2009-06-18 Dave Korn <dave.korn.cygwin@gmail.com>
[binutils.git] / bfd / elf32-hppa.c
blob20be2e79525d8d836b1c2296c59e58c50c865d41
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
14 This file is part of BFD, the Binary File Descriptor library.
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
53 /* We use two hash tables to hold information for linking PA ELF objects.
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
63 There are a number of different stubs generated by the linker.
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
137 elf32_hppa_dyn_reloc_entry "hdh"
139 Always remember to use GNU Coding Style. */
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
145 static const bfd_byte plt_stub[] =
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
175 enum elf32_hppa_stub_type
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
185 struct elf32_hppa_stub_hash_entry
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
190 /* The stub section. */
191 asection *stub_sec;
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
201 enum elf32_hppa_stub_type stub_type;
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
211 struct elf32_hppa_link_hash_entry
213 struct elf_link_hash_entry eh;
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
226 /* The input section of the reloc. */
227 asection *sec;
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
238 enum
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
247 struct elf32_hppa_link_hash_table
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
304 /* Small local sym to section mapping cache. */
305 struct sym_sec_cache sym_sec;
307 /* Data for LDM relocations. */
308 union
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
338 /* Override the generic function because we want to mark our BFDs. */
340 static bfd_boolean
341 elf32_hppa_mkobject (bfd *abfd)
343 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
344 HPPA_ELF_TDATA);
347 /* Assorted hash table functions. */
349 /* Initialize an entry in the stub hash table. */
351 static struct bfd_hash_entry *
352 stub_hash_newfunc (struct bfd_hash_entry *entry,
353 struct bfd_hash_table *table,
354 const char *string)
356 /* Allocate the structure if it has not already been allocated by a
357 subclass. */
358 if (entry == NULL)
360 entry = bfd_hash_allocate (table,
361 sizeof (struct elf32_hppa_stub_hash_entry));
362 if (entry == NULL)
363 return entry;
366 /* Call the allocation method of the superclass. */
367 entry = bfd_hash_newfunc (entry, table, string);
368 if (entry != NULL)
370 struct elf32_hppa_stub_hash_entry *hsh;
372 /* Initialize the local fields. */
373 hsh = hppa_stub_hash_entry (entry);
374 hsh->stub_sec = NULL;
375 hsh->stub_offset = 0;
376 hsh->target_value = 0;
377 hsh->target_section = NULL;
378 hsh->stub_type = hppa_stub_long_branch;
379 hsh->hh = NULL;
380 hsh->id_sec = NULL;
383 return entry;
386 /* Initialize an entry in the link hash table. */
388 static struct bfd_hash_entry *
389 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
390 struct bfd_hash_table *table,
391 const char *string)
393 /* Allocate the structure if it has not already been allocated by a
394 subclass. */
395 if (entry == NULL)
397 entry = bfd_hash_allocate (table,
398 sizeof (struct elf32_hppa_link_hash_entry));
399 if (entry == NULL)
400 return entry;
403 /* Call the allocation method of the superclass. */
404 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
405 if (entry != NULL)
407 struct elf32_hppa_link_hash_entry *hh;
409 /* Initialize the local fields. */
410 hh = hppa_elf_hash_entry (entry);
411 hh->hsh_cache = NULL;
412 hh->dyn_relocs = NULL;
413 hh->plabel = 0;
414 hh->tls_type = GOT_UNKNOWN;
417 return entry;
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
430 htab = bfd_malloc (amt);
431 if (htab == NULL)
432 return NULL;
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry)))
437 free (htab);
438 return NULL;
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
443 sizeof (struct elf32_hppa_stub_hash_entry)))
444 return NULL;
446 htab->stub_bfd = NULL;
447 htab->add_stub_section = NULL;
448 htab->layout_sections_again = NULL;
449 htab->stub_group = NULL;
450 htab->sgot = NULL;
451 htab->srelgot = NULL;
452 htab->splt = NULL;
453 htab->srelplt = NULL;
454 htab->sdynbss = NULL;
455 htab->srelbss = NULL;
456 htab->text_segment_base = (bfd_vma) -1;
457 htab->data_segment_base = (bfd_vma) -1;
458 htab->multi_subspace = 0;
459 htab->has_12bit_branch = 0;
460 htab->has_17bit_branch = 0;
461 htab->has_22bit_branch = 0;
462 htab->need_plt_stub = 0;
463 htab->sym_sec.abfd = NULL;
464 htab->tls_ldm_got.refcount = 0;
466 return &htab->etab.root;
469 /* Free the derived linker hash table. */
471 static void
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
474 struct elf32_hppa_link_hash_table *htab
475 = (struct elf32_hppa_link_hash_table *) btab;
477 bfd_hash_table_free (&htab->bstab);
478 _bfd_generic_link_hash_table_free (btab);
481 /* Build a name for an entry in the stub hash table. */
483 static char *
484 hppa_stub_name (const asection *input_section,
485 const asection *sym_sec,
486 const struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela)
489 char *stub_name;
490 bfd_size_type len;
492 if (hh)
494 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%s+%x",
498 input_section->id & 0xffffffff,
499 hh_name (hh),
500 (int) rela->r_addend & 0xffffffff);
502 else
504 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name = bfd_malloc (len);
506 if (stub_name != NULL)
507 sprintf (stub_name, "%08x_%x:%x+%x",
508 input_section->id & 0xffffffff,
509 sym_sec->id & 0xffffffff,
510 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
511 (int) rela->r_addend & 0xffffffff);
513 return stub_name;
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
519 static struct elf32_hppa_stub_hash_entry *
520 hppa_get_stub_entry (const asection *input_section,
521 const asection *sym_sec,
522 struct elf32_hppa_link_hash_entry *hh,
523 const Elf_Internal_Rela *rela,
524 struct elf32_hppa_link_hash_table *htab)
526 struct elf32_hppa_stub_hash_entry *hsh_entry;
527 const asection *id_sec;
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec = htab->stub_group[input_section->id].link_sec;
536 if (hh != NULL && hh->hsh_cache != NULL
537 && hh->hsh_cache->hh == hh
538 && hh->hsh_cache->id_sec == id_sec)
540 hsh_entry = hh->hsh_cache;
542 else
544 char *stub_name;
546 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
547 if (stub_name == NULL)
548 return NULL;
550 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
551 stub_name, FALSE, FALSE);
552 if (hh != NULL)
553 hh->hsh_cache = hsh_entry;
555 free (stub_name);
558 return hsh_entry;
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
564 static struct elf32_hppa_stub_hash_entry *
565 hppa_add_stub (const char *stub_name,
566 asection *section,
567 struct elf32_hppa_link_hash_table *htab)
569 asection *link_sec;
570 asection *stub_sec;
571 struct elf32_hppa_stub_hash_entry *hsh;
573 link_sec = htab->stub_group[section->id].link_sec;
574 stub_sec = htab->stub_group[section->id].stub_sec;
575 if (stub_sec == NULL)
577 stub_sec = htab->stub_group[link_sec->id].stub_sec;
578 if (stub_sec == NULL)
580 size_t namelen;
581 bfd_size_type len;
582 char *s_name;
584 namelen = strlen (link_sec->name);
585 len = namelen + sizeof (STUB_SUFFIX);
586 s_name = bfd_alloc (htab->stub_bfd, len);
587 if (s_name == NULL)
588 return NULL;
590 memcpy (s_name, link_sec->name, namelen);
591 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
592 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
593 if (stub_sec == NULL)
594 return NULL;
595 htab->stub_group[link_sec->id].stub_sec = stub_sec;
597 htab->stub_group[section->id].stub_sec = stub_sec;
600 /* Enter this entry into the linker stub hash table. */
601 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
602 TRUE, FALSE);
603 if (hsh == NULL)
605 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
606 section->owner,
607 stub_name);
608 return NULL;
611 hsh->stub_sec = stub_sec;
612 hsh->stub_offset = 0;
613 hsh->id_sec = link_sec;
614 return hsh;
617 /* Determine the type of stub needed, if any, for a call. */
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection *input_sec,
621 const Elf_Internal_Rela *rela,
622 struct elf32_hppa_link_hash_entry *hh,
623 bfd_vma destination,
624 struct bfd_link_info *info)
626 bfd_vma location;
627 bfd_vma branch_offset;
628 bfd_vma max_branch_offset;
629 unsigned int r_type;
631 if (hh != NULL
632 && hh->eh.plt.offset != (bfd_vma) -1
633 && hh->eh.dynindx != -1
634 && !hh->plabel
635 && (info->shared
636 || !hh->eh.def_regular
637 || hh->eh.root.type == bfd_link_hash_defweak))
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import;
644 /* Determine where the call point is. */
645 location = (input_sec->output_offset
646 + input_sec->output_section->vma
647 + rela->r_offset);
649 branch_offset = destination - location - 8;
650 r_type = ELF32_R_TYPE (rela->r_info);
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type == (unsigned int) R_PARISC_PCREL17F)
657 max_branch_offset = (1 << (17 - 1)) << 2;
659 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
660 max_branch_offset = (1 << (12 - 1)) << 2;
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset = (1 << (22 - 1)) << 2;
665 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
666 return hppa_stub_long_branch;
668 return hppa_stub_none;
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
701 #ifndef R19_STUBS
702 #define R19_STUBS 1
703 #endif
705 #if R19_STUBS
706 #define LDW_R1_DLT LDW_R1_R19
707 #else
708 #define LDW_R1_DLT LDW_R1_DP
709 #endif
711 static bfd_boolean
712 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
714 struct elf32_hppa_stub_hash_entry *hsh;
715 struct bfd_link_info *info;
716 struct elf32_hppa_link_hash_table *htab;
717 asection *stub_sec;
718 bfd *stub_bfd;
719 bfd_byte *loc;
720 bfd_vma sym_value;
721 bfd_vma insn;
722 bfd_vma off;
723 int val;
724 int size;
726 /* Massage our args to the form they really have. */
727 hsh = hppa_stub_hash_entry (bh);
728 info = (struct bfd_link_info *)in_arg;
730 htab = hppa_link_hash_table (info);
731 stub_sec = hsh->stub_sec;
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh->stub_offset = stub_sec->size;
735 loc = stub_sec->contents + hsh->stub_offset;
737 stub_bfd = stub_sec->owner;
739 switch (hsh->stub_type)
741 case hppa_stub_long_branch:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value = (hsh->target_value
747 + hsh->target_section->output_offset
748 + hsh->target_section->output_section->vma);
750 val = hppa_field_adjust (sym_value, 0, e_lrsel);
751 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc);
754 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 4);
758 size = 8;
759 break;
761 case hppa_stub_long_branch_shared:
762 /* Branches are relative. This is where we are going to. */
763 sym_value = (hsh->target_value
764 + hsh->target_section->output_offset
765 + hsh->target_section->output_section->vma);
767 /* And this is where we are coming from, more or less. */
768 sym_value -= (hsh->stub_offset
769 + stub_sec->output_offset
770 + stub_sec->output_section->vma);
772 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
774 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
775 bfd_put_32 (stub_bfd, insn, loc + 4);
777 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
778 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
779 bfd_put_32 (stub_bfd, insn, loc + 8);
780 size = 12;
781 break;
783 case hppa_stub_import:
784 case hppa_stub_import_shared:
785 off = hsh->hh->eh.plt.offset;
786 if (off >= (bfd_vma) -2)
787 abort ();
789 off &= ~ (bfd_vma) 1;
790 sym_value = (off
791 + htab->splt->output_offset
792 + htab->splt->output_section->vma
793 - elf_gp (htab->splt->output_section->owner));
795 insn = ADDIL_DP;
796 #if R19_STUBS
797 if (hsh->stub_type == hppa_stub_import_shared)
798 insn = ADDIL_R19;
799 #endif
800 val = hppa_field_adjust (sym_value, 0, e_lrsel),
801 insn = hppa_rebuild_insn ((int) insn, val, 21);
802 bfd_put_32 (stub_bfd, insn, loc);
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val = hppa_field_adjust (sym_value, 0, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 4);
813 if (htab->multi_subspace)
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
816 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
817 bfd_put_32 (stub_bfd, insn, loc + 8);
819 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
824 size = 28;
826 else
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
830 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
831 bfd_put_32 (stub_bfd, insn, loc + 12);
833 size = 16;
836 break;
838 case hppa_stub_export:
839 /* Branches are relative. This is where we are going to. */
840 sym_value = (hsh->target_value
841 + hsh->target_section->output_offset
842 + hsh->target_section->output_section->vma);
844 /* And this is where we are coming from. */
845 sym_value -= (hsh->stub_offset
846 + stub_sec->output_offset
847 + stub_sec->output_section->vma);
849 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab->has_22bit_branch
851 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
853 (*_bfd_error_handler)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh->target_section->owner,
856 stub_sec,
857 (long) hsh->stub_offset,
858 hsh->bh_root.string);
859 bfd_set_error (bfd_error_bad_value);
860 return FALSE;
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
864 if (!htab->has_22bit_branch)
865 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
866 else
867 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
868 bfd_put_32 (stub_bfd, insn, loc);
870 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
872 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
873 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
874 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
876 /* Point the function symbol at the stub. */
877 hsh->hh->eh.root.u.def.section = stub_sec;
878 hsh->hh->eh.root.u.def.value = stub_sec->size;
880 size = 24;
881 break;
883 default:
884 BFD_FAIL ();
885 return FALSE;
888 stub_sec->size += size;
889 return TRUE;
892 #undef LDIL_R1
893 #undef BE_SR4_R1
894 #undef BL_R1
895 #undef ADDIL_R1
896 #undef DEPI_R1
897 #undef LDW_R1_R21
898 #undef LDW_R1_DLT
899 #undef LDW_R1_R19
900 #undef ADDIL_R19
901 #undef LDW_R1_DP
902 #undef LDSID_R21_R1
903 #undef MTSP_R1
904 #undef BE_SR0_R21
905 #undef STW_RP
906 #undef BV_R0_R21
907 #undef BL_RP
908 #undef NOP
909 #undef LDW_RP
910 #undef LDSID_RP_R1
911 #undef BE_SR0_RP
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
916 static bfd_boolean
917 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
919 struct elf32_hppa_stub_hash_entry *hsh;
920 struct elf32_hppa_link_hash_table *htab;
921 int size;
923 /* Massage our args to the form they really have. */
924 hsh = hppa_stub_hash_entry (bh);
925 htab = in_arg;
927 if (hsh->stub_type == hppa_stub_long_branch)
928 size = 8;
929 else if (hsh->stub_type == hppa_stub_long_branch_shared)
930 size = 12;
931 else if (hsh->stub_type == hppa_stub_export)
932 size = 24;
933 else /* hppa_stub_import or hppa_stub_import_shared. */
935 if (htab->multi_subspace)
936 size = 28;
937 else
938 size = 16;
941 hsh->stub_sec->size += size;
942 return TRUE;
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
948 static bfd_boolean
949 elf32_hppa_object_p (bfd *abfd)
951 Elf_Internal_Ehdr * i_ehdrp;
952 unsigned int flags;
954 i_ehdrp = elf_elfheader (abfd);
955 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
963 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
968 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
969 return FALSE;
971 else
973 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
974 return FALSE;
977 flags = i_ehdrp->e_flags;
978 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
980 case EFA_PARISC_1_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
982 case EFA_PARISC_1_1:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
984 case EFA_PARISC_2_0:
985 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
986 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
987 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
989 return TRUE;
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
995 static bfd_boolean
996 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
998 struct elf32_hppa_link_hash_table *htab;
999 struct elf_link_hash_entry *eh;
1001 /* Don't try to create the .plt and .got twice. */
1002 htab = hppa_link_hash_table (info);
1003 if (htab->splt != NULL)
1004 return TRUE;
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1008 return FALSE;
1010 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1011 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1013 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1014 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1016 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1017 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1019 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1020 application, because __canonicalize_funcptr_for_compare needs it. */
1021 eh = elf_hash_table (info)->hgot;
1022 eh->forced_local = 0;
1023 eh->other = STV_DEFAULT;
1024 return bfd_elf_link_record_dynamic_symbol (info, eh);
1027 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1029 static void
1030 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1031 struct elf_link_hash_entry *eh_dir,
1032 struct elf_link_hash_entry *eh_ind)
1034 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1036 hh_dir = hppa_elf_hash_entry (eh_dir);
1037 hh_ind = hppa_elf_hash_entry (eh_ind);
1039 if (hh_ind->dyn_relocs != NULL)
1041 if (hh_dir->dyn_relocs != NULL)
1043 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1044 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1046 /* Add reloc counts against the indirect sym to the direct sym
1047 list. Merge any entries against the same section. */
1048 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1050 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1052 for (hdh_q = hh_dir->dyn_relocs;
1053 hdh_q != NULL;
1054 hdh_q = hdh_q->hdh_next)
1055 if (hdh_q->sec == hdh_p->sec)
1057 #if RELATIVE_DYNRELOCS
1058 hdh_q->relative_count += hdh_p->relative_count;
1059 #endif
1060 hdh_q->count += hdh_p->count;
1061 *hdh_pp = hdh_p->hdh_next;
1062 break;
1064 if (hdh_q == NULL)
1065 hdh_pp = &hdh_p->hdh_next;
1067 *hdh_pp = hh_dir->dyn_relocs;
1070 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1071 hh_ind->dyn_relocs = NULL;
1074 if (ELIMINATE_COPY_RELOCS
1075 && eh_ind->root.type != bfd_link_hash_indirect
1076 && eh_dir->dynamic_adjusted)
1078 /* If called to transfer flags for a weakdef during processing
1079 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1080 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1081 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1082 eh_dir->ref_regular |= eh_ind->ref_regular;
1083 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1084 eh_dir->needs_plt |= eh_ind->needs_plt;
1086 else
1088 if (eh_ind->root.type == bfd_link_hash_indirect
1089 && eh_dir->got.refcount <= 0)
1091 hh_dir->tls_type = hh_ind->tls_type;
1092 hh_ind->tls_type = GOT_UNKNOWN;
1095 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1099 static int
1100 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1101 int r_type, int is_local ATTRIBUTE_UNUSED)
1103 /* For now we don't support linker optimizations. */
1104 return r_type;
1107 /* Return a pointer to the local GOT, PLT and TLS reference counts
1108 for ABFD. Returns NULL if the storage allocation fails. */
1110 static bfd_signed_vma *
1111 hppa32_elf_local_refcounts (bfd *abfd)
1113 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1114 bfd_signed_vma *local_refcounts;
1116 local_refcounts = elf_local_got_refcounts (abfd);
1117 if (local_refcounts == NULL)
1119 bfd_size_type size;
1121 /* Allocate space for local GOT and PLT reference
1122 counts. Done this way to save polluting elf_obj_tdata
1123 with another target specific pointer. */
1124 size = symtab_hdr->sh_info;
1125 size *= 2 * sizeof (bfd_signed_vma);
1126 /* Add in space to store the local GOT TLS types. */
1127 size += symtab_hdr->sh_info;
1128 local_refcounts = bfd_zalloc (abfd, size);
1129 if (local_refcounts == NULL)
1130 return NULL;
1131 elf_local_got_refcounts (abfd) = local_refcounts;
1132 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1133 symtab_hdr->sh_info);
1135 return local_refcounts;
1139 /* Look through the relocs for a section during the first phase, and
1140 calculate needed space in the global offset table, procedure linkage
1141 table, and dynamic reloc sections. At this point we haven't
1142 necessarily read all the input files. */
1144 static bfd_boolean
1145 elf32_hppa_check_relocs (bfd *abfd,
1146 struct bfd_link_info *info,
1147 asection *sec,
1148 const Elf_Internal_Rela *relocs)
1150 Elf_Internal_Shdr *symtab_hdr;
1151 struct elf_link_hash_entry **eh_syms;
1152 const Elf_Internal_Rela *rela;
1153 const Elf_Internal_Rela *rela_end;
1154 struct elf32_hppa_link_hash_table *htab;
1155 asection *sreloc;
1156 asection *stubreloc;
1157 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1159 if (info->relocatable)
1160 return TRUE;
1162 htab = hppa_link_hash_table (info);
1163 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1164 eh_syms = elf_sym_hashes (abfd);
1165 sreloc = NULL;
1166 stubreloc = NULL;
1168 rela_end = relocs + sec->reloc_count;
1169 for (rela = relocs; rela < rela_end; rela++)
1171 enum {
1172 NEED_GOT = 1,
1173 NEED_PLT = 2,
1174 NEED_DYNREL = 4,
1175 PLT_PLABEL = 8
1178 unsigned int r_symndx, r_type;
1179 struct elf32_hppa_link_hash_entry *hh;
1180 int need_entry = 0;
1182 r_symndx = ELF32_R_SYM (rela->r_info);
1184 if (r_symndx < symtab_hdr->sh_info)
1185 hh = NULL;
1186 else
1188 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1189 while (hh->eh.root.type == bfd_link_hash_indirect
1190 || hh->eh.root.type == bfd_link_hash_warning)
1191 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1194 r_type = ELF32_R_TYPE (rela->r_info);
1195 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1197 switch (r_type)
1199 case R_PARISC_DLTIND14F:
1200 case R_PARISC_DLTIND14R:
1201 case R_PARISC_DLTIND21L:
1202 /* This symbol requires a global offset table entry. */
1203 need_entry = NEED_GOT;
1204 break;
1206 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1207 case R_PARISC_PLABEL21L:
1208 case R_PARISC_PLABEL32:
1209 /* If the addend is non-zero, we break badly. */
1210 if (rela->r_addend != 0)
1211 abort ();
1213 /* If we are creating a shared library, then we need to
1214 create a PLT entry for all PLABELs, because PLABELs with
1215 local symbols may be passed via a pointer to another
1216 object. Additionally, output a dynamic relocation
1217 pointing to the PLT entry.
1219 For executables, the original 32-bit ABI allowed two
1220 different styles of PLABELs (function pointers): For
1221 global functions, the PLABEL word points into the .plt
1222 two bytes past a (function address, gp) pair, and for
1223 local functions the PLABEL points directly at the
1224 function. The magic +2 for the first type allows us to
1225 differentiate between the two. As you can imagine, this
1226 is a real pain when it comes to generating code to call
1227 functions indirectly or to compare function pointers.
1228 We avoid the mess by always pointing a PLABEL into the
1229 .plt, even for local functions. */
1230 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1231 break;
1233 case R_PARISC_PCREL12F:
1234 htab->has_12bit_branch = 1;
1235 goto branch_common;
1237 case R_PARISC_PCREL17C:
1238 case R_PARISC_PCREL17F:
1239 htab->has_17bit_branch = 1;
1240 goto branch_common;
1242 case R_PARISC_PCREL22F:
1243 htab->has_22bit_branch = 1;
1244 branch_common:
1245 /* Function calls might need to go through the .plt, and
1246 might require long branch stubs. */
1247 if (hh == NULL)
1249 /* We know local syms won't need a .plt entry, and if
1250 they need a long branch stub we can't guarantee that
1251 we can reach the stub. So just flag an error later
1252 if we're doing a shared link and find we need a long
1253 branch stub. */
1254 continue;
1256 else
1258 /* Global symbols will need a .plt entry if they remain
1259 global, and in most cases won't need a long branch
1260 stub. Unfortunately, we have to cater for the case
1261 where a symbol is forced local by versioning, or due
1262 to symbolic linking, and we lose the .plt entry. */
1263 need_entry = NEED_PLT;
1264 if (hh->eh.type == STT_PARISC_MILLI)
1265 need_entry = 0;
1267 break;
1269 case R_PARISC_SEGBASE: /* Used to set segment base. */
1270 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1271 case R_PARISC_PCREL14F: /* PC relative load/store. */
1272 case R_PARISC_PCREL14R:
1273 case R_PARISC_PCREL17R: /* External branches. */
1274 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1275 case R_PARISC_PCREL32:
1276 /* We don't need to propagate the relocation if linking a
1277 shared object since these are section relative. */
1278 continue;
1280 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1281 case R_PARISC_DPREL14R:
1282 case R_PARISC_DPREL21L:
1283 if (info->shared)
1285 (*_bfd_error_handler)
1286 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1287 abfd,
1288 elf_hppa_howto_table[r_type].name);
1289 bfd_set_error (bfd_error_bad_value);
1290 return FALSE;
1292 /* Fall through. */
1294 case R_PARISC_DIR17F: /* Used for external branches. */
1295 case R_PARISC_DIR17R:
1296 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1297 case R_PARISC_DIR14R:
1298 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1299 case R_PARISC_DIR32: /* .word relocs. */
1300 /* We may want to output a dynamic relocation later. */
1301 need_entry = NEED_DYNREL;
1302 break;
1304 /* This relocation describes the C++ object vtable hierarchy.
1305 Reconstruct it for later use during GC. */
1306 case R_PARISC_GNU_VTINHERIT:
1307 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1308 return FALSE;
1309 continue;
1311 /* This relocation describes which C++ vtable entries are actually
1312 used. Record for later use during GC. */
1313 case R_PARISC_GNU_VTENTRY:
1314 BFD_ASSERT (hh != NULL);
1315 if (hh != NULL
1316 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1317 return FALSE;
1318 continue;
1320 case R_PARISC_TLS_GD21L:
1321 case R_PARISC_TLS_GD14R:
1322 case R_PARISC_TLS_LDM21L:
1323 case R_PARISC_TLS_LDM14R:
1324 need_entry = NEED_GOT;
1325 break;
1327 case R_PARISC_TLS_IE21L:
1328 case R_PARISC_TLS_IE14R:
1329 if (info->shared)
1330 info->flags |= DF_STATIC_TLS;
1331 need_entry = NEED_GOT;
1332 break;
1334 default:
1335 continue;
1338 /* Now carry out our orders. */
1339 if (need_entry & NEED_GOT)
1341 switch (r_type)
1343 default:
1344 tls_type = GOT_NORMAL;
1345 break;
1346 case R_PARISC_TLS_GD21L:
1347 case R_PARISC_TLS_GD14R:
1348 tls_type |= GOT_TLS_GD;
1349 break;
1350 case R_PARISC_TLS_LDM21L:
1351 case R_PARISC_TLS_LDM14R:
1352 tls_type |= GOT_TLS_LDM;
1353 break;
1354 case R_PARISC_TLS_IE21L:
1355 case R_PARISC_TLS_IE14R:
1356 tls_type |= GOT_TLS_IE;
1357 break;
1360 /* Allocate space for a GOT entry, as well as a dynamic
1361 relocation for this entry. */
1362 if (htab->sgot == NULL)
1364 if (htab->etab.dynobj == NULL)
1365 htab->etab.dynobj = abfd;
1366 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1367 return FALSE;
1370 if (r_type == R_PARISC_TLS_LDM21L
1371 || r_type == R_PARISC_TLS_LDM14R)
1372 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1373 else
1375 if (hh != NULL)
1377 hh->eh.got.refcount += 1;
1378 old_tls_type = hh->tls_type;
1380 else
1382 bfd_signed_vma *local_got_refcounts;
1384 /* This is a global offset table entry for a local symbol. */
1385 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1386 if (local_got_refcounts == NULL)
1387 return FALSE;
1388 local_got_refcounts[r_symndx] += 1;
1390 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1393 tls_type |= old_tls_type;
1395 if (old_tls_type != tls_type)
1397 if (hh != NULL)
1398 hh->tls_type = tls_type;
1399 else
1400 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1406 if (need_entry & NEED_PLT)
1408 /* If we are creating a shared library, and this is a reloc
1409 against a weak symbol or a global symbol in a dynamic
1410 object, then we will be creating an import stub and a
1411 .plt entry for the symbol. Similarly, on a normal link
1412 to symbols defined in a dynamic object we'll need the
1413 import stub and a .plt entry. We don't know yet whether
1414 the symbol is defined or not, so make an entry anyway and
1415 clean up later in adjust_dynamic_symbol. */
1416 if ((sec->flags & SEC_ALLOC) != 0)
1418 if (hh != NULL)
1420 hh->eh.needs_plt = 1;
1421 hh->eh.plt.refcount += 1;
1423 /* If this .plt entry is for a plabel, mark it so
1424 that adjust_dynamic_symbol will keep the entry
1425 even if it appears to be local. */
1426 if (need_entry & PLT_PLABEL)
1427 hh->plabel = 1;
1429 else if (need_entry & PLT_PLABEL)
1431 bfd_signed_vma *local_got_refcounts;
1432 bfd_signed_vma *local_plt_refcounts;
1434 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1435 if (local_got_refcounts == NULL)
1436 return FALSE;
1437 local_plt_refcounts = (local_got_refcounts
1438 + symtab_hdr->sh_info);
1439 local_plt_refcounts[r_symndx] += 1;
1444 if (need_entry & NEED_DYNREL)
1446 /* Flag this symbol as having a non-got, non-plt reference
1447 so that we generate copy relocs if it turns out to be
1448 dynamic. */
1449 if (hh != NULL && !info->shared)
1450 hh->eh.non_got_ref = 1;
1452 /* If we are creating a shared library then we need to copy
1453 the reloc into the shared library. However, if we are
1454 linking with -Bsymbolic, we need only copy absolute
1455 relocs or relocs against symbols that are not defined in
1456 an object we are including in the link. PC- or DP- or
1457 DLT-relative relocs against any local sym or global sym
1458 with DEF_REGULAR set, can be discarded. At this point we
1459 have not seen all the input files, so it is possible that
1460 DEF_REGULAR is not set now but will be set later (it is
1461 never cleared). We account for that possibility below by
1462 storing information in the dyn_relocs field of the
1463 hash table entry.
1465 A similar situation to the -Bsymbolic case occurs when
1466 creating shared libraries and symbol visibility changes
1467 render the symbol local.
1469 As it turns out, all the relocs we will be creating here
1470 are absolute, so we cannot remove them on -Bsymbolic
1471 links or visibility changes anyway. A STUB_REL reloc
1472 is absolute too, as in that case it is the reloc in the
1473 stub we will be creating, rather than copying the PCREL
1474 reloc in the branch.
1476 If on the other hand, we are creating an executable, we
1477 may need to keep relocations for symbols satisfied by a
1478 dynamic library if we manage to avoid copy relocs for the
1479 symbol. */
1480 if ((info->shared
1481 && (sec->flags & SEC_ALLOC) != 0
1482 && (IS_ABSOLUTE_RELOC (r_type)
1483 || (hh != NULL
1484 && (!info->symbolic
1485 || hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular))))
1487 || (ELIMINATE_COPY_RELOCS
1488 && !info->shared
1489 && (sec->flags & SEC_ALLOC) != 0
1490 && hh != NULL
1491 && (hh->eh.root.type == bfd_link_hash_defweak
1492 || !hh->eh.def_regular)))
1494 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1495 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1497 /* Create a reloc section in dynobj and make room for
1498 this reloc. */
1499 if (sreloc == NULL)
1501 if (htab->etab.dynobj == NULL)
1502 htab->etab.dynobj = abfd;
1504 sreloc = _bfd_elf_make_dynamic_reloc_section
1505 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1507 if (sreloc == NULL)
1509 bfd_set_error (bfd_error_bad_value);
1510 return FALSE;
1514 /* If this is a global symbol, we count the number of
1515 relocations we need for this symbol. */
1516 if (hh != NULL)
1518 hdh_head = &hh->dyn_relocs;
1520 else
1522 /* Track dynamic relocs needed for local syms too.
1523 We really need local syms available to do this
1524 easily. Oh well. */
1526 asection *sr;
1527 void *vpp;
1529 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1530 sec, r_symndx);
1531 if (sr == NULL)
1532 return FALSE;
1534 vpp = &elf_section_data (sr)->local_dynrel;
1535 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 hdh_p = *hdh_head;
1539 if (hdh_p == NULL || hdh_p->sec != sec)
1541 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1542 if (hdh_p == NULL)
1543 return FALSE;
1544 hdh_p->hdh_next = *hdh_head;
1545 *hdh_head = hdh_p;
1546 hdh_p->sec = sec;
1547 hdh_p->count = 0;
1548 #if RELATIVE_DYNRELOCS
1549 hdh_p->relative_count = 0;
1550 #endif
1553 hdh_p->count += 1;
1554 #if RELATIVE_DYNRELOCS
1555 if (!IS_ABSOLUTE_RELOC (rtype))
1556 hdh_p->relative_count += 1;
1557 #endif
1562 return TRUE;
1565 /* Return the section that should be marked against garbage collection
1566 for a given relocation. */
1568 static asection *
1569 elf32_hppa_gc_mark_hook (asection *sec,
1570 struct bfd_link_info *info,
1571 Elf_Internal_Rela *rela,
1572 struct elf_link_hash_entry *hh,
1573 Elf_Internal_Sym *sym)
1575 if (hh != NULL)
1576 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1578 case R_PARISC_GNU_VTINHERIT:
1579 case R_PARISC_GNU_VTENTRY:
1580 return NULL;
1583 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 /* Update the got and plt entry reference counts for the section being
1587 removed. */
1589 static bfd_boolean
1590 elf32_hppa_gc_sweep_hook (bfd *abfd,
1591 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1592 asection *sec,
1593 const Elf_Internal_Rela *relocs)
1595 Elf_Internal_Shdr *symtab_hdr;
1596 struct elf_link_hash_entry **eh_syms;
1597 bfd_signed_vma *local_got_refcounts;
1598 bfd_signed_vma *local_plt_refcounts;
1599 const Elf_Internal_Rela *rela, *relend;
1601 if (info->relocatable)
1602 return TRUE;
1604 elf_section_data (sec)->local_dynrel = NULL;
1606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1607 eh_syms = elf_sym_hashes (abfd);
1608 local_got_refcounts = elf_local_got_refcounts (abfd);
1609 local_plt_refcounts = local_got_refcounts;
1610 if (local_plt_refcounts != NULL)
1611 local_plt_refcounts += symtab_hdr->sh_info;
1613 relend = relocs + sec->reloc_count;
1614 for (rela = relocs; rela < relend; rela++)
1616 unsigned long r_symndx;
1617 unsigned int r_type;
1618 struct elf_link_hash_entry *eh = NULL;
1620 r_symndx = ELF32_R_SYM (rela->r_info);
1621 if (r_symndx >= symtab_hdr->sh_info)
1623 struct elf32_hppa_link_hash_entry *hh;
1624 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1625 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1627 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1628 while (eh->root.type == bfd_link_hash_indirect
1629 || eh->root.type == bfd_link_hash_warning)
1630 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1631 hh = hppa_elf_hash_entry (eh);
1633 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1634 if (hdh_p->sec == sec)
1636 /* Everything must go for SEC. */
1637 *hdh_pp = hdh_p->hdh_next;
1638 break;
1642 r_type = ELF32_R_TYPE (rela->r_info);
1643 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1645 switch (r_type)
1647 case R_PARISC_DLTIND14F:
1648 case R_PARISC_DLTIND14R:
1649 case R_PARISC_DLTIND21L:
1650 case R_PARISC_TLS_GD21L:
1651 case R_PARISC_TLS_GD14R:
1652 case R_PARISC_TLS_IE21L:
1653 case R_PARISC_TLS_IE14R:
1654 if (eh != NULL)
1656 if (eh->got.refcount > 0)
1657 eh->got.refcount -= 1;
1659 else if (local_got_refcounts != NULL)
1661 if (local_got_refcounts[r_symndx] > 0)
1662 local_got_refcounts[r_symndx] -= 1;
1664 break;
1666 case R_PARISC_TLS_LDM21L:
1667 case R_PARISC_TLS_LDM14R:
1668 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1669 break;
1671 case R_PARISC_PCREL12F:
1672 case R_PARISC_PCREL17C:
1673 case R_PARISC_PCREL17F:
1674 case R_PARISC_PCREL22F:
1675 if (eh != NULL)
1677 if (eh->plt.refcount > 0)
1678 eh->plt.refcount -= 1;
1680 break;
1682 case R_PARISC_PLABEL14R:
1683 case R_PARISC_PLABEL21L:
1684 case R_PARISC_PLABEL32:
1685 if (eh != NULL)
1687 if (eh->plt.refcount > 0)
1688 eh->plt.refcount -= 1;
1690 else if (local_plt_refcounts != NULL)
1692 if (local_plt_refcounts[r_symndx] > 0)
1693 local_plt_refcounts[r_symndx] -= 1;
1695 break;
1697 default:
1698 break;
1702 return TRUE;
1705 /* Support for core dump NOTE sections. */
1707 static bfd_boolean
1708 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1710 int offset;
1711 size_t size;
1713 switch (note->descsz)
1715 default:
1716 return FALSE;
1718 case 396: /* Linux/hppa */
1719 /* pr_cursig */
1720 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1722 /* pr_pid */
1723 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1725 /* pr_reg */
1726 offset = 72;
1727 size = 320;
1729 break;
1732 /* Make a ".reg/999" section. */
1733 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1734 size, note->descpos + offset);
1737 static bfd_boolean
1738 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1740 switch (note->descsz)
1742 default:
1743 return FALSE;
1745 case 124: /* Linux/hppa elf_prpsinfo. */
1746 elf_tdata (abfd)->core_program
1747 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1748 elf_tdata (abfd)->core_command
1749 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1752 /* Note that for some reason, a spurious space is tacked
1753 onto the end of the args in some (at least one anyway)
1754 implementations, so strip it off if it exists. */
1756 char *command = elf_tdata (abfd)->core_command;
1757 int n = strlen (command);
1759 if (0 < n && command[n - 1] == ' ')
1760 command[n - 1] = '\0';
1763 return TRUE;
1766 /* Our own version of hide_symbol, so that we can keep plt entries for
1767 plabels. */
1769 static void
1770 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1771 struct elf_link_hash_entry *eh,
1772 bfd_boolean force_local)
1774 if (force_local)
1776 eh->forced_local = 1;
1777 if (eh->dynindx != -1)
1779 eh->dynindx = -1;
1780 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1781 eh->dynstr_index);
1785 if (! hppa_elf_hash_entry (eh)->plabel)
1787 eh->needs_plt = 0;
1788 eh->plt = elf_hash_table (info)->init_plt_refcount;
1792 /* Adjust a symbol defined by a dynamic object and referenced by a
1793 regular object. The current definition is in some section of the
1794 dynamic object, but we're not including those sections. We have to
1795 change the definition to something the rest of the link can
1796 understand. */
1798 static bfd_boolean
1799 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1800 struct elf_link_hash_entry *eh)
1802 struct elf32_hppa_link_hash_table *htab;
1803 asection *sec;
1805 /* If this is a function, put it in the procedure linkage table. We
1806 will fill in the contents of the procedure linkage table later. */
1807 if (eh->type == STT_FUNC
1808 || eh->needs_plt)
1810 if (eh->plt.refcount <= 0
1811 || (eh->def_regular
1812 && eh->root.type != bfd_link_hash_defweak
1813 && ! hppa_elf_hash_entry (eh)->plabel
1814 && (!info->shared || info->symbolic)))
1816 /* The .plt entry is not needed when:
1817 a) Garbage collection has removed all references to the
1818 symbol, or
1819 b) We know for certain the symbol is defined in this
1820 object, and it's not a weak definition, nor is the symbol
1821 used by a plabel relocation. Either this object is the
1822 application or we are doing a shared symbolic link. */
1824 eh->plt.offset = (bfd_vma) -1;
1825 eh->needs_plt = 0;
1828 return TRUE;
1830 else
1831 eh->plt.offset = (bfd_vma) -1;
1833 /* If this is a weak symbol, and there is a real definition, the
1834 processor independent code will have arranged for us to see the
1835 real definition first, and we can just use the same value. */
1836 if (eh->u.weakdef != NULL)
1838 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1839 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1840 abort ();
1841 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1842 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1843 if (ELIMINATE_COPY_RELOCS)
1844 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1845 return TRUE;
1848 /* This is a reference to a symbol defined by a dynamic object which
1849 is not a function. */
1851 /* If we are creating a shared library, we must presume that the
1852 only references to the symbol are via the global offset table.
1853 For such cases we need not do anything here; the relocations will
1854 be handled correctly by relocate_section. */
1855 if (info->shared)
1856 return TRUE;
1858 /* If there are no references to this symbol that do not use the
1859 GOT, we don't need to generate a copy reloc. */
1860 if (!eh->non_got_ref)
1861 return TRUE;
1863 if (ELIMINATE_COPY_RELOCS)
1865 struct elf32_hppa_link_hash_entry *hh;
1866 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868 hh = hppa_elf_hash_entry (eh);
1869 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 sec = hdh_p->sec->output_section;
1872 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1873 break;
1876 /* If we didn't find any dynamic relocs in read-only sections, then
1877 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1878 if (hdh_p == NULL)
1880 eh->non_got_ref = 0;
1881 return TRUE;
1885 if (eh->size == 0)
1887 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1888 eh->root.root.string);
1889 return TRUE;
1892 /* We must allocate the symbol in our .dynbss section, which will
1893 become part of the .bss section of the executable. There will be
1894 an entry for this symbol in the .dynsym section. The dynamic
1895 object will contain position independent code, so all references
1896 from the dynamic object to this symbol will go through the global
1897 offset table. The dynamic linker will use the .dynsym entry to
1898 determine the address it must put in the global offset table, so
1899 both the dynamic object and the regular object will refer to the
1900 same memory location for the variable. */
1902 htab = hppa_link_hash_table (info);
1904 /* We must generate a COPY reloc to tell the dynamic linker to
1905 copy the initial value out of the dynamic object and into the
1906 runtime process image. */
1907 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1909 htab->srelbss->size += sizeof (Elf32_External_Rela);
1910 eh->needs_copy = 1;
1913 sec = htab->sdynbss;
1915 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1918 /* Allocate space in the .plt for entries that won't have relocations.
1919 ie. plabel entries. */
1921 static bfd_boolean
1922 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1924 struct bfd_link_info *info;
1925 struct elf32_hppa_link_hash_table *htab;
1926 struct elf32_hppa_link_hash_entry *hh;
1927 asection *sec;
1929 if (eh->root.type == bfd_link_hash_indirect)
1930 return TRUE;
1932 if (eh->root.type == bfd_link_hash_warning)
1933 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1935 info = (struct bfd_link_info *) inf;
1936 hh = hppa_elf_hash_entry (eh);
1937 htab = hppa_link_hash_table (info);
1938 if (htab->etab.dynamic_sections_created
1939 && eh->plt.refcount > 0)
1941 /* Make sure this symbol is output as a dynamic symbol.
1942 Undefined weak syms won't yet be marked as dynamic. */
1943 if (eh->dynindx == -1
1944 && !eh->forced_local
1945 && eh->type != STT_PARISC_MILLI)
1947 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1948 return FALSE;
1951 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1953 /* Allocate these later. From this point on, h->plabel
1954 means that the plt entry is only used by a plabel.
1955 We'll be using a normal plt entry for this symbol, so
1956 clear the plabel indicator. */
1958 hh->plabel = 0;
1960 else if (hh->plabel)
1962 /* Make an entry in the .plt section for plabel references
1963 that won't have a .plt entry for other reasons. */
1964 sec = htab->splt;
1965 eh->plt.offset = sec->size;
1966 sec->size += PLT_ENTRY_SIZE;
1968 else
1970 /* No .plt entry needed. */
1971 eh->plt.offset = (bfd_vma) -1;
1972 eh->needs_plt = 0;
1975 else
1977 eh->plt.offset = (bfd_vma) -1;
1978 eh->needs_plt = 0;
1981 return TRUE;
1984 /* Allocate space in .plt, .got and associated reloc sections for
1985 global syms. */
1987 static bfd_boolean
1988 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1990 struct bfd_link_info *info;
1991 struct elf32_hppa_link_hash_table *htab;
1992 asection *sec;
1993 struct elf32_hppa_link_hash_entry *hh;
1994 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1996 if (eh->root.type == bfd_link_hash_indirect)
1997 return TRUE;
1999 if (eh->root.type == bfd_link_hash_warning)
2000 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2002 info = inf;
2003 htab = hppa_link_hash_table (info);
2004 hh = hppa_elf_hash_entry (eh);
2006 if (htab->etab.dynamic_sections_created
2007 && eh->plt.offset != (bfd_vma) -1
2008 && !hh->plabel
2009 && eh->plt.refcount > 0)
2011 /* Make an entry in the .plt section. */
2012 sec = htab->splt;
2013 eh->plt.offset = sec->size;
2014 sec->size += PLT_ENTRY_SIZE;
2016 /* We also need to make an entry in the .rela.plt section. */
2017 htab->srelplt->size += sizeof (Elf32_External_Rela);
2018 htab->need_plt_stub = 1;
2021 if (eh->got.refcount > 0)
2023 /* Make sure this symbol is output as a dynamic symbol.
2024 Undefined weak syms won't yet be marked as dynamic. */
2025 if (eh->dynindx == -1
2026 && !eh->forced_local
2027 && eh->type != STT_PARISC_MILLI)
2029 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2030 return FALSE;
2033 sec = htab->sgot;
2034 eh->got.offset = sec->size;
2035 sec->size += GOT_ENTRY_SIZE;
2036 /* R_PARISC_TLS_GD* needs two GOT entries */
2037 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2038 sec->size += GOT_ENTRY_SIZE * 2;
2039 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2040 sec->size += GOT_ENTRY_SIZE;
2041 if (htab->etab.dynamic_sections_created
2042 && (info->shared
2043 || (eh->dynindx != -1
2044 && !eh->forced_local)))
2046 htab->srelgot->size += sizeof (Elf32_External_Rela);
2047 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2048 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2049 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2050 htab->srelgot->size += sizeof (Elf32_External_Rela);
2053 else
2054 eh->got.offset = (bfd_vma) -1;
2056 if (hh->dyn_relocs == NULL)
2057 return TRUE;
2059 /* If this is a -Bsymbolic shared link, then we need to discard all
2060 space allocated for dynamic pc-relative relocs against symbols
2061 defined in a regular object. For the normal shared case, discard
2062 space for relocs that have become local due to symbol visibility
2063 changes. */
2064 if (info->shared)
2066 #if RELATIVE_DYNRELOCS
2067 if (SYMBOL_CALLS_LOCAL (info, eh))
2069 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2071 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2073 hdh_p->count -= hdh_p->relative_count;
2074 hdh_p->relative_count = 0;
2075 if (hdh_p->count == 0)
2076 *hdh_pp = hdh_p->hdh_next;
2077 else
2078 hdh_pp = &hdh_p->hdh_next;
2081 #endif
2083 /* Also discard relocs on undefined weak syms with non-default
2084 visibility. */
2085 if (hh->dyn_relocs != NULL
2086 && eh->root.type == bfd_link_hash_undefweak)
2088 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2089 hh->dyn_relocs = NULL;
2091 /* Make sure undefined weak symbols are output as a dynamic
2092 symbol in PIEs. */
2093 else if (eh->dynindx == -1
2094 && !eh->forced_local)
2096 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2097 return FALSE;
2101 else
2103 /* For the non-shared case, discard space for relocs against
2104 symbols which turn out to need copy relocs or are not
2105 dynamic. */
2107 if (!eh->non_got_ref
2108 && ((ELIMINATE_COPY_RELOCS
2109 && eh->def_dynamic
2110 && !eh->def_regular)
2111 || (htab->etab.dynamic_sections_created
2112 && (eh->root.type == bfd_link_hash_undefweak
2113 || eh->root.type == bfd_link_hash_undefined))))
2115 /* Make sure this symbol is output as a dynamic symbol.
2116 Undefined weak syms won't yet be marked as dynamic. */
2117 if (eh->dynindx == -1
2118 && !eh->forced_local
2119 && eh->type != STT_PARISC_MILLI)
2121 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2122 return FALSE;
2125 /* If that succeeded, we know we'll be keeping all the
2126 relocs. */
2127 if (eh->dynindx != -1)
2128 goto keep;
2131 hh->dyn_relocs = NULL;
2132 return TRUE;
2134 keep: ;
2137 /* Finally, allocate space. */
2138 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2140 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2141 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2144 return TRUE;
2147 /* This function is called via elf_link_hash_traverse to force
2148 millicode symbols local so they do not end up as globals in the
2149 dynamic symbol table. We ought to be able to do this in
2150 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2151 for all dynamic symbols. Arguably, this is a bug in
2152 elf_adjust_dynamic_symbol. */
2154 static bfd_boolean
2155 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2156 struct bfd_link_info *info)
2158 if (eh->root.type == bfd_link_hash_warning)
2159 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2161 if (eh->type == STT_PARISC_MILLI
2162 && !eh->forced_local)
2164 elf32_hppa_hide_symbol (info, eh, TRUE);
2166 return TRUE;
2169 /* Find any dynamic relocs that apply to read-only sections. */
2171 static bfd_boolean
2172 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2174 struct elf32_hppa_link_hash_entry *hh;
2175 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2177 if (eh->root.type == bfd_link_hash_warning)
2178 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2180 hh = hppa_elf_hash_entry (eh);
2181 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2183 asection *sec = hdh_p->sec->output_section;
2185 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2187 struct bfd_link_info *info = inf;
2189 info->flags |= DF_TEXTREL;
2191 /* Not an error, just cut short the traversal. */
2192 return FALSE;
2195 return TRUE;
2198 /* Set the sizes of the dynamic sections. */
2200 static bfd_boolean
2201 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2202 struct bfd_link_info *info)
2204 struct elf32_hppa_link_hash_table *htab;
2205 bfd *dynobj;
2206 bfd *ibfd;
2207 asection *sec;
2208 bfd_boolean relocs;
2210 htab = hppa_link_hash_table (info);
2211 dynobj = htab->etab.dynobj;
2212 if (dynobj == NULL)
2213 abort ();
2215 if (htab->etab.dynamic_sections_created)
2217 /* Set the contents of the .interp section to the interpreter. */
2218 if (info->executable)
2220 sec = bfd_get_section_by_name (dynobj, ".interp");
2221 if (sec == NULL)
2222 abort ();
2223 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2224 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2227 /* Force millicode symbols local. */
2228 elf_link_hash_traverse (&htab->etab,
2229 clobber_millicode_symbols,
2230 info);
2233 /* Set up .got and .plt offsets for local syms, and space for local
2234 dynamic relocs. */
2235 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2237 bfd_signed_vma *local_got;
2238 bfd_signed_vma *end_local_got;
2239 bfd_signed_vma *local_plt;
2240 bfd_signed_vma *end_local_plt;
2241 bfd_size_type locsymcount;
2242 Elf_Internal_Shdr *symtab_hdr;
2243 asection *srel;
2244 char *local_tls_type;
2246 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2247 continue;
2249 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2251 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2253 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2254 elf_section_data (sec)->local_dynrel);
2255 hdh_p != NULL;
2256 hdh_p = hdh_p->hdh_next)
2258 if (!bfd_is_abs_section (hdh_p->sec)
2259 && bfd_is_abs_section (hdh_p->sec->output_section))
2261 /* Input section has been discarded, either because
2262 it is a copy of a linkonce section or due to
2263 linker script /DISCARD/, so we'll be discarding
2264 the relocs too. */
2266 else if (hdh_p->count != 0)
2268 srel = elf_section_data (hdh_p->sec)->sreloc;
2269 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2270 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2271 info->flags |= DF_TEXTREL;
2276 local_got = elf_local_got_refcounts (ibfd);
2277 if (!local_got)
2278 continue;
2280 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2281 locsymcount = symtab_hdr->sh_info;
2282 end_local_got = local_got + locsymcount;
2283 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2284 sec = htab->sgot;
2285 srel = htab->srelgot;
2286 for (; local_got < end_local_got; ++local_got)
2288 if (*local_got > 0)
2290 *local_got = sec->size;
2291 sec->size += GOT_ENTRY_SIZE;
2292 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2293 sec->size += 2 * GOT_ENTRY_SIZE;
2294 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2295 sec->size += GOT_ENTRY_SIZE;
2296 if (info->shared)
2298 srel->size += sizeof (Elf32_External_Rela);
2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 srel->size += 2 * sizeof (Elf32_External_Rela);
2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 srel->size += sizeof (Elf32_External_Rela);
2305 else
2306 *local_got = (bfd_vma) -1;
2308 ++local_tls_type;
2311 local_plt = end_local_got;
2312 end_local_plt = local_plt + locsymcount;
2313 if (! htab->etab.dynamic_sections_created)
2315 /* Won't be used, but be safe. */
2316 for (; local_plt < end_local_plt; ++local_plt)
2317 *local_plt = (bfd_vma) -1;
2319 else
2321 sec = htab->splt;
2322 srel = htab->srelplt;
2323 for (; local_plt < end_local_plt; ++local_plt)
2325 if (*local_plt > 0)
2327 *local_plt = sec->size;
2328 sec->size += PLT_ENTRY_SIZE;
2329 if (info->shared)
2330 srel->size += sizeof (Elf32_External_Rela);
2332 else
2333 *local_plt = (bfd_vma) -1;
2338 if (htab->tls_ldm_got.refcount > 0)
2340 /* Allocate 2 got entries and 1 dynamic reloc for
2341 R_PARISC_TLS_DTPMOD32 relocs. */
2342 htab->tls_ldm_got.offset = htab->sgot->size;
2343 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2344 htab->srelgot->size += sizeof (Elf32_External_Rela);
2346 else
2347 htab->tls_ldm_got.offset = -1;
2349 /* Do all the .plt entries without relocs first. The dynamic linker
2350 uses the last .plt reloc to find the end of the .plt (and hence
2351 the start of the .got) for lazy linking. */
2352 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2354 /* Allocate global sym .plt and .got entries, and space for global
2355 sym dynamic relocs. */
2356 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2358 /* The check_relocs and adjust_dynamic_symbol entry points have
2359 determined the sizes of the various dynamic sections. Allocate
2360 memory for them. */
2361 relocs = FALSE;
2362 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2364 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2365 continue;
2367 if (sec == htab->splt)
2369 if (htab->need_plt_stub)
2371 /* Make space for the plt stub at the end of the .plt
2372 section. We want this stub right at the end, up
2373 against the .got section. */
2374 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2375 int pltalign = bfd_section_alignment (dynobj, sec);
2376 bfd_size_type mask;
2378 if (gotalign > pltalign)
2379 bfd_set_section_alignment (dynobj, sec, gotalign);
2380 mask = ((bfd_size_type) 1 << gotalign) - 1;
2381 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2384 else if (sec == htab->sgot
2385 || sec == htab->sdynbss)
2387 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2389 if (sec->size != 0)
2391 /* Remember whether there are any reloc sections other
2392 than .rela.plt. */
2393 if (sec != htab->srelplt)
2394 relocs = TRUE;
2396 /* We use the reloc_count field as a counter if we need
2397 to copy relocs into the output file. */
2398 sec->reloc_count = 0;
2401 else
2403 /* It's not one of our sections, so don't allocate space. */
2404 continue;
2407 if (sec->size == 0)
2409 /* If we don't need this section, strip it from the
2410 output file. This is mostly to handle .rela.bss and
2411 .rela.plt. We must create both sections in
2412 create_dynamic_sections, because they must be created
2413 before the linker maps input sections to output
2414 sections. The linker does that before
2415 adjust_dynamic_symbol is called, and it is that
2416 function which decides whether anything needs to go
2417 into these sections. */
2418 sec->flags |= SEC_EXCLUDE;
2419 continue;
2422 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2423 continue;
2425 /* Allocate memory for the section contents. Zero it, because
2426 we may not fill in all the reloc sections. */
2427 sec->contents = bfd_zalloc (dynobj, sec->size);
2428 if (sec->contents == NULL)
2429 return FALSE;
2432 if (htab->etab.dynamic_sections_created)
2434 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2435 actually has nothing to do with the PLT, it is how we
2436 communicate the LTP value of a load module to the dynamic
2437 linker. */
2438 #define add_dynamic_entry(TAG, VAL) \
2439 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2441 if (!add_dynamic_entry (DT_PLTGOT, 0))
2442 return FALSE;
2444 /* Add some entries to the .dynamic section. We fill in the
2445 values later, in elf32_hppa_finish_dynamic_sections, but we
2446 must add the entries now so that we get the correct size for
2447 the .dynamic section. The DT_DEBUG entry is filled in by the
2448 dynamic linker and used by the debugger. */
2449 if (info->executable)
2451 if (!add_dynamic_entry (DT_DEBUG, 0))
2452 return FALSE;
2455 if (htab->srelplt->size != 0)
2457 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2458 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2459 || !add_dynamic_entry (DT_JMPREL, 0))
2460 return FALSE;
2463 if (relocs)
2465 if (!add_dynamic_entry (DT_RELA, 0)
2466 || !add_dynamic_entry (DT_RELASZ, 0)
2467 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2468 return FALSE;
2470 /* If any dynamic relocs apply to a read-only section,
2471 then we need a DT_TEXTREL entry. */
2472 if ((info->flags & DF_TEXTREL) == 0)
2473 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2475 if ((info->flags & DF_TEXTREL) != 0)
2477 if (!add_dynamic_entry (DT_TEXTREL, 0))
2478 return FALSE;
2482 #undef add_dynamic_entry
2484 return TRUE;
2487 /* External entry points for sizing and building linker stubs. */
2489 /* Set up various things so that we can make a list of input sections
2490 for each output section included in the link. Returns -1 on error,
2491 0 when no stubs will be needed, and 1 on success. */
2494 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2496 bfd *input_bfd;
2497 unsigned int bfd_count;
2498 int top_id, top_index;
2499 asection *section;
2500 asection **input_list, **list;
2501 bfd_size_type amt;
2502 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2504 /* Count the number of input BFDs and find the top input section id. */
2505 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2506 input_bfd != NULL;
2507 input_bfd = input_bfd->link_next)
2509 bfd_count += 1;
2510 for (section = input_bfd->sections;
2511 section != NULL;
2512 section = section->next)
2514 if (top_id < section->id)
2515 top_id = section->id;
2518 htab->bfd_count = bfd_count;
2520 amt = sizeof (struct map_stub) * (top_id + 1);
2521 htab->stub_group = bfd_zmalloc (amt);
2522 if (htab->stub_group == NULL)
2523 return -1;
2525 /* We can't use output_bfd->section_count here to find the top output
2526 section index as some sections may have been removed, and
2527 strip_excluded_output_sections doesn't renumber the indices. */
2528 for (section = output_bfd->sections, top_index = 0;
2529 section != NULL;
2530 section = section->next)
2532 if (top_index < section->index)
2533 top_index = section->index;
2536 htab->top_index = top_index;
2537 amt = sizeof (asection *) * (top_index + 1);
2538 input_list = bfd_malloc (amt);
2539 htab->input_list = input_list;
2540 if (input_list == NULL)
2541 return -1;
2543 /* For sections we aren't interested in, mark their entries with a
2544 value we can check later. */
2545 list = input_list + top_index;
2547 *list = bfd_abs_section_ptr;
2548 while (list-- != input_list);
2550 for (section = output_bfd->sections;
2551 section != NULL;
2552 section = section->next)
2554 if ((section->flags & SEC_CODE) != 0)
2555 input_list[section->index] = NULL;
2558 return 1;
2561 /* The linker repeatedly calls this function for each input section,
2562 in the order that input sections are linked into output sections.
2563 Build lists of input sections to determine groupings between which
2564 we may insert linker stubs. */
2566 void
2567 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2569 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2571 if (isec->output_section->index <= htab->top_index)
2573 asection **list = htab->input_list + isec->output_section->index;
2574 if (*list != bfd_abs_section_ptr)
2576 /* Steal the link_sec pointer for our list. */
2577 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2578 /* This happens to make the list in reverse order,
2579 which is what we want. */
2580 PREV_SEC (isec) = *list;
2581 *list = isec;
2586 /* See whether we can group stub sections together. Grouping stub
2587 sections may result in fewer stubs. More importantly, we need to
2588 put all .init* and .fini* stubs at the beginning of the .init or
2589 .fini output sections respectively, because glibc splits the
2590 _init and _fini functions into multiple parts. Putting a stub in
2591 the middle of a function is not a good idea. */
2593 static void
2594 group_sections (struct elf32_hppa_link_hash_table *htab,
2595 bfd_size_type stub_group_size,
2596 bfd_boolean stubs_always_before_branch)
2598 asection **list = htab->input_list + htab->top_index;
2601 asection *tail = *list;
2602 if (tail == bfd_abs_section_ptr)
2603 continue;
2604 while (tail != NULL)
2606 asection *curr;
2607 asection *prev;
2608 bfd_size_type total;
2609 bfd_boolean big_sec;
2611 curr = tail;
2612 total = tail->size;
2613 big_sec = total >= stub_group_size;
2615 while ((prev = PREV_SEC (curr)) != NULL
2616 && ((total += curr->output_offset - prev->output_offset)
2617 < stub_group_size))
2618 curr = prev;
2620 /* OK, the size from the start of CURR to the end is less
2621 than 240000 bytes and thus can be handled by one stub
2622 section. (or the tail section is itself larger than
2623 240000 bytes, in which case we may be toast.)
2624 We should really be keeping track of the total size of
2625 stubs added here, as stubs contribute to the final output
2626 section size. That's a little tricky, and this way will
2627 only break if stubs added total more than 22144 bytes, or
2628 2768 long branch stubs. It seems unlikely for more than
2629 2768 different functions to be called, especially from
2630 code only 240000 bytes long. This limit used to be
2631 250000, but c++ code tends to generate lots of little
2632 functions, and sometimes violated the assumption. */
2635 prev = PREV_SEC (tail);
2636 /* Set up this stub group. */
2637 htab->stub_group[tail->id].link_sec = curr;
2639 while (tail != curr && (tail = prev) != NULL);
2641 /* But wait, there's more! Input sections up to 240000
2642 bytes before the stub section can be handled by it too.
2643 Don't do this if we have a really large section after the
2644 stubs, as adding more stubs increases the chance that
2645 branches may not reach into the stub section. */
2646 if (!stubs_always_before_branch && !big_sec)
2648 total = 0;
2649 while (prev != NULL
2650 && ((total += tail->output_offset - prev->output_offset)
2651 < stub_group_size))
2653 tail = prev;
2654 prev = PREV_SEC (tail);
2655 htab->stub_group[tail->id].link_sec = curr;
2658 tail = prev;
2661 while (list-- != htab->input_list);
2662 free (htab->input_list);
2663 #undef PREV_SEC
2666 /* Read in all local syms for all input bfds, and create hash entries
2667 for export stubs if we are building a multi-subspace shared lib.
2668 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2670 static int
2671 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2673 unsigned int bfd_indx;
2674 Elf_Internal_Sym *local_syms, **all_local_syms;
2675 int stub_changed = 0;
2676 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2678 /* We want to read in symbol extension records only once. To do this
2679 we need to read in the local symbols in parallel and save them for
2680 later use; so hold pointers to the local symbols in an array. */
2681 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2682 all_local_syms = bfd_zmalloc (amt);
2683 htab->all_local_syms = all_local_syms;
2684 if (all_local_syms == NULL)
2685 return -1;
2687 /* Walk over all the input BFDs, swapping in local symbols.
2688 If we are creating a shared library, create hash entries for the
2689 export stubs. */
2690 for (bfd_indx = 0;
2691 input_bfd != NULL;
2692 input_bfd = input_bfd->link_next, bfd_indx++)
2694 Elf_Internal_Shdr *symtab_hdr;
2696 /* We'll need the symbol table in a second. */
2697 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2698 if (symtab_hdr->sh_info == 0)
2699 continue;
2701 /* We need an array of the local symbols attached to the input bfd. */
2702 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2703 if (local_syms == NULL)
2705 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2706 symtab_hdr->sh_info, 0,
2707 NULL, NULL, NULL);
2708 /* Cache them for elf_link_input_bfd. */
2709 symtab_hdr->contents = (unsigned char *) local_syms;
2711 if (local_syms == NULL)
2712 return -1;
2714 all_local_syms[bfd_indx] = local_syms;
2716 if (info->shared && htab->multi_subspace)
2718 struct elf_link_hash_entry **eh_syms;
2719 struct elf_link_hash_entry **eh_symend;
2720 unsigned int symcount;
2722 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2723 - symtab_hdr->sh_info);
2724 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2725 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2727 /* Look through the global syms for functions; We need to
2728 build export stubs for all globally visible functions. */
2729 for (; eh_syms < eh_symend; eh_syms++)
2731 struct elf32_hppa_link_hash_entry *hh;
2733 hh = hppa_elf_hash_entry (*eh_syms);
2735 while (hh->eh.root.type == bfd_link_hash_indirect
2736 || hh->eh.root.type == bfd_link_hash_warning)
2737 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2739 /* At this point in the link, undefined syms have been
2740 resolved, so we need to check that the symbol was
2741 defined in this BFD. */
2742 if ((hh->eh.root.type == bfd_link_hash_defined
2743 || hh->eh.root.type == bfd_link_hash_defweak)
2744 && hh->eh.type == STT_FUNC
2745 && hh->eh.root.u.def.section->output_section != NULL
2746 && (hh->eh.root.u.def.section->output_section->owner
2747 == output_bfd)
2748 && hh->eh.root.u.def.section->owner == input_bfd
2749 && hh->eh.def_regular
2750 && !hh->eh.forced_local
2751 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2753 asection *sec;
2754 const char *stub_name;
2755 struct elf32_hppa_stub_hash_entry *hsh;
2757 sec = hh->eh.root.u.def.section;
2758 stub_name = hh_name (hh);
2759 hsh = hppa_stub_hash_lookup (&htab->bstab,
2760 stub_name,
2761 FALSE, FALSE);
2762 if (hsh == NULL)
2764 hsh = hppa_add_stub (stub_name, sec, htab);
2765 if (!hsh)
2766 return -1;
2768 hsh->target_value = hh->eh.root.u.def.value;
2769 hsh->target_section = hh->eh.root.u.def.section;
2770 hsh->stub_type = hppa_stub_export;
2771 hsh->hh = hh;
2772 stub_changed = 1;
2774 else
2776 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2777 input_bfd,
2778 stub_name);
2785 return stub_changed;
2788 /* Determine and set the size of the stub section for a final link.
2790 The basic idea here is to examine all the relocations looking for
2791 PC-relative calls to a target that is unreachable with a "bl"
2792 instruction. */
2794 bfd_boolean
2795 elf32_hppa_size_stubs
2796 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2797 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2798 asection * (*add_stub_section) (const char *, asection *),
2799 void (*layout_sections_again) (void))
2801 bfd_size_type stub_group_size;
2802 bfd_boolean stubs_always_before_branch;
2803 bfd_boolean stub_changed;
2804 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2806 /* Stash our params away. */
2807 htab->stub_bfd = stub_bfd;
2808 htab->multi_subspace = multi_subspace;
2809 htab->add_stub_section = add_stub_section;
2810 htab->layout_sections_again = layout_sections_again;
2811 stubs_always_before_branch = group_size < 0;
2812 if (group_size < 0)
2813 stub_group_size = -group_size;
2814 else
2815 stub_group_size = group_size;
2816 if (stub_group_size == 1)
2818 /* Default values. */
2819 if (stubs_always_before_branch)
2821 stub_group_size = 7680000;
2822 if (htab->has_17bit_branch || htab->multi_subspace)
2823 stub_group_size = 240000;
2824 if (htab->has_12bit_branch)
2825 stub_group_size = 7500;
2827 else
2829 stub_group_size = 6971392;
2830 if (htab->has_17bit_branch || htab->multi_subspace)
2831 stub_group_size = 217856;
2832 if (htab->has_12bit_branch)
2833 stub_group_size = 6808;
2837 group_sections (htab, stub_group_size, stubs_always_before_branch);
2839 switch (get_local_syms (output_bfd, info->input_bfds, info))
2841 default:
2842 if (htab->all_local_syms)
2843 goto error_ret_free_local;
2844 return FALSE;
2846 case 0:
2847 stub_changed = FALSE;
2848 break;
2850 case 1:
2851 stub_changed = TRUE;
2852 break;
2855 while (1)
2857 bfd *input_bfd;
2858 unsigned int bfd_indx;
2859 asection *stub_sec;
2861 for (input_bfd = info->input_bfds, bfd_indx = 0;
2862 input_bfd != NULL;
2863 input_bfd = input_bfd->link_next, bfd_indx++)
2865 Elf_Internal_Shdr *symtab_hdr;
2866 asection *section;
2867 Elf_Internal_Sym *local_syms;
2869 /* We'll need the symbol table in a second. */
2870 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2871 if (symtab_hdr->sh_info == 0)
2872 continue;
2874 local_syms = htab->all_local_syms[bfd_indx];
2876 /* Walk over each section attached to the input bfd. */
2877 for (section = input_bfd->sections;
2878 section != NULL;
2879 section = section->next)
2881 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2883 /* If there aren't any relocs, then there's nothing more
2884 to do. */
2885 if ((section->flags & SEC_RELOC) == 0
2886 || section->reloc_count == 0)
2887 continue;
2889 /* If this section is a link-once section that will be
2890 discarded, then don't create any stubs. */
2891 if (section->output_section == NULL
2892 || section->output_section->owner != output_bfd)
2893 continue;
2895 /* Get the relocs. */
2896 internal_relocs
2897 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2898 info->keep_memory);
2899 if (internal_relocs == NULL)
2900 goto error_ret_free_local;
2902 /* Now examine each relocation. */
2903 irela = internal_relocs;
2904 irelaend = irela + section->reloc_count;
2905 for (; irela < irelaend; irela++)
2907 unsigned int r_type, r_indx;
2908 enum elf32_hppa_stub_type stub_type;
2909 struct elf32_hppa_stub_hash_entry *hsh;
2910 asection *sym_sec;
2911 bfd_vma sym_value;
2912 bfd_vma destination;
2913 struct elf32_hppa_link_hash_entry *hh;
2914 char *stub_name;
2915 const asection *id_sec;
2917 r_type = ELF32_R_TYPE (irela->r_info);
2918 r_indx = ELF32_R_SYM (irela->r_info);
2920 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2922 bfd_set_error (bfd_error_bad_value);
2923 error_ret_free_internal:
2924 if (elf_section_data (section)->relocs == NULL)
2925 free (internal_relocs);
2926 goto error_ret_free_local;
2929 /* Only look for stubs on call instructions. */
2930 if (r_type != (unsigned int) R_PARISC_PCREL12F
2931 && r_type != (unsigned int) R_PARISC_PCREL17F
2932 && r_type != (unsigned int) R_PARISC_PCREL22F)
2933 continue;
2935 /* Now determine the call target, its name, value,
2936 section. */
2937 sym_sec = NULL;
2938 sym_value = 0;
2939 destination = 0;
2940 hh = NULL;
2941 if (r_indx < symtab_hdr->sh_info)
2943 /* It's a local symbol. */
2944 Elf_Internal_Sym *sym;
2945 Elf_Internal_Shdr *hdr;
2946 unsigned int shndx;
2948 sym = local_syms + r_indx;
2949 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2950 sym_value = sym->st_value;
2951 shndx = sym->st_shndx;
2952 if (shndx < elf_numsections (input_bfd))
2954 hdr = elf_elfsections (input_bfd)[shndx];
2955 sym_sec = hdr->bfd_section;
2956 destination = (sym_value + irela->r_addend
2957 + sym_sec->output_offset
2958 + sym_sec->output_section->vma);
2961 else
2963 /* It's an external symbol. */
2964 int e_indx;
2966 e_indx = r_indx - symtab_hdr->sh_info;
2967 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2969 while (hh->eh.root.type == bfd_link_hash_indirect
2970 || hh->eh.root.type == bfd_link_hash_warning)
2971 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2973 if (hh->eh.root.type == bfd_link_hash_defined
2974 || hh->eh.root.type == bfd_link_hash_defweak)
2976 sym_sec = hh->eh.root.u.def.section;
2977 sym_value = hh->eh.root.u.def.value;
2978 if (sym_sec->output_section != NULL)
2979 destination = (sym_value + irela->r_addend
2980 + sym_sec->output_offset
2981 + sym_sec->output_section->vma);
2983 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2985 if (! info->shared)
2986 continue;
2988 else if (hh->eh.root.type == bfd_link_hash_undefined)
2990 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2991 && (ELF_ST_VISIBILITY (hh->eh.other)
2992 == STV_DEFAULT)
2993 && hh->eh.type != STT_PARISC_MILLI))
2994 continue;
2996 else
2998 bfd_set_error (bfd_error_bad_value);
2999 goto error_ret_free_internal;
3003 /* Determine what (if any) linker stub is needed. */
3004 stub_type = hppa_type_of_stub (section, irela, hh,
3005 destination, info);
3006 if (stub_type == hppa_stub_none)
3007 continue;
3009 /* Support for grouping stub sections. */
3010 id_sec = htab->stub_group[section->id].link_sec;
3012 /* Get the name of this stub. */
3013 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3014 if (!stub_name)
3015 goto error_ret_free_internal;
3017 hsh = hppa_stub_hash_lookup (&htab->bstab,
3018 stub_name,
3019 FALSE, FALSE);
3020 if (hsh != NULL)
3022 /* The proper stub has already been created. */
3023 free (stub_name);
3024 continue;
3027 hsh = hppa_add_stub (stub_name, section, htab);
3028 if (hsh == NULL)
3030 free (stub_name);
3031 goto error_ret_free_internal;
3034 hsh->target_value = sym_value;
3035 hsh->target_section = sym_sec;
3036 hsh->stub_type = stub_type;
3037 if (info->shared)
3039 if (stub_type == hppa_stub_import)
3040 hsh->stub_type = hppa_stub_import_shared;
3041 else if (stub_type == hppa_stub_long_branch)
3042 hsh->stub_type = hppa_stub_long_branch_shared;
3044 hsh->hh = hh;
3045 stub_changed = TRUE;
3048 /* We're done with the internal relocs, free them. */
3049 if (elf_section_data (section)->relocs == NULL)
3050 free (internal_relocs);
3054 if (!stub_changed)
3055 break;
3057 /* OK, we've added some stubs. Find out the new size of the
3058 stub sections. */
3059 for (stub_sec = htab->stub_bfd->sections;
3060 stub_sec != NULL;
3061 stub_sec = stub_sec->next)
3062 stub_sec->size = 0;
3064 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3066 /* Ask the linker to do its stuff. */
3067 (*htab->layout_sections_again) ();
3068 stub_changed = FALSE;
3071 free (htab->all_local_syms);
3072 return TRUE;
3074 error_ret_free_local:
3075 free (htab->all_local_syms);
3076 return FALSE;
3079 /* For a final link, this function is called after we have sized the
3080 stubs to provide a value for __gp. */
3082 bfd_boolean
3083 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3085 struct bfd_link_hash_entry *h;
3086 asection *sec = NULL;
3087 bfd_vma gp_val = 0;
3088 struct elf32_hppa_link_hash_table *htab;
3090 htab = hppa_link_hash_table (info);
3091 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3093 if (h != NULL
3094 && (h->type == bfd_link_hash_defined
3095 || h->type == bfd_link_hash_defweak))
3097 gp_val = h->u.def.value;
3098 sec = h->u.def.section;
3100 else
3102 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3103 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3105 /* Choose to point our LTP at, in this order, one of .plt, .got,
3106 or .data, if these sections exist. In the case of choosing
3107 .plt try to make the LTP ideal for addressing anywhere in the
3108 .plt or .got with a 14 bit signed offset. Typically, the end
3109 of the .plt is the start of the .got, so choose .plt + 0x2000
3110 if either the .plt or .got is larger than 0x2000. If both
3111 the .plt and .got are smaller than 0x2000, choose the end of
3112 the .plt section. */
3113 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3114 ? NULL : splt;
3115 if (sec != NULL)
3117 gp_val = sec->size;
3118 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3120 gp_val = 0x2000;
3123 else
3125 sec = sgot;
3126 if (sec != NULL)
3128 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3130 /* We know we don't have a .plt. If .got is large,
3131 offset our LTP. */
3132 if (sec->size > 0x2000)
3133 gp_val = 0x2000;
3136 else
3138 /* No .plt or .got. Who cares what the LTP is? */
3139 sec = bfd_get_section_by_name (abfd, ".data");
3143 if (h != NULL)
3145 h->type = bfd_link_hash_defined;
3146 h->u.def.value = gp_val;
3147 if (sec != NULL)
3148 h->u.def.section = sec;
3149 else
3150 h->u.def.section = bfd_abs_section_ptr;
3154 if (sec != NULL && sec->output_section != NULL)
3155 gp_val += sec->output_section->vma + sec->output_offset;
3157 elf_gp (abfd) = gp_val;
3158 return TRUE;
3161 /* Build all the stubs associated with the current output file. The
3162 stubs are kept in a hash table attached to the main linker hash
3163 table. We also set up the .plt entries for statically linked PIC
3164 functions here. This function is called via hppaelf_finish in the
3165 linker. */
3167 bfd_boolean
3168 elf32_hppa_build_stubs (struct bfd_link_info *info)
3170 asection *stub_sec;
3171 struct bfd_hash_table *table;
3172 struct elf32_hppa_link_hash_table *htab;
3174 htab = hppa_link_hash_table (info);
3176 for (stub_sec = htab->stub_bfd->sections;
3177 stub_sec != NULL;
3178 stub_sec = stub_sec->next)
3180 bfd_size_type size;
3182 /* Allocate memory to hold the linker stubs. */
3183 size = stub_sec->size;
3184 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3185 if (stub_sec->contents == NULL && size != 0)
3186 return FALSE;
3187 stub_sec->size = 0;
3190 /* Build the stubs as directed by the stub hash table. */
3191 table = &htab->bstab;
3192 bfd_hash_traverse (table, hppa_build_one_stub, info);
3194 return TRUE;
3197 /* Return the base vma address which should be subtracted from the real
3198 address when resolving a dtpoff relocation.
3199 This is PT_TLS segment p_vaddr. */
3201 static bfd_vma
3202 dtpoff_base (struct bfd_link_info *info)
3204 /* If tls_sec is NULL, we should have signalled an error already. */
3205 if (elf_hash_table (info)->tls_sec == NULL)
3206 return 0;
3207 return elf_hash_table (info)->tls_sec->vma;
3210 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3212 static bfd_vma
3213 tpoff (struct bfd_link_info *info, bfd_vma address)
3215 struct elf_link_hash_table *htab = elf_hash_table (info);
3217 /* If tls_sec is NULL, we should have signalled an error already. */
3218 if (htab->tls_sec == NULL)
3219 return 0;
3220 /* hppa TLS ABI is variant I and static TLS block start just after
3221 tcbhead structure which has 2 pointer fields. */
3222 return (address - htab->tls_sec->vma
3223 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3226 /* Perform a final link. */
3228 static bfd_boolean
3229 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3231 /* Invoke the regular ELF linker to do all the work. */
3232 if (!bfd_elf_final_link (abfd, info))
3233 return FALSE;
3235 /* If we're producing a final executable, sort the contents of the
3236 unwind section. */
3237 return elf_hppa_sort_unwind (abfd);
3240 /* Record the lowest address for the data and text segments. */
3242 static void
3243 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3245 struct elf32_hppa_link_hash_table *htab;
3247 htab = (struct elf32_hppa_link_hash_table*) data;
3249 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3251 bfd_vma value;
3252 Elf_Internal_Phdr *p;
3254 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3255 BFD_ASSERT (p != NULL);
3256 value = p->p_vaddr;
3258 if ((section->flags & SEC_READONLY) != 0)
3260 if (value < htab->text_segment_base)
3261 htab->text_segment_base = value;
3263 else
3265 if (value < htab->data_segment_base)
3266 htab->data_segment_base = value;
3271 /* Perform a relocation as part of a final link. */
3273 static bfd_reloc_status_type
3274 final_link_relocate (asection *input_section,
3275 bfd_byte *contents,
3276 const Elf_Internal_Rela *rela,
3277 bfd_vma value,
3278 struct elf32_hppa_link_hash_table *htab,
3279 asection *sym_sec,
3280 struct elf32_hppa_link_hash_entry *hh,
3281 struct bfd_link_info *info)
3283 int insn;
3284 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3285 unsigned int orig_r_type = r_type;
3286 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3287 int r_format = howto->bitsize;
3288 enum hppa_reloc_field_selector_type_alt r_field;
3289 bfd *input_bfd = input_section->owner;
3290 bfd_vma offset = rela->r_offset;
3291 bfd_vma max_branch_offset = 0;
3292 bfd_byte *hit_data = contents + offset;
3293 bfd_signed_vma addend = rela->r_addend;
3294 bfd_vma location;
3295 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3296 int val;
3298 if (r_type == R_PARISC_NONE)
3299 return bfd_reloc_ok;
3301 insn = bfd_get_32 (input_bfd, hit_data);
3303 /* Find out where we are and where we're going. */
3304 location = (offset +
3305 input_section->output_offset +
3306 input_section->output_section->vma);
3308 /* If we are not building a shared library, convert DLTIND relocs to
3309 DPREL relocs. */
3310 if (!info->shared)
3312 switch (r_type)
3314 case R_PARISC_DLTIND21L:
3315 r_type = R_PARISC_DPREL21L;
3316 break;
3318 case R_PARISC_DLTIND14R:
3319 r_type = R_PARISC_DPREL14R;
3320 break;
3322 case R_PARISC_DLTIND14F:
3323 r_type = R_PARISC_DPREL14F;
3324 break;
3328 switch (r_type)
3330 case R_PARISC_PCREL12F:
3331 case R_PARISC_PCREL17F:
3332 case R_PARISC_PCREL22F:
3333 /* If this call should go via the plt, find the import stub in
3334 the stub hash. */
3335 if (sym_sec == NULL
3336 || sym_sec->output_section == NULL
3337 || (hh != NULL
3338 && hh->eh.plt.offset != (bfd_vma) -1
3339 && hh->eh.dynindx != -1
3340 && !hh->plabel
3341 && (info->shared
3342 || !hh->eh.def_regular
3343 || hh->eh.root.type == bfd_link_hash_defweak)))
3345 hsh = hppa_get_stub_entry (input_section, sym_sec,
3346 hh, rela, htab);
3347 if (hsh != NULL)
3349 value = (hsh->stub_offset
3350 + hsh->stub_sec->output_offset
3351 + hsh->stub_sec->output_section->vma);
3352 addend = 0;
3354 else if (sym_sec == NULL && hh != NULL
3355 && hh->eh.root.type == bfd_link_hash_undefweak)
3357 /* It's OK if undefined weak. Calls to undefined weak
3358 symbols behave as if the "called" function
3359 immediately returns. We can thus call to a weak
3360 function without first checking whether the function
3361 is defined. */
3362 value = location;
3363 addend = 8;
3365 else
3366 return bfd_reloc_undefined;
3368 /* Fall thru. */
3370 case R_PARISC_PCREL21L:
3371 case R_PARISC_PCREL17C:
3372 case R_PARISC_PCREL17R:
3373 case R_PARISC_PCREL14R:
3374 case R_PARISC_PCREL14F:
3375 case R_PARISC_PCREL32:
3376 /* Make it a pc relative offset. */
3377 value -= location;
3378 addend -= 8;
3379 break;
3381 case R_PARISC_DPREL21L:
3382 case R_PARISC_DPREL14R:
3383 case R_PARISC_DPREL14F:
3384 /* Convert instructions that use the linkage table pointer (r19) to
3385 instructions that use the global data pointer (dp). This is the
3386 most efficient way of using PIC code in an incomplete executable,
3387 but the user must follow the standard runtime conventions for
3388 accessing data for this to work. */
3389 if (orig_r_type == R_PARISC_DLTIND21L)
3391 /* Convert addil instructions if the original reloc was a
3392 DLTIND21L. GCC sometimes uses a register other than r19 for
3393 the operation, so we must convert any addil instruction
3394 that uses this relocation. */
3395 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3396 insn = ADDIL_DP;
3397 else
3398 /* We must have a ldil instruction. It's too hard to find
3399 and convert the associated add instruction, so issue an
3400 error. */
3401 (*_bfd_error_handler)
3402 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3403 input_bfd,
3404 input_section,
3405 (long) offset,
3406 howto->name,
3407 insn);
3409 else if (orig_r_type == R_PARISC_DLTIND14F)
3411 /* This must be a format 1 load/store. Change the base
3412 register to dp. */
3413 insn = (insn & 0xfc1ffff) | (27 << 21);
3416 /* For all the DP relative relocations, we need to examine the symbol's
3417 section. If it has no section or if it's a code section, then
3418 "data pointer relative" makes no sense. In that case we don't
3419 adjust the "value", and for 21 bit addil instructions, we change the
3420 source addend register from %dp to %r0. This situation commonly
3421 arises for undefined weak symbols and when a variable's "constness"
3422 is declared differently from the way the variable is defined. For
3423 instance: "extern int foo" with foo defined as "const int foo". */
3424 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3426 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3427 == (((int) OP_ADDIL << 26) | (27 << 21)))
3429 insn &= ~ (0x1f << 21);
3431 /* Now try to make things easy for the dynamic linker. */
3433 break;
3435 /* Fall thru. */
3437 case R_PARISC_DLTIND21L:
3438 case R_PARISC_DLTIND14R:
3439 case R_PARISC_DLTIND14F:
3440 case R_PARISC_TLS_GD21L:
3441 case R_PARISC_TLS_GD14R:
3442 case R_PARISC_TLS_LDM21L:
3443 case R_PARISC_TLS_LDM14R:
3444 case R_PARISC_TLS_IE21L:
3445 case R_PARISC_TLS_IE14R:
3446 value -= elf_gp (input_section->output_section->owner);
3447 break;
3449 case R_PARISC_SEGREL32:
3450 if ((sym_sec->flags & SEC_CODE) != 0)
3451 value -= htab->text_segment_base;
3452 else
3453 value -= htab->data_segment_base;
3454 break;
3456 default:
3457 break;
3460 switch (r_type)
3462 case R_PARISC_DIR32:
3463 case R_PARISC_DIR14F:
3464 case R_PARISC_DIR17F:
3465 case R_PARISC_PCREL17C:
3466 case R_PARISC_PCREL14F:
3467 case R_PARISC_PCREL32:
3468 case R_PARISC_DPREL14F:
3469 case R_PARISC_PLABEL32:
3470 case R_PARISC_DLTIND14F:
3471 case R_PARISC_SEGBASE:
3472 case R_PARISC_SEGREL32:
3473 case R_PARISC_TLS_DTPMOD32:
3474 case R_PARISC_TLS_DTPOFF32:
3475 case R_PARISC_TLS_TPREL32:
3476 r_field = e_fsel;
3477 break;
3479 case R_PARISC_DLTIND21L:
3480 case R_PARISC_PCREL21L:
3481 case R_PARISC_PLABEL21L:
3482 r_field = e_lsel;
3483 break;
3485 case R_PARISC_DIR21L:
3486 case R_PARISC_DPREL21L:
3487 case R_PARISC_TLS_GD21L:
3488 case R_PARISC_TLS_LDM21L:
3489 case R_PARISC_TLS_LDO21L:
3490 case R_PARISC_TLS_IE21L:
3491 case R_PARISC_TLS_LE21L:
3492 r_field = e_lrsel;
3493 break;
3495 case R_PARISC_PCREL17R:
3496 case R_PARISC_PCREL14R:
3497 case R_PARISC_PLABEL14R:
3498 case R_PARISC_DLTIND14R:
3499 r_field = e_rsel;
3500 break;
3502 case R_PARISC_DIR17R:
3503 case R_PARISC_DIR14R:
3504 case R_PARISC_DPREL14R:
3505 case R_PARISC_TLS_GD14R:
3506 case R_PARISC_TLS_LDM14R:
3507 case R_PARISC_TLS_LDO14R:
3508 case R_PARISC_TLS_IE14R:
3509 case R_PARISC_TLS_LE14R:
3510 r_field = e_rrsel;
3511 break;
3513 case R_PARISC_PCREL12F:
3514 case R_PARISC_PCREL17F:
3515 case R_PARISC_PCREL22F:
3516 r_field = e_fsel;
3518 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3520 max_branch_offset = (1 << (17-1)) << 2;
3522 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3524 max_branch_offset = (1 << (12-1)) << 2;
3526 else
3528 max_branch_offset = (1 << (22-1)) << 2;
3531 /* sym_sec is NULL on undefined weak syms or when shared on
3532 undefined syms. We've already checked for a stub for the
3533 shared undefined case. */
3534 if (sym_sec == NULL)
3535 break;
3537 /* If the branch is out of reach, then redirect the
3538 call to the local stub for this function. */
3539 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3541 hsh = hppa_get_stub_entry (input_section, sym_sec,
3542 hh, rela, htab);
3543 if (hsh == NULL)
3544 return bfd_reloc_undefined;
3546 /* Munge up the value and addend so that we call the stub
3547 rather than the procedure directly. */
3548 value = (hsh->stub_offset
3549 + hsh->stub_sec->output_offset
3550 + hsh->stub_sec->output_section->vma
3551 - location);
3552 addend = -8;
3554 break;
3556 /* Something we don't know how to handle. */
3557 default:
3558 return bfd_reloc_notsupported;
3561 /* Make sure we can reach the stub. */
3562 if (max_branch_offset != 0
3563 && value + addend + max_branch_offset >= 2*max_branch_offset)
3565 (*_bfd_error_handler)
3566 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3567 input_bfd,
3568 input_section,
3569 (long) offset,
3570 hsh->bh_root.string);
3571 bfd_set_error (bfd_error_bad_value);
3572 return bfd_reloc_notsupported;
3575 val = hppa_field_adjust (value, addend, r_field);
3577 switch (r_type)
3579 case R_PARISC_PCREL12F:
3580 case R_PARISC_PCREL17C:
3581 case R_PARISC_PCREL17F:
3582 case R_PARISC_PCREL17R:
3583 case R_PARISC_PCREL22F:
3584 case R_PARISC_DIR17F:
3585 case R_PARISC_DIR17R:
3586 /* This is a branch. Divide the offset by four.
3587 Note that we need to decide whether it's a branch or
3588 otherwise by inspecting the reloc. Inspecting insn won't
3589 work as insn might be from a .word directive. */
3590 val >>= 2;
3591 break;
3593 default:
3594 break;
3597 insn = hppa_rebuild_insn (insn, val, r_format);
3599 /* Update the instruction word. */
3600 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3601 return bfd_reloc_ok;
3604 /* Relocate an HPPA ELF section. */
3606 static bfd_boolean
3607 elf32_hppa_relocate_section (bfd *output_bfd,
3608 struct bfd_link_info *info,
3609 bfd *input_bfd,
3610 asection *input_section,
3611 bfd_byte *contents,
3612 Elf_Internal_Rela *relocs,
3613 Elf_Internal_Sym *local_syms,
3614 asection **local_sections)
3616 bfd_vma *local_got_offsets;
3617 struct elf32_hppa_link_hash_table *htab;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 Elf_Internal_Rela *rela;
3620 Elf_Internal_Rela *relend;
3622 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 htab = hppa_link_hash_table (info);
3625 local_got_offsets = elf_local_got_offsets (input_bfd);
3627 rela = relocs;
3628 relend = relocs + input_section->reloc_count;
3629 for (; rela < relend; rela++)
3631 unsigned int r_type;
3632 reloc_howto_type *howto;
3633 unsigned int r_symndx;
3634 struct elf32_hppa_link_hash_entry *hh;
3635 Elf_Internal_Sym *sym;
3636 asection *sym_sec;
3637 bfd_vma relocation;
3638 bfd_reloc_status_type rstatus;
3639 const char *sym_name;
3640 bfd_boolean plabel;
3641 bfd_boolean warned_undef;
3643 r_type = ELF32_R_TYPE (rela->r_info);
3644 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3646 bfd_set_error (bfd_error_bad_value);
3647 return FALSE;
3649 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3650 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3651 continue;
3653 r_symndx = ELF32_R_SYM (rela->r_info);
3654 hh = NULL;
3655 sym = NULL;
3656 sym_sec = NULL;
3657 warned_undef = FALSE;
3658 if (r_symndx < symtab_hdr->sh_info)
3660 /* This is a local symbol, h defaults to NULL. */
3661 sym = local_syms + r_symndx;
3662 sym_sec = local_sections[r_symndx];
3663 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3665 else
3667 struct elf_link_hash_entry *eh;
3668 bfd_boolean unresolved_reloc;
3669 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3671 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3672 r_symndx, symtab_hdr, sym_hashes,
3673 eh, sym_sec, relocation,
3674 unresolved_reloc, warned_undef);
3676 if (!info->relocatable
3677 && relocation == 0
3678 && eh->root.type != bfd_link_hash_defined
3679 && eh->root.type != bfd_link_hash_defweak
3680 && eh->root.type != bfd_link_hash_undefweak)
3682 if (info->unresolved_syms_in_objects == RM_IGNORE
3683 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3684 && eh->type == STT_PARISC_MILLI)
3686 if (! info->callbacks->undefined_symbol
3687 (info, eh_name (eh), input_bfd,
3688 input_section, rela->r_offset, FALSE))
3689 return FALSE;
3690 warned_undef = TRUE;
3693 hh = hppa_elf_hash_entry (eh);
3696 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3698 /* For relocs against symbols from removed linkonce
3699 sections, or sections discarded by a linker script,
3700 we just want the section contents zeroed. Avoid any
3701 special processing. */
3702 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3703 contents + rela->r_offset);
3704 rela->r_info = 0;
3705 rela->r_addend = 0;
3706 continue;
3709 if (info->relocatable)
3710 continue;
3712 /* Do any required modifications to the relocation value, and
3713 determine what types of dynamic info we need to output, if
3714 any. */
3715 plabel = 0;
3716 switch (r_type)
3718 case R_PARISC_DLTIND14F:
3719 case R_PARISC_DLTIND14R:
3720 case R_PARISC_DLTIND21L:
3722 bfd_vma off;
3723 bfd_boolean do_got = 0;
3725 /* Relocation is to the entry for this symbol in the
3726 global offset table. */
3727 if (hh != NULL)
3729 bfd_boolean dyn;
3731 off = hh->eh.got.offset;
3732 dyn = htab->etab.dynamic_sections_created;
3733 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3734 &hh->eh))
3736 /* If we aren't going to call finish_dynamic_symbol,
3737 then we need to handle initialisation of the .got
3738 entry and create needed relocs here. Since the
3739 offset must always be a multiple of 4, we use the
3740 least significant bit to record whether we have
3741 initialised it already. */
3742 if ((off & 1) != 0)
3743 off &= ~1;
3744 else
3746 hh->eh.got.offset |= 1;
3747 do_got = 1;
3751 else
3753 /* Local symbol case. */
3754 if (local_got_offsets == NULL)
3755 abort ();
3757 off = local_got_offsets[r_symndx];
3759 /* The offset must always be a multiple of 4. We use
3760 the least significant bit to record whether we have
3761 already generated the necessary reloc. */
3762 if ((off & 1) != 0)
3763 off &= ~1;
3764 else
3766 local_got_offsets[r_symndx] |= 1;
3767 do_got = 1;
3771 if (do_got)
3773 if (info->shared)
3775 /* Output a dynamic relocation for this GOT entry.
3776 In this case it is relative to the base of the
3777 object because the symbol index is zero. */
3778 Elf_Internal_Rela outrel;
3779 bfd_byte *loc;
3780 asection *sec = htab->srelgot;
3782 outrel.r_offset = (off
3783 + htab->sgot->output_offset
3784 + htab->sgot->output_section->vma);
3785 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3786 outrel.r_addend = relocation;
3787 loc = sec->contents;
3788 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3789 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3791 else
3792 bfd_put_32 (output_bfd, relocation,
3793 htab->sgot->contents + off);
3796 if (off >= (bfd_vma) -2)
3797 abort ();
3799 /* Add the base of the GOT to the relocation value. */
3800 relocation = (off
3801 + htab->sgot->output_offset
3802 + htab->sgot->output_section->vma);
3804 break;
3806 case R_PARISC_SEGREL32:
3807 /* If this is the first SEGREL relocation, then initialize
3808 the segment base values. */
3809 if (htab->text_segment_base == (bfd_vma) -1)
3810 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3811 break;
3813 case R_PARISC_PLABEL14R:
3814 case R_PARISC_PLABEL21L:
3815 case R_PARISC_PLABEL32:
3816 if (htab->etab.dynamic_sections_created)
3818 bfd_vma off;
3819 bfd_boolean do_plt = 0;
3820 /* If we have a global symbol with a PLT slot, then
3821 redirect this relocation to it. */
3822 if (hh != NULL)
3824 off = hh->eh.plt.offset;
3825 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3826 &hh->eh))
3828 /* In a non-shared link, adjust_dynamic_symbols
3829 isn't called for symbols forced local. We
3830 need to write out the plt entry here. */
3831 if ((off & 1) != 0)
3832 off &= ~1;
3833 else
3835 hh->eh.plt.offset |= 1;
3836 do_plt = 1;
3840 else
3842 bfd_vma *local_plt_offsets;
3844 if (local_got_offsets == NULL)
3845 abort ();
3847 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3848 off = local_plt_offsets[r_symndx];
3850 /* As for the local .got entry case, we use the last
3851 bit to record whether we've already initialised
3852 this local .plt entry. */
3853 if ((off & 1) != 0)
3854 off &= ~1;
3855 else
3857 local_plt_offsets[r_symndx] |= 1;
3858 do_plt = 1;
3862 if (do_plt)
3864 if (info->shared)
3866 /* Output a dynamic IPLT relocation for this
3867 PLT entry. */
3868 Elf_Internal_Rela outrel;
3869 bfd_byte *loc;
3870 asection *s = htab->srelplt;
3872 outrel.r_offset = (off
3873 + htab->splt->output_offset
3874 + htab->splt->output_section->vma);
3875 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3876 outrel.r_addend = relocation;
3877 loc = s->contents;
3878 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3879 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3881 else
3883 bfd_put_32 (output_bfd,
3884 relocation,
3885 htab->splt->contents + off);
3886 bfd_put_32 (output_bfd,
3887 elf_gp (htab->splt->output_section->owner),
3888 htab->splt->contents + off + 4);
3892 if (off >= (bfd_vma) -2)
3893 abort ();
3895 /* PLABELs contain function pointers. Relocation is to
3896 the entry for the function in the .plt. The magic +2
3897 offset signals to $$dyncall that the function pointer
3898 is in the .plt and thus has a gp pointer too.
3899 Exception: Undefined PLABELs should have a value of
3900 zero. */
3901 if (hh == NULL
3902 || (hh->eh.root.type != bfd_link_hash_undefweak
3903 && hh->eh.root.type != bfd_link_hash_undefined))
3905 relocation = (off
3906 + htab->splt->output_offset
3907 + htab->splt->output_section->vma
3908 + 2);
3910 plabel = 1;
3912 /* Fall through and possibly emit a dynamic relocation. */
3914 case R_PARISC_DIR17F:
3915 case R_PARISC_DIR17R:
3916 case R_PARISC_DIR14F:
3917 case R_PARISC_DIR14R:
3918 case R_PARISC_DIR21L:
3919 case R_PARISC_DPREL14F:
3920 case R_PARISC_DPREL14R:
3921 case R_PARISC_DPREL21L:
3922 case R_PARISC_DIR32:
3923 if ((input_section->flags & SEC_ALLOC) == 0)
3924 break;
3926 /* The reloc types handled here and this conditional
3927 expression must match the code in ..check_relocs and
3928 allocate_dynrelocs. ie. We need exactly the same condition
3929 as in ..check_relocs, with some extra conditions (dynindx
3930 test in this case) to cater for relocs removed by
3931 allocate_dynrelocs. If you squint, the non-shared test
3932 here does indeed match the one in ..check_relocs, the
3933 difference being that here we test DEF_DYNAMIC as well as
3934 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3935 which is why we can't use just that test here.
3936 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3937 there all files have not been loaded. */
3938 if ((info->shared
3939 && (hh == NULL
3940 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3941 || hh->eh.root.type != bfd_link_hash_undefweak)
3942 && (IS_ABSOLUTE_RELOC (r_type)
3943 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3944 || (!info->shared
3945 && hh != NULL
3946 && hh->eh.dynindx != -1
3947 && !hh->eh.non_got_ref
3948 && ((ELIMINATE_COPY_RELOCS
3949 && hh->eh.def_dynamic
3950 && !hh->eh.def_regular)
3951 || hh->eh.root.type == bfd_link_hash_undefweak
3952 || hh->eh.root.type == bfd_link_hash_undefined)))
3954 Elf_Internal_Rela outrel;
3955 bfd_boolean skip;
3956 asection *sreloc;
3957 bfd_byte *loc;
3959 /* When generating a shared object, these relocations
3960 are copied into the output file to be resolved at run
3961 time. */
3963 outrel.r_addend = rela->r_addend;
3964 outrel.r_offset =
3965 _bfd_elf_section_offset (output_bfd, info, input_section,
3966 rela->r_offset);
3967 skip = (outrel.r_offset == (bfd_vma) -1
3968 || outrel.r_offset == (bfd_vma) -2);
3969 outrel.r_offset += (input_section->output_offset
3970 + input_section->output_section->vma);
3972 if (skip)
3974 memset (&outrel, 0, sizeof (outrel));
3976 else if (hh != NULL
3977 && hh->eh.dynindx != -1
3978 && (plabel
3979 || !IS_ABSOLUTE_RELOC (r_type)
3980 || !info->shared
3981 || !info->symbolic
3982 || !hh->eh.def_regular))
3984 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3986 else /* It's a local symbol, or one marked to become local. */
3988 int indx = 0;
3990 /* Add the absolute offset of the symbol. */
3991 outrel.r_addend += relocation;
3993 /* Global plabels need to be processed by the
3994 dynamic linker so that functions have at most one
3995 fptr. For this reason, we need to differentiate
3996 between global and local plabels, which we do by
3997 providing the function symbol for a global plabel
3998 reloc, and no symbol for local plabels. */
3999 if (! plabel
4000 && sym_sec != NULL
4001 && sym_sec->output_section != NULL
4002 && ! bfd_is_abs_section (sym_sec))
4004 asection *osec;
4006 osec = sym_sec->output_section;
4007 indx = elf_section_data (osec)->dynindx;
4008 if (indx == 0)
4010 osec = htab->etab.text_index_section;
4011 indx = elf_section_data (osec)->dynindx;
4013 BFD_ASSERT (indx != 0);
4015 /* We are turning this relocation into one
4016 against a section symbol, so subtract out the
4017 output section's address but not the offset
4018 of the input section in the output section. */
4019 outrel.r_addend -= osec->vma;
4022 outrel.r_info = ELF32_R_INFO (indx, r_type);
4024 sreloc = elf_section_data (input_section)->sreloc;
4025 if (sreloc == NULL)
4026 abort ();
4028 loc = sreloc->contents;
4029 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4030 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4032 break;
4034 case R_PARISC_TLS_LDM21L:
4035 case R_PARISC_TLS_LDM14R:
4037 bfd_vma off;
4039 off = htab->tls_ldm_got.offset;
4040 if (off & 1)
4041 off &= ~1;
4042 else
4044 Elf_Internal_Rela outrel;
4045 bfd_byte *loc;
4047 outrel.r_offset = (off
4048 + htab->sgot->output_section->vma
4049 + htab->sgot->output_offset);
4050 outrel.r_addend = 0;
4051 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4052 loc = htab->srelgot->contents;
4053 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4055 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4056 htab->tls_ldm_got.offset |= 1;
4059 /* Add the base of the GOT to the relocation value. */
4060 relocation = (off
4061 + htab->sgot->output_offset
4062 + htab->sgot->output_section->vma);
4064 break;
4067 case R_PARISC_TLS_LDO21L:
4068 case R_PARISC_TLS_LDO14R:
4069 relocation -= dtpoff_base (info);
4070 break;
4072 case R_PARISC_TLS_GD21L:
4073 case R_PARISC_TLS_GD14R:
4074 case R_PARISC_TLS_IE21L:
4075 case R_PARISC_TLS_IE14R:
4077 bfd_vma off;
4078 int indx;
4079 char tls_type;
4081 indx = 0;
4082 if (hh != NULL)
4084 bfd_boolean dyn;
4085 dyn = htab->etab.dynamic_sections_created;
4087 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4088 && (!info->shared
4089 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4091 indx = hh->eh.dynindx;
4093 off = hh->eh.got.offset;
4094 tls_type = hh->tls_type;
4096 else
4098 off = local_got_offsets[r_symndx];
4099 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4102 if (tls_type == GOT_UNKNOWN)
4103 abort ();
4105 if ((off & 1) != 0)
4106 off &= ~1;
4107 else
4109 bfd_boolean need_relocs = FALSE;
4110 Elf_Internal_Rela outrel;
4111 bfd_byte *loc = NULL;
4112 int cur_off = off;
4114 /* The GOT entries have not been initialized yet. Do it
4115 now, and emit any relocations. If both an IE GOT and a
4116 GD GOT are necessary, we emit the GD first. */
4118 if ((info->shared || indx != 0)
4119 && (hh == NULL
4120 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4121 || hh->eh.root.type != bfd_link_hash_undefweak))
4123 need_relocs = TRUE;
4124 loc = htab->srelgot->contents;
4125 /* FIXME (CAO): Should this be reloc_count++ ? */
4126 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4129 if (tls_type & GOT_TLS_GD)
4131 if (need_relocs)
4133 outrel.r_offset = (cur_off
4134 + htab->sgot->output_section->vma
4135 + htab->sgot->output_offset);
4136 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4137 outrel.r_addend = 0;
4138 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4139 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4140 htab->srelgot->reloc_count++;
4141 loc += sizeof (Elf32_External_Rela);
4143 if (indx == 0)
4144 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4145 htab->sgot->contents + cur_off + 4);
4146 else
4148 bfd_put_32 (output_bfd, 0,
4149 htab->sgot->contents + cur_off + 4);
4150 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4151 outrel.r_offset += 4;
4152 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4153 htab->srelgot->reloc_count++;
4154 loc += sizeof (Elf32_External_Rela);
4157 else
4159 /* If we are not emitting relocations for a
4160 general dynamic reference, then we must be in a
4161 static link or an executable link with the
4162 symbol binding locally. Mark it as belonging
4163 to module 1, the executable. */
4164 bfd_put_32 (output_bfd, 1,
4165 htab->sgot->contents + cur_off);
4166 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4167 htab->sgot->contents + cur_off + 4);
4171 cur_off += 8;
4174 if (tls_type & GOT_TLS_IE)
4176 if (need_relocs)
4178 outrel.r_offset = (cur_off
4179 + htab->sgot->output_section->vma
4180 + htab->sgot->output_offset);
4181 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4183 if (indx == 0)
4184 outrel.r_addend = relocation - dtpoff_base (info);
4185 else
4186 outrel.r_addend = 0;
4188 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4189 htab->srelgot->reloc_count++;
4190 loc += sizeof (Elf32_External_Rela);
4192 else
4193 bfd_put_32 (output_bfd, tpoff (info, relocation),
4194 htab->sgot->contents + cur_off);
4196 cur_off += 4;
4199 if (hh != NULL)
4200 hh->eh.got.offset |= 1;
4201 else
4202 local_got_offsets[r_symndx] |= 1;
4205 if ((tls_type & GOT_TLS_GD)
4206 && r_type != R_PARISC_TLS_GD21L
4207 && r_type != R_PARISC_TLS_GD14R)
4208 off += 2 * GOT_ENTRY_SIZE;
4210 /* Add the base of the GOT to the relocation value. */
4211 relocation = (off
4212 + htab->sgot->output_offset
4213 + htab->sgot->output_section->vma);
4215 break;
4218 case R_PARISC_TLS_LE21L:
4219 case R_PARISC_TLS_LE14R:
4221 relocation = tpoff (info, relocation);
4222 break;
4224 break;
4226 default:
4227 break;
4230 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4231 htab, sym_sec, hh, info);
4233 if (rstatus == bfd_reloc_ok)
4234 continue;
4236 if (hh != NULL)
4237 sym_name = hh_name (hh);
4238 else
4240 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4241 symtab_hdr->sh_link,
4242 sym->st_name);
4243 if (sym_name == NULL)
4244 return FALSE;
4245 if (*sym_name == '\0')
4246 sym_name = bfd_section_name (input_bfd, sym_sec);
4249 howto = elf_hppa_howto_table + r_type;
4251 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4253 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4255 (*_bfd_error_handler)
4256 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4257 input_bfd,
4258 input_section,
4259 (long) rela->r_offset,
4260 howto->name,
4261 sym_name);
4262 bfd_set_error (bfd_error_bad_value);
4263 return FALSE;
4266 else
4268 if (!((*info->callbacks->reloc_overflow)
4269 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4270 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4271 return FALSE;
4275 return TRUE;
4278 /* Finish up dynamic symbol handling. We set the contents of various
4279 dynamic sections here. */
4281 static bfd_boolean
4282 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4283 struct bfd_link_info *info,
4284 struct elf_link_hash_entry *eh,
4285 Elf_Internal_Sym *sym)
4287 struct elf32_hppa_link_hash_table *htab;
4288 Elf_Internal_Rela rela;
4289 bfd_byte *loc;
4291 htab = hppa_link_hash_table (info);
4293 if (eh->plt.offset != (bfd_vma) -1)
4295 bfd_vma value;
4297 if (eh->plt.offset & 1)
4298 abort ();
4300 /* This symbol has an entry in the procedure linkage table. Set
4301 it up.
4303 The format of a plt entry is
4304 <funcaddr>
4305 <__gp>
4307 value = 0;
4308 if (eh->root.type == bfd_link_hash_defined
4309 || eh->root.type == bfd_link_hash_defweak)
4311 value = eh->root.u.def.value;
4312 if (eh->root.u.def.section->output_section != NULL)
4313 value += (eh->root.u.def.section->output_offset
4314 + eh->root.u.def.section->output_section->vma);
4317 /* Create a dynamic IPLT relocation for this entry. */
4318 rela.r_offset = (eh->plt.offset
4319 + htab->splt->output_offset
4320 + htab->splt->output_section->vma);
4321 if (eh->dynindx != -1)
4323 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4324 rela.r_addend = 0;
4326 else
4328 /* This symbol has been marked to become local, and is
4329 used by a plabel so must be kept in the .plt. */
4330 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4331 rela.r_addend = value;
4334 loc = htab->srelplt->contents;
4335 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4336 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4338 if (!eh->def_regular)
4340 /* Mark the symbol as undefined, rather than as defined in
4341 the .plt section. Leave the value alone. */
4342 sym->st_shndx = SHN_UNDEF;
4346 if (eh->got.offset != (bfd_vma) -1
4347 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4348 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4350 /* This symbol has an entry in the global offset table. Set it
4351 up. */
4353 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4354 + htab->sgot->output_offset
4355 + htab->sgot->output_section->vma);
4357 /* If this is a -Bsymbolic link and the symbol is defined
4358 locally or was forced to be local because of a version file,
4359 we just want to emit a RELATIVE reloc. The entry in the
4360 global offset table will already have been initialized in the
4361 relocate_section function. */
4362 if (info->shared
4363 && (info->symbolic || eh->dynindx == -1)
4364 && eh->def_regular)
4366 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4367 rela.r_addend = (eh->root.u.def.value
4368 + eh->root.u.def.section->output_offset
4369 + eh->root.u.def.section->output_section->vma);
4371 else
4373 if ((eh->got.offset & 1) != 0)
4374 abort ();
4376 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4377 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4378 rela.r_addend = 0;
4381 loc = htab->srelgot->contents;
4382 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4383 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4386 if (eh->needs_copy)
4388 asection *sec;
4390 /* This symbol needs a copy reloc. Set it up. */
4392 if (! (eh->dynindx != -1
4393 && (eh->root.type == bfd_link_hash_defined
4394 || eh->root.type == bfd_link_hash_defweak)))
4395 abort ();
4397 sec = htab->srelbss;
4399 rela.r_offset = (eh->root.u.def.value
4400 + eh->root.u.def.section->output_offset
4401 + eh->root.u.def.section->output_section->vma);
4402 rela.r_addend = 0;
4403 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4404 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4405 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4408 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4409 if (eh_name (eh)[0] == '_'
4410 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4411 || eh == htab->etab.hgot))
4413 sym->st_shndx = SHN_ABS;
4416 return TRUE;
4419 /* Used to decide how to sort relocs in an optimal manner for the
4420 dynamic linker, before writing them out. */
4422 static enum elf_reloc_type_class
4423 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4425 /* Handle TLS relocs first; we don't want them to be marked
4426 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4427 check below. */
4428 switch ((int) ELF32_R_TYPE (rela->r_info))
4430 case R_PARISC_TLS_DTPMOD32:
4431 case R_PARISC_TLS_DTPOFF32:
4432 case R_PARISC_TLS_TPREL32:
4433 return reloc_class_normal;
4436 if (ELF32_R_SYM (rela->r_info) == 0)
4437 return reloc_class_relative;
4439 switch ((int) ELF32_R_TYPE (rela->r_info))
4441 case R_PARISC_IPLT:
4442 return reloc_class_plt;
4443 case R_PARISC_COPY:
4444 return reloc_class_copy;
4445 default:
4446 return reloc_class_normal;
4450 /* Finish up the dynamic sections. */
4452 static bfd_boolean
4453 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4454 struct bfd_link_info *info)
4456 bfd *dynobj;
4457 struct elf32_hppa_link_hash_table *htab;
4458 asection *sdyn;
4460 htab = hppa_link_hash_table (info);
4461 dynobj = htab->etab.dynobj;
4463 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4465 if (htab->etab.dynamic_sections_created)
4467 Elf32_External_Dyn *dyncon, *dynconend;
4469 if (sdyn == NULL)
4470 abort ();
4472 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4473 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4474 for (; dyncon < dynconend; dyncon++)
4476 Elf_Internal_Dyn dyn;
4477 asection *s;
4479 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4481 switch (dyn.d_tag)
4483 default:
4484 continue;
4486 case DT_PLTGOT:
4487 /* Use PLTGOT to set the GOT register. */
4488 dyn.d_un.d_ptr = elf_gp (output_bfd);
4489 break;
4491 case DT_JMPREL:
4492 s = htab->srelplt;
4493 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4494 break;
4496 case DT_PLTRELSZ:
4497 s = htab->srelplt;
4498 dyn.d_un.d_val = s->size;
4499 break;
4501 case DT_RELASZ:
4502 /* Don't count procedure linkage table relocs in the
4503 overall reloc count. */
4504 s = htab->srelplt;
4505 if (s == NULL)
4506 continue;
4507 dyn.d_un.d_val -= s->size;
4508 break;
4510 case DT_RELA:
4511 /* We may not be using the standard ELF linker script.
4512 If .rela.plt is the first .rela section, we adjust
4513 DT_RELA to not include it. */
4514 s = htab->srelplt;
4515 if (s == NULL)
4516 continue;
4517 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4518 continue;
4519 dyn.d_un.d_ptr += s->size;
4520 break;
4523 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4527 if (htab->sgot != NULL && htab->sgot->size != 0)
4529 /* Fill in the first entry in the global offset table.
4530 We use it to point to our dynamic section, if we have one. */
4531 bfd_put_32 (output_bfd,
4532 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4533 htab->sgot->contents);
4535 /* The second entry is reserved for use by the dynamic linker. */
4536 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4538 /* Set .got entry size. */
4539 elf_section_data (htab->sgot->output_section)
4540 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4543 if (htab->splt != NULL && htab->splt->size != 0)
4545 /* Set plt entry size. */
4546 elf_section_data (htab->splt->output_section)
4547 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4549 if (htab->need_plt_stub)
4551 /* Set up the .plt stub. */
4552 memcpy (htab->splt->contents
4553 + htab->splt->size - sizeof (plt_stub),
4554 plt_stub, sizeof (plt_stub));
4556 if ((htab->splt->output_offset
4557 + htab->splt->output_section->vma
4558 + htab->splt->size)
4559 != (htab->sgot->output_offset
4560 + htab->sgot->output_section->vma))
4562 (*_bfd_error_handler)
4563 (_(".got section not immediately after .plt section"));
4564 return FALSE;
4569 return TRUE;
4572 /* Called when writing out an object file to decide the type of a
4573 symbol. */
4574 static int
4575 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4577 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4578 return STT_PARISC_MILLI;
4579 else
4580 return type;
4583 /* Misc BFD support code. */
4584 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4585 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4586 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4587 #define elf_info_to_howto elf_hppa_info_to_howto
4588 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4590 /* Stuff for the BFD linker. */
4591 #define bfd_elf32_mkobject elf32_hppa_mkobject
4592 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4593 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4594 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4595 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4596 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4597 #define elf_backend_check_relocs elf32_hppa_check_relocs
4598 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4599 #define elf_backend_fake_sections elf_hppa_fake_sections
4600 #define elf_backend_relocate_section elf32_hppa_relocate_section
4601 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4602 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4603 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4604 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4605 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4606 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4607 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4608 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4609 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4610 #define elf_backend_object_p elf32_hppa_object_p
4611 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4612 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4613 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4614 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4615 #define elf_backend_action_discarded elf_hppa_action_discarded
4617 #define elf_backend_can_gc_sections 1
4618 #define elf_backend_can_refcount 1
4619 #define elf_backend_plt_alignment 2
4620 #define elf_backend_want_got_plt 0
4621 #define elf_backend_plt_readonly 0
4622 #define elf_backend_want_plt_sym 0
4623 #define elf_backend_got_header_size 8
4624 #define elf_backend_rela_normal 1
4626 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4627 #define TARGET_BIG_NAME "elf32-hppa"
4628 #define ELF_ARCH bfd_arch_hppa
4629 #define ELF_MACHINE_CODE EM_PARISC
4630 #define ELF_MAXPAGESIZE 0x1000
4631 #define ELF_OSABI ELFOSABI_HPUX
4632 #define elf32_bed elf32_hppa_hpux_bed
4634 #include "elf32-target.h"
4636 #undef TARGET_BIG_SYM
4637 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4638 #undef TARGET_BIG_NAME
4639 #define TARGET_BIG_NAME "elf32-hppa-linux"
4640 #undef ELF_OSABI
4641 #define ELF_OSABI ELFOSABI_LINUX
4642 #undef elf32_bed
4643 #define elf32_bed elf32_hppa_linux_bed
4645 #include "elf32-target.h"
4647 #undef TARGET_BIG_SYM
4648 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4649 #undef TARGET_BIG_NAME
4650 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4651 #undef ELF_OSABI
4652 #define ELF_OSABI ELFOSABI_NETBSD
4653 #undef elf32_bed
4654 #define elf32_bed elf32_hppa_netbsd_bed
4656 #include "elf32-target.h"