TRUE;
8561 return FALSE;
8566 /* We should also warn if a forced local symbol is referenced from
8567 shared libraries. */
8568 if (! finfo->info->relocatable
8569 && (! finfo->info->shared)
8570 && h->forced_local
8571 && h->ref_dynamic
8572 && !h->dynamic_def
8573 && !h->dynamic_weak
8574 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8576 (*_bfd_error_handler)
8577 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8578 finfo->output_bfd,
8579 h->root.u.def.section == bfd_abs_section_ptr
8580 ? finfo->output_bfd : h->root.u.def.section->owner,
8581 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8582 ? "internal"
8583 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8584 ? "hidden" : "local",
8585 h->root.root.string);
8586 eoinfo->failed = TRUE;
8587 return FALSE;
8590 /* We don't want to output symbols that have never been mentioned by
8591 a regular file, or that we have been told to strip. However, if
8592 h->indx is set to -2, the symbol is used by a reloc and we must
8593 output it. */
8594 if (h->indx == -2)
8595 strip = FALSE;
8596 else if ((h->def_dynamic
8597 || h->ref_dynamic
8598 || h->root.type == bfd_link_hash_new)
8599 && !h->def_regular
8600 && !h->ref_regular)
8601 strip = TRUE;
8602 else if (finfo->info->strip == strip_all)
8603 strip = TRUE;
8604 else if (finfo->info->strip == strip_some
8605 && bfd_hash_lookup (finfo->info->keep_hash,
8606 h->root.root.string, FALSE, FALSE) == NULL)
8607 strip = TRUE;
8608 else if (finfo->info->strip_discarded
8609 && (h->root.type == bfd_link_hash_defined
8610 || h->root.type == bfd_link_hash_defweak)
8611 && elf_discarded_section (h->root.u.def.section))
8612 strip = TRUE;
8613 else
8614 strip = FALSE;
8616 /* If we're stripping it, and it's not a dynamic symbol, there's
8617 nothing else to do unless it is a forced local symbol. */
8618 if (strip
8619 && h->dynindx == -1
8620 && !h->forced_local)
8621 return TRUE;
8623 sym.st_value = 0;
8624 sym.st_size = h->size;
8625 sym.st_other = h->other;
8626 if (h->forced_local)
8627 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8628 else if (h->root.type == bfd_link_hash_undefweak
8629 || h->root.type == bfd_link_hash_defweak)
8630 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8631 else
8632 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8634 switch (h->root.type)
8636 default:
8637 case bfd_link_hash_new:
8638 case bfd_link_hash_warning:
8639 abort ();
8640 return FALSE;
8642 case bfd_link_hash_undefined:
8643 case bfd_link_hash_undefweak:
8644 input_sec = bfd_und_section_ptr;
8645 sym.st_shndx = SHN_UNDEF;
8646 break;
8648 case bfd_link_hash_defined:
8649 case bfd_link_hash_defweak:
8651 input_sec = h->root.u.def.section;
8652 if (input_sec->output_section != NULL)
8654 sym.st_shndx =
8655 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8656 input_sec->output_section);
8657 if (sym.st_shndx == SHN_BAD)
8659 (*_bfd_error_handler)
8660 (_("%B: could not find output section %A for input section %A"),
8661 finfo->output_bfd, input_sec->output_section, input_sec);
8662 eoinfo->failed = TRUE;
8663 return FALSE;
8666 /* ELF symbols in relocatable files are section relative,
8667 but in nonrelocatable files they are virtual
8668 addresses. */
8669 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8670 if (! finfo->info->relocatable)
8672 sym.st_value += input_sec->output_section->vma;
8673 if (h->type == STT_TLS)
8675 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8676 if (tls_sec != NULL)
8677 sym.st_value -= tls_sec->vma;
8678 else
8680 /* The TLS section may have been garbage collected. */
8681 BFD_ASSERT (finfo->info->gc_sections
8682 && !input_sec->gc_mark);
8687 else
8689 BFD_ASSERT (input_sec->owner == NULL
8690 || (input_sec->owner->flags & DYNAMIC) != 0);
8691 sym.st_shndx = SHN_UNDEF;
8692 input_sec = bfd_und_section_ptr;
8695 break;
8697 case bfd_link_hash_common:
8698 input_sec = h->root.u.c.p->section;
8699 sym.st_shndx = bed->common_section_index (input_sec);
8700 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8701 break;
8703 case bfd_link_hash_indirect:
8704 /* These symbols are created by symbol versioning. They point
8705 to the decorated version of the name. For example, if the
8706 symbol foo@@GNU_1.2 is the default, which should be used when
8707 foo is used with no version, then we add an indirect symbol
8708 foo which points to foo@@GNU_1.2. We ignore these symbols,
8709 since the indirected symbol is already in the hash table. */
8710 return TRUE;
8713 /* Give the processor backend a chance to tweak the symbol value,
8714 and also to finish up anything that needs to be done for this
8715 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8716 forced local syms when non-shared is due to a historical quirk. */
8717 if ((h->dynindx != -1
8718 || h->forced_local)
8719 && ((finfo->info->shared
8720 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8721 || h->root.type != bfd_link_hash_undefweak))
8722 || !h->forced_local)
8723 && elf_hash_table (finfo->info)->dynamic_sections_created)
8725 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8726 (finfo->output_bfd, finfo->info, h, &sym)))
8728 eoinfo->failed = TRUE;
8729 return FALSE;
8733 /* If we are marking the symbol as undefined, and there are no
8734 non-weak references to this symbol from a regular object, then
8735 mark the symbol as weak undefined; if there are non-weak
8736 references, mark the symbol as strong. We can't do this earlier,
8737 because it might not be marked as undefined until the
8738 finish_dynamic_symbol routine gets through with it. */
8739 if (sym.st_shndx == SHN_UNDEF
8740 && h->ref_regular
8741 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8742 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8744 int bindtype;
8746 if (h->ref_regular_nonweak)
8747 bindtype = STB_GLOBAL;
8748 else
8749 bindtype = STB_WEAK;
8750 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8753 /* If this is a symbol defined in a dynamic library, don't use the
8754 symbol size from the dynamic library. Relinking an executable
8755 against a new library may introduce gratuitous changes in the
8756 executable's symbols if we keep the size. */
8757 if (sym.st_shndx == SHN_UNDEF
8758 && !h->def_regular
8759 && h->def_dynamic)
8760 sym.st_size = 0;
8762 /* If a non-weak symbol with non-default visibility is not defined
8763 locally, it is a fatal error. */
8764 if (! finfo->info->relocatable
8765 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8766 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8767 && h->root.type == bfd_link_hash_undefined
8768 && !h->def_regular)
8770 (*_bfd_error_handler)
8771 (_("%B: %s symbol `%s' isn't defined"),
8772 finfo->output_bfd,
8773 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8774 ? "protected"
8775 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8776 ? "internal" : "hidden",
8777 h->root.root.string);
8778 eoinfo->failed = TRUE;
8779 return FALSE;
8782 /* If this symbol should be put in the .dynsym section, then put it
8783 there now. We already know the symbol index. We also fill in
8784 the entry in the .hash section. */
8785 if (h->dynindx != -1
8786 && elf_hash_table (finfo->info)->dynamic_sections_created)
8788 bfd_byte *esym;
8790 sym.st_name = h->dynstr_index;
8791 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8792 if (! check_dynsym (finfo->output_bfd, &sym))
8794 eoinfo->failed = TRUE;
8795 return FALSE;
8797 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8799 if (finfo->hash_sec != NULL)
8801 size_t hash_entry_size;
8802 bfd_byte *bucketpos;
8803 bfd_vma chain;
8804 size_t bucketcount;
8805 size_t bucket;
8807 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8808 bucket = h->u.elf_hash_value % bucketcount;
8810 hash_entry_size
8811 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8812 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8813 + (bucket + 2) * hash_entry_size);
8814 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8815 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8816 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8817 ((bfd_byte *) finfo->hash_sec->contents
8818 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8821 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8823 Elf_Internal_Versym iversym;
8824 Elf_External_Versym *eversym;
8826 if (!h->def_regular)
8828 if (h->verinfo.verdef == NULL)
8829 iversym.vs_vers = 0;
8830 else
8831 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8833 else
8835 if (h->verinfo.vertree == NULL)
8836 iversym.vs_vers = 1;
8837 else
8838 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8839 if (finfo->info->create_default_symver)
8840 iversym.vs_vers++;
8843 if (h->hidden)
8844 iversym.vs_vers |= VERSYM_HIDDEN;
8846 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8847 eversym += h->dynindx;
8848 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8852 /* If we're stripping it, then it was just a dynamic symbol, and
8853 there's nothing else to do. */
8854 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8855 return TRUE;
8857 h->indx = bfd_get_symcount (finfo->output_bfd);
8859 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8861 eoinfo->failed = TRUE;
8862 return FALSE;
8865 return TRUE;
8868 /* Return TRUE if special handling is done for relocs in SEC against
8869 symbols defined in discarded sections. */
8871 static bfd_boolean
8872 elf_section_ignore_discarded_relocs (asection *sec)
8874 const struct elf_backend_data *bed;
8876 switch (sec->sec_info_type)
8878 case ELF_INFO_TYPE_STABS:
8879 case ELF_INFO_TYPE_EH_FRAME:
8880 return TRUE;
8881 default:
8882 break;
8885 bed = get_elf_backend_data (sec->owner);
8886 if (bed->elf_backend_ignore_discarded_relocs != NULL
8887 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8888 return TRUE;
8890 return FALSE;
8893 /* Return a mask saying how ld should treat relocations in SEC against
8894 symbols defined in discarded sections. If this function returns
8895 COMPLAIN set, ld will issue a warning message. If this function
8896 returns PRETEND set, and the discarded section was link-once and the
8897 same size as the kept link-once section, ld will pretend that the
8898 symbol was actually defined in the kept section. Otherwise ld will
8899 zero the reloc (at least that is the intent, but some cooperation by
8900 the target dependent code is needed, particularly for REL targets). */
8902 unsigned int
8903 _bfd_elf_default_action_discarded (asection *sec)
8905 if (sec->flags & SEC_DEBUGGING)
8906 return PRETEND;
8908 if (strcmp (".eh_frame", sec->name) == 0)
8909 return 0;
8911 if (strcmp (".gcc_except_table", sec->name) == 0)
8912 return 0;
8914 return COMPLAIN | PRETEND;
8917 /* Find a match between a section and a member of a section group. */
8919 static asection *
8920 match_group_member (asection *sec, asection *group,
8921 struct bfd_link_info *info)
8923 asection *first = elf_next_in_group (group);
8924 asection *s = first;
8926 while (s != NULL)
8928 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8929 return s;
8931 s = elf_next_in_group (s);
8932 if (s == first)
8933 break;
8936 return NULL;
8939 /* Check if the kept section of a discarded section SEC can be used
8940 to replace it. Return the replacement if it is OK. Otherwise return
8941 NULL. */
8943 asection *
8944 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8946 asection *kept;
8948 kept = sec->kept_section;
8949 if (kept != NULL)
8951 if ((kept->flags & SEC_GROUP) != 0)
8952 kept = match_group_member (sec, kept, info);
8953 if (kept != NULL
8954 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8955 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8956 kept = NULL;
8957 sec->kept_section = kept;
8959 return kept;
8962 /* Link an input file into the linker output file. This function
8963 handles all the sections and relocations of the input file at once.
8964 This is so that we only have to read the local symbols once, and
8965 don't have to keep them in memory. */
8967 static bfd_boolean
8968 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8970 int (*relocate_section)
8971 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8972 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8973 bfd *output_bfd;
8974 Elf_Internal_Shdr *symtab_hdr;
8975 size_t locsymcount;
8976 size_t extsymoff;
8977 Elf_Internal_Sym *isymbuf;
8978 Elf_Internal_Sym *isym;
8979 Elf_Internal_Sym *isymend;
8980 long *pindex;
8981 asection **ppsection;
8982 asection *o;
8983 const struct elf_backend_data *bed;
8984 struct elf_link_hash_entry **sym_hashes;
8986 output_bfd = finfo->output_bfd;
8987 bed = get_elf_backend_data (output_bfd);
8988 relocate_section = bed->elf_backend_relocate_section;
8990 /* If this is a dynamic object, we don't want to do anything here:
8991 we don't want the local symbols, and we don't want the section
8992 contents. */
8993 if ((input_bfd->flags & DYNAMIC) != 0)
8994 return TRUE;
8996 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8997 if (elf_bad_symtab (input_bfd))
8999 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9000 extsymoff = 0;
9002 else
9004 locsymcount = symtab_hdr->sh_info;
9005 extsymoff = symtab_hdr->sh_info;
9008 /* Read the local symbols. */
9009 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9010 if (isymbuf == NULL && locsymcount != 0)
9012 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9013 finfo->internal_syms,
9014 finfo->external_syms,
9015 finfo->locsym_shndx);
9016 if (isymbuf == NULL)
9017 return FALSE;
9020 /* Find local symbol sections and adjust values of symbols in
9021 SEC_MERGE sections. Write out those local symbols we know are
9022 going into the output file. */
9023 isymend = isymbuf + locsymcount;
9024 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9025 isym < isymend;
9026 isym++, pindex++, ppsection++)
9028 asection *isec;
9029 const char *name;
9030 Elf_Internal_Sym osym;
9032 *pindex = -1;
9034 if (elf_bad_symtab (input_bfd))
9036 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9038 *ppsection = NULL;
9039 continue;
9043 if (isym->st_shndx == SHN_UNDEF)
9044 isec = bfd_und_section_ptr;
9045 else if (isym->st_shndx == SHN_ABS)
9046 isec = bfd_abs_section_ptr;
9047 else if (isym->st_shndx == SHN_COMMON)
9048 isec = bfd_com_section_ptr;
9049 else
9051 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9052 if (isec == NULL)
9054 /* Don't attempt to output symbols with st_shnx in the
9055 reserved range other than SHN_ABS and SHN_COMMON. */
9056 *ppsection = NULL;
9057 continue;
9059 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9060 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9061 isym->st_value =
9062 _bfd_merged_section_offset (output_bfd, &isec,
9063 elf_section_data (isec)->sec_info,
9064 isym->st_value);
9067 *ppsection = isec;
9069 /* Don't output the first, undefined, symbol. */
9070 if (ppsection == finfo->sections)
9071 continue;
9073 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9075 /* We never output section symbols. Instead, we use the
9076 section symbol of the corresponding section in the output
9077 file. */
9078 continue;
9081 /* If we are stripping all symbols, we don't want to output this
9082 one. */
9083 if (finfo->info->strip == strip_all)
9084 continue;
9086 /* If we are discarding all local symbols, we don't want to
9087 output this one. If we are generating a relocatable output
9088 file, then some of the local symbols may be required by
9089 relocs; we output them below as we discover that they are
9090 needed. */
9091 if (finfo->info->discard == discard_all)
9092 continue;
9094 /* If this symbol is defined in a section which we are
9095 discarding, we don't need to keep it. */
9096 if (isym->st_shndx != SHN_UNDEF
9097 && isym->st_shndx < SHN_LORESERVE
9098 && bfd_section_removed_from_list (output_bfd,
9099 isec->output_section))
9100 continue;
9102 /* Get the name of the symbol. */
9103 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9104 isym->st_name);
9105 if (name == NULL)
9106 return FALSE;
9108 /* See if we are discarding symbols with this name. */
9109 if ((finfo->info->strip == strip_some
9110 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9111 == NULL))
9112 || (((finfo->info->discard == discard_sec_merge
9113 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9114 || finfo->info->discard == discard_l)
9115 && bfd_is_local_label_name (input_bfd, name)))
9116 continue;
9118 /* If we get here, we are going to output this symbol. */
9120 osym = *isym;
9122 /* Adjust the section index for the output file. */
9123 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9124 isec->output_section);
9125 if (osym.st_shndx == SHN_BAD)
9126 return FALSE;
9128 *pindex = bfd_get_symcount (output_bfd);
9130 /* ELF symbols in relocatable files are section relative, but
9131 in executable files they are virtual addresses. Note that
9132 this code assumes that all ELF sections have an associated
9133 BFD section with a reasonable value for output_offset; below
9134 we assume that they also have a reasonable value for
9135 output_section. Any special sections must be set up to meet
9136 these requirements. */
9137 osym.st_value += isec->output_offset;
9138 if (! finfo->info->relocatable)
9140 osym.st_value += isec->output_section->vma;
9141 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9143 /* STT_TLS symbols are relative to PT_TLS segment base. */
9144 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9145 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9149 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9150 return FALSE;
9153 /* Relocate the contents of each section. */
9154 sym_hashes = elf_sym_hashes (input_bfd);
9155 for (o = input_bfd->sections; o != NULL; o = o->next)
9157 bfd_byte *contents;
9159 if (! o->linker_mark)
9161 /* This section was omitted from the link. */
9162 continue;
9165 if (finfo->info->relocatable
9166 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9168 /* Deal with the group signature symbol. */
9169 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9170 unsigned long symndx = sec_data->this_hdr.sh_info;
9171 asection *osec = o->output_section;
9173 if (symndx >= locsymcount
9174 || (elf_bad_symtab (input_bfd)
9175 && finfo->sections[symndx] == NULL))
9177 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9178 while (h->root.type == bfd_link_hash_indirect
9179 || h->root.type == bfd_link_hash_warning)
9180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9181 /* Arrange for symbol to be output. */
9182 h->indx = -2;
9183 elf_section_data (osec)->this_hdr.sh_info = -2;
9185 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9187 /* We'll use the output section target_index. */
9188 asection *sec = finfo->sections[symndx]->output_section;
9189 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9191 else
9193 if (finfo->indices[symndx] == -1)
9195 /* Otherwise output the local symbol now. */
9196 Elf_Internal_Sym sym = isymbuf[symndx];
9197 asection *sec = finfo->sections[symndx]->output_section;
9198 const char *name;
9200 name = bfd_elf_string_from_elf_section (input_bfd,
9201 symtab_hdr->sh_link,
9202 sym.st_name);
9203 if (name == NULL)
9204 return FALSE;
9206 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9207 sec);
9208 if (sym.st_shndx == SHN_BAD)
9209 return FALSE;
9211 sym.st_value += o->output_offset;
9213 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9214 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9215 return FALSE;
9217 elf_section_data (osec)->this_hdr.sh_info
9218 = finfo->indices[symndx];
9222 if ((o->flags & SEC_HAS_CONTENTS) == 0
9223 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9224 continue;
9226 if ((o->flags & SEC_LINKER_CREATED) != 0)
9228 /* Section was created by _bfd_elf_link_create_dynamic_sections
9229 or somesuch. */
9230 continue;
9233 /* Get the contents of the section. They have been cached by a
9234 relaxation routine. Note that o is a section in an input
9235 file, so the contents field will not have been set by any of
9236 the routines which work on output files. */
9237 if (elf_section_data (o)->this_hdr.contents != NULL)
9238 contents = elf_section_data (o)->this_hdr.contents;
9239 else
9241 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9243 contents = finfo->contents;
9244 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9245 return FALSE;
9248 if ((o->flags & SEC_RELOC) != 0)
9250 Elf_Internal_Rela *internal_relocs;
9251 Elf_Internal_Rela *rel, *relend;
9252 bfd_vma r_type_mask;
9253 int r_sym_shift;
9254 int action_discarded;
9255 int ret;
9257 /* Get the swapped relocs. */
9258 internal_relocs
9259 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9260 finfo->internal_relocs, FALSE);
9261 if (internal_relocs == NULL
9262 && o->reloc_count > 0)
9263 return FALSE;
9265 if (bed->s->arch_size == 32)
9267 r_type_mask = 0xff;
9268 r_sym_shift = 8;
9270 else
9272 r_type_mask = 0xffffffff;
9273 r_sym_shift = 32;
9276 action_discarded = -1;
9277 if (!elf_section_ignore_discarded_relocs (o))
9278 action_discarded = (*bed->action_discarded) (o);
9280 /* Run through the relocs evaluating complex reloc symbols and
9281 looking for relocs against symbols from discarded sections
9282 or section symbols from removed link-once sections.
9283 Complain about relocs against discarded sections. Zero
9284 relocs against removed link-once sections. */
9286 rel = internal_relocs;
9287 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9288 for ( ; rel < relend; rel++)
9290 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9291 unsigned int s_type;
9292 asection **ps, *sec;
9293 struct elf_link_hash_entry *h = NULL;
9294 const char *sym_name;
9296 if (r_symndx == STN_UNDEF)
9297 continue;
9299 if (r_symndx >= locsymcount
9300 || (elf_bad_symtab (input_bfd)
9301 && finfo->sections[r_symndx] == NULL))
9303 h = sym_hashes[r_symndx - extsymoff];
9305 /* Badly formatted input files can contain relocs that
9306 reference non-existant symbols. Check here so that
9307 we do not seg fault. */
9308 if (h == NULL)
9310 char buffer [32];
9312 sprintf_vma (buffer, rel->r_info);
9313 (*_bfd_error_handler)
9314 (_("error: %B contains a reloc (0x%s) for section %A "
9315 "that references a non-existent global symbol"),
9316 input_bfd, o, buffer);
9317 bfd_set_error (bfd_error_bad_value);
9318 return FALSE;
9321 while (h->root.type == bfd_link_hash_indirect
9322 || h->root.type == bfd_link_hash_warning)
9323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9325 s_type = h->type;
9327 ps = NULL;
9328 if (h->root.type == bfd_link_hash_defined
9329 || h->root.type == bfd_link_hash_defweak)
9330 ps = &h->root.u.def.section;
9332 sym_name = h->root.root.string;
9334 else
9336 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9338 s_type = ELF_ST_TYPE (sym->st_info);
9339 ps = &finfo->sections[r_symndx];
9340 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9341 sym, *ps);
9344 if ((s_type == STT_RELC || s_type == STT_SRELC)
9345 && !finfo->info->relocatable)
9347 bfd_vma val;
9348 bfd_vma dot = (rel->r_offset
9349 + o->output_offset + o->output_section->vma);
9350 #ifdef DEBUG
9351 printf ("Encountered a complex symbol!");
9352 printf (" (input_bfd %s, section %s, reloc %ld\n",
9353 input_bfd->filename, o->name, rel - internal_relocs);
9354 printf (" symbol: idx %8.8lx, name %s\n",
9355 r_symndx, sym_name);
9356 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9357 (unsigned long) rel->r_info,
9358 (unsigned long) rel->r_offset);
9359 #endif
9360 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9361 isymbuf, locsymcount, s_type == STT_SRELC))
9362 return FALSE;
9364 /* Symbol evaluated OK. Update to absolute value. */
9365 set_symbol_value (input_bfd, isymbuf, locsymcount,
9366 r_symndx, val);
9367 continue;
9370 if (action_discarded != -1 && ps != NULL)
9372 /* Complain if the definition comes from a
9373 discarded section. */
9374 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9376 BFD_ASSERT (r_symndx != 0);
9377 if (action_discarded & COMPLAIN)
9378 (*finfo->info->callbacks->einfo)
9379 (_("%X`%s' referenced in section `%A' of %B: "
9380 "defined in discarded section `%A' of %B\n"),
9381 sym_name, o, input_bfd, sec, sec->owner);
9383 /* Try to do the best we can to support buggy old
9384 versions of gcc. Pretend that the symbol is
9385 really defined in the kept linkonce section.
9386 FIXME: This is quite broken. Modifying the
9387 symbol here means we will be changing all later
9388 uses of the symbol, not just in this section. */
9389 if (action_discarded & PRETEND)
9391 asection *kept;
9393 kept = _bfd_elf_check_kept_section (sec,
9394 finfo->info);
9395 if (kept != NULL)
9397 *ps = kept;
9398 continue;
9405 /* Relocate the section by invoking a back end routine.
9407 The back end routine is responsible for adjusting the
9408 section contents as necessary, and (if using Rela relocs
9409 and generating a relocatable output file) adjusting the
9410 reloc addend as necessary.
9412 The back end routine does not have to worry about setting
9413 the reloc address or the reloc symbol index.
9415 The back end routine is given a pointer to the swapped in
9416 internal symbols, and can access the hash table entries
9417 for the external symbols via elf_sym_hashes (input_bfd).
9419 When generating relocatable output, the back end routine
9420 must handle STB_LOCAL/STT_SECTION symbols specially. The
9421 output symbol is going to be a section symbol
9422 corresponding to the output section, which will require
9423 the addend to be adjusted. */
9425 ret = (*relocate_section) (output_bfd, finfo->info,
9426 input_bfd, o, contents,
9427 internal_relocs,
9428 isymbuf,
9429 finfo->sections);
9430 if (!ret)
9431 return FALSE;
9433 if (ret == 2
9434 || finfo->info->relocatable
9435 || finfo->info->emitrelocations)
9437 Elf_Internal_Rela *irela;
9438 Elf_Internal_Rela *irelaend;
9439 bfd_vma last_offset;
9440 struct elf_link_hash_entry **rel_hash;
9441 struct elf_link_hash_entry **rel_hash_list;
9442 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9443 unsigned int next_erel;
9444 bfd_boolean rela_normal;
9446 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9447 rela_normal = (bed->rela_normal
9448 && (input_rel_hdr->sh_entsize
9449 == bed->s->sizeof_rela));
9451 /* Adjust the reloc addresses and symbol indices. */
9453 irela = internal_relocs;
9454 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9455 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9456 + elf_section_data (o->output_section)->rel_count
9457 + elf_section_data (o->output_section)->rel_count2);
9458 rel_hash_list = rel_hash;
9459 last_offset = o->output_offset;
9460 if (!finfo->info->relocatable)
9461 last_offset += o->output_section->vma;
9462 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9464 unsigned long r_symndx;
9465 asection *sec;
9466 Elf_Internal_Sym sym;
9468 if (next_erel == bed->s->int_rels_per_ext_rel)
9470 rel_hash++;
9471 next_erel = 0;
9474 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9475 finfo->info, o,
9476 irela->r_offset);
9477 if (irela->r_offset >= (bfd_vma) -2)
9479 /* This is a reloc for a deleted entry or somesuch.
9480 Turn it into an R_*_NONE reloc, at the same
9481 offset as the last reloc. elf_eh_frame.c and
9482 bfd_elf_discard_info rely on reloc offsets
9483 being ordered. */
9484 irela->r_offset = last_offset;
9485 irela->r_info = 0;
9486 irela->r_addend = 0;
9487 continue;
9490 irela->r_offset += o->output_offset;
9492 /* Relocs in an executable have to be virtual addresses. */
9493 if (!finfo->info->relocatable)
9494 irela->r_offset += o->output_section->vma;
9496 last_offset = irela->r_offset;
9498 r_symndx = irela->r_info >> r_sym_shift;
9499 if (r_symndx == STN_UNDEF)
9500 continue;
9502 if (r_symndx >= locsymcount
9503 || (elf_bad_symtab (input_bfd)
9504 && finfo->sections[r_symndx] == NULL))
9506 struct elf_link_hash_entry *rh;
9507 unsigned long indx;
9509 /* This is a reloc against a global symbol. We
9510 have not yet output all the local symbols, so
9511 we do not know the symbol index of any global
9512 symbol. We set the rel_hash entry for this
9513 reloc to point to the global hash table entry
9514 for this symbol. The symbol index is then
9515 set at the end of bfd_elf_final_link. */
9516 indx = r_symndx - extsymoff;
9517 rh = elf_sym_hashes (input_bfd)[indx];
9518 while (rh->root.type == bfd_link_hash_indirect
9519 || rh->root.type == bfd_link_hash_warning)
9520 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9522 /* Setting the index to -2 tells
9523 elf_link_output_extsym that this symbol is
9524 used by a reloc. */
9525 BFD_ASSERT (rh->indx < 0);
9526 rh->indx = -2;
9528 *rel_hash = rh;
9530 continue;
9533 /* This is a reloc against a local symbol. */
9535 *rel_hash = NULL;
9536 sym = isymbuf[r_symndx];
9537 sec = finfo->sections[r_symndx];
9538 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9540 /* I suppose the backend ought to fill in the
9541 section of any STT_SECTION symbol against a
9542 processor specific section. */
9543 r_symndx = 0;
9544 if (bfd_is_abs_section (sec))
9546 else if (sec == NULL || sec->owner == NULL)
9548 bfd_set_error (bfd_error_bad_value);
9549 return FALSE;
9551 else
9553 asection *osec = sec->output_section;
9555 /* If we have discarded a section, the output
9556 section will be the absolute section. In
9557 case of discarded SEC_MERGE sections, use
9558 the kept section. relocate_section should
9559 have already handled discarded linkonce
9560 sections. */
9561 if (bfd_is_abs_section (osec)
9562 && sec->kept_section != NULL
9563 && sec->kept_section->output_section != NULL)
9565 osec = sec->kept_section->output_section;
9566 irela->r_addend -= osec->vma;
9569 if (!bfd_is_abs_section (osec))
9571 r_symndx = osec->target_index;
9572 if (r_symndx == 0)
9574 struct elf_link_hash_table *htab;
9575 asection *oi;
9577 htab = elf_hash_table (finfo->info);
9578 oi = htab->text_index_section;
9579 if ((osec->flags & SEC_READONLY) == 0
9580 && htab->data_index_section != NULL)
9581 oi = htab->data_index_section;
9583 if (oi != NULL)
9585 irela->r_addend += osec->vma - oi->vma;
9586 r_symndx = oi->target_index;
9590 BFD_ASSERT (r_symndx != 0);
9594 /* Adjust the addend according to where the
9595 section winds up in the output section. */
9596 if (rela_normal)
9597 irela->r_addend += sec->output_offset;
9599 else
9601 if (finfo->indices[r_symndx] == -1)
9603 unsigned long shlink;
9604 const char *name;
9605 asection *osec;
9607 if (finfo->info->strip == strip_all)
9609 /* You can't do ld -r -s. */
9610 bfd_set_error (bfd_error_invalid_operation);
9611 return FALSE;
9614 /* This symbol was skipped earlier, but
9615 since it is needed by a reloc, we
9616 must output it now. */
9617 shlink = symtab_hdr->sh_link;
9618 name = (bfd_elf_string_from_elf_section
9619 (input_bfd, shlink, sym.st_name));
9620 if (name == NULL)
9621 return FALSE;
9623 osec = sec->output_section;
9624 sym.st_shndx =
9625 _bfd_elf_section_from_bfd_section (output_bfd,
9626 osec);
9627 if (sym.st_shndx == SHN_BAD)
9628 return FALSE;
9630 sym.st_value += sec->output_offset;
9631 if (! finfo->info->relocatable)
9633 sym.st_value += osec->vma;
9634 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9636 /* STT_TLS symbols are relative to PT_TLS
9637 segment base. */
9638 BFD_ASSERT (elf_hash_table (finfo->info)
9639 ->tls_sec != NULL);
9640 sym.st_value -= (elf_hash_table (finfo->info)
9641 ->tls_sec->vma);
9645 finfo->indices[r_symndx]
9646 = bfd_get_symcount (output_bfd);
9648 if (! elf_link_output_sym (finfo, name, &sym, sec,
9649 NULL))
9650 return FALSE;
9653 r_symndx = finfo->indices[r_symndx];
9656 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9657 | (irela->r_info & r_type_mask));
9660 /* Swap out the relocs. */
9661 if (input_rel_hdr->sh_size != 0
9662 && !bed->elf_backend_emit_relocs (output_bfd, o,
9663 input_rel_hdr,
9664 internal_relocs,
9665 rel_hash_list))
9666 return FALSE;
9668 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9669 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9671 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9672 * bed->s->int_rels_per_ext_rel);
9673 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9674 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9675 input_rel_hdr2,
9676 internal_relocs,
9677 rel_hash_list))
9678 return FALSE;
9683 /* Write out the modified section contents. */
9684 if (bed->elf_backend_write_section
9685 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9686 contents))
9688 /* Section written out. */
9690 else switch (o->sec_info_type)
9692 case ELF_INFO_TYPE_STABS:
9693 if (! (_bfd_write_section_stabs
9694 (output_bfd,
9695 &elf_hash_table (finfo->info)->stab_info,
9696 o, &elf_section_data (o)->sec_info, contents)))
9697 return FALSE;
9698 break;
9699 case ELF_INFO_TYPE_MERGE:
9700 if (! _bfd_write_merged_section (output_bfd, o,
9701 elf_section_data (o)->sec_info))
9702 return FALSE;
9703 break;
9704 case ELF_INFO_TYPE_EH_FRAME:
9706 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9707 o, contents))
9708 return FALSE;
9710 break;
9711 default:
9713 if (! (o->flags & SEC_EXCLUDE)
9714 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9715 && ! bfd_set_section_contents (output_bfd, o->output_section,
9716 contents,
9717 (file_ptr) o->output_offset,
9718 o->size))
9719 return FALSE;
9721 break;
9725 return TRUE;
9728 /* Generate a reloc when linking an ELF file. This is a reloc
9729 requested by the linker, and does not come from any input file. This
9730 is used to build constructor and destructor tables when linking
9731 with -Ur. */
9733 static bfd_boolean
9734 elf_reloc_link_order (bfd *output_bfd,
9735 struct bfd_link_info *info,
9736 asection *output_section,
9737 struct bfd_link_order *link_order)
9739 reloc_howto_type *howto;
9740 long indx;
9741 bfd_vma offset;
9742 bfd_vma addend;
9743 struct elf_link_hash_entry **rel_hash_ptr;
9744 Elf_Internal_Shdr *rel_hdr;
9745 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9746 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9747 bfd_byte *erel;
9748 unsigned int i;
9750 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9751 if (howto == NULL)
9753 bfd_set_error (bfd_error_bad_value);
9754 return FALSE;
9757 addend = link_order->u.reloc.p->addend;
9759 /* Figure out the symbol index. */
9760 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9761 + elf_section_data (output_section)->rel_count
9762 + elf_section_data (output_section)->rel_count2);
9763 if (link_order->type == bfd_section_reloc_link_order)
9765 indx = link_order->u.reloc.p->u.section->target_index;
9766 BFD_ASSERT (indx != 0);
9767 *rel_hash_ptr = NULL;
9769 else
9771 struct elf_link_hash_entry *h;
9773 /* Treat a reloc against a defined symbol as though it were
9774 actually against the section. */
9775 h = ((struct elf_link_hash_entry *)
9776 bfd_wrapped_link_hash_lookup (output_bfd, info,
9777 link_order->u.reloc.p->u.name,
9778 FALSE, FALSE, TRUE));
9779 if (h != NULL
9780 && (h->root.type == bfd_link_hash_defined
9781 || h->root.type == bfd_link_hash_defweak))
9783 asection *section;
9785 section = h->root.u.def.section;
9786 indx = section->output_section->target_index;
9787 *rel_hash_ptr = NULL;
9788 /* It seems that we ought to add the symbol value to the
9789 addend here, but in practice it has already been added
9790 because it was passed to constructor_callback. */
9791 addend += section->output_section->vma + section->output_offset;
9793 else if (h != NULL)
9795 /* Setting the index to -2 tells elf_link_output_extsym that
9796 this symbol is used by a reloc. */
9797 h->indx = -2;
9798 *rel_hash_ptr = h;
9799 indx = 0;
9801 else
9803 if (! ((*info->callbacks->unattached_reloc)
9804 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9805 return FALSE;
9806 indx = 0;
9810 /* If this is an inplace reloc, we must write the addend into the
9811 object file. */
9812 if (howto->partial_inplace && addend != 0)
9814 bfd_size_type size;
9815 bfd_reloc_status_type rstat;
9816 bfd_byte *buf;
9817 bfd_boolean ok;
9818 const char *sym_name;
9820 size = bfd_get_reloc_size (howto);
9821 buf = bfd_zmalloc (size);
9822 if (buf == NULL)
9823 return FALSE;
9824 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9825 switch (rstat)
9827 case bfd_reloc_ok:
9828 break;
9830 default:
9831 case bfd_reloc_outofrange:
9832 abort ();
9834 case bfd_reloc_overflow:
9835 if (link_order->type == bfd_section_reloc_link_order)
9836 sym_name = bfd_section_name (output_bfd,
9837 link_order->u.reloc.p->u.section);
9838 else
9839 sym_name = link_order->u.reloc.p->u.name;
9840 if (! ((*info->callbacks->reloc_overflow)
9841 (info, NULL, sym_name, howto->name, addend, NULL,
9842 NULL, (bfd_vma) 0)))
9844 free (buf);
9845 return FALSE;
9847 break;
9849 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9850 link_order->offset, size);
9851 free (buf);
9852 if (! ok)
9853 return FALSE;
9856 /* The address of a reloc is relative to the section in a
9857 relocatable file, and is a virtual address in an executable
9858 file. */
9859 offset = link_order->offset;
9860 if (! info->relocatable)
9861 offset += output_section->vma;
9863 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9865 irel[i].r_offset = offset;
9866 irel[i].r_info = 0;
9867 irel[i].r_addend = 0;
9869 if (bed->s->arch_size == 32)
9870 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9871 else
9872 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9874 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9875 erel = rel_hdr->contents;
9876 if (rel_hdr->sh_type == SHT_REL)
9878 erel += (elf_section_data (output_section)->rel_count
9879 * bed->s->sizeof_rel);
9880 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9882 else
9884 irel[0].r_addend = addend;
9885 erel += (elf_section_data (output_section)->rel_count
9886 * bed->s->sizeof_rela);
9887 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9890 ++elf_section_data (output_section)->rel_count;
9892 return TRUE;
9896 /* Get the output vma of the section pointed to by the sh_link field. */
9898 static bfd_vma
9899 elf_get_linked_section_vma (struct bfd_link_order *p)
9901 Elf_Internal_Shdr **elf_shdrp;
9902 asection *s;
9903 int elfsec;
9905 s = p->u.indirect.section;
9906 elf_shdrp = elf_elfsections (s->owner);
9907 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9908 elfsec = elf_shdrp[elfsec]->sh_link;
9909 /* PR 290:
9910 The Intel C compiler generates SHT_IA_64_UNWIND with
9911 SHF_LINK_ORDER. But it doesn't set the sh_link or
9912 sh_info fields. Hence we could get the situation
9913 where elfsec is 0. */
9914 if (elfsec == 0)
9916 const struct elf_backend_data *bed
9917 = get_elf_backend_data (s->owner);
9918 if (bed->link_order_error_handler)
9919 bed->link_order_error_handler
9920 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9921 return 0;
9923 else
9925 s = elf_shdrp[elfsec]->bfd_section;
9926 return s->output_section->vma + s->output_offset;
9931 /* Compare two sections based on the locations of the sections they are
9932 linked to. Used by elf_fixup_link_order. */
9934 static int
9935 compare_link_order (const void * a, const void * b)
9937 bfd_vma apos;
9938 bfd_vma bpos;
9940 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9941 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9942 if (apos < bpos)
9943 return -1;
9944 return apos > bpos;
9948 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9949 order as their linked sections. Returns false if this could not be done
9950 because an output section includes both ordered and unordered
9951 sections. Ideally we'd do this in the linker proper. */
9953 static bfd_boolean
9954 elf_fixup_link_order (bfd *abfd, asection *o)
9956 int seen_linkorder;
9957 int seen_other;
9958 int n;
9959 struct bfd_link_order *p;
9960 bfd *sub;
9961 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9962 unsigned elfsec;
9963 struct bfd_link_order **sections;
9964 asection *s, *other_sec, *linkorder_sec;
9965 bfd_vma offset;
9967 other_sec = NULL;
9968 linkorder_sec = NULL;
9969 seen_other = 0;
9970 seen_linkorder = 0;
9971 for (p = o->map_head.link_order; p != NULL; p = p->next)
9973 if (p->type == bfd_indirect_link_order)
9975 s = p->u.indirect.section;
9976 sub = s->owner;
9977 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9978 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9979 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9980 && elfsec < elf_numsections (sub)
9981 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9982 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9984 seen_linkorder++;
9985 linkorder_sec = s;
9987 else
9989 seen_other++;
9990 other_sec = s;
9993 else
9994 seen_other++;
9996 if (seen_other && seen_linkorder)
9998 if (other_sec && linkorder_sec)
9999 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10000 o, linkorder_sec,
10001 linkorder_sec->owner, other_sec,
10002 other_sec->owner);
10003 else
10004 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10006 bfd_set_error (bfd_error_bad_value);
10007 return FALSE;
10011 if (!seen_linkorder)
10012 return TRUE;
10014 sections = (struct bfd_link_order **)
10015 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10016 if (sections == NULL)
10017 return FALSE;
10018 seen_linkorder = 0;
10020 for (p = o->map_head.link_order; p != NULL; p = p->next)
10022 sections[seen_linkorder++] = p;
10024 /* Sort the input sections in the order of their linked section. */
10025 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10026 compare_link_order);
10028 /* Change the offsets of the sections. */
10029 offset = 0;
10030 for (n = 0; n < seen_linkorder; n++)
10032 s = sections[n]->u.indirect.section;
10033 offset &= ~(bfd_vma) 0 << s->alignment_power;
10034 s->output_offset = offset;
10035 sections[n]->offset = offset;
10036 offset += sections[n]->size;
10039 free (sections);
10040 return TRUE;
10044 /* Do the final step of an ELF link. */
10046 bfd_boolean
10047 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10049 bfd_boolean dynamic;
10050 bfd_boolean emit_relocs;
10051 bfd *dynobj;
10052 struct elf_final_link_info finfo;
10053 register asection *o;
10054 register struct bfd_link_order *p;
10055 register bfd *sub;
10056 bfd_size_type max_contents_size;
10057 bfd_size_type max_external_reloc_size;
10058 bfd_size_type max_internal_reloc_count;
10059 bfd_size_type max_sym_count;
10060 bfd_size_type max_sym_shndx_count;
10061 file_ptr off;
10062 Elf_Internal_Sym elfsym;
10063 unsigned int i;
10064 Elf_Internal_Shdr *symtab_hdr;
10065 Elf_Internal_Shdr *symtab_shndx_hdr;
10066 Elf_Internal_Shdr *symstrtab_hdr;
10067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10068 struct elf_outext_info eoinfo;
10069 bfd_boolean merged;
10070 size_t relativecount = 0;
10071 asection *reldyn = 0;
10072 bfd_size_type amt;
10073 asection *attr_section = NULL;
10074 bfd_vma attr_size = 0;
10075 const char *std_attrs_section;
10077 if (! is_elf_hash_table (info->hash))
10078 return FALSE;
10080 if (info->shared)
10081 abfd->flags |= DYNAMIC;
10083 dynamic = elf_hash_table (info)->dynamic_sections_created;
10084 dynobj = elf_hash_table (info)->dynobj;
10086 emit_relocs = (info->relocatable
10087 || info->emitrelocations);
10089 finfo.info = info;
10090 finfo.output_bfd = abfd;
10091 finfo.symstrtab = _bfd_elf_stringtab_init ();
10092 if (finfo.symstrtab == NULL)
10093 return FALSE;
10095 if (! dynamic)
10097 finfo.dynsym_sec = NULL;
10098 finfo.hash_sec = NULL;
10099 finfo.symver_sec = NULL;
10101 else
10103 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10104 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10105 BFD_ASSERT (finfo.dynsym_sec != NULL);
10106 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10107 /* Note that it is OK if symver_sec is NULL. */
10110 finfo.contents = NULL;
10111 finfo.external_relocs = NULL;
10112 finfo.internal_relocs = NULL;
10113 finfo.external_syms = NULL;
10114 finfo.locsym_shndx = NULL;
10115 finfo.internal_syms = NULL;
10116 finfo.indices = NULL;
10117 finfo.sections = NULL;
10118 finfo.symbuf = NULL;
10119 finfo.symshndxbuf = NULL;
10120 finfo.symbuf_count = 0;
10121 finfo.shndxbuf_size = 0;
10123 /* The object attributes have been merged. Remove the input
10124 sections from the link, and set the contents of the output
10125 secton. */
10126 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10127 for (o = abfd->sections; o != NULL; o = o->next)
10129 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10130 || strcmp (o->name, ".gnu.attributes") == 0)
10132 for (p = o->map_head.link_order; p != NULL; p = p->next)
10134 asection *input_section;
10136 if (p->type != bfd_indirect_link_order)
10137 continue;
10138 input_section = p->u.indirect.section;
10139 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10140 elf_link_input_bfd ignores this section. */
10141 input_section->flags &= ~SEC_HAS_CONTENTS;
10144 attr_size = bfd_elf_obj_attr_size (abfd);
10145 if (attr_size)
10147 bfd_set_section_size (abfd, o, attr_size);
10148 attr_section = o;
10149 /* Skip this section later on. */
10150 o->map_head.link_order = NULL;
10152 else
10153 o->flags |= SEC_EXCLUDE;
10157 /* Count up the number of relocations we will output for each output
10158 section, so that we know the sizes of the reloc sections. We
10159 also figure out some maximum sizes. */
10160 max_contents_size = 0;
10161 max_external_reloc_size = 0;
10162 max_internal_reloc_count = 0;
10163 max_sym_count = 0;
10164 max_sym_shndx_count = 0;
10165 merged = FALSE;
10166 for (o = abfd->sections; o != NULL; o = o->next)
10168 struct bfd_elf_section_data *esdo = elf_section_data (o);
10169 o->reloc_count = 0;
10171 for (p = o->map_head.link_order; p != NULL; p = p->next)
10173 unsigned int reloc_count = 0;
10174 struct bfd_elf_section_data *esdi = NULL;
10175 unsigned int *rel_count1;
10177 if (p->type == bfd_section_reloc_link_order
10178 || p->type == bfd_symbol_reloc_link_order)
10179 reloc_count = 1;
10180 else if (p->type == bfd_indirect_link_order)
10182 asection *sec;
10184 sec = p->u.indirect.section;
10185 esdi = elf_section_data (sec);
10187 /* Mark all sections which are to be included in the
10188 link. This will normally be every section. We need
10189 to do this so that we can identify any sections which
10190 the linker has decided to not include. */
10191 sec->linker_mark = TRUE;
10193 if (sec->flags & SEC_MERGE)
10194 merged = TRUE;
10196 if (info->relocatable || info->emitrelocations)
10197 reloc_count = sec->reloc_count;
10198 else if (bed->elf_backend_count_relocs)
10199 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10201 if (sec->rawsize > max_contents_size)
10202 max_contents_size = sec->rawsize;
10203 if (sec->size > max_contents_size)
10204 max_contents_size = sec->size;
10206 /* We are interested in just local symbols, not all
10207 symbols. */
10208 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10209 && (sec->owner->flags & DYNAMIC) == 0)
10211 size_t sym_count;
10213 if (elf_bad_symtab (sec->owner))
10214 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10215 / bed->s->sizeof_sym);
10216 else
10217 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10219 if (sym_count > max_sym_count)
10220 max_sym_count = sym_count;
10222 if (sym_count > max_sym_shndx_count
10223 && elf_symtab_shndx (sec->owner) != 0)
10224 max_sym_shndx_count = sym_count;
10226 if ((sec->flags & SEC_RELOC) != 0)
10228 size_t ext_size;
10230 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10231 if (ext_size > max_external_reloc_size)
10232 max_external_reloc_size = ext_size;
10233 if (sec->reloc_count > max_internal_reloc_count)
10234 max_internal_reloc_count = sec->reloc_count;
10239 if (reloc_count == 0)
10240 continue;
10242 o->reloc_count += reloc_count;
10244 /* MIPS may have a mix of REL and RELA relocs on sections.
10245 To support this curious ABI we keep reloc counts in
10246 elf_section_data too. We must be careful to add the
10247 relocations from the input section to the right output
10248 count. FIXME: Get rid of one count. We have
10249 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10250 rel_count1 = &esdo->rel_count;
10251 if (esdi != NULL)
10253 bfd_boolean same_size;
10254 bfd_size_type entsize1;
10256 entsize1 = esdi->rel_hdr.sh_entsize;
10257 /* PR 9827: If the header size has not been set yet then
10258 assume that it will match the output section's reloc type. */
10259 if (entsize1 == 0)
10260 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10261 else
10262 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10263 || entsize1 == bed->s->sizeof_rela);
10264 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10266 if (!same_size)
10267 rel_count1 = &esdo->rel_count2;
10269 if (esdi->rel_hdr2 != NULL)
10271 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10272 unsigned int alt_count;
10273 unsigned int *rel_count2;
10275 BFD_ASSERT (entsize2 != entsize1
10276 && (entsize2 == bed->s->sizeof_rel
10277 || entsize2 == bed->s->sizeof_rela));
10279 rel_count2 = &esdo->rel_count2;
10280 if (!same_size)
10281 rel_count2 = &esdo->rel_count;
10283 /* The following is probably too simplistic if the
10284 backend counts output relocs unusually. */
10285 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10286 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10287 *rel_count2 += alt_count;
10288 reloc_count -= alt_count;
10291 *rel_count1 += reloc_count;
10294 if (o->reloc_count > 0)
10295 o->flags |= SEC_RELOC;
10296 else
10298 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10299 set it (this is probably a bug) and if it is set
10300 assign_section_numbers will create a reloc section. */
10301 o->flags &=~ SEC_RELOC;
10304 /* If the SEC_ALLOC flag is not set, force the section VMA to
10305 zero. This is done in elf_fake_sections as well, but forcing
10306 the VMA to 0 here will ensure that relocs against these
10307 sections are handled correctly. */
10308 if ((o->flags & SEC_ALLOC) == 0
10309 && ! o->user_set_vma)
10310 o->vma = 0;
10313 if (! info->relocatable && merged)
10314 elf_link_hash_traverse (elf_hash_table (info),
10315 _bfd_elf_link_sec_merge_syms, abfd);
10317 /* Figure out the file positions for everything but the symbol table
10318 and the relocs. We set symcount to force assign_section_numbers
10319 to create a symbol table. */
10320 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10321 BFD_ASSERT (! abfd->output_has_begun);
10322 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10323 goto error_return;
10325 /* Set sizes, and assign file positions for reloc sections. */
10326 for (o = abfd->sections; o != NULL; o = o->next)
10328 if ((o->flags & SEC_RELOC) != 0)
10330 if (!(_bfd_elf_link_size_reloc_section
10331 (abfd, &elf_section_data (o)->rel_hdr, o)))
10332 goto error_return;
10334 if (elf_section_data (o)->rel_hdr2
10335 && !(_bfd_elf_link_size_reloc_section
10336 (abfd, elf_section_data (o)->rel_hdr2, o)))
10337 goto error_return;
10340 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10341 to count upwards while actually outputting the relocations. */
10342 elf_section_data (o)->rel_count = 0;
10343 elf_section_data (o)->rel_count2 = 0;
10346 _bfd_elf_assign_file_positions_for_relocs (abfd);
10348 /* We have now assigned file positions for all the sections except
10349 .symtab and .strtab. We start the .symtab section at the current
10350 file position, and write directly to it. We build the .strtab
10351 section in memory. */
10352 bfd_get_symcount (abfd) = 0;
10353 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10354 /* sh_name is set in prep_headers. */
10355 symtab_hdr->sh_type = SHT_SYMTAB;
10356 /* sh_flags, sh_addr and sh_size all start off zero. */
10357 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10358 /* sh_link is set in assign_section_numbers. */
10359 /* sh_info is set below. */
10360 /* sh_offset is set just below. */
10361 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10363 off = elf_tdata (abfd)->next_file_pos;
10364 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10366 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10367 incorrect. We do not yet know the size of the .symtab section.
10368 We correct next_file_pos below, after we do know the size. */
10370 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10371 continuously seeking to the right position in the file. */
10372 if (! info->keep_memory || max_sym_count < 20)
10373 finfo.symbuf_size = 20;
10374 else
10375 finfo.symbuf_size = max_sym_count;
10376 amt = finfo.symbuf_size;
10377 amt *= bed->s->sizeof_sym;
10378 finfo.symbuf = bfd_malloc (amt);
10379 if (finfo.symbuf == NULL)
10380 goto error_return;
10381 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10383 /* Wild guess at number of output symbols. realloc'd as needed. */
10384 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10385 finfo.shndxbuf_size = amt;
10386 amt *= sizeof (Elf_External_Sym_Shndx);
10387 finfo.symshndxbuf = bfd_zmalloc (amt);
10388 if (finfo.symshndxbuf == NULL)
10389 goto error_return;
10392 /* Start writing out the symbol table. The first symbol is always a
10393 dummy symbol. */
10394 if (info->strip != strip_all
10395 || emit_relocs)
10397 elfsym.st_value = 0;
10398 elfsym.st_size = 0;
10399 elfsym.st_info = 0;
10400 elfsym.st_other = 0;
10401 elfsym.st_shndx = SHN_UNDEF;
10402 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10403 NULL))
10404 goto error_return;
10407 /* Output a symbol for each section. We output these even if we are
10408 discarding local symbols, since they are used for relocs. These
10409 symbols have no names. We store the index of each one in the
10410 index field of the section, so that we can find it again when
10411 outputting relocs. */
10412 if (info->strip != strip_all
10413 || emit_relocs)
10415 elfsym.st_size = 0;
10416 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10417 elfsym.st_other = 0;
10418 elfsym.st_value = 0;
10419 for (i = 1; i < elf_numsections (abfd); i++)
10421 o = bfd_section_from_elf_index (abfd, i);
10422 if (o != NULL)
10424 o->target_index = bfd_get_symcount (abfd);
10425 elfsym.st_shndx = i;
10426 if (!info->relocatable)
10427 elfsym.st_value = o->vma;
10428 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10429 goto error_return;
10434 /* Allocate some memory to hold information read in from the input
10435 files. */
10436 if (max_contents_size != 0)
10438 finfo.contents = bfd_malloc (max_contents_size);
10439 if (finfo.contents == NULL)
10440 goto error_return;
10443 if (max_external_reloc_size != 0)
10445 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10446 if (finfo.external_relocs == NULL)
10447 goto error_return;
10450 if (max_internal_reloc_count != 0)
10452 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10453 amt *= sizeof (Elf_Internal_Rela);
10454 finfo.internal_relocs = bfd_malloc (amt);
10455 if (finfo.internal_relocs == NULL)
10456 goto error_return;
10459 if (max_sym_count != 0)
10461 amt = max_sym_count * bed->s->sizeof_sym;
10462 finfo.external_syms = bfd_malloc (amt);
10463 if (finfo.external_syms == NULL)
10464 goto error_return;
10466 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10467 finfo.internal_syms = bfd_malloc (amt);
10468 if (finfo.internal_syms == NULL)
10469 goto error_return;
10471 amt = max_sym_count * sizeof (long);
10472 finfo.indices = bfd_malloc (amt);
10473 if (finfo.indices == NULL)
10474 goto error_return;
10476 amt = max_sym_count * sizeof (asection *);
10477 finfo.sections = bfd_malloc (amt);
10478 if (finfo.sections == NULL)
10479 goto error_return;
10482 if (max_sym_shndx_count != 0)
10484 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10485 finfo.locsym_shndx = bfd_malloc (amt);
10486 if (finfo.locsym_shndx == NULL)
10487 goto error_return;
10490 if (elf_hash_table (info)->tls_sec)
10492 bfd_vma base, end = 0;
10493 asection *sec;
10495 for (sec = elf_hash_table (info)->tls_sec;
10496 sec && (sec->flags & SEC_THREAD_LOCAL);
10497 sec = sec->next)
10499 bfd_size_type size = sec->size;
10501 if (size == 0
10502 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10504 struct bfd_link_order *o = sec->map_tail.link_order;
10505 if (o != NULL)
10506 size = o->offset + o->size;
10508 end = sec->vma + size;
10510 base = elf_hash_table (info)->tls_sec->vma;
10511 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10512 elf_hash_table (info)->tls_size = end - base;
10515 /* Reorder SHF_LINK_ORDER sections. */
10516 for (o = abfd->sections; o != NULL; o = o->next)
10518 if (!elf_fixup_link_order (abfd, o))
10519 return FALSE;
10522 /* Since ELF permits relocations to be against local symbols, we
10523 must have the local symbols available when we do the relocations.
10524 Since we would rather only read the local symbols once, and we
10525 would rather not keep them in memory, we handle all the
10526 relocations for a single input file at the same time.
10528 Unfortunately, there is no way to know the total number of local
10529 symbols until we have seen all of them, and the local symbol
10530 indices precede the global symbol indices. This means that when
10531 we are generating relocatable output, and we see a reloc against
10532 a global symbol, we can not know the symbol index until we have
10533 finished examining all the local symbols to see which ones we are
10534 going to output. To deal with this, we keep the relocations in
10535 memory, and don't output them until the end of the link. This is
10536 an unfortunate waste of memory, but I don't see a good way around
10537 it. Fortunately, it only happens when performing a relocatable
10538 link, which is not the common case. FIXME: If keep_memory is set
10539 we could write the relocs out and then read them again; I don't
10540 know how bad the memory loss will be. */
10542 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10543 sub->output_has_begun = FALSE;
10544 for (o = abfd->sections; o != NULL; o = o->next)
10546 for (p = o->map_head.link_order; p != NULL; p = p->next)
10548 if (p->type == bfd_indirect_link_order
10549 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10550 == bfd_target_elf_flavour)
10551 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10553 if (! sub->output_has_begun)
10555 if (! elf_link_input_bfd (&finfo, sub))
10556 goto error_return;
10557 sub->output_has_begun = TRUE;
10560 else if (p->type == bfd_section_reloc_link_order
10561 || p->type == bfd_symbol_reloc_link_order)
10563 if (! elf_reloc_link_order (abfd, info, o, p))
10564 goto error_return;
10566 else
10568 if (! _bfd_default_link_order (abfd, info, o, p))
10569 goto error_return;
10574 /* Free symbol buffer if needed. */
10575 if (!info->reduce_memory_overheads)
10577 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10578 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10579 && elf_tdata (sub)->symbuf)
10581 free (elf_tdata (sub)->symbuf);
10582 elf_tdata (sub)->symbuf = NULL;
10586 /* Output any global symbols that got converted to local in a
10587 version script or due to symbol visibility. We do this in a
10588 separate step since ELF requires all local symbols to appear
10589 prior to any global symbols. FIXME: We should only do this if
10590 some global symbols were, in fact, converted to become local.
10591 FIXME: Will this work correctly with the Irix 5 linker? */
10592 eoinfo.failed = FALSE;
10593 eoinfo.finfo = &finfo;
10594 eoinfo.localsyms = TRUE;
10595 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10596 &eoinfo);
10597 if (eoinfo.failed)
10598 return FALSE;
10600 /* If backend needs to output some local symbols not present in the hash
10601 table, do it now. */
10602 if (bed->elf_backend_output_arch_local_syms)
10604 typedef bfd_boolean (*out_sym_func)
10605 (void *, const char *, Elf_Internal_Sym *, asection *,
10606 struct elf_link_hash_entry *);
10608 if (! ((*bed->elf_backend_output_arch_local_syms)
10609 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10610 return FALSE;
10613 /* That wrote out all the local symbols. Finish up the symbol table
10614 with the global symbols. Even if we want to strip everything we
10615 can, we still need to deal with those global symbols that got
10616 converted to local in a version script. */
10618 /* The sh_info field records the index of the first non local symbol. */
10619 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10621 if (dynamic
10622 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10624 Elf_Internal_Sym sym;
10625 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10626 long last_local = 0;
10628 /* Write out the section symbols for the output sections. */
10629 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10631 asection *s;
10633 sym.st_size = 0;
10634 sym.st_name = 0;
10635 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10636 sym.st_other = 0;
10638 for (s = abfd->sections; s != NULL; s = s->next)
10640 int indx;
10641 bfd_byte *dest;
10642 long dynindx;
10644 dynindx = elf_section_data (s)->dynindx;
10645 if (dynindx <= 0)
10646 continue;
10647 indx = elf_section_data (s)->this_idx;
10648 BFD_ASSERT (indx > 0);
10649 sym.st_shndx = indx;
10650 if (! check_dynsym (abfd, &sym))
10651 return FALSE;
10652 sym.st_value = s->vma;
10653 dest = dynsym + dynindx * bed->s->sizeof_sym;
10654 if (last_local < dynindx)
10655 last_local = dynindx;
10656 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10660 /* Write out the local dynsyms. */
10661 if (elf_hash_table (info)->dynlocal)
10663 struct elf_link_local_dynamic_entry *e;
10664 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10666 asection *s;
10667 bfd_byte *dest;
10669 sym.st_size = e->isym.st_size;
10670 sym.st_other = e->isym.st_other;
10672 /* Copy the internal symbol as is.
10673 Note that we saved a word of storage and overwrote
10674 the original st_name with the dynstr_index. */
10675 sym = e->isym;
10677 s = bfd_section_from_elf_index (e->input_bfd,
10678 e->isym.st_shndx);
10679 if (s != NULL)
10681 sym.st_shndx =
10682 elf_section_data (s->output_section)->this_idx;
10683 if (! check_dynsym (abfd, &sym))
10684 return FALSE;
10685 sym.st_value = (s->output_section->vma
10686 + s->output_offset
10687 + e->isym.st_value);
10690 if (last_local < e->dynindx)
10691 last_local = e->dynindx;
10693 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10694 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10698 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10699 last_local + 1;
10702 /* We get the global symbols from the hash table. */
10703 eoinfo.failed = FALSE;
10704 eoinfo.localsyms = FALSE;
10705 eoinfo.finfo = &finfo;
10706 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10707 &eoinfo);
10708 if (eoinfo.failed)
10709 return FALSE;
10711 /* If backend needs to output some symbols not present in the hash
10712 table, do it now. */
10713 if (bed->elf_backend_output_arch_syms)
10715 typedef bfd_boolean (*out_sym_func)
10716 (void *, const char *, Elf_Internal_Sym *, asection *,
10717 struct elf_link_hash_entry *);
10719 if (! ((*bed->elf_backend_output_arch_syms)
10720 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10721 return FALSE;
10724 /* Flush all symbols to the file. */
10725 if (! elf_link_flush_output_syms (&finfo, bed))
10726 return FALSE;
10728 /* Now we know the size of the symtab section. */
10729 off += symtab_hdr->sh_size;
10731 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10732 if (symtab_shndx_hdr->sh_name != 0)
10734 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10735 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10736 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10737 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10738 symtab_shndx_hdr->sh_size = amt;
10740 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10741 off, TRUE);
10743 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10744 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10745 return FALSE;
10749 /* Finish up and write out the symbol string table (.strtab)
10750 section. */
10751 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10752 /* sh_name was set in prep_headers. */
10753 symstrtab_hdr->sh_type = SHT_STRTAB;
10754 symstrtab_hdr->sh_flags = 0;
10755 symstrtab_hdr->sh_addr = 0;
10756 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10757 symstrtab_hdr->sh_entsize = 0;
10758 symstrtab_hdr->sh_link = 0;
10759 symstrtab_hdr->sh_info = 0;
10760 /* sh_offset is set just below. */
10761 symstrtab_hdr->sh_addralign = 1;
10763 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10764 elf_tdata (abfd)->next_file_pos = off;
10766 if (bfd_get_symcount (abfd) > 0)
10768 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10769 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10770 return FALSE;
10773 /* Adjust the relocs to have the correct symbol indices. */
10774 for (o = abfd->sections; o != NULL; o = o->next)
10776 if ((o->flags & SEC_RELOC) == 0)
10777 continue;
10779 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10780 elf_section_data (o)->rel_count,
10781 elf_section_data (o)->rel_hashes);
10782 if (elf_section_data (o)->rel_hdr2 != NULL)
10783 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10784 elf_section_data (o)->rel_count2,
10785 (elf_section_data (o)->rel_hashes
10786 + elf_section_data (o)->rel_count));
10788 /* Set the reloc_count field to 0 to prevent write_relocs from
10789 trying to swap the relocs out itself. */
10790 o->reloc_count = 0;
10793 if (dynamic && info->combreloc && dynobj != NULL)
10794 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10796 /* If we are linking against a dynamic object, or generating a
10797 shared library, finish up the dynamic linking information. */
10798 if (dynamic)
10800 bfd_byte *dyncon, *dynconend;
10802 /* Fix up .dynamic entries. */
10803 o = bfd_get_section_by_name (dynobj, ".dynamic");
10804 BFD_ASSERT (o != NULL);
10806 dyncon = o->contents;
10807 dynconend = o->contents + o->size;
10808 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10810 Elf_Internal_Dyn dyn;
10811 const char *name;
10812 unsigned int type;
10814 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10816 switch (dyn.d_tag)
10818 default:
10819 continue;
10820 case DT_NULL:
10821 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10823 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10825 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10826 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10827 default: continue;
10829 dyn.d_un.d_val = relativecount;
10830 relativecount = 0;
10831 break;
10833 continue;
10835 case DT_INIT:
10836 name = info->init_function;
10837 goto get_sym;
10838 case DT_FINI:
10839 name = info->fini_function;
10840 get_sym:
10842 struct elf_link_hash_entry *h;
10844 h = elf_link_hash_lookup (elf_hash_table (info), name,
10845 FALSE, FALSE, TRUE);
10846 if (h != NULL
10847 && (h->root.type == bfd_link_hash_defined
10848 || h->root.type == bfd_link_hash_defweak))
10850 dyn.d_un.d_ptr = h->root.u.def.value;
10851 o = h->root.u.def.section;
10852 if (o->output_section != NULL)
10853 dyn.d_un.d_ptr += (o->output_section->vma
10854 + o->output_offset);
10855 else
10857 /* The symbol is imported from another shared
10858 library and does not apply to this one. */
10859 dyn.d_un.d_ptr = 0;
10861 break;
10864 continue;
10866 case DT_PREINIT_ARRAYSZ:
10867 name = ".preinit_array";
10868 goto get_size;
10869 case DT_INIT_ARRAYSZ:
10870 name = ".init_array";
10871 goto get_size;
10872 case DT_FINI_ARRAYSZ:
10873 name = ".fini_array";
10874 get_size:
10875 o = bfd_get_section_by_name (abfd, name);
10876 if (o == NULL)
10878 (*_bfd_error_handler)
10879 (_("%B: could not find output section %s"), abfd, name);
10880 goto error_return;
10882 if (o->size == 0)
10883 (*_bfd_error_handler)
10884 (_("warning: %s section has zero size"), name);
10885 dyn.d_un.d_val = o->size;
10886 break;
10888 case DT_PREINIT_ARRAY:
10889 name = ".preinit_array";
10890 goto get_vma;
10891 case DT_INIT_ARRAY:
10892 name = ".init_array";
10893 goto get_vma;
10894 case DT_FINI_ARRAY:
10895 name = ".fini_array";
10896 goto get_vma;
10898 case DT_HASH:
10899 name = ".hash";
10900 goto get_vma;
10901 case DT_GNU_HASH:
10902 name = ".gnu.hash";
10903 goto get_vma;
10904 case DT_STRTAB:
10905 name = ".dynstr";
10906 goto get_vma;
10907 case DT_SYMTAB:
10908 name = ".dynsym";
10909 goto get_vma;
10910 case DT_VERDEF:
10911 name = ".gnu.version_d";
10912 goto get_vma;
10913 case DT_VERNEED:
10914 name = ".gnu.version_r";
10915 goto get_vma;
10916 case DT_VERSYM:
10917 name = ".gnu.version";
10918 get_vma:
10919 o = bfd_get_section_by_name (abfd, name);
10920 if (o == NULL)
10922 (*_bfd_error_handler)
10923 (_("%B: could not find output section %s"), abfd, name);
10924 goto error_return;
10926 dyn.d_un.d_ptr = o->vma;
10927 break;
10929 case DT_REL:
10930 case DT_RELA:
10931 case DT_RELSZ:
10932 case DT_RELASZ:
10933 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10934 type = SHT_REL;
10935 else
10936 type = SHT_RELA;
10937 dyn.d_un.d_val = 0;
10938 dyn.d_un.d_ptr = 0;
10939 for (i = 1; i < elf_numsections (abfd); i++)
10941 Elf_Internal_Shdr *hdr;
10943 hdr = elf_elfsections (abfd)[i];
10944 if (hdr->sh_type == type
10945 && (hdr->sh_flags & SHF_ALLOC) != 0)
10947 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10948 dyn.d_un.d_val += hdr->sh_size;
10949 else
10951 if (dyn.d_un.d_ptr == 0
10952 || hdr->sh_addr < dyn.d_un.d_ptr)
10953 dyn.d_un.d_ptr = hdr->sh_addr;
10957 break;
10959 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10963 /* If we have created any dynamic sections, then output them. */
10964 if (dynobj != NULL)
10966 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10967 goto error_return;
10969 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10970 if (info->warn_shared_textrel && info->shared)
10972 bfd_byte *dyncon, *dynconend;
10974 /* Fix up .dynamic entries. */
10975 o = bfd_get_section_by_name (dynobj, ".dynamic");
10976 BFD_ASSERT (o != NULL);
10978 dyncon = o->contents;
10979 dynconend = o->contents + o->size;
10980 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10982 Elf_Internal_Dyn dyn;
10984 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10986 if (dyn.d_tag == DT_TEXTREL)
10988 info->callbacks->einfo
10989 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10990 break;
10995 for (o = dynobj->sections; o != NULL; o = o->next)
10997 if ((o->flags & SEC_HAS_CONTENTS) == 0
10998 || o->size == 0
10999 || o->output_section == bfd_abs_section_ptr)
11000 continue;
11001 if ((o->flags & SEC_LINKER_CREATED) == 0)
11003 /* At this point, we are only interested in sections
11004 created by _bfd_elf_link_create_dynamic_sections. */
11005 continue;
11007 if (elf_hash_table (info)->stab_info.stabstr == o)
11008 continue;
11009 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11010 continue;
11011 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11012 != SHT_STRTAB)
11013 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11015 if (! bfd_set_section_contents (abfd, o->output_section,
11016 o->contents,
11017 (file_ptr) o->output_offset,
11018 o->size))
11019 goto error_return;
11021 else
11023 /* The contents of the .dynstr section are actually in a
11024 stringtab. */
11025 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11026 if (bfd_seek (abfd, off, SEEK_SET) != 0
11027 || ! _bfd_elf_strtab_emit (abfd,
11028 elf_hash_table (info)->dynstr))
11029 goto error_return;
11034 if (info->relocatable)
11036 bfd_boolean failed = FALSE;
11038 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11039 if (failed)
11040 goto error_return;
11043 /* If we have optimized stabs strings, output them. */
11044 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11046 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11047 goto error_return;
11050 if (info->eh_frame_hdr)
11052 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11053 goto error_return;
11056 if (finfo.symstrtab != NULL)
11057 _bfd_stringtab_free (finfo.symstrtab);
11058 if (finfo.contents != NULL)
11059 free (finfo.contents);
11060 if (finfo.external_relocs != NULL)
11061 free (finfo.external_relocs);
11062 if (finfo.internal_relocs != NULL)
11063 free (finfo.internal_relocs);
11064 if (finfo.external_syms != NULL)
11065 free (finfo.external_syms);
11066 if (finfo.locsym_shndx != NULL)
11067 free (finfo.locsym_shndx);
11068 if (finfo.internal_syms != NULL)
11069 free (finfo.internal_syms);
11070 if (finfo.indices != NULL)
11071 free (finfo.indices);
11072 if (finfo.sections != NULL)
11073 free (finfo.sections);
11074 if (finfo.symbuf != NULL)
11075 free (finfo.symbuf);
11076 if (finfo.symshndxbuf != NULL)
11077 free (finfo.symshndxbuf);
11078 for (o = abfd->sections; o != NULL; o = o->next)
11080 if ((o->flags & SEC_RELOC) != 0
11081 && elf_section_data (o)->rel_hashes != NULL)
11082 free (elf_section_data (o)->rel_hashes);
11085 elf_tdata (abfd)->linker = TRUE;
11087 if (attr_section)
11089 bfd_byte *contents = bfd_malloc (attr_size);
11090 if (contents == NULL)
11091 return FALSE; /* Bail out and fail. */
11092 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11093 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11094 free (contents);
11097 return TRUE;
11099 error_return:
11100 if (finfo.symstrtab != NULL)
11101 _bfd_stringtab_free (finfo.symstrtab);
11102 if (finfo.contents != NULL)
11103 free (finfo.contents);
11104 if (finfo.external_relocs != NULL)
11105 free (finfo.external_relocs);
11106 if (finfo.internal_relocs != NULL)
11107 free (finfo.internal_relocs);
11108 if (finfo.external_syms != NULL)
11109 free (finfo.external_syms);
11110 if (finfo.locsym_shndx != NULL)
11111 free (finfo.locsym_shndx);
11112 if (finfo.internal_syms != NULL)
11113 free (finfo.internal_syms);
11114 if (finfo.indices != NULL)
11115 free (finfo.indices);
11116 if (finfo.sections != NULL)
11117 free (finfo.sections);
11118 if (finfo.symbuf != NULL)
11119 free (finfo.symbuf);
11120 if (finfo.symshndxbuf != NULL)
11121 free (finfo.symshndxbuf);
11122 for (o = abfd->sections; o != NULL; o = o->next)
11124 if ((o->flags & SEC_RELOC) != 0
11125 && elf_section_data (o)->rel_hashes != NULL)
11126 free (elf_section_data (o)->rel_hashes);
11129 return FALSE;
11132 /* Initialize COOKIE for input bfd ABFD. */
11134 static bfd_boolean
11135 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11136 struct bfd_link_info *info, bfd *abfd)
11138 Elf_Internal_Shdr *symtab_hdr;
11139 const struct elf_backend_data *bed;
11141 bed = get_elf_backend_data (abfd);
11142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11144 cookie->abfd = abfd;
11145 cookie->sym_hashes = elf_sym_hashes (abfd);
11146 cookie->bad_symtab = elf_bad_symtab (abfd);
11147 if (cookie->bad_symtab)
11149 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11150 cookie->extsymoff = 0;
11152 else
11154 cookie->locsymcount = symtab_hdr->sh_info;
11155 cookie->extsymoff = symtab_hdr->sh_info;
11158 if (bed->s->arch_size == 32)
11159 cookie->r_sym_shift = 8;
11160 else
11161 cookie->r_sym_shift = 32;
11163 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11164 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11166 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11167 cookie->locsymcount, 0,
11168 NULL, NULL, NULL);
11169 if (cookie->locsyms == NULL)
11171 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11172 return FALSE;
11174 if (info->keep_memory)
11175 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11177 return TRUE;
11180 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11182 static void
11183 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11185 Elf_Internal_Shdr *symtab_hdr;
11187 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11188 if (cookie->locsyms != NULL
11189 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11190 free (cookie->locsyms);
11193 /* Initialize the relocation information in COOKIE for input section SEC
11194 of input bfd ABFD. */
11196 static bfd_boolean
11197 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11198 struct bfd_link_info *info, bfd *abfd,
11199 asection *sec)
11201 const struct elf_backend_data *bed;
11203 if (sec->reloc_count == 0)
11205 cookie->rels = NULL;
11206 cookie->relend = NULL;
11208 else
11210 bed = get_elf_backend_data (abfd);
11212 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11213 info->keep_memory);
11214 if (cookie->rels == NULL)
11215 return FALSE;
11216 cookie->rel = cookie->rels;
11217 cookie->relend = (cookie->rels
11218 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11220 cookie->rel = cookie->rels;
11221 return TRUE;
11224 /* Free the memory allocated by init_reloc_cookie_rels,
11225 if appropriate. */
11227 static void
11228 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11229 asection *sec)
11231 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11232 free (cookie->rels);
11235 /* Initialize the whole of COOKIE for input section SEC. */
11237 static bfd_boolean
11238 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11239 struct bfd_link_info *info,
11240 asection *sec)
11242 if (!init_reloc_cookie (cookie, info, sec->owner))
11243 goto error1;
11244 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11245 goto error2;
11246 return TRUE;
11248 error2:
11249 fini_reloc_cookie (cookie, sec->owner);
11250 error1:
11251 return FALSE;
11254 /* Free the memory allocated by init_reloc_cookie_for_section,
11255 if appropriate. */
11257 static void
11258 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11259 asection *sec)
11261 fini_reloc_cookie_rels (cookie, sec);
11262 fini_reloc_cookie (cookie, sec->owner);
11265 /* Garbage collect unused sections. */
11267 /* Default gc_mark_hook. */
11269 asection *
11270 _bfd_elf_gc_mark_hook (asection *sec,
11271 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11272 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11273 struct elf_link_hash_entry *h,
11274 Elf_Internal_Sym *sym)
11276 if (h != NULL)
11278 switch (h->root.type)
11280 case bfd_link_hash_defined:
11281 case bfd_link_hash_defweak:
11282 return h->root.u.def.section;
11284 case bfd_link_hash_common:
11285 return h->root.u.c.p->section;
11287 default:
11288 break;
11291 else
11292 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11294 return NULL;
11297 /* COOKIE->rel describes a relocation against section SEC, which is
11298 a section we've decided to keep. Return the section that contains
11299 the relocation symbol, or NULL if no section contains it. */
11301 asection *
11302 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11303 elf_gc_mark_hook_fn gc_mark_hook,
11304 struct elf_reloc_cookie *cookie)
11306 unsigned long r_symndx;
11307 struct elf_link_hash_entry *h;
11309 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11310 if (r_symndx == 0)
11311 return NULL;
11313 if (r_symndx >= cookie->locsymcount
11314 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11316 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11317 while (h->root.type == bfd_link_hash_indirect
11318 || h->root.type == bfd_link_hash_warning)
11319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11320 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11323 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11324 &cookie->locsyms[r_symndx]);
11327 /* COOKIE->rel describes a relocation against section SEC, which is
11328 a section we've decided to keep. Mark the section that contains
11329 the relocation symbol. */
11331 bfd_boolean
11332 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11333 asection *sec,
11334 elf_gc_mark_hook_fn gc_mark_hook,
11335 struct elf_reloc_cookie *cookie)
11337 asection *rsec;
11339 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11340 if (rsec && !rsec->gc_mark)
11342 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11343 rsec->gc_mark = 1;
11344 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11345 return FALSE;
11347 return TRUE;
11350 /* The mark phase of garbage collection. For a given section, mark
11351 it and any sections in this section's group, and all the sections
11352 which define symbols to which it refers. */
11354 bfd_boolean
11355 _bfd_elf_gc_mark (struct bfd_link_info *info,
11356 asection *sec,
11357 elf_gc_mark_hook_fn gc_mark_hook)
11359 bfd_boolean ret;
11360 asection *group_sec, *eh_frame;
11362 sec->gc_mark = 1;
11364 /* Mark all the sections in the group. */
11365 group_sec = elf_section_data (sec)->next_in_group;
11366 if (group_sec && !group_sec->gc_mark)
11367 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11368 return FALSE;
11370 /* Look through the section relocs. */
11371 ret = TRUE;
11372 eh_frame = elf_eh_frame_section (sec->owner);
11373 if ((sec->flags & SEC_RELOC) != 0
11374 && sec->reloc_count > 0
11375 && sec != eh_frame)
11377 struct elf_reloc_cookie cookie;
11379 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11380 ret = FALSE;
11381 else
11383 for (; cookie.rel < cookie.relend; cookie.rel++)
11384 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11386 ret = FALSE;
11387 break;
11389 fini_reloc_cookie_for_section (&cookie, sec);
11393 if (ret && eh_frame && elf_fde_list (sec))
11395 struct elf_reloc_cookie cookie;
11397 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11398 ret = FALSE;
11399 else
11401 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11402 gc_mark_hook, &cookie))
11403 ret = FALSE;
11404 fini_reloc_cookie_for_section (&cookie, eh_frame);
11408 return ret;
11411 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11413 struct elf_gc_sweep_symbol_info
11415 struct bfd_link_info *info;
11416 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11417 bfd_boolean);
11420 static bfd_boolean
11421 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11423 if (h->root.type == bfd_link_hash_warning)
11424 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11426 if ((h->root.type == bfd_link_hash_defined
11427 || h->root.type == bfd_link_hash_defweak)
11428 && !h->root.u.def.section->gc_mark
11429 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11431 struct elf_gc_sweep_symbol_info *inf = data;
11432 (*inf->hide_symbol) (inf->info, h, TRUE);
11435 return TRUE;
11438 /* The sweep phase of garbage collection. Remove all garbage sections. */
11440 typedef bfd_boolean (*gc_sweep_hook_fn)
11441 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11443 static bfd_boolean
11444 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11446 bfd *sub;
11447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11448 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11449 unsigned long section_sym_count;
11450 struct elf_gc_sweep_symbol_info sweep_info;
11452 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11454 asection *o;
11456 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11457 continue;
11459 for (o = sub->sections; o != NULL; o = o->next)
11461 /* When any section in a section group is kept, we keep all
11462 sections in the section group. If the first member of
11463 the section group is excluded, we will also exclude the
11464 group section. */
11465 if (o->flags & SEC_GROUP)
11467 asection *first = elf_next_in_group (o);
11468 o->gc_mark = first->gc_mark;
11470 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11471 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11473 /* Keep debug and special sections. */
11474 o->gc_mark = 1;
11477 if (o->gc_mark)
11478 continue;
11480 /* Skip sweeping sections already excluded. */
11481 if (o->flags & SEC_EXCLUDE)
11482 continue;
11484 /* Since this is early in the link process, it is simple
11485 to remove a section from the output. */
11486 o->flags |= SEC_EXCLUDE;
11488 if (info->print_gc_sections && o->size != 0)
11489 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11491 /* But we also have to update some of the relocation
11492 info we collected before. */
11493 if (gc_sweep_hook
11494 && (o->flags & SEC_RELOC) != 0
11495 && o->reloc_count > 0
11496 && !bfd_is_abs_section (o->output_section))
11498 Elf_Internal_Rela *internal_relocs;
11499 bfd_boolean r;
11501 internal_relocs
11502 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11503 info->keep_memory);
11504 if (internal_relocs == NULL)
11505 return FALSE;
11507 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11509 if (elf_section_data (o)->relocs != internal_relocs)
11510 free (internal_relocs);
11512 if (!r)
11513 return FALSE;
11518 /* Remove the symbols that were in the swept sections from the dynamic
11519 symbol table. GCFIXME: Anyone know how to get them out of the
11520 static symbol table as well? */
11521 sweep_info.info = info;
11522 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11523 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11524 &sweep_info);
11526 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11527 return TRUE;
11530 /* Propagate collected vtable information. This is called through
11531 elf_link_hash_traverse. */
11533 static bfd_boolean
11534 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11536 if (h->root.type == bfd_link_hash_warning)
11537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11539 /* Those that are not vtables. */
11540 if (h->vtable == NULL || h->vtable->parent == NULL)
11541 return TRUE;
11543 /* Those vtables that do not have parents, we cannot merge. */
11544 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11545 return TRUE;
11547 /* If we've already been done, exit. */
11548 if (h->vtable->used && h->vtable->used[-1])
11549 return TRUE;
11551 /* Make sure the parent's table is up to date. */
11552 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11554 if (h->vtable->used == NULL)
11556 /* None of this table's entries were referenced. Re-use the
11557 parent's table. */
11558 h->vtable->used = h->vtable->parent->vtable->used;
11559 h->vtable->size = h->vtable->parent->vtable->size;
11561 else
11563 size_t n;
11564 bfd_boolean *cu, *pu;
11566 /* Or the parent's entries into ours. */
11567 cu = h->vtable->used;
11568 cu[-1] = TRUE;
11569 pu = h->vtable->parent->vtable->used;
11570 if (pu != NULL)
11572 const struct elf_backend_data *bed;
11573 unsigned int log_file_align;
11575 bed = get_elf_backend_data (h->root.u.def.section->owner);
11576 log_file_align = bed->s->log_file_align;
11577 n = h->vtable->parent->vtable->size >> log_file_align;
11578 while (n--)
11580 if (*pu)
11581 *cu = TRUE;
11582 pu++;
11583 cu++;
11588 return TRUE;
11591 static bfd_boolean
11592 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11594 asection *sec;
11595 bfd_vma hstart, hend;
11596 Elf_Internal_Rela *relstart, *relend, *rel;
11597 const struct elf_backend_data *bed;
11598 unsigned int log_file_align;
11600 if (h->root.type == bfd_link_hash_warning)
11601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11603 /* Take care of both those symbols that do not describe vtables as
11604 well as those that are not loaded. */
11605 if (h->vtable == NULL || h->vtable->parent == NULL)
11606 return TRUE;
11608 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11609 || h->root.type == bfd_link_hash_defweak);
11611 sec = h->root.u.def.section;
11612 hstart = h->root.u.def.value;
11613 hend = hstart + h->size;
11615 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11616 if (!relstart)
11617 return *(bfd_boolean *) okp = FALSE;
11618 bed = get_elf_backend_data (sec->owner);
11619 log_file_align = bed->s->log_file_align;
11621 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11623 for (rel = relstart; rel < relend; ++rel)
11624 if (rel->r_offset >= hstart && rel->r_offset < hend)
11626 /* If the entry is in use, do nothing. */
11627 if (h->vtable->used
11628 && (rel->r_offset - hstart) < h->vtable->size)
11630 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11631 if (h->vtable->used[entry])
11632 continue;
11634 /* Otherwise, kill it. */
11635 rel->r_offset = rel->r_info = rel->r_addend = 0;
11638 return TRUE;
11641 /* Mark sections containing dynamically referenced symbols. When
11642 building shared libraries, we must assume that any visible symbol is
11643 referenced. */
11645 bfd_boolean
11646 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11648 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11650 if (h->root.type == bfd_link_hash_warning)
11651 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11653 if ((h->root.type == bfd_link_hash_defined
11654 || h->root.type == bfd_link_hash_defweak)
11655 && (h->ref_dynamic
11656 || (!info->executable
11657 && h->def_regular
11658 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11659 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11660 h->root.u.def.section->flags |= SEC_KEEP;
11662 return TRUE;
11665 /* Keep all sections containing symbols undefined on the command-line,
11666 and the section containing the entry symbol. */
11668 void
11669 _bfd_elf_gc_keep (struct bfd_link_info *info)
11671 struct bfd_sym_chain *sym;
11673 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11675 struct elf_link_hash_entry *h;
11677 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11678 FALSE, FALSE, FALSE);
11680 if (h != NULL
11681 && (h->root.type == bfd_link_hash_defined
11682 || h->root.type == bfd_link_hash_defweak)
11683 && !bfd_is_abs_section (h->root.u.def.section))
11684 h->root.u.def.section->flags |= SEC_KEEP;
11688 /* Do mark and sweep of unused sections. */
11690 bfd_boolean
11691 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11693 bfd_boolean ok = TRUE;
11694 bfd *sub;
11695 elf_gc_mark_hook_fn gc_mark_hook;
11696 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11698 if (!bed->can_gc_sections
11699 || !is_elf_hash_table (info->hash))
11701 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11702 return TRUE;
11705 bed->gc_keep (info);
11707 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11708 at the .eh_frame section if we can mark the FDEs individually. */
11709 _bfd_elf_begin_eh_frame_parsing (info);
11710 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11712 asection *sec;
11713 struct elf_reloc_cookie cookie;
11715 sec = bfd_get_section_by_name (sub, ".eh_frame");
11716 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11718 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11719 if (elf_section_data (sec)->sec_info)
11720 elf_eh_frame_section (sub) = sec;
11721 fini_reloc_cookie_for_section (&cookie, sec);
11724 _bfd_elf_end_eh_frame_parsing (info);
11726 /* Apply transitive closure to the vtable entry usage info. */
11727 elf_link_hash_traverse (elf_hash_table (info),
11728 elf_gc_propagate_vtable_entries_used,
11729 &ok);
11730 if (!ok)
11731 return FALSE;
11733 /* Kill the vtable relocations that were not used. */
11734 elf_link_hash_traverse (elf_hash_table (info),
11735 elf_gc_smash_unused_vtentry_relocs,
11736 &ok);
11737 if (!ok)
11738 return FALSE;
11740 /* Mark dynamically referenced symbols. */
11741 if (elf_hash_table (info)->dynamic_sections_created)
11742 elf_link_hash_traverse (elf_hash_table (info),
11743 bed->gc_mark_dynamic_ref,
11744 info);
11746 /* Grovel through relocs to find out who stays ... */
11747 gc_mark_hook = bed->gc_mark_hook;
11748 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11750 asection *o;
11752 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11753 continue;
11755 for (o = sub->sections; o != NULL; o = o->next)
11756 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11757 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11758 return FALSE;
11761 /* Allow the backend to mark additional target specific sections. */
11762 if (bed->gc_mark_extra_sections)
11763 bed->gc_mark_extra_sections (info, gc_mark_hook);
11765 /* ... and mark SEC_EXCLUDE for those that go. */
11766 return elf_gc_sweep (abfd, info);
11769 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11771 bfd_boolean
11772 bfd_elf_gc_record_vtinherit (bfd *abfd,
11773 asection *sec,
11774 struct elf_link_hash_entry *h,
11775 bfd_vma offset)
11777 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11778 struct elf_link_hash_entry **search, *child;
11779 bfd_size_type extsymcount;
11780 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11782 /* The sh_info field of the symtab header tells us where the
11783 external symbols start. We don't care about the local symbols at
11784 this point. */
11785 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11786 if (!elf_bad_symtab (abfd))
11787 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11789 sym_hashes = elf_sym_hashes (abfd);
11790 sym_hashes_end = sym_hashes + extsymcount;
11792 /* Hunt down the child symbol, which is in this section at the same
11793 offset as the relocation. */
11794 for (search = sym_hashes; search != sym_hashes_end; ++search)
11796 if ((child = *search) != NULL
11797 && (child->root.type == bfd_link_hash_defined
11798 || child->root.type == bfd_link_hash_defweak)
11799 && child->root.u.def.section == sec
11800 && child->root.u.def.value == offset)
11801 goto win;
11804 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11805 abfd, sec, (unsigned long) offset);
11806 bfd_set_error (bfd_error_invalid_operation);
11807 return FALSE;
11809 win:
11810 if (!child->vtable)
11812 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11813 if (!child->vtable)
11814 return FALSE;
11816 if (!h)
11818 /* This *should* only be the absolute section. It could potentially
11819 be that someone has defined a non-global vtable though, which
11820 would be bad. It isn't worth paging in the local symbols to be
11821 sure though; that case should simply be handled by the assembler. */
11823 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11825 else
11826 child->vtable->parent = h;
11828 return TRUE;
11831 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11833 bfd_boolean
11834 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11835 asection *sec ATTRIBUTE_UNUSED,
11836 struct elf_link_hash_entry *h,
11837 bfd_vma addend)
11839 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11840 unsigned int log_file_align = bed->s->log_file_align;
11842 if (!h->vtable)
11844 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11845 if (!h->vtable)
11846 return FALSE;
11849 if (addend >= h->vtable->size)
11851 size_t size, bytes, file_align;
11852 bfd_boolean *ptr = h->vtable->used;
11854 /* While the symbol is undefined, we have to be prepared to handle
11855 a zero size. */
11856 file_align = 1 << log_file_align;
11857 if (h->root.type == bfd_link_hash_undefined)
11858 size = addend + file_align;
11859 else
11861 size = h->size;
11862 if (addend >= size)
11864 /* Oops! We've got a reference past the defined end of
11865 the table. This is probably a bug -- shall we warn? */
11866 size = addend + file_align;
11869 size = (size + file_align - 1) & -file_align;
11871 /* Allocate one extra entry for use as a "done" flag for the
11872 consolidation pass. */
11873 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11875 if (ptr)
11877 ptr = bfd_realloc (ptr - 1, bytes);
11879 if (ptr != NULL)
11881 size_t oldbytes;
11883 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11884 * sizeof (bfd_boolean));
11885 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11888 else
11889 ptr = bfd_zmalloc (bytes);
11891 if (ptr == NULL)
11892 return FALSE;
11894 /* And arrange for that done flag to be at index -1. */
11895 h->vtable->used = ptr + 1;
11896 h->vtable->size = size;
11899 h->vtable->used[addend >> log_file_align] = TRUE;
11901 return TRUE;
11904 struct alloc_got_off_arg {
11905 bfd_vma gotoff;
11906 struct bfd_link_info *info;
11909 /* We need a special top-level link routine to convert got reference counts
11910 to real got offsets. */
11912 static bfd_boolean
11913 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11915 struct alloc_got_off_arg *gofarg = arg;
11916 bfd *obfd = gofarg->info->output_bfd;
11917 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11919 if (h->root.type == bfd_link_hash_warning)
11920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11922 if (h->got.refcount > 0)
11924 h->got.offset = gofarg->gotoff;
11925 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11927 else
11928 h->got.offset = (bfd_vma) -1;
11930 return TRUE;
11933 /* And an accompanying bit to work out final got entry offsets once
11934 we're done. Should be called from final_link. */
11936 bfd_boolean
11937 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11938 struct bfd_link_info *info)
11940 bfd *i;
11941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11942 bfd_vma gotoff;
11943 struct alloc_got_off_arg gofarg;
11945 BFD_ASSERT (abfd == info->output_bfd);
11947 if (! is_elf_hash_table (info->hash))
11948 return FALSE;
11950 /* The GOT offset is relative to the .got section, but the GOT header is
11951 put into the .got.plt section, if the backend uses it. */
11952 if (bed->want_got_plt)
11953 gotoff = 0;
11954 else
11955 gotoff = bed->got_header_size;
11957 /* Do the local .got entries first. */
11958 for (i = info->input_bfds; i; i = i->link_next)
11960 bfd_signed_vma *local_got;
11961 bfd_size_type j, locsymcount;
11962 Elf_Internal_Shdr *symtab_hdr;
11964 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11965 continue;
11967 local_got = elf_local_got_refcounts (i);
11968 if (!local_got)
11969 continue;
11971 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11972 if (elf_bad_symtab (i))
11973 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11974 else
11975 locsymcount = symtab_hdr->sh_info;
11977 for (j = 0; j < locsymcount; ++j)
11979 if (local_got[j] > 0)
11981 local_got[j] = gotoff;
11982 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11984 else
11985 local_got[j] = (bfd_vma) -1;
11989 /* Then the global .got entries. .plt refcounts are handled by
11990 adjust_dynamic_symbol */
11991 gofarg.gotoff = gotoff;
11992 gofarg.info = info;
11993 elf_link_hash_traverse (elf_hash_table (info),
11994 elf_gc_allocate_got_offsets,
11995 &gofarg);
11996 return TRUE;
11999 /* Many folk need no more in the way of final link than this, once
12000 got entry reference counting is enabled. */
12002 bfd_boolean
12003 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12005 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12006 return FALSE;
12008 /* Invoke the regular ELF backend linker to do all the work. */
12009 return bfd_elf_final_link (abfd, info);
12012 bfd_boolean
12013 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12015 struct elf_reloc_cookie *rcookie = cookie;
12017 if (rcookie->bad_symtab)
12018 rcookie->rel = rcookie->rels;
12020 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12022 unsigned long r_symndx;
12024 if (! rcookie->bad_symtab)
12025 if (rcookie->rel->r_offset > offset)
12026 return FALSE;
12027 if (rcookie->rel->r_offset != offset)
12028 continue;
12030 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12031 if (r_symndx == SHN_UNDEF)
12032 return TRUE;
12034 if (r_symndx >= rcookie->locsymcount
12035 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12037 struct elf_link_hash_entry *h;
12039 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12041 while (h->root.type == bfd_link_hash_indirect
12042 || h->root.type == bfd_link_hash_warning)
12043 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12045 if ((h->root.type == bfd_link_hash_defined
12046 || h->root.type == bfd_link_hash_defweak)
12047 && elf_discarded_section (h->root.u.def.section))
12048 return TRUE;
12049 else
12050 return FALSE;
12052 else
12054 /* It's not a relocation against a global symbol,
12055 but it could be a relocation against a local
12056 symbol for a discarded section. */
12057 asection *isec;
12058 Elf_Internal_Sym *isym;
12060 /* Need to: get the symbol; get the section. */
12061 isym = &rcookie->locsyms[r_symndx];
12062 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12063 if (isec != NULL && elf_discarded_section (isec))
12064 return TRUE;
12066 return FALSE;
12068 return FALSE;
12071 /* Discard unneeded references to discarded sections.
12072 Returns TRUE if any section's size was changed. */
12073 /* This function assumes that the relocations are in sorted order,
12074 which is true for all known assemblers. */
12076 bfd_boolean
12077 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12079 struct elf_reloc_cookie cookie;
12080 asection *stab, *eh;
12081 const struct elf_backend_data *bed;
12082 bfd *abfd;
12083 bfd_boolean ret = FALSE;
12085 if (info->traditional_format
12086 || !is_elf_hash_table (info->hash))
12087 return FALSE;
12089 _bfd_elf_begin_eh_frame_parsing (info);
12090 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12092 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12093 continue;
12095 bed = get_elf_backend_data (abfd);
12097 if ((abfd->flags & DYNAMIC) != 0)
12098 continue;
12100 eh = NULL;
12101 if (!info->relocatable)
12103 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12104 if (eh != NULL
12105 && (eh->size == 0
12106 || bfd_is_abs_section (eh->output_section)))
12107 eh = NULL;
12110 stab = bfd_get_section_by_name (abfd, ".stab");
12111 if (stab != NULL
12112 && (stab->size == 0
12113 || bfd_is_abs_section (stab->output_section)
12114 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12115 stab = NULL;
12117 if (stab == NULL
12118 && eh == NULL
12119 && bed->elf_backend_discard_info == NULL)
12120 continue;
12122 if (!init_reloc_cookie (&cookie, info, abfd))
12123 return FALSE;
12125 if (stab != NULL
12126 && stab->reloc_count > 0
12127 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12129 if (_bfd_discard_section_stabs (abfd, stab,
12130 elf_section_data (stab)->sec_info,
12131 bfd_elf_reloc_symbol_deleted_p,
12132 &cookie))
12133 ret = TRUE;
12134 fini_reloc_cookie_rels (&cookie, stab);
12137 if (eh != NULL
12138 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12140 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12141 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12142 bfd_elf_reloc_symbol_deleted_p,
12143 &cookie))
12144 ret = TRUE;
12145 fini_reloc_cookie_rels (&cookie, eh);
12148 if (bed->elf_backend_discard_info != NULL
12149 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12150 ret = TRUE;
12152 fini_reloc_cookie (&cookie, abfd);
12154 _bfd_elf_end_eh_frame_parsing (info);
12156 if (info->eh_frame_hdr
12157 && !info->relocatable
12158 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12159 ret = TRUE;
12161 return ret;
12164 /* For a SHT_GROUP section, return the group signature. For other
12165 sections, return the normal section name. */
12167 static const char *
12168 section_signature (asection *sec)
12170 if ((sec->flags & SEC_GROUP) != 0
12171 && elf_next_in_group (sec) != NULL
12172 && elf_group_name (elf_next_in_group (sec)) != NULL)
12173 return elf_group_name (elf_next_in_group (sec));
12174 return sec->name;
12177 void
12178 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12179 struct bfd_link_info *info)
12181 flagword flags;
12182 const char *name, *p;
12183 struct bfd_section_already_linked *l;
12184 struct bfd_section_already_linked_hash_entry *already_linked_list;
12186 if (sec->output_section == bfd_abs_section_ptr)
12187 return;
12189 flags = sec->flags;
12191 /* Return if it isn't a linkonce section. A comdat group section
12192 also has SEC_LINK_ONCE set. */
12193 if ((flags & SEC_LINK_ONCE) == 0)
12194 return;
12196 /* Don't put group member sections on our list of already linked
12197 sections. They are handled as a group via their group section. */
12198 if (elf_sec_group (sec) != NULL)
12199 return;
12201 /* FIXME: When doing a relocatable link, we may have trouble
12202 copying relocations in other sections that refer to local symbols
12203 in the section being discarded. Those relocations will have to
12204 be converted somehow; as of this writing I'm not sure that any of
12205 the backends handle that correctly.
12207 It is tempting to instead not discard link once sections when
12208 doing a relocatable link (technically, they should be discarded
12209 whenever we are building constructors). However, that fails,
12210 because the linker winds up combining all the link once sections
12211 into a single large link once section, which defeats the purpose
12212 of having link once sections in the first place.
12214 Also, not merging link once sections in a relocatable link
12215 causes trouble for MIPS ELF, which relies on link once semantics
12216 to handle the .reginfo section correctly. */
12218 name = section_signature (sec);
12220 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12221 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12222 p++;
12223 else
12224 p = name;
12226 already_linked_list = bfd_section_already_linked_table_lookup (p);
12228 for (l = already_linked_list->entry; l != NULL; l = l->next)
12230 /* We may have 2 different types of sections on the list: group
12231 sections and linkonce sections. Match like sections. */
12232 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12233 && strcmp (name, section_signature (l->sec)) == 0
12234 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12236 /* The section has already been linked. See if we should
12237 issue a warning. */
12238 switch (flags & SEC_LINK_DUPLICATES)
12240 default:
12241 abort ();
12243 case SEC_LINK_DUPLICATES_DISCARD:
12244 break;
12246 case SEC_LINK_DUPLICATES_ONE_ONLY:
12247 (*_bfd_error_handler)
12248 (_("%B: ignoring duplicate section `%A'"),
12249 abfd, sec);
12250 break;
12252 case SEC_LINK_DUPLICATES_SAME_SIZE:
12253 if (sec->size != l->sec->size)
12254 (*_bfd_error_handler)
12255 (_("%B: duplicate section `%A' has different size"),
12256 abfd, sec);
12257 break;
12259 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12260 if (sec->size != l->sec->size)
12261 (*_bfd_error_handler)
12262 (_("%B: duplicate section `%A' has different size"),
12263 abfd, sec);
12264 else if (sec->size != 0)
12266 bfd_byte *sec_contents, *l_sec_contents;
12268 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12269 (*_bfd_error_handler)
12270 (_("%B: warning: could not read contents of section `%A'"),
12271 abfd, sec);
12272 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12273 &l_sec_contents))
12274 (*_bfd_error_handler)
12275 (_("%B: warning: could not read contents of section `%A'"),
12276 l->sec->owner, l->sec);
12277 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12278 (*_bfd_error_handler)
12279 (_("%B: warning: duplicate section `%A' has different contents"),
12280 abfd, sec);
12282 if (sec_contents)
12283 free (sec_contents);
12284 if (l_sec_contents)
12285 free (l_sec_contents);
12287 break;
12290 /* Set the output_section field so that lang_add_section
12291 does not create a lang_input_section structure for this
12292 section. Since there might be a symbol in the section
12293 being discarded, we must retain a pointer to the section
12294 which we are really going to use. */
12295 sec->output_section = bfd_abs_section_ptr;
12296 sec->kept_section = l->sec;
12298 if (flags & SEC_GROUP)
12300 asection *first = elf_next_in_group (sec);
12301 asection *s = first;
12303 while (s != NULL)
12305 s->output_section = bfd_abs_section_ptr;
12306 /* Record which group discards it. */
12307 s->kept_section = l->sec;
12308 s = elf_next_in_group (s);
12309 /* These lists are circular. */
12310 if (s == first)
12311 break;
12315 return;
12319 /* A single member comdat group section may be discarded by a
12320 linkonce section and vice versa. */
12322 if ((flags & SEC_GROUP) != 0)
12324 asection *first = elf_next_in_group (sec);
12326 if (first != NULL && elf_next_in_group (first) == first)
12327 /* Check this single member group against linkonce sections. */
12328 for (l = already_linked_list->entry; l != NULL; l = l->next)
12329 if ((l->sec->flags & SEC_GROUP) == 0
12330 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12331 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12333 first->output_section = bfd_abs_section_ptr;
12334 first->kept_section = l->sec;
12335 sec->output_section = bfd_abs_section_ptr;
12336 break;
12339 else
12340 /* Check this linkonce section against single member groups. */
12341 for (l = already_linked_list->entry; l != NULL; l = l->next)
12342 if (l->sec->flags & SEC_GROUP)
12344 asection *first = elf_next_in_group (l->sec);
12346 if (first != NULL
12347 && elf_next_in_group (first) == first
12348 && bfd_elf_match_symbols_in_sections (first, sec, info))
12350 sec->output_section = bfd_abs_section_ptr;
12351 sec->kept_section = first;
12352 break;
12356 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12357 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12358 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12359 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12360 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12361 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12362 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12363 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12364 The reverse order cannot happen as there is never a bfd with only the
12365 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12366 matter as here were are looking only for cross-bfd sections. */
12368 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12369 for (l = already_linked_list->entry; l != NULL; l = l->next)
12370 if ((l->sec->flags & SEC_GROUP) == 0
12371 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12373 if (abfd != l->sec->owner)
12374 sec->output_section = bfd_abs_section_ptr;
12375 break;
12378 /* This is the first section with this name. Record it. */
12379 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12380 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12383 bfd_boolean
12384 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12386 return sym->st_shndx == SHN_COMMON;
12389 unsigned int
12390 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12392 return SHN_COMMON;
12395 asection *
12396 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12398 return bfd_com_section_ptr;
12401 bfd_vma
12402 _bfd_elf_default_got_elt_size (bfd *abfd,
12403 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12404 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12405 bfd *ibfd ATTRIBUTE_UNUSED,
12406 unsigned long symndx ATTRIBUTE_UNUSED)
12408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12409 return bed->s->arch_size / 8;
12412 /* Routines to support the creation of dynamic relocs. */
12414 /* Return true if NAME is a name of a relocation
12415 section associated with section S. */
12417 static bfd_boolean
12418 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12420 if (rela)
12421 return CONST_STRNEQ (name, ".rela")
12422 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12424 return CONST_STRNEQ (name, ".rel")
12425 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12428 /* Returns the name of the dynamic reloc section associated with SEC. */
12430 static const char *
12431 get_dynamic_reloc_section_name (bfd * abfd,
12432 asection * sec,
12433 bfd_boolean is_rela)
12435 const char * name;
12436 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12437 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12439 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12440 if (name == NULL)
12441 return NULL;
12443 if (! is_reloc_section (is_rela, name, sec))
12445 static bfd_boolean complained = FALSE;
12447 if (! complained)
12449 (*_bfd_error_handler)
12450 (_("%B: bad relocation section name `%s\'"), abfd, name);
12451 complained = TRUE;
12453 name = NULL;
12456 return name;
12459 /* Returns the dynamic reloc section associated with SEC.
12460 If necessary compute the name of the dynamic reloc section based
12461 on SEC's name (looked up in ABFD's string table) and the setting
12462 of IS_RELA. */
12464 asection *
12465 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12466 asection * sec,
12467 bfd_boolean is_rela)
12469 asection * reloc_sec = elf_section_data (sec)->sreloc;
12471 if (reloc_sec == NULL)
12473 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12475 if (name != NULL)
12477 reloc_sec = bfd_get_section_by_name (abfd, name);
12479 if (reloc_sec != NULL)
12480 elf_section_data (sec)->sreloc = reloc_sec;
12484 return reloc_sec;
12487 /* Returns the dynamic reloc section associated with SEC. If the
12488 section does not exist it is created and attached to the DYNOBJ
12489 bfd and stored in the SRELOC field of SEC's elf_section_data
12490 structure.
12492 ALIGNMENT is the alignment for the newly created section and
12493 IS_RELA defines whether the name should be .rela.<SEC's name>
12494 or .rel.<SEC's name>. The section name is looked up in the
12495 string table associated with ABFD. */
12497 asection *
12498 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12499 bfd * dynobj,
12500 unsigned int alignment,
12501 bfd * abfd,
12502 bfd_boolean is_rela)
12504 asection * reloc_sec = elf_section_data (sec)->sreloc;
12506 if (reloc_sec == NULL)
12508 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12510 if (name == NULL)
12511 return NULL;
12513 reloc_sec = bfd_get_section_by_name (dynobj, name);
12515 if (reloc_sec == NULL)
12517 flagword flags;
12519 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12520 if ((sec->flags & SEC_ALLOC) != 0)
12521 flags |= SEC_ALLOC | SEC_LOAD;
12523 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12524 if (reloc_sec != NULL)
12526 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12527 reloc_sec = NULL;
12531 elf_section_data (sec)->sreloc = reloc_sec;
12534 return reloc_sec;